Acta Math., 193 (2004), 241–268 © 2004 by Institut Mittag-Leffler. All rights reserved

Dolbeault cohomology of a loop space

by

and

LÁSZLÓ LEMPERT

Purdue University West Lafayette, IN, U.S.A. NING ZHANG

University of California Riverside, CA, U.S.A.

0. Introduction

Loop spaces LM of compact complex manifolds M promise to have rich analytic cohomology theories, and it is expected that sheaf and Dolbeault cohomology groups of LM will shed new light on the complex geometry and analysis of M itself. This idea first occurs in [W], in the context of the infinite-dimensional Dirac operator, and then in [HBJ] that touches upon Dolbeault groups of loop spaces; but in all this, both works stay heuristic. Our goal here is rigorously to compute the Dolbeault group $H^{0,1}$ of the first interesting loop space, that of the Riemann sphere \mathbf{P}_1 . The consideration of $H^{0,1}(L\mathbf{P}_1)$ was directly motivated by [MZ], that among other things features a curious line bundle on $L\mathbf{P}_1$. More recently, the second author classified in [Z] all holomorphic line bundles on $L\mathbf{P}_1$ that are invariant under a certain group of holomorphic automorphisms of $L\mathbf{P}_1$ —a problem closely related to describing (a certain subspace of) $H^{0,1}(L\mathbf{P}_1)$. One noteworthy fact that emerges from the present research is that analytic cohomology of loop spaces, unlike topological cohomology (cf. [P, Theorem 13.14]), is rather sensitive to the regularity of loops admitted in the space. Another fact concerns local functionals, a notion from theoretical physics. Roughly, if M is a manifold, a local functional on a space of loops $x: S^1 \to M$ is a functional of form

$$f(x) = \int_{S^1} \Phi(t, x(t), \dot{x}(t), \ddot{x}(t), \dots) dt,$$

where Φ is a function on $S^1 \times$ an appropriate jet bundle of M. It turns out that all cohomology classes in $H^{0,1}(L\mathbf{P}_1)$ are given by local functionals. Nonlocal cohomology classes exist only perturbatively, i.e., in a neighborhood of constant loops in $L\mathbf{P}_1$; but none of them extends to the whole of $L\mathbf{P}_1$.

Both authors were partially supported by the NSF grant DMS-0203072.

We fix a smoothness class C^k , $k=1, 2, ..., \infty$, or Sobolev class $W^{k,p}$, $k=1, 2, ..., 1 \le p < \infty$. If M is a finite-dimensional complex manifold, consider the space $LM = L_kM$, or $L_{k,p}M$, of maps $S^1 = \mathbf{R}/\mathbf{Z} \to M$ of the given regularity. These spaces are complex manifolds modeled on a Banach space, except for $L_{\infty}M$, which is modeled on a Fréchet space. We shall focus on the loop space(s) $L\mathbf{P}_1$. As on any complex manifold, one can consider the space $C^{\infty}_{r,q}(L\mathbf{P}_1)$ of smooth (r,q)-forms, the operators

$$\bar{\partial}_{r,q}: C^{\infty}_{r,q}(L\mathbf{P}_1) \to C^{\infty}_{r,q+1}(L\mathbf{P}_1)$$

and the associated Dolbeault groups

$$H^{r,q}(L\mathbf{P}_1) = \operatorname{Ker} \bar{\partial}_{r,q} / \operatorname{Im} \bar{\partial}_{r,q-1};$$

for all this, see e.g. [L1] and [L2]. On the other hand, let \mathfrak{F} be the space of holomorphic functions $F: \mathbb{C} \times L\mathbb{C} \to \mathbb{C}$ that have the following properties:

- (1) $F(\zeta/\lambda, \lambda^2 y) = O(\lambda^2)$ as $\mathbf{C} \ni \lambda \to 0$;
- (2) $F(\zeta, x+y) = F(\zeta, x) + F(\zeta, y)$ if supp $x \cap \text{supp } y = \emptyset$;
- (3) $F(\zeta, y+\text{const})=F(\zeta, y).$

As we shall see, the additivity property (2) implies that $F(\zeta, y)$ is local in y.

Theorem 0.1. $H^{0,1}(L\mathbf{P}_1) \approx \mathbf{C} \oplus \mathfrak{F}$.

In the case of $L_{\infty}\mathbf{P}_1$, examples of $F \in \mathfrak{F}$ are

$$F(\zeta, y) = \zeta^{\nu} \left\langle \Phi, \prod_{j=0}^{m} y^{(d_j)} \right\rangle, \tag{0.1}$$

where Φ is a distribution on S^1 , $y^{(d)}$ denotes dth derivative, each $d_j \ge d_0 = 1$ and $0 \le \nu \le 2m$. A general function in \mathfrak{F} can be approximated by linear combinations of functions of form (0.1), see Theorem 1.5.

On any, possibly infinite-dimensional, complex manifold X, the space $C_{r,q}^{\infty}(X)$ can be given the compact- C^{∞} topology as follows. First, the compact-open topology on $C_{0,0}^{\infty}(X) = C^{\infty}(X)$ is generated by C^{0} -seminorms $||f||_{K} = \sup_{K} |f|$ for all compact $K \subset X$. The family of C^{ν} -seminorms is defined inductively: each $C^{\nu-1}$ -seminorm $|| \cdot ||$ on $C^{\infty}(TX)$ induces a C^{ν} -seminorm ||f||' = ||df|| on $C^{\infty}(X)$. The collection of all C^{ν} -seminorms, $\nu = 0, 1, ...,$ defines the compact- C^{∞} topology on $C^{\infty}(X)$. The compact- C^{∞} topology on a general $C_{r,q}^{\infty}(X)$ is induced by the embedding $C_{r,q}^{\infty}(X) \subset C^{\infty}(\bigoplus^{r+q} TX)$. With this topology $C_{r,q}^{\infty}(X)$ is a separated locally convex vector space, complete if X is first countable. The quotient space $H^{r,q}(X)$ inherits a locally convex topology, not necessarily separated. We note that on the subspace $\mathcal{O}(X) \subset C^{\infty}(X)$ of holomorphic functions, the compact- C^{∞} topology restricts to the compact-open topology. The isomorphism in Theorem 0.1 is topological; it is also equivariant with respect to the obvious actions of the group of C^k -diffeomorphisms of S^1 .

There is another group, the group $G \approx PSL(2, \mathbb{C})$ of holomorphic automorphisms of \mathbb{P}_1 , whose holomorphic action on $L\mathbb{P}_1$ (by postcomposition) and on $H^{0,1}(L\mathbb{P}_1)$ will be of greater concern to us. Theorems 0.2–0.4 below will describe the structure of $H^{0,1}(L\mathbb{P}_1)$ as a *G*-module. Recall that any irreducible (always holomorphic) *G*-module is isomorphic, for some n=0, 1, ..., to the space \mathfrak{K}_n of holomorphic differentials $\psi(\zeta)(d\zeta)^{-n}$ of order -non \mathbb{P}_1 ; here ψ is a polynomial, deg $\psi \leq 2n$ and *G* acts by pullback. (For this, see [BD, pp. 84–86], and note that the subgroup \approx SO(3) formed by $g \in G$ that preserve the Fubini– Study metric is a maximally real submanifold; hence the holomorphic representation theory of *G* agrees with the representation theory of SO(3).) The *n*th isotypical subspace of a *G*-module *V* is the sum of all irreducible submodules isomorphic to \mathfrak{K}_n . In particular, the 0th isotypical subspace is the space V^G of fixed vectors.

THEOREM 0.2. If $n \ge 1$, the n-th isotypical subspace of $H^{0,1}(L_{\infty}\mathbf{P}_1)$ is isomorphic to the space \mathfrak{F}^n spanned by functions of form (0.1), with m=n.

The isomorphism above is that of locally convex spaces, as \mathfrak{F} or \mathfrak{F}^n have not been endowed with an action of G yet. But in §2 they will be, and we shall see that the isomorphism in question is a G-morphism.—The fixed subspace of $H^{0,1}(L\mathbf{P}_1)$ can be described more explicitly, for any loop space:

THEOREM 0.3. The space $H^{0,1}(L\mathbf{P}_1)^G$ is isomorphic to the space $C^{k-1}(S^1)^*$ (resp. $W^{k-1,p}(S^1)^*$) if the dual spaces are endowed with the compact-open topology.

The isomorphisms in Theorem 0.3 are not Diff S^1 -equivariant. To remedy this, one is led to introduce the spaces $C_r^l(S^1)$ (resp. $W_r^{l,p}(S^1)$) of differentials $y(t)(dt)^r$ of order r on S^1 , of the corresponding regularity; $L_r^p = W_r^{0,p}$. Then $H^{0,1}(L\mathbf{P}_1)^G$ will be Diff S^1 equivariantly isomorphic to $C_1^{k-1}(S^1)^*$ (resp. $W_1^{k-1,p}(S^1)^*$).

For low-regularity loop spaces one can very concretely represent all of $H^{0,1}(L\mathbf{P}_1)$:

THEOREM 0.4. (a) If $1 \leq p < 2$, all of $H^{0,1}(L_{1,p}\mathbf{P}_1)$ is fixed by G. Hence it is isomorphic to $L^{p'}(S^1)$, with p' = p/(p-1).

(b) If $1 \leq p < \infty$ then $H^{0,1}(L_{1,p}\mathbf{P}_1)$ is isomorphic to

$$\bigoplus_{n=0}^{p-1}\mathfrak{K}_n\otimes L_{n+1}^{p/(n+1)}(S^1)^*\approx \bigoplus_{n=0}^{p-1}\mathfrak{K}_n\otimes L_{-n}^{p_n}(S^1), \quad p_n=\frac{p}{p-1-n}$$

and so it is the sum of its first [p] isotypical subspaces. Indeed, the isomorphisms above are $G \times \text{Diff } S^1$ -equivariant, G and $\text{Diff } S^1$ respectively acting on one of the factors \mathfrak{K}_n and L^q_r naturally, and trivially on the other. L. LEMPERT AND N. ZHANG

Again, the dual spaces are endowed with the compact-open topology.

It follows that the infinite-dimensional space $H^{0,1}(L_{1,p}\mathbf{P}_1)$ can be understood in finite terms, if it is considered as a representation space of S^1 . Here S^1 acts on itself (by translations), hence also on $L\mathbf{P}_1$ and on $H^{0,1}(L\mathbf{P}_1)$. One can read off from Theorem 0.4 that each irreducible representation of S^1 occurs in $H^{0,1}(L_{1,p}\mathbf{P}_1)$ with the same multiplicity $[p]^2$. On the other hand, for spaces of loops of regularity at least C^1 , in $H^{0,1}(L\mathbf{P}_1)$ each irreducible representation of S^1 occurs with infinite multiplicity, and, somewhat contrary to earlier expectations, it is not possible to associate with this cohomology space even a formal character of S^1 . This indicates that Dolbeault groups of general loop spaces LM should be studied as representations of Diff S^1 rather than S^1 .

The structure of this paper is as follows. In §§1 and 2 we study the space \mathfrak{F} as a *G*-module. Theorem 1.1 connects it with a similar but simpler space of functions that are required to satisfy only the first two of the three conditions defining \mathfrak{F} . This result will be needed in proving the isomorphism $H^{0,1}(L\mathbf{P}_1) \approx \mathbf{C} \oplus \mathfrak{F}$, and also in concretely representing elements of \mathfrak{F} . Further, we shall rely on Theorem 1.1 in identifying isotypical subspaces of \mathfrak{F} (Theorems 2.1 and 2.2). This will then prove Theorems 0.2–0.4, modulo Theorem 0.1.

To prove Theorem 0.1, we shall cover $L\mathbf{P}_1$ with open sets

$$LU_a = \{ x \in L\mathbf{P}_1 : a \notin x(S^1) \}, \quad a \in \mathbf{P}_1,$$

each biholomorphic to $L\mathbf{C}$. Given a cohomology class $[f] \in H^{0,1}(L\mathbf{P}_1)$, represented by a closed $f \in C_{0,1}^{\infty}(L\mathbf{P}_1)$, we first solve the equation $\bar{\partial}u_a = f|_{LU_a}$, see §3. If an appropriate normalizing condition is imposed on the solution, u_a will be unique and depend holomorphically on a. At this point it is natural to introduce the Čech cocycle

$$\mathfrak{f} = (u_a - u_b : a, b \in \mathbf{P}_1) \in Z^1(\{LU_a : a \in \mathbf{P}_1\}, \mathcal{O}).$$
(0.2)

It turns out that \mathfrak{f} depends only on the class [f], and the map $[f] \mapsto \mathfrak{f}$ is an isomorphism between $H^{0,1}(L\mathbf{P}_1)$ and a certain space \mathfrak{H} of cocycles (Theorem 3.3).

