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1. I n t r o d u c t i o n  

1.1.  R e s u l t s  

One of the  mos t  in te res t ing  resul ts  in value d i s t r i bu t i on  t heo ry  is the  defect  re la t ion  

o b t a i n e d  by  R. Nevanl inna:  If  f is a non-cons t an t  m e r o m o r p h i c  funct ion  on the  complex  

p lane  C,  then  for an  a r b i t r a r y  col lect ion of d i s t inc t  a l ,  ..., a q E P  1, the  following defect  

re la t ion  holds:  
q 

E (5(a~, f ) + 0 ( a i ,  f ) )  ~< 2. (1.1.1) 
i = 1  

Here,  as usual  in Nevan l inna  theory,  the  t e rms  (~(ai, f )  and  0(ai ,  f )  are  defined by  

5(ai, f ) = l i m i n f ( 1  N ( r , a ~ f ) ~  
r . ~  \ T ( r , f )  ] '  

O(ai, f )  = l im inf N(r, ai, f )  - N(r, ai, f )  
~ - ~  T( r , f )  ' 
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and hence satisfy 0~<5(a~, f)~<l and 0~<0(ai,f)~<l. For the definitions of the terms 

T(r, f ) ,  g ( r ,  hi, f )  and N(r ,  hi, f ) ,  we refer the reader to [Ne2], [Hay] and the following 

subsections. 

A problem, suggested by Nevanlinna, is whether the defect relation is still true 

when we replace the constants ai by an arbitrary collection of distinct small functions 

a/ with respect to f (cf. [Nell). Here we say that  a meromorphic function a on C is a 

small function with respect to f if a satisfies the condition T(r, a)=o(T(r, f ) )  as r--+oc. 

Nevanlinna pointed out that  the case q=3  for this question is valid, because we may 

reduce the problem to the case that  al ,  a2 and a3 are all constants by using a Mhbius 

transform. But for the case q>3,  this method does not work. 

Later, Steinmetz [St] and Osgood [O] proved that  

q 

Z 6(a , S) < 2 
i = 1  

for distinct small functions a/. Their methods, which may be regarded as generalizations 

of Nevanlinna's original proof of (1.1.1), are based on the consideration of differential 

polynomials in f and hi, 1 <~i<~q. Though Nevanlinna used only the first-order derivative 

of f ,  Steinmetz and Osgood used higher-order derivatives of f .  Hence the truncation 

level of the counting function is greater than one in general. See also Chuang [C] and 

Frank-Weissenborn [FW]. 

However, it is hoped that  the generalization of (1.1.1) for small functions is true 

with the form including the term O(a~, f )  (cf. [D]). In this paper, we give a solution for 

this problem by the following theorem. 

THEOREM 1. Let Y and B be Riemann surfaces with proper, surjective holomorphic 

maps Try: Y -+C and ~rB: B--+C. Assume that Try factors through 7rB, i.e., there exists 

a proper, surjective holomorphic map 7r:Y--+B such that 7ry=7(Bo7r. Let f be a non- 

constant meromorphic function on Y.  Let al,...,aq be distinct meromorphic functions 

on B. Assume that f~aio~r for i = l , . . . , q .  Then for all c>0 ,  there exists a positive 

constant C(~)>0 such that the following inequality holds: 

q 

( q - 2 - s ) T ( r ,  f )  < ~ N(r, aio~r, f)~-Nram~ry (r) 

~=1 (1 .1 .2)  

+C(e) T(r,a~)+Nr~m,~.(r) I1" 
" i = 1  

Here the symbol II means that  the stated estimate holds when rq~E for some excep- 

tional set E C R>0 with f E d  log log r < ~ .  



THE SECOND MAIN THEOREM FOR SMALL FUNCTIONS AND RELATED PROBLEMS 227 

Remark 1.1.3. (1) The t e r m  Nram~rv  (r) counts the ramification points of ~y.  In the 

case Y = C  and c ry= idc ,  we have Nram~v(r)=0.  Similarly for Nram~B(r). 

(2) We can define the terms T(r, f) ,  T(r, ai) and N(r, aioTr, f)  for the algebroid 

functions f ,  al ,  ..., aq by a similar way for meromorphic functions on C. See the following 

subsections. 

Applying the theorem to the case when Y = B = C ,  7ry=TrB:-idc and all ai are small 

functions with respect to f ,  we immediately obtain the following corollary. 

COROLLARY 1. Let f be a non-constant meromorphic function on C, and let 

al , . . . ,aq  be distinct meromorphic functions on C. Assume that ai are small functions 

with respect to f for all i=1,  ...,q. Then we have the second main theorem, 

q 

( q - 2 - s ) T ( r ,  f )  <~ E / V ( r ,  ai, f )  1[ 
i=1  

for all s > O, 

and the defect relation, 
q 

E (~(ai, f)+O(ai, f)) ~ 2. 
i=1  

A special case of this corollary, when f is a transcendental meromorphic function 

and ai are rational functions, was proved in [Y2] (see also [Sa] for an earlier result). The 

present paper is a development of the previous one. 

We shall prove two other results. The first one is a corollary of the theorem above. 

This is suggested by Er~menko [El. Let ~ y  and ~B be the fields of all meromorphic 

functions on Y and B, respectively. For a function r R>0--+R>0, we define a subset ~r 

of ~B by 

ROB ---- { a E R s  : T(r, a) = O( r ) ) as r --+ oc }. 

Then this J~CB is a subfield of RB. For instance, if ~ is a bounded function, then ROB is 

the field of all constant functions, i.e., R r  Let F(x, y)EY~[x, y] be a polynomial in 

two variables with coefficients in R~. For general zEB, we denote by Fz(x, y)EC[x,  y] 

the polynomial obtained by taking the values at z of the meromorphic functions in 

the coefficients of F(x, y). Here the terminology "general" is used to indicate that  the 

exceptional set is discrete. 

COROLLARY 2. Let Y, B and zc be the same as in Theorem 1, and let ~: R>0--+R>0. 

Let F(x, y)E~CB Ix, y] be an irreducible polynomial such that, for general zC B, the poly- 

nomial Fz(x,y) is irreducible and the equation Fz(x,y)=O defines an algebraic curve 

of (topological) genus greater than one. Assume that f l , f 2 E ~ Y  satisfy the functional 
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equation F( f l ,  f2)=0, where we consider ~r as a subfield of fly by the natural inclusion 

defined by 7~. Then we have 

T(T, f i )  -~ O(~)(r) ~- N r a  m ~r v ( r ) )  II 

when r--+oc, for i=1 ,2 .  

If we apply this corollary to the case when Y = B = C ,  7rv=TrB=idc and ~ is a 

bounded function, then we conclude that  T(r, f i )=O(1) ]] for i=1,  2. Hence, both f l  and 

f2 are constant functions. This is equivalent to a result of E. Picard: If the equation 

F(x, y)=0,  where F(x, y) is an irreducible polynomial over (3, defines an algebraic curve 

of (topological) genus greater than one, then there is no pair of non-constant meromorphic 

functions f l (z)  and f2(z) on C such that  F(fx(z) ,  f2(z))=0 identically. (See also [Z].) 

The next result is an algebraic analogue of the theorem above. 

THEOREM 2. Let q be a positive integer. For all s>0 ,  there exists a positive constant 

C(q,c)>O with the following property: Let Y and B be compact Riemann surfaces with 

a proper, surjective holomorphic map 7~: Y-+B.  Let f be a rational function on Y. Let 

al,...,aq be distinct rational functions on B. Assume that f r162 for all i=l , . . . ,q .  

Then we have 

( q - 2 - c ) d e g f < ~  E fi(aiorf, f , Y ) + 2 g ( Y )  
l<~i<~q 

+ C(q, r 7~) ( max (deg ai) +g(B) + 1). 
l~i~q 

(1.1.4) 

Here we put ~(aioT~, f ,Y)=card{zeY: f (z )=aiow(z)}  and denote by g(Y)  (resp. 

g(B)) the genus of the compact Riemann surface Y (resp. B). Using this theorem, 

we can prove the height inequality for curves over function fields, which is a geometric 

analogue of a conjectural Diophantine inequality in number theory proposed by P. Vojta 

([V1], IV3]). Since the formulation of this height inequality requires some notation, we 

postpone stating it until w (cf. Theorem 5). A proof of Theorem 2 is similar to that  of 

Theorem 1. But we do not need Nevanlinna theory in this case. The following scheme 

for the proof of Theorem 1 also works for that  of Theorem 2, if we replace "B(R)" 

by "B". We also note that  the inequality (1.1.4) is an analogue of the unintegrated 

version of (1.1.2). 

Remark 1.1.5. The reader who is not familiar with Nevanlinna theory may skip w 

w167 2 and 7 to read the proofs of Theorem 2 (w and Theorem 5 (w 
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1.2. A rough outl ine of  the proof  of  Theorem 1 

We use Ahlfors's theory of covering surfaces (cf. [A], [Ne2], [Hay]) and the geometry of 

the moduli space of q-pointed stable curves of genus 0 (cf. [Kn]), especially properties 

around the degenerate locus whose point corresponds to a degenerate, nodal curve. 

We first divide p1 by a finite union of curves ~/such that  p l \ . y  is a finite disjoint 

union of sufficiently small Jordan domains Dk, 1 <. k<~K, i.e., PI\~----UI~<k~<K Dk. This 

division of p1 gives the division of (p1)q in the form of open subsets 

Dkl • ... x Dkq , l <~ ki E K for l <~ i <. q. 

Then this division and the holomorphic map 

_a.= ( a l ,  . . . ,aq):B ---+ (p1)q 

give the division of the open set 

B(R) = ~ l ( { z e C : l z l  <R})  

by the open subsets 

F(k)  = F(k l , . . . ,  kq) = B ( R ) N a - I ( D k l  x ... x Dkq). 

Note that  on each F(k), the move of ai is bounded in p1. Hence the situation becomes 

closer to the case that  ai are all constants. We apply Ahlfors's theory of covering surfaces 

to the subcovering f :  7r-l(F(k))--+P 1 and q-Jordan domains Dk~, l<~i<~q, on P~. Then 

we obtain the unintegrated version of (1.1.2) for each domain F(_k). By adding over all _k, 

we get the unintegrated version of (1.1.2) for B(R) .  Using the Schwarz inequality, we 

conclude the inequality (1.1.2). This is the very rough plan of our proof (we use the 

moduli space of q-pointed stable curves of genus 0 instead of the space (p1)q above). 

There are several problems to work out the process above correctly. The major prob- 

lem comes from the degenerating points z E B, where the values of two distinct functions 

ai and aj degenerate into the same value ai(z)=aj(z) ;  the problem is how to separate 

the functions ai and aj at the degenerating points z in an appropriate way. To motivate 

the rest of this introduction, we only remark the following two points, which are closely 

related. 

(1) If z E F ( k l ,  ..., kq) is a degenerating point such that  ai(z )=aj(z ) ,  then we have 

Dk~=Dkj. Hence we cannot apply the usual method of Ahlfors's theory; we need to 

modify it. The idea of the modification is roughly as follows: We use Ahlfors's theory in 

two steps (in several steps in general). First, we apply Ahlfors's theory to the subcovering 

f :  7r-l(F(_k)) >p1. 
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Secondly, we apply Ahlfors's theory to the covering 

f - a i  : f _ l (Dk , )ATr_ l (F (k )  ) >p1. 
aj -- ai 

Note that  we choose the function A ( w ) = ( w - a i ) / ( a j - a i )  so as to separate the functions 

a i  and aj, i.e., A(ai)--0 and A ( a j ) ~ l .  Combining these two steps, we get rid of the 

degenerating point z above. Hence, we can say that  our idea is the systematic use of 

Ahlfors's theory in several steps for different functions which separate the degenerating 

functions in due order at a degenerating point. The dual graph (cf. w of the q-pointed 

stable curve associated to a degenerating point describes the combinational structure of 

the degeneration of the functions ai at the point. In this paper, we use a system of 

contraction maps (cf. w instead of the functions of the form A above. 

(2) Let J~=C(a l ,  ..., aq) be a subfield of NB generated over C by the meromorphic 

functions at , . . . ,  aq. In general, the transcendental  degree of the field extension ~ / C  has 

high dimension, which requires us to use higher-dimensional algebraic geometry. The  

most natural  way to control the degeneration such as ai ( z )=aj  (z) in an appropriate  way 

is to consider the moduli space of q-pointed stable curves of genus 0, denoted by ~0,q.  

Roughly speaking, this space is a quotient of (p1)q by the diagonal action of Aut(P1) .  

For generic z EB, the points a l (z) ,  . . . , aq(z)EP 1 are distinct. We consider these points 

as q marked points of p1. Since the space ~O,q is the classification space of q marked 

points of stable curves of genus 0, we have the classification map 

cla: B > .//YO,q. 

This map  is a modification of the map a above. When we consider the degenerating 

point z E B ,  then the image cla(z) is contained in the degenerate locus ~qCJ~O,q. What  

is important  is that  we may consider the points al(z) ,  . . . ,  aq(Z) as distinct marked points 

of a degenerate, nodal curve instead of considering them as non-distinct points of p1. 

Hence in this sense, we can say that  the values al(z) ,  . . . ,  aq(Z) are also separated at the 

degenerating points z. This is one reason why we employ the space Jg~0,q. 

Next we prepare notat ion and formulate Theorem 4, from which we derive both  

Theorem 1 and Theorem 2. Then we shall discuss farther details of the proofs of our 

theorems. 

Remark 1.2.1. When we consider the special case that  f is a transcendental  mero- 

morphic function on C and ai are distinct rational functions on C, the proof becomes 

simpler than  that  of the general case. One reason for this is tha t  the field ~ is contained 

in the field of rational functions on C, and hence the transcendental degree of the field 
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extension ~ / C  is equal to or less than one. Especially, we need neither algebraic geome- 

t ry  nor the moduli space of stable curves. This case was treated in [Y2]. In the present 

paper, we freely use the language of algebraic geometry. 

1.3. N o t a t i o n  

In this paper, we assume that  all arcs on a Riemann surface are piecewise analytic, 

i.e., every arc is parametrized by a continuous map a(t)  on the interval [0, 1] with the 

following property: There is a sequence 

0 = t 0  < t l  <. . .  < t n  = 1 

such that  the restriction of a(t)  to each closed interval [t~, t~+l] is regular and analytic. In 

particular, we assume that  all Jordan domains are bounded by piecewise analytic Jordan 

curves. 

The following fact is an easy consequence of the identity theorem for analytic func- 

tions. See also [Mi, Theorem 1]. 

LEMMA 1. The intersection of two arcs on a Riemann surface consists of at most 

a finite number of points or subarcs of the original arcs. 

Let ~" be a Riemann surface. We say that  F is a finite domain of fl" when 

(1) F is a compactly contained, connected open subset of ~ ' ;  

(2) OF is a finite union of arcs, which are piecewise analytic by our convention; 

(3) F and , ~ \ F  have the same boundary. 

Here we denote by _P the closure of F and by OF the boundary of F.  Then a finite 

domain F is compact if and only if ~ is compact and F = ~ .  

Let U~eA A~ be a triangulation of ~ where all edges are piecewise analytic Jordan 

arcs. Let FCf i :  be a finite domain, and let (Vi)~ be a finite set of arcs with OF=Ui  Vi. 

By applying Lemma 1 for arcs 7i and edges of triangles A~, and passing to a suitable 

subdivision of the triangulation, we may assume that  each arc "Yi is a finite union of edges 

of triangles A~. Since _P is compact, there is a finite set A ' c A  such that  P = U ~ A ,  A~- 

This gives a triangulation of P by a finite number of triangles. In this triangulation of F,  

some edges may belong to only one triangle; such edges form the boundary OF because 

of the condition (3) above. Using the triangulation of F,  we define the characteristic 

o(F) of F by 

- [number  of interior vertices] + [number of interior edges] - [number of triangles]. 
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Then it is well known that  this definition is independent of the choice of the triangulation. 

This characteristic is normalized such that  0 ( d i s c ) = - 1  as usual in Ahlfors's theory. We 

also put  o+(F)=max{0, 0(F)}. 

Let ft be a compactly contained open subset of ~ .  Let f and a be meromorphic 

functions on ~ ' .  Assume that  fCa. Put  

fi(a, f ,  f~) = card{z e f l :  f(z) = a(z)}. 

Let M be a smooth complex algebraic variety, and let w be a smooth (1, 1)-form 

on M. Let g: ~ - - + M  be a holomorphic map. We put 

A(g,~t,w) = L g* w. 

Let 7 be an arc on ~ and let WM be a K~hler form on M. We denote by 

l(g, 7, ~dM) 

the length of the arc gl~: 3 ~--+M with respect to the associated Kghler metric of WM. Let 

Z c M  be an effective divisor such that  g ( ~ ) ~ s u p p  Z. We put  

n(g,Z, ft)= E ordxg*Z 
xC~ 

and 

~(g, Z, ~t) = E min{1, ord~ g'Z} = card(~N supp g -1 (Z)).  
xCfl 

Let ~ be a Riemann surface and let ~: , ~ - + ~  be a proper, surjective holomorphic 

map. We denote by ram 7r the ramification divisor of 7r, which is a divisor on , ~ .  Put  

disc(Tr, f~)= E ord~(ramTr). 
XET(--I(~) 

1.4. N e v a n l i n n a  t h e o r y  

Let Y be a Riemann surface with a proper, surjective holomorphic map 7r: Y - + C .  Let 

M be a smooth projective variety. Let g: Y--+M be a holomorphic map. Let Z c M  be 

an effective divisor such that  g(Y)~suppZ, and let w be a smooth (1, 1)-form on M. 

For r > 1, we put 

1 I r n(g,Z,Y(t)) dt, 
N(r, g, Z) - deg--~ t 

-- 1 ~ ~(g,Z,Y(t)) dt, 
N(r, g, Z) - deg 7r t 

_ 1 f~ A(g,Y(t),w) dt T(r, O2) g, 
deg ~ J l  t 
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and 

1 . /~ disc(Tr, C(t)) dt. 
Nram 7r  (r) - deg 7r __ t 

Here C( t ) - -{zEC:  [z]<t} and Y(t)--Tr-l(C(t)) .  

Let E be a line bundle on M. Let ]]. []1 and []-[[2 be two Hermitian metrics on E. 

Let ~21 and ~-;2 be the curvature forms of ]]. H1 and []. [[2, respectively. Then we have 

T(r,g, wl) = T(r,g, w2)+O(1) when r -+c~ ,  

which follows by Jensen's formula (cf. [NoO, p. 180], [LC, IV.2.1]). Therefore we define 

the characteristic function T(r, g, E) by 

T(r, g, E) = T(r, g, 021 ) +O(1), 

which is well-defined up to a bounded function. 

Let f and a be meromorphic functions on Y such that  f C a .  Then we put 

-- 1 .f~ •(a,f,Y(t)) dt. 
N(r,  a, f )  - deg~r - .  t 

We denote by wp1 the Fubini-Study form on the projective line pX, i.e., 

1 x/L1 
- -  dwAd~.  wp,--  (1+]w[2) 2 27r 

We define the spherical characteristic function by 

1 f*Wp1 dt 
T(r, f )  : T(r, f ,  (A./p1) - -  deg 7r (t) T "  

Then it is well known that  this function T(r, f )  is equal to the usual Nevanlinna charac- 

teristic function of f up to a bounded term in r (cf. the Shimizu-Ahlfors theorem). 

