Dolbeault cohomology of a loop space

by
LÁSZLÓ LEMPERT
Purdue University
West Lafayette, IN, U.S.A.
NING ZHANG
University of California
Riverside, CA, U.S.A.

0. Introduction

Loop spaces $L M$ of compact complex manifolds M promise to have rich analytic cohomology theories, and it is expected that sheaf and Dolbeault cohomology groups of $L M$ will shed new light on the complex geometry and analysis of M itself. This idea first occurs in [W], in the context of the infinite-dimensional Dirac operator, and then in [HBJ] that touches upon Dolbeault groups of loop spaces; but in all this, both works stay heuristic. Our goal here is rigorously to compute the Dolbeault group $H^{0,1}$ of the first interesting loop space, that of the Riemann sphere \mathbf{P}_{1}. The consideration of $H^{0,1}\left(L P_{1}\right)$ was directly motivated by [MZ], that among other things features a curious line bundle on $L \mathbf{P}_{1}$. More recently, the second author classified in $[Z]$ all holomorphic line bundles on $L \mathbf{P}_{1}$ that are invariant under a certain group of holomorphic automorphisms of $L \mathbf{P}_{1}$-a problem closely related to describing (a certain subspace of) $H^{0,1}\left(L \mathbf{P}_{1}\right)$. One noteworthy fact that emerges from the present research is that analytic cohomology of loop spaces, unlike topological cohomology (cf. [P, Theorem 13.14]), is rather sensitive to the regularity of loops admitted in the space. Another fact concerns local functionals, a notion from theoretical physics. Roughly, if M is a manifold, a local functional on a space of loops $x: S^{1} \rightarrow M$ is a functional of form

$$
f(x)=\int_{S^{1}} \Phi(t, x(t), \dot{x}(t), \ddot{x}(t), \ldots) d t
$$

where Φ is a function on $S^{1} \times$ an appropriate jet bundle of M. It turns out that all cohomology classes in $H^{0,1}\left(L \mathbf{P}_{1}\right)$ are given by local functionals. Nonlocal cohomology classes exist only perturbatively, i.e., in a neighborhood of constant loops in $L \mathbf{P}_{1}$; but none of them extends to the whole of $L \mathbf{P}_{1}$.

[^0]We fix a smoothness class $C^{k}, k=1,2, \ldots, \infty$, or Sobolev class $W^{k, p}, k=1,2, \ldots$, $1 \leqslant p<\infty$. If M is a finite-dimensional complex manifold, consider the space $L M=L_{k} M$, or $L_{k, p} M$, of maps $S^{1}=\mathbf{R} / \mathbf{Z} \rightarrow M$ of the given regularity. These spaces are complex manifolds modeled on a Banach space, except for $L_{\infty} M$, which is modeled on a Fréchet space. We shall focus on the loop space(s) $L \mathbf{P}_{1}$. As on any complex manifold, one can consider the space $C_{r, q}^{\infty}\left(L \mathbf{P}_{1}\right)$ of smooth (r, q)-forms, the operators

$$
\bar{\partial}_{r, q}: C_{r, q}^{\infty}\left(L \mathbf{P}_{1}\right) \rightarrow C_{r, q+1}^{\infty}\left(L \mathbf{P}_{1}\right)
$$

and the associated Dolbeault groups

$$
H^{r, q}\left(L \mathbf{P}_{1}\right)=\operatorname{Ker} \bar{\partial}_{r, q} / \operatorname{Im} \bar{\partial}_{r, q-1}
$$

for all this, see e.g. [L1] and [L2]. On the other hand, let \mathfrak{F} be the space of holomorphic functions $F: \mathbf{C} \times L \mathbf{C} \rightarrow \mathbf{C}$ that have the following properties:
(1) $F\left(\zeta / \lambda, \lambda^{2} y\right)=O\left(\lambda^{2}\right)$ as $\mathbf{C} \ni \lambda \rightarrow 0$;
(2) $F(\zeta, x+y)=F(\zeta, x)+F(\zeta, y)$ if $\operatorname{supp} x \cap \operatorname{supp} y=\varnothing$;
(3) $F(\zeta, y+$ const $)=F(\zeta, y)$.

As we shall see, the additivity property (2) implies that $F(\zeta, y)$ is local in y.
Theorem 0.1. $H^{0,1}\left(L \mathbf{P}_{1}\right) \approx \mathbf{C} \oplus \mathfrak{F}$.
In the case of $L_{\infty} \mathbf{P}_{1}$, examples of $F \in \mathfrak{F}$ are

$$
\begin{equation*}
F(\zeta, y)=\zeta^{\nu}\left\langle\Phi, \prod_{j=0}^{m} y^{\left(d_{j}\right)}\right\rangle \tag{0.1}
\end{equation*}
$$

where Φ is a distribution on $S^{1}, y^{(d)}$ denotes d th derivative, each $d_{j} \geqslant d_{0}=1$ and $0 \leqslant \nu \leqslant 2 m$. A general function in \mathfrak{F} can be approximated by linear combinations of functions of form (0.1), see Theorem 1.5.

On any, possibly infinite-dimensional, complex manifold X, the space $C_{r, q}^{\infty}(X)$ can be given the compact- C^{∞} topology as follows. First, the compact-open topology on $C_{0,0}^{\infty}(X)=C^{\infty}(X)$ is generated by C^{0}-seminorms $\|f\|_{K}=\sup _{K}|f|$ for all compact $K \subset X$. The family of C^{ν}-seminorms is defined inductively: each $C^{\nu-1}$-seminorm $\|\cdot\|$ on $C^{\infty}(T X)$ induces a C^{ν}-seminorm $\|f\|^{\prime}=\|d f\|$ on $C^{\infty}(X)$. The collection of all C^{ν}-seminorms, $\nu=0,1, \ldots$, defines the compact- C^{∞} topology on $C^{\infty}(X)$. The compact- C^{∞} topology on a general $C_{r, q}^{\infty}(X)$ is induced by the embedding $C_{r, q}^{\infty}(X) \subset C^{\infty}\left(\bigoplus^{r+q} T X\right)$. With this topology $C_{r, q}^{\infty}(X)$ is a separated locally convex vector space, complete if X is first countable. The quotient space $H^{r, q}(X)$ inherits a locally convex topology, not necessarily separated. We note that on the subspace $\mathcal{O}(X) \subset C^{\infty}(X)$ of holomorphic functions, the
compact- C^{∞} topology restricts to the compact-open topology. The isomorphism in Theorem 0.1 is topological; it is also equivariant with respect to the obvious actions of the group of C^{k}-diffeomorphisms of S^{1}.

