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In troduct ion  

Assume that  U is an open subset of C and f :  U-+C is a holomorphic map which satisfies 

f ( 0 )=0  and f ' ( 0 ) = e  2i~,  a E R / Z .  We say that  f is linearizable at 0 if it is topologically 

conjugate to the rotation R~: z~-~e2i~C~z in a neighborhood of 0. If f :  U-+C is lineariz- 

able, there is a largest f-invariant domain AcU containing 0 on which f is conjugate 

to the rotation R~. This domain is simply-connected and is called the Siegel disk of f .  

A basic but remarkable fact is that  the conjugacy can be taken holomorphic. 

In this article, we are mainly concerned with the dynamics of the quadratic polyno- 

mials P~: Z~--~e2i~rC~z~-z2, with c~ER\Q. They have z=0  as an indifferent fixed point. 

For every a E R \ Q ,  there exists a unique formal power series 

such that  

r = z+b2z2+baza+... 

r = p~or 

We denote by r~ ~>0 the radius of convergence of the series r It is known (see [Y1], for 

example) that  r~>0  for Lebesgue almost every c~ER. More precisely, r~>0  if and only 

if c~ satisfies the Bruno condition (see Definition 2 below). 

From now on, we assume that  r~>0.  In that  case, the map r r~)--+C is 

univalent, and it is well known that  its image As coincides with the Siegel disk of P~ 

associated to the point 0. The number r~ is called the conformal radius of the Siegel 

disk. The Siegel disk is also the connected component of C \ J ( P ~ )  which contains 0, 

where J(P~) is the Julia set of P~, i.e., the closure of the set of repelling periodic points. 

Figure 1 shows the Julia sets of the quadratic polynomials P~, for c~ = v ~  and c~--v/~. 

Both polynomials have a Siegel disk colored grey. 

In this article, we investigate the structure of the boundary of the Siegel disk. It is 

known since Fatou that  this boundary is contained in the closure of the forward orbit 



A. AVILA, X. BUFF AND A. CHI~RITAT 

Fig. 1. Left: t h e  Ju l ia  set  of  t he  po lynomia l  z~-~.e2i'V'~z+z 2. Right :  the  Ju l i a  set  of the  

po lynomia l  z~-~e2in'fV6z+z 2. In bo th  cases,  t he re  is a Siegel disk. 

1 2~.~ (for example, see [Mi, Theorem 11.17] or [Mi, Corol- of the critical point w ~ = - h e  

lary 14.4]). By plotting a large number of points in the forward orbit of w~, we should 

therefore get a good idea of what those boundaries look like. In practice, that  works only 

when c~ is sufficiently well-behaved, the number of iterations needed being otherwise 

enormous. 

In 1983, Herman [Hell proved that  when a satisfies the Herman condition, the crit- 

ical point actually belongs to the boundary of the Siegel disk. (Recall that  Herman's 

condition is the optimal arithmetical condition to ensure that  every analytic circle dif- 

feomorphism with rotation number a is analytically linearizable near the circle. We will 

not give a precise description here. See [Y2] for more details.) Using a construction 

due to Ghys, Herman [He2] also proved the existence of quadratic polynomials P~ for 

which the boundary of the Siegel disk is a quasicircle which does not contain the criti- 

cal point. Later, following an idea of Douady [D] and using work of Swi~tek [Sw] (see 

also [Pt]), he proved that  when a is Diophantine of exponent 2, the boundary of the 

Siegel disk is a quasicircle containing the critical point. In [Mc], McMullen showed that  

the corresponding Julia sets have Hausdorff dimension less than 2, and that  when a is 

a quadratic irrational, the boundary of the Siegel disk is self-similar about the critical 

point. More recently, Petersen and Zakeri [PZ] proved that  for Lebesgue almost every 

aER/Z, the boundary is a Jordan curve containing the critical point. Moreover, when 

a is not Diophantine of exponent 2, this Jordan curve is not a quasicircle (see [PZ]). 

In [Pr], Pdrez-Marco proves that  there exist univalent maps in D having Siegel disks 

compactly contained in D whose boundaries are C~ Jordan curves. This result 

is very surprising, and very few people suspected that  such a result could be true. The 
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boundary cannot be an analytic Jordan curve since in that  case the linearizing map would 

extend across it by Schwarz reflection. P6rez-Marco even produces examples where an 

uncountable number of intrinsic rotations extend univalently to a neighborhood of the 

closure of the Siegel disk. P6rez-Marco's results have several nice corollaries (see [Pr]). 

For example, it follows that  there exist analytic circle diffeomorphisms which are C a -  

linearizable but not analytically linearizable. This answers a question asked by Katok 

in 1970. 

In a 1993 seminar at Orsay, P~rez-Marco announced the existence of quadratic 

polynomials having Siegel disks with smooth boundaries. According to P6rez-Marco, 

his proof is rather technical. In 2001, the second and third authors [BC1] found a 

different approach to the existence of such quadratic polynomials. In [A], the first author 

considerably simplified the proof. 

Definition 1. We say that  the boundary of a Siegel disk As is accumulated by cycles 

if every neighborhood of 2x~ contains a (whole) periodic orbit of P~. 

MAIN THEOREM. Assume that a E R  is a Bruno number and rE(O,r~) and e > 0  

are real numbers. Let u : R / Z - + C  be the function t~-+o~(re2i~t). Then, there exists a 

Bruno number a' with the properties 

(1) l a ' - a l < <  
(2) 
(3) the linearizing map r  r)--+A~, extends continuously to a function r 

B(0, r)---} Ao~, ;( 1 ) 

(4) the function v: R / Z + C  defined by is a C -embeddinv (thus 

the boundary of the Siegel disk is a smooth Jordan curve); 

(5) the functions u and v are e-close in the Frdchet space C a ( R / Z ,  C). 

Additional information. We may choose a '  so that  the boundary of the Siegel disk 

As, is accumulated by cycles.(2) 

Remark. When the polynomial P~ is not linearizable, i.e., r~ =0, it is known that  0 

is accumulated by cycles (see [Y1]). It may be the case that  the boundary of the Siegel 

disk of a quadratic polynomial is always accumulated by cycles. 

COROLLARY 1. There exist quadratic polynomials with Siegel disks whose boundaries 

do not contain the critical point. 

First proof. Let a be any Bruno number, and choose rE (0, r~) sufficiently small so 

that  r r ) ) c B ( 0 ,  ~ ) .  Then, for e small enough, the boundary of the Siegel disk 

(1) It automatically maps the boundary of B(0, r) to the boundary of As,. 
(2) In that case, the critical point of Pa, is not accessible through the basin of infinity (see, for 

example, [K] or [Z]). 
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As, given by the main theorem is contained in B(0, ~). Therefore, the critical point 
__ 1 2iTra '  w ~ , - - - ~ e  cannot belong to the boundary of the Siegel disk As,.  [] 

Second proof. The main theorem gives quadratic polynomials with Siegel disks whose 

boundaries are smooth Jordan curves. But an invariant Jordan curve cannot be smooth 

at both the critical point and the critical value. [] 

Note that  our proofs of the existence of quadratic Siegel disks whose boundaries do 

not contain critical points are completely different from Herman's proof. 