In §4 we consider the infinitesimal version of (0.2). The function $\partial u_{\zeta}(x)/\partial \zeta$ is holomorphic in x and ζ , as long as $\zeta \notin x(S^1)$. We write it as

$$\frac{\partial u_{\zeta}(x)}{\partial \zeta} = F\left(\zeta, \frac{1}{\zeta - x}\right), \quad F \in \mathcal{O}(\mathbf{C} \times L\mathbf{C}),$$

and prove that F satisfies conditions (1), (2) and (3) above (Theorem 4.1). In §5 we prove that the map $H^{0,1}(L\mathbf{P}_1) \ni [f] \mapsto F \in \mathfrak{F}$ has a right inverse and its kernel is onedimensional, whence Theorem 0.1 follows. In the final §6 we tie together loose ends, and also represent explicitly some Dolbeault classes in $H^{0,1}(L\mathbf{P}_1)$; for $W^{1,p}$ loop spaces with $1 \le p < 2$, this amounts to a concrete map $L^p(S^1)^* \to C_{0,1}^{\infty}(L\mathbf{P}_1)$ that induces the isomorphism in Theorem 0.4 (a).

1. The space \mathfrak{F}

In this section and the next we shall study the structure of the space \mathfrak{F} , independently of any cohomological content. It will be convenient to allow k to be any integer (but only in this section!); when k < 0, elements of $C^k(S^1)$ and $W^{k,p}(S^1)$ are distributions, locally equal to the -kth derivative of functions in $C(S^1)$ and $L^p(S^1)$, respectively. Let $L^-\mathbb{C}$ denote the space $C^{k-1}(S^1)$ (resp. $W^{k-1,p}(S^1)$). We shall write $L^{(-)}\mathbb{C}$ to mean either $L\mathbb{C}$ or $L^-\mathbb{C}$. Consider the space $\tilde{\mathfrak{F}}$ of those $F \in \mathcal{O}(\mathbb{C} \times L^-\mathbb{C})$ that have properties (1) and (2) of the introduction. We shall refer to (2) as additivity. A function $F \in \mathcal{O}(\mathbb{C} \times L^{(-)}\mathbb{C})$ will be said to be posthomogeneous of degree m if $F(\zeta, \cdot)$ is homogeneous of degree mfor all $\zeta \in \mathbb{C}$. Posthomogeneous degree endows the spaces \mathfrak{F} and $\tilde{\mathfrak{F}}$ with a grading.—All maps below, unless otherwise mentioned, will be continuous and linear.

THEOREM 1.1. The graded linear map $\tilde{\mathfrak{F}} \ni \tilde{F} \mapsto F \in \mathfrak{F}$ given by $F(\zeta, y) = \tilde{F}(\zeta, \dot{y})$ has a graded right inverse, and its kernel consists of functions $\tilde{F}(\zeta, x) = \text{const} \int_{S^1} x$.

First we shall consider functions $E \in \mathfrak{F}$ (resp. \mathfrak{F}) that are independent of ζ . We denote the space of these functions $\mathfrak{E} \subset \mathcal{O}(L\mathbf{C})$ (resp. $\mathfrak{E} \subset \mathcal{O}(L^{-}\mathbf{C})$), graded by degree of homogeneity. Additivity of $E \in \mathcal{O}(L^{(-)}\mathbf{C})$ implies E(0)=0, which in turn implies property (1) of the introduction. Let

$$E = \sum_{m=1}^{\infty} E_m, \quad E_m(y) = \int_0^1 E(e^{2\pi i\tau} y) e^{-2m\pi i\tau} d\tau,$$
(1.1)

be the homogeneous expansion of a general $E \in \mathcal{O}(L^{(-)}\mathbf{C})$ vanishing at 0. Consider tensor powers $(L^{(-)}\mathbf{C})^{\otimes m}$ of the vector spaces $L^{(-)}\mathbf{C}$ over \mathbf{C} . In particular, $C^{\infty}(S^1)^{\otimes m}$ is an algebra, and a general $(L^{(-)}\mathbf{C})^{\otimes m}$ is a module over it. Each E_m in (1.1) induces a symmetric linear map

$$\mathcal{E}_m: (L^{(-)}\mathbf{C})^{\otimes m} \longrightarrow \mathbf{C}_p$$

called the polarization of E_m . On monomials, \mathcal{E}_m is defined by

$$\mathcal{E}_m(y_1 \otimes \ldots \otimes y_m) = \frac{1}{2^m m!} \sum_{\varepsilon_j = \pm 1} \varepsilon_1 \ldots \varepsilon_m E_m(\varepsilon_1 y_1 + \ldots + \varepsilon_m y_m), \tag{1.2}$$

see e.g. [He, §2.2], and then extended by linearity. Thus $E_m(y) = \mathcal{E}_m(y^{\otimes m})$.—We shall call $w \in (L^{(-)}\mathbf{C})^{\otimes m}$ degenerate if it is a linear combination of monomials $y_1 \otimes ... \otimes y_m$ with some $y_j = 1$.

LEMMA 1.2. (a) E is additive if and only if

$$\mathcal{E}_m(y_1 \otimes \ldots \otimes y_m) = 0$$
 whenever $\bigcap_{j=1}^m \operatorname{supp} y_j = \emptyset$.

(b) E(y+const)=E(y) if and only if $\mathcal{E}_m(w)=0$ whenever w is degenerate.

L. LEMPERT AND N. ZHANG

Proof. (a) Clearly E is additive precisely when all the E_m are, whence it suffices to prove the claim when E itself is homogeneous, of degree m, say. In this case $\mathcal{E}_n=0, n\neq m$. Denoting \mathcal{E}_m by \mathcal{E} , it is also clear that the condition on \mathcal{E} implies that E is additive. We show the converse by induction on m, the case m=1 being obvious. Let $x, y \in L^{(-)}\mathbf{C}$ have disjoint supports, so that

$$\mathcal{E}((x+y)^{\otimes m}) = \mathcal{E}(x^{\otimes m}) + \mathcal{E}(y^{\otimes m}).$$
(1.3)

Write λx for x and separate terms of different degrees in λ to find $\mathcal{E}(x \otimes ... \otimes y) = 0$, which settles the case m=2. Next, if we already know the claim when m is replaced by $m-1 \ge 2$, take a $z \in L^{(-)}\mathbf{C}$ with supp $y \cap \text{supp } z = \emptyset$, and write $x + \lambda z$ for x in (1.3). Considering the terms linear in λ we obtain

$$\mathcal{E}(z \otimes (x+y)^{\otimes (m-1)}) = \mathcal{E}(z \otimes x^{m-1}) + \mathcal{E}(z \otimes y^{m-1}), \tag{1.4}$$

the last term being 0. The same will hold if $\operatorname{supp} x \cap \operatorname{supp} z = \emptyset$. Since any $z \in L^{(-)}\mathbf{C}$ can be written z' + z'' with the support of z' (resp. z'') disjoint from the support of x (resp. y), (1.4) in fact holds for all z. By the induction hypothesis applied to $\mathcal{E}(z \otimes \cdot)$,

$$\mathcal{E}(z \otimes y_2 \otimes \ldots \otimes y_m) = 0$$
, if $\bigcap_{j=2}^m \operatorname{supp} y_j = \emptyset$.

Suppose now that $\bigcap_{j=1}^{m} \operatorname{supp} y_j = \emptyset$ and write $y_1 = y' + y''$ with y' = 0 near $\bigcap_{j \neq 2} \operatorname{supp} y_j$ and y'' = 0 near $\bigcap_{j \neq 3} \operatorname{supp} y_j$. Then

$$\mathcal{E}(y_1 \otimes \ldots \otimes y_m) = \mathcal{E}(y' \otimes \ldots \otimes y_m) + \mathcal{E}(y'' \otimes \ldots \otimes y_m) = 0.$$

(b) Again we assume that E is *m*-homogeneous, and again one implication is trivial. So assume that $\mathcal{E}((y+1)^{\otimes m}) = \mathcal{E}(y^{\otimes m})$, where $\mathcal{E} = \mathcal{E}_m$. Differentiating both sides in the directions $y_2, ..., y_m$ and setting y=0 we obtain $\mathcal{E}(1 \otimes y_2 \otimes ... \otimes y_m) = 0$, whence the claim follows.

PROPOSITION 1.3. The graded map $\widetilde{\mathfrak{E}} \ni \widetilde{E} \mapsto E \in \mathfrak{E}$ given by $E(y) = \widetilde{E}(\dot{y})$ has a graded right inverse, and its kernel is spanned by $\widetilde{E}(x) = \int_{S^1} x$.

We shall write $\int x$ for $\int_{S^1} x$.

Proof. (a) To identify the kernel, because of homogeneous expansions, it will suffice to deal with homogeneous \tilde{E} . So assume that $\tilde{E} \in \tilde{\mathfrak{C}}$ is homogeneous of degree m and that $\tilde{E}(\dot{y})=0$ for all $y \in L\mathbf{C}$. Its polarization $\tilde{\mathcal{E}}$ satisfies $\tilde{\mathcal{E}}(\dot{y}_1 \otimes ... \otimes \dot{y}_m)=0$. If m=1, this implies that $\tilde{E}(x)=\operatorname{const} \int x$, so from now on we assume that $m \ge 2$, and first we prove

by induction that $\tilde{\mathcal{E}}(x_1 \otimes ... \otimes x_m) = \text{const} \prod \int x_j$. Suppose that we already know this for m-1. Then

$$\tilde{\mathcal{E}}(\dot{y}\otimes x_2\otimes\ldots\otimes x_m)=c(\dot{y})\prod_{j=2}^m\int x_j.$$

With arbitrary $x_1 \in L^- \mathbf{C}$ the function $x_1 - \int x_1$ is of form \dot{y} , so $x_1 = \dot{y} + \int x_1$ and

$$\tilde{\mathcal{E}}(x_1 \otimes \dots \otimes x_m) = l(x_1) \prod_{j=2}^m \int x_j + \tilde{\mathcal{E}}(1 \otimes x_2 \otimes \dots \otimes x_m) \int x_1, \qquad (1.5)$$

where $l(x_1) = c(x_1 - \int x_1)$ is linear in x_1 . If $\int x_1 = 0$ and $\operatorname{supp} x_1 \neq S^1$, then we can choose x_2, \ldots so that $\bigcap_{j=1}^m \operatorname{supp} x_j = \emptyset$ but $\int x_j \neq 0, j \geq 2$. This makes the left-hand side of (1.5) vanish by Lemma 1.2 (a), and gives $l(x_1) = 0$. Since any $x_1 \in L^- \mathbb{C}$ with $\int x_1 = 0$ can be written $x_1 = x' + x''$ with $\int x' = \int x'' = 0$ and $\operatorname{supp} x', \operatorname{supp} x'' \neq S^1$, it follows that $l(x_1) = 0$ whenever $\int x_1 = 0$. Hence $l(x_1) = \operatorname{const} \int x_1$. In particular, the first term on the right of (1.5) is symmetric in x_j . Therefore the second term must be symmetric too, which implies that this term is $\operatorname{const} \prod_{i=1}^m \int x_j$. Thus $\widetilde{E}(x) = \operatorname{const} (\int x)^m$.

Yet for $m \ge 2$, $\widetilde{E}(x) = \text{const}(\int x)^m$ is additive only if it is identically zero; so indeed $\widetilde{E}(x) = \text{const}\int x$, as claimed.

(b) To construct the right inverse, consider $E \in \mathfrak{E}$ with homogeneous expansion (1.1). We shall construct *m*-homogeneous polynomials $\widetilde{E}_m \in \widetilde{\mathfrak{E}}$ such that $E_m(y) = \widetilde{E}_m(\dot{y})$. Define $\widetilde{E}_1(x) = E_1(y)$, where *y* is chosen so that $\dot{y} = x - \int x$. Now assume $m \ge 2$. Let us say that an *n*-tuple of functions $\varrho_{\nu} : S^1 \to \mathbb{C}$ is centered if $\bigcap_{\nu=1}^n \operatorname{supp} \varrho_{\nu} \neq \emptyset$. We start by fixing a C^{∞} partition of unity $\sum_{\varrho \in P} \varrho = 1$ on S^1 such that each $\operatorname{supp} \varrho$ is an arc of length less than $\frac{1}{4}$. This implies that $\bigcup_{\nu=1}^n \operatorname{supp} \varrho_{\nu}$ is an arc of length less than $\frac{1}{2}$ if $\varrho_1, \ldots, \varrho_n \in P$ are centered. Given $x \in L^-\mathbb{C}$, for each centered $R = (\varrho_1, \ldots, \varrho_n)$ in *P* construct $y_R \in L\mathbb{C}$ so that $\dot{y}_R = x$ on a neighborhood of $\bigcup_{\nu=1}^n \operatorname{supp} \varrho_{\nu}$, making sure that $y_R = y_Q$ if *Q* and *R* agree as sets. For noncentered *n*-tuples *R* in *P* let $y_R \in L\mathbb{C}$ be arbitrary. We shall refer to the y_R as local integrals.

