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1. I n t r o d u c t i o n  

Let Ag/Z denote the moduli stack of principally polarized abelian varieties of dimen- 

sion g. This is an irreducible algebraic stack of relative dimension �89  with irre- 

ducible fibres over Z. The stack ,49 carries a locally free sheaf E of rank g, the Hodge 

bundle, defined as follows. If A/S is an abelian scheme over S with 0-section s we get 

a locally free sheaf s*f~A/sl of rank g on S, and this is compatible with pullbacks. If 

7r: A-+S denotes the structure map it satisfies the property 121A/s=Tr*(E), and we will 

consider its Chern classes Ai(A/S):=ci(f~A/S) (in the Chow ring of S). These then are 

the pullbacks of the corresponding classes in the universal case Ai:=ci(E).  The Hodge 

bundle can be extended to a locally free sheaf (again denoted by) E on every smooth 

toroidal compactification J~9 of A 9 of the type constructed in [9], see Chapter  VI, w 

there. By a slight abuse of notat ion we will continue to use the notat ion Ai for its Chern 

classes. 

The classes Ai are defined over Z and give for each fibre A 9 |  rise to classes, also 

denoted ~ ,  in the Chow ring CH* (Ag| and in CH*(Ag| They generate subrings 

(Q-subalgebras) of C H ~ ( A g Q k  ) and of * CHQ(.AgQk ) which are called the tautological 
subrings. 

It  was proved in [11] by an application of the Grothendieck-Riemann Roch theorem 

that  these classes in the Chow ring CH~ (Ag) with rational coefficients satisfy the relation 

(1+ Al+...+ Ag)(1-Al +...+(-1)gAg) = 1. (1.1) 

Furthermore, it was proved that  Ag vanishes in the Chow group CHQ(Ag) with rational 

coefficients. The class A 9 does not vanish on 4 9. This raises two questions. First, since 

A 9 is a torsion class on A 9 we may ask what its order is. Second, since A 9 up to torsion 
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comes from a class on the 'boundary '  fi, g\,4g we may ask for a description of this class. 

As an answer to the first question we give an upper bound on the order of Ag in the third 

section and a non-vanishing result in the fourth section which implies a lower bound. 

That  result is obtained as a consequence of a more precise result that  determines the 

order of the Chern classes of the de Rham bundle up to a (multiplicative) factor 2. As 

an answer to the second question we shall generalize the well-known relation 12A1 =5  for 

g =  1 to higher g in a sequel to this paper [8]. 

The authors thank the referee for many useful remarks and thank the editors for 

their patience. 

2. K - t h e o r y  for  s t acks  

We will need to extend some results on K-theory from schemes to stacks. Just as in the 

schematic case we denote by K~ the Grothendieck group of vector bundles on the 

algebraic stack X, and by Ko(X) the Grothendieck group of coherent sheaves. We shall 

use [14] for the general notions concerning algebraic stacks, in particular the definition 

of coherent sheaf on an algebraic stack, cf. [14, 15.1]. We shall follow standard usage 

in that  by an algebraic stack we mean a general algebraic stack what is also called an 

Artin stack--while by Deligne-Mumford stack we mean an algebraic stack with an ~tale 

chart. The first result is the homotopy exact sequence (cf. [3, Exp. IX, Proposition 1.1]). 

Remark 2.1. Our purpose is quite restricted, we only want results that  can be used 

in the next section, and hence we will make no attempt at maximum generality. It will 

be clear that  some of the results are in fact true in larger generality than stated. 

We will in this section only consider algebraic stacks of finite type over a base field k. 

PROPOSITION 2.2. Let X be a noetherian algebraic stack, i: X~-+ X a closed sub- 

stack of X,  and j: U-+X the complement of Xq Then the sequence 

K0(X') K0(X) J' K0(U) 

is exact. 

Proof. The proof is the same as that of [3, Exp. IX, Proposition 1.1] once we know 

that every coherent sheaf on U extends to one on X and that every coherent subsheaf 

of an extended quasi-coherent sheaf extends as a coherent subsheaf. Such extensions are 

provided by [14, Corollary 15.5]. [] 

The next step is to prove the analogue of [3, Exp. IX, Proposition 1.6], the calculation 

of K0 for a vector bundle. 
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PROPOSITION 2.3. Let X be a noetherian Deligne Mumford stack and E--+X a 

vector bundle over X. Then the pullback map Ko(X)--+Ko(E) is an isomorphism. 

Pro@ As a general remark we note that  K0 is contravariant not just for flat maps 

but for all morphisms between noetherian stacks of finite Tor-dimension. 

