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1. I n t r o d u c t i o n  

About  fifty years ago Mahler [Ma] proved that  i f  ~ >  1 is rational but not an integer 

and i f  0 < l < l ,  then the fractional part of  (~n is larger than l n except for  a f inite set  of  

integers n depending on ~ and I. His proof used a p-adic version of Roth ' s  theorem, as 

in previous work by Mahler and especially by Ridout. 

At the end of that  paper  Mahler pointed out that  the conclusion does not hold if c~ 

1 (1 + x/~ ) ; of course, a counterexample is provided is a suitable algebraic number, as e.g. 

by any Pisot  number, i.e. a real algebraic integer c~>l all of whose conjugates different 

from cr have absolute value less than 1 (note that  rational integers larger than  1 are 

Pisot numbers according to our definition). Mahler also added that  "It would be of some 

interest to know which algebraic numbers have the same property as [the rationals in the 

theorem]". 

Now, it seems that  even replacing Ridout 's  theorem with the modern versions of 

Roth 's  theorem, valid for several valuations and approximations in any given number  

field, the method of Mahler does not lead to a complete solution to his question. 

One of the objects of the present paper  is to answer Mahler 's question completely; 

our methods will involve a suitable version of the Schmidt subspace theorem, which may 

be considered as a multi-dimensional extension of the results mentioned by Roth, Mahler 

and Ridout. We state at once our first theorem, where as usual we denote by IIx]] the 

distance of the complex number x from the nearest integer in Z, i.e. 

Ilxll := m i n { J x - m J  : m C Z } .  
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THEOREM 1. Let a > l  be a real algebraic number and let 0 < l < 1 .  Suppose that 

II anll < In for infinitely many natural numbers n. Then there is a positive integer d such 

that a d is a Pisot number. In particular, a is an algebraic integer. 

We remark that  the conclusion is best  possible. For assume tha t  for some positive 

integer d, /3:--a d is a Pisot number. Then for every positive multiple n of d we have 

Ilanll << I n, where l is the dth  root of the maximum absolute value of the conjugates of/3 

different from/3. Here, Mahler 's  example with the golden ratio is typical. 

Also, the conclusion is not generally true without the assumption tha t  a is algebraic; 

for this see the appendix. 

The present application of the subspace theorem seems different from previous ones, 

and occurs in Lemma 3 below. Related methods actually enable us to answer as well 

a question raised by Mend~s France about  the length of the periods of the continued 

fractions for a n, where a is now a quadratic irrational; this appears  as Problem 6 in [Me]. 

We shall prove, more generally, the following result: 

THEOREM 2. Let a > 0  be a real quadratic irrational. I f  a is neither the square root 

of a rational number, nor a unit in the ring of integers of Q(a) ,  then the period length 

of the continued fraction for a n tends to infinity with n. I f  a is the square root of a 

rational number, the period length of the continued fraction for a 2n+1 tends to infinity. 

I f  a is a unit, the period length of the continued fraction for a n is bounded. 

Clearly, if a is the square root of a rational number,  then the continued frac- 

tion for a ~n is finite,(1) so Theorem 2 gives a complete answer to the problem of 

Mendbs France. 

The main tool in the proof of both  theorems is the following new lower bound 

for the fractional parts  of S-units in algebraic number  fields. We first need a 

definition: 

Definition. We call a (complex) algebraic number  a a pseudo-Pisot number if 

(i) lal > 1 and all its conjugates have (complex) absolute value strictly less than  1; 

(ii) a has an integral trace: WrQ(a)/Q(a)EZ. 

Of course, pseudo-Pisot numbers are "well approximated" by their trace, hence 

are good candidates for having a small fractional par t  compared to their height. The  

algebraic integers among the pseudo-Pisot numbers are just  the usual Pisot numbers. 

We shall prove the following result: 

(1) Its length tends to infinity by a result of Pourchet, proved in greater generality in [CZ]. 
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MAIN THEOREM. Let F c Q  • be a finitely generated multiplicative group of algebraic 

numbers, let 5cQ  • be a non-zero algebraic number and let ~>0 be fixed. Then there are 

only finitely many pairs (q,u)~z• with d=[Q(u) :Q]  such that 1Saul>l, 5qu is not 

a pseudo-Pisot number and 

o < 115q ll < H(u)-*q -d-*. (1.1) 

Note again that ,  conversely, starting with a Pisot number a and taking q = l  and 

u = ( f  ~ for n = l ,  2, ... produces an infinite sequence of solutions to 0< Ilqull < H ( u )  -~ for a 

suitable s>0 .  

The above main theorem can be viewed as a Thue-Roth  inequality with "moving 

target", as the theorem in [CZ], where we considered quotients of power sums with in- 

tegral roots instead of elements of a finitely generated multiplicative group. The main 

application of the theorem in [CZ] also concerned continued fractions, as for our Theo- 

ram 2. 