If Q and R are centered tuples in P then

$$y_Q - y_R = c_{QR} = \text{const} \quad \text{on } \Big(\bigcup_{\varrho \in Q} \text{supp } \varrho\Big) \cap \Big(\bigcup_{\varrho \in R} \text{supp } \varrho\Big). \tag{1.6}$$

When the intersection in (1.6) is empty, or one of Q and R is noncentered, fix $c_{QR} \in \mathbb{C}$ arbitrarily. Define

$$v_{QR} = m \int_0^{c_{QR}} (y_R + \tau)^{\otimes (m-1)} d\tau \in (L\mathbf{C})^{\otimes (m-1)},$$
(1.7)

and with the polarization \mathcal{E}_m of E_m from (1.2) consider

$$\mathcal{E}_m\bigg(\sum_{R=(\varrho_1,\ldots,\varrho_m)}(\varrho_1\otimes\ldots\otimes\varrho_m)\bigg(y_R^{\otimes m}+1\otimes\sum_{S=(\sigma_2,\ldots,\sigma_m)}(\sigma_2\otimes\ldots\otimes\sigma_m)v_{SR}\bigg)\bigg);$$
(1.8)

we sum over all *m*-tuples R and (m-1)-tuples S in P. (We will not need it, but here is an explanation of (1.8). Say that tensors $w, w' \in L^{(-)} \mathbb{C}^{\otimes m}$ are *congruent*, $w \equiv w'$, if w - w'is the sum of a degenerate tensor and of monomials $x_1 \otimes ... \otimes x_m$ with $\bigcap_j \operatorname{supp} x_j = \emptyset$. Denote by ∂^m the linear map $(L\mathbb{C})^{\otimes m} \to (L^-\mathbb{C})^{\otimes m}$ defined by $\partial^m(y_1 \otimes ... \otimes y_m) = \dot{y}_1 \otimes ... \otimes \dot{y}_m$. Then the symmetrization of the argument of \mathcal{E}_m in (1.8) is a solution w of the congruence $\partial^m w \equiv x^{\otimes m}$, in fact it is the unique symmetric solution, up to congruence. It follows that for the \tilde{E}_m sought, $\tilde{E}_m(x)$ must be equal to $\mathcal{E}_m(w)$, which, in turn, equals (1.8).)

We claim that the value in (1.8) depends only on x (and \mathcal{E}_m), but not on the partition of unity P and the local integrals y_R . Indeed, suppose first that the local integrals y_R are changed to \hat{y}_R , so that the c_{QR} change to \hat{c}_{QR} and v_{QR} to \hat{v}_{QR} ; but we do not change P. There are $c_R \in \mathbb{C}$ such that for all centered R,

$$\hat{y}_R = y_R + c_R$$
 on $\bigcup_{\varrho \in R} \operatorname{supp} \varrho$.

Let

$$_{R} = m \int_{0}^{c_{R}} (y_{R} + \tau)^{\otimes (m-1)} d\tau.$$
(1.9)

Clearly $\hat{c}_{QR} = c_{QR} + c_Q - c_R$ if $Q \cup R$ is centered. In this case one computes also

u

$$\frac{1}{m}\hat{v}_{QR} = \int_{0}^{\hat{c}_{QR}} (\hat{y}_{R} + \tau)^{\otimes(m-1)} d\tau
= \int_{0}^{c_{QR}} (\hat{y}_{R} - c_{R} + \tau)^{\otimes(m-1)} d\tau - \int_{0}^{c_{R}} (\hat{y}_{R} - c_{R} + \tau)^{\otimes(m-1)} d\tau
+ \int_{0}^{c_{Q}} (\hat{y}_{R} - c_{R} + c_{QR} + \tau)^{\otimes(m-1)} d\tau.$$
(1.10)

Because of Lemma 1.2 (a), in (1.8) only centered R, and such S that $R \cup S$ is centered, will contribute. When $y_R^{\otimes m}$ is changed to $\hat{y}_R^{\otimes m}$, the corresponding contributions change by

$$\sum_{R} \mathcal{E}_{m} \left(\int_{0}^{c_{R}} (\varrho_{1} \otimes ... \otimes \varrho_{m}) \frac{d}{d\tau} (y_{R} + \tau)^{\otimes m} dt \right)$$
$$= \sum_{R} \mathcal{E}_{m} \left(\int_{0}^{c_{R}} (\varrho_{1} \otimes ... \otimes \varrho_{m}) (m \otimes (y_{R} + \tau)^{\otimes (m-1)}) d\tau \right)$$
$$= \sum_{R} \mathcal{E}_{m} ((\varrho_{1} \otimes ... \otimes \varrho_{m}) (1 \otimes u_{R})).$$

When v_{QR} is changed to \hat{v}_{QR} , in view of (1.10), (1.6) and (1.9), the contribution of the terms in the double sum in (1.8) changes by

$$\mathcal{E}_m\left((m\varrho_1 \otimes \varrho_2 \sigma_2 \otimes \ldots \otimes \varrho_m \sigma_m) \left(\int_0^{c_S} (y_S + \tau)^{\otimes (m-1)} d\tau - \int_0^{c_R} (y_R + \tau)^{\otimes (m-1)} d\tau \right) \right)$$
$$= \mathcal{E}_m((\varrho_1 \otimes \varrho_2 \sigma_2 \otimes \ldots \otimes \varrho_m \sigma_m)(1 \otimes u_S - 1 \otimes u_R)).$$

The net change in (1.8) is therefore

$$\mathcal{E}_m\left(\sum_{R,S} (\varrho_1 \otimes \varrho_2 \sigma_2 \otimes \ldots \otimes \varrho_m \sigma_m)(1 \otimes u_S)\right) = \mathcal{E}_m\left(\sum_S (1 \otimes \sigma_2 \otimes \ldots \otimes \sigma_m)(1 \otimes u_S)\right) = 0$$

by Lemma 1.2(b), as needed.

Now to pass from P to another partition of unity P', introduce

$$\Pi = \{ \varrho \varrho' \colon \varrho \in P \text{ and } \varrho' \in P' \}.$$

One easily shows that P and Π give rise to the same value in (1.8), hence so do P and P'. Therefore (1.8) indeed depends only on x, and we define $\tilde{E}_m(x)$ to be this value. We proceed to check that \tilde{E}_m has the required properties.

If $x=\dot{y}$ then all y_R can be chosen as y, and (1.8) gives $\tilde{E}_m(\dot{y})=E_m(y)$. Next suppose that $x', x'' \in L^- \mathbb{C}$ have disjoint supports, and x=x'+x''. If the supports of all $\varrho \in P$ are sufficiently small, then the local integrals y'_R and y''_R of x' and x'', respectively, can be chosen so that for each R one of them is 0. Hence the local integrals $y_R=y'_R+y''_R$ of xwill satisfy $y_R^{\otimes m}=y'_R^{\otimes m}+y''_R^{\otimes m}$, whence $\tilde{E}_m(x)=\tilde{E}_m(x')+\tilde{E}_m(x'')$ follows.

To show that $\sum_{m=1}^{\infty} \tilde{E}_m$ is convergent and represents a holomorphic function, note that $\tilde{E}_m(x)$ is the sum of terms

$$\mathcal{E}_{m}(\varrho_{1}y_{R}\otimes\ldots\otimes\varrho_{m}y_{R}),$$

$$\int_{0}^{1}\mathcal{E}_{m}(\varrho_{1}c_{SR}\otimes\varrho_{2}\sigma_{2}(y_{R}+c_{SR}\tau)\otimes\ldots\otimes\varrho_{m}\sigma_{m}(y_{R}+c_{SR}\tau))\,d\tau$$
(1.11)

(we have substituted $c_{QR}\tau$ for τ in (1.7)). Since $y_R \in L\mathbf{C}$ and $c_{QR} \in \mathbf{C}$ can be chosen to depend on x in a continuous linear way, each \widetilde{E}_m is a homogeneous polynomial of degree m. Furthermore, let $K \subset L^-\mathbf{C}$ be compact. For each $x \in K$, $m \in \mathbf{N}$ and m-tuples Q and R in P, we can choose y_R and c_{QR} so that all the functions

$$\varrho c_{QR} \quad \text{and} \quad \varrho \varrho'(y_R + c_{QR}\tau),$$

 $\rho, \rho' \in P, 0 \leq \tau \leq 1$, belong to some compact $H \subset L\mathbf{C}$. By passing to the balanced hull, it can be assumed that H is balanced. If $\lambda > 0$, (1.1) implies

$$\max_{H} |E_{m}| = \lambda^{-m} \max_{\lambda H} |E_{m}| \leqslant \lambda^{-m} \max_{\lambda H} |E| = A \lambda^{-m},$$

so that by (1.2),

$$|\mathcal{E}_m(z_1 \otimes ... \otimes z_m)| \leq A \frac{m^m}{m!} \lambda^{-m} \leq A \left(\frac{e}{\lambda}\right)^m,$$

if each $z_{\mu} \in H$. Thus each term in (1.11) satisfies this estimate. If |P| denotes the cardinality of P, we obtain, in view of (1.8),

$$\max_{K} |\widetilde{E}_{m}| \leqslant (|P|^{m} + m|P|^{2m-1}) A\left(\frac{e}{\lambda}\right)^{m}$$

Choosing $|\lambda| > e|P|^2$ we conclude that $\sum_{m=1}^{\infty} \widetilde{E}_m$ uniformly converges on K, and, K being arbitrary, $\widetilde{E} = \sum_{m=1}^{\infty} \widetilde{E}_m$ is holomorphic. By what we have already proved for \widetilde{E}_m , $\widetilde{E} \in \widetilde{\mathfrak{E}}$ and $\widetilde{E}(\dot{y}) = E(y)$. The above estimates also show that the map $E \mapsto \widetilde{E}$ is continuous and linear, which completes the proof of Proposition 1.3.

Now consider an $F \in \mathcal{O}(\mathbf{C} \times L^{(-)}\mathbf{C})$ and its posthomogeneous expansion

$$F = \sum_{m=0}^{\infty} F_m, \quad F_m(\zeta, y) = \int_0^1 F(\zeta, e^{2\pi i\tau} y) e^{-2m\pi i\tau} d\tau.$$
(1.12)

PROPOSITION 1.4. The function F satisfies condition (1) of the introduction if and only if each F_m is a polynomial in ζ , of degree $\leq 2m-2$ (in particular, $F_0=0$).

Proof. As F satisfies (1) precisely when each F_m does, the statement is obvious.

Proof of Theorem 1.1. Apply Proposition 1.3 on each slice $\{\zeta\} \times L^{(-)}\mathbf{C}$. Accordingly, an \widetilde{F} in the kernel is posthomogeneous of degree 1, hence, by Proposition 1.4, independent of ζ . Thus indeed $\widetilde{F}(\zeta, x) = \text{const} \int x$. Further, the slicewise right inverse applied to $F \in \mathfrak{F}$ produces an additive \widetilde{F} , which will be holomorphic on $\mathbf{C} \times L\mathbf{C}$, since the map $E \mapsto \widetilde{E}$ is continuous and linear. To see that \widetilde{F} also verifies condition (1) of the introduction, expand F in a posthomogeneous series

$$F(\zeta, y) = \sum_{m=1}^{\infty} F_m(\zeta, y) = \sum_{m=1}^{\infty} \sum_{\nu=0}^{2m-2} \zeta^{\nu} E_{m\nu}(y), \qquad (1.13)$$

by Proposition 1.4, so that

$$\widetilde{F}(\zeta, x) = \sum_{m=1}^{\infty} \sum_{\nu=0}^{2m-2} \zeta^{\nu} \widetilde{E}_{m\nu}(x),$$

with $\widetilde{E}_{m\nu}$ *m*-homogeneous. Again by Proposition 1.4, \widetilde{F} satisfies condition (1), and so belongs to $\widetilde{\mathfrak{F}}$.

Theorem 1.1 can be used effectively to describe elements of the space \mathfrak{F} . With ulterior motives we switch notation m=n+1, and consider a homogeneous polynomial

 $\widetilde{E} \in \mathcal{O}(L^{-}\mathbf{C})$ of degree $n+1 \ge 1$. Its polarization \mathcal{E} defines a distribution D on the torus $(S^{1})^{n+1} = T$. Indeed, denote the coordinates on T by $t_{i} \in \mathbf{R}/\mathbf{Z}$ and set

$$\left\langle D, \prod_{j=0}^{n} e^{2\pi i \nu_j t_j} \right\rangle = \mathcal{E}(x_0 \otimes \dots \otimes x_n), \quad x_j(\tau) = e^{2\pi i \nu_j \tau}, \ \nu_j \in \mathbf{Z}.$$
(1.14)

Since \widetilde{E} is continuous,

$$|\mathcal{E}(x_0 \otimes ... \otimes x_n)| \leqslant c \prod_{j=0}^n \|x_j\|_{C^q(S^1)} \quad ext{with some } c > 0 ext{ and } q \in \mathbf{N}.$$

Hence (1.14) can be estimated, in absolute value, by $c' \prod_{j=0}^{n} (1+|\nu_j|)^q$, and it follows by Fourier expansion that D extends to a unique linear form on $C^{\infty}(T)$. Clearly, D is symmetric, i.e., invariant under permutation of the factors S^1 of T. Also,

$$\mathcal{E}(x_0 \otimes \dots \otimes x_n) = \langle D, x_0 \otimes \dots \otimes x_n \rangle, \tag{1.15}$$

if on the right $x_0 \otimes ... \otimes x_n$ is identified with the function $\prod_{j=0}^n x_j(t_j)$.