We first prove the proposition for the case when E = X  x A 1, and for that  we follow 

the proof of [3, Exp. IX, Proposition 1.6]. We star t  by noting that  the 0-section of 

X x A  1 is of finite Tor-dimension, and hence we have a map  Ko(X• such 

that  the composition Ko(X)--+Ko(XxA1)--+Ko(X) is the identity. This shows that  

Ko(X)--+Ko(E) is injective, and it remains to show surjectivity. 

We may now by noetherian induction assume that  the corresponding map is an 

isomorphism for every proper closed substack. By Proposition 2.2 it is hence enough to 

show the result for some non-empty open subset of X.  By [14, Proposition 6.1.1] there is 

a non-empty open subset of X which is the stack quotient of an action of a finite group on 

an affine scheme, and we consider that  open subset, so that  we may assume that  X itself 

is such a quotient. If  the a n n e  scheme is Spec H and the group is G then the category of 

coherent Ox-modules  is equivalent to the category of finitely generated modules over the 

twisted group ring RIG] ("twisted" because of the relation g)~=)~g9 for ACR and 9EG), 

and the category of coherent modules over X x A 1 is then equivalent to the category of 

finitely generated modules over RIG] IT], the polynomial ring over R[G]. Note also that  

if S is the ring of invariants of G on R, then S is noetherian as R is noetherian and RIG] 

is a finite S-algebra. We then conclude by [2, Exp. XII, Theorem 4.1], which says exactly 

that  for a finite S-algebra A, the map Go(A)-+Go(A[T]) is an isomorphism; Go(B) in 

the notation by Bass being the Grothendieck group of finitely generated B-modules.  

In the general case, we will say tha t  two maps f, g: Y-+Z between algebraic stacks 

are affine-homotopic if there is a map F:  Y x A I - +  Z which restricted to the 0-section is 

f and restricted to the 1-section is g- Note also tha t  the 0- and 1-sections in X x A 1 

are of finite Tor-dimension, which means that  we may pull back elements of K0 (Y x A t) 

along them. By the special case of E = X x A  1 just proved we get tha t  0* and 1" are 

both  inverses to the said isomorphism, and hence they are equal. This implies that  if we 

have two maps f, g: Y--+Z of finite Tor-dimension related by an afl3ne homotopy of finite 

Tor-dimension we get that  f * = g *  on Ko(X). 

This can now be applied to the identity map and the composition of the struc- 

ture map E-+X and the 0-section X-+E, which are affine-homotopie by the usual map 

(v, t) ~ tv.  [] 

Remark 2.4. In [3, Exp. IX, Proposition 1.6] noetherian induction is used to allow 

one to assume that  the scheme is reduced. Then a passage to the limit is made so that  
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instead of reducing to an open affine subset one reduces to a field in which case one is 

dealing with regular schemes and can switch to K ~ instead where the result is easier to 

prove. This is not possible in our situation as even for a field K the twisted group ring 

K[G] is not of finite global dimension when the characteristic divides the order of the 

subgroup of elements of G acting trivially on K. In [2] the same strategy as in [3, Exp. IX, 

Proposition 1.6] is used to reduce to the case of a finite-dimensional algebra over a field. 

There a further reduction is made by dividing out by the radical of the algebra, a step 

which corresponds to assuming that  the scheme is reduced. 

We will now need to consider the topological filtration on K-theory. Hence we define, 

for X a regular algebraic stack, Fil>~C_K0(X) to be the subgroup generated by classes of 

sheaves with support of codimension ~>i. Using Proposition 2.3 we get an isomorphism 

Ko(X)--+Ko(E) for every vector bundle E--+X. We now define F i l ~ ( X )  to be the limit 

of Fil>~i(E) for all vector bundles E--+X and surjective vector bundle maps between 

them. 

PROPOSITION 2.5. Let X be a Deligne Mumford stack which is the stack quotient 

of the action of a finite group G on a smooth quasi-projective k-scheme Y. 

(i) The forgetful map K~ is an isomorphism. 

(ii) If  d i m X = n  and e e K ~  maps to Fi l~ i (x )  then c j (e)N[X]eAn_j(X)  is z e r o  

for O<j<i. 

(iii) Using the isomorphism K~ to get a mult~glication on Ko(X)  the 

filtration Fil b is multiplieative, i.e., Fil~. Filg c_ Fil~ +j for all i and j .  