1.5.  T h e  m o d u l i  s p a c e  o f  s t a b l e  c u r v e s  

Our references are [Kn], [Ke], [FP] and [Ma]. In this subsection, we always assume q ~> 3. 

Definition 1.5.1. A q-pointed stable curve of genus 0 (or simply q-pointed stable 

curve) is a connected reduced curve C of (arithmetic) genus 0 with q distinct marked 

points (Sl, ..., sq) provided that  

(1) each irreducible component of C is isomorphic to the projective line p1; 

(2) C is a tree of p1 with at worst ordinary double points; 

(3) s~ is a smooth point of C for i=1,  ...,q; 

(4) each irreducible component of C has at least three special points, which are either 

the marked points, or the nodes where the component meets the other components. 
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! Let C = ( C , 81, . . . ,  8q ) and C' = ( C', s,  .... , s'q ) be two q-pointed stable curves. We say 

that  C and C'  are isomorphic if there exists an isomorphism T: C--+C' such that  T(Si) =S~ 

for all i=1,  ..., q. 

We use the following notation: 

~[o,q: the moduli space of q-pointed stable curves of genus O, where ~o,q  is a smooth 

projective variety; 

~'0,q---+J//o,q: the universal curve, where ~0,q is a smooth projective variety and wq 

is a proper fiat morphism; 

al ,  ..., aq: the universal sections of wq, where a i (Jgo,q)naj(dd0,q)=O for i r  

~q: the divisor on ~o,q determined by Ei=lq ai( ' /~O,q),--  " 

~x: the fiber Wql(X) over xEJ-t~,q; 

K~o,q/~o, q : the line bundle on ~'0,q associated to the relative dualizing sheaf of the 

morphism ~vq: ~ q--+d/0,q; 

Kq: the line bundle K~o,q/~o,~(~q); 

Wa: a fixed Ks form on ~ 

~q: a fixed K~ihler form on J/d0,q; 

Xq: the curvature form of a fixed smooth Hermitian metric on Kq; 

(q): the set {1, ..., q}; 

J = J q :  the set {( i , j ,  k, l) : l<~i<j<k<l<.q} ;  

~r the set {( i , j ,  k): l<<.i<j<k<~q}. 

Remark 1.5.2. By definition, the family wq: ~_[o,q--+JYo,q with the q distinct sections 

al ,  ..., aq has the following two properties: 

(1) For a point x C ~/o,q, the q-pointed fiber ~x = ( ~ ,  al  (x), ..., aq (x)) is a q-pointed 

stable curve. 

(2) Let C = ( C ,  Sl, ..., sq) be an arbitrary q-pointed stable curve. Then there exists 

a unique point xC./gO,q such that  C and ~ are isomorphic as q-pointed stable curves. 

A family of q-pointed stable curves is a proper fiat morphism of schemes p: X-+  M 

with q sections T1, ..., ~-q such that  the geometric fiber X ~  together with q marked points 

TI(~) ,  ..., Tq(ff~) is a q-pointed stable curve for all m E M .  Then the assertion (2) of the 

above remark is generalized to the following moduli-space property: If p: X--+ M with sec- 

tions Vl, ..., wq is a family of q-pointed stable curves, then there exists a unique morphism 

M--+~Ho,q such that  p and Tx, ...,Tq are induced from ~Tq and al ,  ...,O'q, respectively, by 

the base change to M (cf. [Ma, III.3.1 (a)]). Note that  the complex structure of Jg0,q is 

uniquely determined by this property. 

In this paper, the corresponding moduli-space property in the analytic category is 

only asserted over J/O,q, which is a Zariski-open subset of JgO,q, via the argument below 
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(cf. (1.5.9)). 

The space JgO,q. Two q-tuples s=(sl,. . . ,sq) and s'=(s~,...,Sq) of points on p1 

are said to be isomorphic if and only if there exists an isomorphism T of p1 such that  

s~=~-(si) for all i--1, ..., q. We denote by ~r the space of q-tuples of distinct points on 

p1 modulo isomorphism. Then Jgr is isomorphic to 

~q  ----(p1 \{0, 1, co})• ... x (p1 \{0, 1, oc})\ [diagonals]. 
Y 

q--3 factors 

Here note that  an isomorphism of p1 is uniquely determined by its action on three 

distinct points. Then Jg0,q gives a compactification of Jg0,q by the natural inclusion 

J g 0 , q C ~ , q ,  because q-distinct points on p1 naturally determine a q-pointed stable 

c u r v e  whose underlying curve is non-singular. Put  ~q~-.~fO,q\.~fO,q, which is a divisor 

on Jgt0,q (cf. [Kn, 2.7]) and called the degenerate locus. 

Remark 1.5.3. (1) We have ~O,q={XE~o,q:~z~-P1}. 
(2) For i= l , . . . , q ,  we define a holomorphic map Pi: ~q_+p1 as follows: For i =  

1, ..., q -3 ,  let Pi be the obvious map coming from the projection to the i th factor. Put  

pq-2=-O, Pq-l--1 and pq~_Oo. Put  

f i  = (id9%, Pi): ~ q  ---+ ~ q  X e l .  

Then/~i is a section of the first projection ~q)<pl__+~q. Put  ~/0,q----Uyql(J~0,q). For 

i----1, ...,q, let O'~:./~0,q--~/0,q be the restriction of ai. Then there exist isomorphisms 

~: d[0,q--> ~q  and ~ :  ~'0,q-+ ~q  x p1 which fit into the following commutative diagram 

of holomorphic maps: 

~'0,q > ~.~q • p1 

VJql( l 1st pr~176 

~'~0, q r > ~ q "  

(1.5.4) 

, is Here r for i=1,  ..., q. Hence the family Wq: ~'o,q-+~O,q with q sections a i 

isomorphic to the family ~q  • p l_+ ~ q  with q sections pi. 

The dual graph Fx. Let xC~fO,q be a point. Then ( ~ ,  al  (x), ..., aq(x)) is a q-pointed 

stable curve. Let Fz be the associated graph, i.e., each element v of the set of vertices 

vert(Fx) corresponds to the irreducible component C~ of cC~, and two vertices v and v ~ 

are adjacent if and only if C~ and Cv, meet transversally at the node CvNCv,E~.  Then 

Fz is a tree. 

The classification maps cla and cl(f,a). Let 7r: ~ ' - + ~  be a proper, surjective holo- 

morphic map of Riemann surfaces ~ "  and o ~'. Let f be a meromorphic function on ~ ' ,  
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and let al,..., aq be distinct meromorphic functions on ~ ' .  Then we have the classification 

maps 
cla - -  ~- t  cl(f,~) ) 

J �9 > -r a n d  ~O,q, 

which fit into the following commutative diagram of holomorphic maps: 

J '  cl~s,o~ ~0,q 

~i l~q (1.5.5) 

These classification maps are defined as follows: Put  

U = {z E 3:: al (z), ..., aq(Z) are all distinct} c ~ ,  

which is a dense open subset of ~ .  We first define the restrictions 

cl~lu: V ----+ ~r and cl(f,a)l~-'(U): 71-l(u) } ~'0,q" 

For z C U, let cl~(z)EJ/Y0,q be the unique point such that  two q-pointed stable curves 

(Pl, al(z),...,aq(z)) and (~d~(~),al(cl,~(z)),...,aq(cla(z))) 

are isomorphic (cf. Remark 1.5.2). Then there exists an isomorphism ~-: pl__~d~(~) such 

that  

7(ai(z)) =a~(cla(z)) for all i =  1,...,q. (1.5.6) 

For yETr-l(z), put 

cl(f,~) (y) = T(f(y)) E Wclo (~). (1.5.7) 

Next, we define the holomorphic maps 

cla: ~ > ~0,q and clff,~): ~ '  > ~O,q 

by the unique holomorphic extensions of cl~]u and cl(i,~)l~-a(u), respectively. 

Remark 1.5.8. In view of (1.5.4), we may write 

pio~bocla(z) = ai(z)-aq_2(z) aq-x(Z)--aq(Z) i = 1 , . . . ,q -3 ,  (1.5.9) 
ai(z)-aq(z) aq_l(z)-aq-2(z)'  

and 
, f (y) -aq-2(z)  aq- l ( z ) -%(z)  (1.5.10) 

so~b ocl(i,~)(y) f (y)-aq(z)  aq-l(z)-aq-2(z) 
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for z E U and y C 7r- 1 (z). Here s: ~ q  x P i  __~ p1 is the second projection. These equations 

(1.5.9) and (1.5.10) easily follow from the fact that  the two (q+l)- tuples  of points on p 1  

(f(y),al(z),...,aq(z)) 

and 

(so r162 ...,Pq_3O~poCla(Z), O, 1, 00), 

are isomorphic for z E U and y ETr - l ( z ) .  

Contraction. Let p: X--+M with sections T1, ..., Tq+I be a family of (q+l) -pointed  

stable curves. Then we say that  a family of q-pointed stable curves p': X' -+M with 

sections 9-I, ..., 7~ is a contraction of p: X--+M obtained by forgetting the section 7-q+1 if 

there is a commutative diagram 

C 

X > X '  

M - - M  

satisfying the following two conditions: 

(1) co9-i=9-~ for all i=1,  ...,q; 

(2) Consider the induced morphism c~ on the geometric fiber X~.  Let E c X ~  be the 

irreducible component such that  Tq+I(~)EE.  If the number of the special points on E, 

which are either the marked points or the nodes, is at least four, then c~: X~-+X~  is an 

isomorphism. Otherwise, c~ contracts E to a point x=c~(E)EX~,  and the restriction 

c~: X~\E--+X~\x is an isomorphism. 

The above definition of the contraction is slightly different from that  of [Kn], but 

we can easily check that  they are equivalent (cf. [Ke, p. 547]). We have the following 

fundamental result: For any family of (q+l)-pointed stable curves, there exists up to a 

unique isomorphism exactly one contraction (cf. [Kn, 2.1]). 

Let S be a subset of (q) such that  q '=cardS~>3. Consider the universal family of 

q-pointed stable curves wq: ~ with the universal sections ai, iE(q). Then by 

forgetting all the sections except those marked in S, we get a family of q'-pointed stable 

' iES, as a contraction. By the moduli-space curves (Wq)q ~d ,q - '+~ '~0 ,q  w i t h  sections ai, 

property of J/0,q', we have the morphism U:~o,q--+J[O,q, such that  (Wq)' and cr~ are 

induced from Wq, and c~i, respectively, by the base change to ~[O,q. Here c~i are the 

universal sections of wq, : ag/O,q,--+JtCO,q,, which are assumed to be labeled by the set S. 
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Therefore we have the commutative diagram of holomorphic maps, 

O,q c ~ , q  u' - -  

J~0,q - -  ~ 0 , q  ~ ~ O , q ' ,  

(1.5.11) 

where u'ococri=~iou for all iES. 

The contraction map ~ .  For a=(i , j ,  k)E~r we denote by ~ = 9 ~  ) the morphism 

~0o~ : 6"~O,q ) e l  

uniquely characterized by the following conditions: 
(1) ~aoa i -0 ,  ~aocrj-1 and ~ o a k - - ~  (on ~[0,q); 
(2) the restriction ~ [ ~  :Wx--+P 1 is an isomorphism for all x EJgO,q. 

To obtain this ~ ,  we observe the following. By forgetting all the markings except i, j 

and k, we get the following commutative diagram of holomorphic maps (cf. (1.5.11)): 

~O,q c > ~Ot, q U':,, ~0,3 

1 
~(O,q - -  "/~0,q ~ ~/~0,3" 

Put t=u'oc. Note t h a t  "/~,3 is isomorphic to a point and ~0,3-~P 1. We normalize the 

three universal sections of "uy 3 as  0, 1 and oc. Then toai=-O, to(rj=-I and toak--~c. Put 
~ -= t. 

The contraction map CZ. By forgetting the marking tyq, q~>4, we have the morphism 

Uq:J[O,q-+~WO,q-1 (cf. (1.5.11)). There exists an isomorphism ~q:~fO,q--+d]/o,q_l which 
fits into the following commutative diagram of holomorphic maps (cf. [Ma, III.3.3 (b)]): 

O,q tq > O~O,q_ 1 

uq I ~L ~'q-1 

~ O , q - - 1  - -  ~t~0,q--X" 

(1.5.12) 

For l<q, put Uq,z=ut+l . . . . .  U q : J ~ O , q - - - } . / ~ f O ,  I. Put Uq,q=id~o,q. For t3=( i , j , k , l )EJ ,  we 
define CZ: ~0,q--+P1 by the composition of the morphisms 

~ , q  ~ '*)~o,z-2+ ~o,l-1 ~I*"~))p1. 
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1.6. Out l ine  of  the  proofs 

The proof of Theorem 2 is similar to that  of Theorem 1 (actually easier). So we only 

consider the case of Theorem 1. We first formulate the following theorem. 

THEOREM 3. Let Y, B and Ir be the same as in Theorem 1, and let q~3  be an 

integer. Consider the following commutative diagram of holomorphic maps, where g is 

Y g ~ ~O,q 

m 

non- constant: 

(1.6.1) 

Assume the non- degeneracy condition that g ( Y )  ~ supp ~q t2 w~-i (supp ~q). Then for all 

s>0 ,  there exists a positive constant C(c)>0 such that 

T(r, g, xq) < N(r, g, 2q)+Nr m a, 
(1.6.2) 

- ~ - C ( g ) ( T ( r ,  b,?Tq)+ Uram~rB(r))  I1" 

In w we derive Theorem 1 from Theorem 3, applying to the case that  g=cl(L~ ) and 

b=cl~. Using the Schwarz inequality, we prove Theorem 3 from Theorem 4 below. 

Definition 1.6.3. Let q~>3 be an integer. 

(1) A q-hol-quintet is an object (~ ,  ~ ,  7r, g, b) where ~ and ~ are Riemann surfaces 

with a proper, snrjective holomorphic map 7r: 5~--+~, and g and b are holomorphic maps 

which fit into the commutative diagram 

We say that  a q-hol-quintet (~ ,  ~ ,  :r, g, 

meromorphic functions ~ o g  on o~" are 

g ~ ~O,q 

1 
~ ~O,q. 

b) is non-degenerate if b(~)C~supp ~q and if the 

non-constant for all a E~r 

(2) A specified q-hol-quintet is an object (~ ,  ~ ,  7r, g, b, F, R) where ( ~ ,  ~ ,  7r, g, b) 

is a q-hol-quintet, R C ~  is a finite domain and F=Tr- I (R) .  We say that  a specified 

q-hol-quintet is non-degenerate if the q-hol-quintet (~ ,  ~ ,  ~, g, b) is non-degenerate. 

THEOREM 4. Let q~3  be an integer. For all s>0 ,  there exists a positive constant 

C ( q, ~ ) >0 with the following property: Let (Jr, ~ , 7r , g, b, F, R) be a non-degenerate spec- 

ified q-hol-quintet. Then we have 

A(g, F, Xq) <~ ~(g, ~q, F)+disc(~,  R)+eA(g ,  F, O.)q) 
(1.6.5) 

+ C(q, s)(deg 7r)(A(b, R, ~q) +f~(b, ~q, R) + p+ (R) +l(g, OF, Wq)). 
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The most important  part  of this paper is the proof of Theorem 4. The proof naturally 

divides into the following three steps. 

Step 1. We prove a local version of our theorem, which roughly reads as follows: 

For each point x E ~4t'0,q, there exists an open neighborhood V~ of x such that  if a non- 

degenerate specified q-hol-quintet satisfies the condition b(R)C Vx, then our theorem is 

valid. For the precise statement, see Lemma 11. To prove this, we use a lemma from [Y2], 

which is an application of Ahlfors's theory (cf. Lemma 8). For each vertex vEF~, we 

attach a contraction map ~(v):~0,q-->P 1, (v)E~r This contraction map ~(v) has the 

properties that  the restriction to the component C.  is an isomorphism and that  the 

restrictions to the other components C~, are constant maps. Applying Lemma 8 to 

r  and ~=~(v,)og, where v and v' are adjacent vertices, we obtain some sort of 

"difference" of the usual second main theorem of Ahlfors. Adding these "differences" 

over all the edges of Fx, we obtain (a modification of) the usual second main theorem of 

Ahlfbrs. Applying Rouch~'s theorem (Lemma 9), we get the local version of our theorem. 

This method is similar to that  of [Y2]. The major differences are that  instead of the tree 

constructed in [Y2, w we use the tree Fx, and instead of the combinatorial lemma [Y2, 

Lemma 4], we use a geometric lemma (cf. Lemma 10). 

Step 2. By a finite union of curves % we divide p1 into a finite number of Jordan 

domains D~, 1 <~k~K. This division of p1 gives the division of ( p 1 ) J  in the form of the 

open subsets 

H Dk,, l <. k~ <. K. (1.6.6) 
i E J  

Put  4 ~ = ( & ~ ) i E j : ~ , q - + ( P i )  ~. We consider connected components R' of the pullback 

of the open subsets (1.6.6) by the composition of the morphisms 

/~ b~0,q *~(P~)~. 

Then R is divided into a finite number of the finite domains R'. We assume that  the 

Jordan domains Dk are very small. Then using the facts that  ~0,q  is compact and that  

is an injection (cf. Lemma 12), we conclude the following: For every R', there exists a 

point XE ~fO, q such that  b(R')CVx. 

Step 3. We apply the local version of the theorem for each finite domain R ~ and add 

over all these finite domains to conclude our theorem. Here we need to estimate extra 

error terms coming from 

(1) the sum of the lengths l(g, Oqr-l(R'),wq) over all R', where O'Tr-l(R ') is the 

part  of the boundary ~ I r - l (R  ') which lies in the interior of F; 

(2) the sum of Q+(R') over all R'. 
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See Lemma 13 for these estimates. Here we only point out the idea of the method 

of the first estimate. Take a slightly smaller Jordan domain D~CDk for each k. Then 

we obtain slightly smaller finite domains R " c R  t in the same manner for R' but from 

the Jordan domains D~. We use the length-area principle to find a finite domain 

with R " C R C R '  such that  the length l(g,O'~r-l(R),wq) is small enough provided that  

the area A(g, ~r-l(R"), wq) is sufficiently large. We replace {R'} by {R} to conclude the 

estimate. 

1.7. R e m a r k s  

(1) A part of Theorem 3 can be generalized as follows. For a smooth algebraic va- 

riety X, we denote by K x  the canonical bundle of X. Given a morphism p: X--+M 

between smooth algebraic varieties, we define the relative canonical bundle KX/M to be 

Kx--p*KM. The relative canonical bundle Kx/M is a line bundle on X. Note that  

the line bundle K~o,q/~,q defined in w is equal to the relative canonical bundle of 

Wq: 6h'o,q--+JgfO,q in this sense, so our notations do not contradict. 

