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1. I n t r o d u c t i o n  

The purpose of this paper  is twofold. First we prove a delicate Carleman inequality, in- 

volving nonconvex weights, for the operator iOt +A~ acting on functions on R n • [ -T ,  T]. 

Then we use this inequality to study uniqueness properties of solutions of nonlinear 

SchrSdinger equations of the form 

(iOt+A~)u=Vu+F(u), (1.1) 

where V is a potential  and F is a nonlinear term. We are concerned with the following 

type of question: 

Question Q. Assume tha t  Ul and u 2 are solutions in R n • [0, 1] to (1.1) (in a suitable 

function space) with the property that  for some domain D C_ R n we have ux (x, 0)=u2 (x, 0) 

and u~(x, 1)=u2(x,  1) for a.e. xED. Can we then conclude that  u~=--u2 in D ' •  [0, 1] for 

some domain D~? 

In our theorems the domain D will be a half-space.(1) Under suitable assumptions 

on the potential  V, the function F and the solutions ul and u2, we answer Question Q 

in the affirmative, with the domain D t equal to the entire R n. 

This type of uniqueness question seems to originate in control theory. Zhang [21] 

used inverse scattering theory to answer Question Q in the affirmative in the special 

The  first au thor  was suppor ted  in par t  by an NSF grant  and an Alfred P. Sloan research fellowship. 
The  second author  was suppor ted  in par t  by an NSF grant,  and at  IAS by The  von Neumann  Fund, 
The  Weyl Fund, The Oswald Veblen Fund, and The  Bell Companies  Fellowship. 

(1) We are not  aware of any posit ive results  for domains  D tha t  do not  contain a half-space. 
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case n = l ,  V-O, F=alu]2u, aER, u2=-O, D=(a ,  oc), with D ' = R .  Bourgain [1] proved 

uniqueness under analyticity assumptions on the nonlinear term F=F(u, (t), with u2 -0 ,  

V---0 and the stronger assumption that  ua is compactly supported for all tE [0, 1]. Kenig, 

Ponce and Vega [9] answered Question Q in the affirmative for sufficiently smooth func- 

tions Ul and us, when the domain D is the complement of a convex cone, V - 0  and 

F=F(u, ~t) satisfies bounds of the form 

[VF(u, )I  C(lulPa-X+lulP -i), pl ,p2 > 1. 

We remark that  the Carleman estimates of [9] could also have been used to include 

potentials Ve Llo ~ (R n • [0, 1]) A L~ Lx ~ (R ~ • [0, 1]), with 

See also the remark following Theorem 2.1. Local unique continuation theorems were 

proved by Isakov [6]. 

A question similar to Question Q was considered in the setting of the generalized 

Korteweg-de Vries equation on R • R, 

+ 0x )U + r(x,  t, u, Oxu, = o. 

Zhang [20] proved uniqueness if us---0, in the cases F=uOxu and F=-6u2Oxu. This was 

extended by Kenig, Ponce and Vega [8], [10] to include a large family of functions F,  as 

well as two nonzero solutions Ul and u2. Bourgain [1] proved uniqueness of solutions for 

the more general nonlinear equation 

(is-lotTOS)u+F(u, Oxu,...,OS-2u)=O, s~2, 

under analyticity assumptions on F,  with u2--=0 and ul compactly supported at each 

time tC[0, 1]. This last equation was also considered by Kenig, Ponce and Vega [11], 

who proved uniqueness under more general assumptions on F,  as well as for two nonzero 

solutions ul and us. Local unique continuation theorems were proved by Saut and 

Scheurer [18]. 

Our results in this paper (and the methods used) mostly resemble those of Kenig, 

Ponce and Vega [9]. However, we prove theorems under weaker regularity assumptions 

on the potential V and the function F; in particular, we allow locally unbounded po- 

tentials V. We also improve the space of solutions u for which we have uniqueness, and 

reduce the domain D on which we require the solutions to agree. To explain our theo- 

rems, consider the simplest assumption on the potential V and the function F,  namely 
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VEL(n+2)/2(Rn• 1]) and F---O. Let H denote the operator iOt+A~. The relevant 

Carleman inequality to use in this case is 

Ile~(X~)UIIL(2~+4)/,(R,• ~ CIIe~(X~)HUlIL(2~+4)/(,+4)(R~• (1.2) 

+ C[Iie~(Xl)u(., 0) IIL=(Ro)+ Ile~(Xl)u(., 1)II/=(R~)]. 

In Theorem 2.1 we prove a stronger estimate for functions uEC([O, 1]:L2(Rn)) with 

HuCL(2n+4)/(n+4)(R~• [0, 1]), any /~>0  and any A~>A(/~). The function ~ is defined 

by ~x(r)=A~(r/A), where ~ is a fixed smooth function on R with the properties ~(0)=0,  

~' nonincreasing, ~' (r) = 1 if r ~ 1, and ~' (r) =0  if r ~> 2. The main point of this Carleman 

inequality is uniformity: the constant C should not depend on/~, A or the function u. 

We would like to apply the inequality (1.2) to the function u=ul-u2, where Ul and 

u2 are the two solutions in Question Q, and let f~, A-+co. For the Carleman argument 

to go through (i.e. to be able to absorb the main term in the right-hand side) we need 

to have 

I[e~(~')UIIL(2'~+4)/'~(Rn• [0,1]) < co" (1.3) 

This condition explains why it is important  to prove a Carleman inequality like (1.2) with 

a bounded weight e ~ ( x l )  . Such a Carleman inequality can be applied to all solutions Ul 

and u2 in C([0, 1] :L2(R~)) with HUl, Hu2 EL (2n+4)/(n+a) (R'~x [0, 1]). For contrast, by 

(1.3), the easier Carleman inequality with the weight e ~v~(xl) replaced by the exponential 

weight e ~x~ can only be applied to solutions Ul and u2 that  have faster-than-exponential 

decay at infinity. This was already noticed by Kenig, Ponce and Vega [9], who proved 

L 2 Carleman inequalities with the bounded weight e ~ ( x ' ) .  It is also similar to the 

situation in the proof of Ionescn and Jerison [4] of the absence of positive eigenvalues of 

Schrbdinger operators - A + V  on Rn: to eliminate the possibility of all L 2 solutions one 

needs a Carleman inequality with nonconvex weights. 

Assume as before that  VEL(~+2)/2(R~x [0, 1]) and F---0. Assume that  Ul,U2C 
C([0, 1 ] : n 2 ( a n ) )  are solutions to (1.1), with HUl, Hu2eL(2n+4)/(~+a)(Rn• [0, 1]). For 

any woeR ~, ]Wo[=l, let D(wo)={x:x.wo>O} denote a half-space. The Carleman in- 

equality (1.2) and an additional local argument can be used to prove that  

if Ul - u2 in D(wo) x {0, 1} then Ul - u2 in R n • [0, 1]. 

In Theorems 2.4 and 2.5 we prove uniqueness statements of this type under more general 

assumptions on the potential V and the function F.  We also have an existence theorem: 

If u ( . ,  0) E L 2 (Rn), Ye L (n+2)/2 (R n • [0, 1]) and F -  0, the equation (1.1) admits a unique 

solution ueC([0 ,  1]:L2(Rn)), with HuCL(2n+4)/(n+4)(Rn• [0, 1]) (see Theorem 2.7). 



196 A . D .  I O N E S C U  A N D  C . E .  K E N I G  

The rest of the paper  is organized as follows: In w we set up the notation and state 

the main theorems. The first of our main theorems is the Carleman inequality in Theo- 

rem 2.1. We prove this inequality in w167 First we construct suitable parametrices of 

the conjugated operator  e ~ ( ~ ) ( i 0 t  + A ~ ) e  - ~  (~) (w To construct the parametrices 

at a given frequency, we think of the equation as either an evolution in time, or a reverse 

evolution in time, or an evolution in the variable Xl. Then we prove that  these paramet-  

rices are represented by operators which are bounded between Strichartz spaces (w167 

The key technical ingredient we need is a theorem of Keel and Tao [7] that  gives a simple 

criterion for checking this boundedness. In w we prove tha t  the remainder terms in the 

parametrices are small. In w we apply the Carleman inequality to prove the uniqueness 

theorems described above. 

We thank G. Ponce and L. Vega for many useful discussions on the subject mat ters  

of this paper. 

2. T h e  m a i n  t h e o r e m s  

We define the set .A of acceptable Strichartz exponents (p, q) by the conditions 

2 n n + 4  
- - -  pE[1,2] ,  qE[1,2],  (p, q) # (2,1). (2.1) 

p q 2 ' 

For any (p ,q)E,4  let (p' ,q')  denote the dual exponent, i.e. 1 / p + l / p ' = l / q + l / q ' = l .  

Clearly 2 / p ' + n / q ' = n / 2 ,  p'E [2, ~ ] ,  q'E [2, or and (p', q ' )~ (2 ,  cx~); let ,4' denote the set 

of such exponents (pl, q,). The basic Strichartz spaces we wilt work with are 

P q P q n L t L~ • = =LtL~(R R )  {fEL~or 

where ( p , q ) E A  or (p ,q )EA' .  

We define two Banach spaces of functions X and X '  on R n x R :  if n = l  then X - -  
LIT2_1_/4/3/-1 and ' ~ 2 4 cr t ~ x - - ~ t  ~ x  X = L  t L x A L t L  ~ ~ i.e. 

Ilfl[x = inf [I[flI]L~Li(R,• wIIf211L~/3L~(R,• 
f lq"f2=f 

and 

]]fiix' -- max{ IifilLrL~(R~• IIfIIL~L~(R~• 

X / -  T.oo T2 n T 2 r 2 n / ( n - 2 )  If  n~>3 we define .~Y--T.l t2j- t2t2n/(n+2)--~t ~ x - - ~ t  ~x and - ~ t  ~ ,  , ~ " t ~  . In dimension 
2 1 2 n = 2  we have to exclude the endpoint spaces L t L  ~ and L t L  ~ for which the Strichartz 

est imates fail (cf. [16]). For this purpose we fix an acceptable pair (po, qo), 1~<po<2, and 
t t 

define i 2 ~ ( ' - X '  -LCCL2MLP~ q~ Spaces of this type were X = X p o = L t L ~ + L P ~  q~ and ~. - p o -  t ~ t ~. 
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used in recent work by Koch and Tataru [14], [15]. They are often more suitable for 

Carleman inequalities than the spaces P q L t Lx, since they allow better control of the error 
terms. We notice that  

P q c x  and r~p'r.q'~X' Lt Lx - ~t ~x ~- 

if (p,q)E.A (and P<<.Po if n=2) ,  and 

Ro• g dx dt <<. Iffllx ilgllx' 

for any locally integrable functions f and g. 

For any interval [a, b], we define the Banach space X([a, b]) as the space of locally 

integrable functions f :  R n x [a, b]--+C with 

IlflIxc[o,b]) :----lifllx < (2,2) 

where f(x,  t )=f(x ,  t) if tE [a, b] and f(x,  t)=0 if t~t [a, b]. We define the space X'(ta, b]) 

in a similar way. For a distribution f E S ' ( R n ) ,  we set, by a slight abuse of notation, 

]]fllx([a,b]) := sup 11?7(t)fllx([a,b]), (2.3) 

where the supremum is taken over all smooth functions ~?: R--+ [0, 1] supported in (a, b). 

Clearly, ]]fllx([a,b]) can be finite only if f agrees with a locally integrable function in 

R n •  (a, b). Also, the definitions (2.2) and (2.3) clearly agree for functions feX([a,  b]). 

Let H denote the operator iOt + Ax acting (in the sense of distributions) on functions 

in L2(R n • R). For any interval [a, b], we define the space Z([a, b]) as the space of locally 

integrable functions u: R = • [a, b] --+C with the properties 

u e C([a, b]: L2(R~)) and IlHullx([a,b]) < exp. (2.4) 

The meaning of the first condition is that  u is a continuous mapping from the interval 

[a, b] to L2(Rn). The second condition is to be interpreted as in (2.3). Corollary 1.4 

in [7] shows that  

< cIIgullx([a,b])+Cllu(', a) llL=(R~) 

if u E Z([a, b]). In particular, Z([a, b]) C_ X'([a, b]). 

Let ~ denote a fixed smooth function on R with the following properties: ~(0)=0, 

~' nonincreasing, ~ ' ( r ) = l  i f r < l ,  and T ' ( r )=0  if r~>2. For any A~>I let ~(r)=A~(r/A) .  
Clearly ~ ( r ) = r  if r~<A, and the function r ~ - ~ ( r )  is increasing and bounded. 

In this section and in the rest of the paper, we will use the letters C and c to denote 

constants that  may depend only on the dimension n if n#2 ,  and on the exponent P0 if 

n=2.  For any set E, XE will denote its characteristic function. Our first main theorem 

is a Carleman inequality. 
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THEOREM 2.1. There is an increasing function A: [0, c~)--+ [0, oc) and a constant C 

such that 

IleI3~~ < Clle~x(XX)HulIx([-T'T]) (2.5) 

. , -T)IIL (R,) + ' , 

for any u e Z ( [ - T , T ] ) ,  any/~E[0, oc) and any A>~T1/2A(T1/2~). 

The norm [[eB~~ is defined as in (2.3). A weaker form of the Carle- 

man inequality (2.5) was implicitly proved by Kenig, Ponce and Vega [9] by the use of 

energy methods. This implicit result in [9] corresponds to the inequality (2.5) with the 
1 2 ~ 2 spaces X and X ~ replaced by L t L  x and L t L x, respectively. Most likely, however, the 

energy methods of [9] cannot be used to prove the L p estimates in Theorem 2.1. Our 

proof of Theorem 2.1 is based on constructing suitable parametrices. 