Proof. For (i) we use the fact that  the category of coherent Ox-modules is equivalent 

to the category of coherent Oy-modules with a G-action compatible with the action of 

G on Y, i.e., a Oy[G]-module for the twisted group ring. What  needs to be proved 

is, as in the spatial (i.e., algebraic space) case, that  every coherent Ox-module  has a 

finite resolution by coherent locally free Ox-modules.  An Ox-module  is locally free 

exactly when the corresponding Oz-module  is. As Y is regular and of finite type over 

k there is a bound for the global dimension of the local rings of Y. Hence it is enough 

to show that  each coherent Oz  [G]-module ~- is the quotient of a Oy [G]-module $ that  

is coherent and locally free as Oz-module.  By [3, Exp. II, Corollary 2.2.7.1], ~- is the 

quotient of a coherent locally free Oy-module $ ~, and it is then the quotient of the 

Oy  [G]-module g'[G]. 

As for (ii) it follows directly from (i), excision ([13, Proposition 2.3.6]), boundedness 

by dimension ([13, Proposition 3.4.2]), and the fact that  vector bundle maps induce 

isomorphisms on Chow groups ([13, Corollary 2.4.9]). 

Continuing with (iii), we may, after possibly replacing X by a vector bundle over it, 
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reduce to showing that  FiP-FilJC Filb +j. According to [13, Proposition 3.5.6] we may find 

a vector bundle E-+X and an open subset UCE whose complement has codimension 

greater than i+j such that  U is an algebraic space. For our purposes we will however 

need U to be quasi-projective. This is easily arranged by letting rt: E--+X be the stack 

quotient of G acting on (.9y [G] ~ for n large (n > i  + j  will do) and letting U be the quotient 

of the part  where G acts freely. We now have an isomorphism rr*: Ko(X)---+Ko(E), and it 

will be enough to show that  ~r* Fil~(X).rc* FilJ(X)C_ Fil ~+j (E),  and for that  it is enough 

that  Fil ~ (E) .  Fil j (E) ~ Fil ~+j (E).  By excision, Proposition 2.2, it is enough to show that  

Fil~(U).FilJ(U)CFil~+J(u). But U is a smooth quasi-projective variety, and then this 

is found in [3, Exp. 0, Appendix, Corollary 1 to Theorem 2.12] when the base field is 

algebraically closed. The only dependence on the assumption of algebraic closedness is 

for the moving lemma. However, the moving lemma is true over any field, cf. [16, w 

Theorem]. [] 

Remark 2.6. We have used the notation Fil for the filtration directly defined by a 

support condition as it is already well-established in the spatial case. However, we do 

not believe it is the "right" definition for a general Mgebraic stack. Consider for instance 

the case of the stack quotient [*/G] of a finite group G acting trivially on *=Speck .  

In that  case K0([*/G]) equals the representation ring of G-representations over k and 

Fil I (* /G)  = {0}, which seems to be too small. On the other hand, consider the case when 

G = Z / 2  (and k is a field of characteristic different from 2). For any G-representation V 

on which G acts non-trivially we have that  Fil~IKo([V/G]) equals the group I of virtual 

bundles of rank 0 (which is what one would like). Using the multiplicativity we get 

that  F i l ~ n 2 I  ". On the other hand, using Proposition 2.5 (ii) one can show the opposite 

inclusion and hence F i l ~ n = I  n. This equals the topological filtration on K~ making 

it seem quite reasonable. 

As has been stated in the introduction one of our goals is to give an explicit integer 

killing ~9 on Ag. To make such a statement as useful as possible one would like to be able 

to conclude from this that  its pullback along any map S--~A~ vanishes. In the case of 

schemes such a conclusion is possible because the Chern classes lie in Chow cohomology 

groups which are contravariant functors. It is of course possible to formulate this contra- 

variant character of Chern classes without introducing Chow cohomology groups, but 

it would be quite awkward particularly when it comes to expressing relations between 

them. We shall therefore very briefly introduce, by perfect analogy with the spatial 

case, Chow cohomology groups. We shall only prove the minimal results necessary to 

formulate and prove our result on A s. Recall ([13]) that  an algebraic stack is said to 

be filtered by global quotients if it has a stratification by substacks such that  each of 
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them is the quotient of an algebraic space by an affine group scheme. Note that  the 

refined Gysin maps (which will be used in our proof) currently (cf. [13, w are defined 

(essentially) only in the case when the involved stacks are filtered by global quotients. 