There is another group, the group $G \approx \operatorname{PSL}(2, \mathbf{C})$ of holomorphic automorphisms of \mathbf{P}_{1}, whose holomorphic action on $L \mathbf{P}_{1}$ (by postcomposition) and on $H^{0,1}\left(L \mathbf{P}_{1}\right)$ will be of greater concern to us. Theorems $0.2-0.4$ below will describe the structure of $H^{0,1}\left(L \mathbf{P}_{1}\right)$ as a G-module. Recall that any irreducible (always holomorphic) G-module is isomorphic, for some $n=0,1, \ldots$, to the space \mathfrak{K}_{n} of holomorphic differentials $\psi(\zeta)(d \zeta)^{-n}$ of order $-n$ on \mathbf{P}_{1}; here ψ is a polynomial, $\operatorname{deg} \psi \leqslant 2 n$ and G acts by pullback. (For this, see [BD, pp. 84-86], and note that the subgroup $\approx \mathrm{SO}(3)$ formed by $g \in G$ that preserve the FubiniStudy metric is a maximally real submanifold; hence the holomorphic representation theory of G agrees with the representation theory of $\mathrm{SO}(3)$.) The nth isotypical subspace of a G-module V is the sum of all irreducible submodules isomorphic to \mathfrak{K}_{n}. In particular, the 0th isotypical subspace is the space V^{G} of fixed vectors.

Theorem 0.2. If $n \geqslant 1$, the n-th isotypical subspace of $H^{0,1}\left(L_{\infty} \mathbf{P}_{1}\right)$ is isomorphic to the space \mathfrak{F}^{n} spanned by functions of form (0.1), with $m=n$.

The isomorphism above is that of locally convex spaces, as \mathfrak{F} or \mathfrak{F}^{n} have not been endowed with an action of G yet. But in $\S 2$ they will be, and we shall see that the isomorphism in question is a G-morphism. - The fixed subspace of $H^{0,1}\left(L \mathbf{P}_{1}\right)$ can be described more explicitly, for any loop space:

Theorem 0.3. The space $H^{0,1}\left(L \mathbf{P}_{1}\right)^{G}$ is isomorphic to the space $C^{k-1}\left(S^{1}\right)^{*}$ (resp. $\left.W^{k-1, p}\left(S^{1}\right)^{*}\right)$ if the dual spaces are endowed with the compact-open topology.

The isomorphisms in Theorem 0.3 are not Diff S^{1}-equivariant. To remedy this, one is led to introduce the spaces $C_{r}^{l}\left(S^{1}\right)$ (resp. $W_{r}^{l, p}\left(S^{1}\right)$) of differentials $y(t)(d t)^{r}$ of order r on S^{1}, of the corresponding regularity; $L_{r}^{p}=W_{r}^{0, p}$. Then $H^{0,1}\left(L \mathbf{P}_{1}\right)^{G}$ will be Diff S^{1} equivariantly isomorphic to $C_{1}^{k-1}\left(S^{1}\right)^{*}$ (resp. $\left.W_{1}^{k-1, p}\left(S^{1}\right)^{*}\right)$.

For low-regularity loop spaces one can very concretely represent all of $H^{0,1}\left(L \mathbf{P}_{1}\right)$:
Theorem 0.4. (a) If $1 \leqslant p<2$, all of $H^{0,1}\left(L_{1, p} \mathbf{P}_{1}\right)$ is fixed by G. Hence it is isomorphic to $L^{p^{\prime}}\left(S^{1}\right)$, with $p^{\prime}=p /(p-1)$.
(b) If $1 \leqslant p<\infty$ then $H^{0,1}\left(L_{1, p} \mathbf{P}_{1}\right)$ is isomorphic to

$$
\bigoplus_{n=0}^{p-1} \mathfrak{K}_{n} \otimes L_{n+1}^{p /(n+1)}\left(S^{1}\right)^{*} \approx \bigoplus_{n=0}^{p-1} \mathfrak{K}_{n} \otimes L_{-n}^{p_{n}}\left(S^{1}\right), \quad p_{n}=\frac{p}{p-1-n}
$$

and so it is the sum of its first $[p]$ isotypical subspaces. Indeed, the isomorphisms above are $G \times \operatorname{Diff} S^{1}$-equivariant, G and Diff S^{1} respectively acting on one of the factors \mathfrak{K}_{n} and L_{r}^{q} naturally, and trivially on the other.

Again, the dual spaces are endowed with the compact-open topology.
It follows that the infinite-dimensional space $H^{0,1}\left(L_{1, p} \mathbf{P}_{1}\right)$ can be understood in finite terms, if it is considered as a representation space of S^{1}. Here S^{1} acts on itself (by translations), hence also on $L \mathbf{P}_{1}$ and on $H^{0,1}\left(L \mathbf{P}_{1}\right)$. One can read off from Theorem 0.4 that each irreducible representation of S^{1} occurs in $H^{0,1}\left(L_{1, p} \mathbf{P}_{1}\right)$ with the same multiplicity $[p]^{2}$. On the other hand, for spaces of loops of regularity at least C^{1}, in $H^{0,1}\left(L \mathbf{P}_{1}\right)$ each irreducible representation of S^{1} occurs with infinite multiplicity, and, somewhat contrary to earlier expectations, it is not possible to associate with this cohomology space even a formal character of S^{1}. This indicates that Dolbeault groups of general loop spaces $L M$ should be studied as representations of Diff S^{1} rather than S^{1}.