COROLLARY 2. The set S c R  of real numbers ~ for which P~ has a Siegel disk with 

smooth boundary is dense in R and has uncountable intersection with any open subset 

of R .  

Remark. By [Hell or [PZ], the set S has Lebesgue measure zero. 

Proof. Given any Bruno number a and any 77>0, the conformal radius r~, (for the 

a '  provided by the main theorem) can take any value in the interval (0, r~), and so the 

intersection of S with the interval ( a - y ,  a + y )  is uncountable. The proof is completed 

since the set of Bruno numbers is dense in R. [] 

It follows from a theorem of Mafi~ that  the boundary of a Siegel disk of any rational 

map is contained in the accumulation set of some recurrent critical point (see, for ex- 

ample, [ST]). Thus, for a quadratic polynomial, a critical point with orbit falling on the 

boundary of a fixed Siegel disk must itself belong to this boundary. As a consequence, if 

P~ has a Siegel disk As with smooth boundary, the orbit of the critical point a v o i d s / ~ ,  

and thus all the preimages of the Siegel disk also have smooth boundaries. 

The main tool in the proof of the main theorem is a perturbation lemma. 

M A I N  LEMMA. Given any Bruno number a and any radius rl such that 0 < r l < r ~ ,  

there exists a sequence of Bruno numbers c~[n]-+c~ such that rain]--+rl. 

(Here and below, when not explicitly mentioned, we assume implicitly that  limits 

are taken as n-+c~.) 

We shall also need the following standard fact: if 0n--+0 and ron>~r, then ro>~r 

(thus the conformal radius is upper semicontinuous) and r162 uniformly on compact 

subsets of B(0, r). Indeed, the linearizing maps r are univalent with r 

and r  and thus form a normal family. Passing to the limit in the equation 

= Boo 

we see that  any subsequence limit of (r linearizes Po and thus coincides with r 

on B(0, r) by uniqueness of the linearizing map. 
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Proof of the main theorem assuming the main lemma. We define sequences c~(n) 

and en inductively as follows. Let rn be a decreasing sequence converging to r with 

ro--r~. Take a(0)=c~ and eo = Me. Assuming that  c~(n) and e,~ are defined, let then 

e ,~+ l<~en  be such that  re<r~(~)+en whenever {0-c~(n){<e,~+l (this is possible by 

upper semicontinuity). With the help of the main lemma, choose c~(n+l) such that  

{a (n+ l ) - c~ (n ){<~e~+l  and rn+l<r~(n+l)<r~, and such that  the real-analytic func- 

tions un+l:t~-+r 2i~t) and u~:t~-~r 2i~t) are e~+l-close in the Fr~chet 

space C ~ ( R / Z ,  C). 

Let a~=limn_~c~(n).  By the construction, l a~-a (n ) l<e~+l  for n~>0. By the 

definition of en+l, this implies ra,<ra(n)+en. Since en-+0 and r~(n)-+r, we have r~, ~r .  

On the other hand, by upper semicontinuity, we have ra, ~>limn-,~ ra(n), so ra,=r. The 

functions Un converge to a C~-function v: R / Z - + C ,  which is e-close to u=uo in the 

Fr~chet space C ~ ( R / Z ,  C). In particular (by taking e smaller), this implies that  v 

is an embedding. Since r162 it follows that  r has a continuous 

(actually C ~ )  extension to the boundary of B(0, r) given by r This 

completes the proof of the main theorem. [] 

The purpose of Figure 2 is to illustrate this construction. We have drawn the 

l(vf5 +1),  a(1) which is close to ~, and boundary of three quadratic Siegel disks, for ~ =  

c~(2) which is much closer to a(1). For c~(1), there is a cycle of period 8 that  forces the 

boundary of the Siegel disk to oscillate slightly. For ~(2), there is an additional cycle 

(of period 205) that  forces the boundary to oscillate much more. We have not been able 

to produce a picture for a possible choice of c~(3). The number of iterates of the critical 

point required to get a relevant picture was much too large. 

In this article, we present two independent proofs of the main lemma. The second 

and third authors found a proof that  goes as follows. We first give a lower bound for the 

size of the Siegel disk of a map which is close to a rotation as done in [C, Part 2] (see w 

We then use the techniques of parabolic explosions in the quadratic family introduced 

in [C, Part 1] in order to control the conformal radius from above (see w A proof of 

the main lemma follows (see w This approach has the advantage of showing that  one 

can find smooth Siegel disks accumulated by cycles (see w 

The first author simplified this proof (see w replacing the technique of parabolic ex- 

plosion by Yoccoz's theorem on the optimality of the Bruno condition for the linearization 

problem in the quadratic family [Y1]. A further simplification replaces the estimates of 

w by a result of Risler [R]. This argument can be read immediately after the arithmetic 

preparation in w167 1 and 2. This approach automatically applies to other families where 

the optimality of the Bruno condition is known to hold, as the examples of Geyer [Ge]. 

We would like to end this introduction with an observation. In the same way as one 
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0A~(1) 

Fig. 2. T h e  first s t eps  in t he  cons t ruc t ion  of  a Siegel disk wi th  s m o o t h  boundary .  In  t he  th i rd  

f rame,  we p lo t ted  t he  cycle of  per iod 8 t h a t  creates  t he  f i rs t-order  oscillation. T h e  cycle of  

period 205 t h a t  crea tes  the  s t ronger  oscil lat ion is too  close to c9Ac~(2 ) to be  clearly represented  

here. 

uses lacunary Fourier series to produce C~ which are nowhere analytic, our 

Siegel disks can be produced with rotat ion numbers whose continued fractions have large 

coefficients (in a certain sense) which are more and more spaced out. The two phenomena 

are not completely unlinked. Indeed, if r D--+A is the normalized linearizing map, then 

the coefficients bk of the power series of r are the Fourier coefficients of the angular 

parametr izat ion of the boundary of A. These coefficients also depend on the ari thmetic 

nature of a.  Indeed, they are defined by the recursive formula 

bl =r~ and bn+l = e2i~(e2i~n~_l ) bjbn+l-j. 
j = l  
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If the ( k + l ) s t  entry in the continued fraction of a is large, e2i~qka-1 is close to 0 and 

bl+qk is large (Pk/qk is the k th  convergent of a, see the definition below). 

Acknowledgment .  We wish to express our gratitude to A. Douady, C. Henriksen, 

R. P6rez-Marco, L. Tan, J. Rivera and J.-C. Yoccoz, for helpful discussions and sugges- 

tions, and the referee for many detailed comments. 

1. A r i t h m e t i c a l  p r e l i m i n a r i e s  

This section gives a short account of a very classical theory. See for instance [HW] or [Mi]. 

If (ak)k>>.o are integers, we use the notation [ao, a t ,  ..., ak, ...] for the continued frae- 

[a0, al ,  ..., ak, ...] = ao + 

tion, 
1 

1 

ak q- "'. 