2. P r o o f s  

We shall use the following notation: Let K be a number field, embedded in C and Galois 

over Q. We denote by M/( (rasp. M ~ )  the set of places (resp. archimedean places) of K;  

for each place v we denote by 1 Iv the absolute value corresponding to v, normalized 

with respect to K; by this we mean that  if v E M ~  then there exists an automorphism 

aEGal(K/Q) of K such that,  for all xEK,  

I x l v  = I (x)l 

where d ( a ) = l  if a ( K ) = K c R ,  and d ( a )=2  otherwise (note that  d(a) is now constant 

since K / Q  is Galois). Non-archimedean absolute values are normalized accordingly, so 

that  the product formula holds and the absolute Weit height reads 

H(x)  = H max{l ,  Ixlv}. 
vEMK 

For a vector x = ( x l ,  . . . ,Xn)CK n and a place vEMK we shall denote by I]xl]~ the v-norm 

of x, namely,(2) 

HxHv := max{ Ix1 Iv,..., Ixn M,  

(2) We believe tha t  there will be no confusion with the previously recalled symbol Ilxll for the 
distance to the nearest  integer. 
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and by H ( x )  the projective height 

H ( x )  = H max{lxlIv,..., Ixnl~}. 
vEMK 

We begin by proving the main theorem. First of all notice that ,  by enlarging if 

necessary the multiplicative group F, we can reduce to the situation where F c K  • is the 

group of S-units: 

F =  O~ = {uEK:iu[~ = 1 for all v ~ S }  

of a suitable number  field K ,  Galois over Q, with respect to a suitable finite set of 

places S, containing the arehimedean ones and stable under Gatois conjugation. 

Our first lemma can be easily deduced from a theorem of Evertse, which in turn was 

obtained as an application of the already mentioned subspace theorem; we prefer to give 

a proof for completeness. 

LEMMA 1. Let K and S be as before, al, ...,an be distinct automorphisms of K,  

/kl,...,An be non-zero elements of K, ~>0 be a positive real number and wCS be a 

distinguished place. Let =~C O~ be an infinite set of solutions uEO~ of the inequality 

[.~lO'l (U)T... T /~n(Tn(U)l w < max{]crl (u)iw, ..., [(rn(U)[w} H(u) -~. 

Then there exists a non-trivial linear relation of the form 

alal(u)+...+anan(u)=O, aiEK, 

satisfied by infinitely many elements of =. 

Proof. Let ~ be as in the lemma. Going to an infinite subset of ~ we may assume 

tha t  lal(U)lw=max{tal(U)l~, ..., lan(u)l~,} for all the involved u's. Let us consider, for 

each yES, n linear forms Lv,1, ..., L~,n in n variables x = ( x l ,  ..., xn) as follows: Put  

L~,I (x) := Alxl + . . .+Anxn  

while for (v, i)ES• with (v, i)#(w, l) ,  put L , ,~(x)=xi .  Note tha t  the linear 

forms L~,I, ..., Lv,n are indeed linearly independent. Now put 

x = (o l (u) ,  :.., ~d(u)) e ( o ~ )  d 

and consider the double product  

H l~ ILv,dx)lv 



ON T H E  R A T I O N A L  A P P R O X I M A T I O N S  T O  T H E  P O W E R S  OF AN A L G E B R A I C  N U M B E R  179 

By multiplying and dividing by Ix~l~=l~(u) l~ ,  and using the fact that  the coordinates 

of x are S-units, we obtain the equality 

H let In~,~(x)l~ _ iAl~l(U)+...+Anan(U)lw i~(u)l;~H(x)_n. 
~s~=~ Ilxll~ 

Since uC~,  we have 

I~l(U)+...+ ~na~(U)lw I~I(U)I~ x < H(u) -~, 

and then 

I I  ILv, (x)lv < v ~ s ~ = l  I)xllv 

The height of the point x = ( a l ( u ) ,  ..., ad(U)) is easily compared with the height of u by 

the estimate 

H(x)  ~< H(u) [~;:q] . 

Hence the above upper bound for the double product also gives 

H f l  IL~"(x)lv H(x)-n-~/[K:Q]" 

Now, an application of the subspace theorem in the form given in e.g. [S, Chapter V, 

Theorem 1D'] gives the desired result. [] 

Our next tool is a very special case of the so-called unit-equation theorem, proved 

by Evertse and van der Poorten-Schlickewei. It also rests on the subspace theorem: 

LEMMA 2. Let K ,  S and al,  ...,an be as before, e>0  be a real number and al, ...,an 

be non-zero elements of K .  Suppose that ~C(9~ is an infinite set of solutions to the 

equation 

a~.~(U)+...+an~n(U) = 0 .  

Then there exist two distinct indices i #  j ,  two non-zero elements a, bC K • and an infinite 

subset 2 C ~  of 2 such that for all uE~,  

aai(u)+baj(u)--0 .  