The structure of this paper is as follows. In $\S \S 1$ and 2 we study the space \mathfrak{F} as a G-module. Theorem 1.1 connects it with a similar but simpler space of functions that are required to satisfy only the first two of the three conditions defining \mathfrak{F}. This result will be needed in proving the isomorphism $H^{0,1}\left(L \mathbf{P}_{1}\right) \approx \mathbf{C} \oplus \mathfrak{F}$, and also in concretely representing elements of \mathfrak{F}. Further, we shall rely on Theorem 1.1 in identifying isotypical subspaces of \mathfrak{F} (Theorems 2.1 and 2.2). This will then prove Theorems $0.2-0.4$, modulo Theorem 0.1.

To prove Theorem 0.1 , we shall cover $L \mathbf{P}_{1}$ with open sets

$$
L U_{a}=\left\{x \in L \mathbf{P}_{1}: a \notin x\left(S^{1}\right)\right\}, \quad a \in \mathbf{P}_{1}
$$

each biholomorphic to $L \mathbf{C}$. Given a cohomology class $[f] \in H^{0,1}\left(L \mathbf{P}_{1}\right)$, represented by a closed $f \in C_{0,1}^{\infty}\left(L \mathbf{P}_{1}\right)$, we first solve the equation $\bar{\partial} u_{a}=\left.f\right|_{L U_{a}}$, see $\S 3$. If an appropriate normalizing condition is imposed on the solution, u_{a} will be unique and depend holomorphically on a. At this point it is natural to introduce the Čech cocycle

$$
\begin{equation*}
\mathfrak{f}=\left(u_{a}-u_{b}: a, b \in \mathbf{P}_{1}\right) \in Z^{1}\left(\left\{L U_{a}: a \in \mathbf{P}_{1}\right\}, \mathcal{O}\right) \tag{0.2}
\end{equation*}
$$

It turns out that \mathfrak{f} depends only on the class $[f]$, and the map $[f] \mapsto \mathfrak{f}$ is an isomorphism between $H^{0,1}\left(L \mathbf{P}_{1}\right)$ and a certain space \mathfrak{H} of cocycles (Theorem 3.3).

In $\S 4$ we consider the infinitesimal version of (0.2). The function $\partial u_{\zeta}(x) / \partial \zeta$ is holomorphic in x and ζ, as long as $\zeta \notin x\left(S^{1}\right)$. We write it as

$$
\frac{\partial u_{\zeta}(x)}{\partial \zeta}=F\left(\zeta, \frac{1}{\zeta-x}\right), \quad F \in \mathcal{O}(\mathbf{C} \times L \mathbf{C})
$$

and prove that F satisfies conditions (1), (2) and (3) above (Theorem 4.1). In $\S 5$ we prove that the map $H^{0,1}\left(L \mathbf{P}_{1}\right) \ni[f] \mapsto F \in \mathcal{F}$ has a right inverse and its kernel is onedimensional, whence Theorem 0.1 follows. In the final $\S 6$ we tie together loose ends, and also represent explicitly some Dolbeault classes in $H^{0,1}\left(L \mathbf{P}_{1}\right)$; for $W^{1, p}$ loop spaces with $1 \leqslant p<2$, this amounts to a concrete map $L^{p}\left(S^{1}\right)^{*} \rightarrow C_{0,1}^{\infty}\left(L \mathbf{P}_{1}\right)$ that induces the isomorphism in Theorem 0.4 (a).

1. The space \mathfrak{F}

In this section and the next we shall study the structure of the space \mathfrak{F}, independently of any cohomological content. It will be convenient to allow k to be any integer (but only in this section!); when $k<0$, elements of $C^{k}\left(S^{1}\right)$ and $W^{k, p}\left(S^{1}\right)$ are distributions, locally equal to the $-k$ th derivative of functions in $C\left(S^{1}\right)$ and $L^{p}\left(S^{1}\right)$, respectively. Let $L^{-} \mathbf{C}$ denote the space $C^{k-1}\left(S^{1}\right)$ (resp. $W^{k-1, p}\left(S^{1}\right)$). We shall write $L^{(-)} \mathbf{C}$ to mean either $L \mathbf{C}$ or $L^{-} \mathbf{C}$. Consider the space $\widetilde{\mathfrak{F}}$ of those $F \in \mathcal{O}\left(\mathbf{C} \times L^{-} \mathbf{C}\right)$ that have properties (1) and (2) of the introduction. We shall refer to (2) as additivity. A function $F \in \mathcal{O}\left(\mathbf{C} \times L^{(-)} \mathbf{C}\right)$ will be said to be posthomogeneous of degree m if $F(\zeta, \cdot)$ is homogeneous of degree m for all $\zeta \in \mathbf{C}$. Posthomogeneous degree endows the spaces \mathfrak{F} and $\widetilde{\mathfrak{F}}$ with a grading.-All maps below, unless otherwise mentioned, will be continuous and linear.

Theorem 1.1. The graded linear map $\widetilde{\mathfrak{F}} \ni \widetilde{F} \mapsto F \in \mathfrak{F}$ given by $F(\zeta, y)=\widetilde{F}(\zeta, \dot{y})$ has a graded right inverse, and its kernel consists of functions $\widetilde{F}(\zeta, x)=$ const $\int_{S^{1}} x$.