We call ak the kth entry of the continued fraction. The 0th entry may be any integer 

in Z, but we require the others to be positive. Then the sequence of finite fractions 

converges, and the notation refers to its limit. We define two sequences (Pk)k>~-I and 

(qk)k~>-l recursively by 

P-1 = 1, PO =ao,  Pk = a k P k - ~ + P k - 2 ,  

q-1 = O, qo = 1, qk = akqk-1 +qk-2. 

The numbers Pk and qk satisfy 

qkPk-1 --Pkqk-1 = (--1) k. 

In particular, Pk and qk are coprime. Moreover, if al ,a2 ,  ... are positive integers, then 

for all k~>0, we have 

p k  _- [a0,  a l ,  . . . ,  qk 

The number Pk/qk is called the kth convergent of a. 

For any irrational number a E R \ Q ,  we denote by [aJEZ the integer part  of a, 

i.e., the largest integer <~a, by { a } = a -  [aJ the fractional part of a, and we define two 

sequences (ak)k~>0 and (ak)k~>0 recursively by setting 

a o = [ a J ,  a 0 = { a } ,  ak+l = and ak+l = 
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so that  
1 

-= ak+l -[- C~k+l. 
C~k 

We then set ~ _ a = l  and ~k=cro~l  ... c~k. 

It  is well known that  

O~ ----- [ao, a l ,  ..., ak, ...]. 

More precisely, we have the following formulas. 

PROPOSITION 1. Let c~ be an irrational number  and define the sequences (ak)k)O, 

(C~k)k>~O, ( /3k )k ) - l ,  ( P k ) k ) - I  and (qk)k>~-i as above, so that 

Pk -= [a0, al ,  ..., ak]. 
qk 

Then, for  k>~O, we have the formulas  

Pk -t-pk- 101k = (-- 1) k ~k, 
Ol = , qkcr--Pk 

q k + q k - l ~ k  
1 1 

qk+lflk +qk~k+l = 1 and - -  < flk < - - .  
qk+lTqk  qk+l 

The last inequalities imply, for k~>0, 

1 Pk [ 1 
~ <  ot I < - - "  2qkqk+l - -~k qkqk+l 

Moreover, for all k~>0, 

c~k = [0, ak+l,  ak+2, ...]. 

2. T h e  Y o c c o z  f u n c t i o n  

Definition 2. (The Yoccoz function and Bruno numbers.)  If  a is an irrational number,  

we set 

q~(c~) = ~k-1 log - - ,  
Ctk k=O 

where ak and ~k are defined as in w If a is a rational number,  we set ~(cr)=c~.  We 

say tha t  a E R  is a Bruno number  if ~ ( a ) < c r  

Remark.  Observe that  for any ko)O,  and all irrational a ,  we have 

ko-1 

~ ( a )  = Z / 3 k - 1  log ~ +r (1) 
0% 

k-.=O 
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In [Y1], Yoccoz uses a modified version of continued fractions, but we will not need 

that  modification. The function �9 that  we will use is not exactly the same as the one 

introduced by Yoccoz, but the difference between the two functions is bounded (see 

[Y1, p. 14]). 

For the next proposition, we will have to approximate a by sequences of irrational 

numbers. In order to avoid the confusion between such a sequence and the sequence 

(ak)k~>0 introduced previously, we will denote the new sequence by (a[n])n/>O. One 

corollary of the following proposition is that  the closure of the graph of �9 contains all 

the points (a, t) with t>~O(a). 

Definition 3. Given any Bruno number a=[ao, al,...], any real number A~>I and 

any integer n~>0, we set 

T(a ,A,n)=[ao,a l , . . . ,an ,  An, l,1,...], 

where An = LAqnJ is the integer part  of A qn. 

PROPOSITION 2. Let a E R  be a Bruno number and A ) I  be a real number. For 

each integer n)O, set a[n]=T(a, A,n).  Then, a[n]--+a and 

O(a[n])--+O(a)+logA as n - - ~ o o .  

Proof. That  a[n]--+a is clear, since convergence of the entries in the continued frac- 

tion ensures convergence of the numbers themselves. For each integer n~>0, let us denote 

by (ak[n])k~>0 and (/3k[n])k)-i the sequences associated to a[n]. For each fixed k, we 

have 

lim ak[n] = ak and lim ilk[n] = ~k. 
n - + ~  n - - + ~  

In particular, 
1 1 

lim /3k- 1 [n] log - -  = ilk- 1 log - - .  

Observe that  for k ~< n, the convergents of a In] and a are the same, namely Pk/qk. Hence, 

if 0 < k ~ < n - 1 ,  we have by Proposition 1, 

1 1 1 
flk-l[n] < - -  and - -  ~< < 2qk+l. 

It  follows that  when 0 < k ~ < n - 1 ,  we have 

1 log 2 -~ log qk+l 
/3k-1 In] log a - ~  < qk qk 
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The right terms form a convergent series since a is a Bruno number. Thus, as a function 

of k, the pointwise convergence with respect to n of the summand r In] log(I/akin]) 
is dominated. Therefore we have 

n - - 1  1 oo 
Z 13k_l[n] log ~ --+ Z / 3 k _ 1  log ---1 -- (I)(a) as n--+ oo. (2) 
k=O k=O ~ k  

We will now estimate the term ~ - l [ n ]  log(I/an[n])  in the Yoccoz function. First, 

observe that  
1 - A ~ + ~ ,  

where 0 = [1, 1, 1,... ] = �89 (x/5 + 1) is the golden mean. If A = 1, then An = 1 and we trivially 

get 
1 

r [n] log - - ~  --+ 0 as n - +  cr 

Let us now assume that  A > I .  As n--+oc, we have logAn"~qnlogA and thus, 

1 
fiN- 1 [n] log an[n] "~ fin- 1 [n]qn log A as n --+ oc. 

We know tha t /3n- l [n ]qne( �89  1), and we would like to prove that  in our case, this se- 

quence tends to 1. Observe that  

/3n-l[n]qn = 1-13n[n]qn-1 = 1-o~n[n] qn-1 13n-l[n]qn, 
qn 

SO 
= q'~ 

Dn-l[nlqn qn+an[n]qn-l' 

which clearly tends to 1 as n--+ ~ .  As a consequence, 

1 
13=-x [n] log a - - ~  -+ log A as n --+ oc. (3) 

Finally, we have an+l[n]=l/O and thus by (1), 

y~ /3k_a[nllog l--~-=-Zn[n]aP -+0 asn--+cr (4) 

Combining the limits (2), (3) and (4) gives the required result. [] 

Remark. The above proof shows that  instead of using a sequence of the form a[n] = 

T ( a ,  A, n), we could have taken any sequence a[n]=[a0, ..., an, A,~, On], where An are 

positive integers such that  

A, a/q" --+ A 

and 0n > 1 are Bruno numbers such that  

r =o(a.A.). 
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3. Semicontinuity with  loss for Siegel disks 

3.1. Normal ized s tatements  

We will bound from below the size of Siegel disks of perturbations of rotations on the unit 

disk. We will use a theorem due to Yoccoz [Y1] and generalize a theorem independently 

due to Risler JR] and Ch~ritat [C]. 

Definition 4. For any irrational ~E (0, 1), let (9~ be the set of holomorphic functions 

f defined in an open subset of D containing 0, which satisfy f(O)--O and f ' (O)--e  2~".  