The estimates in w show that  we may take 

A(3) = C(1 +3 )  6 

for some large constant C. In our applications it is important  to have a Carleman 

inequality like (2.5) with bounded weights e 3~x(xl) (which is equivalent to A<oo). Such 

a Carleman inequality can be applied to a large class of functions u, not just to those 

u that  have faster-than-exponential decay. We remark that  a Carleman inequality like 

(2.5) with nonconvex weights can only hold for functions u with bounded support in t, 

i.e. if T < o c .  Without  this support restriction it is only possible to prove a Carleman 

inequality with linear weights. 

COROLLARY 2.2. For any u e C ~ ( R ' ~ x R )  and any ~ c R ,  

Ile X'ullx, Clle   H llx. 
Corollary 2.2 follows from Theorem 2.1 with T larger than the time support of u and 

A--+oc. Since L~, t2(n+2)/(n+4) C X  and ~,tl-2(n+2)/n-DX t, this improves the Carleman inequal- 

ity of Kenig and Sogge [13]. Notice that  the case /3=0 is equivalent to the Strichartz 

estimates for the SchrSdinger operator, including the endpoint estimate of Keel and 

Tao [7]. Such estimates have a long history, starting with the fundamental paper of 

Strichartz [19]; for more references on the development of Strichartz-type estimates for 

the wave equation and the Schr6dinger equation, we refer the reader to the recent work 

of Keel and Tao [7], where a nontrivial endpoint estimate is proved. 

Our main applications concern quantitative and qualitative properties of solutions 

of nonlinear SchrSdinger equations of the form 

Hu = Yu+F(u) ,  (2.6) 
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where V is a potential and F: C - + C  is a continuous function. We define the Banach 

space Y in such a way that  

IIV~IIx < IIVIIY Ilullx ,. (2.7) 

__ 1 ~ 2 1 Y - r l r ~ a - L C ~ L n / 2  If n = 2  then Thus, if n = l  then Y - L t L  ~ + L t L  ~. If n>~3 then - - t ~ " ~  - t ~ �9 
1 ~ + L P ~ 1 7 6  q ~ 1 7 6  T (n+2)/2(-y Y = L t L ~  t ~ . Notice that  ~ , t  _ ~  in any dimension n, if Po is 

sufficiently close to 2. For any interval [a,b], we also define the space Y[a,b] as the 

Banach space of functions V: R ~ • [a, b]--+C, with IIVIIy[~,b] = IIVIIy, V - V  if tE [a, b], 

and V - 0  if t~  [a, b]. 

Let C denote the constant in Theorem 2.1 and 5 =1 /2 C .  We have the following 

quantitative estimate: 

THEOREM 2.3. Assume that V: R n • [0, 1]-+C is a potential with the property that 

llVlly([0,1]) ~ c. (2.8) 

Assume that ueZ( [0 ,  1]) and 

H u = V u  in X([0, 1]). 

Then 

sup Ile~Xlu( �9 , t)ll/2c n ) 0)II/2<R )+lle Xlu(" , I)[]/~(R~)] 
tC[0,1] 

uniformly in ~ E R .  

We consider now uniqueness properties of solutions of the SchrSdinger equation (2.6). 

We are concerned with the following question: Assume that  ul ,  u2 e C([0, 1]:L 2 (Rn)) are 

(weak) solutions to (2.6) with the property that  for some domain D C R  '~ we have ul=u2 

in D • {0, 1}. Under what assumptions on F,  V, Ul and u2 can we then conclude that  

ul=-u2 (or ul=u2 in D ' •  [0, 1] for some domain D' )?  

For the nonlinear term F,  we make the assumption that  there is a function G: C-+ 

[0, c~) with the property that  

IF( z l ) -F( z2 ) l  <<. Iz l -z2l  (G(zl)+G(ze))  (2.9) 

for any Zl, z 2 EC. For any unit vector w0, let D(wo)={x :x .wo  >0} denote a half-space. 

THEOREM 2.4. Assume that ul,u2eC([O, 1]:L2(Rn))AX'([0,  1]) are (weak) solu- 

tions of the nonlinear SchrSdinger equation 

Hu = Vu+F(u)  in S ' ( R  n • (0, 1)). 
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Let  W =  IVI + G ( U l ) + C ( u 2 ) ;  assume that  

WEY([0, 1]) and IiW:)(.bwoWD(wo)(X)]iY([O,1]) <. ~ for some be l t .  (2.10) 

/ f  U l = U 2  in [bwo+n(wo)] • 1}, then u l -u2  in [bwo+n(wo)] • [0, 1]. 

We notice that  ]F(u)l<iF(O)i+iul(G(u)+G(O)). Since Ul,U2eX'([O, 1]), it follows 

from (2.10) that  Yul+F(ul ) ,  Vu2+F(u2)eZ([O, 1 ] ) + L ~ ( R  n • [0, 1])C_S'(R n •  

Using a local unique continuation argument we also prove a global vanishing theorem. 

Our local unique continuation argument is sharper than the one used by Kenig, Ponce 

and Vega [9], who assumed that  the functions ul and u2 agree in the complement of a 

convex cone at times 0 and 1. 

THEOREM 2.5. Assume that ul,u2EC([O, 1]:L2(Rn))nX'([0,1]) are (weak) solu- 

tions of the nonlinear Schrhdinger equation 

Hu = Vu+F(u) in s  ~ • (0, 1)). 

Let W=IVI+G(ul)+G(u~); assume that 

WE LP~Lql(R ~ • [0, 1]) +L~2Lq2 (R n • [0, 1]) (2.11) 

for some pl,ql,P2,q2E[1, oo) with 2 /p l+n/q l~2  and 2/p2-Fn/q2~2. If Ul=U2 in 

[bwo+D(wo)] • {0, 1} for some beR,  then ul=-u2 in R ~ • [0, 1]. 

We remark that  (2.10) and (2.11) are, in fact, conditions on the potential V, the 

function F, and the space of solutions ul and u2. For technical reasons, (2.11) is slightly 

more restrictive than (2.10). In fact, Theorem 2.5 holds if the assumption (2.11) is 

replaced by the less restrictive assumptions (2.10) and (9.3), see the proof in w 

Example 2.6. Assume that  vrr.Plr.q~ --.-~t ~ with Pl and ql as in (2.11), that  G(z)-- 

C(Izial+lzia2 ), al,a2C(0, oc), and that  ul,u2EC([O, 1]:L:ML~). Then (2.11) holds 

with P2 and q2 large) and Theorem 2.5 applies (compare with [9, Theorem 1.1]). 

We conclude with a theorem concerning well-posedness in Z([0, T]). 

THEOREM 2.7. Assume that V: R n • [0, T] is a potential with the property that there 

~s ~>0 such that 

]]Vl[Y([a,a+e]) ~C for any aE [0, T - e ] .  (2.12) 

Then the initial value problem 

{ (iOt+Ax)u = Vu, 

u ( . ,  0) = u0, 
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u0EL2(R~), admits a unique solution uEZ([O,T]) with 

II~llx,(io,rl) < C(T)II~ollL~. 

The proof of this theorem is routine and probably known: it follows from the 

Strichartz estimates, Duhamel's formula and a fixed-point argument (for details, see [5]). 

The counterexample in [5, w shows that the space of potentials Y (see (2.12)) is optimal 

for local well-posedness. 

3. P r o o f  of T h e o r e m  2.1: cons t ruc t ion  of  pa ramet r i ces  

Notice first that it suffices to prove the following simplified version of Theorem 2.1: 

LEMMA 3.1. With the same notation as in Theorem 2.1 we have 

Ile~x(xl)u(x, t)Ilx, < vii e~x  (:~1) (Hu)(x, t)IIx (3.1) 

for any function u E C ~ ( R n x R )  supported in Rnx[ -T ,T] ,  any t3E[0, c~) and any ~>~ 
T1/2A(T1/2~). 

To deduce Theorem 2.1 from Lemma 3.1 we show first that for any eE (0, ~T]  the 

bound (3.1) holds uniformly for any vEZ([-T,  T]) supported in R n x  [ - T + s ,  T-s ] .  Let 

r R ~ x R--+ [0, oo) denote a smooth function supported in the set {(x, t): IxI, It I ~< 1} with 

fR~xR r t) dx dt= l ,  and for 0<(~<min{ l e l / 2 ,  1} let r t)=5-(n+2)r t/~2). 
Let r Rn-+[0, 1] denote a smooth function equal to 1 in the set {x: ]xI < 1} and equal 

to 0 in the set {x:lx]~>2}, and for R~>I let ~bR(x)=~b(x/R). We apply (3.1) to the 

smooth, compactly supported function 

u(x, t) = (v,r t ) ~ ( x ) .  

Then 

]]eZ~(xl)(V*r <~ CHeZ~(xl)(Hv*~b~)(x,t)r 
+C Ile~(~l)[ IV~ (v* r t)l" I%r l 

+ I (v* r t)l" IAx~R(x)I] II LIL~. 

(3.2) 

For the term in the second line of (3.2) notice that I Vx (v* r (x, t)I ~< C5-1 (iv ]* Xh) (x, t), 

where X is the characteristic function of the set {(x,t):ixi, itI~l } and X~(x,t)= 
5-(n+2)X(x/~, t/~2). Also, for the term in the third line, ](v*r t)i<C(ivi*xh)(x,t ). 
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Since vEC([-T, T] :L2(R~)) and the weight e ~'~(~) is bounded, the term in the second 

and third lines of (3.2) converges to 0 as R-+c~. Then we let 6-+0 to conclude that  

Ile~q~ , < Clle~(Xl) Hvllx, (3.3) 

if vEZ([-T, T]) is supported in R '~ x [ - T + e ,  T - c ] .  

To deduce Theorem 2.1 apply the inequality (3.3) to the function 

v(x,t) =u(x,t)~?~(t), 

where e<~T,  and the smooth cutoff functions rk: [ -T,  T]~[0 ,  1] have the properties 

r/~(t)=l if tC [ -T+2E,  T-2e] ,  rl~(t)=0 if t~ [ - T + e ,  T-e], and fFt Irl~(t)l =2. Clearly 

Hv(x, t) = Hu(x, t)~(t)+iu(x, t)Ot~?~(t). 

By (3.3), 

Ile~(Xl)u(x, t)~(t)IIx' ~< Clle~(~) gu(x, t)rl~(t)llx +CHe~'~(~)u( x, t)~'s(t)llL~L~" 

Recall that  the weight e ~vx(~') is bounded. By (2.4) we may let e tend to 0; the Carleman 

inequality (2.5) follows. 

We turn now to the proof of Lemma 3.1. By rescaling (using the anisotropie dilations 

(x, t)~(bx, 62t)) we can assume that  T = I .  Let 

I=(iO~+A~)u. 

We have to prove that  

(3.4) 

(3.5) 

for A>~h(fl) and ueC~(R  '~ • ( -1 ,  1)). 

Let U=eZ~(Xl)u and F=eZ~'~(xl)f. The estimate (3.5) is equivalent to 

The equation (3.4) is equivalent to 

We will assume from now on that  A~>(fl+l) 2. 

(iOt+Ax-az,;~(Xl)Oxl+b~,)~(Xl))U ---- F, (3.7) 

where az,~ = 2 / 3 ~  and 2 / 2 ,, b~,~=/3 [~x] - / 3 ~ .  We have az,~(Xl)E [0, 2/3]; more importantly, 

for any integer j/> 0 and Xl E [A, 2A], 

(/3+ l)-1103az,;~(x1)l+(~+ l )-210Jb~,~(Xl)l <~ CjA -j. (3.8) 

IIUIIx, < CIIFIIx, (3.6) 
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The term in the left-hand side of (3.8) vanishes if Xl~ [)~, 2/~] and j~>l. 

Let r R-+[0, 1] denote a smooth, even cutoff function supported in the interval 

[-2,  2] and equal to 1 in the interval [-1,  1]. Let X+, X- and Xt denote the characteristic 

functions of the intervals [0, co), ( -oo ,  0] and [-1,  1], respectively. For numbers -~>~1 let 

r162 We fix 7 = C ( ~ + 1 ) ,  where C is a large constant. We define the operators 

A+, A_, .4 and B (acting on Schwartz functions on R ~ x  R)  by Fourier multipliers: 

A_ defined by the Fourier multiplier X- (~I) r (~1), 

A+ defined by the Fourier multiplier X+ (~1)~(~1), 

defined by the Fourier multiplier [1-~(~1)][1-~(10(~-+1~12)/~12)], 

B defined by the Fourier multiplier [1-r162 

The variables % ~1, etc., are the dual variables to t, Xl, etc., and clearly 

A_ +A+ + A + B  = Id. 

For e > 0, let P~ denote the operator defined by the Fourier multiplier (~, T)~-+ e - ~  1~12, and 

Q~ the operator defined by the Fourier multiplier (~, T)~-~e -r162 We will prove the 

estimates 

{{)~a (t)P~A_(U)}Ix, < C{IFIIx +CI (~, ~ )IIUIIL~c~, 

Ilxl (t)P~A+ (U )lfx' <~ CllFl{x +Ca (~/, A ){IUIILrL~, 

IIXI(t)QeP~A(U)llN, <~ CIIFiIx+CI(~, a)IIUIIL~L~ 
IlXl(t)P~B(S)llx, <<. CIIFIIx. 