First we shall consider functions $E \in \mathfrak{F}$ (resp. $\widetilde{\mathfrak{F}}$) that are independent of ζ. We denote the space of these functions $\mathfrak{E} \subset \mathcal{O}(L \mathbf{C})$ (resp. $\widetilde{\mathfrak{E}} \subset \mathcal{O}\left(L^{-} \mathbf{C}\right)$), graded by degree of homogeneity. Additivity of $E \in \mathcal{O}\left(L^{(-)} \mathbf{C}\right)$ implies $E(0)=0$, which in turn implies property (1) of the introduction. Let

$$
\begin{equation*}
E=\sum_{m=1}^{\infty} E_{m}, \quad E_{m}(y)=\int_{0}^{1} E\left(e^{2 \pi i \tau} y\right) e^{-2 m \pi i \tau} d \tau \tag{1.1}
\end{equation*}
$$

be the homogeneous expansion of a general $E \in \mathcal{O}\left(L^{(-)} \mathbf{C}\right)$ vanishing at 0 . Consider tensor powers $\left(L^{(-)} \mathbf{C}\right)^{\otimes m}$ of the vector spaces $L^{(-)} \mathbf{C}$ over \mathbf{C}. In particular, $C^{\infty}\left(S^{1}\right)^{\otimes m}$ is an algebra, and a general $\left(L^{(-)} \mathbf{C}\right)^{\otimes m}$ is a module over it. Each E_{m} in (1.1) induces a symmetric linear map

$$
\mathcal{E}_{m}:\left(L^{(-)} \mathbf{C}\right)^{\otimes m} \longrightarrow \mathbf{C}
$$

called the polarization of E_{m}. On monomials, \mathcal{E}_{m} is defined by

$$
\begin{equation*}
\mathcal{E}_{m}\left(y_{1} \otimes \ldots \otimes y_{m}\right)=\frac{1}{2^{m} m!} \sum_{\varepsilon_{j}= \pm 1} \varepsilon_{1} \ldots \varepsilon_{m} E_{m}\left(\varepsilon_{1} y_{1}+\ldots+\varepsilon_{m} y_{m}\right) \tag{1.2}
\end{equation*}
$$

see e.g. [He, §2.2], and then extended by linearity. Thus $E_{m}(y)=\mathcal{E}_{m}\left(y^{\otimes m}\right)$.-We shall call $w \in\left(L^{(-)} \mathbf{C}\right)^{\otimes m}$ degenerate if it is a linear combination of monomials $y_{1} \otimes \ldots \otimes y_{m}$ with some $y_{j}=1$.

Lemma 1.2. (a) E is additive if and only if

$$
\mathcal{E}_{m}\left(y_{1} \otimes \ldots \otimes y_{m}\right)=0 \quad \text { whenever } \bigcap_{j=1}^{m} \operatorname{supp} y_{j}=\varnothing
$$

(b) $E(y+$ const $)=E(y)$ if and only if $\mathcal{E}_{m}(w)=0$ whenever w is degenerate.

Proof. (a) Clearly E is additive precisely when all the E_{m} are, whence it suffices to prove the claim when E itself is homogeneous, of degree m, say. In this case $\mathcal{E}_{n}=0, n \neq m$. Denoting \mathcal{E}_{m} by \mathcal{E}, it is also clear that the condition on \mathcal{E} implies that E is additive. We show the converse by induction on m, the case $m=1$ being obvious. Let $x, y \in L^{(-)} \mathbf{C}$ have disjoint supports, so that

$$
\begin{equation*}
\mathcal{E}\left((x+y)^{\otimes m}\right)=\mathcal{E}\left(x^{\otimes m}\right)+\mathcal{E}\left(y^{\otimes m}\right) \tag{1.3}
\end{equation*}
$$

Write λx for x and separate terms of different degrees in λ to find $\mathcal{E}(x \otimes \ldots \otimes y)=0$, which settles the case $m=2$. Next, if we already know the claim when m is replaced by $m-1 \geqslant 2$, take a $z \in L^{(-)} \mathbf{C}$ with supp $y \cap \operatorname{supp} z=\varnothing$, and write $x+\lambda z$ for x in (1.3). Considering the terms linear in λ we obtain

$$
\begin{equation*}
\mathcal{E}\left(z \otimes(x+y)^{\otimes(m-1)}\right)=\mathcal{E}\left(z \otimes x^{m-1}\right)+\mathcal{E}\left(z \otimes y^{m-1}\right) \tag{1.4}
\end{equation*}
$$

the last term being 0 . The same will hold if $\operatorname{supp} x \cap \operatorname{supp} z=\varnothing$. Since any $z \in L^{(-)} \mathbf{C}$ can be written $z^{\prime}+z^{\prime \prime}$ with the support of z^{\prime} (resp. $z^{\prime \prime}$) disjoint from the support of x (resp. y), (1.4) in fact holds for all z. By the induction hypothesis applied to $\mathcal{E}(z \otimes \cdot$),

$$
\mathcal{E}\left(z \otimes y_{2} \otimes \ldots \otimes y_{m}\right)=0, \quad \text { if } \bigcap_{j=2}^{m} \operatorname{supp} y_{j}=\varnothing
$$

Suppose now that $\bigcap_{j=1}^{m} \operatorname{supp} y_{j}=\varnothing$ and write $y_{1}=y^{\prime}+y^{\prime \prime}$ with $y^{\prime}=0$ near $\bigcap_{j \neq 2} \operatorname{supp} y_{j}$ and $y^{\prime \prime}=0$ near $\bigcap_{j \neq 3} \operatorname{supp} y_{j}$. Then

$$
\mathcal{E}\left(y_{1} \otimes \ldots \otimes y_{m}\right)=\mathcal{E}\left(y^{\prime} \otimes \ldots \otimes y_{m}\right)+\mathcal{E}\left(y^{\prime \prime} \otimes \ldots \otimes y_{m}\right)=0
$$

(b) Again we assume that E is m-homogeneous, and again one implication is trivial. So assume that $\mathcal{E}\left((y+1)^{\otimes m}\right)=\mathcal{E}\left(y^{\otimes m}\right)$, where $\mathcal{E}=\mathcal{E}_{m}$. Differentiating both sides in the directions y_{2}, \ldots, y_{m} and setting $y=0$ we obtain $\mathcal{E}\left(1 \otimes y_{2} \otimes \ldots \otimes y_{m}\right)=0$, whence the claim follows.