COROLLARY 3. Let X and M be smooth projective varieties over C. Let p: X--+ M 

be a surjective morphism where the relative dimension of X over M is equal to one. Let 

D c X  be a reduced divisor on X .  Let L and E be ample line bundles on X and M, 

respectively. Let Y, B and 7c be the same as in Theorem 1. Consider the following 

commutative diagram of holomorphic maps, where g is non-constant: 

g 
Y > X  

1 

Assume that the image b(B) is Zariski dense in M and that g ( Y ) ~ s u p p D .  Then for 

all e>O, there exists a positive constant C(e)>0 such that 

T(r, g, KX/M(D)) < N(r, g, D)§ m ~ry (r)§ g, L) 

+C(r b, E)  +Nram ~rs (r)) I1' 
(1.7.1) 

We shall prove this corollary as part of the derivation of Corollary 2. 

(2) Consider the case B = C  and ~rs=idc  in the corollary above. A consequence of 

the general second fundamental conjecture is that  the inequality 

T(r, g, K x  (D)) <~ N(r, g, D) +Nr~m ,y  (r) +ET(r, g, L) ]1 (1.7.2) 
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holds for all ~ > 0 and for all suitably non-degenerate g. Since we have 

T(r, g, K x  (D)) = T(r, g, KX/M(D))+T(r,  b, KM)+0(1) ,  

the inequality (1.7.1) (and hence (1.6.2)) is a weak form of (1.7.2). 

The paper  is organized as follows. In w we prepare some lemmas and derive Theo- 

rem 1 from Theorem 3, and Theorem 3 from Theorem 4. The proof of Theorem 4 begins 

in w This section is a preliminary for the proof including some lemmas from [Y2] and 

a review of Ahlfors's theory, which will be used in the proof. In w167 4 and 5, we prove 

Lemmas 11 and 13, respectively. The proof of Theorem 4 ends at w In w we prove 

Corollaries 2 and 3 together with some generalization of Theorem 1. In w we prove 

Theorem 2 from Theorem 4. This proof is similar to that  of Theorem 1. In w we 

introduce some notations from [V1] and [V3], and prove the height inequality for curves 

over function fields (Theorem 5). 

The author thanks Professor A. Er~menko for stimulating discussions, especially for 

suggesting Corollary 2. I also thank Professors H. Fujimoto, J. Noguchi and M. Taniguchi 

for many valuable comments  on this paper. Finally I thank  my colleagues A. Takahashi, 

S. Yasuda and K. Ueda for valuable discussions about  the moduli space of stable curves. 

This paper  is an expanded and largely rewritten version of [Y1]. 

2. D e r i v a t i o n s  o f  T h e o r e m  1 f r o m  T h e o r e m  3, 

a n d  T h e o r e m  3 f r o m  T h e o r e m  4 

2.1. B a s i c  e s t i m a t e s  in N e v a n l i n n a  t h e o r y  

Let Y be a Riemann surface with a proper,  surjective holomorphic map  ~r: Y--+C. Let 

X be a smooth projective variety, and let g: Y--+X be a holomorphic map. 

2.1.1. The Nevanlinna inequality. For an effective divisor Z c X  with g(Y)~supp  Z, 

we have the Nevanlinna inequality(1) 

N(r, g, Z) <~ T(r, g, [Z])+O(1) ,  (2.1.1) 

where [Z] is the associated line bundle for the divisor Z. This est imate follows directly 

from the first main theorem in Nevanlinna theory. When Y = C  and 7r=idc,  the first 

main theorem and the Nevanlinna inequality (2.1.1) is contained in [NoO, 5.2.18]. The 

first main theorem for a general Y and an ample divisor Z is contained in [Nol, (3.5)], 

from which the general case easily follows because an arbi t rary divisor Z can be writ ten 

as the difference of two ample divisors. See also [LC, IV 2.3]. 

(1) In this paper, we use big and little "oh" notation for asymptotic statements as r--+oc. 
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2.1.2. Functorial properties. Let M be a smooth projective variety, and let p: X - + M  

be a morphism. Let L1 and L2 be line bundles on X,  and let E be a line bundle on M. In 

this paper, we often use the following functorial properties of the characteristic function: 

T(r, g, L1 +L2) = T(r, g, L1)+T(r,  g, L2) +O(1),  

T(r, g, p 'E)  = T(r, p og, E) +O(1)  

for every holomorphic map g: Y-+X.  We can easily check these properties by the defini- 

tion. 

2.1.3. Growth estimates of the characteristic function. The lemmas in this subsection 

may be found somewhere in the literature, but in lack of precise references, we provide 

proofs. (For the case Y = C  and 7r=idc, see also [NoO, 5.2.29, 6.1.5].) 

LEMMA 2. Let X ,  M, p, Y and g be as above. Let L be a line bundle on X ,  and 

let E be an ample line bundle on M. Assume that d imX---dimp(X)  and that g (Y)  is 

Zariski dense in X .  Then there is a positive constant C, which only depends on X ,  M, 

p, L and E, such that 

IT(r, g, L )I <~ CT(r, pog, E) +O(1).  

Proof. There is an ample line bundle L t on X such that  both LP-L  and LP+L are 

ample. Since the characteristic function of an ample line bundle is bounded from below, 

we have 

- T ( r , g , n ' )  < T(r ,g ,L)+O(1)  < T(r ,g ,L ' )+O(1) ,  

which yields IT(r, g, L)I <~T(r, g, L ' )+O(1 ) .  Therefore we have reduced our proof to the 

case that  L is ample. 

Observe that  the line bundle p*E is big. Hence, by Kodaira's lemma (cf. [KM, 2.60]), 

we may take positive integers k and m such that  H~ m(p*E) -kL )~O.  Let F be a 

divisor on X which corresponds to this non-zero global section. Since N(r, g, F)>~0 for 

r >  1, the estimate (2.1.1) yields 

0 <. T(r, g, [F]) +O(1)  = mT(r,  g ,p*E) -kT(r ,  g, L)+O(1),  

and hence T(r, g, L) <~ (re~k) T(r, g, p 'E)  + O(1). Using the functorial property of the char- 

acteristic function, we conclude the lemma. (Put C=m/k . )  [] 

LEMMA 3. Let X be a smooth projective variety, and let g: Y--+ X be a holomor- 

phic map. For a function r  with r the following four conditions are 

equivalent: 

(1) There exists an ample line bundle L on X such that T(r,g, L)=O(r  
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(2) For all line bundles L on X,  we have T(r,g, L)=O(r 

(3) For all smooth (1, 1)-fo~ms 12 on X,  we have T(r, g, ~)=O(~(r)).  

(4) Let W c X  be the Zariski closure of g(Y),  and let C(W) be the rational func- 

tion field of W. Then we have T(r, vog)=O(~(r)) for all v cC (W) ,  where vog is a 

meromorphic function on Y. 

Remark 2.1.2. If g satisfies one of the above equivalent conditions, we say that  the 

order of the growth of g is bounded by ~(r) .  

Proof. First, we shall prove the equivalence of the conditions (1), (2) and (3). Ob- 

serve that  the implications ( 3 ) ~  (2) and ( 2 ) ~  (1) are trivial from the definition. For 

(1) ~ (3), let ~ '  be the curvature form of a Hermitian metric on L. Since L is ample, we 

may assume that  ~ is positive. For a smooth (1, 1)-form 12, there is a positive constant 

C such that  -CI2~<~<C~ ~ because X is compact. Hence we have 

IT( r, g, f~)l <~ CT(r, g, f~') = CT(r, g, L) +O(1)  = O(r 

where we may include the term O(1) in O(r  because r Hence we conclude 

that  the conditions (1), (2) and (3) are equivalent. 

Next we shall prove the equivalence of (2) and (4). Since our assertion is trivial for 

a constant map g, we only consider the case that  g is non-constant. 

(4) =~ (2). Let Vl , . . . ,vdEC(W) be a transcendence basis of the field extension 

C ( W ) / C ,  where d=d im W. Put  

P = P l x . . . x P 1  and v=(v l , . . . ,Vd) :W--*P.  

d fac tors  

By Hironaka's theorem, we may take a blowing-up W-+W, where W is smooth, such 

that  the rational map ~: W - - . P  induced from v is regular at every point of W. Then 

is a generically finite map. Let t): Y--+W be the holomorphic map such that  uo~--g, 

where u: W--+X is the composition of the morphism W--+W and the closed immersion 

W--+X. We denote by .~  the hyperplane section bundle on p1, which is the unique line 

bundle of degree one. Put  E = p r ~ - q ~ + . . . §  where pri: p__+p1 is the i th projection 

for i=1 ,  ..., d. Then E is an ample line bundle on P.  Since 9 is generically finite, we may 

apply Lemma 2 to get 

T(r, g, L) = T(r, ~, u*L)+O(1) = O(T(r, ~o~, E) ) 

for all line bundles L on X. Here we note that  T(r, ~o~, E)--+oc as r--+oc, because ~o~ 

is non-constant. Observe that  we have the estimate 

d d 

T(r, ~o5, E)  = T(r, vog, E)+O(1) = ~ T(r, viog, ~ )  +O(1) = ~ T(r, viog)+O(1), 
i = 1  i = l  
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because wp1 is the curvature form of the Fubini-Study metric on .~.  Hence by (4), we 

get 

T(r, g, L) : O(r 

for all line bundles L on X. This proves (2). 

(2) ~ (4). Let v e C ( W ) .  By Hironaka's theorem, we may take a blowing-up W-+W, 

where W is smooth, such that  the induced rational map ~: W - - * P  1 is regular at every 

point of W. Let ~: Y--+W be the holomorphic map such that  uo~=g, where u: W - + X  

is the composition of the morphism W--+W and the closed immersion W--+X. Let L be 

an ample line bundle on X. Apply Lemma 2 to get 

T(r, ~, ~*~) = O(T(r, uo~, L)), 

where ~ is the hyperplane section bundle on p1. Since we have 

T(r, ~, ~*.~) = T(r, ~o~, ~ )  +O(1)  = T(r, vog) +O(1) ,  

we obtain T(r, vog)=O(T(r, uo~, L)). By (2), we have 

T(r, uo~, L) = T(r, g, L) +O(1)  = O(r  

and hence T(r, vog)=O(r This proves (4) and concludes the proof of the lemma. {3 

LEMMA 4. Let X and M be smooth projective varieties, let p: X-+ M be a morphism 

and let g: Y--+X be a holomorphic map. Let D c X  be a divisor such that p(supp D)#M.  

Assume that pog(Y)~p(supp D) and that the order of the growth of pog is bounded by 

r for some r Then we have 

T(r, g, [D]) = O(r 

Proof. There 

pog(y) ~supp Z. 

and m(p*Z)+D are effective. By (2.1.1), we have 

is an effective divisor Z on M such that  p(suppD)CsuppZ and 

We may take a positive integer m such that  the divisors m ( p * Z ) - D  

0 <~ T(r, g, [m(p*Z)- D])+O(1)  = roT(r, pog, [ Z ] ) - T ( r ,  g, [D])+O(1) 

and 

0 ~ T(r, g, [m(p*Z)+D])+O(1) = roT(r, pog, [Z])+T(r ,  g, [D])+O(1). 

Hence we get T(r, g, [D])=O(r by Lemma 3. This proves our lemma. [] 
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2.2. An algebraic l emma 

LEMMA 5. There exist a line bundle 
Wq(supp -~) Csupp ~q and 

E on Jgo,q and a divisor ~ on ~'0,q such that 

(q --  2)  ~ 1 , 2 , 3 )  ~ = Kq + ~q  E ~- [~]. 

Proof. Let xEJgC0,q, and observe that  the restriction Kql~ is isomorphic to 

K ~  x q (~-~i=1 ai(x)), where K ~  is the canonical line bundle on ~x-~P 1. Hence we have 

deg Kql~ : q - 2  because deg K ~  : - 2 .  Since the restriction ~(1,2,3)1~: ~fx-+P1 is an 

isomorphism, we conclude that  (q-2)(~1,2,3)~-(~)1~ and Kql~ are isomorphic. Here we 

note that  deg(~l,2,3).2~)l~x =1. Put  L : ( q - 2 ) ~ l , 2 , 3 ) t - K q .  Then we deduce that  the 

restriction LIT ~ is the trivial line bundle for every xCJgO,q. 
Since Wql(JYYo,q)--+~o,q is a pl-bundle,  we conclude that  there exists a line bundle 

Eo on Jf0,q such that  the restriction Ll~j~(~go,~) is isomorphic to WqE0 ([Har, Chapter II, 

Exercise 7.9]). Let E be an extension of Eo to Js Put  L~=L-wqE. Then L~l~j~(~go,~) 

is the trivial line bundle on Wq I (JYo,q). Hence there exists a divisor S on q/o,q such that  

wq(supp--)Csupp ~q and L'=[--]. This proves our lemma. [] 

2.3. T h e o r e m  3 impl ies  T h e o r e m  1 

We only consider the case q~>3 because Theorem 1 is trivial for q<3. Let f ,  al ,  . . . ,  aq be 

the functions in Theorem 1 with the conditions that  f is non-constant, that  the functions 

ai are distinct and that  f~aioTr for i=1, ..., q. 
We consider the classification maps cla and cl(f,a). 

First we estimate the characteristic functions T(r, cla, ~q) and T(r, cl(f,a), Wq). Put  

r  ai)}, 
i=1 

which satisfies r 1. Then we have 

q 

~(r) = E T(r, ai) + o(T(r, f ) ). (2.3.1) 
i=1 

Let ~B be the field of all meromorphic functions on B. Let WcJgr be the Zariski 

closure of the image cla(B), and let C(W) be the rational function field of W. Then cla 

defines the natural injection 5: C(W)--+~B by the pullback of rational functions on W. 

Let C(al ,  ..., aq)C~B be the subfield generated by the meromorphic functions al ,  ..., aq. 
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Then by the definition of cla, we have ~(C(W))cC(al,...,aq) (cf. (1.5.9)). Hence the 

order of the growth of cl~ is bounded by r  Apply Lemma 3 to get 

T(r, cla, r/q) = O(r (2.3.2) 

Similarly, using the field ~ y  of meromorphic functions on Y, we observe that  the order of 

the growth of cl(/,a) is bounded by T(r, f)+r (cf. (1.5.10)). Hence we get the estimate 

T ( r ,  cl(f ,a) ,  O)q) = O(T(r,  f )  + r  

i.e., 
T(r, cl(/,~), wq) <. QT(r, f) +O(r  (2.3.3) 

with a positive constant Q, which may depend on f ,  ai and (fixed) Wq. 

Now we take an arbitrary positive constant e, and apply Theorem 3 to the case 

g=cl(f,~), b=cl~ and e. The non-degeneracy condition of Theorem 3 easily follows from 

the assumptions that  ai are distinct and that  f~aio~r for i=1,  ..., q. Using (2.3.2) and 

(2.3.3), and replacing e with e/Q, we get 

T(r, cl(f,a), Xq) < N(r, cl(f,~), ~q) +Nram ~y(r)+eT(r, f)  
(2.3.4) 

"COe(r I[, 

where we use the notation O: in place of O so as to better indicate that  the constant 

used to define the symbol O depends on e. To complete the proof, we need to estimate 

the terms of (2.3.4). 

CLAIM. The following inequalities hold: 

q 
N(r, el(f,~), ~q) <~ E N (r, aioTr, f ) + O( r ) ), (2.3.5) 

i=1 

(q-  2)T(r, f) = T(r, cl(f ,a) ,  Xq)~-O(~/)(r) ). (2.3.6) 

Proof. We first prove (2.3.5). Put  

U = {z E B: al (z), ..., ha(Z) are all distinct}. 

Then by the definition of the classification map, we have cla(U)cJgr For zEU and 

yeTr-l(z),  we have cl(f,a)(y)e~q if and only if f(y)=ai(z) for some ie(q) (cf. (1.5.6) 

and (1.5.7)). Hence we have 

{yeY:cl(f,a)(y)e~q} C {yeY:  f(y)=aioTr(y) for some ie(q)}UTr-l(B\U). 
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This implies that 
q q q 

n(cl(f,a), ~q, Y (r) ) < E ft(ai oTr, f, Y (r) ) + (deg 7 r ) E  E ft(ai, aj, B(r) ) 
i=1 i=1 j = l  

j#i 

and 
q q q 

N(r, cl(f,~>, ~q) <~ E N(r'a~~ f) + E E N(r, ai,aj), 
i = l  i=1 j = l  

j#i 

Since we have 

r > l .  

q q 

E E N(r, a~, aj) = O(r  
i=1 j = l  

j#i 

we get (2.3.5). 

Next we prove (2.3.6). Since wp1 is the curvature form of the Fubini-Study metric 

on ~-q~, Lemma 5 implies the equality 

(q-2)T(r, ~(1,2,3)o cl(f,~)) = T(r, cl(f,a), xq) 
(2.3.7) 

+T(r ,  cl~, E)+T(r, cl(f,~), [~]) +O(1).  

Here we used the functorial property of T, namely 

T(r, cl(f,~), ~0~1,2,3),~ ) : T ( r ,  (/9(1,2,3) o c l ( f , a ) )  + O ( 1 ) ,  

T(r, cl(l,~), w~E) -= T(r, cl~, E )+O(1) .  

Since for zETr-l(U), the two 4-tuples of points on p1, 

(f(z),aloTc(z),a2o~v(z),a3o~v(z)) and (~(1,2,3)~ 1,0c), 

are isomorphic (cf. (1.5.6) and (1.5.7)), we have 

f(z)-alon(z) a2oTr(z)-a3oTc(z) 
~0(1,2,3) ~ = f(z) -a3oTr(z) a2ozr(z)-aloTr(z)" 

Hence we get 

T(r, ~(1,2,3)ocl(f,~)) = T(r, f ) +O( r ). 

By wq(supp ~)Csupp ~q, we may apply Lemma 4 to get 

(2.3.8) 

T(r ,  [-=]) = O( r  (2.3.9) 

Using (2.3.7), (2.3.8), (2.3.9) and the estimate 

T(r, cla, E)  = O(r (2.3.10) 

(ef. Lemma 3), we get our inequality (2.3.6) and conclude the proof of our claim. 

Using (2.3.1), (2.3.4) and the above claim, we get our Theorem 1. 

[] 
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2.4. T h e o r e m  4 implies T h e o r e m  3 

Let Y, B, 7c, g and b be the objects in Theorem 3 with the conditions that  g is non- 

constant and that  g(Y)r supp ~q U Wq I (supp ~q). Put  r  T(r, b, ~q)}. Then 

r ~> 1, and 

r = T(r, b, ~?q) + o(T(r, g, wq) ). (2.4.1) 

Observe that  the order of the growth of b is bounded by r  since ~q is positive. 

First, we consider the case that  ~ o g  is constant for some aE~,r By Lemma 5, 

which is obviously valid when (1, 2, 3 ) E ~  is replaced by a, we can prove 

(q-2)T(r,~.og)=T(r,g, xq)+T(r,b,E')+T(r,g,[~'])+O(1), (2.4.2) 

where E '  is a line bundle on Jg/0,q and ~'  is a divisor on ~0,q with Wq(suppE')C~q. By 

Lemmas 3 and 4, we have 

-T(r,b,E') =O ( r  and -T(r,g, [F. ' ])=O(r (2.4.3) 

respectively, where we note that  g(Y)~Wq 1 (~q). Using (2.4.2), (2.4.3) and the assump- 

tion that  ~ o g  is constant, we conclude that  T(r, g, xq) =O(r  This proves Theorem 3 

in our case, because all terms on the right-hand side of (1.6.2) are non-negative for r > l .  