For a proof of this lemma, see IS, Chapter IV]. 

Our last lemma is the key of the proof of the main theorem; its proof is once more 

based on the subspace theorem. 
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LEMMA 3. Let K and S be as before, k c K  be a subfield of K of degree d over Q, and 

5 E K  x be a non-zero element of K.  Let E>0 be given. Suppose that we have an infinite 

sequence P~ of points (q, u) EZ x (0~ Mk) such that lSqu] > 1, 5qu is not a pseudo-Pisot 

number and 

0 < II@ull < H(u)-eq -d-e. (2.1) 

Then there exists a proper subfield k ' ck ,  an element 3'Ek x and an infinite subsequence 

P.'C E such that for all (q, u) E E', u/5'E k'. 

Note that  Lemma 3 gives a finiteness result in the ease k = Q ,  since the rational field 

Q admits no proper subfields. 

Pro@ Let us suppose that  the hypotheses of the lemma are satisfied, so in particular 

E is an infinite sequence of solutions of (2.1). We begin by observing that,  by Roth's 

theorem [S, Chapter II, Theorem 2A], in any such infinite sequence u cannot be fixed; so 

we have H(u)-+cc in the set E. Let H:= Gal (K / k ) cGa l (K / Q)  be the subgroup fixing k. 

Let {Ol,..., ad} (d= [k: Q]) be a (complete) set of representatives for the left cosets of H 

in Ga l (K/Q) ,  containing the identity 01. Each automorphism oEGal(K/Q) defines an 

arehimedean valuation on K by the formula 

IXIo := IO-- I ( x ) I d(O) / [K:Q] , (2.2) 

where as usual I" I denotes the usual complex absolute value. Two distinct automor- 

phisms 01 and 02 define the same valuation if and only if 0~-1op2 is the complex conjuga- 

tion. Let now (q, u )EZ  be a solution of (2.1) and let p EZ  be the nearest integer to 5qu. 

Then for each pEGa l (K/Q)  we have, with the notation of (2.2), 

116qutl d(~ = I(~qu- pl d(~ = Io( 5)o(qu)-  pqo. (2.3) 

Let, for each v E M ~ ,  Pv be an automorphism defining the valuation v according to 

the rule (2.2): Ixlv:=lxlov; then the set {Ov:vcM~} represents the left eosets of the 

subgroup generated by the complex conjugation in Gal (K/Q) .  Let Si, for i=1,  ..., d, be 

the subset of M ~  formed by those valuations v such that  0v coincides with oi on k; note 

that  SIU.. .USd=M~. We take the product of the terms in (2.3) for 0 running over the 

set {0v :v E Mo~ }; this corresponds to taking the product over all arehimedean valuations. 

Then we obtain 

H 10v(5)Pv(qu)-Pl~ 
v E M ~  

= II  H 
i=l vESi 
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By (2.3) and the well-known formula ~].vEMd(O~,)=[K:Q], it follows that  

d 

H H I~v((~)ai(qu)-plv = II(~qull. (2.4) 
i=1 vESi  

Now, let us define for each v E S a set of d+  1 linearly independent linear forms in d+  1 vari- 

ables (x0, Xl, ..., Xd) in the following way: for an archimedean valuation vES~ (i=1, ..., d) 

put 

Lv,o(xo, xl, ..., Xd) = Xo--Ov (5)xi, 

and for all v E S \ M ~  or O<j<.d put 

Lv,j (xo, xl, ..., Xd) = xj. 

Plainly the forms L~,o, ..., Lv,d are independent for each vES. Finally, let xE / s  d+l be 

the point 

X = (p ,  qO'l (U), ..., qad(U)) E K d+ l  �9 

Let us estimate the double product 
d 

n H IL~,y(x)lv (2.5) 
v~SS=0 Ilxll. 

Using the fact that  L~,,j(x)=qaj(u) for j>~l and that  the Cry(U) are S-units, we obtain, 

from the product formula, 
d d 

I I  r I  IL~,J( x)]. <~ I I  1-I IqI, = Iql d. (2.6) 
v ES  j = I  vEMc~ j = l  

Since the coordinates of x are S-integers, the product of the denominators in (2.5) is 

~>H(N) d+l (llxllv~l for v outside S); then in view of (2.4) and (2.6), 
d 

I-[ I I  IL~,j(x)l~ ~ g ( x ) _ d _  1 iqld [[@ull ~< H(x)-d- l (qH(u))  -~, 
~sj=0 Ilxllv 

the last inequality being justified by the fact that  (q,u)EE; hence (2.1) holds. Since 

