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0. In tro d u c t io n  

Let k be an algebraic number field, (9 its ring of integers, S a finite set of valuations of k 

(containing all the archimedean ones), and (gs=(xCklv (x )>~O for all v ~ S } .  Let G be 

a semisimple, simply-connected, connected algebraic group defined over k with a fixed 

embedding into GLd. Let F = G ( ( g s ) = G N G L d ( ( g s )  be the corresponding S-ari thmetic 

group. We assume that  F is an infinite group (equivalently, I ]ves  G(kv) is not compact) .  

For every non-zero ideal I of (9s let 

F ( I )  = Ker(F -~ G L d ( O s / I ) ) .  

A subgroup of F is called a congruence subgroup if it contains F ( I )  for some I .  

The topic of counting congruence subgroups has a long history. Classically, con- 

gruence subgroups of the modular  group were counted as a function of the genus of 

the associated Riemann surface. I t  was conjectured by Rademacher  tha t  there are only 

finitely many congruence subgroups of SL2(Z) of genus zero. Petersson [Pe] proved that  

the number  of all subgroups of index n and fixed genus goes to infinity exponentially as 

n--+c~. Dennin [De] proved tha t  there are only finitely many  congruence subgroups of 

SL2 (Z) of given fixed genus and solved Rademacher 's  conjecture. A quanti tat ive result 

was proved by Thompson IT] and Cox-Par ry  [CP] who showed (among other interesting 

results) that  

lim genus(A) 1 
[SL2(Z) : A] - 12' 

where the limit goes over congruence subgroups A of SL2 (Z) with index going to co. It  

does not seem possible, however, to accurately count all congruence subgroups of index 

at most r in SL2(Z) by using the theory of Riemann surfaces of fixed genus. 
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supported in part by OTKA T 034878. All three authors would like to thank Yale University for its 
hospitality. 
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Following [Lu], we count congruence subgroups as a function of the index. For n > 0, 

define 

Cn(F) = #{congruence subgroups of F of index at most n}. 

THEOREM 1. There exist two positive real numbers a _ - - a _ ( F )  and a+=a+(F) such 

that for all sufficiently large positive integers n, 

n(log n/log log n)a_ ~ Cn (F) ~ n (l~ n/log log n) a+. 

This theorem is proved in [Lu], although the proof of the lower bound presented there 

requires the prime number theorem on arithmetic progressions in an interval where its 

validity depends on the GRH (generalized Riemann hypothesis for Diriehlet L-functions). 

By a slight modification of the proof and by appealing to a theorem of Linnik [Lil], ILl2] 

on the least prime in an arithmetic progression, the proof can be made unconditional. 

Such an approach gives, however, poor estimates for the constants. 

Following [Lu] we define 

a + ( F ) =  lim logCn(F) logCn(F) 
n - - + ~  A(n) and a_(r)=limn_~ A(n) ' 

where A(n)= (log n)2/log log n. 

It is not difficult to see that  a+ and a_ are independent both of the choice of the 

representation of G as a matrix group and of the choice of S. Hence a+ depend only on 

G and k. The question whether a + ( F ) = a _ ( F )  and the challenge to evaluate them for 

F=SL2(Z)  and other groups were presented in [Lu]. Here we prove: 

1 (3_  2 ~ ) = 0.0428932 .... THEOREM 2. We have (~+(SL2(Z))--(~_(SL2(Z))=~ 

The proof of the lower bound in Theorem 2 is based on the Bombieri-Vinogradov 

theorem [Bo], IDa], [V], i.e., the Riemann hypothesis on the average. The upper bound, 

on the other hand, is proved by first reducing the problem to a counting problem for 

subgroups of abelian groups and then solving that  extremal counting problem. 

In the case of a number field, we will, in fact, show a more remarkable result: the 

answer is independent of O! Here, we require the GRH (generalized Riemann hypothesis) 

[W] for Hecke and Artin L-functions, which states that  all non-trivial zeros of such L- 

functions lie on the critical line. 

THEOREM 3. Let k be a number field with ring of integers O. Let S be a finite set 

of primes, and 08  as above. Assume the GRH for k and all cyclotomie extensions k(~z) 

with 1 a rational prime and ~l a primitive 1-th root of unity. Then 

a+(SL2(Os))  = a_ (SL2 (Os)) = �88 ( 3 - 2 v ~ ) .  
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The GRH is needed only for establishing the lower bound. It can be dropped in 

many cases by appealing to a theorem of Murty and Murty [MM] which generalizes the 

Bombieri-Vinogradov theorem cited earlier. 

THEOREM 4. Theorem 3 holds unconditionally if  the field k is contained in a Galois 

extension K such that either 

(a) g : G a l ( K / Q )  has an abelian subgroup of index at most 4 (in particular, if k is 

an abelian extension), or 

(b) [K:Q]<42.  

The proof of the upper bound is very different from the proof of the lower bound. 

For a group A, we denote by s t (A)  the number of subgroups of A of index at most r. 

A somewhat involved reduction process is applied to show that  the problem of finding 

the upper bound is actually equivalent to an extremal counting problem of subgroups of 

finite abelian groups (see w which is given in Theorem 5. A sharp upper bound for that  

counting problem follows from the case R = 1 of the following theorem. 

THEOREM 5. Let R ~ I  be a real number and let d be a fixed integer >>.1. Suppose 

that A=Cxl•215215 is an abelian group such that the orders x l , x2 , . . . , x t  of its 

cyclic factors do not repeat more than d times each. Suppose that rlAIR<.n for some 

positive integers r and n. Then as n tends to infinity, we have 

sr(A) <~ n (~+~ 

where "y=( ~ - R ) 2 / 4 R  2. 

In an earlier version of this paper, Theorem 5 was proved in a similar manner, but 

only for R =  1. The more general case was proved in an early version of [LuN]. We thank 

the authors of [LuN] for allowing us to include the general version here. 

The above results suggest that  for every Chevalley group scheme G, the upper 

and lower limiting constants a+(G(Os))  are equal to each other, and depend only on 

G and not on 0 .  In fact, we can make a precise conjecture, for which we need to 

introduce some additional notation. Let G be a Chevalley group scheme of dimension 

d = d i m G  and rank l=rk(G) .  Let x = [ ~ + l  denote the number of positive roots in the 

root system of G, and let R = R ( G ) = ( d - l ) / 2 1 = x / l .  We see that if G is of type At (resp. 

Bt, Ct,Dt,G2,F4, E6,ET, Es) then R = � 8 9  (resp. l, l, l - 1 , 3 , 6 , 6 , 9 ,  15). 

CONJECTURE. Let k, (9 and S be as in Theorem 3, and suppose that G is a simple 

Chevalley group scheme. Then 

~+(G(Os))  = ~ _ ( G ( O s ) ) =  ( ~ - n ) ~  
4 R  2 
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The conjecture reflects the belief that  "most" subgroups of H =  G ( Z / m Z )  lie between 

the Borel subgroup B of H and the unipotent radical of B. We prove here the lower 

bound of the general conjecture (under the same assumptions as in Theorems 3 and 4). 

In our earlier version this was done only for Galois extensions, but it was observed in an 

earlier version of [LuN] that  a small modification of the argument works in the general 

case. We thank the authors of [LuN] for allowing us to make these small modifications 

here. 

This paper gives a complete proof of the upper bound for the case of SL2, based on 

the known detailed classification of subgroups of SL2(Fq) for finite fields Fq of order q. 

We also give a partial result towards the upper bound in the general case. The upper 

bound is proved in full for every field k in [LuN]. The reader is also referred to a more 

general version there when G is not assumed to be split. 

THEOREM 6. Let k, (9 and S be as in Theorem 3. Let G be a simple Chevalley 

group scheme of dimension d and rank l, and R = R ( G ) = ( d - l ) / 2 1 .  Then 

(a) assuming the GRH or the assumptions of Theorem 4, 

( v / R ( R +  1) - R )  2 1 
~ -  (G(Os)) >. 4R 2 "~ 16R2 ; 

(b) there exists an absolute constant C such that 

< c -R)2 
4R 2 

Remark. As the upper bound is proved in full in [LuN] (i.e., C = I  in part (b)), we 

omit in this paper the proof of part (b) of Theorem 6. 