(3.9) 
(3.10) 
(3.11) 
(3.12) 

The constant C1 (')/, ~) is small if A is sufficiently large compared to/3. Thus the estimates 

(3.9)-(3.12) would suffice to prove (3.6). 

The pararnetrices for A_ and A+. In this case the variable ~1 is much smaller than A. 

We construct the parametrices starting from the equation (3.7), as if the functions a~,~ 

and b~,x were constant. Consider the integral 

I- ( F)(x, t) = s  f_~(Y, S) /R e~(X-~) r 

x r (~1) e-e21~12ea~'~(yl)~l(t-~)eib''x(m)(t-s) d~ ds dy. 

Recall that  F(y, s)=(iO~+Dy)U(y, s), where Dy=Ay-az,~(yl)Om+bz,~(yl ). We sub- 
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stitute this into the formula of I_ (F)(x, t) and integrate by parts in s and y. The result is 

I_(F)(x,t) =/RiU(y,t)/R, ei(x-Y)'~.r(E1)X_(E1)e-e2l~12dE dy 

+ t 
/R~/_o U(y,s)[-iO~+D~] 

(3.13) 
• ] e ~(~-y)%-~(t- ~)t~1~ (E~) X- (El) e-E 2 

J R  

x ea~,~(Yl)~(t-S)e~b~,~ (~)(t-s) dE ds dy 

= cP~A_ (U)(x, t)-~CRI (U)(x~ t)~ 

where 

kl(U)(x,t)=fR.f 
X ~2- / (El)~-(El)e- -e21~12ea~ 'a(Yl) r  (Yl,  ~1, t, 8) d~ ds dy.  

The function ql(Yl, El, t, s) can be written explicitly by inspecting the identity above; 

the important fact is that  when we compute -iO~+D~, all the terms that  are not small 

cancel out. The remaining terms have either a derivative of a~,~ or a derivative of b~,~. 

By (3.8), if It-s[<2 and I+IEII,.<C% we have 

Iqt(yt,El,t,s)l+~lO~ql(yl,El,t,s)l+AiOy~ql(yl,El,t,s)l<~. CT---; (3.14) 

for ylE [A, 2A], and the left-hand side of (3.14) vanishes if Yl~ [A, 2A]. From (3.13) we get 

P~A_ (U) = cI_ (F) + cR1 (U). (3.15) 

To summarize, for (3.9), we have to prove first that  the operator 

Tl(g)(x,t)=/R /Rg(Y, 8) f ei(X-Y)'~e-i(t-s)l'12e-E~l'12pl(yl,El,t,s)dEdsdy 
n j Rn 

is bounded from X to X', where 

pl(yt,~l,t,s)=xl(t)Xl(s)x+(t-s)~(E1)X_(E1)e~,~(Y~)r ib~,~(y~)(t-s). (3.16) 

In addition we have to prove that  the operator 

Rl(g)(x,t)=/R~/R g(y' 8) JR f ei(~-Y)~e-i(t-~)l'l~e-E2"'2sl(Yl'El't's)d~ dsdy 
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is bounded from ~ : X ~ L~ Ly to with small norm, where 

81 (Yl, El, t, 8) ~- X1 (t))~1 (8))(~+ (t--  S) ~)~ (El) ~ -  (El) 

• eaz'x(Yl)~l(t--s)cib~'x(Y~)(t-S)ql (Yl, EI~ t, 8). 
(3.17) 

(Note that  the role of the various signs is clear: because of the exponential term we need 

that  a~,~(yl)El(t-s)~O, and this is achieved because t-s>~O, EI~0 and a~,~(yl)~>0.) 

The construction for A+ is similar; the only changes are to replace the function Pl 

with 

#2(yl,El,t,s)=xl(t)xl(s)x_(t-s)r ib~,x(y~)(t-s), (3.18) 

and the error function 81 with 

82 (Yl, El, t, 8) = ~1 (t))~1 (8))(~_ (t--  S) ~)W (El) )~+ (El) 

• ea~'x(Yl)~(t-s)eib~'x(Y~)(t-S)ql (Yl, El, t, s). 
(3.19) 

We then construct the operators T2 and R2 in the same way as the operators T1 and R1. 

The parametrix for A. We start from the integral 

I(F)(x~t)=/Rn/RF(y, 8)/Rn/R Ci(x-y)'~ei(t-s)Te-~2l~12C-E2(T-b]~]2)2 

• [1-@~ (E1)][1-@(100-+ [E[2)/E~)] dv dE gs dy. (3.20) 
-~--[E[ 2- iEla, , : , (yl)+b, , ;~(yl)  

We substitute the formula (3.7) and integrate by parts. Let 

1 

q3(Yl, E, 7) ---- --7--[El 2 -iEla~,A(yl ) -kbfLA (yl)  ' 

The result is 

f C n JR JR 

• ~ -~(~+'~i~)~ [1 -r (~)] [1 -~(lO(~+ I~I~)/~1~)] d~ d~ d~ dy 

• [1- ~)'y (El)] [1-@(10(T+ IEI2)/E~)] [Oy,az,~(yl)q3(Yl, E, T) 

+ (az, ~ (yl) - 2iE1 ) 0y: q3 (~1, E, 7) + 0~i q3 (yI, E, 7)] dr dE gs dy 

= cQ~P~A(U)(x, t) + cR3 (U)(x, t). 

(3.21) 
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Thus, for (3.11), we have to prove first that  the operator 

T3(g)(x,t)= f / g(y,s) f e~(X-Y)~e-~(t-s)l~J2e-~21~12#3(yl,~l,t,s)d~ dsdy 
JR JR JR n 

is hounded from X to X', where 

# 3 ( Y l ,  ~1, t,  8) = xl ( t) xl (s)[1-r )] (3.22) 

x f e~(t-sl'e-~2"2 1 - r  
J R  --T--i~la~,A(yl)~-b~,A(yl) d'r. 

In addition, we have to prove that the operator 

R3(g)(x,t) = fR~ /Rg(y,s) jR e~(X-Y)~e-~(t-s)'~'2e-~2'~'2s3(yl,~l,t, 8) d~ d8dy 

is bounded from or 2 X '  L~ L~ to with small norm, where 

s3 (yl, ~1, t, s) = Xl(t)Xl (s)[1 - r (~1)] f : ' ( ' - ~ ) ~ e - ~  [1 - r  (3.23) 

X 1 - " - - I  ~ l l  , [a~, ~ (y~) q3 (y~, ~1, "r) + (a~, ~ (y~) - 2 r  q3 (yi,  ~1, "r) + q3 (yl,  ~ "r)] d'r. 

The notation in (3.23) is q3 (Yl, ~1, "r) = [- 'r  - i~1 az, ~ (Yl) + b~, A (Yl)] - 1 and the primes de- 

note differentiation with respect to Yl. 

The parametrix for B. This is the more delicate case. We think of the equation as 

an evolution in Xl rather than t, and start from (3.4) rather than (3.7). Let ~(xl,  ~','r), 

/ ( x l ,  ~, "r), etc., denote the partial Fourier transforms of the functions u, f ,  etc., in the 

variables x' and t. By taking this partial Fourier transform the equation (3.4) becomes 

[02,- ('r+ I~'1=)1 ~(x~, ~', "r) = ] ( X l ,  E I, 9"). 

By using this equation and integrating by parts we have 

~](yl,~','r) sin[(zl-yl)x/-('r+WI2i ] dyl=-~t(z~,~',T) (3.24) 
~/-( 'r+l~' l  2) 

whenever "r-I-kc'l 2 ~<0. Let  

L(z~-y~, v/- ( ' r+  I~'1~)) =~§ sin[(zl-y~)v~-(T+]~'l~) ] (3.25) 
x/-( ' r+l~' l  2) 

We multiply the equation (3.24) by e ~(z~) to obtain 

5(z l ,  ~', "r) = -- f~F(y l ,~ , ' ' r ) e /~(z~) - /~x(Y~)L(Zl -y l  , v/-('r+lS'lU))dy~, 
JR 
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and take the Fourier transform in Zl to obtain 

U(~I, ~ ,T) -~-~-- e-iZZ~tF(yl, ~ ,' T) e z~(zl)-z~(yz)  L ( z l - y l ,  V/- (T + 1('12) ) dZl dyl. 

We multiply this by [1-r162 and notice that 

r  1~12)/~1 ~) = 0 

unless ,2 6 2 T-~I~ I E [--~I, 4~2] We use the fact that -~ l ] -  

F(yl,~ I, 7") :  JRn-1 /R F(yI'yI'~)e-i(y'~/-~ST) d~dy! 

and take the inverse Fourier transform. The result is 

P~B(U)(x~,x ' , t )=c/R/R~_i /nF(y l ,y ' , s )K(xz ,y l ,x ' ,y~ , t , s )dy ldy 'ds ,  (3.26) 

where 

K(Xl, Yl, x,  y,  t, s) = ~-1 ei(xl -Zl)~l e $(x -y  )'~ e %(t-8)T 

• ~)[1-r162 

• e-r (Zl - Y l ,  V / - (  T-~- I~'12) ) d~' dT d~l dzl. 

We make the change of variables zl=yl - a  and T = - w - W [  2. The integral for K becomes 

= f. 
X/R ./R eic~l e-i(t-s)w efl~ (yl -c~)-~ (yl) 

• r  x/~) dw d(~ d~'d~l. 

The change of variable w - - ~ r  ~ in the inner integral together with the fact that L(-c~, r ) =  

-X+ (~) sin(ar)/r shows that 

K ( x z , y l , x ' , y ' , t , s ) = - 2  ei(X-y).~e-Kt-s)lCl~[l_r - II 
n-1 

X (t--8)~21 (Yl-- 0~) --#~'PA (Yl) 
JO JO 

x r --r 2)) sin(~c~r) ~ dr dc~ d~' d~l. 
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For r~>0 let r  clearly r is smooth and supported in the interval 
[(a~1/2 ~5J , (6)1/2] �9 The formula for K becomes 

K(Xl,yl,x',y',t,s)=c f f ei(z-v)'~e-i(t-s)lCI2[1-r -~2 ~12 
JR JR ~-I 

• r  sin(~lar)~1 dr d(~ d~' d~l. 

By (3.26) it is clear that  (3.12) follows if we can prove that  the operator 

Tn(g)(x' t) ---- /R ~ /R g(y' 8) JRf ,~ei(X-Y)~e-i(t-s)]~]~e-e2]~]2#4(Yl'~l' t' 8) d~ ds dy 

is bounded from X to X', where 

~4 (Yl, ~1, t, s) -- )~1 (t))~l (s)[1 - r (~1)] (3.27) 

• eiar -i(t-s)~ r s in  l~r ldrda. 
JO JR 

To summarize, it remains to prove that  the operators Tj, j = l ,  2, 3, 4, are bounded 

from X to X', and that  the operators Rj, j = 1, 2, 3, are bounded from L~Ly2 to X '  with 

small norm. The estimates for the operators Tj are proved in w167 and the estimates 

for the operators Rj are proved in w We first prove some preliminary symbol-type 

estimates for the multiplier #4 and the associated kernel. 

4. Pre l iminary  es t imates  

We start by defining two spaces of symbols on R.  For functions mEC 1 (R) we define the 

bounded-variation norm 

Ilm[lBV = sup [m(r/)l + f i r e ' ( r / ) [  d//, (4.1) 
~ER JR 

and define the space B V ( R ) = { m ~ C I ( R ) :  IImlIBv<~) .  Also, for b ~ R  and functions 

mECI(R\{b}) we define the H5rmander-Mikhlin norm 

[]rn]]HMb= sup ]re(q)]+ sup [(~-b)m'(q)], (4.2) 
wER\{b} ~?ER\{b} 

and define the space HMb(R)={mcCI(R\{b}): IlmllnMb < ~ } .  Notice that  

IIv ~ m(a~)llBV = IlmllBV, 
(4.3) 

I1~ ~ m(b+~)l lBv = IlmllBV 
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for any aE(0, c~) and bER, and 

IIw ~ m(ar/)lIHM~ = IlmlI.Mo, 

Ilrl~m(be+vDIIHM~ = I l m l l u e ~ + ~  

for any aE(0, cx~) and be, b2ER. Also we have 

Ilmlmallgv ~< 31lmlllgv IIm211gv, 

IImem2llHM b ~< 3 lime IIHM~ Ilm2lIHM ~ 

for any bER. 

LEMMA 4.1. 

(4.4) 

(4.5) 

(4.6) 

Assume that IlmItBv~<l. Then we have the uniform bound 

fRe~~ < CI6I -~/~ d~ 

for any 5ER\{0} ,  a, bER and eE(0, oc). 

Proof. By a linear change of variable using (4.3) we can assume that 5 = •  and a=0.  

Then we break up the integral into two parts, corresponding to I~l small and I~] large, 

and integrate by parts when [~l ~> 1. The estimate follows easily. [] 

LEMMA 4.2. Assume that al,  . . . , a k  are real numbers and that the functions mjE 

C l ( R \ { a j } )  have the property that [[mj[[Hga~<l for j = l , 2 , . . . , k .  Then we have the 

uniform bound 

fReia~2eia~e-~2(~-b 2ml(~) d~ Ck [51-1/2 (4.7) mk(~) ~< 
o @ l  

for any 5ER\{0} ,  a, bER and eE(0, oc). 