Proposition 1.3. The graded map $\widetilde{\mathfrak{E}} \ni \widetilde{E} \mapsto E \in \mathfrak{E}$ given by $E(y)=\widetilde{E}(\dot{y})$ has a graded right inverse, and its kernel is spanned by $\widetilde{E}(x)=\int_{S^{1}} x$.

We shall write $\int x$ for $\int_{S^{1}} x$.
Proof. (a) To identify the kernel, because of homogeneous expansions, it will suffice to deal with homogeneous \widetilde{E}. So assume that $\widetilde{E} \in \widetilde{\mathcal{E}}$ is homogeneous of degree m and that $\tilde{E}(\dot{y})=0$ for all $y \in L \mathbf{C}$. Its polarization $\tilde{\mathcal{E}}$ satisfies $\tilde{\mathcal{E}}\left(\dot{y}_{1} \otimes \ldots \otimes \dot{y}_{m}\right)=0$. If $m=1$, this implies that $\widetilde{E}(x)=$ const $\int x$, so from now on we assume that $m \geqslant 2$, and first we prove
by induction that $\tilde{\mathcal{E}}\left(x_{1} \otimes \ldots \otimes x_{m}\right)=$ const $\prod \int x_{j}$. Suppose that we already know this for $m-1$. Then

$$
\tilde{\mathcal{E}}\left(\dot{y} \otimes x_{2} \otimes \ldots \otimes x_{m}\right)=c(\dot{y}) \prod_{j=2}^{m} \int x_{j} .
$$

With arbitrary $x_{1} \in L^{-} \mathbf{C}$ the function $x_{1}-\int x_{1}$ is of form \dot{y}, so $x_{1}=\dot{y}+\int x_{1}$ and

$$
\begin{equation*}
\tilde{\mathcal{E}}\left(x_{1} \otimes \ldots \otimes x_{m}\right)=l\left(x_{1}\right) \prod_{j=2}^{m} \int x_{j}+\tilde{\mathcal{E}}\left(1 \otimes x_{2} \otimes \ldots \otimes x_{m}\right) \int x_{1} \tag{1.5}
\end{equation*}
$$

where $l\left(x_{1}\right)=c\left(x_{1}-\int x_{1}\right)$ is linear in x_{1}. If $\int x_{1}=0$ and $\operatorname{supp} x_{1} \neq S^{1}$, then we can choose x_{2}, \ldots so that $\bigcap_{j=1}^{m} \operatorname{supp} x_{j}=\varnothing$ but $\int x_{j} \neq 0, j \geqslant 2$. This makes the left-hand side of (1.5) vanish by Lemma $1.2(\mathrm{a})$, and gives $l\left(x_{1}\right)=0$. Since any $x_{1} \in L^{-} \mathbf{C}$ with $\int x_{1}=0$ can be written $x_{1}=x^{\prime}+x^{\prime \prime}$ with $\int x^{\prime}=\int x^{\prime \prime}=0$ and $\operatorname{supp} x^{\prime}, \operatorname{supp} x^{\prime \prime} \neq S^{1}$, it follows that $l\left(x_{1}\right)=0$ whenever $\int x_{1}=0$. Hence $l\left(x_{1}\right)=$ const $\int x_{1}$. In particular, the first term on the right of (1.5) is symmetric in x_{j}. Therefore the second term must be symmetric too, which implies that this term is const $\prod_{j=1}^{m} \int x_{j}$. Thus $\widetilde{E}(x)=\operatorname{const}\left(\int x\right)^{m}$.

Yet for $m \geqslant 2, \widetilde{E}(x)=\mathrm{const}\left(\int x\right)^{m}$ is additive only if it is identically zero; so indeed $\widetilde{E}(x)=$ const $\int x$, as claimed.
(b) To construct the right inverse, consider $E \in \mathfrak{E}$ with homogeneous expansion (1.1). We shall construct m-homogeneous polynomials $\widetilde{E}_{m} \in \widetilde{\mathcal{E}}$ such that $E_{m}(y)=\widetilde{E}_{m}(\dot{y})$. Define $\widetilde{E}_{1}(x)=E_{1}(y)$, where y is chosen so that $\dot{y}=x-\int x$. Now assume $m \geqslant 2$. Let us say that an n-tuple of functions $\varrho_{\nu}: S^{1} \rightarrow \mathbf{C}$ is centered if $\bigcap_{\nu=1}^{n} \operatorname{supp} \varrho_{\nu} \neq \varnothing$. We start by fixing a C^{∞} partition of unity $\sum_{\varrho \in P} \varrho=1$ on S^{1} such that each supp ϱ is an arc of length less than $\frac{1}{4}$. This implies that $\bigcup_{\nu=1}^{n} \operatorname{supp} \varrho_{\nu}$ is an arc of length less than $\frac{1}{2}$ if $\varrho_{1}, \ldots, \varrho_{n} \in P$ are centered. Given $x \in L^{-} \mathbf{C}$, for each centered $R=\left(\varrho_{1}, \ldots, \varrho_{n}\right)$ in P construct $y_{R} \in L \mathbf{C}$ so that $\dot{y}_{R}=x$ on a neighborhood of $\bigcup_{\nu=1}^{n} \operatorname{supp} \varrho_{\nu}$, making sure that $y_{R}=y_{Q}$ if Q and R agree as sets. For noncentered n-tuples R in P let $y_{R} \in L \mathbf{C}$ be arbitrary. We shall refer to the y_{R} as local integrals.