We now follow [10] in defining for a map X--+Y of algebraic stacks filtered by global 

quotients the bivariant Chow groups A R ( X ~ Y )  consisting of collections of operations 

as in [10, Definition 17.1] fulfilling the conditions C1-C3 with the difference that  in C3 

the map i: Z"--+Z' is assumed to be representable, locally separated and whose normal 

cone stack is a vector bundle stack of constant rank. (These are on the one hand the 

conditions under which Kresch defines the refined Gysin map, on the other hand we shall 

want to use the Gysin map for the diagonal of an algebraic stack, which means that  it 

will not be enough to require C3 for 1.c.i. embeddings.) As in loc. cit. we define the Chow 

cohomology groups to be the bivariant groups for the identity maps. 

PROPOSITION 2.7. (i) Let X be an algebraic stack filtered by global quotients and 

E a vector bundle over X .  I f  for a map g:X' - -+X we set cp (E) (a ) : :Cp(g*E)na  then 

we obtain an element of AP(X) .  

(ii) Let X be a smooth algebraic stack of pure dimension n that is filtered by global 

quotients. The map AP(X)--~An_p(X)  given by cupping an operation with the funda- 

mental class is an isomorphism. 

Proof. We will follow very closely the relevant parts of [10, Chapter 17]. For the 

first part we need the compatibility of Chern classes with proper pushforwards, pullbacks 

and Gysin maps. The first two properties are proved in [13, w and the proof of the 

third follows quite directly:(1) Chern classes are polynomials in Segre classes, so it is 

enough to prove that  Segre classes commute with Gysin maps. From the definition of 

Segre classes ([13, Definition 2.5.4]) we see that  they in turn are expressed in terms of flat 

pullbacks, (iterated) top Chern class operations, and proper pushdowns. Commutation 

of Gysin maps with flat pullbacks and proper pushdowns are clear (cf. [13, w so it 

remains to show that  they commute with top Chern classes. Looking at the construction 

of the Gysin map (cf. [13, w w one sees that  it is expressed in terms of flat pull- 

backs, proper pushforwards, and intersection with a principal effective Cartier divisor 

(the normal cone CF, G' in the deformation space M~,G', cf. [10, w As the other 

operations are already known to commute with the top Chern class one is reduced to 

proving commutation with intersection with a principal effective Cartier divisor (the 

operation introduced in [13, w Looking at the definition of the top Chern class what 

is needed is the projection formula (cf. [10, Proposition 2.3c]) for intersection with a 

divisor. This is proved as in the proof of [10, Proposition 2.3]. 

(1) We are grateful to Andrew Kresch for providing us with the following proof. 
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As for (ii), the proof is identical with [10, Theorem 17.4.2] (specialized to the case 

of the base being a point). (Note that  in that  proof we cannot assume that  the diagonal 

map is an immersion, which is why we have to allow for more general maps in C3.) " [] 

3. A b o u n d  on  t h e  o r d e r  o f  t h e  c lass  ,kg 

We will make some computat ions in the Chow group of ,4 9. To make the previous section 

applicable (and for other reasons) all our algebraic stacks will be of finite type over a 

field�9 We begin with a lemma which is no doubt well known. 

LEMMA 3.1. If  E is a vector bundle of rank g, the total Chern class of the graded 

vector bundle A*E is zero in degrees 1 to g - l ,  and - ( g - 1 ) ! % ( E )  in degree g. 

Proof. As usual we note tha t  the components of the total  Chern class are universal 

polynomials with integer coefficients in the Chern classes ci:=ci(E). Such a relation 

is true if and only if it is true for the tautological bundle on all grassmannians of g- 

dimensional subspaces, and we may hence let E be such a bundle. Then, as we may 

think of the coefficients in the universal polynomials as rational numbers, we can note 

tha t  the Chern classes of degree 1 to g - 1  of A*E vanish if and only if the Newton 

polynomials of the same degrees do, i.e., if and only if ch(A*E) vanishes in the same 

degrees. Thus the first part  follows from the Borel-Serre formula (cf. [4]) 

ch(A*E) = ( -1 )gcg(E)Td(E)  -1. 

Furthermore,  if the Chern classes of degree 1 to g - 1  vanish for a bundle F,  then it is 

clear that  ( -1 )g - lgcg(F)=sg(F) ,  as can be seen from Newton's  formula. (Here si(F) 

are the Newton polynomials in the (roots of the) Chern classes of F.)  Hence in degree g 

we have ch(A*E)=(-1)g- lg%(A*E) /g! ,  and using the Borel Serre formula again gives 

the desired formula. [] 

LEMMA 3.2. Let p be a prime. Suppose that 7r: A--~S is a family of abelian varieties 

of relative dimension g, where S is an algebraic stack that is the quotient of a smooth 

quasi-projective k-scheme by a finite group. Assume that L is a line bundle on A of 

order p, on all fibres of ~r. Let E be the Hodge bundle of ~r, i.e., the pullback of f~lA/s 

along the O-section, and let e be the class in K ~  of the graded bundle A*E. If  p>2g 
�9 ~g4-1 then peEFll b , and in particular p ( g - 1 ) ! A g = 0 .  If  S is actually a smooth quasi- 

projective variety, we have that the stronger conclusion peEFil  ~>g+l is true provided only 

that p>min{2g, dim S+g}.  