Next we consider the case that  ~ o g  is non-constant for every hE,re. For r>0 ,  

decompose B(r) into connected components B1 (r), ..., B~(r) and put 

)~i = (Y, B, 7c, g, b, Yi(r), Bi(r) ), 

where Yi(r)=Tc-l(Bi(r)). Then Ai is a non-degenerate specified q-hol-quintet for i-- 

l, ..., u~. We apply Theorem 4 to each Ai and add over i=1,  ..., ur to obtain 

A(g, Y (r), xq) <~ ~(g, ~q, Y(r) ) +disc(Tr, B(r) ) +CA(g, Y (r), wq) 

+ C(q, s)(deg 7r) (A(b, B(r), ~q)+fi(b, ~q, B(r)) 

) + ~ o+(Bdr))+l(g, OY(r), Wo) 
i ~ l  

for all s>0.  Here C(q, s) is the constant which appears in Theorem 4. We integrate the 

inequality and put 

fl ~11" ltt _ _  ~ 1 E~=l o+(Bi(t)) dt. L(r) = deglTry l(g, OY(t),Wq)t dt and J ( r ) -  degTrB-- t 
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Then we get 

T(r, g, Xq) • g(r,  g, ~q)+Nram~y(r) -Nram,~B(r)+r g, wq) 

+C(q,~)(T(r,b, 7?q)+Y(r,b, ~q)+g(r)+(degn)L(r)), r> 1, 

for all r Here we note that  r a m ~ y = n * ( r a m n s ) + r a m n ,  and hence we have 

disc(~ry, C(r)) = (deg n) disc(riB, C(r)) +disc(~r, B(r)) 

and 

CLAIM. 

1 ~ disc(n, B(t)) 
/ram Try (r) --/ram Wa (r) -~- deg n------~ t 

The following inequalities hold: 

(2.4.4) 

dr. (2.4.5) 

J(r) ~ gram ~ r .  (r) for r > 1, 

L(r) =o(T(r,g, wq)) J[. 

(2.4.6) 

(2.4.7) 

Proof. We first prove (2.4.6). We apply Hurwitz's formula to the proper covering 

map nsJs~(~): Bi(r)--+C(r) to get 

o(Bi(r)) = (deg nB ]B,(~)) p(C(r)) + disc(nu ]B,(~), C(r)).  

Since 0 ( C ( r ) ) = - i  and o(Bi(r))>~-l, we have 

o+(Bi(r)) <~ disc(nB Js,(~), C(r)).  

u ~  
Hence we have Ei=l ~+(Si(r))~<disc(nB, C(r)),  and so (2.4.6). 

Next we prove (2.4.7). In this proof, we denote the covering map ny:  Y-+C by p to 

avoid the confusion with the classical constant n. Put  g*Wq=�89 where G 

is a C~-function on Y\{zEY:p'(z)=O} with G>~0. Then we have 

l(r) :=- l(g, OY(r), wq) = foy(~)Cr d argp 

and 

G2t darg p dt. A(r) := A(g, Y(r), wu) = Y(t) 
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Put  e=degp.  Using the Schwarz inequality, we have the following estimates for r > l :  

L(r) = 1 l(t) 
e 

l j ~ a  dt 
= - Gtdargp ~- 

e Y(t) 

1 r dargpdt~l/2(F f G2t2dargpd_~)l/2 

= 1 (2zce log r) ' /2(A(r)-A(1))  1/2 
e 

/ d \1/2 
! (27re l~ r)1/2 

f d \112 
=(27rr logr) ' /2t~rT(r) )  . 

Here we put T(r)=T(r,g,  Wq). Take r 0 > l  such that  T( r0)> l .  Let E be a subset of 

Jr0, oc) defined by 

rE E i f a n d o n l y i f  L(r) >~ T(r)l/21ogT(r). 

Then we have 

fE 1 f d log log r = ~ dr <~ 27r L(r) 2 dr 

foo (dT/dr)(r) 
~ r( )2 d r  z 

27T 

logT(ro)" 

Hence outside the set E with fE d log logr<oc ,  we have 

L(r) <~ T(r) 1/2 log T(r) = o(T(r)), 

which proves our claim. [] 

By the assumption b(B)C:supp~q, the Nevanlinna inequality (cf. (2.1.1)) yields 

N(r, b, ~q)<~T(r, b, [~q])+O(1). Thus we have 

R(r, b, ~ )  = O(r 

(cf. Lemma 3). Hence using (2.4.1), (2.4.4) and the above claim, and adjusting the 

constant C(r we obtain Theorem 3. 
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3. P r e l i m i n a r i e s  for  the proof of  T h e o r e m  4 

3.1. A p r o p e r t y  o f  f ini te  d o m a i n s  

LEMMA 6. Let f i  and fio be Riemann surfaces. Let F c f i  and FoCfio be finite do- 

mains. Let ~: fi--+ fio be a holomorphic map. Then F N ~ - I ( F 0 )  is a finite disjoint union 

o f finite domains of fir. 

Proof. We may take a finite domain F ' C f i  such that  FcF ' ,  and such that  the 

branch points of ~ do not exist on 0 F (  Let (ai)i be a finite set of arcs on fi0 such that 

Uiai=OFo. Observe that ~- l (a i )nF ~ consists of a union of arcs 7 which are divided 

into the following three classes: 

(1) 7 with ~(7)=ai ;  

(2) one of the end points of V is a branch point of ~; 

(3) one of the end points of V is contained in OF'. 
Since F '  is compact, the numbers of arcs V of the classes (1) and (2) are finite. We apply 

Lemma 1 for ~(OF') and ai to deduce that the number of arcs 7 of the class (3) is finite. 

Hence we conclude that ~-I(OFo)NF' is a finite union of arcs. We apply Lemma 1 for 

~-I(OFo)NF' and OF to conclude that ~-I(OFo)NF is a finite union of arcs. 

Therefore we deduce that F N ~-l(F0)  consists of a finite number of connected com- 

ponents J, and that  the boundary of each J is a finite union of arcs. 

Now note that  the condition OJ=O(fi \J)  comes from the corresponding conditions 

for F and F0. Hence each J is a finite domain. This proves our assertion. [] 

The proofs of the lemmas stated in the rest of this section can be found in [Y2].(2) 

3.2. Topology 

Let f i  be a Riemann surface. Let ~ and G be two open subsets in f i .  We define 

two subsets Z(G, ~) and P(G,  fl) of the set of connected components of GAff  in the 

following manner. Let G I be a connected component of Gn~t. Then G' is contained 

in Z(G, ~) if and only if G' is compactly contained in ~t, and otherwise G I is contained 

in P(G,  g~). Then a connected component G ~ in Z(G, ~) is also a connected component 

of G. The letters Z and P refer to islands and peninsulas, respectively, in Ahlfors's 

theory of covering surfaces. 

Let ~ be a non-constant meromorphic function on ~ c f i ,  where ~ is a domain of f i .  

Let E be a domain in p1. We consider the following condition for ~: ~__+p1 and E: 

If a E ~  is a branch point of ~, then ~(a)~OE. (3.2.1) 

(2) Though our definition of a finite domain is slightly different from that in [Y2], the proofs are 
valid without any changes. 
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LEMMA 7. ([Y2, Lemma 1]) Assume that a finite number of disjoint simple closed 

curves ~/~, i= l , . . . , p ,  divide p1 into connected domains D1,.. . ,Dp+I. Let ~ be a non- 

constant meromorphic function on ~, where ft is a finite domain of a Riemann sur- 

face ~ .  Assume that the condition (3.2.1) is satisfied for ~ and Di, l~<i~<p+l. Put 
! Ip+l•" 1 D ~--I Ip+17)(~- l (Di) , f~) .  Then we have .4=t.)i=l (~- ( i ) , f t )  and - ~ i = 1  

0+(a) ~> Z Q(A)+Z t)+(B)' 
AEA BEB 

Remark 3.2.2. By Lemma 6, the right-hand side of the inequality above is a finite 

s u m .  

3.3. R e v i e w  of  Ahl fo r s ' s  t h e o r y  

Recall that  we denote by wp1 the Fubini Study form on the projective line p1. Let fro 

be a finite domain of p1. Let ~ be a Riemann surface, let f t C ~  be a finite domain 

and let ~ be a non-constant meromorphic function on ~. Assume that  ~(ft)cf~0. Then 

we may consider r ~--+f~o as a covering surface in the sense of [Ne2, p. 323]. We call 

4 -1 (f~0)A Of~ the relative boundary and l(~, ~-~ (f~0)N Of~, wp1 ) the length of the relative 

boundary. Let Dcf~0 be a domain which is bounded by a finite union of arcs. We call 

S o  = A(r  r a;p1) 
f D C.~pl 

the mean sheet number of ( over D, and Sa0 the mean sheet number of ~. 

In the following two theorems, we assume that  0ft0 consists of a finite disjoint union 

of regular, analytic Jordan curves. We denote by S and L the mean sheet number and 

the length of the relative boundary of the covering ~: f~--+ft0, respectively. 

COVERING THEOREM 1. ([Ne2, p. 328]) There exists a positive constant h=h(f~0)>0 

which is independent of D, f~ and ~, such that 

h 
IS -SDI  <" JD-~ wpIL" (3.3.1) 

Consider ~ as the covering map of the closed surfaces ~: f~--+f~0. Put  

l(r r 
S(Of~o) = length of 0f~o with respect to the Fubini-Study metric' 



254 K. YAMANOI 

COVERING THEOREM 2. ([Ne2, p. 331, Remark]) There exists a positive constant 

h=h(~to)>0 which is independent of gt and ~, such that 

IS -  S(Ofto)l <~ hL. (3.3.2) 

Note that a regular, analytic Jordan curve is regular in the sense of [Ne2, p. 326] 

(cf. [Hay, Lemma 5.1]). The main theorem ([Ne2, p. 332]) of Ahlfors's theory was used 

to prove the following lemma. An analytic Jordan domain E c P  1 is a Jordan domain 

whose boundary OE is regular and analytic. 

LEMMA 8. ([Y2, Lemma 2]) Let E t be an analytic Jordan domain in p1, or p1 

itself. Let El, ..., Ep, E~  be analytic Jordan domains in pz. Assume that the closures 

Ej of Ej, j = l ,  ...,p, co, are mutually disjoint. Then there exists a positive constant h > 0  

which only depends on El, ...,Ep, Eoc, with the following property: Let 12 be a finite 

domain of a Riemann surface o ~, and let ~ and ~ be two non-constant meromorphic 

functions on ~. Assume that 

~ ( r  C Eor (3.3.3) 

and that ( and Ej satisfy the condition (3.2.1) for j : l ,  ...,p, oc. 

Put 

~/---- I ( r  Ft), 

6J=z((-l(Ej),ft), 
~s  ----Z(~-I (Ecr ft fl~/)- 1 (Et)). 

~;---- V((--1 (Ej), U) for j : 1, ...,p, 

Then we have the inequality 

p p 

E E E E E 
ce~ '  c ~ P  j=l Geg] j : l  cegfl Gc~L (3.3.4) 

~> ( p -  1) A((,  ~2, cop1) - hl(r 0~, wp1), 

where 0(~, r  is the number of connected components G in 61 such that ~ ( G ) c E ~ .  

Remark 3.3.5. (1) By Lemma 6, the left-hand side of the inequality (3.3.4) is a finite 

sum. 
(2) Since we have fp lWpl=l ,  the term A(~,f~,Wpl) is equal to the mean sheet 

number of the covering (: fL-+P 1. Also, since p1 is compact, the term l(~, Oft, wp~) is 

equal to the length of the relative boundary of the covering ~. 
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(3) Consider the case E t = P  1. Then the condition (3.3.3) is satisfied automatically. 

If ~ is non-compact, then G I = o  and GP={~}, and hence ~)(~, r  On the other hand, 

if ~ is compact, then GI={~} and G P = o .  Since ~ is non-constant, we have ~ ( ~ ) ~ E ~ ,  

so vg(~, r  Hence we have v~(~, r  in both cases. Since Q(~t)~<p+(~), we get 

P P 

E o(c)-E E E 
j=i G~] j=l Gc6fl G ~ i  

/> ( p -  1) A(/,  e ,  wp~) -h l (~ ,  OR, wpl). 

(3.3.6) 

Here we can write ~ as Z ( ( - I ( E ~ ) ,  ~). 

3.4. Rouch4 ' s  t h e o r e m  

We denote by dist(x, y) the distance between x, y E P  1 with respect to the K~hler metric 

associated to the ~ b i n i - S t u d y  form wp1. 

LEMMA 9. ([Y2, Lemma 3]) Let E c P  i be a Jordan domain, and let b be a point 

in E. Then there exists a positive constant C=C(E,b)>O with the following property: 

Let ~ be a finite domain in a Riemann surface fir, and let ~ be a meromorphic function 

on fir such that ~ ( ~ ) = E  and ~(012)=vgE. Then for a meromorphic function a on fir 

such that d is t (a(z ) ,b)<C for all zE~ ,  there exists a point zCgt with ~(z)=c~(z). 

4. Loca l  va lue  d i s t r i b u t i o n  

4.1. N o t a t i o n  

In this section, we work around a neighborhood of a point x~Js This point x will be 

fixed in this section. We denote by edge(Fx) the set of all edges of Fx, i.e., 

edge(Fx) = {{v, v ' } : v  and v' are adjacent vertices of Fx}. 

Then edge(Fx) is an empty set if and only if xEJglo,q. Let v and v' be distinct vertices 

of Fx. Since Fx is a tree, there exists a unique sequence of distinct vertices 

V ~ V o ,  Vl ,  ...~ V r = V  t, 

where vi-1 and vi are adjacent for i=1, ..., r. We call this sequence the path joining v 

and v'. 
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4.1.1. Take a vertex vEvert(F~). Recall that  C~ is the irreducible component of ~x 

which corresponds to v Evert(F~). Put 

p m =  {i e (q): Cri(X) E Cv} (m stands for "marked points"), 

P:  = {v 'ever t ( r~) :  v' is adjacent with v} (n stands for "nodes"). 

p m  m m _ _  Note that  we have [-Jvcvert(r~) v =(q) and P~ nP~, - 0  for v ~ v  ~ because marked points 

are smooth points of ~x. Hence for each iE(q), there exists a unique vertex vEvert(F~) 

such that  ~ri(x)ECv. Put P=(q)Hvert (F~) ,  P , , = P ~ H P ~ C P  and d~=cardP~. 

4.1.2. Define g: P~-~C~, by the following rule. If ~-EP~, then ~(~-)=a~(x); on the 

other hand, if r E P ~ ,  then ~(T)=C,~AC~-. Then g is an injection, and the image g(P~) 

is the set of the special points of C~, which are either the marked points or the nodes. 

Hence Pv can be identified with the set of the special points on C~ by g, so dv/>3 (cf. 

Definition 1.5.1). 

4.1.3. Definition of qa(,). For each vEvert(F~), there exists (v)E~J with the fol- 

lowing property: The restriction qa(.)Icy: C~--+P1 is an isomorphism and the restrictions 

~(.)Ic~,:C~'--+P1 are constant maps for all v~Evert(F~)\{v}. To see this, we observe the 

following. 

CLAIM. Let C=( C, Sl, ..., Sq) be a q-pointed stable curve, and let E be an irreducible 

component of C. Then there exists a subset Sc(q)  with card S=3 satisfying the following 

property: Consider the contraction c: C--+ P 1 obtained by forgetting the points sj marked 

in j E (q)\S, where we note that the resultant 3-pointed stable curve is isomorphic to p1. 

Then the restriction clE: E-+ P 1 is an isomorphism, and the restrictions ClE, are constant 

maps for the other components E ~ of C. 

Proof. We shall prove this by induction on q. Note that  the assertion is trivial for 

q=3. Next we assume that  the assertion is valid for q -1 ,  and consider the case for q where 

q>~4. We may take jE  (q) such that  the number of the special points on E other than sj 

is at least three. (If there exists j'E(q) with sj,~E, then put j= j ' .  Otherwise, we take 

arbitrary jE(q),  where we note that  q~>4.) Let c': C--~C be the contraction obtained 

by forgetting the point sj, where the marked points on C ~ are assumed to be labeled by 

the set (q)\{j}. Then by the property (2) in the definition of contraction (cf. w we 

conclude that  the restriction c'lE: E--+C' is an injection and that  c ' (E')~c ' (E)  for the 

other components E'cC .  

Now by the induction hypothesis, there is a subset SC(q) \ ( j }  with card S = 3  such 

that  the contraction c":C'-+ p1 obtained by forgetting the points labeled by (q)\ (S U {j}) 

has the following property: The restriction c"l~,(E): c'(E)--~P 1 is an isomorphism, and 
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the restrictions C"IE, to the other components E ~ of C ~ are constant maps. Put  c=  

c'oc~: C - + P  1, which is a contraction forgetting the points labeled by (q)\S. Then c has 

the desired property. This proves our claim. [] 

Now apply this claim to the case C=~x and E=C, to get the subset SC(q) and 

the contraction c. Pu t  (v}=S (by ordering the elements of S). Then by the definition 

of qO(v>, we have ~<v)l~ = r  where ~ is some automorphism of p1. Hence ~<v) has the 

desired property. This Iv) will be fixed for each v �9  

4.1.4. For vEvert(F~) and T�9  put wv(T)=~(.>oq(T)EP 1. Then wv:Pv-+P 1 is 

an injection. 

4.1.5. Definitions of ~-~ and ~. For vEver t ( r~) ,  we define the map "~: (q)--+P~ by 

the following rule. Take i�9 If i � 9  then put f~(i)=iEP,. Otherwise, take the 

vertex v ' eve r t ( rx ) \ {v}  with i � 9  and the path 

V----VO~ Vl~ ...~ V r ~ - - V  t 

joining v and v ~. Put  ~(i)=vzEP~. Then we have 

w~(~v(i)) = ~(~>oai(x) for all i �9 (q) and v �9 vert(Fx). (4.1.1) 

There exists a section ~,: Pv--+(q) of ~ :  (q)-+Pv. This ~ is defined by the following rule. 

For i c P  m, put Lv(i)=iE(q). For a vertex v'EP~, take a maximal path 

v, v', vl, ..., v~ (4.1.2) 

starting from the edge {v, v'}, i.e., there exists no path extending (4.1.2) to the right. 

Then we have card P~ =1 (otherwise we can extend the path). By d~/>3, there exists 

i~P~.  Put  ~(vP)=i .  Then this c~ is a section of § which will be fixed for each 

vCvert(Fx).  

If v and v' are adjacent vertices of Fx, we have 

"~,(~(v ' ))  Cv  (as elements of Pv,), (4.1.3) 

which easily follows from the definitions of the above objects. 

4.1.6. For vEvert(F~) and TEP,, put /3v,~=~<~)oa~,(~):~t~,q-->P x. Then we have 

~v,~(x)=w~(~-)cP 1, which follows from (4.1.1) and the fact that  t~ is a section of ~v. 
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4.2. A geometr ic  l emma 

Recall that _L~ is the hyperplane section bundle on pl .  