COROLLARY 7. There exists an absolute constant C such that for d--2, 3, ..., 

1 1 
(1 -o (1 ) )  ~ ~< c~_ (SLd(Z)) <~ a+(SLd(Z)) < C~-~. 

This greatly improves the upper bound a+ (SLd(Z))< 5d2 implicit in [Lu] and settles 

a question asked there. 

As a byproduct of the proof of Theorem 5 in w we obtain the following result. 

COROLLARY 8. The subgroup growth of SLd(Zp) is at least n c, i.e., 

lim log sn(SLd(Zp)) >~ c, 
n~oo log n 
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where 
c =  ( 3 - 2 ~ ) d 2 - 2 ( 2 - ~ ) ,  

and where Z, denotes the ring of p-adic integers. 

The counting techniques in this paper can be applied to solve a novel extremal 

problem in multiplicative number theory involving the greatest common divisors of pairs 

( p - l , p ' - l ) ,  where p and pl are prime numbers. The solution of this problem does not 

appear amenable to the standard techniques used in analytic number theory. Considering 

this problem first was crucial for obtaining Theorem 5. 

THEOREM 9. For n--+c~, let 

M(n)=max{ I I  gcd(p- l 'p ' - l )  lPisaset~ H P < ' n }  �9 
"P, PrCT' pE~ 

Then we have 

where A(n)= (log n)2/log log n. 

lim log M(n) 1 
4' 

The paper is organized as follows. 

In w we present some required preliminaries and notation. 

In w we introduce the notion of a Bombieri set, which is the crucial ingredient 

needed in the proof of the lower bounds. We then use it in w and w to prove the lower 

bounds of Theorems 2, 3, 4 and 6. We then turn to the proof of the upper bounds. 

In w we show how the counting problem of congruence subgroups in SL2(Z) can be 

completely reduced to an extremal counting problem of subgroups of finite abelian groups; 

the problem is actually, as one may expect, a number-theoretic extremal problem--see 

w and w where this extremal problem is solved. The upper bounds of Theorems 2, 3, 

and 4 are then deduced in w Finally, in w we prove Theorem 9. 

The results of this paper are announced in [GLNP]. 

The authors would like to thank J.oP. Serre and the referees for the many comments 

which helped to improve the exposition of this paper. 

1. P r e l i m i n a r i e s  a n d  n o t a t i o n  

Throughout  this paper we let 

/ ( n ) =  logn and A(n)= (l~ 
log log n log log n" 
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All logarithms in this paper are to base e. If f and g are functions of n, we will say that  

f is small with respect to g if 

lim log f (n )  = O. 
n--,~ log g(n) 

We say that  f is small if f is small with respect to n l(n). Note that  if f is small, then 

multiplying Ca(F) by f will have no effect on the estimates of a+(F) or a_(F) .  We may, 

and we will, ignore factors which are small. 

Note also that  if e(n) is a function of n (bounded away from 0) which is small with 

respect to n, i.e., log e(n)=o( log n), then 

lim log C.~(.) (r) = a + ( r )  (1.1) 
. ~  ~(n)  

and 

lim log C~(n) (r) _ a_(r) .  (1.2) 
~_~  ~(n)  

The proof of (1.1) follows immediately from the inequalities 

a + ( r ) =  lim logCn,r,<~(~ li---~ log Crib(n) (F) 

n ~  ~ (n )  n - ~  ~ (n )  

log Cn~(n)(F) )~(nc(n)) 
= lim 

n - ~  )~(n~(n)) )~(n) 
- -  ~< a § 2 4 7  

Here, we have used the fact that  

lim )~(ne(n)_.......~) _ 1, 
n~oo  ~ (n )  

which is an immediate consequence of the assumption that  e(n) is small with respect 

to n. A similar argument proves (1.2). 

It follows that  we can, and we will sometimes indeed, enlarge n a bit when evaluating 

Cn(F), again without influencing a+ or a_.  Similar remarks apply if we divide n by e(n). 

The following lemma is proved in [Lu] in a slightly weaker form, and in its current 

form is proved in [LuS, Proposition 5.1.1]. 

LEMMA 1.1. ("Level versus index") Let F be as before. Then there exists a constant 

c>O such that if H is a congruence subgroup of F of index at most n, then H contains 

r ( m ) / o r  some m<.cn, where m E Z ,  and by r(m) we mean r (mOs) .  
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COROLLARY 1.2. Let 3'n(F)=}-~.n=l sn(G(Os/mOs)) ,  where for a group H, sn(H) 

denotes the number of subgroups of H of index at most n. Then we have 

a + ( F ) =  lim logT~(r)  and a _ ( F ) =  lim logvn(F) 

Proof. By Lemma 1.1, c~(r)~<Vcn(r ) for some c>0.  It is also clear that  vn(F)~< 

nC~(F). Since c is small with respect to n, Corollary 1.2 follows by arguments of the 

type we have given above. [] 

The number of elements in a finite set X is denoted by # X  or IXI. The set of 

subgroups of a group G is denoted by Sub(G) . . . .  

2. B o m b i e r i  s e t s  

We introduce some additional notation. Let a and q be relatively prime integers with 

q>0.  For x>0 ,  let P(x; q, a) be the set of primes p with p<.x and p - a  (mod q). For 

a = l ,  we set SO(x, q ) = P ( x ;  q, 1). We also define 

z~(x;q,a)= Z 1ogp. 
peT~(x;q,a) 

If f ( x )  and g(x) are arbitrary functions of a real variable x, we say that  f ( x )Ng(x )  

as x--+oc if 

lim f ( x )  =1. 
x ~  g(x) 

Define the error term 

X 
E(x; q, a) = vg(x; q, a) r  

where r is Euler's function. Then Bombieri proved the following deep theorem 

[Bo], [Oa]. 

THEOREM 2.1. (Bombieri) Let A > 0  be fixed. Then there exists a constant c(A)>0 

such that 
X 

max max IE(y;q,a)l <. c(A) 
(logx) A-5 y<~x (a,q)=l 

q~<v~/(log x)A 

for x>3 .  

This theorem shows that  the error terms max(a,q)=] E(x; q, a) behave as if they 

satisfy the Riemann hypothesis in an averaged sense. 
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Definition 2.2. Let x>3.  A Bombieri prime (relative to x) is a prime q~<v~ such 

that  the set P(x, q) of primes p<<.x with p - 1  (mod q) satisfies 

max IE(y; q, 1)1 ~< 
y<<.x 

X 

r 2" 

We say that  79(x, q) is a Bombieri set (relative to x). 

Remark. In all the applications in this paper, we do not really need q to be prime, 

though it makes the calculations somewhat easier. We could work with q being a 

"Bombieri number". 

LEMMA 2.3. Fix 0<Q<�89 Then for x sufficiently large, there exists at least one 

Bombieri prime q (relative to x) in the interval 

X ~ 
- -  ~ q ~ x  ~. 
log x 

Proof. Assume that  
X 

maxlE(y;q, 1)1 > 
u~<z r 2 

for all primes xQ/log x<<.q<~x e, i.e., that  there are no sueh Bombieri primes in the interval. 

In view of the trivial inequality, r  <q, it immediately follows that  

x 1 x log log x 
Y~ maxlE(y;q, 1 ) l > ~  ~ - > 

xO/ log  x<<q<<xe y<~x (log X)2 xO/log x<<.q<<.xO q 2Q (log x) 3' 

say, for sufficiently large x. This follows from the well-known asymptotic formula [Ld] 

for the partial sum of the reciprocal of the primes 

q<.y q 

as Y--+cr Here b is an absolute constant. This contradicts Theorem 2.1 with A~>8 

provided x is sufficiently large. [] 

LEMMA 2.4. Let P(x,  q) be a Bombieri set. Then for x sufficiently large, 

4/:P(x, q) x ~< 3 x 
r x r 2" 
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Proof. For a real number 0, define [0J to be the largest integer t such that t~0. We 
have 

x 

E i = E  ~(n;q, 1)-v~(n-1;q, 1) 
pCP(x,q) n = 2  log n 

---- ~-~O(n;q, 1) ( l l n  l og (n+ l ) )  - ~ 1  v~(x;q, 1) 
~=2 log(ixJ + 1) 