Proof. Tha t  peeF i l~  g+l implies that  p(g-1)!  A9 =0  follows from Lemma 3.1, Propo- 

sitions 2.5 (ii) and 2.7. 
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As in the proof of Proposition 2.5 we can find a vector bundle E-+S with an 

open set U that is a smooth quasi-projective variety whose complement has codimension 

greater than g. By Proposition 2.3 and the definition of Filb we may pull back ~ to U 

and hence assume that  S is smooth and quasi-projective. 

By twisting L by a line bundle on S so that  it is trivial along the 0-section we may 

assume that  it is of order p on A. Denoting the class of L in K0 by [L] we then either 

have that p ( [ L ] - l )  has support of codimension greater than 2g if p>2g, or is zero if 

p > d i m  S+g. Indeed, from the relation 

0 = [L] p -  1 = p ( [L] -  1)(1 + �89 ( p -  1)([L]-  1)+.. .)  + ( [L] -  1) p 

and the fact that [L] -  1 is nilpotent (which in turn follows for instance from the multi- 

plicativity of the topological filtration) we get that p ( [ L ] - l )  is ( [L] - I )P  times a unit, 

and ( [L] -  1) p is an element supported in codimension ~>p by the multiplicativity of the 

topological filtration. Now in the first case the image under ~ of the support has codi- 

mension greater than g on S, and so we may safely remove it and assume that  p[L] =p 

in K0(A). 
Consider now the Poincar~ bundle P on A• where A denotes the dual abelian 

variety. By base change RTr.(?A is the (derived) pullback along the 0-section of .4 of 

the sheaf RTr.P. We have that  p[P]=p[L~P], and so p[R~.P]=p[R~r.(L| Now, 

a fibrewise calculation shows that  RTr. (L |  has support along the inverse of the section 

of A corresponding to L. As that  section is everywhere disjoint from the 0-section the 

pullback of RTF,(L| along the 0-section is 0, and thus p[R~.(.OA]=O. Now, the well- 

known calculation of Rizr.(PA shows that  it is isomorphic to AiE, so the lemma follows. [] 

DEFINITION-LEMMA 3.3. For an integer g we let ng be the largest common divi- 

sor of all p2g-1, where p runs through all primes larger than a sufficiently large fixed 

number N (which may be taken to be 2 g + l ) .  For an odd prime l, the exponent k of the 

exact power I k of l that divides ng is the largest k such that / k - l ( / - 1 )  divides 2g and 0 

if l - 1  does not divide 2g. The exponent k of the exact power 2 k that divides ng is the 

largest k such that 2 k-2 divides 2g. 

Proof. Note that  l k divides ng if and only if the exponent of (Z/lk) * divides 2g. 

The statement now follows directly from the structure of (Z//k) * and Dirichlet's prime 

number theorem. [] 

Example 3.4. We have nl =24, n2=240, n3=504 and n4=480. 

THEOREM 3.5. Suppose that lr: A-+.Ag is the universal family of principaUy polar- 

ized abelian varieties of relative dimension g. Then (g-1)! ngAg=O on .Ag. 
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Proof. For any sufficiently large prime p we can apply Lemma 3.2 on the cover 

obtained by adding a line bundle everywhere of order p. Projecting down to .4g again 

and using that that  cover has degree p29 _ 1 (being equal to the number of line bundles of 

order p) gives (g-1)[p(p29-1)Ag=O. We then finish by using Definition 3.3 (and noting 

that  the factor p causes no trouble, as by using several primes we see that  no prime 

greater than 2 9 can divide the smallest annihilating integer). [] 

Remark 3.6. For various mostly technical reasons we have been working over a field, 

where of course the prime fields are the optimal choices. If one would like to prove the 

statement over the integers then assuming that  the technical details can be overcome we 

will still have to deal with the fact that one needs to invert a finite number of primes to 

use the trick of producing a line bundle of prime order by going to a covering. Though 

there is a large freedom in choosing the primes to which we could apply this trick, still 

we do not know how to handle this problem. 