H(x)<.lql.lplH(u) d and [pl<~l@ul+l<~lql.lglH(u)d+l<~lqlH(u) 2d for all but finitely 

many pairs (q,u)EE (recall that  H(u)--+oc for (q,u)EE),  we have ]qi2g(u)3d>~g(x), 
so the last displayed inequality gives 

d 

111-I IL.,j(X)lv ~< H(x)_d_l_e/3d 
~sj=0 Ilxllv 

An application of the subspace theorem in the form given e.g. in [S, Chapter V, The- 

orem 1D ~] implies the existence of a hyperplane containing infinitely many points x =  

(p, qal (u), ..., qag(u)). We then obtain a non-trivial linear relation of the form 

aop+alqcrl(u)4-...4-adqad(u)=O, aiEK, (2.7) 

satisfied by infinitely many pairs (q, u)EE. Our next goal is to prove the following result: 
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CLAIM. There exists such a non-trivial relation with vanishing coefficient ao, i.e. 
one involving only the conjugates of u. 

Proof. Rewriting the above linear relation, if a0~0,  we obtain 

a l  ad (2.8)  
a0  a0  

Suppose first that  for some index j e { 2 ,  ...,d}, aj(al/ao)r then by applying the 

automorphism aj  to both  sides of (2.8) and subtracting te rm-by- term from (2.8) to 

eliminate p, we obtain a linear relation involving only the terms a~(u), ..., ad(u). Such a 

relation is non-trivial since the coefficient of a j  (u) becomes Gj (al /ao)-aj /ao.  Hence we 

have proved our claim in this case. 

Therefore, we may and shall assume that  aj/ao =aj (al/ao) for all j ,  so in particular 

all coefficients aj/ao are non-zero. Let us then rewrite (2.8) in a simpler form as 

(2.9) 

with A=-al /aor  Suppose now that  A does not belong to k. Then there exists an 

automorphism TEH with T(A)~A. (Recall tha t  H is the subgroup of G a l ( K / Q )  fixing k, 

and that  {a l = i d ,  a2, ..., 6 d }  is a complete set of representatives of left cosets of H.)  By 

applying the automorphism 7- to both  sides of (2.9) and subtracting term-by- term from 

(2.9) to eliminate p, we obtain the linear relation 

d 

o l ( u )  = 0. 
i=2  

Note that  Toaj coincides on k with some ~ri. Note also that  since TEH and a2, ..., ad ~ H ,  

no ~-oaj with j~>2 can belong to H.  Hence the above relation can again be writ ten 

as a linear combination of the a~(u); in such an expression the coefficient of al(u) will 

remain A -  ~-(/~), and will therefore be non-zero, so we obtain a non-trivial relation among 

the ai(u), as claimed. 

Therefore we may and shall suppose tha t  AEk and write (2.9) in the simpler form 

p = q Trk/Q (Au) ---- Trk/Q (qAu). (2.10) 

After adding -Squ to both  sides in (2.9), recalling that  (q, u) is a solution to (2.1) and 

tha t  o" 1 is the identity, we obtain 

[p- 6qu[ = [(A- 5) qal (u) + qa2 ()~) a2 (u) +... + qad (;~) ad (u)[ < q-d-~ H (u)-e ~ q- 1H (u)-% 
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In particular, 

1(/~--5)U+(72(,~)Cr2(U) T... +Crd(,~)eTd(U)I < q- i l l (u)-% (2.11) 

We want to apply Lemma 1. We distinguish two cases: 

First case: )~=5 (in particular 5Ek). In this case the algebraic number qSu=q)~u has 

an integral trace. Since by assumption it is not a pseudo-Pisot number, the maximum 

modulus of its conjugates la2(qAu)l , ..., I ad(qs is /> 1. This yields 

max{la2 (u) l, ..., lad(U)l} >1 q-1 max{la2(A)I, ..., Iad(A) l} -1. 

Hence from (2.11) we deduce that  infinitely many pairs (q, u)E E satisfy the inequality of 

Lemma 1, where w is the archimedean place associated to the given embedding K~-+C, 

n =  d -  1, Ai--ai+l (A) and with a2, ..., ad  instead of al ,  ..., an. The conclusion of Lemma 1 

provides what we claimed. 

Second case: ~#5. In this case the first term does appear in (2.11). Since we 

supposed that  IqSu I > 1, we have 

max{[ch (u)[, ..., [C~d(U)[} ~ [u[ > [5[-lq -1, 

so we can again apply Lemma 1 (with the same place w as in the first case, n=d and 

.~1:()~--(~), )~2=O'2()~), . . . ,  )~d~-Crd()~)) and conclude as in the first ease. 