Assume now that $\widetilde{E} \in \widetilde{\mathfrak{E}}$. Lemma 1.2 (a) implies that D is supported on the diagonal of T. The form of distributions supported on submanifolds is in general well understood; in the case at hand, e.g. [Hö, Theorem 2.3.5], gives that D is a finite sum of distributions of form

$$C^{\infty}(T) \ni \varrho \longmapsto \left\langle \Psi, \frac{\partial^{\alpha_1 + \ldots + \alpha_n} \varrho}{\partial t_1^{\alpha_1} \ldots \partial t_n^{\alpha_n}} \right|_{\text{diag}} \right\rangle, \quad \alpha_j \geqslant 0,$$

where Ψ is a distribution on the diagonal of T. In view of Theorem 1.1 and (1.12)–(1.13) we have therefore proved the following result:

THEOREM 1.5. The restriction of an (n+1)-posthomogeneous $F \in \mathfrak{F}$ (resp. $\tilde{\mathfrak{F}}$) to $\mathbf{C} \times C^{\infty}(S^1)$ is a finite sum of functions of form

$$f(\zeta, y) = \zeta^{\nu} \left\langle \Phi, \prod_{j=0}^{n} y^{(d_j)} \right\rangle, \quad \nu \leq 2n, \ d_j \geq d_0 = 1 \ (resp. \ 0),$$

where Φ is a distribution on S^1 . For a general $F \in \mathfrak{F}$ (resp. $\tilde{\mathfrak{F}}$) the restriction $F|_{\mathbf{C} \times C^{\infty}(S^1)}$ is the limit, in the topology of $\mathcal{O}(\mathbf{C} \times C^{\infty}(S^1))$, of finite sums of the above functions.

2. The G-action on \mathfrak{F}

For $g \in G$ let $J_g(\zeta) = d(g\zeta)/d\zeta$. By considering the posthomogeneous expansion (1.12)–(1.13) of $F \in \mathfrak{F}$ (resp. \mathfrak{F}), one checks that the function gF defined by

$$(gF)(\zeta, y) = F(g\zeta, y/J_g(\zeta)) J_g(\zeta)$$
(2.1)

extends to all of $\mathbf{C} \times L^{(-)}\mathbf{C}$, and the extension (also denoted gF) belongs to \mathfrak{F} (resp. $\tilde{\mathfrak{F}}$). The action thus defined makes \mathfrak{F} and $\tilde{\mathfrak{F}}$ holomorphic *G*-modules. The *n*th isotypical subspace \mathfrak{F}^n (resp. $\tilde{\mathfrak{F}}^n$) is the subspace of (n+1)-posthomogeneous functions. In this section we shall describe the space \mathfrak{F}^0 , and, for $W^{1,p}$ loop spaces, the spaces \mathfrak{F}^n as well, $n \ge 1$.

THEOREM 2.1. $\mathfrak{F}^0 \approx (L^- \mathbb{C})^*/\mathbb{C}$, the dual endowed with the compact-open topology. If $L^-\mathbb{C}$ is interpreted as the space of one-forms on S^1 of the corresponding regularity, then the isomorphism is Diff S^1 -equivariant.

Proof. Indeed, the map $(L^{-}\mathbf{C})^{*} = \widetilde{\mathfrak{F}}^{0} \to \mathfrak{F}^{0}$ associating with $\Phi \in (L^{-}\mathbf{C})^{*}$ the function $F(y) = \langle \Phi, \dot{y} \rangle$ (or $\langle \Phi, dy \rangle$) has one-dimensional kernel and a right inverse by Theorem 1.1.

THEOREM 2.2. In the case of $W^{1,p}$ loop spaces, $\mathfrak{F} = \bigoplus_{n=0}^{p-1} \mathfrak{F}^n$. Furthermore,

$$\mathfrak{K}_n \otimes L^{p/(n+1)}(S^1)^* \approx \mathfrak{F}^n, \quad 1 \leq n \leq p-1,$$

as G-modules, G acting on $L^{p/(n+1)}(S^1)^*$ trivially. Indeed, the map $\varphi \otimes \Phi \mapsto F$ given by

$$F(\zeta, y) = \psi(\zeta) \langle \Phi, \dot{y}^{n+1} \rangle, \quad \varphi(\zeta) = \psi(\zeta) (d\zeta)^{-n}, \tag{2.2}$$

induces the isomorphism above. (To achieve Diff S^1 -equivariant isomorphism, replace $L^{p/(n+1)}(S^1)$ by the space $L^{p/(n+1)}_{n+1}(S^1)$ of (n+1)-differentials.)

We shall need a few auxiliary results to prove the theorem.

LEMMA 2.3. Let $m \ge 2$ be an integer and Ψ a distribution on S^1 . If the function

$$C^{\infty}(S^1) \ni x \longmapsto \langle \Psi, x^m \rangle \in \mathbf{C}$$
(2.3)

extends to a homogeneous polynomial E on $L^p(S^1)$, then $\Psi \equiv 0$, or $m \leq p$ and Ψ extends to a form Φ on $L^{p/m}(S^1)$. In the latter case the map $E \mapsto \Phi$ is continuous and linear.

Proof. There is a constant C such that

$$|\langle \Psi, x^m \rangle| = |E(x)| \leqslant C \left(\int |x|^p \right)^{m/p}, \quad x \in C^\infty(S^1).$$
(2.4)

Let $z \in C^{\infty}(S^1)$ be real-valued and $x_{\varepsilon} = (z+i\varepsilon)^{1/m} \in C^{\infty}(S^1)$. By (2.4),

$$|\langle \Psi, z \rangle| = \lim_{\varepsilon \to 0} |\langle \Psi, x_{\varepsilon}^m \rangle| \leq C \left(\int |z|^{p/m}\right)^{m/p}.$$

As the same estimate holds for imaginary z, it will hold for a general $z \in C^{\infty}(S^1)$ too, perhaps with a different C. Therefore Ψ extends to a form Φ on $L^{p/m}(S^1)$. Unless $p \ge m$, $\Phi = 0$ by Day's theorem [D]. With $z \in L^{p/m}(S^1)$, any choice of measurable *m*th root $z^{1/m}$, and $y_{\varepsilon} \in C^{\infty}(S^1)$ converging to $z^{1/m}$ in L^p ,

$$\langle \Phi, z \rangle = \lim_{\varepsilon \to 0} \langle \Phi, y_{\varepsilon}^m \rangle = \lim_{\varepsilon \to 0} E(y_{\varepsilon}) = E(z^{1/m}).$$

This shows that Φ is uniquely determined by E, and depends continuously and linearly on E.

In the rest of this section we work with $W^{1,p}$ loop spaces. Write $\mathfrak{E}^n \subset \mathfrak{E}$ and $\widetilde{\mathfrak{E}}^n \subset \widetilde{\mathfrak{E}}$ for the space of (n+1)-homogeneous functions.

LEMMA 2.4. If $m \ge 2$ and $E \in \widetilde{\mathfrak{E}}^{m-1} \subset \mathcal{O}(L^p(S^1))$, then $E(x) = \langle \Phi, x^m \rangle$ with a unique $\Phi \in L^{p/m}(S^1)^*$. In particular, E=0 if m > p. Also, the map $E \mapsto \Phi$ is an isomorphism between $\widetilde{\mathfrak{E}}^{m-1}$ and $L^{p/m}(S^1)^*$.

Proof. We shall prove this by induction, first assuming m=2. By Theorem 1.5 there are distributions Φ_{α} so that

$$E(x) = \sum_{\alpha=0}^{d} \langle \Phi_{\alpha}, xx^{(\alpha)} \rangle, \quad x \in C^{\infty}(S^{1}).$$

Now any $x^{(\alpha)}x^{(\beta)}$ will be a linear combination of expressions $(x^{(j)}x^{(j)})^{(h)}$, as one easily proves by induction on $|\alpha-\beta|$. It follows that E can be written with distributions Ψ_j as

$$E(x) = \sum_{j=0}^{d} \langle \Psi_j, (x^{(j)})^2 \rangle, \quad x \in C^{\infty}(S^1).$$
(2.5)

Next we show that d=0.

Indeed, assuming d > 0, for fixed $x \in C^{\infty}(S^1)$,

$$E(\cos \lambda x) + E(\sin \lambda x) = \lambda^{2d} \langle \Psi_d, \dot{x}^{2d} \rangle + \sum_{j=0}^{2d-1} c_j(x) \lambda^j$$
(2.6)

is a polynomial in λ . For fixed $\lambda \in \mathbb{C}$ the maps $x \mapsto \cos \lambda x$ and $x \mapsto \sin \lambda x$ map the Banach algebra $W^{1,1}(S^1)$ holomorphically into itself, hence into $L^p(S^1)$. Therefore the lefthand side of (2.6) extends to $W^{1,1}(S^1)$, and consequently $\langle \Psi_d, \dot{x}^{2d} \rangle$ also extends. The extension of the latter will be an additive, 2*d*-homogeneous polynomial E' on $W^{1,1}(S^1)$, satisfying E'(x+const)=E'(x). By Proposition 1.3 there is therefore a unique additive 2*d*-homogeneous polynomial \tilde{E} on $W^{0,1}(S^1) = L^1(S^1)$ such that $E'(x) = \tilde{E}(\dot{x})$. Since the restriction $\tilde{E}|_{C^{\infty}(S^1)}$ is also unique,

$$\widetilde{E}(x) = \langle \Psi_d, x^{2d} \rangle, \quad x \in C^{\infty}(S^1).$$

In particular, the expression on the right continuously extends to $L^1(S^1)$. By virtue of Lemma 2.3, $\Psi_d \equiv 0$. Thus (2.5) reduces to $E(x) = \langle \Psi, x^2 \rangle$, $x \in C^{\infty}(S^1)$, and by another application of Lemma 2.3, Ψ extends to a form Φ on $L^{p/2}(S^1)$.

Now assume that the lemma is known for degree $m-1 \ge 2$, and consider an $E \in \widetilde{\mathfrak{C}}^{m-1}$, together with its polarization \mathcal{E} . For fixed $x_1 \in C^{\infty}(S^1)$ the inductive assumption implies that there is a distribution Θ such that $\mathcal{E}(x_1 \otimes ... \otimes x_m) = \langle \Theta, \prod_{j=2}^m x_j \rangle$; in particular,

$$\mathcal{E}(x_1 \otimes \ldots \otimes x_m) = \mathcal{E}\left(x_1 \otimes \prod_{j=2}^m x_j \otimes 1 \otimes \ldots \otimes 1\right), \quad x \in C^{\infty}(S^1).$$

The case m=2 now gives a distribution Ψ such that $\mathcal{E}(x_1 \otimes ... \otimes x_m) = \langle \Psi, \prod_{j=1}^m x_j \rangle$. We conclude by Lemma 2.3: Ψ extends to $\Phi \in L^{p/m}(S^1)^*$, and $\Phi=0$ unless $m \leq p$. It is clear that Φ is uniquely determined by E, and the map $\widetilde{\mathfrak{E}}^{m-1} \ni E \mapsto \Phi \in L^{p/m}(S^1)^*$ is an isomorphism.

Proof of Theorem 2.2. To construct the inverse of the map defined by (2.2), write an arbitrary $F \in \mathfrak{F}^n$, $n \ge 1$, as

$$F(\zeta, y) = \sum_{\nu=0}^{2n} \zeta^{\nu} E_{\nu}(y), \quad E_{\nu} \in \mathfrak{E}^{n},$$

cf. Proposition 1.4, and find the unique $\widetilde{E}_{\nu} \in \widetilde{\mathfrak{E}}^n$ so that $E_{\nu}(y) = \widetilde{E}_{\nu}(\dot{y})$, see Proposition 1.3. By Lemma 2.4 there are unique $\Phi_{\nu} \in L^{p/(n+1)}(S^1)^*$ such that $\widetilde{E}_{\nu}(x) = \langle \Phi_{\nu}, x^{n+1} \rangle$. If p < n+1 then $\Phi_{\nu} = 0$, and so $\mathfrak{F}^n = (0)$. Otherwise the map

$$\mathfrak{F}^n \ni F \longmapsto \sum_{\nu=0}^{2n} \zeta^{\nu} (d\zeta)^{-n} \otimes \Phi_{\nu} \in \mathfrak{K}_n \otimes L^{p/(n+1)} (S^1)^*$$

is the inverse of the map given in (2.2), so (2.2) indeed induces an isomorphism. Finally, the posthomogeneous expansion of an arbitrary $F \in \mathfrak{F}$ is

$$F = \sum_{n=0}^{\infty} F_n = \sum_{n=0}^{[p-1]} F_n,$$

which completes the proof.

3. Cuspidal cocycles

In this section we shall construct an isomorphism between $H^{0,1}(L\mathbf{P}_1)$ and a space of holomorphic Čech cocycles on $L\mathbf{P}_1$. We represent \mathbf{P}_1 as $\mathbf{C} \cup \{\infty\}$. Constant loops constitute a submanifold of $L\mathbf{P}_1$, which we identify with \mathbf{P}_1 . If $a, b, \ldots \in \mathbf{P}_1$, set $U_{ab\ldots} = \mathbf{P}_1 \setminus \{a, b, \ldots\}$. Thus $LU_a, a \in \mathbf{P}_1$, form an open cover of $L\mathbf{P}_1$, with $LU_{\infty} = L\mathbf{C}$ a Fréchet algebra. If $g \in G$ then $g(LU_a) = LU_{aa}$.

Suppose that we are given $v: \mathbf{P}_1 \to \mathbf{C}$, finitely many $a, b, ... \in \mathbf{P}_1$ and a function $u: LU_{ab...} \to \mathbf{C}$. If ∞ is among a, b, ..., let us say that u is v-cuspidal at ∞ if $u(x+\lambda) \to v(\infty)$ as $\mathbf{C} \ni \lambda \to \infty$, for all $x \in LU_{ab...}$; and in general, that u is v-cuspidal if g^*u is g^*v -cuspidal at ∞ for all $g \in G$ that maps ∞ to one of a, b, ... When $v \equiv 0$, we simply speak of cuspidal functions.