LEMMA 10. There exists a Zariski-open neighborhood UxC~o,q of x such that 

E ( d ~ - 2 ) ~ )  ~"~=Kq ~  I(U~)" (4.2.1) 
vEvert(F~) 

M -  * Proof. Put -~vever t ( r~) (d~-2)~(~)~-Kq.  For yEJt'0,q, let My be the restric- 

tion of M to ~y. Note that C, are isomorphic to p1 for all vEvert(F~) and that the 

degrees of the restrictions Kqlc~ and ( ( d v - 2 ) ~ . ) t ) 1 c .  are both equal to d v - 2  (cf. [Ma, 

p. 202, (1.3)]). Hence M~Ic v are the trivial line bundles on C, for all vEvert(r~). Since 

F~ is a tree, we conclude that Mx is the trivial line bundle on ~ .  

We apply the theorem of semi-continuity [Har, Chapter III, Theorem 12.8] to the 

flat morphism Wq. Then we obtain a non-empty affine open neighborhood U~ of x such 

that 

dim H~ M~) ~< 1 and d imH~ My1) <~ 1 (4.2.2) 

for all y E U~. Put 

Z = {y E Ux: dim H~ My) = 1}. 

Again by the theorem of semi-continuity, we see that Z is a Zariski-closed subset of U~. 

Take a point y from U~\~q, which is a non-empty Zariski-open subset of U~. Then ~y 

is isomorphic to p1, and hence the condition (4.2.2) implies that My is the trivial line 

bundle on ~y. Hence U~\~qcZ.  This implies that Z=U~. 

Now by the theorem of Grauert [Hat, Chapter III, Theorem 12.9], we have a section 

sEH~ M) such that the restriction s[~ is equal to the section 1 of the trivial 

line bundle Mx, where we note that Us is affine. Let D be the divisor on wql(Ux) defined 

by s=0. Since Wq is a projective morphism, ~q(supp D) is a Zariski-closed subset of Ux, 

which does not contain x. Hence by replacing Ux by U~\vzq(suppD), we may assume 

that s is a nowhere vanishing section on Wql(U~). This implies that the restriction 

Mlwql(u~) is the trivial line bundle, which proves our lemma. [] 

4.3. The  local version of  the  t h e o r e m  

LEMMA 11. Let A be a countable set of non-degenerate q-hol-quintets. Then for all 

XE~o,q, there exist an open neighborhood V~--V~(A) of x and a positive constant hx= 
hx (A) >0 with the following property: Let (fir, ~ ,  7r, g, b) E A be a q-hol-quintet contained 
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in A. Let R C ~  be a finite domain such that b(R)cVx. Put F=~r - I (R) .  Then we have 
the inequality 

A(g, F, xq) ~< ~(g,-.~q, F ) +  discQr, R) + (deg 7r)~+ (R) 

+ hxl(g, OF, Wq) + hx(deg 7r)~(b, ~q, n) .  

Proof. For ( ~ , ~ , ~ r , g , b ) E A  and a E f f  r, put 

ga = ~oaog, 

which is a non-constant meromorphic function on ~ .  For vEvert(Fx) and ~-EPv, let E v 

be a small spherical disc in p1 centered at wv(7-) such that 

(1) E~f~EY~,=O for ~-r where we note that Wv(T)~W~(T'); 
(2) g~: ~__+pi  and E~ satisfy the condition (3.2.1) for all vEvert(F~), 7EPv, aG~r 

and (J,~,Tr, g,b)EA, i.e., if a E f f  is a branch point of g~ for some (o~,~ ,?r ,g ,b)EA 

and aE~r then g=(a)~OE v for all veve r t ( rx )  and TEPv. 
Here in the second condition, we note that the set 

U {g~(a):a is a branch point of g ~ : ~ - ~ P  1} 
a c J  

( ~ , ~ j r , g , b ) E A  

is countable, because A and the set of branch points of g~ are countable. 

For each {v, v '}eedge(r~) ,  put 

Dv,~, = ~(-~ ( P I \ E : , )  --1 , v '  ), 

which is a compact subset of ~'O,q, because ~(~) and ~(v,) are proper maps. Note that 
r ~ ~ - l / p l \ E v , ~  ~ \ ( C ~  M C.,) consists of two connected components. The set (~(~) ~) ~ \ , ) is con- 

, ~ --1 tained in one component, and the set (~(v)[ ~) (P I \E~ ' )  is contained in the other com- 

ponent. Thus we have w~- ~ (x) n Dv,,, = O. Hence the image Wq (D~,~,) C ~0,q is a compact 

subset which does not contain the point x. Therefore, for all {v, vP}Eedge(F~), we con- 

clude that there exists an open neighborhood V~,~, of x such that w~-I(V~,,,)AD~,~,=O, 

i.e., 
--I 1 v' ~(v)(~(~,)(P \ E .  )Mw~-i(v.,~,)) EEl,. (4.3.2) 

Let Vx C J[O,q be an open neighborhood of x such that 

(1) V~EU~ (cf. Lemma 10); 

(2) V~cV~,v, for all {v,v '}6edge(r~) ;  

(3) dist(wv(7),/3~,r for all yEV~, vever t (Fx)  and 7EP . ,  where 

we note that/3~,r (cf. Lemma 9); 

(4) - ~(v)O~ri(V~)cE§ for all vEvert(Fx) and iE(q), where we have ~(v>O~i(x)-- 

wv(~-,(i))eEY~U) (cf. (4.1.1)). 
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Let s  g,b)EA. Let R be a finite domain of ~ such that  b(R)cV~. Put  

F=Tr- I (R) ,  which is a finite disjoint union of finite domains on ~ .  We shall derive the 

estimate (4.3.1) with the constant h~ which will be found below. 

First we apply Lemma 8. For a vertex vEvert(F~) and ~'EP., put 

GI,~_ Z" -I"E~" p -1 E ~ = (g<v>(~-),F) and G~,~=7)(g<~>(~),F).  

We denote by C(F) the set of connected components of F.  Let Vo be the unique vertex 

of F~ such that  a~(x)eC~o. For each vertex vevertP~\{Vo}, take the path joining vo 
and v: 

Vo~VO~ Vl~ ...~ Vr--l~ V r ~ V .  

We denote the vertex v~-i by v-, which is uniquely determined by the vertex v. 

We first consider the vertex vo. For each HEC(F), we apply Lemma 8 (cf. (3.3.6)) 

to the ease 

~ - ~ ,  Q--H, ~=r E~=P~, E~--E~ ~ 
19 Vo Vo 

{ E j } j =  1 = { E  v, }v,EP:oU{Ei }iEpa\{1}, p = d ~ o - 1 .  

Adding over all HEC(F) and using the fact ~ e p ~ \ { ~ }  ~-~cegyo,~ e+(G) >~0, we obtain the 

following: There exists a positive constant h,o >0 which does not depend on the choices 

of AEA and R, such that  

E o+(.)- E(  E E E E 
HEC(F) vEP:o\GEGI~o,, , Ve6~o,~ i e P ~  o GEGIo,I 

) (d~o-2)A(g(,o), F, ~Vp~)-h~ol(g(vo), OF, wp~). 

Next for a vertex vEvert Fx\{vo}, we put 

1 ~-[ - 1 , E .  ~ "- ~,= (g(~)( v--),FMg(~l-)(Ev )). 

For each HEC(F), we apply Lemma 8 to the case 

~ = ~ ,  f ~ = H ,  ~=g(v)[H, ~b=g(v-)lH, Et=E~ -, E~=E~_,  

where the condition (3.3.3) follows from the property (4.3.2). Adding over all HEC(F) 
and using the fact ~i~e~-, ~ c c G ~  t)+( G)>~0, we obtain the following: There exists a 
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positive constant h~>0 which does not depend on the choices of AEA and R, such that  

IE(v): 
HEC(F) GEG~ ~ GEG$ 

v ' E P p \ { v - }  GEGI,v , GEGP , iEPp GEGI,i GEG~ 

/> (d~ -2)A(g(~}, F, wp~)-h,l(g(~}, OF, WpQ. 

Now, using the inequality IE(vo) for the vertex Vo and the inequalities IE(v) for 

vertices Vr we add the inequalities IE(v) over all vEvert(Fx).  Then we obtain 

E E E E 
HcC(F) vEvert(F~) iEP. m GEG~,i 

vEvert(F~)\{vo} HEC(F) GEG~ 

E (dv-2)A(g(~),F, wp,)-h'l(g, OF, wq). 
rever t  Fx 

(4.3.3) 

Here we used the following two facts: 

(1) There exists a positive constant h ' > 0  which does not depend on the choices of 

A E A and R such that  

E hvl(g(.},OF, wp1) <~h'l(g, OF, wq). 
vEvert(F~) 

(2) For a vertex Vr the term 

c~'_,o c ~  5,o 

appears on the left-hand side of IE(v), while the term 

- Z Q(a)- ~ Q+(a) 

appears on the left-hand side of IE(v-)  because vEP~_, and vr for v-r Hence 

these terms are canceled by each other when we add inequalities over all v Evert(Fx). 

Now we will estimate the terms on the left-hand side of (4.3.3). 
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CLAIM. The following inequalities hold: 

E O(g(v>lH'g<v-> ]H)- E o(G) <. 2(degrr)~(b, ~q,R) for all V#Vo, 
HeC(F) GEG[ 

(4.3.4) 

- ~ ~ ~ Q(G)<~fi(g,~q,F)+q(deg~)fi(b, J2~q,R), (4.3.5) 
vEvert(F~) iEP~ m G E ~ ,  i 

E o+(H) < disc(u, R)+(deg r)0+(R). (4.3.6) 
HEC(F) 

Proof of (4.3.4). For HEC(F) and {v, v'}Eedge(F~), let O'(v', v, H) denote the num- 

ber of connected components G in Z(g~v} (E~,), H) such that g<.,)(G)C E~'. Then we have 

r  v-, H) = O(g<~)I., g<v-> I.)  

and 

- ~ o(a)<.card~ I<. ~ r 
GeG I HGC(F) 

Here we note that GEG / is non-compact because g<~> is non-constant and E ~_ is non- 
E" compact, hence Q(G)~>-I. (By the definition, we have g<~>(G)C ~_.) Therefore to 

prove (4.3.4), it suffices to prove 

E O'(v', v, H) <~ (deg ~r)fi(b, ~ ,  R) (4.3.7) 
HEC(F) 

for all {v, v'}Eedge(Fx). 

Take GEZ(g~}(E~,), H) such that g<,,}(G)cE~'. Then by the definition of Vx, we 

may apply Lemma 9 to the case 

~ : H ,  E=E[,, ~ : G ,  (=g(~>(=~<,>og), a=~,,v, obo~. 

We conclude that there exists z E G such that 

(4.3.8) 

(note that 3v,v,=~<v>Oa~v(~,)). Now we shall prove bou(z )Esupp~  by contradiction. 

Suppose bo~r(z) ~supp ~ .  Then (4.3.8) implies 

~<v'>~ = ~<v,)oa~,(v,)oboTr(z), (4.3.9) 
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which follows from the facts that the restrictions ~<v)]% and ~<~,> I% give isomorphisms 

~y_+p1 for yE~o,q\s and that wqog(z)=bor(z) (cf. (1.6.4)). By the assumption 

g(v,> (G) CE v', we have 

~<.,)og(z) E E~'. (4.3.10) 

On the other hand, we have 

~(v,>oa~,(v,)obor(z) ~ E~,'. (4.3.11) 

- -  v ! To see this, we note that ~(v,>oa~,(v,)(Vx)CE§ by the definition of Vx. Hence 

we have ~O,,>oo-~v(v,)(y)~E~' for yEV~ (cf. (4.1.3)). Since bor(z)EVx, we get (4.3.11). 

The relations (4.3.9), (4.3.10) and (4.3.11) give a contradiction. Hence we have bor(z)E 

supp ~q. This proves (4.3.7) and (4.3.4). [] 

Proof of (4.3.5). Let GEG~i iEP~. Since -Q(G)~I ,  we have 

- E E E Q(G)~ E E card G~, '" 
vEvert(F~) iEP F GE~,~ vEvert(F~) iEP~ 

By the definition of Vx, we may apply Lemma 9 to the case 

E =  E~, ~ = G, ~ = ~(v>og, a = ~.,~obor (= ~<,>oaiobo~r), 

to conclude that there exists z E G such that 

~p<~> og(z) = ~p<~)oai ob o r ( z ) .  

This implies that either g(z)=aiobor(z) or bor(z)Esupp~q. (Note that ~P(~>I% is an 

isomorphism for yE~0,q\~q.)  Hence for ieP~, we have 

card G~,i ~< 5(g, ~q,i, F ) +  (deg 7r)~(b, ~q, R), 

, @q-~=l@q,i, ~q,iA@q,i,=O for where we put ~qi=ai(~O,q)C~'o,q. Since we have - q 

i~i', Uveve~t(r,) pm____(q) and/ :~MP~,  ----O for v#v', we obtain 

E E cardGIv, i<~(g'~q'F)+q(degTc)5(b'~q'R)" 
vEvert(Fx) iEP~ 

This proves (4.3.5). [] 

Proof of (4.3.6). For HEC(F), the restriction rill: H--~R is a proper map. Hence, 

by Hurwitz's formula, we have 

Q(H) = (deg 7rIH)Q(R) +disc(~riu , R). 
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Since Q(R) ~< 0(H), we get 

p+ (H) ~< (deg ;,r I H)p + (R) +disc(n[H, R). 

Adding over all HEC(F), we obtain 

E P+(H)<~Q+(R)E degTr]H+ E disc(~rIH'n)=p+(R)degTr+disc(lr'R)" 
H~C(F) HEC(F) HeC(F) 

This proves (4.3.6) and concludes our proof of the claim. [] 

Next we will estimate the first term on the right-hand side of (4.3.3). 

Note that  the ~ b i n i - S t u d y  form wp1 is the curvature form of the Fubini-Study 

metric on the hyperplane section bundle .~.  Hence by Lemma 10, the restriction of the 

(1, 1)-form 

vCvert(Fx) 

to w~-l(ux) is a curvature form of the trivial line bundle. Hence, there exists a C ~ 

function ~ on Wql(Ux) such that  

E (dv-2)~[,> we~-~q=dd~ ~ -l(Ux)' (4.3.12) 
vEvert(Fx) 

By Stokes's theorem, we have 

[A(g,F, ddC~)l = /Fg*ddC~-- ~oFg*dC~. (4.3.13) 

There exists a positive constant h " > 0  which does not depend on the choices of AEA 

and R, such that  

oFg*dC~ ~ h"l(g, OF, Wq), (4.3.14) 

because the image g(ff) is contained in the compact set w~-l(Vx). Hence using (4.3.12), 

(4.3.13) and (4.3.14), we get 

E (dv-2)A(g<v>,F, wp1) ~A(g,F,~q)-h"l(g, OF, wq). 
vEvert F~ 

(4.3.15) 

Put  hx=max{h'+h", 2 card(ver t (Fx))+q-2},  which is a positive constant indepen- 

dent of the choices of AeA and R. Using (4.3.3)-(4.3.6) and (4.3.15), we obtain (4.3.1) 

and conclude the proof of Lemma 11. [] 
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5. L e m m a s  for divis ion and s u m m a t i o n  

5.1. An  algebraic l emma 

Put  4 ) = ( r  ~o,q-~ (P~) J.  

LEMMA 12. 4) is an injection. 
m 

Proof. We prove this by induction on q. For q=3, our lemma is trivial because ~0 ,3  

is isomorphic to a point. Suppose that  our lemma is valid for all q' with q'<.q, where 

q ~>3. We shall prove our lemma for q+ 1. 

Our lemma is equivalent to saying that  for distinct points x, Y@./~0,q+l, there exists 

i C j q + l  such that  r (x) r r (Y). Let ?.tq+l : J ~ , q + l  -"~J~,q be the morphism obtained by 

forgetting the marking aq+l (eft (1.5.12)). In the case that  Uq+l(X) and Uq+l(y) are 

distinct points in J/0,q, our lemma follows from the induction hypothesis. 

In the other case, put Z=Uq+l(x). Using the isomorphism ~q+l: ~0,q+l---~'0,q, the 

fiber -1 Uq+](z) is isomorphic to ~z (eft (1.5.12)). 

We first consider the case when Cq+~(x) is a smooth point of ~z. Let vEvert(Fz) be 

the unique vertex such that  ~q+l (x)E Cv. Then since ~(~> I c~ :Cv __+p1 is an isomorphism 

and V)<v>[c., is constant for v'evert(r~)\{v}, we have ~<v>(~q+1(x))r (/'q+l(Y)) as 

desired. (By definition, we may take iE~r rq+l with r 

Next we consider the case when/~q-kl (X) is not a smooth point of ~"z. Then/~q-kl (X) is a 

node. There are adjacent vertices v and v' such that  ~q+l(x)=C, nC~,. If ~<v> (~q+l(X))r 

~(v> (~q+l(y)), the proof is done. If ~<v> (~q+l(X))=~<~> (~q+l (Y)), then we can easily see 

that  ~<~,> (~q+l (x)) r (~q+~ (Y)), which proves our lemma for q+ 1. [] 

5.2. Es t imates  for s u m m a t i o n  

Let A = ( ~ ,  ~ ,  7r, g, b, F, R) be a specified q-hol-quintet. For i E J ,  put 

and 

bi = r ~ --+ p1 

J ~  = {i E J :  b~ is non-constant}. 

Definition 5.2.1. We call J ~  the type of the specified q-hol-quintet A. 

Let J C  J q  be a subset. Let ~ = {D~ }i~3 be an ~'-tuple of Jordan domains D~ C px. 
I t Let ~ -{Di} ie  3 be another such tuple. We say that  ~ is compactly contained in ~ if 

all D~ are compactly contained in Di. We also write ~ ' C ~  if D~cDi for all i E J .  Let 
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)~=(fir, ~ ,  ~, g, b, F, R) be a specified q-hol-quintet of type 7 .  We consider the following 

condition for {bi}ieX and {ni}ieX: 

bil,2:R-+P ~ and Di satisfy the condition (3.2.1) for all i ~ 7 .  (5.2.2) 

Put n ~ = n N N i ~ j b [ l ( D i )  and F~=Tr-I(R~).  Then by Lemma 6, n~  (resp. F~) is a 

finite disjoint union of finite domains on ~ (resp. ~ ) ,  because Jordan domains Di are 

finite domains (cf. w 

LEMMA 13. (1) Let 7 C J  q be a subset. Suppose that ~'={D~}~e 3 is compactly 

contained in ~={Di}i~ ~ .  Then for all c>0, there exists a positive constant #1= 

#1 (c, 7 ,  ~,  ~ ' )  with the following property: Let (~ ,  ~ ,  7r, g, b, F, R) be a specified q-hol- 

quintet of type 7 such that the inequality 

A(g, F~,, a.)q) > / 2  1 (deg 7r)(A(b, R, 71q ) +I(9, OF, O2q)) (5.2.3) 

holds. Then there exists an 7-tuple of Jordan domains ~"={D~'}~ej  with ~ ' C ~ " C ~  
such that we have the inequality 

l(g, OF~,,, Wq) ~ r F~,,, Wq) +l(g, (OF, Wq). 