4. T h e  o r d e r  o f  t h e  C h e r n  classes o f  t h e  de  R h a m  b u n d l e  

We will now consider the Chern classes of the bundle of first relative de Rham cohomology 

of the universal abelian variety over .49. Over the complex numbers these Chern classes 

are the Chern classes of a flat bundle. By the Chern-Weil expression of Chern classes in 

terms of curvature for a smooth manifold, the Chern classes are torsion classes in integral 

cohomology. Grothendieck has given an arithmetic proof of this fact. His proof gives 

an explicit bound for the orders of the Chern classes which we will exploit. This bound 

depends on the field of definition of the representation of the fundamental group that  

is associated to the flat bundle. Luckily, in our case this representation is the natural 

representation of Sp2g(Z), and hence the field of definition is Q, which makes the bounds 

the best possible. 

We will then give lower bounds for the order of these Chern classes. From the 

complex point of view, where the cohomology of .49 can be thought of as H* (Sp2g(Z), Z), 

the idea is to find finite (cyclic) subgroups of Sp2g(Z ) and compute the order of the 

restriction of the Chern classes to the cohomology of such a subgroup. Now, any finite 

subgroup G of Sp2g(Z ) is actually the group of automorphisms of a principally polarized 

variety A (as such a subgroup has a fixed point on the Siegel upper half-space). Such an 

A gives not only a point of .4g but  also a map from the stack quotient [*/G] to .4g. In 

particular it gives a map from the cohomology of .4g to that  of G. This is an algebraic 

construction of the map given by the map from G t o  Sp2g(Z ). Even though it would 

be possible to give a purely arithmetic construction of the detecting subgroups that  we 

will consider, it will be (at least) as easy to construct the principal abelian variety with 
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a group action, and we shall do exactly that.  We shall then also continue to use the 

stack language. An extra  benefit of this way of presenting the argument is that  we 

directly get the lower bound also in positive characteristic. In that  case, if one knew 

that  the specialization map in the cohomology of `4s induced an isomorphism, then the 

result would follow from the complex version. Though such a specialization result seems 

rather  straightforward using the proper and smooth base change theorems, the toroidal 

compactifications of Chai and Faltings and an induction on g, we know of no reference. 

Our argument will avoid reference to such a specialization result. 

Even though we shall apply our results to obtain information on the order of Ag, the 

results we obtain should be of independent interest. 

We start  with some preliminary comments  on the cohomology of stacks, and in 

particular how to extend results from the cohomology of schemes to that  of algebraic 

stacks. If  `4-+S is an algebraic stack over a scheme S we may find a chart U-+M, i.e., 

a smooth surjective map from a scheme U. We may then consider the simplicial S- 

scheme U xA. which in degree 7~ is U x.4 U xA ... xA U ( n +  1 times) with the obvious face 

and degeneracy maps. We then have an augmentat ion map U xA.-+,4 which by smooth 

descent induces an isomorphism in eohomology. For any simplicial scheme X.  there is 

(el. [1, Exp. vbis]) a spectral sequence which at the E l - t e rm is the cohomology of X~ 

(with coefficients in the sheaf whose cohomology should be computed) converging to the 

cohomology of X. .  We may therefore reduce a number of questions on the cohomology 

of stacks to that  of schemes: 

(1) If S = S p e c  C we may use the comparison theorem between 6tale and classical 

cohomology with finite (or l-adic) coefficients to get a comparison theorem for the 6tale 

and classical eohomology of algebraic stacks. 

(2) If  S is a discrete valuation ring then for any smooth map X - + S  the smooth base 

change theorem gives us a specialization map (cf. [6, Exp. XIII] or [5, Chapter  V, (1.6.1)] 

where it is called the "cospecialization map")  H*(XO, Z/n)-+H*(Xs,  Z/n),  where n is 

invertible on S, g is a geometric point over the special fibre of S, and f / is  a geometric 

point over the generic. This extends immediately to smooth simplieial S-schemes and 

hence to smooth S-stacks. 

(3) If S = S p e c C  we get tha t  the d e R h a m - C h e r n  classes of a flat vector bundle 

over a smooth stack are trivial. In fact, the Chern Weil construction has been done for 

simplicial manifolds (cf. [7]). 

When we will be talking about  l-adic cohomology for an algebraic stack 7r: ,4-+Spec k 

over a field we shall always mean the higher direct images of 7r, or equivalently the 

cohomology of the pullback of ,4 to a separable closure of k. 