Proof. By a linear change of variable using (4.4) we can assume that 5 = + 1  and 

a=0.  Let ~n(~)=e-d(~-b)2ml(~)... mk(~) and B denote the set of numbers b, el, ..., ak. 

Clearly ~ E L e (R) and 

I~(~)] +dis t  (~, B ) ] ~ '  (~)] ~< Ck 

for any ~ E R \ B .  By breaking up the integral in (4.7) into at most 2k+2  integrals we see 

that  it suffices to prove that 

fA e*~ m(~) <<. dE C 

uniformly in A,-AER, provided that 5 = •  and 

]m(~)[+l(~-A)m'(~)] <~ 1. 

This follows by a routine integration-by-parts argument. [] 

The first main lemma in this section concerns the multiplier #4: 



210 A.D. IONESCU AND C.E. KENIG 

LEMMA 4.3. The multiplier #4 in (3.27) satisfies the bound 

11~4( -, ~1, t, 8)IIBv~I ~< C (4.8) 

uniformly in ~1, t and s. 

Proof. By taking limits we can assume that  t r  We will assume that  t - s > O  (the 

case t - s < O  then follows since # 4 ( y l , ( l , t , s ) = # 4 ( y l , - ~ , - t , - s ) ) .  Let A = 2 ( t - s )  1/2. 

Thus AE (0, v ~ ] .  In the integral in (3.27) that  defines the multiplier P4 we make the 

change of variable a=2( t -s ) l /20=AO.  We then have 

"4 (Yl, ~1, t, 8) = 2Xl (t) Xl (8)[1 - r  (~1)] I(yl,  ( t -  s)1/2~1), (4.9) 

where 

~O~ 2z~710 z~?21(r2 1) ~),(Yl AO) ~~ I (y~ ,Vl )=  e e -  - e - - r (4.10) 

It suffices to prove that  the function I has bounded variation in Yl, i.e. 

I]I(, Vl)llBv~l < c 

for any ~IER, provided that  AC (0, C]. Assume first that  1~11~2. In this case we write 

the integral for the function I in the form 

f I (y l ,V l )=Ja;~§  e e - - H(Vl ,0)d0 ,  (4.11) 

where 
�9 2 2 ~ 

H ( V l , 0 ) =  ~ e  -~'1~ sin(2~Or)r (4.12) 
J R  

Notice that  

IS(r]1,0)1 ~ C1~11(1-~177101) -2  

if I~11 ~<2. Thus 

II1(", ~1)IIBVvl ~ C/RX+ (0)]IYl ~-+ ef3~x(Y~-AO)-~(y~) IIBVy I IH(~I ,  0) I dO 

C / R  ]711 I(1 + I/~101)-2 dO <. C, 

as desired (we used the fact that  the function Yl F-+e z ~  (u~-A~ (y~) takes values in the 

interval [0, 1] for any A0>~0 and is nondecreasing in y~, and thus has bounded variation). 
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It remains to prove the same estimate in the case 17711)2. We start from (4.11) and 

(4.12). Recall that  the function ~ is smooth and supported in the interval [(4) 1/2, (6)1/2]. 
6 Let r 1] be a smooth function supported in the set {v:l~lc[ 4, ~]}, and equal 

[/413/4 to 1 in the set {w:Ivl~,,~, , (6)3/4]} " We have 

H (/]l , 0) = 1 ~io 2 [ ~ _ioL_i~2~2 [~2i~lrO ~-- 2inl  rO1 ~.[~h 
X -:.~ I q l C  ~ 1 W --~ J~/U] dr 
z z  J R  

= l e i ~  [ / ] l i e  -i( ' '~-~ " r  
2i JR ~ -e-~(m~+~ 

1 io 2 f 
= ~ e  JR  e-i~2[(b((r+O)//]l)-( ,b((r-O)/rh)] dr 

= e i~ (Ho (/]1,0) --}-- H1 (/]1,0)), 

(4.13) 

where 

1 j'Re_i~2 [ r162  dr Ho(/] l ,  0) - - - -  [1 --~)1 (0///]1)1 2-~ 

and 

1 [ r 1 6 2  dr. H1(/]1,0)  = r  

By the support properties of the functions r and r we can integrate by parts in the 

integral defining H0(/]l, 0) to obtain 

Jgo(/]~, 0)1 ~< C(1+101) -2  (4.14) 

if Ir}l l )  1. Also, the function H1(/]1,0) is supported in the set { (/]1,0): 10//]1]C [4, 6] }. We 

substitute the formula (4.13) into the definition (4.11) of the function I, and decompose 

I(yl , /]1)=I0(Yl, /]1)+I1(yl , /]1)  corresponding to the terms ei~ and ei~ By (4.14) 

and an argument similar to the one used in the case I/]11,.<2 we have 

[IXo(.,/]I)IIBv   < C. 

It remains to prove a similar estimate for the function I1. We have 

I1 (Yl,/]1) = / R  X+ (0) e2inl~ e in~ e ~ (yl -AO)-~,~ (m ) eiO2H1 (/]1,0) dO 

~a 2 Z~o~(yl A(a vl)) ~o~(m) : / R ) ~ +  (OL__/]I) e e - _ _ H1 (?~1, o~ _/]1) doL. 

We consider two cases depending on the sign of r h. It is somewhat harder to prove 

estimates if ?71 is negative, so we will concentrate on this case. Since ]r}11~>2 we can 
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assume that 711 ~<-2. By the support property of the function H1 and because of the 

factor X+(a - rh ) ,  the variable c~ in the integral representing I1 runs over the interval 
1 OLC [--~l$]ll, g[$]ll]" Thus 

I1 (Yl, $]1) =/Reia2eZ~'(Yl-A(a-m))-~ ' (Yl)~l(~/[$] l  1)H1($]1, ct-$]l) da, 

where ~1 is a smooth function supported in the interval [ - 2 ,  2] and equal to 1 in the 

interval [ -~ ,  ~]. Let 50, 5: R--+ [0, 1] denote two smooth functions with the property that 

1 = 5o(a)+ E 5(2-Ja)  
j ) l  

for any a c R .  We can also assume that 50 is supported in the interval [-2,  2] and 5 is 

supported in the set [ - 2 , - � 8 9  U [1,2]. We insert this partition of unity into the integral 

formula defining I1; the result is 

I1(Yl, $]1) = E IJ(yl' $]1), 
j )o  

where, with 5j(oO=5(2-Jc~ ) for any j~>l, 

IJ(yl, 711 ) =/Fteia2e~(Yl-A(a-~h))-~'(Yl)~j(C~)@l(O~/17]ll)Hl(7]l,  Ol--7]1) da. 

The main estimate we will prove is 

Ilia(., $]l)llBV~ ~< C2 - j  (4.15) 

for any integer j~>0. Notice that  for j = 0  this follows by the same argument as in the 

case 15]11~<2. We only need to notice that by Lemma 4.1, 

IHI($]I, c~-$]1)1 ~ C 

uniformly in $]1 and c~. 

We turn to the proof of (4.15) in the case j ~> 1. By a change of variable, the integral 

for I1 ~ becomes 

I j (Yl, $]1) : 2Js a, $]1) da, (4.16) 

where ~(oz, $]1): 5(ot) @1 (2Joz/l$]l I) Hi  ($]1,2Jo~ - $]1 ). The function 5(c~, $]1) is smooth and 

supported in the set {a:lc~lE[�89 By integrating by parts in the formula of g 1 it is 

easy to see that  

IN1 ($]1,0)1-1-15]10oH1($]1, O)l ~ C 
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if .1 < -- 1. Thus if 9.2J-2 ~< 1.11 and I sl e [�89 we have 

I~(~, .1)1 + Iofi(~,.1)l ~< c. (4.17) 

Clearly 5 (c~, .1 ) -- 0 if 9- 2 j -  2 > ].1 [. 

In (4.16) we integrate by parts in a to obtain 

[J (Yl, " 1 ) ~  --2J [ ei22Je~a+flq~176 
J R  

(4.18) 
~(~,.1) 

x O~ i22J+la_flA2J~(y I -A (2Ja- ,1 ) )  da. 

Since A<C and [~(r)[<C/A<,C/fl for any r E R ,  we have by (4.17), 

a 5 (~, .1 ) 
i2~J+la-flA2J~(yl - A(2Jc~-,1)) ~< C2-~i" (4.19) 

Thus 

II~ (yl,.1)l < c2-J (4.20) 

uniformly in Yl and ,1, as desired. 
By taking the yl-derivative in (4.18) we have 

[Oyi I~ (yl ) [ • 2J ~,, [fl~(Yl - A( 2J c~- ,1) ) -Z~A (Yl ) ] 
lale[1/2,2] 

• efl~(yi-A(2&~-~l))-fl~(Y~) 

• i22~+l~_3A27-~,(-~11_d(2Ya_.1)) 

+ 22 f eZ~ (y~-d(eJa-Vl))-Z~(yl) (4.21) 
[e[1/2,2] 

• GG1 ~(~,.1) d~ i2~J+I~-ZA2~(~--  g(2J~-.1)) 

= JI (Yl)+ J2(Yl). 

By (4.19) 

[[-/1 []L~ ~ C2-J ,  (4.22) 

as desired. For J2(Yl) we estimate the O~Oyl-derivative. By (4.17), 

i2eY+ la- f lA2-7~ (Yl~- A( 2Ja- "l ) ) (4.23) 

< C2-3JZAI~'f(~I-A(2J.-.1))I+C2-2JZA~I~;'(yl-A(2J~-.1))I. 
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Notice that  the second term in the right-hand side of (4.23) is dominated by 

62-2J~A- 2X[~,2~] (Yl - A(2 j(~- 771)). 

Since ~<A this suffices to control the second term. For the first term we recall that  
1 9.2J-2<1~11 and ~1~<-1. Thus 2Ja-~1>~c2 j if l(~le[~,2], and so, to prove that  

IIJ211L~I<~C2-J, it suffices to prove that  

2-J~A /RI~  (y1)Ie~(Y')-~(Yl+cA23) dyl < C. (4.24) 

The function ~ is nonincreasing and nonnegative. Thus 

~ (Yl) - Z ~  (Yl + cA2 j) <~ -c~A2 j ~ (Yl + cA2 j). 

Therefore, the expression in the left-hand side of (4.24) can be dominated by 

J(R 2-J~A _~(yl+cA2J)e-c~A2~'~(Y,+cA2") dyl 
(4.25) t *  

+ - + e n  2J )1 

The first term in (4.25) can be dominated by C2 -2j, and the second term can be dotal- 

nated by C~A2~ -1 <.C. Thus (4.24) follows. The main estimate (4.15) follows by (4.20) 

and (4.22). This completes the proof of the lemma. [] 

We will now prove an estimate for the kernel of the operator T4. Recall that  the 

operators Tj are of the form 

Tj(g)(x,t)= IR~ fa g(y's) J fR~ei(x-~)'~e-~(t-~)'~'2e-~2'~'~ttj(yl'~l't's) d~ dsdy, 

where the multipliers #j are defined in (3.16), (3.18), (3.22) and (3.27). Let 

Kj(x,y,t,s)= f ei(~-Y)~e-i(t-~)l~12e-~l~l~pj(y~,~,t,s)d~ (4.26) 
J R n 

and 

s = [ e ~(~1 - ~ ) ~ e -  ~(~-~)~e - ~  l~j(x~,y~,t, ) ] #~(yl,~l,t,s)d~l. (4.27) 
J R  

Note that  the integral representing Kj splits as a product of n integrals, the first of 

which is the integral representing kj. In this section we prove estimates for the kernel k4. 



L p CARLEMAN INEQUALITIES 215 

Assume t - s>O and, as in Lemma 4.3, let A=2( t - s )  1/2. By (4.9), (4.27) and the change 

of variable ~1 =2~h/A, we have 

]~4(xl,Yl,t,s)= xl(t)Xl(8) C /Rei2~l(xl-Yl)/Ae-in~e-~21~[1--~J.r(2~h/A)]Z(yl,~71)d~]1 

with ~1=2~/A. For the function I we use the integral formula (4.10). Then 

/0~ c (4.28) 

[ e--i~?21r~ i2~71[(xl-yl)/A• s in (2~ lOr )  2 2 771 e-el~h [1-~-~(2~/1/A)] d~l dr dO. • 

d R  

To compute the ~l-integral notice that  

R e-av~ +bw d~ = Ca-~/2 e b2/4~ (4.29) 

for any a, b~R, a>0.  By taking a derivative with respect to b we have 

a e - ~ + b ~  d~l = Ca -3~2be b~/a~ (4.30) 71 

for any a, b~R, a>0.  By analytic continuation, (4.30) holds for any a, b~C with Rea>0 .  

Let HA =HA,r denote the inverse Fourier transform of the function 

so that 

e -~12n~ [1-r  (2~1/A)] = c f  HA(a)e -im~ da. 
dR 

We also have IIHAIILI <~C uniformly. By (4.30) the ~h-integral in (4.28) is equal to 

Cr-3 /RH A (a) (e i[(x~-y~ )/A+O+Or- ~/2] 2/r2 [(Xl -- Yl ) /A + 0 + Or - �89 a] 

yl)/A 

To rewrite the integral in (4.28) let 

~ o ~  r e - - F A , i ( a : l , Y l ) =  - --3 fl~(A?)I-AO) Z~(Ayl) 

• e i(~-y~+~177176 -~11 +O• dr dO. 