We define S~ as the set of functions f C (9~ which are defined and univalent on D. 

Given fE(9~,  consider the set K f  of points in D whose infinite forward orbit under 

iteration of f is defined. The map f is linearizable at 0 if and only if 0 belongs to 

the interior of Kf .  In that  case, the connected component of the interior of K f  which 

contains 0 is the Siegel disk AI for f (as defined at the beginning of the introduction). 

We denote by inrad(Af)  the radius of the largest disk centered at 0 and contained in A: .  

THEOREM 1. (Yoccoz) There exists a universal constant Co such that for any Bruno 

number c~ and any function f c S ~ ,  

inrad(Af)/> exp(-(I)(a) - Co). 

Remark. The function (I) defined by Yoccoz in [Y1] is not exactly the same as the 

one we defined in this article, but  the difference between the two functions is bounded 

by a universal constant, so that  Theorem 1 holds as stated here. 

In the following, when we say that  a sequence of functions fn converges uniformly 

on compact subsets of D to a function f ,  we do not require the fn to be defined on D. 

We only ask that  any compact set K c D  be contained in the domain of fn for n large 

enough. In this case, we write f ~ f  on D. 

THEOREM 2. (Risler-Ch~ritat) Assume that (~ is a Bruno number, fnE(ga and 

f ~ R ~  on D as n-+oc. Then, 

lira inrad(A:~) = 1. 
n--> oo 

Our goal is to generalize this result as follows. 

THEOREM 3. Assume that (c~[n])n~>0 is a sequence of Bruno numbers converging to 

a Bruno number (~ such that 

l imsup (I)(c~[n]) ~< (I)(c~) + C  
n - + a ~  

for  some constant C>~O. Assume that fnCO~[n] with f , ~ R =  on D as n-+c~. Then, 

lira inf inrad(A:n ) ~> e -C. 

The proof will be given in w 
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COROLLARY 3. Under the same assumption on a and (a[n])n~>0 as in Theorem 3, 

we have 

l iminf r~ ~1/> r(*e-C" 
n--~ oo 

Proof. Since a[n]--+c~, we have P~in]--+P~ uniformly on compact subsets of C. Let 

us consider the maps 

In(z) = ~ ,=loP.[nj or 

Then, fnEO~[~] and f n ~ R ~  on D. We can now apply Theorem 3. [] 

COROLLARY 4. Assume that a is a Bruno number and a[n] is a sequence of Bruno 

numbers such that O(a[n])--+O(a) as n--+oc. Then, r~[~]--~r~ as n--+oc. 

Proof. By Corollary 3 with C=0 ,  we know that  if O(a[n])--+O(a), then 

lim inf r~[n]/> r~. 
n--~ (:~ 

As mentioned in the introduction after the statement of the main lemma, the conformal 

radius depends upper semicontinuously on a, and so, r~[n]-+r~. [] 

3.2. The  D o u a d y - G h y s  renormal izat ion 

In this section, we describe a renormalization construction introduced by Douady [D] 

and Ghys. This construction is at the heart of Yoccoz's proof of Theorem 1. We adapt 

this construction to our setting, i.e, to maps which are univalent on D and close to a 

rotation. 

Step 1. Construction of a Riemann surface. Consider a map fE,S~. Let H be the 

upper half-plane. There exists a unique lift F: H--~C of f such that  

e 2i~F(z) = f ( e  ui~Z) and F ( Z ) = Z + a + u ( Z ) ,  

where u is holomorphic, Z-periodic and u(Z)--+O as Im Z--~oc. 

Definition 5. For 5>0  and 0 < a < l  we define , ~  as the set of functions f E S ~  such 

that  for all Z E H ,  

[u(Z)]<ha and lu'(Z)[<5. 

Remark. (a) If (f<l ,  the condition lug(Z)[ <~ implies that  F has a continuous and 

injective extension to H,  and so, f has a continuous and injective extension to D. 

(b) One can verify the following statement: Given aE(0 ,  1) and 5E (0, �89 if feS~, 
and if ] f (z) -e2i"~z[<ha and [f'(z)-e2i~'~]<15 on D, then IES~.  
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We now assume that  5E (0, 1) and fe8~.  Set Lo- - iR  + and L~o=F(Lo). Note that  

for all ZEH,  F(Z) belongs to the disk centered at Z + a  with radius ha. It follows that  

the angle between the horizontal and the segment [Z, F(Z)]  is less than arcsinh<lTr. 

Moreover, for all ZEH,  we have [argF'(Z)l<arcsinh. So the tangents to the smooth 

1 with the vertical. This implies that  the union curve L~ make an angle of less than gTr 

L0 U [0, F(0)] UL~ U{c~} forms a Jordan curve in the Riemann sphere bounding a region U 

such that  for Y>0,  the segment [iY, F(iY)] is contained in U. We set /A=UUL0. 

Denote by B0 the half-strip 

Bo= { Z E H I O < R e Z  < I } 

and consider the map H: B0-+/A defined by 

H(Z) = ( 1 - X ) i c ~ Y + X F ( i a Y )  = o~Z+Xu(io~Y), 

where Z=X+iY ,  (X,Y)e[0 ,  1] x [0, co). Then, 

OH 1 ['OH . OH'~ 1 
(u( ic~Y )-c~Xu' ( ic~Y ) ) 

and 

It follows that  

OH 1 .OH) 1 _ OH_~_~  = ~ +  (u(ioLY)+o~Xu'(ic~Y)). 
oz 2-5-2 

~ -  < c~5 and > (~(1-5), 

and since 5< 1, H is a K~-quasiconformal homeomorphism between B0 and /4, with 

K~=1/(1-25). 
If we glue the sides L0 and L~ of/A via F,  we obtain a topological surface 9. 

We denote by ~: Lt-+I2 the canonical projection. The space V is a topological surface 

homeomorphic to a closed 2-cell with a puncture with the boundary 012--~([0, F(0)]). 

We set 1 ; = ~ \ 0 ~ .  Since the gluing map F is analytic, the surface V has a canonical 

analytic structure induced by that  of U (see I t ,  p. 70] or [Y1] for details). 

When ZELo, H(Z+I)=F(H(Z)) ,  and so the homeomorphism H: B0--+/A induces 

a homeomorphism between the half-cylinder H / Z  and the Riemann surface 12. This 

homeomorphism is clearly quasiconformal on the image of B0 in H / Z ,  i.e., outside an 

R-analytic curve. It is therefore quasieonformal in the whole half-cylinder (R-analytic 

curves are removable for quasiconformal homeomorphisms). Therefore, there exists an 

analytic isomorphism between ]2 and D*, which, by a theorem of Carath~odory, extends 

to a homeomorphism between 012 and 0D. Let r 12~D* be such an isomorphism and 
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let/C: L/--+H be a lift of r176 by the exponential map Z~-~exp(2iTrZ): H-+D*. The map/C 

is unique up to post-composition with a real translation. We choose r and/C such that  

)U(0)=0. By construction, if ZELo, then 

1C(F(Z)) = K~(Z) +1. 