1) log(l+ l /n)  =~O(n;q, l o c i )  + - -  
n = 2  

It easily follows that 

p e P ( x , q )  x E 1 ~(x;q, 1) E~) (n ;  1) 
log x ~< q' - -  

n = 2  

(1 1 ) 
v~(x;q, 1) ~(x;q, 1 ) l o g x  log([xJ+l) log x 

1 (1 1 )  
n(logn) ~+o(x;q'l) logx log(x+l) " 

By the property of a Bombieri set, we have the estimate 

~)(n; n r176 x) 2 x q, 1)- r  ~< 

for n ~< x. Since 

1 1 O 1 , 
( logx log(x - t - l ) ) -  logl~ log(x-+- 1) (x(logx) 2 ) 

the second expression on the right-hand side of the above equation is very small and can 
be ignored. It remains to estimate the sum 

x 

Z ~ ( n ; q , 1  ) 1 
n (log n) 2" 

n = 2  

This sum can be broken into two parts, the first of which corresponds to n<~x/(logx) 3, 
which is easily seen to be very small, and so can be ignored. We estimate 

n 1 
E ~)(n;q, 1 _ x/0og~p~<,~<x r x/(logx)3<~n<<.x 1) n(log n) 2 n(log n) 2 

+o( 1 )  
�9 /0og n (log n) 2 

=x/(,og~xp<~n<~xr 2 ~-O(r 

3 x <~ 
2 r (log x) 2' 
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which holds for x sufficiently large and where the constant 3 is not optimal. Hence 

E 1 O(x;q, 1) 7 x 
pcp(~,q) logx ~< 4 r  2' 

say. Since 

q, 1 ) -  ~9(x; ~< 

Lemma 2.4 immediately follows. 

X 

r x) 2' 

[] 

3. P r o o f  o f  t h e  l o w e r  b o u n d  o v e r  Q 

In this section we consider the case of k = Q  and O = Z .  

1 It follows from Lemma 2.3 that  for x--+c~ there exists Fix a real number 0<60 < ~. 

a real number 8 which converges to 60, and a prime number q,~x ~ such that  P(x,  q) is a 

Bombieri set. 

Define 

P =  H P" 
peT:~(x,q) 

It is clear from the definition of a Bombieri set that  

X ~,~ x l _ a o  log P ,-~ r 

and from Lemma 2.4 that  

X X 1-~~ 

L = #/:P(x, q) ~ r log x ~ log x" 

Consider r ( P ) = k e r ( G ( Z ) - + G ( Z / P Z ) ) ,  which is of index at most pdim G in F. Note 

that  for every subgroup H/r(P) in r/r(P) there corresponds a subgroup H in F of index 
at most p d i m  G in F. 

By strong approximation 

r/r(P)=G(Z/PZ)~ H G(Fp). 
pE'P(x,q) 

Let B(p) denote the Borel subgroup in G(Fp). Then 

log # B ( p )  ~ �89 (dim G + r k ( G ) )  log p, 
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where rk(G) denotes the rank of G as an algebraic group. But 

log #G(Fp) ,,~ dim(G) log p. 

It immediately follows that (for p -+co) 

log [a(Fp): B(p)] ~ �89 (dim a - r k ( a ) )  log p, 

and, therefore, 

log [G(Z/PZ): B(P)] ~ �89 (dim G-rk(G))  log P, 

where B(P) <.G(Z/PZ) is 

B ( P ) =  I I  B(Fp). 
pC~(x,q) 

Now B(p) is mapped onto (F~)rk(a) and, hence, is also mapped onto (Z/qZ) rk(a) 

since # F p = p - 1  and p = l  (mod q). So B(P) is mapped onto 

where 

(Z//qZ)rk(G) L, 

X X 1-0 

L=#7)(x'q)~ r logx logx 

For a real number 0, define [01 to be the smallest integer t such that O<.t. Let 

0~<a~<l. 

We will now use Proposition 6.1, a basic result on counting subspaces of finite vector 

spaces. It follows that B(P) has at least 

qa(1-a) rk(G)2L2 TO(rk(G)L) 

subgroups of index equal to 

Hence, for x--+oc, 

while 

= qr~rk(C)L] [G(Z/PZ): B(P)]. 

log #{subgroups} = ( a (1 -a )  rk(G)2L 2 + O(rk(G)L)) log q 

X2-2~ 
a(1 - a )  rk(G) 2 (log x) 2 0 log x, 

log L = [(r rk(G) L~ log q + �89 (dim G -  rk(G)) log P 

~ rk(G)a x l -~  0 log z + �89 (dim G - rk (G) )x  1 -o  
log x 

= (a0 rk(G)+ �89 (dim G - rk(G))) x 1-~ 
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and 

log log t ,~ (1 - 6) log x. 

I t  is clear from the est imate for log t above that  given any index n>>0 we can choose x 

such tha t  log t ~ log n. We compute  

log #{subgroups} ( r ( 1 - a )  rk(G)26x2-20/logx 
(log(index))2/log log(index) "~ ((a6 r k ( G ) +  �89 (dim G -  rk(G)))  x l -e)2 / (1  - 6)log x 

a(1-a)6(1-6) rk(G) 2 

~ ((a6_ �89 rk(a)+�89 dima)2 
a s  x --+ (:x:). 

We may rewrite 

where 

a ( 1 - a ) 6 ( 1 - 6 )  rk(G) 2 _ a ( 1 - a ) 6 ( 1 - 6 )  

( ( a 6 _ l ) r k ( G ) + � 8 9  - (a6+n)2 ' 

R = dim G - r k ( G )  
2rk(G)  

Now, for fixed R, it is enough to choose a and 6 so tha t  

o(1-~)6(1-6) 
(~6+R) 2 

is maximized. This occurs when 

6=a= ~ - R ,  

in which case we get 

~ ( l - a ) o ( l -  O) _ (v/R( R+ I) - R )  2 
( a 6 + R )  2 4R 2 

Actually, we choose 60 to be ~ - R .  Then we can take 6 to be asymptot ic  

to 60 as x tends to infinity. Note that  

2 1 < - -  
4R 2 16R 2 

holds for all R > 0 .  This follows from the easy inequality ~ 1 )  -R~< 1. It  is also 

straightforward to see tha t  v / ~ R §  - R  converges to 1 as R-+ac .  Hence 

( v / R ( R +  1 ) - R )  2 1 

4R 2 16R 2" 

In the special case when R = I ,  we obtain the lower bound of Theorem 2. For a 

simple Chevalley group scheme over Q, this gives the lower bound in Theorem 6. 
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4. P r o o f  of  t h e  l o w e r  b o u n d  for a g e n e r a l  n u m b e r  field 

To prove the lower bounds over a general number field we need an extension of the 

Bombieri-Vinogradov theorem to these fields, as was obtained by Murty and Murty [MM]. 

Let us first fix some notation: 

Let k be a finite extension of degree f over Q, K its Galois closure of degree d, 

~=Gal (K/Q) ,  and Ok the ring of integers in k. For a rational prime q and xER,  we will 

denote by ~K(X, q) the set of rational primes p------1 (mod q), where p splits completely 

in K and p<.x. Let 

~ K ( x , q ) = ~ g ( x , q ) ,  UK(X,q)= E 1ogp 

pe~K (x,q) 
and 

X 
EK(X, q) = UK(X, q ) -  dr 

We shall show that  the following theorems follow from Murty and Murty [MM]. 

THEOREM 4.1. Let K be a fixed finite Galois extension of Q. Assume the GRH 

(generalized Riemann hypothesis) for K and all cyclotomic extensions K ( ~ )  with l a 

rational prime and r a primitive l-th root of unity. Then for every 0< 0< �89 there exists 

a number X = X ( K ,  O) (X depends on K and O) such that i f x > X ,  one canfind a rational 

prime q satisfying 

X o 

(a) 1-g~gx<~q<.x~ 

(b) #K(X, q) x ~<3 x 
d'r log x d'r x) 2 ; 

(c) max I/~K(y, q)l ~< x 
y<<.x d'r x) 2' 

where dl= [K: Q] / t  and t denotes the degree of the intersection of K and the cyclotomic 

field Q(r over Q. 

Remark. In fact, the GRH gives a stronger result than what is stated in Theorem 4.1. 

For example, it can be shown that  for every prime q<x 1/2 the error terms in parts (b) 

and (c) take the form O(x 1/2 log(qx)) (see [MMS] for a more precise bound). Theorem 4.1 

is stated in this special form because it can be proved unconditionally in some cases. 