Note now that  the de Rharn bundle, H~R.-R1 ._ 17r.~2xg/.a where 7r: X~-+,4 9 is the 
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universal family, is indeed provided with an integrable connection. Hence its Chern 

classes in integral cohomology are torsion classes. By the comparison and specialization 

theorems they are thus also torsion classes in l-adic cohomology,(2) which we will denote 

r icH2i (A  9, Zz(i)). In this section we shall determine their exact order up to a factor 

of 2. 

We begin by using a result of Grothendieck to get an upper bound for the order 

of ri. 

PROPOSITION 4.1. We have 

(i) r i = 0  for odd i; 

(ii) nir2i=O. 

Proof. The first part follows immediately because H~R is a symplectic vector bundle. 

As for the second part we may assume that the characteristic is 0, since the case 

of positive characteristic follows from the case of characteristic 0 by specialization as 

the Chern classes are compatible with specialization maps. In that  case we may further 

reduce to the case of the base field being the complex numbers. We may also prove the 

annihilation of nir2i in l-adic cohomology for a specific (but arbitrary) prime t. 

Now, the existence of the Gauss Martin connection on H~R means that  H~R has a 

discrete structure group. More precisely, the (classical) fundamental group of the alge- 

braic stack A 9 is Sp29(Z), and H1R is the vector bundle associated to the representation 

of it given by the natural inclusion of Sp2g(Z ) in Sp2g(C ). This complex representa- 

tion is obviously defined over the rational numbers, so we may apply [12, 4.8] with field 

of definition Q. We thus conclude that  r2iEH~i(Ag, Zl(i)) (for the analytic stack, and 

hence by the comparison theorem, for the algebraic stack) is killed by l ~(~), where a(i)  

is defined as 

inf v t ( M -  1) 
A~H 

and HC_Z~ is the image of the Galois group of the field of definition of the cyclotomic 

character. However, as the base field is Q this image is all of Z~', and the result follows 

from the definition of ni. [] 

We now aim to show that  this upper bound is the precise order of the ri, using, as 

was explained, actions of finite cyclic groups on principally polarized abelian varieties. 

PROPOSITION 4.2. Assume that i<~g. The order of r2i is divisible by 1 ~ n i  o v e r  C. 

In general, for each prime l different from the characteristic of the base field, r2i in l-adic 

cohomoIogy has order divisible by the 1-part of �89 

(2) The number I being as usuM a prime different from the characteristic. 
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Proof. The/-adic  part implies the integral cohomology part, so we may pick a prime 

1 different from the characteristic of the base field and look at r2i in/-adic  cohomology. 

What  we want to show is that  if l is odd, l -112i  and k is the largest integer such that  

lk-l(t-1)12i, then r2i has order at least l k, and similarly for l=2.  We will do this by 

defining a map BZ/Ik-+.Ag such that the inverse image of the r2i to Hai(Z/I k, ZL) has 

order l k. Now, H4i(Z/lk, Zl) is isomorphic to Z/l k, and hence an element in it has 

order I k if and only if its reduction modulo I is non-zero. As H4i(Z/1 k, Zl)/l injects into 

H4i(Z/1 k, Z/l) it is enough to show that the pullback of r2i is non-zero in H4i(Z/l k, Z/l). 
Note that  a map BZ/lk-+M9 consists of a principally polarized g-dimensional abelian 

variety A over the base field together with an action on it (preserving the polarization) 

by Z/l k. The pullback ofr2i is then obtained as follows: The group Z/l k acts on HJR(A ). 
A representation of Z/l k has Chern classes(a) in H*(Z/l k, Zl), and the pullback of r2i is 

the 2ith Chern class of H~R(A ). 
Assume now to begin with that l is odd. Consider any Galois cover C--~P 1 with 

Galois group Z/l k which is ramified at 0, 1 and oc with ramification group of order 

1 k, l k and l, respectively (the existence of such a cover follows directly from Kummer 

theory). By the Hurwitz formula the genus of such a covering fulfills the relation 2 g -  2 = 

--21k +2(lk--1)+lk-l(1--1), i.e., 2g=lk-l(l--1). 
We claim that the action of Z/1 k on HJR(C ) is isomorphic to the sum of all primi- 

tive(a) characters of Z/l k. Admitting that for the moment, we can go on with computing 

its total Chern class. Choose a primitive lkth root of unity ~ and use it in particular 

to identify Z/l with #l. Let xEH2(Z/1 k, Z/1) be the generator given as the first Chern 

class of the character that  takes 1 to ~. Then the first Chern class of the character of 

Z/l k that  takes 1 to ~i equals ix, and hence the total Chern class of that  character is 

l+ix. By the multiplicativity of the total Chern class we get that  the total Chern class 

of H~R(C ) equals I](~,l)=l(l+ix), which in turn is equal to (l+xl-1)lk-l=l+xlk-l(l-1), 
and hence t h e / k - l ( / - 1 ) s t  Chern class is non-zero. If 2i instead is a proper multiple, 

2i=mlk-l( l -1) ,  we look at the ruth power of the jacobian of C (with the diagonal ac- 

tion of Z/lk). This gives the non-triviality when g=i, and when g>i we simply add a 

principally polarized factor on which Z/l k acts trivially. 