If Q and R are centered tuples in P then

$$
\begin{equation*}
y_{Q}-y_{R}=c_{Q R}=\text { const } \quad \text { on }\left(\bigcup_{\varrho \in Q} \operatorname{supp} \varrho\right) \cap\left(\bigcup_{\varrho \in R} \operatorname{supp} \varrho\right) . \tag{1.6}
\end{equation*}
$$

When the intersection in (1.6) is empty, or one of Q and R is noncentered, fix $c_{Q R} \in \mathbf{C}$ arbitrarily. Define

$$
\begin{equation*}
v_{Q R}=m \int_{0}^{c_{Q R}}\left(y_{R}+\tau\right)^{\otimes(m-1)} d \tau \in(L \mathbf{C})^{\otimes(m-1)} \tag{1.7}
\end{equation*}
$$

and with the polarization \mathcal{E}_{m} of E_{m} from (1.2) consider

$$
\begin{equation*}
\mathcal{E}_{m}\left(\sum_{R=\left(\varrho_{1}, \ldots, \varrho_{m}\right)}\left(\varrho_{1} \otimes \ldots \otimes \varrho_{m}\right)\left(y_{R}^{\otimes m}+1 \otimes \sum_{S=\left(\sigma_{2}, \ldots, \sigma_{m}\right)}\left(\sigma_{2} \otimes \ldots \otimes \sigma_{m}\right) v_{S R}\right)\right) ; \tag{1.8}
\end{equation*}
$$

we sum over all m-tuples R and ($m-1$)-tuples S in P. (We will not need it, but here is an explanation of (1.8). Say that tensors $w, w^{\prime} \in L^{(-)} \mathbf{C}^{\otimes m}$ are congruent, $w \equiv w^{\prime}$, if $w-w^{\prime}$ is the sum of a degenerate tensor and of monomials $x_{1} \otimes \ldots \otimes x_{m}$ with $\bigcap_{j} \operatorname{supp} x_{j}=\varnothing$. Denote by ∂^{m} the linear map $(L \mathbf{C})^{\otimes m} \rightarrow\left(L^{-} \mathbf{C}\right)^{\otimes m}$ defined by $\partial^{m}\left(y_{1} \otimes \ldots \otimes y_{m}\right)=\dot{y}_{1} \otimes \ldots \otimes \dot{y}_{m}$. Then the symmetrization of the argument of \mathcal{E}_{m} in (1.8) is a solution w of the congruence $\partial^{m} w \equiv x^{\otimes m}$, in fact it is the unique symmetric solution, up to congruence. It follows that for the \widetilde{E}_{m} sought, $\widetilde{E}_{m}(x)$ must be equal to $\mathcal{E}_{m}(w)$, which, in turn, equals (1.8).)

We claim that the value in (1.8) depends only on x (and \mathcal{E}_{m}), but not on the partition of unity P and the local integrals y_{R}. Indeed, suppose first that the local integrals y_{R} are changed to \hat{y}_{R}, so that the $c_{Q R}$ change to $\hat{c}_{Q R}$ and $v_{Q R}$ to $\hat{v}_{Q R}$; but we do not change P. There are $c_{R} \in \mathbf{C}$ such that for all centered R,

$$
\hat{y}_{R}=y_{R}+c_{R} \quad \text { on } \bigcup_{\varrho \in R} \operatorname{supp} \varrho .
$$

Let

$$
\begin{equation*}
u_{R}=m \int_{0}^{c_{R}}\left(y_{R}+\tau\right)^{\otimes(m-1)} d \tau \tag{1.9}
\end{equation*}
$$

Clearly $\hat{c}_{Q R}=c_{Q R}+c_{Q}-c_{R}$ if $Q \cup R$ is centered. In this case one computes also

$$
\begin{align*}
\frac{1}{m} \hat{v}_{Q R}= & \int_{0}^{\hat{c}_{Q R}}\left(\hat{y}_{R}+\tau\right)^{\otimes(m-1)} d \tau \\
= & \int_{0}^{c_{Q R}}\left(\hat{y}_{R}-c_{R}+\tau\right)^{\otimes(m-1)} d \tau-\int_{0}^{c_{R}}\left(\hat{y}_{R}-c_{R}+\tau\right)^{\otimes(m-1)} d \tau \tag{1.10}\\
& +\int_{0}^{c_{Q}}\left(\hat{y}_{R}-c_{R}+c_{Q R}+\tau\right)^{\otimes(m-1)} d \tau
\end{align*}
$$

Because of Lemma 1.2 (a), in (1.8) only centered R, and such S that $R \cup S$ is centered, will contribute. When $y_{R}^{\otimes m}$ is changed to $\hat{y}_{R}^{\otimes m}$, the corresponding contributions change by

$$
\begin{aligned}
& \sum_{R} \mathcal{E}_{m}\left(\int_{0}^{c_{R}}\left(\varrho_{1} \otimes \ldots \otimes \varrho_{m}\right) \frac{d}{d \tau}\left(y_{R}+\tau\right)^{\otimes m} d t\right) \\
&=\sum_{R} \mathcal{E}_{m}\left(\int_{0}^{c_{R}}\left(\varrho_{1} \otimes \ldots \otimes \varrho_{m}\right)\left(m \otimes\left(y_{R}+\tau\right)^{\otimes(m-1)}\right) d \tau\right) \\
&=\sum_{R} \mathcal{E}_{m}\left(\left(\varrho_{1} \otimes \ldots \otimes \varrho_{m}\right)\left(1 \otimes u_{R}\right)\right)
\end{aligned}
$$

When $v_{Q R}$ is changed to $\hat{v}_{Q R}$, in view of (1.10), (1.6) and (1.9), the contribution of the terms in the double sum in (1.8) changes by

$$
\begin{gathered}
\mathcal{E}_{m}\left(\left(m \varrho_{1} \otimes \varrho_{2} \sigma_{2} \otimes \ldots \otimes \varrho_{m} \sigma_{m}\right)\left(\int_{0}^{c_{S}}\left(y_{S}+\tau\right)^{\otimes(m-1)} d \tau-\int_{0}^{c_{R}}\left(y_{R}+\tau\right)^{\otimes(m-1)} d \tau\right)\right) \\
=\mathcal{E}_{m}\left(\left(\varrho_{1} \otimes \varrho_{2} \sigma_{2} \otimes \ldots \otimes \varrho_{m} \sigma_{m}\right)\left(1 \otimes u_{S}-1 \otimes u_{R}\right)\right)
\end{gathered}
$$