THEOREM 4.2. Theorem 4.1 can be proved unconditionally for K if either 

(a) I~=Gal(K/Q) has an abelian subgroup of index at most 4 (this is true, for ex- 

ample, if k is an abelian extension), or 

(b) [K:Q] <42. 
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THEOREM 4.3. Theorem 4.1 is valid unconditionally for every K with the additional 

assumption that 0<p<l/~?,  where ~? is the maximum of 2 and d*-2 ,  and where d* is 

the index of the largest possible abelian subgroup of g=Gal( K/Q) .  In particular, we may 

take ~=d*-2  if d*>~4, and 7=2 if d*~4. 

Proof of Theorems 4.1-4.3. For any ~>0 and A>0,  under the assumptions of The- 

orem 4.1 or Theorem 4.2 (a), Murty and Murty [MM] prove the following Bombieri 

theorem: 

~-" max max 7cc(y,q,a) Icl 1 7r(y) x (4.1) 
laq r << (logx) 

Here C denotes a conjugacy class in 9, ~(Y)=~p<u 1, 

7rc(x,q,a)= E 1 
p<~x 

(p,K/Q)=C 
p~--a (rood q) 

p unramified in K 

and (p, K/Q)  denotes the Artin symbol. 

In fact, under the assumption of the GRH, equation (4.1) holds, but without assum- 

ing the GRH they showed that  (4.1) holds when the sum is over q<x 1/~-~, where ~ is 

defined as follows: Let 

d* = m~n max [9: H] w(1). (4.2) 

The minimum here is over all subgroups H of Gal (K/Q)  satisfying 

(i) H N C r  

(ii) for every irreducible character w of H and any non-trivial Dirichlet character X, 

the Artin L-series L(s, w| is entire. 

Then the maximum in (4.2) is over the irreducible characters of such H's. 

Now 
d*-2 ,  if d ' i>4,  

7]= 2, if d*~<4. 

We need their result for the special case when C is the identity conjugacy class. 

In this case, ICI/191=l/d' and ~rc(y,q, 1)=#k(y, q). So for proving Theorem 4.3 we can 

take for H an abelian subgroup of smallest index, and then H satisfies assumption (i) 

and (ii). (Recall that  abelian groups satisfy (AC)-- the Artin conjecture, i.e., L(s, w| 

are entire--see [H, w 

For Theorem 4.2 (a), again take H to be the abelian subgroup of index at most 4. 

It satisfies (i) and (ii), and this time 7=2. 
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For Theorem 4.2 (b), going case by case over all possible numbers d<42,  one can 

deduce by elementary group-theoretic arguments that  every finite group g of order d<42 

has an abelian subgroup of index at most 4, unless d=24  and g is isomorphic to the 

symmetric  group $4. But for this group, Artin [H, w proved Artin 's  conjecture in 1925. 

Moreover, every irreducible character of $4 is of degree at most 4. Thus for 1~=$4 we 

have d*=4, and so 7=2 .  

The proofs of Theorems 4.1 4.3 follow now in the same manner  as in w [] 

Using Theorems 4.1-4.3, we can now prove the lower bounds of Theorems 3 and 4 

just as in w Note that  for every prime pCT'K(x, q) we may take an ideal 7r=Tr(p) in Ok 

with [Ok:Tr]=p and 7 rnZ=pZ.  Let 

P =  l - [  
pC~K(X,q) 

X 
log [O: P] ~ de(q) ~ - -  

Then, since x-+oc,  we may choose q and 0 (using Theorem 4.1) so that  

X 1 - Q  X X 1 - ~  

d ' n :=]7~K(x,q) l  ~ dr d l o g x  

and 

a(o/P) = II  l--[ a(z/pz). 
pCT:~ K ( x,q) PE~k (x,q) 

We can now take for every rational prime pE~k(x, q), the Borel subgroup B(p) as in w 

and define 

B ( P ) =  1-I B(p). 
PC~k (x,q) 

Then B(P) is mapped  onto (Z/qZ) rk(G)L and 

log [G(O/P): B(P)]  ~ �89 (dim G - r k ( G ) ) l o g  [O: P]. 

Thus, by a computat ion similar to the one in w (note that  the d's cancel in this compu- 

tation), we can show that  

2 

4R 2 

The lower bounds of Theorems 3, 4 and 6 are now also proved. We now turn to the proof 

of the upper  bounds. 
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5. F r o m  SL2 t o  a b e l i a n  g r o u p s  

In this section we show how to reduce the estimation of a+(SL2(Z)) to a problem on 

abelian groups. 

Corollary 1.2 shows us tha t  in order to give an upper bound on a+ (F) it suffices to 

bound s~(G(Z/mZ)) when m<~n. Our first goal is to show that  we can further assume 

that  m is a product  of different primes. To this end let ~ - -  1-I P, where p runs through 

all the primes dividing m. 

We have an exact sequence 

1 > K ~ G ( Z / m Z )  ~ > G ( Z / ~ Z )  > 1, 

where K is a nilpotent group of rank at most dim G. Here, the rank of a finite group G 

is defined to be the smallest integer r such that  every subgroup of G is generated by r 

elements (see [LuS, Window 5, w 

LEMMA 5.1. Let 1--~K-+U2+L--+I be an exact sequence of finite groups, where 

K is a solvable group of derived length l and of rank at most r. Then the number of 

supplements to K in U (i.e., of subgroups H of U for which r ( H ) - - L )  is bounded by 
[UI3~+z~. 

Proof. See [LuS, Corollary 1.3.5]. [] 

COROLLARY 5.2. sn(G(Z/mZ)) ~<m/'(dim v)log log,~s~(G(Z/ffzZ)), where f ' ( d i m  G) 

depends only on dim G. 

Proof. Let H be a subgroup of index at most n in G(Z/mZ)  and let L=~r(H)~< 

G ( Z / ~ Z ) .  Thus L is of index at most n in G ( Z / ~ Z ) .  Let U=Tr -1 (L), so every subgroup 

H of G(Z/mZ) with 7 r (H)= L  is a subgroup of U. Given L (and hence also U) we have 

the exact sequence 1-+K-+U-~L--+I, and by Lemma 5.1, the number of H in U with 

7 r (H)= L  is at most [U[ ~f(r), where l is the derived length of K,  r~<dimG is the rank 

of K and f(r)<~f(dim G), where f is some function depending on r and independent 

of m (say f(r)----3r2+r). Now ]U[~m dimG, and K being nilpotent is of derived length 

O(loglog ]K[). We can, therefore, deduce that  

sn(G(Z/mZ)) <<. mcdim(G)f(dimG)(l~176176 

for some constant c, which proves our claim. [] 

Corollary 1.2 shows us that  in order to estimate a+(G(Z) )  one should concentrate 

on sn(G(Z/mZ)) with m<~n. Corollary 5.2 implies that  we can further assume that  m 

is a product of different primes. So let us now assume tha t  m=l-I~=l  qi, where the qi 

are different primes, and so G(Z/mZ)  "~ 1-[~=1 G(Z/qiZ) and t ~  (1 +o(1)) log m / l o g  log m. 
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We can further assume that  we are counting only fully proper subgroups of G(Z/mZ), 
i.e., subgroups H which do not contain G(Z/q~Z) for any l<~i<.t, or equivalently, the 

image of H under the projection to G(Z/q~Z) is a proper subgroup (see [Lu]). Thus H 
t M is contained in  1-[i=1 i ,  where Mi is a maximal subgroup of G(Z/q~Z). 

Let us now specialize to the case G=SL2, and let q be a prime. 

Maximal subgroups of SL2 (Z/qZ) are conjugate to one of the following three types 

of subgroups (see [Lg, Theorems 2.2 and 2.3, pp. 183-185]). 

(1) B=Bq the Borel subgroup of all upper triangular matrices in SL2. 

(2) D:Dq, D~ subgroups of dihedral type of order 2 ( q - l )  or 2(q§ (inverse 

images of dihedral maximal subgroups of PSL2(Z/qZ)). To simplify our notation we 

denote these groups by Dq. The group Dq is equal to N(Tq), the normaliser of a split 

or non-split torus Tq (a cyclic group of order q - 1  or q+ l ) .  The group Tq is either the 

• acts on diagonal subgroup, or is obtained as follows: Let Fq2 be the field of order q2, Fq2 

Fq2 by multiplication. The latter is a 2-dimensional vector space over Fq. The elements 

• induce the subgroup Tq of SL2(Fq). of norm 1 in Fq2 

(3) A=Aq--a subgroup of SL2(Z/qZ) which is of order at most 120. 