This finishes the proof of the claim, i.e. a relation of the kind (2.7) without the term 

aop is satisfied for all pairs (q, u) in an infinite set E C E. [] 

Returning to the proof of Lemma 3, we can apply the unit theorem of Evertse and 

van der Poorten-Schlickewei in the form of Lemma 2, which implies that  a non-trivial 

relation of the form aaj(u)+bc~i(u)--O for some i ~ j  and a, bEK • is satisfied for (q,u) 

in an infinite subset E ~ of E. We rewrite it as 

- 1  a 

Then for any two solutions (q', u~), (q", u ' )EE' ,  the element u:=ul/u"Ck is fixed by the 

automorphism a~loaj~H,  and thus u belongs to the proper subfield M:=K (H'~:I~ 

of k. In other words, if we let (q~, 5 ~) be any solution, then infinitely many solutions are 

of the form (q', v) for some v of the form v=u5 ~ with uEk ~ as wanted. [] 

Proof of the main theorem. As we have already remarked, we can suppose that  the 

finitely generated group F c Q  x is the group of S-units in a number field K,  where K is 
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Galois over Q containing 5, and S is stable under Galois conjugation as in Lemmas 1, 2 

and 3. 

Suppose by contradiction tha t  we have an infinite set E c Z  x (9~ of solutions (q, u) 

to the inequality (2.1). Let us define by induction a sequence {5~}i~oCK, an infinite 

decreasing chain Ei of infinite subsets of E and an infinite strictly decreasing chain ki of 

subfields of K with the following properties: 

For each natural number n>~O, EnC(Z•  knCkn-1, kn~kn-1 and all but 

finitely many pairs (q, u)CE~ satisfy the inequalities 15o ... 5nqu]> l and 

1150 ... 5,~qu[[ < q-d-~H(u) -e/(n+l). (2.12) 

We shall eventually deduce a contradiction from the fact tha t  the number field K 

does not admit  any infinite decreasing chain of subfields. We proceed as follows: put  

5o--5, ko=K and E0--E.  Suppose that  we have defined 5n, kn and En for a natural  

number  n. Applying Lemma 3 with k=kn and 5=5o...5n, we obtain that  there ex- 

ists an element 5,~+lEkn, a proper subfield kn+l of k~ and an infinite set E n + l C E n  

such tha t  all pairs (q ,u )EEn+l  satisfy U=Sn+lV with vEk~+l. Now, since for v c K ,  

H(Sn+lV)~H(Sn+I)-IH(v),  we have in particular that  for almost all vEK,  H(Sn+lV)~ 

H(v)(n+l)/(n+2); then all but finitely many such pairs satisfy 

1150 . . .  5nSn+lqvll < q-l-e H(v)-e/(n+2), 

and the inductive hypothesis is fulfilled. 

The contradiction is then obtained as noticed above, concluding the proof of the 

main theorem. E] 

To prove Theorem 1 we also need the following result: 

LEMMA 4. Let a be an algebraic number. Suppose that for all n in an infinite set 

~ c N ,  there exists a positive integer qnCZ such that the sequence ~ n ~ + q n  satisfies 

lim log qn = 0 and Trq(a)/Q(qnO~ n) C Z\{0} 
n - - ~  o o  n 

(the limit being taken for nE T~). Then a is either the h-th root of a rational number (for 

some positive integer h), or an algebraic integer. 

Proof. I t  is essentially an application of Lemma 1, so it still depends on the subspace 

theorem. Let us suppose tha t  a is not an algebraic integer. Let K be the Galois closure 

of the extension Q((~)/Q and let h be the order of the torsion group of K • Since -~ is 

an infinite subset of N, there exists an integer rE{0,  ..., h - l }  such tha t  infinitely many 
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elements of ~ are of the form n=r+hm. Let us denote by ~ the infinite subset of N 

composed of those integers m such that  r+hmE~. Let a l , . . . , a d E G a l ( K / Q ) ,  where 

d=[Q(ah):Q], be a set of automorphisms of g giving all the embedding Q(ah)c--~g. 
In other terms, if HCGal(K/Q) is the subgroup fixing Q(ah) ,  the set {ch,...,crd} is 

a complete set of representatives of left cosets of H in Ga l (K /Q) .  This proves tha t  

if d = l  then a is an h th  root of a rational number. Suppose the contrary and recall 

moreover that  a is not an algebraic integer; we t ry  to obtain a contradiction. Since 

a is not an algebraic integer, there exists a finite absolute value w of K such that  

]a[~ >1. Let H'CGal(K/Q) be the subgroup fixing Q(a) ,  so that  we have the inclusions 

H ' C  H C  G a l ( K / Q ) ,  corresponding to the chain Q (a h) c Q (a) c K. 
For each i=l, ..., d, let T / C G a l ( K / Q )  be a complete set of representatives for the set 

of automorphisms coinciding with ai in Q(c~h), modulo Hq  In other words, the elements 

of Ti, when restricted to Q(a) ,  give all the embedding of Q(a ) r  whose restrictions to 

Q ( a  h) coincide with hi. Also T1U...UTd is a complete set of embeddings of Q ( a )  in K.  