The net change in (1.8) is therefore

$$
\mathcal{E}_{m}\left(\sum_{R, S}\left(\varrho_{1} \otimes \varrho_{2} \sigma_{2} \otimes \ldots \otimes \varrho_{m} \sigma_{m}\right)\left(1 \otimes u_{S}\right)\right)=\mathcal{E}_{m}\left(\sum_{S}\left(1 \otimes \sigma_{2} \otimes \ldots \otimes \sigma_{m}\right)\left(1 \otimes u_{S}\right)\right)=0
$$

by Lemma 1.2 (b), as needed.
Now to pass from P to another partition of unity P^{\prime}, introduce

$$
\Pi=\left\{\varrho \varrho^{\prime}: \varrho \in P \text { and } \varrho^{\prime} \in P^{\prime}\right\}
$$

One easily shows that P and Π give rise to the same value in (1.8), hence so do P and P^{\prime}. Therefore (1.8) indeed depends only on x, and we define $\widetilde{E}_{m}(x)$ to be this value. We proceed to check that \widetilde{E}_{m} has the required properties.

If $x=\dot{y}$ then all y_{R} can be chosen as y, and (1.8) gives $\widetilde{E}_{m}(\dot{y})=E_{m}(y)$. Next suppose that $x^{\prime}, x^{\prime \prime} \in L^{-} \mathbf{C}$ have disjoint supports, and $x=x^{\prime}+x^{\prime \prime}$. If the supports of all $\varrho \in P$ are sufficiently small, then the local integrals y_{R}^{\prime} and $y_{R}^{\prime \prime}$ of x^{\prime} and $x^{\prime \prime}$, respectively, can be chosen so that for each R one of them is 0 . Hence the local integrals $y_{R}=y_{R}^{\prime}+y_{R}^{\prime \prime}$ of x will satisfy $y_{R}^{\otimes m}=y_{R}^{\prime \otimes m}+y_{R}^{\prime \prime \otimes m}$, whence $\widetilde{E}_{m}(x)=\widetilde{E}_{m}\left(x^{\prime}\right)+\widetilde{E}_{m}\left(x^{\prime \prime}\right)$ follows.

To show that $\sum_{m=1}^{\infty} \widetilde{E}_{m}$ is convergent and represents a holomorphic function, note that $\widetilde{E}_{m}(x)$ is the sum of terms

$$
\begin{gather*}
\mathcal{E}_{m}\left(\varrho_{1} y_{R} \otimes \ldots \otimes \varrho_{m} y_{R}\right) \\
\int_{0}^{1} \mathcal{E}_{m}\left(\varrho_{1} c_{S R} \otimes \varrho_{2} \sigma_{2}\left(y_{R}+c_{S R} \tau\right) \otimes \ldots \otimes \varrho_{m} \sigma_{m}\left(y_{R}+c_{S R} \tau\right)\right) d \tau \tag{1.11}
\end{gather*}
$$

(we have substituted $c_{Q R} \tau$ for τ in (1.7)). Since $y_{R} \in L \mathbf{C}$ and $c_{Q R} \in \mathbf{C}$ can be chosen to depend on x in a continuous linear way, each \widetilde{E}_{m} is a homogeneous polynomial of degree m. Furthermore, let $K \subset L^{-} \mathbf{C}$ be compact. For each $x \in K, m \in \mathbf{N}$ and m-tuples Q and R in P, we can choose y_{R} and $c_{Q R}$ so that all the functions

$$
\varrho c_{Q R} \quad \text { and } \quad \varrho \varrho^{\prime}\left(y_{R}+c_{Q R} \tau\right)
$$

$\varrho, \varrho^{\prime} \in P, 0 \leqslant \tau \leqslant 1$, belong to some compact $H \subset L \mathbf{C}$. By passing to the balanced hull, it can be assumed that H is balanced. If $\lambda>0$, (1.1) implies

$$
\max _{H}\left|E_{m}\right|=\lambda^{-m} \max _{\lambda H}\left|E_{m}\right| \leqslant \lambda^{-m} \max _{\lambda H}|E|=A \lambda^{-m}
$$

so that by (1.2),

$$
\left|\mathcal{E}_{m}\left(z_{1} \otimes \ldots \otimes z_{m}\right)\right| \leqslant A \frac{m^{m}}{m!} \lambda^{-m} \leqslant A\left(\frac{e}{\lambda}\right)^{m}
$$

if each $z_{\mu} \in H$. Thus each term in (1.11) satisfies this estimate. If $|P|$ denotes the cardinality of P, we obtain, in view of (1.8),

$$
\max _{K}\left|\widetilde{E}_{m}\right| \leqslant\left(|P|^{m}+m|P|^{2 m-1}\right) A\left(\frac{e}{\lambda}\right)^{m} .
$$

Choosing $|\lambda|>e|P|^{2}$ we conclude that $\sum_{m=1}^{\infty} \widetilde{E}_{m}$ uniformly converges on K, and, K being arbitrary, $\widetilde{E}=\sum_{m=1}^{\infty} \widetilde{E}_{m}$ is holomorphic. By what we have already proved for $\widetilde{E}_{m}, \widetilde{E} \in \widetilde{E}$ and $\widetilde{E}(\dot{y})=E(y)$. The above estimates also show that the map $E \mapsto \widetilde{E}$ is continuous and linear, which completes the proof of Proposition 1.3.

Now consider an $F \in \mathcal{O}\left(\mathbf{C} \times L^{(-)} \mathbf{C}\right)$ and its posthomogeneous expansion

$$
\begin{equation*}
F=\sum_{m=0}^{\infty} F_{m}, \quad F_{m}(\zeta, y)=\int_{0}^{1} F\left(\zeta, e^{2 \pi i \tau} y\right) e^{-2 m \pi i \tau} d \tau \tag{1.12}
\end{equation*}
$$

Proposition 1.4. The function F satisfies condition (1) of the introduction if and only if each F_{m} is a polynomial in ζ, of degree $\leqslant 2 m-2$ (in particular, $F_{0}=0$).