Then, by (4.28) 

k4(xl,yl, t ,s) =x l ( t )X l (S)~  HA(a) (4.31) 

• [FA,+(xl/A-�89 Y l /A) -FA,_ (x l /A- �89  Yl/A)] do~. 
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LEMMA 4.4. 

where 

We have 

FA,• Yl) = e ~(x~-y~) mA,• yl)q-JA,• y J ,  (4.32) 

where 

~ ~ i - - 2 - 

G• =e (y~-x~) (~l-SCl)H• (4.37) 

H• ~) :/Rr177177177 ] dr. 

]]mA,• (~1,")][BV~I+ ]]mA,• (", ~1) ]]BV~ ~ < C (4.33) 

uniformly in 5cl and ~h, and 

(1+1:~1-~11) IJA,• ~1)1 <~ C. (4.34) 

Proof. By a change of variable we have 

Yl) = fO%fltPx(Aftl--AO)--13cPx(Afll)G• --~11, O) dO, (4.35) Fa,• 

where 

G• frtWo(r)eiI(~l-o~+~177176 (4.36) 

In (4.36), r is a smooth function supported in the interval [~, 2]" Recall 

that we fixed r R ~  [0, 1], a smooth cutoff function supported in the interval [-2, 2] and 

equal to 1 in the interval [-1,  1]. Let ~_: R--+[0, 1] denote a smooth function supported 

in the interval ( - o c , - 1 0 ]  and equal to 1 in the interval ( - c~ , -20 ] .  Let 

f0c~(3~1--Yl +O)efl~x(af~l--AO)-13~x(afla)Gi(~Cl--Yl, O)dO x 

and 

)]fo ~ 
~ ~ ~ ~ - -  _ - JA,i(:h,~J=[1 X-(x1 Yl e~(Ay~ AO) ~,~(A~OG• 0 

/J 
The identity (4.32) is clear; it remains to prove the bounds (4.33) and (4.34). 

For the bound (4.33) we may assume that  yl - x l / >  10 and make the change of variable 

O = ~ - ~ l + u / ( ~ l - ~ h ) .  The formula (4.36) shows that  
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A routine integration-by-parts argument shows that 

[H+ (u, ~)[+ [OnH• (u, fl)[-[?~[3 < C(1 + [uJ)-2 (4.38) 

if [z/[ ~> 1 and [u[ ~<2[~[. We substitute the formula (4.37) into the definition of the function 

mA,• Thus 

m A , •  (:~1,/)1) : ~ -  (;~1 --/)1) (4.39) 

• fR~/,(u/(/)l --~))H• (~,/)1 -~1)r d~. 

Recall that the function ~ is nondecreasing and that J H• r /)J<C(l+[uJ) -2. Thus 

]mA,• ~ C .  To estimate the derivatives of mA,• notice that 

10~mA,• <~ C(1+  I/)l-~1 [)-2 + C x +  ( / ) 1 - ~ - 1 0 )  

x f (1+ I~1) -~ 10~1 ~92A (A;~I --A~/(yl--Xl))--J~A (Ayl) [ d~.t 
]~<2(~-~1) 

and 

IO9lmA,+(~l, 91)1 ~ C(I+ [/)1 -~1[)-2 +Cx+(/)1-21-10) 

x f (l+lul) -210~1e ~(A~-Au/(~l-~))-~(ng~)ldu. 
Jl~ 1~<2(91-~z) 

These estimates follow easily by inspecting the formula (4.39) and using (4.38). The 

term (1+[/)1-21[) -2 in these two estimates is integrable, thus harmless. For (4.33) it 

remains to prove that for any u E R,  

X t3~x(Axl Au/(y l  Xl)) j3~),(Ayl) 1 IJX+(91--Xl--10)X+(2(/)l--~1)--J?AI)0~l[C - - -  - - -  - -]IIL~I<~C (4.40) 

and 

I1~+ (/)1 --:~1 - -  10) X+ (2(/)1 - x l )  -Jul)  091 [e ~ x  (A~I-A'/(fjl --Xl))--~OX (nyl)l IlL11 
<~C(l+lul) 1/2 

(4.41) 

For (4.40) we notice that the function 21 ~-~A~21 -Au/(/)l - - :~1)  is increasing in the interval 

l iuJ}]. Since is a s ( -oc ,  min{/)l - 10,/)1 - ~ ~ nondecreasing function it follows that 

xle-+e j3~'(A'~I-Au/(fh-'~l))-j3~'(A~91) is a nondecreasing function in the relevant interval, 
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which proves (4.40). To prove (4.41) we notice that if ~)1-~:1 ~>max{ 10, 1 ~lul} and A<.C, 
then 

[O~llej3~:*, (A~I -- Au/(~l --5~1 ))--13~.x (A~I)I 

~Alul Au 

~< 2e~,x (Ae~ +2A) -~o~ (Ag~) 

Au 

~ C e ~ x ( A ~ l + 2 A ) - ~ ( A 9 1 ) ~ A ~ p ~ ( A y l ) +  (ylC~tul-;~l) 2 min{ 1, ~ }. 

The estimate (4.41) follows easily by integrating the two terms in the last line of the 

above estimate and recalling that 1+82~<A (the first term is equal to the derivative of a 

nonincreasing function). This completes the proof of (4.33). 

To estimate the function JA,+ notice first that 

IG:i: (2~1-91,8)1 < C(1+ 121 --91 Q-SI) -2 

if 5:1-91 ~>-20 and 0~>0. These estimates follow easily by integrating by parts in (4.36) 

and using standard bounds for oscillatory integrals. The estimate (4.34) for the functions 

JA,• follows in the range 21-~)1 >/-20. In the range x l -Yl  4 -20 ,  only the integral in 

the second line of the formula of JA,+ does not vanish. If, in addition, 1s -~)1 +81 ~> 1 then 

we integrate by parts in (4.36). Recall that the function ~0 in (4.36) is supported in a 

small interval around 1. By checking the cases 0~.< 9 Ix1 -~)I I, 8E [9121 --Yl [, ~_~1X111 - -Yll]- 
and 0>/11 - y61xl-Yll, it is not hard to see that 

if 21-~1~<-20 and 1~1-91+81>~1. The estimate (4.34) in the range x l - y 1 ~ - 2 0  fol- 

lows. [] 

This completes our analysis in the case t-s>O. If t-s<O then we let A=2(s-t) 1/2 
and argue as before. Notice also that the function (2/A)HA(2(~/A)=H(a) does not 

depend on A. By rewriting (4.31) and using Lemma 4.4 we have 

k4(Xl, Yl, t, 8) 

--itlll/2Xl(t)Xl(8) fRH(a)e'(~-~-~')~/4('-~)m4(t,s, xl-a, yl)da (4.42) 

+ it_sfl/-~-- ~ ~l(t):zl(s) g (~)&( t ,  s, (z l-oO/(21t-sl l /~) ,  y~/(21t-sll/~)) dc~ 
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where ]]H]IL~(R)~<C, 

lira4 (t , 8, Xl," )tIBV~I-/-Ilm4(t, s , . ,  yl )]]BVi: 1 N ( C 

uniformly in t, s, xl  and Yl, and 

(I~-IXl --Yll)I J 4 (  t ,  8, Xl, Yl)I ~< C. 
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(4.43) 

(4.44) 

5. B o u n d e d n e s s  o f  the operators Tj ,  I 

In this section we start proving that  the operators T1, T2, T3 and T4 are bounded from X 

to Xq To cover all dimensions fix an acceptable pair (p, q), with p ~  ~ if n - - l ,  P~Po if 

n =  2, and p ~ 2 if n/> 3. Clearly an operator is bounded from X to X I if it is bounded from 
1 2 oo 2 p q cr 2 1 2 r P'T,q' L P L q  F p'T~ q' L t L x, L sLy ~ t ~ x ,  ~ ~ ~ t ~ ,  LsLy to L t Lx, from L~Ly to from to and from to with 

bounds that  depend only on the dimension n (or P0 if n=2). Recall that  the operators 

Ty are of the form 

where the multipliers #j are defined in (3.16), (3.18), (3.22) and (3.27). 

PROPOSITION 5.1. The operators Tj, j = l , 2 , 3 , 4 ,  are bounded frora L~L 2 to L t~L~.2 

Proof. A simple condition for 1 2 ~ 2 LsLy--+ L t Lx boundedness of an operator of the form 

n J F t n  

is that  the operator 

= s s ~1, t, 8) d~ dy 

is bounded on L2(R ~) uniformly in t and s. The fact that  this condition is sufficient 

follows easily by the Minkowski inequality for integrals. By Plancherel's theorem it 

suffices to prove that  for any h c S ( R ) ,  

Rh(yl)#(Yl ,  ~1, t, S)e -iyl~I dyl L~I< CIIhllL2 (5.1) 

uniformly in t and s. A simple criterion for this to hold is that  # has bounded variation 

in Yl : 

l ip( ' ,  r t, s)l]BVy < C (5.2) 
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uniformly in ~1, t and s. The BV-norm was defined in (4.1). To see that  (5.2) implies 

(5.1) we can use Carleson's theorem [2]: the operator 

C(h)(~l) =sup  fgh(yl)c-*Yla dyl 
N d - ~  

is bounded from L 2 ul to L~.  Thus, for any ~1 we have 

/Rh(yl)#(yl,~l,t,s)e-iyl'l dyl = /R [Lh(z)e-iZ~I dzl'#(yl,~l,t,s) dyl 

Ip(oO,~l,t,s)l'lh(~l)l 

+ /RC(h)(~l)]#'(yl,~l,t, s)] dyl 

C( h )( ) l I , (  . , t, s) l ibyan.  

By Carleson's theorem this proves (5.1). 

For the multiplier Pl in (3.16) notice first that the factor e ib',~(m)(t-s) is bounded 

and depends only on Yl (and not on ~1), so it can be incorporated into h. In addition, 

the function e - ~ ,  ~(~) is nondecreasing and bounded for any 5~>0. Thus the bounded- 

variation condition (5.2) is clearly verified. The same argument applies for the multiplier 

#~ in (3.18). 

For the multiplier #3 in (3.22) we make the change of variable 7 -=~u  and write 

#3 (Yl, ~1, t, s) = X1 (t) Xl (s)[1 - r  (~1)] 

(5.3) • / ei(t_s)~Ue_~2~u2 1--r  
JR --u--iaz,~(yl)/~l +bz,~(yl)/~ du. 

Notice that  the variable u in the integral has the property lul ~> ~0 and ]~11 ~>~f~>C(1 +f~). 

Therefore the integral in (5.3) is the inverse Fourier transform of a HSrmander-Mikhlin 

multiplier evaluated at ( t - s ) ~ ,  and is thus bounded. By differentiating with respect 

to yl we have 

10yl #3(Yl, ~1, t, 8)1 < C[1-r { la~'A(Yl)I ~-Ib~'A(Yl~)I) \ " 

By (3.8) this suffices to prove the estimate (5.2) for the multiplier #3. Finally, for the 

multiplier ~4 the condition (5.2) is proved in Lemma 4.3. [] 

Using the decomposition k4=kl+k~ in (4.42), we decompose the kernel K4 into 

K 1 + K42, where 

f �9 t / ! �9 /2 2 /2 e~(~-y)-4e-~(t-~)[~ [ e-~ I~ I d~', m 1,2, (5.4) / i ' ?  (X, y, t, 8) = ]~n (Xl, Yl, t, 8) = 
jRn-1 
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and then decompose the operator T4 as T2+T24 . We can use (4.43) and the criterion 

(5.2) to prove that  the kernel kl(xl ,  Yl, t, s) defines a bounded operator on L2(R): since 

the function H in (4.42) is in LI(R) ,  it suffices to prove that  

1 / R  L~I [ t_811/2 h ( y l ) e i ( x ~ - a - Y ~ ) 2 / n ( t - S ) m 4 ( t ,  s,  X l  - ~ ,  Y l )  dy l  <<. C[[hI[L~ . 

This follows from (5.2) and scaling. By Proposition 5.1 we know that  the kernel 

k4(xl ,y l , t , s )  defines a bounded operator from L2y~(R) to L2 (R). Thus the kernel 

k24(x1, Yl, t, s) defines a bounded operator from L21(R) to L~I(R ) as well. To summarize, 
both kernels k~(xl, Yl, t, s) and k~(Xl, Yl, t, s) define bounded operators on L2(R), both 

kernels K~ (x, y, t, s) and K42 (x, y, t, s) define bounded operators from n2y (R ~) to L~ (Rn), 

and both operators T41 and T42 are bounded from LsLyl 2 to L t~ 

6. B o u n d e d n e s s  o f  t h e  o p e r a t o r s  Tj,  I I  

p q oo 2 In this section we prove that  the operators Tj are bounded from LsLy to L t L x and from 
1 2 T.PtT,q ' LsLy to ~t -x  - For this, we use a theorem of Keel and Tao [7, Theorem 1.2]: 

LEMMA 6.1. (Keel and Tao [7]) Assume that U(t):L2(Rn)--+L2(R n) denotes a 

family of operators indexed'over t c R  with the properties 

ttV(t)fllL2(R~) < CltfIIL2(R~) 

for any t E R  and fEL2(Rn) ,  and 

IIU(s)U(t)*fllL~o(R~) <<. CI t - s l  -n/2 IlfllL~(a~) 

for any t, s E R  n and fES(R~) .  Then 

IIg(t)fllLr'Lg' <<. CIIflIL2. 

p q The operators T1, T2, Ta and T~ are bounded from L~L u to PROPOSITION 6.2. 
c~ 2 L t L x .  