PROPOSITION 3.1. Given a closed $f \in C_{0,1}^{\infty}(L\mathbf{P}_1)$ and $v \in C^{\infty}(\mathbf{P}_1)$ such that $\bar{\partial}v = f|_{\mathbf{P}_1}$, for each $a \in \mathbf{P}_1$ there is a unique v-cuspidal $u_a \in C^{\infty}(LU_a)$ that solves $\bar{\partial}u_a = f|_{LU_a}$. Furthermore, $u_a|_{U_a} = v|_{U_a}$, and $u(a, x) = u_a(x)$ is smooth in (a, x) and holomorphic in a.

Proof. Uniqueness follows since for fixed $g \in G$ and $y \in L\mathbf{C}$, on the line $\{g(y+\lambda): \lambda \in \mathbf{P}_1\}$ the $\bar{\partial}$ -equation is uniquely solvable up to an additive constant, which constant is determined by the cuspidal condition. To construct u_a , fix a $g \in G$ with $g \infty = a$, let

$$Y = \{y \in L\mathbf{C} : y(0) = 0\}$$

and

$$P_g: \mathbf{P}_1 \times Y \ni (\lambda, y) \longmapsto g(y+\lambda) \in L\mathbf{P}_1,$$

a biholomorphism between $\mathbf{C} \times Y$ and LU_a . Setting $f_g = P_g^* f$, by [L1, Theorem 5.4] on the \mathbf{P}_1 -bundle $\mathbf{P}_1 \times Y$ the equation $\bar{\partial} u_g = f_g$ has a unique smooth solution satisfying $u_g(\infty, x) = v(a)$. It follows that $u_a = (P_g^{-1})^* (u_g|_{\mathbf{C} \times Y})$ solves $\bar{\partial} u_a = f|_{LU_a}$. Also, $g^* u_a$ is $g^* v$ -cuspidal at ∞ . On U_a both u_a and v solve the same $\bar{\partial}$ -equation, and have the same limit at a; hence $u_a|_{U_a} = v|_{U_a}$.

One can also consider

$$P: \mathbf{P}_1 \times G \times Y \ni (\lambda, g, y) \longmapsto g(y + \lambda) \in L\mathbf{P}_1$$

and $f'=P^*f$. Again by [L1, Theorem 5.4], on the \mathbf{P}_1 -bundle $\mathbf{P}_1 \times G \times Y$ the equation $\bar{\partial}u'=f'$ has a smooth solution satisfying $u'(\infty, g, x)=v(g\infty)$. Uniqueness of u_g implies $u'(\lambda, g, x)=u_g(\lambda, x)$, whence $u_g(\lambda, x)$ depends smoothly on (λ, g, x) , and $u_a(x)$ on (a, x). Furthermore, u' is holomorphic on $P^{-1}(x)$ for any x. In particular, if $g \in G$ with $g\infty=a$ is chosen to depend holomorphically on a (which can be done locally), then it follows that $u_a(x)=u'(g^{-1}x(0), g, g^{-1}x-g^{-1}x(0))$ is holomorphic in a.

Since f determines v up to an additive constant, we can uniquely associate with f the Čech cocycle $\mathfrak{f}=(u_a-u_b:a,b\in\mathbf{P}_1)$. The components of \mathfrak{f} are cuspidal holomorphic functions on LU_{ab} . One easily verifies:

PROPOSITION 3.2. The form f is exact if and only if f=0. Hence f depends only on the cohomology class $[f] \in H^{0,1}(L\mathbf{P}_1)$. The components $h_{ab}([f], x)$ of f depend holomorphically on $a, b \in \mathbf{P}_1$ and $x \in LU_{ab}$, and satisfy the transformation formula

$$h_{ga,gb}([f],gx) = h_{ab}(g^*[f],x), \quad g \in G, \ x \in LU_{ab}.$$
(3.1)

 \mathbf{Set}

$$\Omega = \{(a, b, x) \in \mathbf{P}_1 \times \mathbf{P}_1 \times L\mathbf{P}_1 : a, b \notin x(S^1)\}.$$

Let \mathfrak{H} denote the space of those holomorphic cocycles $\mathfrak{h} = (\mathfrak{h}_{ab})_{a,b\in\mathbf{P}_1}$ of the covering $\{LU_a\}$ for which $\mathfrak{h}_{ab}(x)$ depends holomorphically on a, b and $x \in LU_{ab}$, and each \mathfrak{h}_{ab} is cuspidal. Then $\mathfrak{H} \subset \mathcal{O}(\Omega)$, with the compact-open topology, is a complete, separated, locally convex space. The action of G on Ω induces a G-module structure on \mathfrak{H} :

$$(g^*\mathfrak{h})_{ab}(x) = \mathfrak{h}_{ga,gb}(gx), \quad g \in G.$$
(3.2)

Proposition 3.2 implies that the map $[f] \mapsto \mathfrak{f}$ is a monomorphism $H^{0,1}(L\mathbf{P}_1) \to \mathfrak{H}$ of *G*-modules.

THEOREM 3.3. The map $[f] \mapsto \mathfrak{f}$ is an isomorphism $H^{0,1}(L\mathbf{P}_1) \to \mathfrak{H}$.

The proof would be routine if the loop space $L\mathbf{P}_1$ admitted smooth partitions of unity; but a typical loop space does not, see [K]. The proof that we offer here will work only when the loops in $L\mathbf{P}_1$ are of regularity $W^{1,3}$ at least, and we shall return to the case of $L_{1,p}\mathbf{P}_1$, p<3, in §6.

Those $g \in G$ that preserve the Fubini–Study metric form a subgroup (isomorphic to) SO(3). Denote the Haar probability measure on SO(3) by dg.

LEMMA 3.4. Unless $L\mathbf{P}_1 = L_{1,p}\mathbf{P}_1$, p < 3, there is a $\chi \in C^{\infty}(L\mathbf{P}_1)$ such that $\chi = 0$ in a neighborhood of $L\mathbf{P}_1 \setminus L\mathbf{C} = \{x : \infty \in x(S^1)\}$, and $\int_{SO(3)} g^* \chi \, dg = 1$.

Proof. With $c_0 \in (0, \infty)$ to be specified later, fix a nonnegative $\rho \in C^{\infty}(\mathbf{R})$ such that $\rho(\tau) = 1$ (resp. 0) when $|\tau| < c_0$ (resp. $> 2c_0$). For $x \in L\mathbf{C}$ let

$$\psi(x) = \varrho \left(\int_{S^1} (1+|x|^2)^{3/4} \right),$$

and define $\psi(x)=0$ if $x \in L\mathbf{P}_1 \setminus L\mathbf{C}$. We claim that ψ vanishes in a neighborhood of an arbitrary $x \in L\mathbf{P}_1 \setminus L\mathbf{C}$. This will then also imply that $\psi \in C^{\infty}(L\mathbf{P}_1)$.

Indeed, suppose $x(t_0) = \infty$. In a neighborhood of $t_0 \in S^1$ the function z=1/x is $W^{1,3}$, hence Hölder continuous with exponent $\frac{2}{3}$ by the Sobolev embedding theorem [Hö, Theorem 4.5.12]. In this neighborhood therefore $|x(t)| \ge c|t-t_0|^{-2/3}$ and $\int_{S^1} (1+|x|^2)^{3/4} = \infty$. When $y \in L\mathbf{C}$ is close to x, $\int_{S^1} (1+|y|^2)^{3/4} > 2c_0$, i.e. $\psi(y) = 0$.

Next we show that for every $x \in L\mathbf{P}_1$ there is a $g \in SO(3)$ with $\psi(gx) > 0$. Let d(a, b) denote the Fubini–Study distance between $a, b \in \mathbf{P}_1$; then with some c > 0,

$$1+|\zeta|^2 \leqslant \frac{c}{d(\zeta,\infty)^2}$$
 and $\int_{S^1} (1+|x|^2)^{3/4} \leqslant c \int_{S^1} d(x,\infty)^{-3/2}$

Hence

$$\int_{\mathrm{SO}(3)} \int_{S^1} (1 + |gx(t)|^2)^{3/4} \, dt \, dg \leq c \int_{S^1} \int_{\mathrm{SO}(3)} d(gx(t), \infty)^{-3/2} \, dg \, dt = cI,$$

where, for any $\zeta \in \mathbf{P}_1$,

$$I = \int_{\mathrm{SO}(3)} d(g\zeta, \infty)^{-3/2} \, dg = \int_{\mathbf{P}_1} d(\cdot, \infty)^{-3/2} < \infty,$$

the last integral with respect to the Fubini–Study area form. If c_0 is chosen larger than cI, then indeed $\int_{S^1} (1+|gx|^2)^{3/4} < c_0$ and $\psi(gx)=1$ for some $g \in SO(3)$.

It follows that $\int_{SO(3)} \psi(gx) \, dg > 0$, and we can take $\chi(x) = \psi(x) / \int_{SO(3)} \psi(gx) \, dg$.

Proof of Theorem 3.3. Given $\mathfrak{h} \in \mathfrak{H}$, extend $(g^*\chi)\mathfrak{h}_{a,g^{-1}\infty}$ from $LU_{a,g^{-1}\infty}$ to LU_a by zero, and define the cuspidal functions

$$u_a = \int_{\mathrm{SO}(3)} (g^* \chi) \mathfrak{h}_{a,g^{-1}\infty} \, dg, \quad a \in \mathbf{P}_1.$$

Then $u_a - u_b = \int_{SO(3)} (g^*\chi) \mathfrak{h}_{ab} dg = \mathfrak{h}_{ab}$, so that $f = \overline{\partial} u_a$ on LU_a consistently defines a closed $f \in C_{0,1}^{\infty}(L\mathbf{P}_1)$. It is immediate that the map $\mathfrak{h} \mapsto [f] \in H^{0,1}(L\mathbf{P}_1)$ is left inverse to the monomorphism $[f] \mapsto \mathfrak{f}$, whence the theorem follows.

4. The map $\mathfrak{H} \rightarrow \mathfrak{F}$

Consider an $\mathfrak{h} = (\mathfrak{h}_{ab}) \in \mathfrak{H}$. The cocycle relation implies that $d_{\zeta}\mathfrak{h}_{a\zeta}(x)$ is independent of a; for $\zeta \in \mathbb{C}$ we can write it as

$$d_{\zeta}\mathfrak{h}_{a\zeta}(x) = F\left(\zeta, \frac{1}{\zeta - x}\right) d\zeta, \quad x \in LU_{\zeta}, \tag{4.1}$$

where $F \in \mathcal{O}(\mathbf{C} \times L\mathbf{C})$. Set $F = \alpha(\mathfrak{h})$. Since $\mathfrak{h}_{aa} = 0$,

$$\mathfrak{h}_{ab}(x) = \int_{a}^{b} F\left(\zeta, \frac{1}{\zeta - x}\right) d\zeta, \qquad (4.2)$$

provided a and b are in the same component of $\mathbf{P}_1 \setminus x(S^1)$ —which we shall express by saying that x does not separate a and b—, and we integrate along a path within this component. The main result of this section is the following theorem.

L. LEMPERT AND N. ZHANG

THEOREM 4.1. $\alpha(\mathfrak{h}) = F \in \mathfrak{F}$.

The heart of the matter will be the special case when \mathfrak{h} is in an irreducible submodule $\approx \mathfrak{K}_n$. A vector that corresponds, in this isomorphism, to $\operatorname{const}(d\zeta)^{-n} \in \mathfrak{K}_n$ is said to be of lowest weight -n. Thus, if \mathfrak{l} is of lowest weight $-n \leqslant 0$, then

$$g_{\lambda}^{*}\mathfrak{l} = \lambda^{-n}\mathfrak{l}, \text{ when } g_{\lambda}\zeta = \lambda\zeta, \qquad \lambda \in \mathbf{C} \setminus \{0\},$$

$$(4.3)$$

$$g_{\lambda}^{*}\mathfrak{l} = \mathfrak{l}, \qquad \text{when } g_{\lambda}\zeta = \zeta + \lambda, \quad \lambda \in \mathbb{C}.$$
 (4.4)

Conversely, an $l \neq 0$ satisfying (4.3) and (4.4) is a lowest-weight vector and spans an irreducible submodule, isomorphic to \Re_n , but we shall not need this fact.

If $l \in \mathfrak{H}$ satisfies (4.4), then $l_{\infty\zeta}(x) = l_{\infty,\zeta+\lambda}(x+\lambda)$ by (3.2), whence $d_{\zeta} l_{\infty\zeta}(x)$ depends only on $\zeta - x$, and $\alpha(\mathfrak{l})$ is of form $F(\zeta, y) = E(y)$. If, in addition, \mathfrak{l} satisfies (4.3), then similarly it follows that $E \in \mathcal{O}(L\mathbf{C})$ is homogeneous of degree n+1. We now fix a nonzero lowest-weight vector $\mathfrak{l} \in \mathfrak{H}$, the corresponding (n+1)-homogeneous polynomial E and its polarization \mathcal{E} , cf. (1.2).

PROPOSITION 4.2. $\mathcal{E}(1 \otimes y_1 \otimes ... \otimes y_n) = 0$, and so E(y + const) = E(y).