Step 2. The renormalized map. Let us now set 

Lt '={ZEblIImZ>55 } and ~ '=L( /g ' ) ,  

and let V ~ be the interior of ~ .  

Let us consider a point ZE/4 ~. The segment [Z-1 ,  Z] intersects neither L~ nor 

[0, F(0)]. So either Z - 1  E b /or  R e ( Z - 1 ) < 0 .  For m~>0, the iterates 

Zm ~f F~ 

stay above the line starting at Z - 1  and going down with a slope tan arcsin (f (<2(f when 

5<1) ,  as long as ZmEH. Since R e ( Z - 1 ) ~ > - I  and I m ( Z - 1 ) > 5 5 ,  there exists a least 

integer n~>0 such hat Z,~ is defined and ReZn~>0. 

Let us show that  ZnEL/. If Z - 1 E / 4 ,  then n = 0  and there is nothing to prove. 

Otherwise, n/>l  and R e Z n - I < 0 .  Since Zn-1 is above the line starting at Z - 1  and 

going down with a slope 26, we have Im Zn-1 >35. Consider the horizontal segment I 

joining Zn-1 and L0. Let J be its image under F.  Since I F ( Z ) - I I < 5 < � 8 9  g is a curve 

whose tangents make an angle less than 17r with the horizontal. Thus, J is to the right of 

Z,~, and in particular, to the right of L0. Moreover, the tangents of L~ make an angle less 

than ~7rl with the vertical. So, J joins Z ,  and L~ and remains to the left of L~. Finally, 

points in I have imaginary parts greater than 3(f, and since I F ( Z ) -  Z - a  I <ha < 5, points 

in J have imaginary parts greater than 25. Thus, J does not hit the segment [0, F(0)]. 

It follows that  Z~EU. Now define a "first-return map" G : L/ ~ -+ b/ by setting G(Z)=Zn. 
Note that  G is a priori discontinuous since the integer n depends on Z. Figure 3 shows 

the construction of the map G. 

The map G: L/~--~L/induces a univalent map g: r  * such that  gor162 

(The fact that  g is univalent is not completely obvious; see [Y11 for details.) We define 

the renormalization of f by 

n ( f ) :  z, 

By the removable singularity theorem, this map extends holomorphically to the origin 

once we set 7r and it is possible to show that  [n( f ) ] ' (0 )=e  2i'/~ (again, see [Yl] 

for details). Thus, ~ ( f ) E O ~ ,  where a l  denotes the fractional part of 1/a. This com- 

pletes the description of the renormalization operator. 
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F F F F 

H 
- 1  0 

Fig. 3. T h e  r e g i o n s / 4  a n d / 4 ' ,  and  t he  m a p  G : /4 ' -+ /4 .  

3.3. The  proof  of  Theorem 3 

Let us now assume that  (a[n])n~>0 is a sequence of Bruno numbers converging to a Bruno 

number a such that  

lim sup r < r  + C  

for some constant C~>0. We define the sequences (ak)k>~o, (~3k)k>~-l, (ak[n])k>~O and 

(j3k[n])k~>-i as in w 

LEMMA I. For all k>~O, we have 

C 
limsup ~(ak [n]) ~< ~P(ak)-~ ~k- l  

Proof. We have by (1), 

�9 (~[n])-r = ~ Z~-l[n] log 73:3-/~_1 log +Zk-l[n]r162 

For each fixed j~>0, we have aj[n]-+aj and/3j[n]-+/3j as n--+c~, and so, 

1 1 
l i m  13y-1 [n] log aj[n----] = ~j-1 log a-~" 
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Thus, 

C ~> lim sup ~(a[n]) - (I,(a) 
n - ~ o o  

= lim sup 3k-a [n] r [n]) --~k-1 ~P(ak) 

ilk--1 ( l imsup ~(ak  In])-  * ( ak ) ) .  [] 

Now, for all k~0,  we set 

Ok -- inf { liminf inrad(/X i,,) }, 

where the infimum is taken over all sequences (fnEO~ k [n])~>o such that fn ~ R ~  on D. 

Similarly, we set 

0~ = inf ~" lira inf inrad(A f~) }, 

where the infimum is taken over all sequences (fn ES~f~] )~o  such that  ~n--+0 (note that  

this implies f n~Ro~  on D). It is easy to check that each infimum is realized for some 

sequence f~. We will show that 

log 00 ~ - C ,  

which is a restatement of Theorem 3. 

LEMMA 2. For all k>~O, we have pk=g~k. 

Proof. We clearly have P ~ P k  since ~ [ ~ ]  CO~k[n ]. Now, assume that (Sn)n>~o and 

(f~EO~[~])~>o are sequences such that (in--+0 and f , ~ R ~  on D. Then, we can find a 

sequence of real numbers A~ < 1 such that A,~-~ 1 and 

an:Z~ ~-~fn(~nZ) 

belongs to $5~ The Siegel disk AI~ contains A~Ag. Therefore ~[n]" 

lim inf inrad(Af~)/> lira inf An inrad(Ag~) ~ 0~. 

This shows that 0k/> 0~. 

LEMMA 3. For all k>~O, we have 

log 0k ~> - ~ ( a k )  
C Co, 

where Co is the universal constant provided by Theorem 1. In particular, Pk >0. 

Proof. Indeed, Theorem 1 implies that when fnES~k[,~ ], then 

log inrad (Aim) ~> - � 9  (ak [n]) - Co. 

[] 
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Since by Lemma 1, 
C limsup ~(~k In]) < ~(~k) + #k-l' 

the lemma follows. [] 

Let us now fix some k/>0. Assume that ( f ,  ES~'~(,l)n>>.o.. is a sequence of func- 

tions such that ~--~0. Then, f , ~ R , ~  k on D, and for large n, 5,<�89 So, we can 

perform the Douady-Ghys renormalization. We lift fn: D--~C to a map F,: H - + C  via 

7r: Z~-+exp(2iTrZ): 

H ~ c  
1 

D *  ~ C*.  fn 

We similarly define U,~, U', V., ~:/~n-~9~, H.: Bo~a.,  r and ~.:/An--->H. 

Recall that Hn conjugates the translation TI: Z ~ Z + I  (from the left boundary of Bo to 

the right boundary of B0) to F~ (from the left boundary of L/~ to the right boundary 

of U.): 
(B0, T~) 

(u.,F,~) ,c~. (H,T~) 

1 
(/2., Id) ~ (D*, Id). 

Then, we define a "first-return map" G~:/~---~/./. which induces a univalent map g- 

defined on the interior D* of r  such that g.oCnotn=r 

D~ ~ D * ,  

The renormalized map is 

n(f.): z ,  > g~(~). 

Note that 7~(fn) belongs to (.9~+1[, 1 and not to S~+l[n ]. 

LEMMA 4. The maps r176 Hn--~ D* converge to Z~-+e 2iTrz/ak uniformly on compact 

subsets of B~={ZEH[O<~ReZ<ak}  as n--+oc. 