Moreover, we may take ~ "  such that (bi)ie3 and 59" satisfy the condition (5.2.2). 

(2) Let 7 ,  ~ '  and ~ be the same as in (1). Then there exists a positive constant 

#2 =#2(7 ,  ~ ,  ~ ' )  >0 with the following property: Let (~ ,  ~ ,  7r, g, b, F, R) be a specified 

q-hol-quintet of type 7 .  Let ~ "  be an 7-tuple of Jordan domains such that 

:D'c ~D"c ~.  (5.2.4) 

Suppose that (bi)i~fi and ~ "  satisfy the condition (5.2.2). Then we have 

E Q+(G) <~ Q+(R)+#2(A(b,R,%)+l(g, OF, Wq)). 
GEC(R~,,) 

Here we recall that C(R~,,) is the set of connected components of R~,,. 

Remark 5.2.5. If 7 = 0 ,  then R~ = R  and F~ =F for an 7- tuple  of Jordan do- 

mains ~.  Hence the assertions of the lemma are trivial in this case. In the following, we 

consider the case 7 r  

Proof of Lemma 13 (1). For iET,  we fix a biholomorphic identification Xi: Di -7+A. 

Put Di(r)=x~l(A(r))  for 0~<r~<l. Here A ( r ) = { z e C : l z l < r }  and A=A(1).  Let r0< l  

be a constant such that D~cDi(ro) for all i e ~  
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By replacing Di by Di(s) and A by A(s) for r 0 < s < l ,  we may assume that Xi gives 

a biholomorphie map between neighborhoods of Di and/~. In particular, we may assume 

that ODi is regular and analytic for all iE~ 2. 

We fix a specified q-hol-quintet A=(~ ,  ~ ,  7r, g, b, F, R) of type 5 ~. For i E J ,  put 

~i = biolr[p: F--+ p1, 

For 0<r~<l, put 

F i = ~ - I ( D i ) N F  and 4i=Xio~iIp~:~-+?~. 

"Yi (r) = ~Z 1 (ODi (r) ) n F c Fi. 

Let WE be the Euclidean form on A c C ,  which is a Ks form. Put Si=A(~i, F, wpl) 

and Li=l(~i, OF, wpl), which are the mean sheet number and the length of the relative 

boundary of ~i: F - + P  1, respectively. 

CLAIM 1. There exists a positive constant Ql=Ql(5~, ~ ,  ~ )  which does not depend 

on the choice of A, such that 

l(~i,^/i(r),wE) <<. QI(S~+Li) for i E J  and rE [r0, 1]. (5.2.6) 

A proof of this claim will be given later. 

Now we will find the constant #1. We take a positive constant Q2=Q2(5~) which 

does not depend on the choice of A and satisfies the estimates 

E Si = (deg 7r) E A(bi, R, Wl::,l ) < Q2(deg zr)A(b, R, ~q) (5.2.7) 
i t 3  i e J  

and 

Li---- ~ l(~i, 0F~ Wp1) ~ ~2l(g, OF, Wq) < Q2(deg zr)/(g, OF, wq). (5.2.8) 
~ J  i eJ  

(We note the trivial estimate l~<degzr.) Let r  be an arbitrary positive constant. Put 

2QIQ2 
# 1  - -  E2(l_r0). (5.2.9) 

Then Pl is a positive constant which only depends on r 2 ,  ~ and ~P, and does not 

depend on the choice of A. 

Next we will find ~ ' .  For rE[0, 1], put 

~( r )  = {Di(r)}~e3, A(r) = A(O, F~(~), wq), 

O'F~(~) = OF~(~)\(OFNOF~(r)), l(r) = l(g, O'F~(~), Wq). 

Define a subset E(r C [r0, 1] by 

def 
rEE(e)  ~ l(r)>eA(r).  
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CLMM 2. Suppose that the inequality (5.2.3) holds for ~. Then the set [r0, 1]\E(e) 

is not a null set. Here a null set is a set of Lebesgue measure zero. 

Before proving this claim, we will complete the proof of (1) of our lemma. Note that  

the set 

{ r e  [r0, 11:(bi)ic3 and ~ ( r )  do not satisfy the condition (5.2.2)} 

is a finite set, and so a null set. Suppose that the condition (5.2.3) holds for A. Then by 

Claim 2, we may take rE Jr0, 1] such that (bi)iej  and ~ ( r )  satisfy the condition (5.2.2), 

and such that the inequality 

l(r) <. cA(r) 

holds. Since l(g, OF~(r), Wq) <<. l(r)+l(g, OF, Wq), we have 

l(g, OF~)(~), wq) <~ cA(g, F~)(~), Wq) +l(g, OF, Wq). 

Put  ~ " = ~ ( r ) ,  which proves (1) of our lemma. [] 

Now we prove the claims above to conclude the proof. 

Proof of Claim 1. In this proof, we denote by Q any positive constant which is 

independent of iE5  7, rE It0, 1] and the choice of A. 

For 0<r~<l and i E J ,  put F~(r)=~I(Di(r))MF and 

~i,r = ( i l F ~ :  Fi(r) > Di(r). 

Define the map Cr: Di(r)-+Di by 

Di(r )~z ,  > X : ~ I ( ~ ) E D i .  

Let S/,r be the mean sheet number and Li,~ be the length of the relative boundary of the 

covering ~,r: Fi(r)-+Di(r). Let S~, r be the mean sheet number and n~,~ be the length of 

the relative boundary of the covering Cr~ Fi (r)-+Di.  Since we have 

1 . 
~ ~)r (02p11~i ) < Cdp11D~ < Q~); (02p11 ~ ) f o r i e J a n d r e [ r o , 1 ] ,  (5.2.10) 

we get 

l(~i,r,~fi(r),aJp1) ~ Ql(r for i e J a n d  rC [r0, 1]. (5.2.11) 
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Here we note that  ?~(r)CaFi(r). Since r we may apply Covering 

theorem 2 (cf. (3.3.2)) to the covering r F~(r)--+Di to get 

l(r <~ Q(S~,~+L~,~) for i e J a n d  r e  [r0, 1]. (5.2.12) 

Here we note that  ODi is regular and anMytic for i � 9  by the assumption made in the 

beginning of the proof of this lemma. By (5.2.10), we have 

S~,~<~ QSi,~ and L~,~<~ QLi,~ fori �9149 

Hence combining with (5.2.11) and (5.2.12), we obtain 

l(~i,r,~/i(r),wpO<~ Q(Si,~+Li,~) for i � 9  r �9  

Since * -< )Ci 02E ~ Q0gp1 I Di and Xi o ~i,r = ~i l Y'~ (~), we have 

l(r ~(r) ,  ~ )  ~< Ql(~,~, ~(r) ,  ~ 1 ) ,  

and hence 

l(~i,'7i(r),wE) <<. Q(Si,r+Li,r) for i E J a n d  rE  [r0, 1]. 

We have S~,r<~Q(S~+Li) for ro<~r<<.l by Covering theorem 1 (cf. (3.3.1)). 

Li,r <<. Li, we obtain 

l(~i,ffi(r),wE) <. Q(S~+Li) for i � 9  J a n d  r e  [r0, 1]. 

This proves our claim. 

Using that  

[] 

Proof of Claim 2. We shall also denote the restriction ~ilF~ by ~i- For HGC(F~), 
we take a subset I H C J  with the following properties: 

(1) If iGIH and i'CIH are distinct, then Kil and I~i'] are distinct functions on H; 

(2) For all i � 9  there exists i'�9 such that  I~il and I~i'l are the same function 

on H. 

For HCC(F~),  ieIH and rE[0, 1], put 

and 

~g, i  = { z e H :  I~i(z)l > I~i,(z)l for all i'eIg\{i}}, 
~., i (r)  ---- {z �9 ~ . , i :  Ir < r}, 

~.,~(r )  = f i . , i  n.~i (r) 

1u,i(r) =l(g, ~H,i(r),wq), AH,i(r) = A(g,~H,i(r),wq). 
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Then by the above definitions, we have 

A(r)= E E Ad,~(r) and l(r)<~ E E IH,dr)" (5.2.13) 
HcC(F~ ) iEIH HEC(F~) ) iEIH 

To see these estimates, we observe that  

U U rt.,~(r) c F~(~) c U U a.,~(r) 
HEC(F~ ) iEIH HEC(F~ ) iEIH 

(5.2.14) 

(note that  f f ~  ~),  where ~'~H,i ( r )  r-) ~H' , i '  ( r )  ~ ~ if and only if H =  H '  and i= i ' .  From this 

fact, we immediately obtain the first estimate. For the second estimate, we observe that  

]~i(z)i=r on ZE~H,iMO~F~(~), and hence ~H,iNOtF~(r)C~H,i(r). By (5.2.14), we have 

a'F~(r) c U U (~.~,~na'F~(,-))d U U ~.,~(r). 
HEC(Fa) ) iEIH HEC(F~ ) iEIH 

Hence, we obtain the second estimate. 

Now we will use the length-area principle. For HEC(F~) and iEIH, put 

g*(~q)l~.,, = �89 4=-f a.,~ d~iAd~i, 

where GH,i is a C~-function on ~H,i\{zE~H,i:~(z)=0} with a.,~/>0. Then for rE (0, 1], 

we have 

lH#(r) = ~  GV/~,/r  darg ~i 

and 

if ( f . GH,itdarg~i~ Ag,i(r) = ~o \ J ~ H  i($) 2 I dr. 

Using (5.2.6), (5.2.13) and the Schwarz inequality, we have 

HcC(F~ ) iEIH 

2 

HEC(F~) iEIH H,i(r) 

<<'(Hc~C(F~)~C~I,~,,~(r) rdarg~i) E E ~ ~(r) GH'irdarg~i 
HEC(F~)  iEIH ' 

HEC(F~ ) iCIH HcC(F~ ) iCIn  
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iE fi 

for a.e. rE[ro, 1]. 

Now, suppose that  the set [r0, 1]\E(c) is a null set. Then using (5.2.3) and (5.2.7)- 

(5.2.9), we have 

1-ro = f dr 
JE (~) 

Q1E(Si~-ni)/E(e)(dd(r))l~r)2 dr 
left 

1 d 
Ql~ie3(Si+L~) ~o (~rA(r)) A~r)2 dr 

Q~ E~e J ( S~ + ni ) <~ 
~2A(~o) 

Q~Q2 (deg~)(A(b, R, ~q)+l(g, OF, wq)) 
<~ e2A(ro---- ~ 

~ l Q 2  A(g,F~,,Wq) 
r A(ro) 
1(1-r0) ,  ~<~ 

which is a contradiction because r0 < 1. This proves our claim and concludes the proof 

of (1) of our lemma. [] 

Proof of Lemma 13 (2). Let A= (~ ,  ~ ,  ~, g, b, F, R) be a specified q-hol-quintet of 

type J ,  and let ~ "  be an J - t u p l e  of Jordan domains which satisfies (5.2.4). We also 

assume the condition (5.2.2) for (bi)~E3 and ~" .  In this proof, we denote by Q any 

positive constant which only depends on ~ ,  ~ t  and 5 ~, and does not depend on the 

choices of A and ~" .  We shall prove 

Z Q+(G)<~Q+(R)+Q(A(b'R'~q)+I(g'OF'wq))' (5.2.15) 
GEC(R~,,) 

which proves our lemma. 

For a subset I C ~, put 

RI=RN N bi-l(D~ ') and F1 =Tr- l (Ri) .  
iEI 



272 K. YAMANOI 

If I # 5  ?, take iE~, ~ with i~I, and put 

Ei,I=Z(b{I(D~,),RI), , -1 1 - , ,  ,, Z~, r =Z(b  i (P  \ D i ) , R x )  and P<I=P(b~-I(Di),RI). 

For HEC(RI), we apply Lemma 7 to the case f t = g ,  4=bi  and "h=OD~' (cf. (5.2.2)). 

Adding over all HEC(RI), we obtain 

E 0+(") E 0(-)+ E o(H)+ E 0+(') �9 (5.2.16) 
H6C( RI ) H6Zi,I HEZ'. t H6PI,I 

Let SD~ be the mean sheet number of bi: R--+P 1 over D~cP 1. Then we have 

E ~ + ( H ) -  E Q(H) ~<card(Z~,,) ~< SD; 
H6 Zi, 1 HEZi, I 

(cf. (5.2.4)). Using Covering theorem 1 (cf. (3.3.1)), we get 

E 6+ (H) - E p(H) < Q(A(bi, R, up,)+l(bi, OR, up,)) .  (5.2.17) 
H6Ii,I  H6I~,I 

Similarly, we have 

- E o(H)~<card(Z~,,)<Spl\b i < Q(A(bi, R, up,)+l(bi,OR,upl)), (5.2.18) 
HeZ~,, 

where S p l \ ~  is the mean sheet number of bi: R--+P 1 over P I \ D i c P ~ .  Put  I'=IU{i}. 
By (5.2.16)-(5.2.18) and Zi,iUT~i,r=g(Ri,), we get 

E o+(H)<~ E g+(g)+Q(m(bi'R'u'~)+l(bi'OR'uP~))" 
H6C(R r, ) H6C(Rr) 

Using this estimate inductively, we have 

E o+(H) ~< 0 + ( R ) §  E (A(bi'R'uP1)§ 
H6C(R~,,) i6fi 

where we note that Rz =R and R3=Rg,,. By the estimates 

E (A(bi, R, up~ )+l(bi, OR, up ,  )) <~ Q(A(b, R, ~lq)+l(b, OR, ~q)) 
l e f t  

and 

l(b, OR, ~q) < Ql(g, OF, uq), 

we obtain (5.2.15), which proves (2) of our lemma. [] 
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6. Conc lus ion  of  t h e  p r o o f  o f  T h e o r e m  4 

6.1. A weak  ve rs ion  of  the theorem 

We first prove the following result. 

CLAIM. Let 7 C J  q, q~3, be a subset. Let A be a countable set of non-degenerate 
specified q-hol-quintets of type 7 .  Then for all s>O, there exists a positive constant 
C=C(~, 7 ,  A) such that 

A(g, F, xq) <~ n(g, ~q, F) +disc(Tr, R) +sA(g,  F, aJq) 
(6.1.1) 

+C(deg 7c)(A(b, R, ~q) +~(b, ~q, R) +~+ (R) +l(g, OF, wq)) 

for all (~,~,~,g,b,F,R)EA.  

Proof. Recall that  we denote by dist(x, y) the distance between x, y E P  1 with respect 

to the K/ihler metric associated to the Ks form wp~. Put  

A ' =  {(@, ~ ,  7r, g, b): (o~,~,Tr, g, b,F,R) EA}, 

which is a countable set of non-degenerate q-hol-quintets. For a point xC~/0,q and for 

r>0 ,  put 

Wx (r) = {y E d{0,q: gist (r (x), r (y)) < r for all i C J }. 

By Lemma 12, we may take rx>0  such that  Wx(rx)CV~(A') (cf. Lemma 11). Consider 

the open covering 

 0,q= u wx(�89 
xE~,q 

Since ~0,q is compact, we may take a finite set 8 of points xE~fo,q such that the open 

sets Wx(�89 for these x E S  give a covering of ~0,q. Let r0 be the minimum of 1 ~rx for 

xES.  Then for all y6~o,q, there exists x E S  such that  

WAr0) c c (6.1.2) 

Next, take a finite union of arcs 9' on p1 which has the following property: 

(p) p l \ . y  is a finite disjoint union of Jordan domains D~(7), l~<a~<'], such that  

SUPx,yED~(.~) dist (x, y) <r0. 

Let c be an arbitrary positive constant. Take a positive integer J such that  J > l / s ,  

and take small deformations "/1, ..., VJ of ? with the following properties: 

(1) each ?j,  l<~j<~J, also satisfies the property (P); 

(2) 7jM-TkMVI----~ for l<~j<k<l<.J. 
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Then for each integer j with l<~j<~J, we may take a small closed neighborhood 5j 
of 7j with the following property: 

(P') PI\Sj is a finite disjoint union of Jordan domains DI(Sj),...,D'I(Sj), where 

each Dc~(Sj), 1~c~<-1, is compactly contained in Dc~('~j). 
We also assume that 

5jN~kNSl=O for l<~j<k<l<.J .  (6.1.3) 

Put T={1 , . . . , ' I }~  For ~ = ( ~ i ) i e j E T  and l<~j~J, put ~ , j={D~, (~ / j ) } iE  j a n d  

~ '  - -  D 6 are Z , j -{  Z~( 3)}~E3, which J - tuples  of Jordan domains. Then ~ , j  is compactly 

contained in ~ , j .  

We take a positive constant h such that 

hy(A') < h for all yC8 (cf. Lemma 11), 

Xq < hwq on ~'0,q, (6.1.4) 

l < h .  

Note that h is independent of the choice of e. We also take a positive constant # such 

that 

# > # l ( e , J , ~ Z , j , ~ , j )  and # > # 2 ( J , ~ Z , j , ~ , j )  (6.1.5) 

for all ~ E T  and l<~j<.J (cf. Lemma 13). 

Take (o~, ~ ,  s, g, b, F, R) E A. We consider the covering 

~i = bioTrlF : F --+ P 1 for i e f f  . 

Since we have (by (6.1.3)) 

J 
E A(g, ~-1 (Sj), Wq) <. 2A(g, F, Wq) 
j=l 

for all i E J ,  we have 

J 

E E A(g'~-l(sJ)'Wq) ~ 20A(g,F, wq), 0=card57.  

j=l ic.] 
Hence there exists j ,  l<~j<.J, such that 

2O E m(g, ~71 (Sj), 02q) < - fA(g,  F, Wq) <~ 2eOA(g, F, Wq). (6.1.6) 

For the rest of this proof, we fix this j.  

Now we will find ~ with ~ , j c ~ c ~ , j  such that the local version of (6.1.1) is 

valid on R ~ .  
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SUBCLAIM. For each ~ET, there exists an J-tuple of Jordan domains ~ which 
satisfies ~ , j  C ~ C ~ ~,j and the inequality 

A( g, F ~ ,  xq) <~ ~(g, ~q, F~)+disc(Tr ,  R ~ )  

+(deg~r)~+(R)+hp(degTr)(A(b,R,~?q)+l(g, OF, wq)) (6.1.7) 

+ahA(g, F ~ ,  wq) +hi(g, OF, wq) +h(deg 7r) ~(b, ~ ,  R ~ ) .  

Proof. We first consider the case 

A(g, Fo,~.j , wq) <<. #(deg 7r)(A(b, R, ~?q) +l(g, OF, ~q) ). 

" ' Then using (6.1.4), we have Put  ~ = ~ Z , j .  

A( g, F ~  , xq ) <<. hA(g, F ~ ,  wq ) <<. hp(deg 7r)(A(b, R, ~?q ) + l( g , OF, wq ) ). 

Since all terms on the right-hand side of (6.1.7) are non-negative, we conclude our asset- 

tion in this case. 

Next we consider the case 

A(g, F~,~.j, wq) > #(deg 7r) (A(b, R, qq) +l(g,  OF, Wq)). 