Proof. Since $l_{\infty 0} \in \mathcal{O}(LU_{\infty 0})$ is cuspidal and homogeneous of order -n,

$$0 = \lim_{\lambda \to \infty} \mathfrak{l}_{\infty 0} \left(\frac{1}{\lambda + x} \right) = \lim_{\lambda \to \infty} \lambda^n \mathfrak{l}_{\infty 0} \left(\frac{1}{1 + x/\lambda} \right).$$

Thus $l_{\infty 0}$ vanishes at 1 to order $\ge n+1$. Hence

$$\frac{\partial}{\partial \zeta} \bigg|_{\zeta=0} \mathfrak{l}_{\infty 0}(x-\zeta) = \frac{\partial}{\partial \zeta} \bigg|_{\zeta=0} \mathfrak{l}_{\infty \zeta}(x) = E\left(\frac{1}{x}\right)$$

vanishes at x=1 to order $\geq n$, and the same holds for E(x). Differentiating E in the directions $y_1, ..., y_n$, we obtain at x=1, as needed, that $n! \mathcal{E}(1 \otimes y_1 \otimes ... \otimes y_n) = 0$.

Let $\mathfrak{K}_n \ni \varphi \mapsto \mathfrak{h}^{\varphi} \in \mathfrak{H}$ denote the homomorphism that maps $(d\zeta)^{-n}$ to \mathfrak{l} .

PROPOSITION 4.3.

$$d_{\zeta}\mathfrak{h}_{a\zeta}^{\varphi}(x) = \psi(\zeta) E\left(\frac{1}{\zeta - x}\right) d\zeta, \quad \varphi(\zeta) = \psi(\zeta) (d\zeta)^{-n}.$$

$$(4.5)$$

By homogeneity, the right-hand side can also be written $\varphi(\zeta) E(d\zeta/(\zeta-x))$.

Proof. Denote the form on the left-hand side of (4.5) by ω^{φ} . In view of (3.2), it transforms under the action of G on $\mathbf{P}_1 \times L \mathbf{P}_1$ as

$$g^*\omega^{\varphi} = \omega^{g\varphi}, \quad g \in G. \tag{4.6}$$

If we show that the right-hand side of (4.5) transforms in the same way, then (4.5) will follow, since it holds when $\psi \equiv 1$, see (4.1). In fact, it will suffice to check the transformation formula for $g\zeta = \lambda \zeta$, $g\zeta = \zeta + \lambda$ and $g\zeta = 1/\zeta$, maps that generate G. We shall do this for the last map, the most challenging of the three types. The pullback of the right-hand side of (4.5) by $g\zeta = 1/\zeta$ is

$$(g\varphi)(\zeta) E\left(\frac{d(g\zeta)}{g\zeta - gx}\right) = (g\varphi)(\zeta) E\left(\frac{d\zeta}{\zeta - x} - \frac{d\zeta}{\zeta}\right) = (g\varphi)(\zeta) E\left(\frac{d\zeta}{\zeta - x}\right),$$

by Proposition 4.2, which is what we need.

The form \mathcal{E} defines a symmetric distribution D on the torus $T = (S^1)^{n+1}$ as in §1, cf. (1.14). By (1.15), (4.2) and Proposition 4.3,

$$\mathfrak{h}_{ab}^{\varphi}(x) = \int_{a}^{b} \psi(\zeta) \left\langle D, \frac{1}{\zeta - x} \otimes \dots \otimes \frac{1}{\zeta - x} \right\rangle d\zeta, \quad \varphi = \psi(\zeta) (d\zeta)^{-n}, \tag{4.7}$$

provided $x \in L_{\infty}U_{ab}$ does not separate a and b. To prove Theorem 4.1, we have to understand supp D. Let

$$O = \{ x \in C^{\infty}(S^1) : \pm i \notin x(S^1) \} \quad \text{and} \quad O' = \{ x \in O : [-i,i] \cap x(S^1) = \varnothing \},$$

where [-i, i] stands for the segment joining $\pm i$.

LEMMA 4.4. With Δ a symmetric distribution on $T = (S^1)^{n+1}$ and $\nu = 0, ..., 2n-2$, let

$$I_{\nu}(x) = \int_{[-i,i]} \left\langle \Delta, \frac{1}{\zeta - x} \otimes ... \otimes \frac{1}{\zeta - x} \right\rangle \zeta^{\nu} d\zeta, \quad x \in O'.$$

If each I_{ν} continues analytically to O then Δ is supported on the diagonal of T.

In preparation for the proof, consider a holomorphic vector field V on O, and observe that VI_{ν} also continues analytically to O. Such vector fields can be thought of as holomorphic maps $V: O \to C^{\infty}(S^1)$. Using the symmetry of Δ we compute

$$(VI_{\nu})(x) = (n+1) \int_{[-i,i]} \left\langle \Delta, \frac{V(x)}{(\zeta - x)^2} \otimes \frac{1}{\zeta - x} \otimes \dots \otimes \frac{1}{\zeta - x} \right\rangle \zeta^{\nu} d\zeta, \quad x \in O'.$$
(4.8)

Proof of Lemma 4.4, case n=1. Let $\bar{s}_0 \neq \bar{s}_1 \in S^1$. To show that Δ vanishes near $\bar{s}=(\bar{s}_0,\bar{s}_1)$, construct a smooth family $x_{\varepsilon,s} \in O$ of loops, where $\varepsilon \in [0,1]$ and $s \in T$ is in a neighborhood of \bar{s} , so that

$$x_{\varepsilon,s}(\tau) = (-1)^j (\varepsilon^2 + (\tau - s_j)^2), \quad \text{when } \tau \in S^1 \text{ is near } \bar{s}_j, \ j = 0, 1; \tag{4.9}$$

here, perhaps abusively, $\tau - s_j$ denotes both a point in $S^1 = \mathbf{R}/\mathbf{Z}$ and its representative in **R** that is closest to 0. Make sure that $x_{\varepsilon,s} \in O'$ when $\varepsilon > 0$. Fix $y_0, y_1 \in C^{\infty}(S^1)$ so that $y_j \equiv 1$ near \bar{s}_j , and (4.9) holds when τ and s_j are in a neighborhood of supp y_j . This forces y_0 and y_1 to have disjoint support. With constant vector fields $V_j = y_j$,

$$(V_1 V_0 I_0)(x) = 2 \int_{[-i,i]} \left\langle \Delta, \frac{y_0}{(\zeta - x)^2} \otimes \frac{y_1}{(\zeta - x)^2} \right\rangle d\zeta, \quad x \in O',$$
(4.10)

analytically continues to O. In particular, for $\varepsilon > 0$ and $t = (t_0, t_1) \in T$, setting

$$K_{\varepsilon}(t,s) = \int_{[-i,i]} \frac{y_0(t_0)y_1(t_1)\,d\zeta}{(\zeta - x_{\varepsilon,s}(t_0))^2(\zeta - x_{\varepsilon,s}(t_1))^2}, \quad s \text{ near } \bar{s},$$

it follows that $\langle \Delta, K_{\varepsilon}(\cdot, s) \rangle$ stays bounded as $\varepsilon \to 0$. Therefore, if $\varrho \in C^{\infty}(T)$ is supported in a sufficiently small neighborhood of \tilde{s} , then

$$\left\langle \Delta, \varepsilon^4 \int_T K_{\varepsilon}(\cdot, s) \varrho(s) \, ds \right\rangle \to 0, \quad \varepsilon \to 0.$$
 (4.11)

On the other hand, we shall show that for such ρ ,

$$\varepsilon^4 \int_T K_{\varepsilon}(\,\cdot\,,s) \varrho(s) \, ds \to c \varrho, \quad \varepsilon \to 0,$$
(4.12)

in the topology of $C^{\infty}(T)$; here $c \neq 0$ is a constant.

It will suffice to verify (4.12) on $\operatorname{supp} y_0 \otimes y_1$, since both sides vanish on the complement. Thus we shall work on small neighborhoods of \bar{s} ; we can pretend that $\bar{s} \in \mathbb{R}^2$, and work on \mathbb{R}^2 instead of T. When $s, t \in \mathbb{R}^2$ are close to \bar{s} , the left-hand side of (4.12) becomes

$$\varepsilon^{4} y_{0}(t_{0}) y_{1}(t_{1}) \int_{\mathbf{R}^{2}} \int_{[-i,i]} \frac{\varrho(s) \, d\zeta \, ds}{(\zeta - \varepsilon^{2} - (s_{0} - t_{0})^{2})^{2} (\zeta + \varepsilon^{2} + (s_{1} - t_{1})^{2})^{2}}.$$
 (4.13)

Substituting $s=t+\varepsilon u$ and $\zeta=\varepsilon^2\xi$, we compute that the limit in (4.12) is

$$\lim_{\varepsilon \to 0} y_0(t_0) y_1(t_1) \int_{\mathbf{R}^2} \int_{[-i/\varepsilon^2, i/\varepsilon^2]} \frac{\varrho(t+\varepsilon u) \, d\xi \, du}{(\xi-1-u_0^2)^2 (\xi+1+u_1^2)^2}$$

$$= 4\pi i y_0(t_0) y_1(t_1) \int_{\mathbf{R}^2} \frac{\varrho(t) \, du}{(2+u_0^2+u_1^2)^3} = c \varrho(t),$$
(4.14)

if $y_0 \otimes y_1 = 1$ on supp ρ . This limit is first seen to hold uniformly. However, since the integral operator in (4.13) is a convolution, in (4.14) in fact all derivatives converge uniformly. Now (4.11) and (4.12) imply that $\langle \Delta, \rho \rangle = 0$, so that Δ vanishes close to \bar{s} .

Proof of Lemma 4.4, general n. The base case n=1 settled and the statement being vacuous when n=0, we prove by induction. Assume that the lemma holds on the ndimensional torus, and with $y \in C^{\infty}(S^1)$, consider the holomorphic vector fields $V_{\mu}(x) =$ $yx^{\mu}, \mu=0, 1, 2$. (These vector fields continue to all of $L\mathbf{P}_1$, and generate the Lie algebra of the loop group LG.) In view of (4.8), for $x \in O'$,

$$\int_{[-i,i]} \left\langle \Delta, y \otimes \frac{1}{\zeta - x} \otimes \ldots \otimes \frac{1}{\zeta - x} \right\rangle \zeta^{\nu} d\zeta = \frac{1}{n+1} (V_0 I_{\nu+2} - 2V_1 I_{\nu+1} + V_2 I_{\nu}). \tag{4.15}$$

Therefore the left-hand side continues analytically to O, provided $\nu=0,...,2n-4$. If Δ^y denotes the distribution on $(S^1)^n$ defined by $\langle \Delta^y, \varrho \rangle = \langle \Delta, y \otimes \varrho \rangle$, the left-hand side of (4.15) is

$$\int_{[-i,i]} \left\langle \Delta^y, \frac{1}{\zeta - x} \otimes \ldots \otimes \frac{1}{\zeta - x} \right\rangle \zeta^\nu \, d\zeta.$$

The inductive hypothesis implies that Δ^y is supported on the diagonal of $(S^1)^n$. This being true for all y, the symmetric distribution Δ itself must be supported on the diagonal.

COROLLARY 4.5. The distribution D in (4.7) is supported on the diagonal of T.

Proof of Theorem 4.1. First assume that $\mathfrak{h} \in \mathfrak{H}$ is in an irreducible submodule $\approx \mathfrak{K}_n$, and $\mathfrak{l} \neq 0$ is a lowest-weight vector in this submodule. Thus $\mathfrak{h} = \mathfrak{h}^{\varphi}$ for some $\varphi \in \mathfrak{K}_n$, $\varphi(\zeta) = \psi(\zeta)(d\zeta)^{-n}$. With \mathfrak{l} we associated an (n+1)-homogeneous polynomial E on $L\mathbf{C}$ and a distribution D on $(S^1)^{n+1}$. By Proposition 4.3, $F(\zeta, y) = \psi(\zeta)E(y)$, and so $F(\zeta, y + \text{const}) = F(\zeta, y)$ by Proposition 4.2. Since deg $\psi \leq 2n$, $F(\zeta/\lambda, \lambda^2 y) = O(\lambda^2)$ as $\lambda \to 0$. Finally, take $x, y \in L\mathbf{C}$ with disjoint supports. If $x, y \in C^{\infty}(S^1)$, then

$$E(x+y) = \langle D, (x+y)^{\otimes (n+1)} \rangle = \langle D, x^{\otimes (n+1)} \rangle + \langle D, y^{\otimes (n+1)} \rangle = E(x) + E(y),$$

as supp D is on the diagonal. By approximation, E(x+y)=E(x)+E(y) follows in general, whence F itself is additive. We conclude that $F \in \mathfrak{F}$ if \mathfrak{h} is in an irreducible submodule.

By linearity it follows that $F \in \mathfrak{F}$ whenever \mathfrak{h} is in the span of irreducible submodules. Since this span is dense in \mathfrak{H} (cf. [BD, III.5.7] and the explanation in the introduction connecting representations of G with those of the compact group SO(3)), $\alpha(\mathfrak{h}) \in \mathfrak{F}$ for all $\mathfrak{h} \in \mathfrak{H}$.

THEOREM 4.6. The map α is a G-morphism.

Proof. It suffices to verify that the restriction of α to an irreducible submodule of \mathfrak{H} is a *G*-morphism, which follows directly from Proposition 4.3.