Then we can write the trace of a n (n=r+hm) as 

d 

Wrq(a) /q(Ol  r-bhm) r(oL r a i ( o L h ) m = A l O l [  ) ~-...1- d d[ ] , 

i=l 

where Ai=}-]~cT~ ~-(ar). Note tha t  not all the coefficients Ai can vanish, since then the 

trace would also vanish. Since the trace of qnO~ n is integral, we have [WrQ(a)/Q(o~n)[w~ 
[qnl~l; then, since logqn=o(n), for every ~<log[a[w/logg(a) and sufficiently large 

m E E  t we have 

[~lO'l(o~hm)"~...-~ )~d~Td(oLhrn)l w < [qrzrhm[w 1 < [ahm[~,g(ah'~)-% 

Applying Lemma 1 we arrive at a non-trivial equation of the form 

a l ( r  I ( ~ h ) m  q_...-bad Crd (o~h) m : 0 

satisfied by infinitely many integers m. An application of the Skolem-Mahle~Lech 

theorem leads to the conclusion that  for two indices i r  some ratio ai(ah)/aj(ah)= 
(a~(v~)/crj (a)) h is a root of unity. But then it equals 1, since cri(a)/aj (a) lies in K • (and 

by assumption h is the exponent of the torsion group of K • Then ai coincides with aj  

on Q(ah) .  This contradiction concludes the proof. [] 

Proof of Theorem 1. Let us suppose tha t  the hypotheses of Theorem I are satisfied, 

so that  [[an[[ < l  n for infinitely many  n. Then, either a is a d th  root of an integer, and we 

are done, or [[a n [[ r 0 for all n > 1. In this case, taking any ~ < -  log l/log H(a) we obtain 

tha t  for infinitely many n, 

0 < II nll < H( n)-t 
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and of course the sequence a n belongs to a finitely generated subgroup of Q• Then 

our main theorem, with q = l  and u=a  n, implies that  infinitely many  numbers a n are 

pseudo-Pisot numbers, and in particular have integral trace. For large n, their trace 

cannot vanish since lal >1, while its conjugates have absolute value less than 1; then by 

Lemma 4, a n is an algebraic integer, so it is a Pisot number  as wanted. [] 

3. P r o o f  o f  T h e o r e m  2 

We recall some basic facts about  continued fractions. 

number. We will use the notation 

Let a >  1 be a real irrational 

a = [a0 ,  a l ,  . . . ] ,  

where a0, al ,  ... are positive integers, to denote the continued fraction for a.  We also let 

Ph and qh, for h=O, 1, ..., be the numerator  and denominator of the t runcated continued 

fraction [a0, a l ,  ..., ah], so that ,  by a well-known fact, for all h we have 

Ph a 1 (3.1) 
-q-hh-- ~ q~ah+l" 

Also, we have the recurrence relation 

qh+l=ah+lqh+qh-1 (3.2) 

holding for h/> 2. Let 

T = ( :  bd) C GL2(Z ) 

be a unimodular matrix,  and let [b0, bl,...] be the continued fraction of 

aa+b 
T(a) . -  ca+d" 

Then there exists an integer k such that  for all large h, bh=ah+k. 

Consider now the case of a real quadratic irrational number a > 0 ,  and let a t be 

its (algebraic) conjugate. The continued fraction of a is eventually periodic; it is purely 

periodic if and only if a > 1 and - 1  < a t <  0; we call such a quadratic irrational reduced. In 

this case the period of - 1 / a  t is the "reversed" period of a.  For every quadratic irrational 

number  there exists a unimodular t ransformation T C GL2(Z) such tha t  T(a) is reduced 

(this is equivalent to saying tha t  the expansion of a is eventually periodic). Since the 

t ransformation x ~ + - l / x  is also unimodular,  it follows that  in any case, a and a t have a 

period of the same length. We can summarize these facts as follows: 
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FACTS. Let a be a real quadratic irrational and a'  its conjugate. The continued 

fraction development of a is eventually periodic. The quadratic irrationals 

JaJ, Ja'J, Jl and 

have periods of the same length. 

We begin by proving the easier par t  of Theorem 2, namely: 

CLAIM. I f  a>O is a unit in the ring of integers of Q(a) ,  then the period length for 

the continued fraction for a n is uniformly bounded, and in fact is <~2 for all large n. 

Proof. Let us begin with the case of odd powers of a unit a >  1, with a ' < 0 ,  i.e. a unit 

of norm - 1 .  Let us denote by tn=oln~-(o/)n=WrQ(a)/Q(a n) the trace of a n. Then for 

all odd integers n, the number a n satisfies the relation (an) 2 - t n a  n -  1=0, i.e. 

1 
a n = tn -~- - - "  

a n  

hence its continued fraction is simply [ ~ ] ,  and has period one. 