It remains to show that the action of Z/l k on H~R(C ) is as claimed. We start with 

a remark on Chern classes of representations of a finite group. They only depend on 

the corresponding elements in the representation ring, and those elements in turn are 

determined by their character (i.e., the traces of the actions of the group elements). We 

(3) In the classical case only for a complex representation, but Grothendieck (cf. [12]) extended it 
to a representation over any field. In any case our representations will be ordinary and can thus be lifted 
to characteristic 0. 

(4) That is, of order exactly I k. 



THE ORDER OF THE TOP CHERN CLASS OF THE HODCE BUNDLE 107 

shall therefore speak of the Chern classes of a character. 

The Lefschetz fixed-point formula gives a formula for the character in terms of the 

number of fixed points(5) of the elements of Z/1 k. A proof using this formula is certainly 

possible, but the following argument requires less computations. As the Lefschetz fixed- 

point formula is also valid for l-adic cohomology, the character looked for is the same as 

that  for the action on Hi(C, Q1), or more precisely, the character of the representation 

on HJR(C ) is the reduction modulo p of the character o n  Hi(C, Q I ) .  As the action of 

Z/l k on C is faithful, its action on Hi(C, Qt) is faithful as well, so that  at least one 

primitive character has to appear in H 1(C, QI). On the other hand, the lkth cyclotomic 

polynomial is irreducible over Qt, so if one primitive character appears they must all 

appear. Now, the number of such characters is / k - l ( / - 1 ) ,  which equals the dimension 

of H 1 (C, Q1 ), so that  H 1 (C, Qt ) consists of each primitive character exactly once. 

When l--2 we may assume that  k>2,  as the lower bound to be proved for k~<2 is 

implied by the one for k--3. We then make essentially the same construction, a Galois 

cover with group Z/2  k of p1 ramified at three points with ramification groups of order 

2 k, 2 k and 2, respectively, of genus g=2  k-3. The rest of the argument is identical to the 

odd case. [] 

Remark 4.3. (i) It follows from (1.1) that  the ri are torsion classes already in the 

Chow groups. Our result gives a lower bound for this order, but we do not know if this 

bound is sharp. 

(ii) From the complex point of view our geometric construction can be seen simply 

as constructing an element of order I k in Sp/k-l(/_l)(Z). This can be done directly; in the 

odd case one may consider the ring of lkth roots of unity R=Z[~] with the obvious action 

of Z/l k and the symplectic form (a, 2)):=Tr(a~(~--~-l)--lk+Zk-l+]).  This is obviously a 

symplectic invariant form, and that  it is indeed an integer-valued perfect pairing follows 

from the fact that  the different of R is the ideal generated by ( ~ - ~ - 1 )  lk-Zk-~-I 

(iii) When g=l lk ( l -1 )  we actually get a lower bound for the top Chern class of 

the de Rham cohomology of the universal curve over Ad s. However, there is no direct 

analogue of the trick of adding a factor with trivial action, so this does not give a lower 

bound for all g~> �89 

THEOREM 4.4. We have that r2i+l =0  for all i and that the order of r2i in integral 
(resp. 1-adic) cohomology equals (resp. equals the l-part of) ~n~l or n~ for i<~g. 

Proof. This follows immediately from Propositions 4.2 and 4.1. [] 

(5) Note tha t  as the orders of these elements are prime to the characteristic, each fixed point is 
counted with multiplicity 1. 
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1 COROLLARY 4.5. The order of Ag is divisible by ~ng. 

Proof. The top Chern class of H~R is A~. [] 

Remark 4.6. Our upper and lower bounds for r2i are off by a (multiplicative) factor 

of 2. Furthermore, when g = l  the lower bound is the correct order. I t  is tempting to 

believe that  it is the lower bound that  is the correct one for all g, and furthermore that  

that  should be related to the fact that  we have a symplectic rather  than a general linear 

representation. 
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