Proof. An operator of the form 

T(g)(x,t) = /R~ /Rg(y  , s ) K ( x , y , t , s ) d s d y  

oo 2 is bounded from L~L~ to L t L x if the operators 

(g)(x) -- JR[o JR [ g(y' y, to, (to - s) 
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are bounded from LPL q to L 2 uniformly in to and e '>0.  This is equivalent to the fact 
! t * p q that  the operators Sto,• are bounded from L~ to LsLy uniformly in to and ~1>0. For 

this we apply Lemma 6.1. The L2-condition was already verified in Proposition 5.1 (for 

the operators T1, T2 and T3) and the remark at the end of w (for the operator T41): 
--1 

the kernels Kl(X, y, t, s), K2(x, y, t, s), K3(x, y, t, s) and K4(x , y, t, s) define bounded 

operators from L 2 to L 2 uniformly in t and s. It remains to check the LI-+L ~ bound, 

i.e. 

/R  e-(~')21Zl2K(z, y, to, s)x+(to x, to, t )x+(to- t )  dz cjt_s]-n/2 <. 

(6.1) 

uniformly in x, y, t and s, where K stands for K1, K2, K3 or K~. For the kernels Kj ,  

j = l ,  2, 3, we substitute the formula (4.26) and integrate first the variable z. Notice that  

all the integrals converge absolutely because of the exponentially decaying factors. It 

remains to prove that  for any v=(vl ,  ..., vn )ER '~ the absolute value of the integral 

Rnei(X-Y)'~e-i(t-s)[~[2ei(t~ (Yl, El, to, 8)#j (Xl, E1 --~-Vl, to, t) dE 

(6.2) 
is dominated by CIt-s l  -~/2, provided that  ( to-s)( to- t )>O and j = 1 , 2 , 3 .  For this we 

use Lemma 4.2. Notice that  the integral in (6.2) splits as a product of n integrals in 

El, E2, ..., En. The integrals in E2, ...,En are each bounded by CIt-s1-1/2 by Lemma 4.2. 

It remains to prove the same bound for the integral in El. Let w l = x l - y l + 2 v l ( t o - t ) .  
We need to prove that  

/ReiWl~e-i(t-s)~e-e 2(~+(~+v~)2)Pj(Yl, El, 8)fitj(Xl, E1-]-Vl, to, t) dE1 <. C[t-s[ -1/2 to, 

(6.3) 

uniformly in all the variables, where j = l ,  2, 3. 

The estimate (6.3) for j = l ,  2, 3 would follow from Lemma 4.2 with k=2,  provided 

that  we could verify that  the multipliers pj,  j= l ,  2, 3, belong to HM~. This is clear if 

j - -1  or j=2, simply by inspecting the formulas (3.16) and (3.18) and noticing that  the 

functions X+(E1)e -5~1 a n d  X_(Ei)e ~ belong to HM~I uniformly in 5~>0. If j = 3 ,  we ex- 

amine the formula (5.3). We already noticed in the proof of Lemma 5.1 that  the function 

#3 is bounded; an elementary estimate using the fact that  [E1[~>'7~>C(1+/3) shows that  

it is actually in the symbol class HM~, (see (6.22) below for a more precise estimate). 

To prove (6.1) for the kernel K~ we substitute the formula (5.4) into (6.1) and notice 

that  the integral splits as a product of n integrals. By the same argument as before, the 

integrals in z2, ..., Zn are each bounded by C[t-s[ -1/2. It remains to prove that  

/Re -(e')2Z~k~(Zl, s)x+(to-s)e-(e')2z~kl(zl, t ) x+( to- t  ) dzl ~ C[t-s[ -1/2 Yl, to, Xl, to, 
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uniformly in all the variables. For this we substitute the formula (4.42) and integrate the 

variable z 1 first. The estimate follows from Lemma 4.1 with 5=(s-t)/4(to-s)(to-t).  [] 

PROPOSITION 6.3. The operator T24 is bounded from LPLqs y to Lt~Lx .2 

Proof. With the same notation as in Proposition 6.2, we have to prove that  the 
p q 2 operators Sto,+ are bounded from L~ Ly to L~ uniformly in to. This is equivalent to the 

* p q T P~T.q t fact that  the operators S~o,+Sto,+ are bounded from L~Ly to ~t ~ �9 The kernels of the 

operators S~0, + Sto, + are 

n2,to,+(x, y, t, s) 

Let 

We claim that  

and 

[~lx2tZ'2 --2 = f e-(~')21~12K~(z,y, to,s)x+(to-s)e-t J l 'K4(z ,x ,  to,t)x+(to-t)dz. 
J l:t = 

vL0,+,~,~(h)(x) = I LLo,• y, t, s)h(y) dy. 

2 (6.4) 

[t-tol.ls-tol 

uniformly in t, s and to. Assuming (6.4) and (6.5) we would have by interpolation 

2 

It- tol 2 + Is-to 12 121q-1 
<~C[ ~ ~  I " 

By the Minkowski inequality for integrals we would have 

IlSto,+Sto,+@(, t) llL~' 

It-t012 + Is-t01212/q-1 
~C/R]lg(.,S)llL~[It--sl-(~-l)/2(It--to]+ls--toI)-U210g it_tol.lS_toi ] ds. 

We apply Lemma 6.4 below with 5=1/n to conclude that  the kernel 

It_tol 2 + 18__tOI  2 ]2/q--1 
[]t--sl--(n--ll/2(]t--tot+lS--to])--l/210g it_tol.ls_to] ] 

2 IIU~,to,• 
<~ C]t-s[-(n-1)/2(It-tol+Is-to[)-l/2 log 

It-tol2 +ls-tol 2 (6.5) 
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p~ 
defines a bounded operator from L p to L t . Thus 

IIS~o,~-S~o,• II L(LU' <- CIIglI L~L~ 

as desired. It remains to prove (6.4) and (6.5). The L2-bound (6.4) was already proved 

in the remark at the end of w For (6.5) we need to control the absolute value of the 

kernels L2,to,~:. These kernels split as products of n integrals; as in Proposition 6.2 the 

integrals in z2, ..., Zn are each bounded by CIt-s[ -1/2. Thus it remains to prove that  

R , 2  2 , 2 2 -  dz e -  (~) z l k 4 2 ( z l , y l , t 0 , 8 ) ~ - I - ( t 0 - 8 ) e - ( e  ) z l k 4 2 ( z l , x l , t 0 , t ) ~ _ l _ ( t 0 _ t )  

(6.6) 

<<. C(It- tol+ls- tol)  -1/2 log It-t~ +ls-t~ 
It-tol'[s-tol 

uniformly in all the variables. We substitute the formula (4.42) and integrate the variable 

zl first. As before let A=21s-tol 1/2 and B=21t-tol 1/2. It suffices to prove that  

/R1 1 IJ4(t0, s, ( z l - a l ) /A ,  yl/A)I -~ IJ4(to,t, ( z l -a2) /B ,  xl/B)I dZl 

A 2 - B  2 
<.C(A 2+B2) -1/2log A ' i  ' 

This follows easily from (4.44). [] 

In the proof of Proposition 6.3 we used the following lemma: 

LEMMA 6.4. For any t,s>O, 5C(0,1] and pE[1,2] let 

[ t2-[-S2"] 45/p' 
L~(t,s)=lt-sl(-2+2~l/P'(t+s)-2~/p'[log~-s J . 

For any continuous compactly supported function f :  (0, ec)-+C let 

/oo ( Sef(t) = s) L~(t, s) ds. 

Then 

IIS~flIL~'((0,~)) ~ C~ Ifll/p((0 o0))' 

Proof. By analytic interpolation, using the family of kernels 

L~ (t, s) = I t -  s I (-2+:~)z (t + s)-2~z [log t2 + s2 ]45z 
L ts J 

(6.7) 
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defined for R a z e  [0, ~], we see that  it suffices to prove the lemma for p = p ' = 2 .  In this 

case, (6.7) is equivalent to a Hardy inequality. Let (Y, d#)=((0,  ~),dt/ t) ,  and for any 

t, s>0  let ](s)=sa/2f(s) and _F(t)=p/2Saf(t). Then 

where La (t, s)=p/2sl/2 L t - s ] - ( l - a ) ( t + s )  -a  [log(t 2 +s2)/ts] 2a. The inequality (6.7) with 

p=p~--2 is equivalent to 

ILFIIL~(Y,d.) <~ Ca IIfIIL~(Y,d.). 

This follows from (6.8) and the observation that  IILa(., 8)IILl(y,d,(t))~Ca uniformly in s, 

and I[La(t,. )I[L~(Y,d,(~)),,<Ca uniformly in t, provided that  ~e(0, 1]. [] 

This completes the proof of the L~L q--+L~L~ boundedness of the operators Tj. We 

1 2_~LtFLq' boundedness. now turn to the question of L~Ly 

PROPOSITION 6.5. The operators 7"1, T2 and T~ are bounded from LsLyl 2 to ~t[P~Yq'~x" 

Pro@ As in Proposition 6.2, by using Lemma 6.I it suffices to prove the uniform 

bound 
~l 2 Z 2 -  dz  f e-(~')21~12K(x,z,t, so)e-( ) l l K ( y , z , s ,  so) <C[t-s[ -n/2 (6.9) 

JR~ 

for the kernels K =  Kz, K=/42  and K =  K 1 , under the assumption that  ( t - s o ) ( s - s o ) >  0. 

The integrals in (6.9) split as products of n iategrals. By the same argument as in 

Proposition 6.2 the integrals in z2, ..., z~ in (6.9) are bounded by CI t - sF  ~/~ as desired. 

It remains to prove a similar bound for the integral in Zl. To summarize, it suffices to 

prove that  

z~,t, so)e -( ) l k ( y l , Z l , S ,  so) dz  1 ~ C ] t - s 1 - 1 / 2  (6.10) Re-(~')~z~ k(xl, ~' ~z ~ - 

for k=kl, k=k2 and k=k 1, where t,s, soE[-1,1] and (t-so)(s-So)>O. Assume that  

t - s 0 > 0  and s - s 0 > 0  (the case t - s o < 0  and S - s o < 0  is similar). Notice that  the bound 

(6.10) is trivial for j=2, since # 2 ( ,  ", t, s o ) - 0  if t - s o > 0 .  Also, for the kernel k=k~ the 

estimate (6.10) can be obtained as in Proposition 6.2. It remains to consider the case 

k=kl. 
Recall that  7>~fl+ 1. Fix h=h~L,m:lt-+[O, 1], a smooth function with the following 

properties: 

h(Zl) = 1 

h(z~)  = o 

10~lh(zl)l < c z  -~ 

if min{[zl--Xl], IZl--Yll} ~ 10"/, 

if min{lzl-x~l ,  Iz~-Yzl} t> 207, 

for any z l E R  and / = 0 , 1 , 2 .  



226 A.D. IONESCU AND C.E. KENIG 

We use this function to break up the integral in the left-hand side of (6.10) into two 

parts. For the term that  contains the function l - h ,  i.e. when Zl is far from Xl and Yl, 

we integrate by parts in (4.27) and use the fact that  [ (x l - z l ) -2 ( t - so )~ l [~>  ~o I x l - z l l  

if 1~1[~<27 and t, s0E[-1,  1]. The result is 

and 

Ikl (xl, zl, t, So)l ~ ClXl -Zl1-1 

[kl (yl, Zl, s, 80)1 ~ Clyl -zl1-1 

if min{lz I - x l [ ,  [Zl-yll}~>10% Thus 

I~l (Xl, Zl, t, 80)kl (Yl, Zl, 8, 80) I ~ C(IXl -z11-2 + lYl - z l  [-2) 

if min{Iz I - - X  1 [, [Z 1 --Yl I})  10% It follows that  

R , 2 2 , 2 2 e -(e) Z~kl(Xl,Zl,t, so)e-(e) Z~kl(Yl,Zl,S, So)(1-h(zl)) dzl <~C~/-l<~C]t-s1-1/2 
(6.11) 

if It-sl <.2 , as desired. 

To estimate the term that  contains the function h, assume first that  Ix1-Yl[~ 100% 

Let 

~1 (Xl, Z1, t, 80) = f ei(=l-zl)~le-i(t-s~ ~1, t, 80) d~l 
JR 

(6.12) 

and 

kl (Yl, zl, s, So) = f e i(yl-zl)v' e-i(s-so)v~e-d~;#l(yl, ?]1, s, So) d?]l. (6.13) 
JR 

Since IXl-ZlI-f-lyl-Zl[~C% we can use (3.8) and the formula (3.16) to see that  

I#1(Zl, ~1, t, 80)--#1(Xl, ~1, t, 80)I-~-I#1 (Zl, ?]1,8, 80)--#1 (Yl, ?]1,8, 80)14 C-~ .  