There are only boundedly many conjugacy classes of each type. Also, the number of 

conjugates of every subgroup is small, so it suffices to count only subgroups of SL2 (Z /mZ)  

whose projection to SL2(Z/qZ) (for qlm) is inside either B, D or A. 

Let S C {ql,..., qt } be the subset of the prime divisors of m for which the projection of 

H is in Aq~, and let S be the complement to S. Let ff~=l-[q~ q and H be the projection 

of H to SL2(Z/~Z) .  T h u s / 7  is a subgroup of index at most n in SL2(Z/~Z) ,  and the 

kernel N from H--+H is inside a product of IS] groups of type A. As every subgroup of 

SL2(Z/qZ) is generated by two elements, H is generated by at most 2 log m/loglogm<~ 
2 log n/ log log n generators. Set k =  [2 log n/ log log n +  1] and choose k generators for H. 

By a lemma of Gaschfitz (cf. [FJ, Lemma 15.30]) these k generators can be lifted up to 

give k generators for H. Each generator can be lifted up in at most IN] ways, and N 

is a group of order at most 120 ISI <~ 120 t ~< 120 l~ n/log log n. We, therefore, conclude that  

given H,  the number of possibilities for H is at most 1202(l~ n)2/(l~ log n) 2, which is small 

with respect to n t(n). 
We can, therefore, assume that  S = r  and all the projections of H are either into 

groups of type B or type D. 

Now, Bq, the Borel subgroup of SL2 (Z/qZ), has a normal unipotent cyclic subgroup 

Uq of order q. Let now S be the subset of {ql,-.., qt} for which the projection is in B, 

and let S be the complement. Then 

qES qES 
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Let H be the projection of H to I]qes(Bq/Uq) • I]qe~ Dq. The kernel is a subgroup of 

the cyclic group U:Hq~s  Uq. By Lemma 5.1 we know that  given H,  there are only a 

few possibilities for H.  We are, therefore, led to counting subgroups in 

Let E now be the product 

L= H(Bq/uq) • H 
qES qCS 

H (B /UO x H T,, 
qES qcS 

and for a subgroup H of L we denote H A E  by H. 

Our next goal will be to show that  given H in E, the number of possibilities for H 

is small. To this end we first formulate two easy lemmas, which will be used in the proof 

of Proposition 5.6 below. This proposition will complete the main reduction. 

LEMMA 5.3. Let H be a subgroup of U=Ul xU2. For i=1 ,2 ,  set Hi=Tri(H), where 

7ri is the projection from U to Ui, and H~ Then 

(i) H ~ is normal in Hi and H1/H~ ~ with an isomorphism ~ induced by the 

inclusion of H/(H~ x H ~ as a subdirect product of H1/H ~ and H2/H~ 

(ii) H is determined by 

(a) Hi for i=1 ,2 ;  

(b) g ~ for i=1,2; 

(c) the isomorphism ~ from g l / g  ~ to H2/H ~ 

Proof. See [Su, p. 141]. [] 

Definition 5.4. Let U be a group and V a subnormal subgroup of U. We say that  V 

is copolycyclic in U of colength 1 if there is a sequence V=Vo <~ VI<~ ... <~ Vg = U such that  

V{/V{_I is cyclic for every i=l ,  ..., I. 

LEMMA 5.5. Let U be a group and F a subgroup of U. The number of subnormal 

copolycyelic subgroups V of U containing F and of colength 1 is at most ]U:F] I. 

Proof. For l=l ,  V contains [U, U] F,  and so it suffices to prove the lemma for the 

abelian group U=U/[U, U]F and F = { e } .  For an abelian group 0 ,  the number of sub- 

groups V with U/V cyclic is equal, by Pontrjagin duality, to the number of cyclic sub- 

groups. This is clearly bounded by ]U] ~< [U: F I. If l > l ,  then by induction the number 

of possibilities for V1 as in Definition 5.4 is bounded by ]U: F] Z-1. Given V1, the number 

of possibilities for V is at most ]VI:F[<<.[U:F[ by the case l = l .  Thus, V has at most 

IU : FIt possibilities. [] 
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PROPOSITION 5.6. Let D=DlX. . .xDs,  where each Di is a finite group with a 
cyclic subgroup Ti of index 2. Let T=TlX.. .xT8 (and thus ID:TI=28). The number 
of subgroups H of D whose intersection with T is a given subgroup L of T is at most 
IDj8228 . 

Proof. Set Fi=I~j>.i Di. We want to count the number of subgroups H of D 

with HnT=L.  Let Li=projR,(L),  i.e., the projection of L to Fi, and Li+I=LiNFi+I, 

so that  ~,i+lC_Li+l. Let Hi be the projection of H to Fi. Given H, the sequence 

( H I = H ,  H2, ..., Hs) is determined, and, of course, vice versa. We will actually prove that  

the number of possibilities for (H1,..., Hs) is at most IDIS22s2. 

Assume now that  Hi+l is given. What  is the number of possibilities for Hi? Well, 

Hi is a subgroup of Fi =Di  x Fi+l containing Li, whose projection to Fi+l is Hi+l,  and its 

intersection with Fi+l, which we will denote by X, contains/,i+1- By Lemma 5.3, Hi is 

determined by Hi+l, X, Y, Z and ~, where Y is the projection of Hi to Di, Z=HiNDi 
and p is an isomorphism from Y/Z to Hi+I/X. Now, every subgroup of the group Di is 

generated by two elements, so the number of possibilities for Y and Z is at most IDil 2 

each, and the number of automorphisms of Y/Z is also at most IDil 2. 
Let us now look at X: X is a normal subgroup of Hi+l with Hi+I/X isomorphic 

to Y/Z, so it is meta-cyclic. Moreover, X contains Li+l. So by Lemma 5.5, the number 

of possibilities for X is at m o s t  IHi+l:Li+l] 2. 

N o w  IHi+l:Li+xl<~lHi+l:Li+ll . lLi+l:Li+ll .  W e  know that  

IHi+l : Li+ll = IprojF~+I(H): projE~+~(L)] ~< IH: LI ~< 28 

and 

ILi+l :/~i+l I--IprojF~+l(Li) : Fi+l NLi] ~< IDil- 

So, IHi+l:L~+ll<~2SlDi I. 

Altogether, given Hi+l (and L, and hence also the Li's and ]-i's), the number of 

possibilities for Hi is at most IDilS228. Arguing now by induction, we deduce that  the 

number of possibilities for (H1,..., Hs) is at most IDIS2 282 as claimed. [] 

Let us now get back to SL2: Proposition 5.6 implies, in the notation given before 

Lemma 5.3, that  when counting subgroups of 

L= I I  (Bq/Uq) • H Dq, 
qES qES 

we can instead count the subgroups of 

E :  II( .q/uq)  • I I  rq, 
qcS qES 



92 D. GOLDFELD, A. LUBOTZKY AND L. PYBER 

where Tq is a torus in SL2 (Z/qZ) (so that  Tq is a cyclic group of order q - 1  or q+ 1, while 

Bq/Uq is a cyclic group of order q - 1 ) .  

A remark is needed here: Let H be a subgroup of index at most n in SL2(Z/mZ) 

which is contained in X = [Iqcs Bq x 1-Iq~ Dq and contains Y= I-Iqes Uq x 1-[qc~ {e}. By 

our analysis in this section, these are the groups which we have to count in order to 

determine a+(SL2(Z)).  We proved that  for counting them, it suffices for us to count 

subgroups of Xo/Y, where Xo=[Iqes Bq x I]qe~ Tq. Note though that  replacing H with 

its intersection with X0 may enlarge the index of H in SLu(Z/mZ).  But the factor is at 

most 
2log m~ log log m ~-- m l / l o g  log m ~ n l / l o g  tog n.  