Proof. The lifts F .  converge to the translation Z~+Z+ak. It follows that the 

K~ -quasiconformal homeomorphisms H. :  Bo--+~. converge to the scaling map Z ~ a k Z  
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uniformly on B0. Moreover, /C~oHn: B0--+K:n(/~,~) is a K~ -quasiconformal homeomor- 

phism which satisfies 1 C ~ o H ~ ( Z + I ) = I C ~ o H ~ ( Z ) + I  for Z E i R  + and sends 0 to 0. There- 

fore, it extends by periodicity to a K~ -quasiconformal automorphism of H fixing 0, 

1 and oo (the extension is quasiconformal outside Z + i R  +, and thus it is quasiconfor- 

mal on H since R-analytic curves are removable for quasiconformal homeomorphisms). 

Since K ~ = 1 / ( 1 - 2 5 ~ ) - ~ 1  as n-+oo,  we see that  K:n~ converges uniformly on com- 

pact subsets of H to the identity as n--+oc. As a consequence, the maps/Cn converge to 

Z~-~Z/ak uniformly on compact subsets of B~ k. So, the maps r  L/n-+D* converge 

to Z~-~e 2i~rZ/ak uniformly on compact subsets of B~ k. [] 

LEMMA 5. For all k ) O ,  we have 

log Ok >>- ak log 0k+l. 

Proof. Let us assume that  Ok < 1, since otherwise the result is obvious. Let us choose 

a sequence 5~-~0 and a sequence of functions fn E ~ [ n l  which converge to the rotation 

R~k and such that  

Ok = lim inrad(Al . ) .  

Then, we can find a sequence of points zn E D such that  I z,~ I --+ Ok and the orbit of z~ under 

iteration of f,~ escapes from D. By conjugating f~ with a rotation fixing 0 if necessary, 

we may assume that  zn E (0, 1). Let us consider the points Zn C i R + such that  e 2iTrz'~ = zn. 

Then, ImZ,~--+-log(ok)/2~r. Since 5~--*0, it follows that  for n large enough, Z,~EL/~. 

Recall that  by Lemma 3, 0k>0. So Zn remains in a compact subset of B ~ k = { Z E H  i 

0~<Re Z < a k } .  Thus, Lemma 4 implies that  for n large enough, the point z~=r 
Z ! _ l /c~k  is close to e 2i~Z~/a~. In particular, we see that  for n large enough, I ~1 --+ ek . Moreover, 

since the orbit of Zn escapes from D under iteration of fn, the orbit of Zn under iteration 

of Fn escapes from H,  and thus the orbit of z~ under iteration of TC(f~) escapes from D. 

It follows that  

log pk = lim log [zn[ = a k  lim log Iztnl/> ak l iminf loginrad(An(/~)) .  
n - - ~  O O  n - - ~  O o  n - - - ~  O o  

But Lemma 4 also implies that  the sequence (TC(fn))n~>0 converges to the rotation 

R~k+ 1 uniformly on compact subsets of D. The definition of Ok+l implies that  

l i m ~ f  log inrad(Are(l~)) ) log 0k+t, 

and this completes the proof. [] 
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The proof of Theorem 3 is now completed easily. Indeed, we see by induction that  

for all k~>0, we have 

And by Lemma 3, we get 

We clearly have 

log Po/> s0. . .  ak log a0k+l : f lk  log Qk+l. 

log O0 ~> - - f lk~I)(O~k+l)  -C-~kCo .  

lim 13kC0 = O. 
k--+oo 

Moreover, the first term on the right-hand side is the tail of the series defining O(a) (see 

equation (1)). This series converges, and so, 

lim 0. k ~ k ~ ( ~ k + l )  = 

4. Parabolic explosion for quadratic polynomials 

From now on, in the notation p/q for a rational number, we imply that  p and q are 

coprime with q>0. 

Let us fix a rational number p/q. Then, 0 is a parabolic fixed point of the quadratic 

polynomial Pp/q: z~-~e2i~P/qz+z 2. It is known (see [DH, Chapter IX]) that  there exists 

a complex number AEC* such that  

oq P~/q(z) = z + Az q+l +O(zq+2). 

This number should not be mistaken for the formal invariant of the parabolic germ, i.e., 
oq the residue of the 1-form dz/(z-P~/q(Z)) at 0. 

Definition 6. For each rational number p/q, let us denote by A(p/q) the coefficient 

of z q+l in the power series at 0 of Pp/q. 

Definition 7. Let Pq be the set of parameters a E C such that  P~q has a parabolic 

fixed point with multiplier 1. For each rational number p/q, set 

Rp/q = dist(p/q, Pq\ { p/q} ). 

Remark. Note that  we consider complex perturbations of p/q: P~: zF--~e2i~rc*z-bz 2. 
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Proposition 2 in [BC3] (see also Proposition 2.3, Part 1, in [C]) asserts that  for all 

rational numbers p/q, 
1 

Rp/q > ~ .  (5) 

When c~#p/q is a small perturbation of p/q, 0 becomes a simple fixed point of P~, 

and P2q has q other fixed points close to 0. The dependence of these fixed points on c~ is 

locally holomorphic when ~ is not in :Pq. If we add p/q, we get a holomorphic dependence 

on the qth root of the perturbation (~-p/q. The following proposition corresponds to 

Proposition 2.2, Part 1, in [C] (compare with [BC3, Proposition 1]). 

PROPOSITION 3. For each rational number p/q, there exists a holomorphic function 

X: B = B (0, R1/q ~ -+ C with the following properties: p/q ] 

(1) X(0)=0; 

(2) x'(o)q=-2rriq/A(p/q)#O; 

(3) for every 5EB\{0},  (X(ti),X((5), . . . ,x(fq-la)) forms a cycle of period q of Pa 
with (=e 2iTrp/q and a=p/q+hq. In other words, 

x(r  for every aeB .  

Moreover, any function satisfying the above conditions is of the form 5~+ X(~kh) for 

some kc{0, ..., q - l } .  

In this article, we prefer to normalize X differently. We will use the symbol r for the 

new function, and define it by r wherever it is defined. This amounts to 

replacing the relation (~=p/q+5 q by 

c~ = p A(p/q) ($q. 
q 2iTrq 

There are two advantages in doing this. First, this function does not depend on the 

choice of X among the q possibilities. Second, it makes the statement of Proposition 6 

look nicer. Let 
2~rqRp/q 1/q 

QP/q= A(p/q) ' (6) 

and let us give the version of Proposition 3 that  we will use here. 

PROPOSITION 4. For each rational number p/q, there exists a unique holomorphic 

function r162 B(O, pp/q)-+C such that 

(1) r  

(2) r  
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(3) for every 5eB(0,  pp/q)\{O}, 

forms a cycle of period q of P~ with ~=e 2i~p/q and 

a -  p A(p/q)  hq 
q 2izcq 

In particular, 

r  =P~(r  for every 3EB(O, OB/q). 

We will now make use of the following lemma, which appears in Jellouli's thesis [J1] 

(compare with [J2, Theorem 1]). 

LEMMA 6. Assume that a E R \ Q  is chosen so that Pa has a Siegel disk A s ,  and let 

Pk/qk--+a be the convergents of a given by the continued fraction. Then, Ppq;qk converges 

uniformly to the identity on every compact subset of Aa. 