Let ~ be the J - t u p l e  of Jordan domains obtained in Lemma 13 (1) (cf. (6.1.5)). By 

the property (P) of ~j, we see that b(R~)CWb(z)(ro) for zER~,~. Hence by (6.1.2), 

we have b(R~,~)CVx for some xE$.  Hence we may apply Lemma 11 for each connected 

component G E C ( R ~ )  to get 

A(g, 71--1 (G), Xq) < n(g, ~q, 71 --1 (G))+disc(Tr, G)+ (deg 7r)Q+(G) 

+ hi(g, 07r -1 (G), Wq) +h(deg ~r)~(b, ~q, G). 

Adding over all G E C ( R~ ~ ) and using t he estimates of Lemma 13 (1) and ( 2 ), we conclude 

our assertion. [] 

Since F = Uaev- Fg~ u U i E j  ~ - 1  ((~j) and Fg~ n F ~ ,  = ~ for/~' ~/~, we have 

-1 5 A(g,F, xq) <. E A(g,F~,~,xq)+h E A(g'~i (j),wq) 
~ET left 

<. y~  m(g, F~,~, xq) + 20hed(g, F, wq) 
~ E T  

(6.1.8) 
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(cf. (6.1.6)). Adding the inequalities (6.1.7) over all ~ET,  and using the estimate (6.1.8) 

above and c a r d T = ' l  e, we get 

A(g, F, Xq) ~ ~(g, Dq, F)+disc(Tr, R)+(20+l)hsA(g, F, wq) 

+' le(deg 7r) p+ (R) + hp-le(deg 7r)A(b, R, r/q) 

+h'~e(# deg 7r+ 1)l(g, OF, We) + h(deg ~r)~(b, ~q, R). 

Note that the constants h, #, 0 and "l are independent of the choice of AEA. Using the 

facts that c> 0  is arbitrary and that the constant (20+1)h is independent of the choice 

of c, we see that  the term (20+1)h~ is also an arbitrary positive number. This proves 

our claim. [] 

6.2. T h e  en d  of  the proof 

We prove our theorem by contradiction. Suppose that our theorem is not correct. Then 

there exist q~>3 and ~>0 with the following property: For all positive integers k, there 

exists a non-degenerate specified q-hol-quintet 

,kk = ( ~k, ~k, 7ok, gk, bk, Fk, Rk) 

such that 

A(gk, Fk, gq) > fi(gk, ~q, Fk ) +disc(Trk, Rk ) +r Fk, Wq) 

+k(deg 7ck)(A(bk, Rk, ~/q)+fi(bk, ~ ,  Rk) 

+ p+ (Rk) +/(gk, OFk, Wq)). 

(6.2.1) 

Put  A-----{A1, A2, ... }. Replacing A by an infinite subset, we may assume that the types of 

Ak are all the same ~ C J  q. Using the above claim and (6.2.1), we conclude that 

kQk < g, A)Qk 

for all positive integers k, where we put 

Qk = (deg 7Ck )( A(bk, Rk, ~lq)+ s ~ ,  Rk )+ p+ (Rk)+l(gk, OFk, Wq) ). 

But this is a contradiction, because we have Qk ~>0. Hence we obtain our theorem. 



THE SECOND MAIN THEOREM FOR SMALL FUNCTIONS AND RELATED PROBLEMS 277 

7. The proof of  Corollary 2 

7.1. Preliminaries 

We start  with the following lemma (see also [NoO, 6.1.5] for the case Y=C) .  

LEMMA 14. Let Y be a Riemann surface with a proper, surjective holomorphic map 
F I ~ v '~d  i 7ry:Y--+C. Let tx)=2_~i=oaiX be a polynomial in one variable with coefficients ai 

in Siy, where d~ l and ad~O as elements in 3iy. Assume that fCSiy satisfies the 

functional equation F(f)=O. Then there are positive constants C and ro such that 

d 

T ( r , f ) < ~ C E T ( r ,  ai ) f o r r>ro .  
i=0  

Proof. If all ai are constant functions, then f is also a constant function. Hence, 

our lemma is trivial in this case. In the following, we only consider the case that  some 

ai is non-constant. 

Put  r  ai). Then we see that  r as r-+c~. Let 9 ` C . ~ y  be the 

smallest subfield containing both C and all ai. Then 9` is a finitely generated field over C. 

Hence, by Hironaka's theorem, there exists a smooth projective variety M over C such 

that  the rational function field C(M)  of M is isomorphic to 9`. In the following, we fix 

one isomorphism t: C(M)-Z~9`. Then we have the holomorphic map b: Y - 4 M ,  which has 

Zariski-dense image, such that  vob=t(v) for all v E C ( M ) .  Note that  the order of the 

growth of b is bounded by r  because 9`C~r 

Take an irreducible polynomial G(x)E9`[x] over 9. such that  G ( f ) = 0 .  Let G(x)E 

C(M)[x] be the polynomial obtained by G(x) and the isomorphism t - l :  9`--+C(M). We 

may take a smooth projective variety X and a generically finite map p: X--+M such 

that  the rational function field C(X)  is isomorphic to the field C(M)[x] / (G(x) ) ,  via the 

inclusion C ( M ) c C ( X )  given by p. Here we denote by (G(x)) the ideal generated by 

G(x). Then we have a holomorphic map g: Y--+X such that  pog=b and xog=f,  where 

we consider x as a rational function on X. By Lemma 2, the order of the growth of g is 

bounded by r  Hence by Lemma 3, we get 

T(r, f )  = T(r, xog) = O(r ). 

This proves our lemma. [] 

7.2. A g e n e r a l i z a t i o n  o f  T h e o r e m  1 

Let Y, B, 7r and r be the same as in Corollary 2. Then we may consider ~tB as a subfield 

of my by the natural inclusion defined by 7r: Y-+B. 
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COROLLARY 4. Let F ( x ) E ~ [ x ]  be a polynomial in one variable with coefficients 

in NOB" Assume that the equation F(x)=O has no multiple solutions in an algebraic 

closure of N~s" Let f be a non-constant meromorphic function on Y such that F ( f ) r  
as elements in Ny. Then for all ~>0, there exists a positive constant C(e )>0  such that 

(deg F -  2-r  f )  <<. N (r, O, F( f )  ) + Nram rv(r) +C(r Nram ~B(r) + r ) I[, 

where we consider F( f )  as a meromorphic function on Y. 

Remark 7.2.1. If we put  F ( x ) = ( x - a l ) . . . ( x - a q )  for distinct al , . . . ,aqeJ~,  then 

the corollary above implies Theorem 1. This is because we have 

q 

N(r, O, F( f )  ) = ~ N(r, a,o~r, f )  +O(r ). (7.2.2) 
i = l  

Note that  the condition F( f )#O is equivalent to f#aioTr for all i=1  .... , q. 

Proof of Corollary 4. Let ~ c  be an algebraic closure of ~ c .  We consider the fields 

~ ,  ~B and J~y as subfields of ~c .  Note that  each element of ~ c  is algebraic over As,  

and hence naturally defines a multi-valued analytic function on B with at worst algebraic 

singularities. Similarly, each element of ~ c  naturally defines a multi-valued analytic 

function on Y with the same type of singularities. Let s  be the splitting field of 

F(x)  over -~r Then there exist al ,  ..., aq, ~Es  such that  

F ( x ) = ~ ( x - a l ) . . . ( x - a q ) ,  (7.2.3) 

where q=degF(x).  Since ~ is a finite separable extension of A~B, there is a primitive 
7r p 

element crEs i.e., s Let B'--+B be the Riemann surface of the multi-valued 

function a on B. Then al,...,aq are meromorphic functions on B'.  Let G(x)CA~s[X] 
be an irreducible polynomial such that  G ( a ) = 0 .  Since the ramification points of ~r' are 

either poles of the coefficients of G or zeros of the discriminant of G, we have 

Nram ~rB,(r ) = NramTrB(r)ur-O(~(r)), (7.2.4) 

where ~B,=TrSOTC' (cf. (2.4.5)). 
iI 

Next let y,_E_+y be the Riemann surface of the multi-valued function (~ on Y. By a 

similar reasoning as for (7.2.4), we have 

N r a  m Try, ( r )  : N r a  m v y  ( r )  - ~ O ( ~ ) ( r ) ) ,  ( 7 . 2 . 5 )  



T H E  S E C O N D  M A I N  T H E O R E M  F O R  S M A L L  F U N C T I O N S  A N D  R E L A T E D  P R O B L E M S  279 

where 7 t y , = - ~ y o T r  It. By the constructions of B t and Y~, there exists a proper, surjective 

holomorphic map ~r: Y~-+B ~ such that  7do~r=Trorr'. Apply Theorem 1 to the case Y', B t, 

foTr" and al ,  ..., %. Using the estimate of Lemma 14, 

T(r, ai) = O( r  for i = 1, ..., q, 

we get 

q 

(q-  2-e)T(r, f) <~ E N(r, aio~r, f oTr") + Nram ~ry,(r)-~-Oe( Nram TrB,(r)-]-r ) II 
i = l  

for all s>0 .  Here we note tha t  T(r, / )=r(r ,  four") and tha t  al ,  ..., aq axe distinct because 

F ( x ) = 0  has no multiple solutions. By (7.2.2) and (7.2.3), we have 

q 

E / V ( r ,  aio~r, foTr") =/V(r ,  0, F( f  orr") )+O(r ) <~ N(r, O, F(f)  )+O(r ). 
i = 1  

Hence using (7.2.4) and (7.2.5), we conclude the proof. [] 

7.3. T h e  p r o o f  o f  C o r o l l a r y  3 

We use the notation in Corollary 3. Let f~ be the curvature form of a Hermitian metric 

on E.  Put  r  T(r, b, ft)}. Then we have r  and 

r = T(r, b, E)+o(T(r, g, L ) ). (7.3.1) 

Note that  the order of the growth of b is bounded by r  

Let W be the Zagiski closure of the image g(Y). We first consider the case WCX.  By 

Hironaka's  theorem, there exists a blowing-up W-+W with a smooth W. Let ~: Y--+W 
be a holomorphic map such tha t  g=u@, where u: W--+X is the composition of the map 

W--+W and the closed immersion W---~X. Since the map pou: W--+M is surjective and 

d i m W = d i m M ,  we may apply Lemma 2 to conclude tha t  the order of the growth of 

is bounded by r  Hence by Lemma 3, we have 

T(r, g, KX/M (D)) = T(r, ~, U*KX/M (D)) + 0 ( 1 )  --- O(~(r)). 

This proves our corollary in the case WCX.  
Next we consider the case W--X.  By Hironaka's theorem, there exists a blowing- 

up u: )(--+X with a smooth, projective variety .~ such that  a generically finite map  

a: )(--+P1 • M over M exists. Let MoCM be a non-empty Zagiski-open subset such tha t  
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the restriction a0=c~[2o: _~o--+plx M0 is finite and the restriction uo=U[2o:)~0--+X0 is 

an isomorphism, where Xo=p-i(Mo) and Xo=(pou)-i(Mo). Put F0=rama0, i.e., the 

ramification divisor of a0. Then F0 is a divisor on )(o. Let H o C p l x  M0 be the reduced 

divisor supported by ao(supp(Fo+u~Do)), where Do=D[xo. Put 

Go ~-~ ((Ot0~ (H0))red-Do- 

Then Go is an effective divisor on X0 because Do is reduced. By the ramification formula, 

we have 

u~Kxo/Mo (Go + Do) = a~ (g(p1 x Mo)/Mo (H0)). (7.3.2) 

Here K(p~ • is the relative canonical bundle of the second projection p i  z Mo-+Mo. 
Let H c p i x M  be the natural extension of Ho, and let G c X  be the natural extension 

of Go. Then by (7.3.2), there exists a divisor Z c X  such that 

and 

pou(supp Z) C M\Mo (7.3.3) 

u*Kx/M (G+D) = a* (K(p1 • M)/M (H)) + [Z]. (7.3.4) 

Here [Z] is the associated line bundle for Z. Let g: Y-+)( be the holomorphic map with 

g=-uog. By (7.3.3), we have 

T(r,  9, [Z]) = 

(cf. Lemma 4). Hence by (7.3.4), we obtain 

T(r,g, Kx/M(G+D)) =T(r, ao[hK(plxM)/M(H))+O(~b(r)). (7.3.5) 

CLAIM. For all r the following inequality holds: 

T(r, ao~, K(pi• • N(r, aot~ , H)q-NramTr y (r)+cT(r, g, L) 

-[-Oe (Nram 7rB (r)q-r 

Proof. Let # be the generic point of M in the sense of scheme theory. Let p1 be 

the generic fiber of the second projection p': p i x  M--+M. Then P~ is the projective line 

over the rational function field C(M) of M. Let HuCP~ be the restriction of H. By 

a coordinate change of the first factor of p l x  M, if necessary, we may assume that the 

divisor (ec)cP~ is not a component of Hg. Hence we may take a polynomial F(x)E 

C(M)[x] such that H~ is defined by F(x)=0.  
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First, we consider F(x) as a rational function on p I x M .  Let (F)oCpIxM be the 

divisor of zeros of F(x). Then we have 

N(r, O, Foaot)) ~ N(r, ao~, (F)0), 

where Foao~ is a non-constant meromorphic function on Y because of the assumption 

W=X.  Note that  we have 

N(r, aog, (F)0) = N(r, ao{l, H)+O(r 

because p'(supp((F)o-H))~M (cf. Lemma 4). Hence we get 

_N (r, O, Foao~) <. N (r, ao~, H ) + O( r ). (7.3.6) 

Next, let F(x)  be the polynomial over ~ obtained from F(x) by the natural injec- 

tion C(M)-+J~r defined by b (cf. Lemma 3). Let ~: p I •  be the first projection, 

and put ~=~oao~: y_+p1.  Then we have 

Hence, using (7.3.6), we get 

K/(r, O, F(~)) <~ N(r, ao~, H)+O(r (7.3.7) 

We apply Corollary 4 to obtain 

(degF-2-~)T(r,~)~N(r,O,F(~))+Nram~g(r)+Oe(NramTrB(r)+~(r)) [[ (7.3.8) 

for all c>0.  Here we note that  /~(x) has no multiple solutions because H is a reduced 

divisor. 

Now since ((degF-2)~*S)[p~=K(pI• there exists a divisor P on 

p l  x M with p'(supp P ) # M  such that 

(deg F -  2) ~*oW -- K(p1 • M)/M (H) + [P]. 

Hence we may apply Lemma 4 to get 

(deg ? - 2 ) T ( r ,  ~, ,~ ) : T(r, ~o~, K(p~ • M)/M( H ) ) +O( r ). (7.3.9) 

Note that  we have T(r, ~, ~ ) = T ( r ,  ~)+O(1), because the Fubini-Study form wp~ is the 

curvature form of the Fubini-Study metric on ~ .  Hence combining (7.3.7), (7.3.8) and 

(7.3.9), we get 

T(r, ao~, K ( p l  • (H)) <<. N(r, aoO, H)+/ram ~ry (r)+fiT(r, g) 

+Oe(YramTrB(r)+r I[ 
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for all r  Note that  the order of the growth of g is bounded by T(r, g, L). Considering 

(oc~ as a rational function on X, we apply Lemma 3 to get 

T(r,[7) =O(T(r,g,L)), 

i.e., there is a positive constant Q independent of ~ such that  

T(r ,  ~) ~< QT(r,g, L)+O(1) .  

Hence, we obtain our claim. [] 

Now we go back to the proof of the corollary. Since we have 

pou(supp( (o~*H)red-U*(G+ D) ) ) r M, 

we obtain (cf. Lemma 4) 

N(r, ao~, H) = N(r, ~, (oL*g)red) ~--- N(r, g, G+ D)+O(r ) 

<~ N(r, g, G)+Y(r, g, D)+O(r 

Hence combining this with (7.3.5) and the above claim, we get 

T(r, g, KX/M(G+D)) <~ N(r, g, G)+N(r, g, D) +Nram 7ry(r)WsT(r, g, L) 

+Oe(Nram,B(r)+~(r)) II 

for all a>O. Using (7.3.1), N(r,g,a)<<.T(r,g, [C])+O(1) (cf. (2.1.1)) and 

T(r, g, KX/M( G+ D) ) = T(r, g, KX/M( D) ) + T(r, g, [GI)+O(1),  

we get our corollary. [] 

7.4. The proof  of  Corollary 2 

We use the notation in Corollary 2. Put  ~(r)=max{1,~(r)}. Then we have ~(r)~>l 

for r>0 ,  and J~B=~B. Note that  the estimate in Corollary 2 is easily derived from the 

corresponding estimate where r is replaced by ko. Let s162 be the smallest subfield 

containing both C and all the coefficients of F(x, y). Note that  ~ is a finitely generated 

field over C. Hence there exists a smooth projective variety M over C such that  the 

rational function field C (M)  of M is isomorphic to s In the following, we fix one 

isomorphism 5 : C ( M ) ~ s  Then we have the holomorphic map b:B-+M, which has 
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Zariski-dense image, such that  vob=~(v) for all v E C ( M ) .  Note that  the order of the 

growth of b is bounded by ~( r ) .  

Observe that  f l  is algebraic over 12 if and only if f2 is algebraic over 12. In the case 

when f l  and f2 are algebraic over 12, we have 

T(r, fi) -- O(~(r)) for i = 1, 2, 

by Lemma 14. This proves our corollary in this case. Thus, in the following, we assume 

that  both f l  and f2 are non-algebraic over 12. 

We denote by # the generic point of M in the sense of scheme theory. Let -P(x, y) E 

C(M)[x,  y] be the polynomial obtained by F(x, y) and the isomorphism e- l :  s  

Let Q be the quotient field of the ring C(M)[z ,  yl/(P(x, y)), where (F(x,  y)) is the ideal 

generated by F(x ,  y). We may take a smooth projective variety X and a surjective 

morphism p: X ~ M  such that  the rational function field C(M)(X~)  of the generic fiber 

X~ of p (in the sense of scheme theory) is isomorphic to Q. Note that  X ,  is a smooth, 

projective curve over the field C(M).  Then the rational function field C(X)  of X is 

also isomorphic to Q. Since the meromorphic functions f l  and f2 satisfy the functional 

equation F(fl,  f2 )=0  and they are not algebraic over 12, we get the holomorphic map 

g: Y - * X  such that  b and g fit into the commutative diagram in Corollary 3, and such 

that  xog=fl and Y~ Here we consider x and y as rational functions on X. By 

the assumption that,  for general zCB, the polynomial Fz(x,y) is irreducible and the 

equation Fz(x, y ) = 0  defines an algebraic curve of (topological) genus greater than one, 

we see that  the curve X ,  is geometrically connected and has genus greater than one. 

Hence the canonical bundle Kx ,  is ample. Let L be an ample line bundle on X. 

CLAIM. There is a positive constant C, which only depends on p: X-+M and L, 
such that T(r, g, L) <. CT(r, g, KX/M)+O(ffY(r)). 

Proof. There exists a positive integer m such that  m K x , - L [ x ,  is very ample on X , .  