5. The structure of \mathfrak{H}

The main result of this section is the following theorem:

THEOREM 5.1. The G-morphism $\alpha: \mathfrak{H} \to \mathfrak{F}$ has a right inverse β . Its kernel is onedimensional, spanned by the G-invariant cocycle

$$\mathfrak{h}_{ab}(x) = \operatorname{ind}_{ab} x \tag{5.1}$$

(the winding number of $x: S^1 \rightarrow U_{ab}$).

We shall need the following result:

LEMMA 5.2. With notation as in §1, suppose that $z_1, ..., z_N \in L^- \mathbb{C}$ are such that no point in S^1 is contained in the support of more than two z_j . If $\widetilde{F} \in \widetilde{\mathfrak{F}}$ then

$$\widetilde{F}\left(\zeta, \sum_{j=1}^{N} z_j\right) = \sum_{i < j} \widetilde{F}(\zeta, z_i + z_j) - (N-2) \sum_{j=1}^{N} \widetilde{F}(\zeta, z_j).$$
(5.2)

In particular, if $N \ge 3$, and, writing $z_0 = z_N$, only consecutive $\operatorname{supp} z_j$'s intersect each other, then

$$\widetilde{F}\left(\zeta,\sum_{j=1}^{N}z_{j}\right)=\sum_{j=1}^{N}\widetilde{F}(\zeta,z_{j-1}+z_{j})-\sum_{j=1}^{N}\widetilde{F}(\zeta,z_{j}).$$

Proof. It will suffice to verify (5.2) when $\tilde{F}(\zeta, z) = \tilde{E}(z)$ is homogeneous, in which case it follows by expressing both sides in terms of the polarization of \tilde{E} , and using Lemma 1.2 (a). The second formula follows from (5.2) by applying additivity to terms with nonconsecutive *i* and *j*.

Proof of Theorem 5.1. (a) Construction of the right inverse. By Theorem 1.1, for $F \in \mathfrak{F}$ we can choose $\widetilde{F} \in \mathfrak{F}$, depending linearly on F, so that $F(\zeta, y) = \widetilde{F}(\zeta, \dot{y})$. With $x \in L\mathbf{P}_1$ consider the differential form

$$F\left(\zeta, \frac{1}{\zeta - x}\right) d\zeta = \widetilde{F}\left(\zeta, \frac{\dot{x}}{(\zeta - x)^2}\right) d\zeta, \tag{5.3}$$

holomorphic in $\mathbb{C}\setminus x(S^1)$. In fact, it is holomorphic at $\zeta = \infty$ as well, provided $\infty \notin x(S^1)$, since the coefficient of $d\zeta$ vanishes to second order at $\zeta = \infty$. This latter is easily verified when $\widetilde{F}(\zeta, z) = \zeta^{\nu} \widetilde{E}(z)$ and \widetilde{E} is (n+1)-homogeneous, $\nu \leq 2n$; in general it follows from the posthomogeneous expansion

$$\widetilde{F}(\zeta, z) = \sum_{n=0}^{\infty} \widetilde{F}_n(\zeta, z) = \sum_{n=0}^{\infty} \sum_{\nu=0}^{2n} \zeta^{\nu} \widetilde{E}_{n\nu}(\zeta).$$

Hence, if $x \in L\mathbf{P}_1$ does not separate a and b, the integral

$$h_{ab}(x) = \int_{a}^{b} \widetilde{F}\left(\zeta, \frac{\dot{x}}{(\zeta - x)^{2}}\right) d\zeta$$
(5.4)

is independent of the path joining a and b within $\mathbf{P}_1 \setminus x(S^1)$, and defines a holomorphic function of a, b and x.

We claim that h_{ab} can be continued to a cuspidal cocycle $\mathfrak{h}=(\mathfrak{h}_{ab})\in\mathfrak{H}$. First we prove a variant. Let $\sigma\in C^{\infty}(S^1)$ be supported in a closed arc $I\neq S^1$. Given finitely many $a, b, \ldots \in \mathbf{P}_1$, set

$$W_{ab\ldots} = \{ x \in L\mathbf{P}_1 : a, b, \ldots \notin x(I) \} \supset LU_{ab\ldots}.$$

We shall show that the integrals

$$\int_{a}^{b} \widetilde{F}\left(\zeta, \frac{\sigma \dot{x}}{(\zeta - x)^{2}}\right) d\zeta, \quad x \text{ does not separate } a \text{ and } b,$$
(5.5)

can be continued to functions $\mathfrak{k}_{ab}(x)$ depending holomorphically on $a, b \in \mathbf{P}_1$ and $x \in W_{ab}$. The main point will be that, unlike $LU_{ab...}$, the sets $W_{ab...}$ are connected.

If $x_1 \in W_{ab}$, construct a continuous curve $[0,1] \ni \tau \mapsto x_\tau \in W_{ab}$, with x_0 being a constant loop. Cover S^1 with open arcs $J_1, ..., J_N = J_0$, $N \ge 3$, so that only consecutive \tilde{J}_j 's intersect, and no $x_\tau(\bar{J}_i \cup \bar{J}_j)$ separates a and b. Choose a C^∞ partition of unity $\{\varrho_j\}_{j=1}^N$ subordinate to $\{J_j\}_{j=1}^N$. For x in a connected neighborhood $W \subset W_{ab}$ of $\{x_\tau : 0 \le \tau \le 1\}$ define

$$\mathfrak{k}_{ab}(x) = \sum_{j=1}^{N} \int_{a}^{b} \widetilde{F}\left(\zeta, \frac{(\varrho_{j-1}+\varrho_{j})\sigma\dot{x}}{(\zeta-x)^{2}}\right) d\zeta - \sum_{j=1}^{N} \int_{a}^{b} \widetilde{F}\left(\zeta, \frac{\varrho_{j}\sigma\dot{x}}{(\zeta-x)^{2}}\right) d\zeta.$$
(5.6)

In the first sum we extend $(\varrho_{j-1}+\varrho_j)\sigma \dot{x}/(\zeta-x)^2$ to $S^1\setminus (J_{j-1}\cup J_j)$ by 0, and integrate along paths in $\mathbf{P}_1\setminus x(\bar{J}_{j-1}\cup \bar{J}_j)$; we interpret the second sum similarly. The neighborhood W is to be chosen so small that no $x(\bar{J}_i\cup \bar{J}_j)$ separates a and b when $x\in W$.

As above, the integrals in (5.6) are independent of the path, and define a holomorphic function in W. By Lemma 5.2, \mathfrak{k}_{ab} agrees with (5.5) when x is near x_0 . Furthermore, the germ of \mathfrak{k}_{ab} at x_1 depends on the curve x_{τ} only through the choice of the ϱ_j . In fact, it does not even depend on ϱ_j : let \mathfrak{k}'_{ab} be the function obtained if in (5.6) the ϱ_j are replaced by another partition of unity ϱ'_h . It will suffice to show that $\mathfrak{k}_{ab} = \mathfrak{k}'_{ab}$ under the additional assumption that each ϱ'_h is supported in some J_j . In this case, \mathfrak{k}'_{ab} is holomorphic in Wand agrees with \mathfrak{k}_{ab} near x_0 , hence on all of W.

Therefore, by varying the partition of unity ρ_j , we can use (5.6) to define $\mathfrak{k}_{ab}(x)$ depending holomorphically on $a, b \in \mathbf{P}_1$ and $x \in W_{ab}$. Also, $\mathfrak{k}_{ab} + \mathfrak{k}_{bc} = \mathfrak{k}_{ac}$ on W_{abc} , since this is so in a neighborhood of constant loops, and W_{abc} is connected.

Now, to obtain a continuation of h_{ab} in (5.4), construct a partition of unity $\sigma_1, \sigma_2, \sigma_3 \in C^{\infty}(S^1)$ so that $\operatorname{supp}(\sigma_i + \sigma_j) \neq S^1$ and $\bigcap_{j=1}^3 \operatorname{supp} \sigma_j = \emptyset$. Setting $\sigma_0 = \sigma_3$, in light of Lemma 5.2 we can rewrite (5.4) as

$$h_{ab}(x) = \sum_{j=1}^{3} \int_{a}^{b} \widetilde{F}\left(\zeta, \frac{(\sigma_{j-1} + \sigma_{j})\dot{x}}{(\zeta - x)^{2}}\right) d\zeta - \sum_{j=1}^{3} \int_{a}^{b} \widetilde{F}\left(\zeta, \frac{\sigma_{j}\dot{x}}{(\zeta - x)^{2}}\right) d\zeta$$

and continue each term to LU_{ab} , as above. We obtain a holomorphic cocycle $\beta(F) = \mathfrak{h} = (\mathfrak{h}_{ab})$, with \mathfrak{h}_{ab} depending holomorphically on a and b, and one easily checks that each \mathfrak{h}_{ab} is cuspidal. Therefore $\beta(F) \in \mathfrak{H}$. Finally, $\alpha\beta(F)$ can be computed by considering $d_{\zeta}\mathfrak{h}_{a\zeta}(x)$, with a in the same component of $\mathbf{P}_1 \setminus x(S^1)$ as ζ , so that (5.4) gives

$$d_{\zeta}\mathfrak{h}_{a\zeta}(x) = d_{\zeta}h_{a\zeta}(x) = \widetilde{F}\left(\zeta, \frac{\dot{x}}{(\zeta-x)^2}\right)d\zeta = F\left(\zeta, \frac{1}{\zeta-x}\right)d\zeta.$$

Thus $\alpha\beta(F) = F$ as needed.

(b) The kernel of α . Take an irreducible submodule of Ker α , spanned by a vector \mathfrak{l} of lowest weight $-n \leq 0$. Since $F = \alpha(\mathfrak{l}) = 0$, (4.2) implies that $\mathfrak{l}_{ab}(x) = 0$ if x does not separate a and b; hence, by analytic continuation, whenever $\operatorname{ind}_{ab} x = 0$. By the cocycle relation $\mathfrak{l}_{ac}(x) = \mathfrak{l}_{bc}(x)$ if $\operatorname{ind}_{ab} x = 0$, i.e., if $\operatorname{ind}_{ac} x = \operatorname{ind}_{bc} x$.

Consider the components of $LU_{0\infty}$

$$X_r = \{ x \in LU_{0\infty} : \operatorname{ind}_{0\infty} x = r \}, \quad r \in \mathbb{Z}$$

Let

$$x_1(t) = e^{2\pi i r t}$$
 and $y(t) = e^{4\pi i r t} + e^{6\pi i r t - 4}$. (5.7)

We shall presently show that whenever $x \in LU_{0\infty}$ is in a sufficiently small neighborhood of x_1 , and $(\varkappa, \lambda) \in \mathbb{C}^2 \setminus \{(0, 0)\}$, then $z_{\varkappa\lambda} = \varkappa x + \lambda y \in X_r + \mathbb{C}$. It follows that with such xand y we can define $h(\varkappa, \lambda) = \mathfrak{l}_{a\infty}(z_{\varkappa\lambda})$, where a is chosen so that $\operatorname{ind}_{a\infty} z_{\varkappa\lambda} = r$. Thus $h \in \mathcal{O}(\mathbb{C}^2 \setminus \{(0, 0)\})$, and by Hartogs' theorem it extends to all of \mathbb{C}^2 ; also, it is homogeneous of degree -n. It follows that h is constant, indeed zero when n > 0. In all cases, $\mathfrak{l}_{0\infty}(x) = h(1, 0) = h(0, 1)$ is independent of x. This being true for x in a nonempty open set, $\mathfrak{l}_{0\infty}$ is constant on X_r . It follows that $\mathfrak{l}_{a\infty}(x) = \mathfrak{l}_{0\infty}(x-a)$ is locally constant, and so is $\mathfrak{l}_{ab} = \mathfrak{l}_{a\infty} - \mathfrak{l}_{b\infty}$. Moreover, $\mathfrak{l}_{ab} = 0$ unless n = 0.

Suppose now that n=0, and let $\mathfrak{l}_{0\infty}|_{X_1}=l\in \mathbb{C}$. We have $\mathfrak{l}_{a\infty}(x)=\mathfrak{l}_{0\infty}(x-a)=l$ if $\operatorname{ind}_{a\infty} x=1$. Choose a homeomorphic $x\in L\mathbb{C}$ and $a,b\in \mathbb{C}\setminus x(S^1)$ so that $\operatorname{ind}_{ab} x=1$; say that b is in the unbounded component. Then $\mathfrak{l}_{ab}(x)=\mathfrak{l}_{a\infty}(x)-\mathfrak{l}_{b\infty}(x)=l$, and the same will hold if x is slightly perturbed. It follows that $\mathfrak{l}_{ab}(x)=l$ whenever $\operatorname{ind}_{ab} x=1$, and

in this case $\mathfrak{l}_{ba}(x) = -l$. Finally, with a generic $y \in LU_{ab}$ choose $a_0 = a, a_1, ..., a_m = b$ in $\mathbf{P}_1 \setminus y(S^1)$ so that $\operatorname{ind}_{a_{j-1}a_j} y = \pm 1$. Then

$$\mathfrak{l}_{ab}(y) = \sum_{j=1}^{m} \mathfrak{l}_{a_{j-1}a_j}(y) = l \sum_{j=1}^{m} \operatorname{ind}_{a_{j-1}a_j} y = l \operatorname{ind}_{ab} y.$$

We conclude that any irreducible submodule of Ker α is spanned by \mathfrak{h} in (5.1), whence Ker α itself is spanned by \mathfrak{h} , as claimed.