By integrating we have 

[]~l(Xl,Zl,t, 8o)-kl(Xl,Zl , t ,  8o)[-t-[kl(Yl,Zl,S, So)-kl(Yl,Zl,8,8o)l ~C~-~ff (6.14) 

if [Xl-Zll~-lYl-Zll~C~/. Also 

]kl(Xl,Zl,t, so)l+lkl(Xl,Zl,t, so)l+]kl(Yl,Zl,S, So)]+[kl(Yl,Zl,S, So)l~C~. (6.15) 
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By (6.14) and (6.15) and the fact that  ]t-sl~<2 , 

/Rh(zl)e-(~')2z21]Q Xl, zl, t, Zl, s, s0) 8o) e-(e')2Z~ kl (Yl ~ dzl 

R z' ~z 2 - , 2 2 7 6 < h(z l )e  -(  ) i k l ( X l , Z l , t ,  s o ) e - ( e ) Z ~ l ( Y l , Z l , S ,  So )  d Z l  + C-~  (6.16) 

/R ~ 2z2- ~' 2z2 dzl h(zl)e - ( )  Z]~l(Xl,Zl,t, so)e-( ) l~gl(Yl,Zl~S, sO) +CIt-s] -1/2, 

provided that  Ix1 - Y l I ~  1007 and 

76 < A. (6.17) 

It remains to estimate the first integral in the right-hand side of (6.16). For this we 

substitute the formulas (6.12) and (6.13), and integrate the variable zl first, as in Proposi- 

tion 6.2. Let H=H~I,y~ denote the Fourier transform of the function zl ~->h(zl)e -2(~')2~. 
The properties of the cutoff function h guarantee that  

IIHIIL~(R> < C. (6.18) 

We have 

h( zl ) e-(~')2 z~ kl ( xl, zl, t, so)e-  (~')2z~ kl (Yl, Zl , s, So) dzl 

= f ~I(O)eixl~176 e-i(t-s)v~e i[(xl-ul)-u(t-~~ (6.19) 
JR JR 

• e-~#~(y~, w, s, so)e-~("+e)~p~(x~, ~ +e, s, so) d~ de. 

The multiplier Pl belongs to the symbol class HM~ This was checked in Proposition 6.2. 

By Lemma 4.2, the ~h-integral in (6.19) is bounded by CIt-s1-1/2. By (6.16) and (6.18) 

we have 

JR ' 2z2 , 22- so) dZl h(zl )  e - (~)  lk l (Xl ,Zl , t ,  8o)e-(~ ) Zlkl(Yl,Zl ,8 , ~ C[t-s1-1/2 (6.20) 

if I x l - y l [ ~  1007, as desired. 

If Ix1-yl[~>100% we break up the integral in (6.20) into two parts, depending on 

whether Zl is close to Xl, or Zl is close to Yl. Assume that  we are looking to estimate the 

integral over [Zl-Xl] ~207. We argue as before: the only difference is that  we replace 

the kernels kl(Xl, Zl, t, So) and kl (Yl, zl, s, So) with the kernels 

= f e~(X~ z~)a ~(~ ~o)~ ~ t ~ I ( X l , Y l , Z l , t ,  S0) " - e -  - e -  #1(x1,~1, , s0)d~l 
Ja 
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and 
~ i Z " 2 2 2 kl(Xl,Yl,Zl,S, So) f e (Y~- ~)'~e-'(s-s~ -~ "~#l(Xl,~l,S, So)&h. 

J R  

The only difference compared to (6.12) and (6.13) is that we replace the multipliers 

pl(Zl, " , - , '  ) with pl (Xl , - ,  ", ") in both integrals. Since ]zl-xll<~20~/, all the previous 

estimates apply, so the integral in the left-hand side of (6.20) over the set IZl -Xl]~<20~ is 

bounded by It-s1-1/2, as desired. The integral over the set [zl-Y11~<207 is similar, the 

only difference being that we replace the multipliers #1(Zl, " ,  " , "  ) with Pl(Yl, ", "," ) in 

both integrals. Together with (6.11) this completes the proof of (6.10) for the kernel kl. [] 

PROPOSITION 6.6. The operators T3 and T~ are bounded from LsLyl 2 to ~t-~.FP'f q' 

Proof. By the same argument as in Proposition 6.3 it suffices to prove that 

R , 2 2 ~ ~ _ ( e , ) 2 z ~  ~ l o .  e -(~) Zlk(xl ,zl , t ,~o;c ~ y l , z l , s ,  so)dZl 

<~ C(It-so]+lS-Sol) -1/2 log 
I t - so l2+ l s - so l  2 

It-sol'fs-s0f 

(6.21) 

for k=k3 and k=k 2, provided that (t-so)(S-So)>O. For the kernel k42 this follows as in 

Proposition 6.3--see the proof of (6.6). For the kernel k3 we prove a bound similar to 

(4.42) and (4.44): by examining (5.3) and integrating by parts we see easily that 

I l 
l ~ 1 0 ~ ,  # 3 ( Y l ,  ~1 ,  t ,  s ) l  < C ( l + l t - s l ~ )  -~ (6.22) 

fo r /=0 ,  1, 2. We use this in (4.27) and integrate by parts (because of the decay in (6.22) 

as ]t-sl~2~-+co, the factor e -~(t-s)r may be absorbed in #3(Yl, ~1, t, s)). It follows easily 

that 
C 

]k3 (Xl, Yl, t, s)l < I t -  s I1/2 + Ix1 - -  Yl ]' (6.23) 

This estimate can be used to prove (6.21) for the kernel k3, as in Proposition 6.3. [] 

7. B o u n d e d n e s s  o f  t h e  o p e r a t o r s  Tj ,  I I I  

It remains to prove the following result: 

PROPOSITION 7.1. The operators Tj, j = 1 , 2 , 3 , 4 ,  are bounded f~vm LPL q to r P'r.q' 8 "y ~ t  ~ X  " 

In dimensions n~>3 we need an interpolation lemma of Keel and Tao [7] (see pp. 964- 

967 for the proof): 
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LEMMA 7.2. (Keel and Tao [7]) Assume that n>~3 and 

v(f)(x,t)= s s 

is an operator with a locally integrable kernel K. Let 

fR  fit f ( y , s )K(x , y , t , s )dsdy .  Vz(f)(x,t) = n _~,~[2~,~+~1 

Let 
n _ l  n ( l + l  ) 

9(a, b) = 2 g \ a' b' ] 

and assume that for any f E S ( R  ~x R) the estimate 

IIUz(f)IIL~L~' <~ C2 -zm(~ IlfllL~L~ (7.1) 

holds for the exponents 
(i) a = b = l ;  
(ii) 2n/(n+2)<~a<2 and b=2; 

(iii) 2n/(n+2)<~b<2 and a=2 .  

Then 

IIU(I)IIL~L~/<--~) <- CIIflIL~Lg~ 

Proof of Proposition 7.1. We claim first that  an operator of the form 

T(g)(x,t)~- s 1 6 3  ) s162162 dsdy 

p q T.P~Tq ~ is bounded from L t L~ to ~t ~ if pE [1, 2), and the operator 

St,s( h ) (x) = /R  ha(y) de [ ,~ei(X-Y)( e-i(t-s)](]2e-e~]r ~l' t' s) d~ dy 

satisfies the bounds 

IIS~,~IIL~(Rn)+L=(R~ ~< C (7.2) 

and 

IISt,slILI(R~)-~L~(R") ~ CIt-sl -n/2 
uniformly in t and s. Assuming (7.2) and (7.3) we would have by interpolation 

[[St,s [[Lq(a~)_~Lq'(Rn ) ~< Clt-sJ-n(1/q-1/2). 

(7.3) 
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By the Minkowski inequality for integrals we would have 

liT(g)(. ,t)llL , fR f fiy, s) JRo [ dy 

< f IIg(-, s) llL.  It-s] ds. 

Since 1/p-1/p ' - -1-n(1/q-1/2)  and p<p', by fractional integration it would follow that  

IIT(g)llLr'Lf ~< C~llgllL~z~, 

as desired. 

It is easy to check the estimates (7.2) and (7.3) for our multipliers #j. Notice that  

the L2-bounds (7.2) were proved in Proposition 5.1. For the L 1 --+L ~ bounds, it suffices 

to prove that  for j = l ,  2, 3, 4, 

/R ei(Z-Y)~ e-i(t-s)l~l~e-CeKI2pj(Yl, ~1, t, 8) d~ CIt-sl-n/2 <~ (7.4) 
n 

uniformly in t, s, x and y. For this we use Lemma 4.1 for j = 1 , 2 , 3  (the Hbrmander-  

Mikhlin bounds for #j were verified in Proposition 6.2), and the formula (4.42) for j=4. 
This completes the proof if (p,q)E.A and p<2.  It remains to prove the endpoint 

estimate (p, q)=(2,  2n/(n+2)) in dimensions n~>3. For this we use Lemma 7.2; we have 

to verify the estimate (7.1) for our operators Tj, l, j =  1, 2, 3, 4. Notice that  we can assume 

/~0;  in addition we can assume that  f is supported in a time interval of length 2 I+1, 

say Rn•  [so-2Z, So+2l]. Then Tj3(f ) is supported in R n x  [So-3.2Z, so+3.2z]. For the 

bound in the case a = b = l  we have 

IITj,I(f)IIL~L~ <<. C21/211Ty, z(f)llnrL~ <<. C2 z/2 sup IKj(x,y,t,s)l 'llfllLiL~ 
It--s[C[2t, 2 t+l] 

<. C2 U22-1n/22U2 IIf[IL]L1 = C2 -zz(I'I) IIflIL]L~ , 

as desired (we used the bound (7.4)). In the case ae [2n/(n+2), 2] and b=2, let p(a) e [1, 2] 

be the exponent with the property that  (p(a), a)Efl,. We use Propositions 6.2 and 6.3 to 

get 

IITj,I(f)NL~L~ < C2l/2sup NTj,l(f)(to," )IlL 2 < C2 z/2 IIflIL~(~)L~ 
to 

C2U22l(1/p(a)-U2) IIfllL]L~ =- c2-l~(a'2) IlfllL]L~, 

as desired. The estimate in the case a = 2  and bE[2n/(n+2),2] is similar, by using 

Propositions 6.5 and 6.6 instead of Propositions 6.2 and 6.3. This completes the proof 

of the proposition. [] 
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8. B o u n d e d n e s s  of  t h e  o p e r a t o r s  R j  

2 X / In this section we prove that  the operators Rj, j = l ,  2, 3, are bounded from L~ Ly to 

with small norm. Recall that  the operators Rj are of the form 

dsdy. (8.1) 

The multipliers sj are defined in (3.17), (3.19) and (3.23). The following proposition 

gives the main estimate in this section: 

PROPOSITION 8.1. If  (p,q)E.A is as in w then 

IlRJgllLfZ~' ~< C ~  IlgllL~Lg 

for j = 1 , 2 , 3 .  

Proof. Notice that  it suffices to prove the stronger bound 

75 
JJRjgJJ LPlLq' < C---~ IIgJJL18L~. 

For j = 1 , 2 , 3  let 

m j  (Xl, Yl, t, 8) = f e i(xl --Yl)~I e - i ( t - s ) ~  e -e2~ 2 s j  (y], ~1, t, s) d~l. 
JR 

As in Propositions 5.1 and 6.6 it suffices to prove that  for j = l ,  2, 3, 

I[sj(", ~1, t, s)[IBvy I ~< C ~ -  (8.2) 

for the 1 2 ~ 2 L~Lv-+ L t L x bound, and 

R , 2 2 , 2 2 d z l  C - ( ~ )  z l m j ( x l , z l , t ,  s o ) e  - (~  ) z 1 ~ t j ( y 1 , z l , 8 , 8 0 )  

(8.3) 
<<" C( ~--~ ) 2(jt-s~176176 jt-s~ +'s-s~ 

for any t,s, so~[-1, 1]. 

Assume first that  j = l  or j = 2 .  The bound (8.2) follows easily from (3.14) and the 

formulas (3.17) and (3.19). Also, by (3.14) we have 

Iml,2(Xl, Zl, t, 80)[ < C ~4 
A'  
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and, by integrating by parts, we have 

Iml,2 (Xl, zl, t, so)[ ~< C [xl - zl1-1 -~.  

Thus 

/Re-(~')2Z~ ml,2( xl , zl, t, so )e-(e')2z~ fftl,2(yl , zl , s, so ) dZl l ~ C ( ~-~ I 2, 

which is better than (8.3). The proposition follows for j =  1, 2. 

Assume now that  j=3. We examine the formula (3.23). Recall that  in this formula 
1 r  ]~11 ~>'Y and ]71 ~. Y6~1- The symbol in the second line of (3.23) can be written in the form 

where 

-~S,~(yl)~ -~+Q3(u~,~,~) ,  

c z ~1~ 2 lt~1 ,'~ ,~l ~3 io~l.o~]O~3Q3(y1, ~:~, ~)i < .,,~,~3 ~ ~ 

for any nonnegative integers ll, l~ and 13 (using (3.8)). In addition, Q3(yl, " , ' )  is sup- 

ported in the set ylE[A, 2A]. It follows easily that ]Is3(', ~1, t, s)IIBV~<~Cg'/)~, which is 

better than (8.2). Also, by integrating by parts as in (6.22) we have 

l l s ~ 1 i~10}~ 3(yl,Eil,t,s)l <. C 
,x ( l + l t - s l ~ : ~ )  ~ 

Thus, as in Proposition 6.6, 

C~l;~ 
]m3(xl,yl, t ,  s)l <~ it_sl~/2 + l ~ _ m  I, 

which suffices to prove (8.3) in the case j = 3 .  This completes the proof of the proposi- 

tion. [] 

We can now establish the precise condition on A and ~. The two relevant estimates 

are (6.17) and Proposition 8.1. Thus we need to assume that  

A ~> A(13) = C ( l + ~ )  6 (8.4) 

for some large constant C. 
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9. Applications 

In this section we prove Theorems 2.3, 2.4 and 2.5. To simplify the notation, we write 

X for X([0, 1]), X '  for X'([0, 1]), and Y for Y([0, 1]). Recall that  C is the constant in 

Theorem 2.1. For Theorem 2.3 we simply apply Theorem 2.1: 

C[IvllY [le'~(~)u(x, t)llx, 

If NVHy<.I/2C, the first term of the right-hand side of the inequality above can be 

absorbed into the left-hand side (this term is finite since uEX' by Theorem 2.1 and 

e ~ x ( ~ )  is bounded). Theorem 2.3 follows by letting A=oc. 