Hence we may take an effective divisor H on X such that  [H[x ,]=mKx,-L[x ,  and 

g(Y)~suppH. Since the restriction KX/M[X" is isomorphic to Kx, ,  we see that  the 

restriction (mKx/M-L-[H])Ix"  is the trivial line bundle on X , .  Hence there exists 

a divisor G on X such that  p(suppG)r and mKx/M-L-[H]=[G].  Therefore we 

obtain 

T(r, g, L) = roT(r, g, KX/M ) -  T(r, g, [ H ] ) - T ( r ,  g, [G])+O(1).  

Since we have 

- T ( r ,  g, [H]) < O(1) 

(cf. (2.1.1)) and 

- T ( r ,  g, [a]) = o ( v ( r ) )  
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(cf. Lemma 4), we conclude our claim. (Put C=m.) [] 

Now, applying Corollary 3 for the case D = O  and using the above claim, we get 

T(r,g,L) <. Oc(Nram~y(r)+Nram~B(r)+~(r))+cT(r,g,L) ]] 

for all e>0.  Letting e < l ,  we get 

T(r, g, L) = O(Nram ~y (r) + ~(r))  I], (7.4.1) 

where we note that  Nram,s(r)<~Nr~m~y(r) for r > l  (cf. (2.4.5)). Using xog=fl and 

Y~ we obtain 

T(r, f l )=O(T(r ,g ,L))  and T(r, f2)=O(T(r ,g , i ) )  (7.4.2) 

(cf. Lemma 3). By (7.4.1) and (7.4.2), we get our corollary. [] 

8. T h e  p r o o f  o f  T h e o r e m  2 

In this section, we prove Theorem 2. Our theorem is trivial for q~<2. Hence in the 

following, we consider the case q~>3. Let ~>0 be a positive constant and let 

Y, B, ~, f, al, ..., aq (8.0.1) 

be the objects in Theorem 2, which will be fixed in the following. Consider the specified 

q-hol-quintet A=(Y, B, n, cl(f,a), cla, Y, B) defined by (8.0.1). 

Put (~=maxl~<i~< q deg a~ and 

U = {z E B: al (z),..., aq(Z) are all distinct}. 

Then U is a dense, open subset of B. For (i, j, k)c  ~rr and for z C 7r - I (U) ,  the two 4-tuples 

of points on pl ,  

(f(z),aioTc(z),ajoTc(z),akoTc(z)) and (~(i,j,k)oelu,a)(z),O , 1, cx~), 

are isomorphic (cf. (1.5.6) and (1.5.7)). Thus we have 

f(z)--aioTr(z) ajoTr(z)--akoTr(z) 
~(i,j,k)ocl(f,a)(Z) = f(z)-akoTr(z) ajoTr(z)-aiorr(z)' 

which is a rational function on Y. Hence we get 

]deg(~(i,j,k)ocl(f,a)) - d e g  ft  <~ 7/~deg 7r. (8.0.2) 
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Also, for (i,j, k, 1)EJ and for zCU, the two 4-tuples of points on p1  

(at(z),ai(z),aj(z),ak(z)) and (r 1, co), 

are isomorphic. Thus we have 

r )_  al(z)--ai(z) aj(z)--ak(z) 
az(z)--ak(z) aj(z)--ai(z)' 

which is a rational function on B. Hence we get 

deg(r ~ 85. (8.0.3) 

By the assumption that ai are distinct, we conclude that 

cl~(B) ~ supp ~q. 

First, we consider the case that )~ is non-degenerate. 

the non-degenerate specified q-hol-quintet ~. Denoting by Cl(q, e) the constant C(q, ~) 
obtained in Theorem 4, we get 

deg(cl(f,a))*Kq < ?~(cl(/,a), ~q, Y)+disc(~, B)+r , Y, Wa) 
(8.0.5) 

+ C1 (q, c)(deg 7 0 (A(cl~, B, ~q) +5(c1~, ~q, B) + 0 + (B)). 

Here we used the facts: 

(1) A(cl(La) , Y, Xq)=deg(cl(f,a))*Kq; 
(2) OY=~ because Y is compact, and hence/(cl(f,~), OY, wq)=0. 
By the Riemann-Roch theorem and the Hurwitz theorem, we have 

o(B)=2g(B)-2 and disc(TGB)=(2g(Y)-2)-(degu)(2g(B)-2), (8.0.6) 

SO 

Q+(B) <2g(B) and disc(7~,B) ~<2g(Y)+2degT~. 

Hence by (8.0.5), we get 

deg(cl(f,a))*Kq ~< ~(cl(f,a), ~q, Y )§ 2g(Y)+eA(cl(f,a), Y, wq) 

+C2(q, e)(deg 7~)(A(cl~, B, ,q)+~(cla, G ,  B)+g(B)+I), 

where we put C2(q, c)=2 max{C1 (q, e), 2}. 

(8.0.4) 

We apply Theorem 4 for 

(8.0.7) 
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CLAIM. There exist positive constants Q1,---,Q5 which 
choices of ~>0 and of the objects in (8.0.1), such that 

A(cl,, B, ~q) ~ Q16, 

5(c1~, ~q, B) ~< Q25, 

A(cl(/,~), Y, Wq) <~ Qa(deg f + a d e g  ~), 
q 

~(cl(/,a), ~q, Y) < ~ ~t(aio 7c, f, Y )+Qa5 deg rT, 
i = 1  

* 77 (q-  2) deg f ~< deg(cl(i,~)) Kq +Q55 deg . 

are independent of the 

(8.o.8) 
(8.0.9) 

(8.O.lO) 

(8.o.11) 

(8.o.12) 

Proof of (8.0.8). For iEJ ,  let pri: (p~)J  +p1 be the projection to the ith factor. 

Put 

--~: Z pr;~gf', 
i E J  

which is an ample line bundle on (p1)J.  By Lemma 12, the line bundle ~ * ~  is an ample 

line bundle on ~0,v. Hence there exists a curvature form ~o' of r that is a positive 
(1, 1)-form. Therefore there exists a positive constant Q~ such that 7/q<O~co'. Using 

(8.0.3), we have 

A(cla, B, r/q) ~< Q~ A(cl~, B, w') = Q~ deg(r cl~)*A# 

= Q~ ~ deg(r ~< 8Qi(card J ) 5 .  
i E J  

Put Ql=8Q~card J to conclude the proof of (8.0.8). [] 

Proof of (8.0.9). There exists a positive integer Q~ such that Q~(I)*A#-[~a] is an 

ample line bundle on ~0,q. Hence using (8.0.3), we get 

/ o * - - . ~  P ~(cla, ~q, B) ~ deg(cla)*~q ~< Q2 deg((I) cla) ~ -~ 8Q:(card J ) 5 .  

Put Q2=8Q~card J to conclude the proof of (8.0.9). [] 

Proof of (8.0.10). Using the isomorphism cq+l:~o,q+l--+q/O,q (cf. (1.5.12)) and 
Lemma 12 for ~0,q+l, we see that the line bundle 

P =  ~ ~;~gr ~ (r176 *S  
c~E ~C q iE~C q 
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is an ample line bundle on ~]/0,q. Let w" be a curvature form of P that is a positive 
t 0 f l  - -  ~ t  ? !  (1, 1)-form. Then there exists a positive constant Q3 such that q ~ 4 3  w . Using (8.0.2) 

and (8.0.3), we get 

' 1 w")  A(cl(/,~), Y, Wq) <. Q3A(c (/,a), Y, 
/ * p  = Qadeg(cl(f,~)) 

Z do (  ocloo /) 
"aEJq iE~q 

<~ (Q~ card J q + 7Q~ card J q + 8Q~ card J q )  (deg f + 5 deg ~). 

Put  Qa = Q~ card f f  q + 7Q~ card f f  q + 8Q~ card J q  to conclude the proof of (8.0.10). [] 

Proof of (8.0.11) (cf. the proof of (2.3.5)). Put  

V = { z e B :  al(z),  ...,aq(Z) are all distinct}. 

Then by the definition of the classification map, we have cla(U)cJf~O,q. For zEU and 

y e ~ - l ( z ) ,  we have cl(f,~)(y)e~q if and only if f(y)=ai(z) for some ie(q) (eft (1.5.6) 

and (1.5.7)). Hence we have 

{y e Y: cl(f,a)(y) e ~q} C {y �9 Y: f(y) = aiozr(y) for some i �9 (q)} U 7r -1 (B\U). 

This implies that  

q q q 

~(cl(s,o), ~ ,  Y) < ~ ~(a,o., f, y) + (deg. )~  Z ~(a~, ~, B). 
i = 1  i = 1  j = l  

j ~  

Since we have 

~(ai, aj,  B) ~ 25, 

we get (8.0.11). (Put Qa=2q(q-1).) [] 

Proof of (8.0.12) (cf. the proof of (2.3.6)). By Lemma 5, we have 

( q -  2) deg(~(1,2,3) o Cl(La)) = deg (cl(/,a))*Kq + (deg ~) deg(cla)*E + deg(cl(L~))* (2), 

(8.0.13) 
where E and ~ are obtained in the lemma. By Wq(suppE)Csupp~q,  there exists a 

positive integer Q~ such that the divisor Q~hWq~q-E is effective. Hence by (8.0.4) and 

by the proof of (8.0.9), we have 

Q2Q55deg . (8.0.14) deg(cl(f,~))* (E) < Q~(deg 7r)deg(cl~)*(~q) ~< ' 7r 
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- -  ] !  

�9 *~  is ample, there exists a positive integer Q5 such that  the line Since bundle 

Q5 : s  is ample. Using (8.0.3), we get 

deg(cla)*E < Q~'deg(Oo Cla)*ff< 8Q~(card ~r 

Using (8.0.2), (8.0.13)-(8.0.15), and putting 

5 t Pt = Q2Q5 +8Q5 card J + 7 ( q - 2 ) ,  

we get our inequality (8.0.12) and conclude the proof of the claim. [] 

Now using (8.0.7) and the above claim, we get 

q 

(q-2)  deg f ~ E fi(aio 7r, f ,  Y)+2g(Y)+~Q3deg  f 
i = l  

+(cQ3+Q4+Q5)Sdeg :~ +C2(q,~)(deg Tr)( (Ql +Q2)5+g(B)+ l ). 

Put 

(8.0.15) 

C3(q, e) = max{eQ3 +Q4 +Q5 +C2(q, e)(QI+Q2),  C2(q, e)}. 

Replacing e by e/Q3 and putting C(q, e)=C3(q, e/Q3), we obtain our theorem in the case 

that  A is non-degenerate. 

Next we consider the case that  A is degenerate, i.e., there exists some (~C~r such 

that  ~ocl( / ,a)  is constant. Then by (8.0.2), we conclude that  

deg f <~ 75 deg 7r. 

Hence replacing C(q,e) by max{C(q,~),7(q-2)}, we also get the theorem in the case 

that  A is degenerate. Here we note that  all terms on the right-hand side of (1.1.4) are 

non-negative. This concludes the proof of Theorem 2. 

9. T h e  he ight  i n e q u a l i t y  for c u r v e s  over  f u n c t i o n  fields 

9.1. N o t a t i o n  

General references for this section are [L], [Vl] and [V3]. See also [No2] for related results 

in higher-dimensional cases. Let k be a function field, i.e., the rational function field of a 

compact Riemann surface B. This B is uniquely determined by k (up to isomorphism), 

and called the model of k. We consider B as a smooth projective curve over C. Let 

S c B  be a finite set of points, which will be fixed throughout. 
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Let X be a smooth projective curve over k, and let DcX be an effective divisor. 

Let L be a line bundle on X. Following P. Vojta IV3], we define the functions 

hL,k(P), N~I)(D,P) and dk(P) 

for PEX(k) as follows. 

First, take a model of X over B, i.e., a smooth variety X projective over B such 

that  the generic fiber (in the sense of scheme theory) is isomorphic to X over k. To each 

P c X ( k ) = ~ ( k ) ,  we can associate the commutative diagram of holomorphic maps 

y f P  

B B 

by taking the normalization of the Zariski closure of P in X. Here Y is the model of k(P). 
Let ~ C X  be an extension of DcX, and let t2 be an extension of L to X. Put  

h~,k (P) = d@g~ deg f~,12 

and 

NkO)(, n p ) _  1 E min{1,ord~f~,~},  PEX(~:)\D. 
,S~"'  deg 7rxey\~_i(s) 

If we replace the models ~, ~ and 12 by other models X', ~ '  and 12', we have 

h~k(P), --h.c,,k(P)+O(1) and N~,s(~,p =N~I)(~',p)+o(1), 

where O(1) are bounded terms independent of PEX(k). Then we define the functions 

hL,k(P) and ~xr(1) [r) p )  by 

h L , k ( P )  = h ~ , k ( P ) + O ( 1 )  

and 

N(1)rD P)  ~r(1)/~ P ) + O ( 1 ) ,  PcX(k)\D, k , S \  ' -'~ ~ " k , S V  "~: 

which are functions modulo bounded terms O(1). Finally, put 

1 dk(P) = -;----- disc(Tr, B). 
uegTr 

Then we have 
dk(P)- 2g(Y) ~-O(1) 

deg ~r 
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(cf. (8.0.6)). The following facts are easy consequences of the above definitions: 

(i) N(1)(D, P)<h[D],k(P)+O(1), where [D] is the associated line bundle. 

(ii) fi(fp, ~, Y)<~ (deg ~r)(N(~)(~, P ) + c a r d  S). 

(iii) Let P~ be the projective line over k. In the following, we always take P l x  B as 

a model of P~ over B. Then a point PeP~(k)\(cx~) corresponds to the rational function 

iF on Y obtained by the composition 

]p:y  ~ p I x  B 1st p r o j ) p 1 .  

Let ~ k  be the hyperplane section bundle on P~. Then we have 

h_~k k ( P ) -  deg]p  ~-0(1). 
' deg 7r 

(iv) Let k'cfc be a finite extension of k. Put  e=[k':k] and X'=X| Let B'  be 

the model of k I. Let b: B'---+B and/~: X'-+X be the natural maps. Put  D'=b*D, L'=b*L 
and S'=-b-I(S). Then using the natural identification X ' (k )=X(k) ,  we have 

(1) hL,,k,(P) =ehL,k(P)+O(1), ~r(1) (D',P) <. eN~,s(D,P)+O(1) 
"~ "k', S' 

and 

dk, (P) <~ edk (P). 

By these properties and Theorem 2, we obtain the following result. 

LEMMA 15. Let DcP~ be a reduced divisor and let ~>0. Then we have 

hKp~(D),k(P) ~ N(!)(D, P)+dk(P)+~h-~k,k(P)+O~(1) 

for all P C P ~ ( k ) \ D .  Here O~(1) denotes a bounded term which depends on E, but does 
not depend on PEPS(k) .  

Proof. We first prove the lemma for the special case that  the divisor D has the form 

PiEPk(k) ,  i -1 , . . . , q .  By a coordinate change D=(P1)+...+(Pq) by k-rational points 1 

of P~, if necessary, we may assume that  Pi~oc for all i=1,  ...,q. By the property (iii) 

above, each Pi corresponds to the rational function ]p~ on B because k(Pi)=k. Here B 

is the model of k. By the assumption that  D is reduced, the points Pi are distinct. Hence 

the rational functions ]p~ are distinct. Let P E P ~ ( k ) \ D ,  let Y be the model of k(P) and 

let ~r: Y--+B be the natural map. Since hKpl(D),k(Co)=O(1), it suffices to consider the 

case P r  Then P corresponds to the rational function fp  on Y. Because P~supp  D, 

we have ]p~fp~o~r for i - 1 ,  ..., q. Apply Theorem 2 to get 

q 

(q-2-e)deg]p~Efi(]poTr,]p,Y)+2g(Y)+O~(1)degTr (9.1.1) 
i ~ l  
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for all e>0.  Here we note that  the functions ]p~ and the Riemann surface B are fixed. 

Let ~ c P l x B  be the Zariski closure of D c P ~  and let fp: Y--+plx  B be the associated 

holomorphic map for P.  Then we have 

q 

ft(fp~o~r, fp,  Y)  <~ ~(fp, ~ ,  Y ) + 0 ( 1 ) d e g  % 
/ = 1  

because ~ is the union of the graphs of fp~. By the property (ii) above, we get 

q 

E ft(fp~orr, fp,  Y)  <~ (deg 7r)(N~I)(D, P)+O(1)). (9.1.2) 
i = 1  

By (9.1.1), (9.1.2) and Kp~(D)=(q-2)~k ,  we get 

hI%~(D),k(P) <. N~i)(D, P)+dk(P)+eh.~k,k(P)+O~(1) for all ~ > 0. 

This proves the lemma for our special case. 

Next we prove the general case. For a finite extension k' of k, we shall use the 

notation D'  and S' in (iv) above. 

Let k'c/~ be a finite extension of k such that  the divisor D ' c P ~ ,  has the form D ' =  

(P1)+...+(Pq) by k'-rational points P i E p I , ( k ' ) ,  i = l , . . . , q .  Then we have the natural 

identification P I ( k ) \ D = p I , ( k ) \ D ' .  For P e P ~ ( k ) \ D ,  we apply the special case above 

to obtain 
- . (i) ,~, hKp~,(D' ), k' (P) <- JV~,,S, [u , P) +dk, (P) +eh.~k,,k, (P) +0~ (1). 

Using the property (iv) above, we conclude the proof. [] 

9.2. T h e  he igh t  i n e q u a l i t y  

The following theorem proves Conjecture 2.3 in IV3] for the case of curves over function 

fields. 

THEOREM 5. Let k be a function field. Let X be a smooth projective curve over k, 
let D be a reduced divisor on X ,  let L be an ample line bundle on X and let ~>0. Then 
we have 

.~ NT (1) [F) P)+dk(P)+ehL,k(P)+Oe(1) hKx(D),k(P) "-~ " ' k , S ~ ,  

for all P E X ( k ) \ D .  

Proof. Let a:X-+P~ be a finite surjective map over k. Pu t  E=(ramc~)redCX. 
Let H c P  1 be the reduced divisor supported by a(supp DUsupp  E) .  Then there exists 
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an effective divisor G c X  such that  (a*(H))red=D+G, since D is reduced. By the 

ramification formula, we have 

Kx (D+G) = cd (KI, L (H) ). 

Then by Lemma 15 and the property (i) of the previous subsection, we have 

hKx (D+a),k ( P) = hKp[ (H),k (a( P) ) 
~(] ) I T-~ < ' "  k , s , " ,  a( P) ) +dk (a( P) ) +~h ~ k,k (a( P) ) +0~ (1) 

<~ N(k~)(D+G, P)+dk(P)+sh,~,.~k,k(P)+Or 

~(1) t n  ~'" k,S,~, P) +h[a],k (P) +dk (P) +eChL,k (P) +0~ (1) 

for all PEX(k)\(D+G).  Here C is a positive integer such that  the line bundle CL-a*~k 
is ample; hence C is independent of P and E. For the points P E s u p p G ,  the values 

ht,:x(D) (P) are bounded because supp G consists of finite points. Hence, replacing 

by e/C, we get 

ht,:x(D),k(P) <~ N(1)(D, P)+dk(P)+ehi,k(P)+Oe(1) 

for all PcX(k) \D.  This proves our theorem. [] 
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