As n-+oc,  this factor is small with respect to n. By the remark made in w we can 

deduce that  our original problem is now completely reduced to the following extremal 

problem on counting subgroups of finite abelian groups: 

Let ~o_--{ql, ...,qt} and P+={q~,...,q~,} be two sets of (different) primes and let 

P = P_ UT)+. Put  

t t ~ f(n)=sup{sT(X) 
i=1 i=1 

where the supremum is over all possible choices of 7~_, 7~+ and r such that  

t t t 

r ~ q~ l-I qlj <. n, 
i=1 j = l  

and where Cm denotes the cyclic group of order m. The discussion above implies the 

following result: 

P R O P O S I T I O N  5 . 7 .  We have 

a+(SL2(Z) )=  li--~ l og f (n )  
~ - ~  ),(n) 

6. Count ing  subgroups  of  p -groups  

In this section we first give some general estimates for the number of subgroups of finite 

abelian p-groups which will be needed in w As an application we obtain a lower bound 

for the subgroup growth of uniform pro-p-groups (see definitions below). 

For an abelian p-group G, we denote by Q~(G) the subgroup of elements of order 

dividing pi. Then Qi (G)/Qi-1 (G) is an elementary abelian group of order, say, p ~  called 
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the i th layer of G. We call the sequence A1 ~> A2 ~>.../> Ar the layer type of G. It is clear 

that this sequence is decreasing. 

Denote by 

the p-binomial coefficient, i.e., the number of u-dimensional subspaees of a A-dimensional 

vector space over Z/pZ. 
The following result holds (see [LuS, Proposition 1.5.2]). 

PROPOSITION 6.1. (i) 

(ii) 

p'(~-~)<<,[~]p<<.pVp'(~-~). 

is attained for u =  [�89 in which case 

['~] =pA2/4+O(A) 
U P 

as A--+cx). 

The starting point is the following well-known formula (see [Bu]). 

PROPOSITION 6.2. Let G be an abelian p-group of layer type AI~>A2...~>Ar. The 
number of subgroups of layer type Ul >~ u2 >~... is 

I l  pU~+l(A~-ul) [ ~i--Ui+l I . 
i~>l k u i - U i + l  P 

(In the above expression we allow some of the u / t o  be 0.) 

We need the following estimate. 

PROPOSITION 6.3. 

I I  P~(~-v~) << I l  Pu~+l(~-a) [ Ai--u~+l I <~ pVi I I  P~(~-~). 
i/>1 i/>l k ui -- Ui+l  P i/>l 

Proof. By Proposition 6.1 we have 

1--I p~,~+~( ;~-v~) [*~i -v i+  1 ] ~ 1--IP~'~+~(A~-~'~)P(V~-~'~+~)((A~-v~+I)-(~'~-~'~+~))P~'~-~'~+~ 
i~>1 k/]i -- Ui+l  J p i~>l 

= P~'I I I  pV~+~ (;~-~,~)p(V~ - ~,,+~ )(;~-vJ = p~,~ 1-I pa  (;~,-~,,). 
i/>1 i/>1 

The lower bound follows in a similar way. [] 
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COROLLARY 6.4. Let G be an abelian group of order p~ and layer type AI >....>.Ar. 
Then IGI-1 rli>~l p A2/4 < ISub(G)I ~< IGI 2 I-[i)x pA~/4 holds. 

Proof. Considering subgroups H of layer type [�89 [1A2J/> ..., we obtain that  

ISub(G)l ~> rL~>I p [~,/23 (~,- k~,/2j) ~>p-r H,~>I p~/4, which implies the lower bound. 

On the other hand, for any fixed layer type vl )v2~>..., the number of subgroups H 

with this layer type is at most 

The number of possible layer types Vl )  v2 ~>... of subgroups of G is bounded by the 

number of partitions of the number a, and hence it is at most 2~< IGI. This implies our 

statement. [] 

Let us make an amusing remark which will not be needed later. 

If G is an abelian p-group of the form G=Cxl x Cx2 x ... x Cx~, then it is known 

(see [LuS, w that  IEnd(G)l=l-Ij,k>>.l gcd(xj ,xk) .  Noting that  H3,k>~l gcd(xj, xk )=  

1-Ii~>l p~2 we obtain that  

]GI-1IEnd(G)I U4 < ] Sub(G)] ~< [GI2IEnd(G)I 1/4. 

These inequalities clearly extend to arbitrary finite abelian groups G. 

For the application of the above results to estimating the subgroup growth of 

SLd(Zp) we have to introduce additional notation. For a group G let G k denote the 

subgroup generated by all k th  powers. For odd p a powerful p-group G is a p-group with 

the property that  GIG p is abelian. (In the rest of this section we will always assume 

that  p is odd; the case p = 2  requires only slight modifications.) The group G is said to 

be uniformly powerful (uniform, for short) if it is powerful and the indices ]GP': GP~+I I 
do not depend on i as long as i<e ,  where pe is the exponent of G. 

Now let G be a uniform group of exponent p~, where e=2i ,  with d generators. Then 

G p~ is a homocyclic abelian group of exponent pi with d generators (i.e., it has layer type 

d, d, ..., d with i terms) [Sh]. 

Consider subgroups H of G p' of layer type v, v, ..., v (i terms). The number of such 

subgroups is at least pi~(d-,) by Proposition 6.3. The index n of such a subgroup H 

in G is pdi+(d-,)i. Hence the number of subgroups of index n in G is at least n x, 

where x = v ( d - v ) / ( 2 d - v ) .  Substituting v =  [d (2 -x /~ ) J  we see that  x can be as large as 

(3-2v~)d- (v~-l). 
Let now U be a uniform pro-p-group of rank d, i.e., an inverse limit of d-generated 

finite uniform groups G. Then we see that  for infinitely many n we have sn(G)>. 
n(3-2v~)d-(v"2-1). 
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Now SLd(Zp) is known to have a finite-index uniform pro-p-subgroup of rank d 2 - 1 

(see [DDMS, Theorem 5.2]). This proves the following result. 

PROPOSITION 6.5 .  The subgroup growth of SLd(Zp)  is at least n ~, i.e., 

lim logsn(SLd(Zp)) ~c,  
n-+c~ log n 

where 

Note that  for a pro-p-group P of rank d we have limn_,~ log(sn(P)/logn)<~d, 

[LuS, Chapter 4.1]. Hence we have limn~oo log sn(SLd(Zp))/logn<~d2-1. 

B. Klopsch proved [K] that  if G is a residually finite virtually soluble minimax group 

of Hirseh length h(G), then its subgroup growth is of type at least n h(c)/7. By using the 

above argument one can improve this t o  n (3-2v~)h(G)-(v'~-l). 

7. C o u n t i n g  s u b g r o u p s  o f  a b e l i a n  g r o u p s  

The aim of this section is to solve a somewhat unusual extremal problem concerning the 

number of subgroups of abelian groups. The result we prove is the crucial ingredient 

in obtaining a sharp upper bound for the number of congruence subgroups of SL2(Z). 

Actually we prove a slightly more general result, which will be used in [LuN] to obtain 

similar bounds for other arithmetic groups. 

We will use Propositions 6.2 and 6.3 in conjunction with the following simple (but 

somewhat technical) observations. 

PROPOSITION 7.1. Let R ~  I and let C, t E N  be fixed. Consider pairs of sequences 

{A~} and {u,~} of non-negative integers such that A~<~t for all i and ~-~>I(RA~+u~)~<C. 

Under these conditions the maximal value of the expression 

A({A}, {v}) = E v,(,~,- v,) 

can be attained by a pair of sequences {,~} and {v~}, i=1,  2, ..., r, such that 

( i ) ) ~ 1 ~ 2 ~ . . . ~ ,  ~ 1 ~ v 2 ~ . . . ~ 1  and ,~ i~ i  for all i; 

(ii) ,~1=~2 . . . . .  , ~ _ l = t ;  

(iii) for some O~b<~r-1 we have l / l : / / 2  . . . . .  /]b----/]b+l-{-i . . . . .  v r - l + l .  If  Ar=t 

then also y~E{~I, ~1-1}. 

Proof. Suppose that  the maximum of A({A}, {~}) is attained by a pair {hi}, {~i} of 

sequences of non-negative integers. Deleting pairs with t,j--0 does not change the value 

of A({A}, {y}), hence we can assume that  all ~,i~>l. If Aj<vy for some j ,  then we can 
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delete Aj and ~j from the sequences, and in this way the value of A({A}, {~}) increases, 

a contradiction. Hence we have that  hi ~> vi for all i. By relabelling the indices we can 

further assume that  ~1 ~> v2/>... ~> vr ~> 1. 