We still owe the proof that $\varkappa x + \lambda y \in X_r + \mathbb{C}$ unless $\varkappa = \lambda = 0$, for x near x_1 and y given in (5.7). In fact, the general statement follows once we prove it for r=1 and $x=x_1$, which we henceforward assume. If $|\varkappa| \ge 2|\lambda|$ then $z_{\varkappa\lambda} \in X_1$ by Rouché's theorem. Otherwise consider the polynomial

$$P(\zeta) = \varkappa \zeta + \lambda(\zeta^2 + e^{-4}\zeta^3), \quad \zeta \in \mathbb{C}.$$

For fixed $|\zeta| < 2$ the equation $P(\eta) = P(\zeta)$ has two solutions with $|\eta| < 5$, again by Rouché's theorem. One of the solutions is $\eta = \zeta$. Let $\eta = R(\zeta)$ be the other one, so that R is holomorphic. There are only finitely many ζ with $|\zeta| = |R(\zeta)| = 1$. Indeed, otherwise $|R(\zeta)| = 1$ would hold for all unimodular ζ , and by the reflection principle R would be rational. However, $P(R(\zeta)) = P(\zeta)$ cannot hold with rational $R(\zeta) \neq \zeta$. We conclude that $z_{\varkappa\lambda}(S^1)$ has only finitely many self-intersection points.

Since P(0)=0, $\operatorname{ind}_{0\infty} z_{\varkappa\lambda} \ge 1$. Drag a point *a* from 0 to ∞ along a path that avoids multiple points of $z_{\varkappa\lambda}(S^1)$. Each time we cross $z_{\varkappa\lambda}(S^1)$, $\operatorname{ind}_{a\infty} z_{\varkappa\lambda}$ changes by ± 1 . It follows that $\operatorname{ind}_{a\infty} z_{\varkappa\lambda}=1$ for some *a*, which completes the proof.

For the space $L_{1,p}\mathbf{P}_1$, Theorems 2.1, 2.2 and the construction in Theorem 5.1 lead to explicit representations of elements of \mathfrak{H} . First there are the multiples of the cocycle (5.1), and then there is the complementary subspace $\beta(\mathfrak{F}) = \bigoplus_{n=0}^{p-1} \beta(\mathfrak{F}^n)$, see Theorem 2.2. According to Theorems 2.1 and 2.2 elements of \mathfrak{F}^n are of form

$$F(\zeta, y) = \sum_{\nu=0}^{2n} \zeta^{\nu} \langle \Phi_{\nu}, \dot{y}^{n+1} \rangle, \quad \Phi_{\nu} \in L^{p/(n+1)}(S^{1})^{*}.$$

Following the proof of Theorem 5.1, to compute $\mathfrak{h}=\beta(F)$ we set

$$\widetilde{F}(\zeta,z) = \sum_{\nu=0}^{2n} \zeta^{\nu} \langle \Phi_{\nu}, z^{n+1} \rangle$$

The substitution $\zeta = \xi + c$ shows that

$$R_{\nu}(a,b,c) = \int_a^b \frac{\zeta^{\nu} d\zeta}{(\zeta-c)^{2n+2}}, \quad 0 \leqslant \nu \leqslant 2n, \ c \in \mathbf{P}_1 \backslash \{a,b\},$$

are rational functions with poles at c=a, b, so that

$$\mathfrak{h}_{ab}(x) = \int_a^b \widetilde{F}\left(\zeta, \frac{\dot{x}}{(\zeta-x)^2}\right) d\zeta = \sum_{\nu=0}^{2n} \langle \Phi_{\nu}, R_{\nu}(a, b, x) \dot{x}^{n+1} \rangle,$$

when x does not separate a and b. However, the right-hand side makes sense for any $x \in LU_{ab}$ and, as one checks, defines $\mathfrak{h} = \beta(F)$. For example, if F, and hence \mathfrak{h} , are of lowest weight, then $\Phi_{\nu} = 0$ for $\nu \ge 1$, and

$$\mathfrak{h}_{ab}(x) = \left\langle \Phi_0, \frac{\dot{x}^{n+1}}{2n+1} \left(\frac{1}{(x-a)^{2n+1}} - \frac{1}{(x-b)^{2n+1}} \right) \right\rangle.$$
(5.8)

Letting n=0 and $\langle \Phi_0, z \rangle = \int_{S^1} z/2\pi i$, formula (5.8) recovers the locally constant cocycle (5.1) as well. Thus we have proved the following result:

THEOREM 5.3. In the case of $W^{1,p}$ loop spaces, any lowest-weight cocycle in the n-th isotypical subspace $\mathfrak{H}^n \subset \mathfrak{H}$ is of form (5.8) with (a unique) $\Phi_0 \in L^{p/(n+1)}(S^1)^*$, $0 \leq n \leq p-1$.

6. Synthesis

In this last section we show how the results obtained by now imply the theorems of the introduction. Theorems 0.1 and 0.2 follow from the isomorphism $H^{0,1}(L\mathbf{P}_1)\approx\mathfrak{H}$ of G-modules (Theorem 3.3) and from the isomorphism $\mathfrak{H}\approx \mathbf{C}\oplus\mathfrak{F}$, a consequence of Theorem 5.1. In particular, $H^{0,1}(L\mathbf{P}_1)^G\approx \mathbf{C}\oplus\mathfrak{F}^0$. The latter being isomorphic to the dual of $L^-\mathbf{C}=C^{k-1}(S^1)$ (resp. $W^{k-1,p}(S^1)$) by Theorem 2.1, Theorem 0.3 also follows. Finally, Theorem 0.4 is a consequence of Theorems 2.2 and 2.1.

Seemingly we are done with all the proofs. However, Theorem 3.3 has not yet been proved for loop spaces $L_{1,p}\mathbf{P}_1$, p<3, and we still have to revisit spaces of loops of low regularity. This will give us the opportunity to explicitly represent classes in $H^{0,1}(L_{1,p}\mathbf{P}_1)$, in fact, for all $p \in [1, \infty)$.

Generally, given a complex manifold M, $1 \leq p < \infty$, and a natural number $m \leq p$, consider the space $C_{0,q}^{\infty}((T^*M)^{\otimes m})$ of $(T^*M)^{\otimes m}$ -valued (0,q)-forms on M. If ω is such a form, $v \in \bigoplus^q T_s^{0,1}M$ and $w \in T_s^{1,0}M$, we can pair $\omega(v) \in (T_s^*M)^{\otimes m}$ with $w^{\otimes m}$, to obtain what we shall denote $\omega(v, w^m) \in \mathbb{C}$. Write LM for the space of $W^{1,p}$ -loops in M, and observe that the tangent space $T_x^{0,1}LM$ is naturally isomorphic to the space $W^{1,p}(x^*T^{0,1}M)$ of $W^{1,p}$ -sections of the induced bundle $x^*T^{0,1}M \to S^1$ (see [L2, Proposition 2.2] in the case of C^k -loops).

There is a bilinear map

$$I = I_q: L^{p/m}(S^1)^* \times C^{\infty}_{0,q}((T^*M)^{\otimes m}) \longrightarrow C^{\infty}_{0,q}(LM),$$

obtained by the following Radon-type transformation. If

$$(\Phi,\omega) \in L^{p/m}(S^1)^* \times C^{\infty}_{0,q}((T^*M)^{\otimes m}),$$

 $x \in LM$ and $\xi \in \bigoplus^q T^{0,1}_x LM \approx \bigoplus^q W^{1,p}(x^*T^{0,1}M)$, then $\omega(\xi, \dot{x}^m) \in L^{p/m}(S^1)$. Define $I(\Phi, \omega) = f$ by

$$f(\xi) = \langle \Phi, \omega(\xi, \dot{x}^m) \rangle.$$

One verifies that $\bar{\partial}I(\Phi,\omega) = I(\Phi,\bar{\partial}\omega)$, whence I_q induces a bilinear map

$$L^{p/m}(S^1)^* \times H^{0,q}((T^*M)^{\otimes m}) \longrightarrow H^{0,q}(LM).$$

Henceforward we take $M=\mathbf{P}_1$, q=1, m=n+1 and ω given on **C** by

$$\omega = \frac{-1}{2n+1} \frac{\bar{\zeta}^{2n} d\bar{\zeta} \otimes (d\zeta)^{n+1}}{(1+|\zeta|^{4n+2})^{(2n+2)/(2n+1)}}, \quad \zeta \in \mathbf{C},$$

so that $f = I_1(\Phi, \omega)$ is a closed form on $L\mathbf{P}_1$. Explicitly,

$$f(\xi) = \frac{-1}{2n+1} \left\langle \Phi, \frac{\xi \bar{x}^{2n} \dot{x}^{n+1}}{(1+|x|^{4n+2})^{(2n+2)/(2n+1)}} \right\rangle, \quad \xi \in T_x^{0,1} L\mathbf{P}_1.$$
(6.1)

To compute its image in \mathfrak{H} under the map of Theorem 3.3, let

$$\theta_a = \frac{1}{2n+1} \left(\frac{\zeta^{-2n-1}}{(1+|\zeta|^{4n+2})^{1/(2n+1)}} - \zeta^{-2n-1} + (\zeta-a)^{-2n-1} \right) (d\zeta)^{n+1} \quad \text{on } U_a.$$

Thus $\bar{\partial}\theta_a = \omega|_{U_a}$, and the cuspidal functions $u_a = I_0(\Phi, \theta_a) \in C^{\infty}(LU_a)$ solve $\bar{\partial}u_a = f|_{LU_a}$. Hence the image of f in \mathfrak{H} is

$$\mathfrak{h}_{ab}(x) = u_a(x) - u_b(x) = \left\langle \Phi, \frac{\dot{x}^{n+1}}{2n+1} \left(\frac{1}{(x-a)^{2n+1}} - \frac{1}{(x-b)^{2n+1}} \right) \right\rangle.$$

Comparing this with Theorem 5.3 we see that by associating a lowest weight $\mathfrak{h} \in \mathfrak{H}^n$ with the functional $\Phi = \Phi_0$ of (5.8), and then $f \in C_{0,1}^{\infty}(L\mathbf{P}_1)$ of (6.1), the image of f in \mathfrak{H} will be \mathfrak{h} . In particular, the class $[f] \in H^{0,1}(L\mathbf{P}_1)$ is also of lowest weight -n. Therefore the linear map $\mathfrak{h} \mapsto [f]$, defined for $\mathfrak{h} \in \mathfrak{H}^n$ of lowest weight, can be extended to a G-morphism $\mathfrak{H}^n \to H^{0,1}(L\mathbf{P}_1)$, and then to a G-morphism $\bigoplus_{n=0}^{p-1} \mathfrak{H}^n = \mathfrak{H} \to H^{0,1}(L\mathbf{P}_1)$, inverse to the morphism $H^{0,1}(L\mathbf{P}_1) \to \mathfrak{H}$ of Theorem 3.3. This completes the proof of Theorem 3.3, and now we are really done.

L. LEMPERT AND N. ZHANG

References

- [BD] BRÖCKER, T. & TOM DIECK, T., Representations of Compact Lie Groups. Springer, New York, 1985.
- [D] DAY, M. M., The spaces L^p with 0 . Bull. Amer. Math. Soc., 46 (1940), 816–823.
- [He] HERVÉ, M., Analyticity in Infinite-Dimensional Spaces. de Gruyter Stud. Math., 10. de Gruyter, Berlin, 1989.
- [HBJ] HIRZEBRUCH, F., BERGER, T. & JUNG, R., Manifolds and Modular Forms. Aspects of Math., E20. Vieweg, Braunschweig, 1992.
- [Hö] HÖRMANDER, L., The Analysis of Linear Partial Differential Operators, Vol. I. Grundlehren Math. Wiss., 256. Springer, Berlin, 1983.
- [K] KURZWEIL, J., On approximation in real Banach spaces. Studia Math., 14 (1954), 214– 231.
- [L1] LEMPERT, L., The Dolbeault complex in infinite dimensions, I. J. Amer. Math. Soc., 11 (1998), 485–520.
- [L2] Holomorphic functions on (generalised) loop spaces. Math. Proc. R. Ir. Acad., 104A (2004), 35–46.
- [MZ] MILLSON, J. J. & ZOMBRO, B., A Kähler structure on the moduli space of isometric maps of a circle into Euclidean space. *Invent. Math.*, 123 (1996), 35-59.
- [P] PALAIS, R. S., Foundations of Global Nonlinear Analysis. Benjamin, New York-Amsterdam, 1968.
- [W] WITTEN, E., The index of the Dirac operator in loop space, in *Elliptic Curves and Modular Forms in Algebraic Topology* (Princeton, NJ, 1986), pp. 161–181. Lecture Notes in Math., 1326. Springer, Berlin, 1988.
- [Z] ZHANG, N., Holomorphic line bundles on the loop space of the Riemann sphere. J. Differential Geom., 65 (2003), 1-17.

LÁSZLÓ LEMPERT Department of Mathematics Purdue University West Lafayette, IN 47907 U.S.A. lempert@math.purdue.edu NING ZHANG Department of Mathematics University of California Riverside, CA 92521 U.S.A. nzhang@math.ucr.edu

Received March 9, 2004