PROPOSITION 5. Assume that a is an irrational number such that P~ has a Siegel 

disk and that Pk/qk are the convergents to (~. Then, 

lim inf Opk/qk ) r~. 
k--~oo 

Proof. Let r B(0, r~)-+A~ be the linearizing map which fixes 0 and has deriva- 

tive 1 there. For each k ) 0 ,  set 

gk = r  l o Pp~/qkor 

Then, since r  1, an elementary computation gives 

g;qk = z + A (  pk /qk ) z l+q~ + O( z 2+qk ). 

The previous lemma implies that  gOqk converges to the identity uniformly on compact k 

subsets of B(0, r~) as k--+oc. For any radius r<r~,  we may find an integer N so that  

gOqkk is defined on B(0, r) for n ) N .  Since g~qk takes its values in B(0, r~), we have 

1 f g;qk(z) dz <. r .  
IA(pk/qk)l = ~ - -  z2+qk rl+q----~ �9 JOB(O,r) 

This, combined with (5) and (6), gives 

lim inf Ppklqk >>" lim inf r = r. 

The result follows by letting r--+r~. [] 

We may now study the asymptotic behavior of the functions CPk/qk as k--+oc. 
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P R O P O S I T I O N  6. Assume that a E R  is an irrational number such that Pa has a 

Siegel disk A a and let Pk/qk be the convergents of ~. Then, 

(1) l imk_~ Qpk/qk=r~; 

(2) the sequence of functions CPk/qk :B(0, Ppk/qk)-+C converges uniformly on com- 

pact subsets of B(O, to) to the linearization r B(O, r~)--+Ao which fixes 0 with deriva- 

tive 1. 

Proof. We have just seen that 

lim inf PPk/qk ~ to. 
k--+oo 

Therefore, given any radius r<ro, the function CPk/qk is defined on the disk B(0, r) for 

large enough k. If aEB(p/q,  Rp/q) and z is a periodic point of Po, then Izl~l+e2".(3) 

Therefore, the functions CPk/qk all take their values in the disk B(0, l+e2"). It follows 

that the sequence of functions 

r B(O, r) > B(O, l + e  2~r) 

is normal. Let ~: B(0, r)--~C be a subsequence limit. We have 

CPk/qk (e2i'vk/qkh) = Po[k] ~162 (5), 

where 
a[k] - Pk A(pk/qk) 5qk. 

qk 2irqk 

Since 
r o  

IA(pk/qk)l ~ rl+qk 

by the proof of Proposition 5, we have 

-+o  ask-  . 

It follows that a[k]--+a as k--+oc. Hence, for any 5EB(O,r), we have 

= Poo (5). 

Since r  1, r is non-constant, and so it coincides with the linearizing parametriza- 

tion r B(0, r~)--+ Ao. As a consequence, the whole sequence (~bp~/qk) k>~o converges on 

compact subsets of B(0, ro) to the isomorphism r 

(3) Since Rp/q~l, if c~CB(p/q, Rp/q), t hen  I m a > - I  and  thus  ]e2i~rc*]<e2~r. So, if c~CB(p/q, Rp/q) 
and  Izl > l + e  2~, t hen  IPa (z)l----Izl Iz+e2i '~al  > Izl, and  z canno t  be  a periodic poin t  of P~.  
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Now, let r be defined by 

r = lim sup ~Pk/qk" 
k--~c~ 

By passing to a subsequence if necessary, we may assume that  the sequence ~p,/qk con- 

verges to r. Then, the same argument as above shows that  the extracted subsequence 

Cp~/q~ converges on compact subsets of B(0, r) to a holomorphic map r B(0, r)--+C which 

fixes 0 with derivative 1 and linearizes P~. In particular, the linearizing parametrization 

r B(0, r~)-+A~ is holomorphic on the disk of radius r, and so r<<.r~. [] 

COROLLARY 5. Assume that a is a Bruno number and let Pk/qk be the convergents 

of a defined by its continued fraction. Assume that a[n] is a sequence of Bruno numbers 

such that 
I Enl v o. - ~ A < I  asn--+cx~. 

q~ 

For each n, let ~,~ be a complex number which satisfies 

p,~ A(p , /q~)  5q" = a[n]. 
qn 2irq~ 

Then, the set 

On = Cp~/q~{bne2i~k/qn[k = 1, ..., q,~} 

is a q~-periodie orbit of P~[~] which converges to the analytic curve r Ar~)) in 

the Hausdorff topology on compact subsets of C. As a result, the conformal radius r~[~] 

of the Siegel disk of the quadratic polynomial P~[~] satisfies 

lira sup r~[nl ~< Ar~. 
n---~ Oo 

Proof. As n--+c~, 

 nll/qn I l/q  
- - - -  - -  " - - ~  Ara. 

q~ A(pn/qn) 

Moreover, Cpnlq~ converges to the linearizing parametrization r :B(0,  ra)-+ As.  There- 

fore, the sequence of compact sets On converges to r Ar~)) for the Hausdorff 

topology on compact subsets of C. 

Let us assume that  r is the limit of a subsequence r~[nk]. Then, for any r '<r,  if k 

is sufficiently large, Ca[nk] is defined on the disk B(0, r ' ) .  The maps r B(0, r ' ) - + C  

are univalent, fix 0 and have derivative 1 at the origin. Therefore, extracting a further 

subsequence if necessary, we may assume that  the sequence r B(0, r')-+A~[nk] con- 

verges to a non-constant limit r  r ' ) - + C .  The map r takes its values in the 
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Siegel disk A~[~k], and so it omits the periodic orbit On of PaM. As a consequence, the 

limit map r must omit r Ar~)). 

Therefore, the map r162 sends B(0, r') into B(0, Ar~), fixes 0 and has derivative 1 

at 0. Thus, by Schwarz's lemma, r'<.Ar~. Letting r'--+r shows that limsup~_~o ~ r~M is 

less than or equal to Ar~. [] 

5. A first p roof  of  the  main  l e m m a  

In this section, we give a first proof of the main lemma based on Corollaries 3 and 5. 

Let a be a Bruno number and choose rl<r~. For all n ) l ,  set c~[n]=T(c~, r/rl ,  n) 

(see Definition 3). Then, 

+ l o g r  and a[n]-P~ 1/q~ rl 
~P(~[n]) ~ ~((~) rl q~ r 

The first limit is proved in Proposition 2, the second follows from 

fin In] 
O~ In] - -  ~ u  = f in--1  In] q n  ' ~  

qn q2 q2nA n qn 

with An = [(r/rl)qn]. 
According to Corollary 3, we have liminfn-.oor~[n]~>rl, and according to Corol- 

lary 5, we have limsuPn_~o o r~M ~<rl. This proves the main lemma. 

Figure 4 shows the boundary of the Siegel disks for c~-~-l(v~ +1)=[1, 1, 1, ...] and 

a[n], n=5, ..., 8, with An= L1.5qn]. The reader should try to convince himself that as n 

grows, this boundary oscillates more and more between OAa and Ca(aB(0, ~ra)), both 

of which appear in the last frame. 

6. Accumula t ion  by c y c l e s  

Let us explain how to modify the proof of the main theorem in order to obtain the 

existence of a Siegel disk whose boundary is smooth and accumulated by periodic cycles. 