Now, if ~- is a permutation of {1,2, ..., r}, it is clear that  the maximum of }-]i A~(i)v~ 

(and hence of A({A~(0}, {vi})) is achieved for permutations ~ such that  A~(~)~>A~(2)~> 

...>~A~(r). By the maximality of the pair {A~}, {v~} it now follows that  AI~>A2~>...~>Ar 

as well, proving (i). We shall call a pair of sequences {)~} and {~i} satisfying (i) good. 

Let j be the smallest index such that  we have t>~j ~)~j+l ~ 1 (if there is no such j 

then (ii) holds). 

Assume that /~j+l  . . . . .  )~j+k and )~j+k>~j+k+l o r  j + k = r .  The condition vj~>~j+k 

implies that  vj ((Aj + 1) - vj) + ~j+k ((Aj+k - 1) -- vj+k)/> vj (Aj -- vj) + ~j+k (Aj+k - l]j+k). If 

)~j+k=vj+k then (by deleting some terms and relabelling the rest) we can replace our 

sequences by another good pair for which ~ > 1  AJ is strictly smaller and the value of 

A({A~},{~,~}) is the same. Otherwise, replacing Aj by Aj+I  and A~+~ by )~j+k--1 we 

obtain a good pair of sequences for which {A~} is lexicographically strictly greater and 

for which A({A~}, {~}) is at least as large (and hence maximal). 

It is clear that  by repeating these two types of moves we eventually obtain a good 

pair {Ai}, {~q} satisfying (ii) as well. 

Now set /~= ~1 + ~2 +... + ~r- 1. Then 

i~>~ 

It is clear that  if the value of such an expression is maximal, then the difference of 

any two of the ~3 with j ~< r - 1  is at most 1. Part (iii) follows. [] 

PROPOSITION 7.2. Let x l, x~,.. . ,xt be positive integers such that at most d of the 
x~ can be equal. Then 

I I  . 
i = 1  

Pro@ If, say, x~ is the largest among the xi then Xl >~t/d. By induction we can 

assume that  l-It~=~ xi >1 ( ( t -  1)/ed) t-1. Then 

YIx i>/  d \  ed ) = e ~ \ - ~ - ]  
i=1 

=e ~ = -~ ( l + l / ( t _ l ) ) t _ l  

as required. [] 
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The main result of this section is the following theorem. 

THEOREM 7.3. Let R>~I be a real number and d be a fi"xed integer >~1. Let n and r 

be positive integers. Let G be an abelian group of the form G=Cxl • Cx2 • ... • Cxt, where 

at most d of the xi can be equal. Suppose that rlGIR~n holds. Then the number of 

subgroups of order <.r in G is at most n (~+~ where ~ = ( ~ - R ) 2 / 4 R  2. 

In panicular, if R--1 then 

Proof. We start the proof with several claims. 

CLAIM 1. t<<.(l+o(1))l(n). 

Proof. By Proposition 7.2 we have (t/ed)t<~n. This easily implies the claim. [] 

CLAIM 2. In proving the theorem, we may assume that t>j~l(n). 

Proof. For otherwise every subgroup of G can be generated by 7l(n) elements, and 

hence I Sub(G)I ~< IGI ~z(n) < nTZ(n). [] 

Now let a(n) be a monotone increasing function which goes to infinity sufficiently 

slowly. For example, we may set a(n)=log log log log n. 

Let Gp denote the Sylow p-subgroup of G and let P P A1 )A2) . - -  denote the layer type 

of Gp. Loosely speaking, we call any layer of some Gp a layer of G. We call such a 

layer essential if its dimension AP is at least l(n)/a(n). Clearly the essential layers in Gp 

correspond to the layers of a certain subgroup Ep of Gp (which equals ~i(Gp) for the 

largest i such that  AP)l(n)/a(n)).  Let us call E=l-Ip Ep the essential subgroup of G. 

CLAIM 3. Given E A T  we have at most n ~ (i.e., a small number) of choices 

for a subgroup T of G. 

Proof. It is clear from the definitions that  every subgroup of the quotient groups 

Gp/Ep, and hence of G/E, can be generated by less than l(n)/a(n) elements. Therefore 

the same is true for T/ (TAE) .  This implies the claim. [] 

By Claim 3, in proving the theorem, it is sufficient to consider subgroups T of E. 

Let v denote the exponent of E. Then E is the subgroup of elements of order 

dividing v in G. Now v is the product of the exponents of the Ep, hence the product of 

the exponents of the essential layers of G. It is clear from the definitions that  we have 

v l(~)/~(n) ~n,  and hence v~< (log n) a(n). Using well-known estimates of number theory [R] 

we immediately obtain the following result. 

CLAIM 4. (i) The number z of different primes dividing v is at most 

log v a(n) log log n 
log log v log log log n 
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(ii) The total number of divisors of v is at most  vC/l~176 ca(n)/l~176176 
for some constant c>0.  

CLAIM 5. IG:El>~(logn) (l+~ 

Proof. Consider the subgroup Ei=ENCx~. It follows that  E i is the subgroup of 

elements of order dividing v in Cx,. Set ei=]Eil and hi=xi/ei. It is easy to see that  

E=Yii>~l E i, and hence IG : E]=Yii>~l hi. [] 

By Claim 4 (ii) for the number s of different values of the numbers ei we have 

s=(logn) ~ We put the numbers xi into s blocks according to the value of ei. By our 

condition on the xi it follows that  at most d of the numbers hi corresponding to a given 

block are equal. Hence altogether ds of the hi can be equal. Using Proposition 7.2 we 

obtain that  [G :E  I ~ 1-L>~I hi >1 (t/eds) t. 
Since sd=(logn) ~ and by Claim 2, t>~f(logn/loglogn), we obtain that  IG:E[>~ 

(logn) (l+~ as required. 

Let us now choose a group G and a number r as in the theorem for which the number 

of subgroups T<.E of order dividing r is maximal. To complete the proof it is clearly 

sufficient to show that  this number is at most n (~+~ 
Denote the order of the corresponding essential subgroup E by f ,  and the index 

IG:EI by m. 

Using Propositions 6.2 and 6.3 we see that  apart from an n~ (which we 

ignore) the number of subgroups T as above is at most 

ply i/>l 

AP for some L,~ and A~, where { i }, {Y~} is a pair of sequences for every p, 1-[p I-[i~>l P ~  

divides f ,  and 1-I, I-Ii>/1 P v/p divides r. Assuming that  fRr  is fixed together with the 

upper bound t for all the A~ and #~, let us estimate the value of the expression (7.1). 

By Proposition 7.1, a maximal value of an expression like (7.1) is attained for a 

choice of the A p and v~ (for the sake of simplicity we use the same notation for the new 

sequences) such that  for every p there are at most 3 different pairs (p~,  p ~ )  equal to, 

say, 

(pt, ptZV+l), (pt, p I~v) and (p~-',p~~ 

where #~ ~< 7 -p < t and #P < t for all p. 

Exchange the pairs equal to the first type for pairs equal to (pt, pt, V). We obtain an 

expression like (7.1) such that  the ratio of the two expressions is at most 

p i ~ l  
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If now there are, say, (~P pairs with (p~f,p~) equal to (pt, pU'), then take/3 p to be 

the largest integer with 2Z'~<p ~" and set/3P= [log2p j . (Note that  for every p there is at 

most one pair of the form (prp, pg~).) 

Consider the expression 

H 2Z'~(t-'~) 2~fu~(~-'~)" (7.2) 
P 

Its value may be less than that  of (7.1), but in this case their ratio is bounded by 

(22z)t:n (where z is the number of primes dividing v). Hence this ratio is at most 

2(2+o(1)) l(n)2a(n) log log n~ log log log n <~ n(2+o(1))l(n)a(n)/log log log n = nO(l(n)). 

To prove our theorem it is sufficient to bound the value of (7.2) by n ('Y+~ 
It is clear that  the value of (7.2) is equal to the value of 

H 2~k(~k--~k) (7.3) 
k~>l 

for appropriate sequences {)~k} and {#k} which both have Ep(13P+I3~) terms and for 

which Ak, #k~<t and also 

H 2R~k+~k ~< rfR' i.e., E (RAk+Uk) <.log(rfR). 
k>/1 k~l  

(7.4) 

More precisely, the sequence {)~k} has ~ p  tiP terms equal to t and tiP terms equal 

to T p for every p, while {#k} consists of #P repeated tiP times and #~ repeated tiP times 

each (in the appropriate order). 