We shall now consider units a n of norm 1, so including also even powers of units of 

norm - 1 .  Suppose that  a > l ,  with 0 < a ' < l ,  is such a unit, so tha t  a ' = a  -1. Denoting 

again by tn the trace of a n, we see that  the integral par t  of a N is t n - 1 ,  so we put 

a o ( n ) = t , , - l .  We have 

( a n - a o ( n ) )  -1 ___ ( 1 -  (a ' )n )  -1 = 

For sufficiently large n, its integral part  is 1. 

large n). Then 

1 - a n a n - 1 

( 1 -  ( a ' ) n ) ( 1 - a  n ) t n - 2 "  

So put  al ( n ) = l  (at least for sufficiently 

\in-2 \ ) n 

Again for sufficiently large n, the integral par t  of the above number is t n - 2 ,  so put 

a2 (n) = t n -  2. Now 

t n - - 2  ( t n - - 2 )  = t n - - 2 - - t n W t n ( o / ) n - ~ 2 - - 2 ( a ' ) n  : l + ( o / ) 2 n - - 2 ( a ' ) n  = 1 - - ( a ' )  n, 

1-(a')n 1-(a')n 
where we used the equation satisfied by (cd) n to simplify the numerator.  Then 

)-1 __ a n  1 
( t n - - 2  a 2 ( n  = (1- -  ( o / ) n )  -1  t n _ 2  \l_(a,)n 

and the algorithm ends giving the continued fraction expansion, valid for sufficiently 

large n, 

a n = [a0(n), a ,  (n), a2 (n) ] = [ t n -  1, 1, t n - 2 ] .  [] 

We now prove our last lemma: 
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LEMMA 5. Let c~>l be a real quadratic number, not the square root of a rational 

number. Let a0(n) ,a l (n) , . . ,  be the partial quotients of the continued fraction for an. 

Then either ~ is a Pisot number, or for every i with i~O, 

lim log ai(n) = 0. (3 .3 )  
rt --+~x) n 

If a > l  is the square root of a rational number, then (3.3) holds provided the limit is 

taken over odd integers n. 

Proof. We argue by contradiction. Let h EN ,  h>0 ,  be the minimum index i such 

that  (3.3) does not hold. Then for a positive real 6 and all n in an infinite set E c N ,  

ah(n) > e ~n. (3.4) 

Here it is meant that  -- contains only odd integers if c~ is the square root of a rational 

number. 

On the other hand, since (3.3) holds for all i = l , . . . , h - 1 ,  we have, in view of the 

recurrence relation (3.2), that  the denominators qh-l(n) of 

Ph-l(n)  
qh-  1 (n) -- [a0 (n), al (n), ..., ah- 1 (n)] 

satisfy 

lim lOgqh- l (n)=0.  
n - + o o  /7, 

Put  e = 5 / 2  log H(c~). By the vanishing of the above limit we have, in particular, 

qh_,(n) 1+~ ~ e ~ /2  

(3.5) 

for sufficiently large nEE.  In view of (3.1) we have, for all such n, 

~n ph- l (n)  1 1 

qh-l(n) < < qh_l(n)2e 5n qh_l(n)3+~eSn/2' 

which can be rewritten as 

Ilqh-l(n)o~nll < qh_l(n)-2-eH(o~n) -E. 

An application of our main theorem, with u = a  n (for nEE),  gives the conclusion that  for 

large n the algebraic number qh- l (n )a  n is pseudo-Pisot. Now, taking into account (3.5), 

our Lemma 4 implies that  (~ is an algebraic integer (it cannot have a vanishing trace, 

since then it would be the square root of a rational number, which we excluded). This in 
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tu rn  implies tha t  a n is a Pisot  number.  Since a is a quadrat ic  irrational and an  is not  

a rational,  a itself is a Pisot  number.  [] 

We can now finish the proof  of  Theorem 2. Let a be a real quadrat ic  irrational 

number;  let us first t reat  the case when c~ is not  the square root  of  a rat ional  number.  

Suppose tha t  for all positive integers n in an infinite set E C N,  the period of the cont inued 

fraction of oL n has the same length r. We would like to prove tha t  a is a unit. 

Let us first show that ,  by  the above-ment ioned facts, we can reduce to the case 

where 

> 1  and a >  la'l. (3.6) 

In  fact, after replacing, if necessary, c~ by •  we can suppose tha t  ~ > 1 .  Observe now 

tha t  if c ~ = - ~  then  c~ is the square root  of a rat ional  number,  which we have excluded. 

Thus  I ~ l # l a '  I (since we cannot  have ~ = a ' ) .  If  now ~ > l a ' l ,  we are done; otherwise 

I~'l>a>l; in this case we replace a by +cg, and obta in  (3.6) as wanted.  