We define sequences of Bruno numbers ~(n), positive numbers Cn and rn, and a 

sequence of finite sets Ca--which will be repelling cycles for P~(n)--as follows. 

Take c~(0)=a, E 0 = ~  and ro=r~, and let Co be the repelling fixed point of P~. 

Assuming that a(n), on, rn and Cn are defined, let cn+l < ~0E,~ be such that ro <r~(,~) +Ca 

and Po has a repelling cycle ~-close to C~ whenever t0-c~(n)l<~n+l (this is possible 

since repelling cycles move holomorphicMly). 
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0A~[6I 0A~[s] 
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OA~[7] 0A~[s] 

0A~ and r 

Fig. 4. Some boundar i e s  of  Siegel d isks  for a sequence  c~[n]. 
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Next, choose r~+lE(r,r~(n)) sufficiently close to r so that  rn+l-r<~n+l and 

Ca(n)(OB(O, rn+l)) is Cn+l-Close to Ca(n)(OB(O,r)) in the Hausdorff metric. Finally, 

choose c~(n+l) such that  

(1) I(~(n+l)-t~(n)l< l ~n+l; 
(2) r~(,~+l) >r ;  

(3) the real-analytic functions un+l: t~-+r 2i€ and u~: t~+r 2i~t) are 

On+l-Close in the Frdchet space C a ( R / Z ,  C);(4) 

(4) P~(n+l) has a repelling cycle Cn+l which is en+l-Close to r rn+ l ) ) - -  

and so, 2en+l-close to r r ) ) - - in  the Hausdorff metric (this is possible by Corol- 

lary 5). 

Let a ' = l i m ~ _ ~ a ( n ) .  Since for n~>l, rn-r<en,  we see that  rn is a decreasing 

sequence converging to r. Thus, as in the proof of the main theorem, we have r~,=r, 
and the functions un converge to a C~-embedding v: R / Z - ~ C  which parametrizes the 

boundary of the Siegel disk As,.  By the construction, for each n~> 1, I s ' - a ( n )  l<en+l,  

so P~, has a cycle C n which is en-close to Cn. Since C,~ is 2~n-close to u n _ l ( R / Z )  and 

v (R /Z)  is 2r to un-1 ( R / Z )  in the Hausdorff metric, we see that  C~ is r 

to the boundary of the Siegel disk Am,. 

7. A second  proof  of  the  m a i n  l e m m a  

In this section, we give a second proof of the main lemma based on Yoccoz's theorem 

on the optimality of the Bruno condition for the linearization problem in the quadratic 

family [Y1]. We also use the following continuity result of Risler (which is contained in 

Proposition 10 of [R]): If 0m---~0 are Bruno numbers and (I)(0m)--~O(0), then rom--+ro as 
m--+~. Risler's continuity result was recovered (with a different proof) in Corollary 4. 

Let pn/qn �9 Q be an increasing sequence converging to a. Let 

a[n] = inf{0 �9 (P~/qn, ~] \Q I ro >1 rl } �9 [Pn/qn, ~]. 

Notice that  a[n]-+c~ and r~[n] ~ r l  (see the discussion after the statement of the main 

lemma). In particular, P~[n] is linearizable. In order to prove the main lemma, it is 

enough to show that  r~[n] ~ r l  for every n. 

By Yoccoz's theorem on the optimality of the Bruno condition for the lineariza- 

tion problem in the quadratic family, we know that  a[n] is actually a Bruno number. 

Let (O,~)m~O be an increasing sequence of Bruno numbers in (Pn/qn, (~[n]) converging 

to c~[n] and satisfying limm_~(I)(0m)=(I)((~[n]) (the existence of such a sequence is im- 

plied by Proposition 2 and the remark that  follows; see Proposition 1 of [R] for another 

(4) It  follows tha t  Un_[_ 1 (R/Z) and u n ( R / Z )  are en+l-close in the Hausdorff  metric. 
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proof). By the definition of a[n], we have rom<rl, and by Risler's continuity result, 

limm-+~ ro,~=r~[n], so rain] <~ rl. 

Remark. Lukas Geyer has given an alternative argument for the key estimate 

lim sup ro >~ r~[n] and lim sup ro ) r a [n ] ,  
0-~[,q o-~[n] 
0>~[n] 0<c~[n] 

which is the "hard" property of the conformal radius of quadratic polynomials exploited 

above, as opposed to the "soft" property of upper semicontinuity. It is based on the fact 

that  the function c~-+logr~E[-cc,  oc) (extended as - o c  to Q) is the boundary value 

of a harmonic function defined on the upper half-plane which is bounded from above 

(see [Y1]). 

8. C o n c l u s i o n  

As mentioned in the introduction, Petersen and Zakeri proved that  there exists quadratic 

Siegel disks whose boundaries are Jordan curves containing the critical point but  are 

not quasicircles. They even give an arithmetical condition for this to hold: when c~= 

[a0, el,  a2, ...] with (an)n>>.O unbounded but log an-=O(v~)  as n--+oo. 

The quadratic Siegel disks constructed by Herman which do not contain the critical 

point in their boundaries are quasidisks. The authors do not know if one can control the 

regularity of the boundary with Herman's methods. 

The techniques we developed in this article are very flexible. We can apply them in 

order to prove the existence of Siegel disks whose boundaries are Jordan curves avoiding 

the critical point but  are not quasicircles, or, for each integer k~>0, the existence of Siegel 

disks whose boundaries are C k but not C k+l (see [BC2]). 

One can also ask about the Hausdorff dimension of the boundaries of Siegel disks. 

It is known that  when a - -  [a0, al, a2,...] with (an)n~>0 bounded, the Hausdorff dimension 

is greater than 1 (Graczyk Jones [GJ]) and less than 2 (because it is a quasicircle). In 

the case of Siegel disks with smooth boundaries, the Hausdorff dimension is obviously 

equal to 1. This naturally leads to the following questions. 

Problem 1. Does there exist a quadratic Siegel disk whose boundary is a Jordan 

curve with Hausdorff dimension 2? 

We believe that  we can produce a quadratic Siegel disk whose boundary does not 

contain the critical point and has packing dimension 2 and Hausdorff dimension 1. The 

problem of producing a Siegel disk whose boundary has Hausdorff dimension 2 seems 

more tricky. 
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Next, the quadratic Siegel disks that  we produce are accumulated by cycles. This 

is how we control tha t  the Siegel disk is not larger than expected. P@rez-Marco has 

produced maps which are univalent in the unit disk and have Siegel disks with smooth 

boundaries tha t  are not accumulated by cycles. 

Problem 2. Does there exist a quadratic polynomial having a Siegel disk whose 

boundary is not accumulated by cycles? 

Finally, it is known that  when ~ satisfies the Herman condition (see the introduc- 

tion), the critical point is on the boundary of the Siegel disk. It  would be interesting to 

quantify the construction we give in this article. 

Problem 3. Give an ari thmetical  condition which ensures tha t  the critical point is 

not on the boundary of the Siegel disk. Or, give an ari thmetical  condition which ensures 

that  the boundary of the Siegel disk is smooth. 
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