By Proposition 7.1 the expression (7.3) attains its maximal value for some sequences 

{Ak} and {uk} such that  all but one of the Ak, say ,~a+l, a r e  equal to t and we have 

/21:/22 . . . . .  Vb=I-FVb+I . . . . .  1+Ua for some b<~a. 
Consider now the expression 

ii2~i(~i-~i), (7.5) 
k~l 

where 
i ! ! (~o+1 0) 

and ua=u~=u~ . . . . .  u~ (U~+l=0). 
It easily follows that  the value of (7.3) is at most 22t2 times as large as the value of 

(7.5) and 22t2=n~ Hence it suffices to bound the value of (7.5) by n ( ' ~ + ~  
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To obtain our final estimate let y = 2  a, w = m  1/t (where m=[G:E[) ,  and set x=yw.  

For some constants between 0 and 1 we have y = x  ~ and u~=at. Then w = x l - ~ =  
y(1-~)/~. 

Note that  the condition (7.4) implies 2at(n+a)=y~ R. We have n>~r(mf)R>~ 

y~tymwRt, and hence log n~>t(log y)( R + a + R(1 - Q) /0). 

By Claim 5 we have w 7> (log n) 1+~ Hence 

(1 t o ( l ) )  log log n ~ log w = - -  

Therefore 

1 - 6  logy. 
0 

(log n)______~ 2 ~> t 2 (log y)2 ( n + a + R ( 1  - ~))/~)2 (1 t o ( l ) )  
log log n (( 1 - ~))/~)) log y 

1 2 
=( l+o(1 ) ) t 2 ( l ogy ) (R ta+R- -~Q~  1 lY-e. 

The value of (7.5) is yat(t-at), which as we saw is an upper bound for the number of 

subgroups R (ignoring an n~ Hence 

log (number of subgroups T) 
(log n)2/log log n 

t2a(1--a) log y 
~< ( l t 0 (1 ) )  t2 ( logy) (R+(TtR( l_o) /O)20 / ( l_Q)  

= (1+o(1)) a ( 1 - a ) ( 1 - ~ ) / ~  
( R t a t R ( 1 - O ) / ~ )  2 

= (1+o(1)) a (1 -a )Q(1-Q)  
(Rtco~) 2 

As observed in w the maximum value of a ( 1 - a ) O ( 1 - O ) / ( R t y a )  2 for a, 0e(0, 1) is 7- 

The proof of the theorem is complete. [] 

By using a similar but simpler argument, one can also show the following result. 

PROPOSITION 7.4. Let G be an abelian group of order n of the form 

G = Cxl x Cx2 x ... • Cx~, where xl  > x2 >... > xt. 

Then ]Sub(G)]<~n(1/16+~ This bound is attained if x i - - t i  for all i. 

Combining this result with an earlier remark, we obtain that  n O/a+~ is the 

maximal value of 1-[i,j gcd(xi, xj),  where the xi are different numbers whose product is 

at most n. 
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Note that  ISub(C)l is essentially the number of subgroups T of order LI iJ 
(see [Bu] for a strong version of this assertion). Hence Proposition 7.4 corresponds 

to the case R--1 and r~n 1/3 of Theorem 7.3. 

8. E n d  o f  t h e  p ro o f s  o f  T h e o r e m s  2, 3 a n d  4 

Theorem 2 is actually proved now: the lower bound was shown as a special case of R= 
R(G)=I in w For the upper bound, we have shown in Proposition 5.7 how c~+ (SL2(Z)) is 

equal to limn_+~(log f(n)/A(n)) (see Proposition 5.7 for the definition of f(n)). But The- 

orem 7.3 implies, in particular, that  f(n) is at most n (~+~ where V= �88 ( 3 - 2 v ~ ) .  

This proves that  a+ (SL2(Z))<~/and finishes the proof. 

The proof of Theorem 3 is similar, but severM remarks should be made: The lower 

bound was deduced in w For the upper bound, one should follow the reductions made 

in w The proof can be carried out in a similar way for SL2(O) instead of SL2(Z), but 

the following points require careful consideration. 

(1) One can pass to the case that  m is an ideal, which is a product of different 

primes ~i in O, but it is possible that  O/~i  is isomorphic to O/n j .  Still, each such 

isomorphism class of quotient fields can occur at most d times when d =  [k : Q]. 

(2) The maximal subgroups of SL2(Fq) when Fq is a finite field of order q (q is a 

prime power, not necessarily a prime) are the same B, D and A as described in (1), (2) 

and (3) of w 

The rest of the reduction can be carried out in a way similar to w The final 

outcome is not exactly as f(n) at the end of w but can be reduced to a similar problem 

w h e n / ( n )  counts s~(X) when X is a product of abelian cyclic groups, with a bounded 

multiplicity. Theorem 7.3 covers also this case and gives a bound to ] (n ) ,  which is the 

same as for f(n). Thus a + ( S L 2 ( O ) ) , . < v = i ( 3 - 2 v / 2 ) .  

We finally mention the easy fact that  replacing O by Os when S is a finite set of 

primes (see the introduction) does not change a+ or a_.  To see this, one can use the 

fact that  for every completion at a simple prime 7r of O, G(O~) has polynomial subgroup 

growth, and then use the well-known techniques of subgroup growth and the fact that  

a(@) = • I I  
~ES\V~ 

to deduce that  a(G(O))=a(G(Os)). 
Another way to see it, is to observe that  G(Os) is a quotient of G(O),  and hence 

a+(G((.P))>~a+(G(Os)). On the other hand, the proof of the lower bound for a (G(O))  

clearly works for G((gs). Theorem 3 is, therefore, now proved, as well as Theorem 4 

(since we have not used the GRH for the upper bounds in Theorem 3). 
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9. An extremal problem in elementary number theory 

The counting techniques in this paper can be applied to solve the following extremal 

problem in multiplicative number theory. 

For n--+oc, let 

t } 
M l ( n ) = m a x {  H gcd(ai,aj) O<t, a l < a 2 < . . . < a t E Z ,  I l a i < . n  , 

"l<~i,j<~t i = 1  

M2(n)=max / I I  g c d ( p - l , p ' - l )  T~is 
~p,p~E7 ~ 

/ 
set of distinct primes where H p ~< n~. a 

) 
p E ' P  

We shall prove the following theorem, which can be considered as a baby version of 

Theorem 2 (compare also to Theorem 7.3). Note that Theorem 9.1 immediately implies 

Theorem 9. 

THEOREM 9.1. Let A(n)=(logn)2/loglogn. Then 

lim log M1 (n) _ ~ log M2 (n) _ 1 
,~_~ A(n) n - ~  A(n) 4" 

Proof. Recall that if al, a2,..., at E Z and G = Ca1 x Ca2 x... x Cat is a direct product 
of cyclic groups, then by w 

IG1-1 IEnd(G)l U4 ~< ISub(a)l ~< Ial  2 IEnd(G)l 1/4 

and 

Proposition 7.4 implies that 

[End(G)l= I I  gcd(ai,aj). 
l<~i,j~t 

log M1 (n) ~< 4" 
li~rno~ A(n) 

It is clear that M2(n)<.Ml(n), so to finish the proof it is enough to obtain a lower bound 

for M2(n). 

Now, for x-+oc and x~ ~ (with 0<Q< 1) choose 

7 a = P ( x , q ) = { p < . x l p - 1  (mod q)} 

to be a Bombieri set relative to x, where q is a prime number (a Bombieri prime). By 

Lemma 2.4 we have the asymptotic relation # P ( x ,  q)~x/r  x. In order to satisfy 
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the condition npe7:, p <~ n, we choose x ~ q log n. Without  loss of generality, we may choose 

1 It  follows that  q = x  o for some 0 < 0 < ~ .  

log log n x (1 - Q) log n 
x 1-~ ,~ log n, log x ~ - -  and 7~P = --ff'P(x, q) ,.~ 

1 -  O r log x ~ log log n 

Consequently, 

n g e d ( p -  1, p ' -  1)/> q(#p)2/> (xO)(l_o)2(log n)2/(log log n) 2 ~ e0(1-0) ( log  n)2/ log log n. 
p,pIC'P 

Let now 0 tend to 1, and the theorem is proved. [] 
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