So, from now on, let us suppose tha t  (3.6) holds for a.  Then  for all n>~no(o~) we 

have ~ n > ( c d ) n + 2 ,  SO there exists an integer kn such tha t  

a n - k n  > 1 and - 1 < (a n - k  n)/< 0,  

and so c~n-kn  is reduced. Then  we have for all n E ~ ,  

a n - k n =  [ao(n),al(n) , . . . ,a~_l(n)],  

where a0(n),  ..., a~_l (n) are positive integers and the period (ao(n), . . . ,a~-l(n)) is the 

same as the  one for a n (still for n in the infinite set E). Suppose first tha t  a is not  

a Pisot  number.  We would like to  derive a contradict ion.  Our  L e m m a  5 implies tha t  

all part ial  quotients ai(n) satisfy (3.3), including ao(n)=ar(n).  The  algebraic numbers  

a n - k n  and (a~)n-kn  satisfy, for n E E ,  the algebraic equat ion 

pr - l (n ) x+pr -2 (n )  
x = [a0(n); al(n), ..., ar - l (n) ,  x] = q r - l (n ) x+qr -2 (n ) '  

which can also be wri t ten as 

q~- 1 (n) x 2 + (q~-2 (n) - P ~ - I  (n)) x - p ~ _ 2  (n) = 0. 

In view of (3.5), the coefficients of  this equat ion have logar i thms tha t  are o(n),  whence 

the logari thmic heights of XmO~n--]gn and x':(o/)n-kn a r e  o(n) for n E E .  But  then we 

would have 

l og  n -  I = o ( n ) ,  
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which is clearly impossible. 

We have then proved that  c~ is a Pisot number, so it is an algebraic integer and 

satisfies I c~'l< 1. But  now the quadratic irrational +l/c~'  also satisfies (3.6), so the same 

reasoning implies tha t  1/a ' ,  and hence 1/c~, is also an integer. This proves tha t  a is a 

unit as wanted. 

The method is exactly the same in the second case, when a =  V/--a/b is the square 

root of a positive rational number  a/b. Here too, by replacing, if necessary, c~ with l / a ,  

we reduce to the case a > l .  In this case the pre-period has length one, so ( a ~ - k n )  -1 

is reduced, where kn is the integral par t  of (~n. Under the hypothesis that  the period 

length of ol n remains bounded for an infinite set of odd integers, we can still apply our 

Lemma 5 and conclude as before. 

Appendix 

In this appendix we show tha t  the word "algebraic" cannot be removed from the state- 

ment of Theorem 1. A little more precisely, we prove the following statement:  

There exists a real number c~>l such that II(~nll<~2 -n  for infinitely many positive 

integers n, but a d is not a Pisot number for any positive integer d. 

Our assertion will follow from a simple construction which we are going to explain. 

For a set I of positive real numbers and a positive real t, we put I t := {x t :x  E I }. 

We start  by choosing an arbi t rary s e q u e n c e  { /~n}n~ l  of real numbers in the interval 

[0, �89 we shall then define inductively integers b0, bl, ... and closed intervals Io,I1, ... 

of positive length and contained in [2, oo). We set /0=[2,3] and bo=l ,  and having 

constructed In and bn we continue as follows. Let bn+l be a positive integer divisible by 

n + l  and such tha t  I b"+x contains an interval of length larger than 2; such an integer will 

certainly exist, since by induction every element of In is ~>2 and since In has positive 

length. 

Put  Bn=bo ... bn. Then we choose In+l  to be any subinterval of I b"+l of the shape 

In+l = [q+/3n+l, qT/3n+l "~-2--B~+1], 

where q=qn is an integer. This will be possible since I bn+l has length larger than  2. 

Clearly q~>2, so In+l has the required properties. 

For n E N ,  let now Jn denote the closed interval I~/B". Since I n + l C I  bn+l, we have 

Jn+l  C Jn for all n, and J0 =I0  = [2, 3]. Hence there exists a E A n~=o Jn such that  c~ 7> 2. 

Note tha t  aS"EIn;  hence we conclude that  for n>~l the fractional part {a s"} of 

(~Bn lies between/3n and/3n+2 -Bn. 
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To obtain our original assertion, we apply this construction by choosing ~ n = 0  for 

even integers n~>l, and f in= 1 5, say, for odd n. We then have in the first place 

for all even integers n>~l. This yields the first required property of c~, since Bn--+oc. 

Further, suppose that  c~ d were a Pisot number for some positive integer d. Then 

for some fixed positive A < I  we would have Iladmll<<Am for every integer m > l  (by a 

well-known argument,  used also in the previous proofs of this paper).  However, this is 

not possible, because for odd integers n>d we have that  Bn is divisible by d (recall tha t  
1 and 1 _l ,~--Bn bn is divisible by n for n>0 ) ,  and the fractional part  of a B" is between g g _ -  , 

1 whence the norm IlaB"ll is ~>g. 

This concludes the argument.  It  should be noted tha t  the construction may easily be 

sharpened; also, Theorem 1 obviously implies that  any a likewise obtained is necessarily 

transcendental.  
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