For Theorem 2.4 we use a variant of the Carleman argument. Let u=ui-u2; we 

have 

Hu = Wu, (9.1) 

where 

W(x) = { V(x)V(x)+F(Ul(X))-F(u2(x))ul(X)-u2(x) ifif ul(x)Ul(X)•U2(X)'= u2(x). 

Since WEY, we have WuEX, and thus the identity (9.1) holds in X and uEZ([O, 1]). 

By (2.9) and (2.10), 

[[WXbwo+D(~o)(X)[[y <~ ~. 
By rotation we may assume without loss of generality that  w0=(1,0, . . . ,0).  Let E =  

ILu(" ,0)LIL~ +llu(- ,  1)ILL2. By Theorem 2.1 with A>~max{b+l, A(/3)}, the identity (9.1) 

and the support property of the functions u(- ,  0) and u ( . ,  1), we have 

[[ef~x(xt)X{X:Zl>b}Ul[ x, <~ Ile~'X(Xl)ullx , 
<~ C [[ef~x (Zl ) Hul[x +Cef~bE 

<~ II (X(w:xl>b}W)(x{~:xI>b}U)liX (9.2) 

We can absorb the first term of the right-hand side (which is clearly finite) into the 

left-hand side. The theorem follows by letting r ),--+oc. 

To prove Theorem 2.5 we define the functions u and W as before. We have to show 

that  if uEZ([0, 1]) vanishes in a half-space and Hu=Wu, then u=-0. This is similar to 
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the type of unique continuation theorems proved by Kenig, Ruiz and Sogge [12] for wave 

equations. As in [12, p. 331], we should remark that  the classical examples of smooth 

solutions of the equation Hu=O which vanish in a half-space (as in [3]) are not decaying, 

and are thus not in C([0, 1] :L2(R~)). Our argument is somewhat similar to the proofs 

of Theorem 1.3 and Corollary 6.1 in the work of Isakov [6]. The difference is that  we use 

L p Carleman inequalities to cover rough potentials (in the space Y), as opposed to only 

bounded potentials as in [6]. 

The identity (9.1) holds and, by Theorem 2.4, u=-0 in [bwo+D(wo)] x [0, 1]. We will 

prove now that  u=-0 in R n x  [0, 1]. By (2.11), there is s0E(0, 1] with the property that  

1 IIW)(.{x:x'woE[b',b'+eo]} IIY ~ - -  for any b'E (-cx~, b-s0], (9.3) 
4C 1 

where C1 is the constant C in Lemma 9.1 below. This is the only assumption we need 

on W to carry out the proof. By rotation we may assume that  w0=(1,0, . . . ,0) .  Let 

by=b-jso. By induction it suffices to prove that  u - 0  in {x :xl >bj+l} x [0, 1] assuming 

that  u - 0  in {x: z l > bj } • [0, 1] and j ~>0. The Carleman inequality in Theorem 2.1 (or 

Corollary 2.2) does not apply directly, mainly because we do not have good control over 

the boundary terms u(- ,  0) and u ( . ,  1). To avoid these boundary terms we make a change 

of variables (as in [6]). For any 5E (0, ~0] fix a smooth function w=w~,y: [0, 1]-+[bj+l, bj] 
with the property that  w(t)=bj+l if tE[2(~,1-25], w(t)=bj if tE[O,5]U[1-5,1], and 

5]w'(t)[+5 2 [w"(t)[~< C. We will show that  

u--=0 i n { ( x , t ) : x l > w ( t ) , t E [ 0 , 1 ] } .  (9.4) 

Since ~ is arbitrary and uEC([0, 1]:L2(Rn)) this would suffice to complete the proof of 

the induction step. Let 

v(yl, y', s) = e-iJ(s)Yl/2 u(yt +a~(s), y', s). 

An elementary calculation using (9.1) shows that  

HV(yl, y', s) ---- v(yl, y', 8)[W(yl ~-cd(8), y ' ,  s)-~- l o / , ( 8 ) Y l  - 1 ~ ' ( 8 ) 2 ]  �9 (9.5) 

The role of the exponential e -iJ(~)m/2 is to cancel the Oylu-term in the commutator. By 

the support properties of the function u, we know that  v-=0 in the sets 

{(yl ,y ' ,s):yl>~o} and ( (y l ,y ' , s ) :y l>Oand sE[O, 5]U[1-5,1]}. 

It remains to prove that  v - 0  in the set {(Yl, Y', s ) :y l  >0}. The equation (9.5) may be 

written in the form 

Hv = (Wo+M).v,  (9.6) 
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where 

and 

N 

w0(yl,  y', s) = w ( ~ l  + ~ ( , ) ,  y', s) 

M ( y l , y ' , s ) =  l~w ' ' ( s ) y l - lw ' ( s )  2. 

Theorem 2.1 cannot be applied in this case because the potential M does not belong to 

the space Y. We use instead the following Carleman inequality: 

LEMMA 9.1. Assume that ueC([0,  1]:L2(Rn)), u-O in the set {(xl, x ' , t ) : x l> l } ,  

and ( I+]x l l ) -NHucX(Rn•  (0, 1)) for some N~O. Then, for some constant co>O, 

II er (xl)X[o,1] (wl)u(x, t)IIx,([o,,]) + 9  c~ II ec~(Xl)x[O,l] (Xl)n(x, t)II L~L~(R~ • [o,1]) 
(9.7) 

<<. C[lleC~(Xl)Hu(x, t) llx(toa]) +lleO'(~l)u( . , O)llL= +lleC'e(~)u(" , 1)ILL2] 

for any fie [2, c0). The function r R--+R is given by r if XlE [--1, cO), and 

r  if Xle(--cO , --J-]. 

The same argument as in the proof of Theorem 2.4 (see (9.2)), using (9.3) and the 

identity (9.6), shows that Lemma 9.1 suffices to prove that v - 0  in the set {(yl, Y', s): 

Yl >0}, which gives (9.4). 

Proof. By the same argument as in w we may assume that u c C ~ ( R n •  is sup- 

ported in R~•  [0, 1]. The bound for the first term in the left-hand side of (9.7) follows 

from the stronger inequality 

Ile~ullx,([0,1l) ~< c Ile~iHullx([o,1]) 

for any/~ ~> 2 and any u E C ~  (R n x R) ,  which is a consequence of Theorem 2.1 with A = co. 

To control the second term in the left-hand side of (9.7) it suffices to prove that for 

some co > O, 

~coller215 <<. ClleC~(X~)Hu(x,t)llx([o,1]) (9.8) 

for any ~ > 2  and any u E C ~ ( R n •  R)  supported in R n x  [0, 1]. Let f = H u .  Let P)  denote 

the operator defined by the Fourier multiplier ({1, {', r)~+e -~= 1g'12e -~=(r It suffices 

to prove that 

[IX[O,1](t)eC~,(~I)X[o,1](xl)P)(u)IIL~L~(R~• ) <~ C~-~olleC',(~')f(x,t)llx((oa] ). (9.9) 

As in w let ~(xl,  {', r)  and f(Xl,  {', r )  denote the partial Fourier transforms of the 

functions u and f in the variables x' and t. The equation ( iOt+A~)u=f  becomes 

2 [Ox~1- 0-+ I." 12)] a(xl,  .~', ~-) = / ( x l ,  ~:', .) .  
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By integration by parts we have for any xlE [-1,0], 

?~(Xl, E I, T) = f ](Yl, E', T)G(Xl, Yl, T ~-IE ! 12) dyl, 
JR 

where 
-X+(yl-Xl)  sin[(xl-yl)x/E-fi] if # ~ 0 ,  

G(xl,Yl,#) = -X+(yl-Xl)  sinh[(xl-yl)xffi j if 0~<#~</~ 2, 
v~ 

e- I~-y~lv~ 
if/32 < #. 

2v~ 

By taking the inverse Fourier transform, 

P:U(XI,X/,t)=C/Rn/Rf(y, 8)/Rn_,/R .i(x'-y')'~'.i{t-s)~-e-~'l~''2 
x e-"('+l~'l')'G(a~, y~, ~+ IE'I 2) dT dE' ds dy. 

Thus, to prove (9.9), it suffices to prove that the operator 

:Y(g)(x, t ) = /R .  /Rg(y, s) fi[ (x, y, t, s) ds dy 

has the property that  

(9.10) 

IIT(g)IIL~L~ <~ C~-~~ X (9.11) 

for any bounded compactly supported function g, where 

g ( x ,  y, t, 8) --~ X[O,1] (t) X[0,1] (8) X[O,1] (Xl) X(-~, l ]  (Yl)e r (xl)--~(Yl ) 

X/Rn_ 1/Rci(x'-Y')'~'e i(t-s)v e-e21"12e -e2 ('r +l~q2)2G(xl, B1, T ~-IEtl 2) dT dE ! 

X[O,1] (t) X[O,1] (8))~[0,1] (Xl) X(--~,l] (Yl) er  (xl)--~bB (y,) 

Let 

k(Xl, Yl, t, s) = X[03] (xi) X(-~,I] (Yl) e r162 Yl, #) d#. 

For 1 ~< O, let 

~ t ( x ,  y, t, ~) = xE~,~§ ( I t - ~ l ) ~ ( x ,  y, t, s), 

kl (Xl, Yl, t, 8) = X[2,,2,+1] ( I t - s O  k(xl, Yl, t, s) 
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and ~ be the operator defined by the kernel Kt. By (9.10), 
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To see this, we substitute the formula (9.10) and break up the integral into three 

parts. To control the integral over #~<0 we make the change of variable # = _ ~ 2  and 

use Lemma 4.2. To control the integral over #E [0,/32] we make the change of variable 

#=~2, use Lemma 4.2 for the integral over ~E [0, �89 use again Lemma 4.2 for the in- 

tegral over ~C[�89 if/321/2<~1, and integrate by parts if/32z/2..->1. To control the 

integral over #~>/32 we make the change of variable #=~/2, use Lemma 4.2 if/321/2~<1, 

and integrate by parts if/32U2>j1. The estimate (9.12) is the only estimate we need for 

the kernel/~l. 

As in w we fix an acceptable pair (p,q), with p~<4 if n = l ,  P<<.Po if n=2 ,  and p~<2 

if n>~3. For (9.11) it suffices to prove that 

it suffices to prove that 

IITzlIL~L~-~L~L~ ~ c/3 -~~ 
l <~ o 

for some Co > 0. Since 

II T~- II LVLX~L1L= . . . .  <~ C II ~ II LVZ~--+ZrZ= . . . .  <~ C2~/~II~IILPL~L~L~, 

2 lip I1~ IIL~L~L~L~ <~ C/3 -c~ (9.13) 
l~<O 

To estimate I1~11 p q ~ ~ we argue as in Proposition 6.3. For any toE[0,1] let ~,to LsLv--+L t L~ 

denote the operator defined by the kernel e-(d)~l~l~Kl(z, y, to, s). As in Proposition 6.3, 

II~IIL~L~-+LrL~ <<" ~oySUp II~,'o IIL~L~L~ ~< ~o,~'sup IITz*~oTZ,~o II ~ L  ~-~LF'L~' " (9.14) 

The kernel of the operator Tz*toTl,to is 

s LZ,to(X,y,t,s)= e-(d?lzl~fi21(z,y, to,s)e-(d)~tzl~B2l(z,z, to,t)dz. 

L e t  ~fl,to,t,s denote the operator defined by the kernel L l , t o ( ' , ' , t , s ) -  By (9.12), the 

Ll-norm in both the variables Xl and Yl of the kernel kz(. , . , t ,s)  is bounded by 

C2 -1/2 (1+/321/2) -1. Thus 

II u~,~o,~,~ II L~ (R~)~L~ (R~) ~< C 2-t (1 +/3221)- 1. 

I[~l(xl,yl,t,s)l << C2-Z/2[e-Zlxl-ml/l~ +/321/2)-lX[o,21(Ixl-yll)]. (9.12) 
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The  kernel Zl,t0 (x, y, t, s) splits as a p roduc t  of  n integrals.  As in Propos i t ions  6.2 and 6.3, 

the  integrals over the  variables z2, ..., zn are each bounded  by ] t - s I -Uu.  For the integral  

over the  variable zl we use (9.12). The  result  is 

I]Ut,to,t,sllL,(R~)-+L~(a~) <. CIt-s]-( '~-l) /:X[o,2,+2}(It-sl)2-t( l  +f l22z) - l ( l  +fl2t ). 

By in terpola t ion  and  the Minkowski inequal i ty  for integrals,  as in Propos i t ion  6.3, 

[ITl*toTl,to II LPLq _+LP'L q' ~ C2-l(1+/322l)-1(1+~21)2/q-12 l/2(2/q-1). 
s y t x 

By (9.14) and the  fact t ha t  1 / p + l / 2 q - 3 > ~ l / 2 n  if (p,q)E.A, 

1+/31/221/2 ~ C~ -1/2'~. 
< C2 l(1/p+l/2q-3/4) 1_.1_/ 2l/2 

l<~o l<~o 

The  main  es t ima te  (9.13) follows with  co=l /2n .  [] 
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