Proof. As F satisfies (1) precisely when each F_{m} does, the statement is obvious.
Proof of Theorem 1.1. Apply Proposition 1.3 on each slice $\{\zeta\} \times L^{(-)} \mathbf{C}$. Accordingly, an \widetilde{F} in the kernel is posthomogeneous of degree 1, hence, by Proposition 1.4, independent of ζ. Thus indeed $\widetilde{F}(\zeta, x)=$ const $\int x$. Further, the slicewise right inverse applied to $F \in \mathcal{F}$ produces an additive \widetilde{F}, which will be holomorphic on $\mathbf{C} \times L \mathbf{C}$, since the map $E \mapsto \widetilde{E}$ is continuous and linear. To see that \widetilde{F} also verifies condition (1) of the introduction, expand F in a posthomogeneous series

$$
\begin{equation*}
F(\zeta, y)=\sum_{m=1}^{\infty} F_{m}(\zeta, y)=\sum_{m=1}^{\infty} \sum_{\nu=0}^{2 m-2} \zeta^{\nu} E_{m \nu}(y) \tag{1.13}
\end{equation*}
$$

by Proposition 1.4, so that

$$
\widetilde{F}(\zeta, x)=\sum_{m=1}^{\infty} \sum_{\nu=0}^{2 m-2} \zeta^{\nu} \widetilde{E}_{m \nu}(x)
$$

with $\widetilde{E}_{m \nu}{ }_{\sim}^{m}$-homogeneous. Again by Proposition $1.4, \widetilde{F}$ satisfies condition (1), and so belongs to $\widetilde{\mathfrak{F}}$.

Theorem 1.1 can be used effectively to describe elements of the space \mathfrak{F}. With ulterior motives we switch notation $m=n+1$, and consider a homogeneous polynomial
$\widetilde{E} \in \mathcal{O}\left(L^{-} \mathbf{C}\right)$ of degree $n+1 \geqslant 1$. Its polarization \mathcal{E} defines a distribution D on the torus $\left(S^{1}\right)^{n+1}=T$. Indeed, denote the coordinates on T by $t_{j} \in \mathbf{R} / \mathbf{Z}$ and set

$$
\begin{equation*}
\left\langle D, \prod_{j=0}^{n} e^{2 \pi i \nu_{j} t_{j}}\right\rangle=\mathcal{E}\left(x_{0} \otimes \ldots \otimes x_{n}\right), \quad x_{j}(\tau)=e^{2 \pi i \nu_{j} \tau}, \nu_{j} \in \mathbf{Z} \tag{1.14}
\end{equation*}
$$

Since \widetilde{E} is continuous,

$$
\left|\mathcal{E}\left(x_{0} \otimes \ldots \otimes x_{n}\right)\right| \leqslant c \prod_{j=0}^{n}\left\|x_{j}\right\|_{C^{q}\left(S^{1}\right)} \quad \text { with some } c>0 \text { and } q \in \mathbf{N} .
$$

Hence (1.14) can be estimated, in absolute value, by $c^{\prime} \prod_{j=0}^{n}\left(1+\left|\nu_{j}\right|\right)^{q}$, and it follows by Fourier expansion that D extends to a unique linear form on $C^{\infty}(T)$. Clearly, D is symmetric, i.e., invariant under permutation of the factors S^{1} of T. Also,

$$
\begin{equation*}
\mathcal{E}\left(x_{0} \otimes \ldots \otimes x_{n}\right)=\left\langle D, x_{0} \otimes \ldots \otimes x_{n}\right\rangle \tag{1.15}
\end{equation*}
$$

if on the right $x_{0} \otimes \ldots \otimes x_{n}$ is identified with the function $\prod_{j=0}^{n} x_{j}\left(t_{j}\right)$.
Assume now that $\widetilde{E} \in \widetilde{\mathfrak{E}}$. Lemma 1.2 (a) implies that D is supported on the diagonal of T. The form of distributions supported on submanifolds is in general well understood; in the case at hand, e.g. [Нӧ, Theorem 2.3.5], gives that D is a finite sum of distributions of form

$$
C^{\infty}(T) \ni \varrho \longmapsto\left\langle\Psi,\left.\frac{\partial^{\alpha_{1}+\ldots+\alpha_{n}} \varrho}{\partial t_{1}^{\alpha_{1}} \ldots \partial t_{n}^{\alpha_{n}}}\right|_{\text {diag }}\right\rangle, \quad \alpha_{j} \geqslant 0
$$

where Ψ is a distribution on the diagonal of T. In view of Theorem 1.1 and (1.12)-(1.13) we have therefore proved the following result:

Theorem 1.5. The restriction of an ($n+1$)-posthomogeneous $F \in \mathfrak{F}$ (resp. $\widetilde{\mathfrak{F}}$) to $\mathbf{C} \times C^{\infty}\left(S^{1}\right)$ is a finite sum of functions of form

$$
f(\zeta, y)=\zeta^{\nu}\left\langle\Phi, \prod_{j=0}^{n} y^{\left(d_{j}\right)}\right\rangle, \quad \nu \leqslant 2 n, d_{j} \geqslant d_{0}=1(\text { resp. } 0)
$$

where Φ is a distribution on S^{1}. For a general $F \in \mathfrak{F}$ (resp. $\widetilde{\mathfrak{F}}$) the restriction $\left.F\right|_{\mathbf{C} \times C^{\infty}\left(S^{1}\right)}$ is the limit, in the topology of $\mathcal{O}\left(\mathbf{C} \times C^{\infty}\left(S^{1}\right)\right)$, of finite sums of the above functions.

2. The G-action on \mathfrak{F}

For $g \in G$ let $J_{g}(\zeta)=d(g \zeta) / d \zeta$. By considering the posthomogeneous expansion (1.12)(1.13) of $F \in \mathfrak{F}$ (resp. $\widetilde{\mathfrak{F}}$), one checks that the function $g F$ defined by

$$
\begin{equation*}
(g F)(\zeta, y)=F\left(g \zeta, y / J_{g}(\zeta)\right) J_{g}(\zeta) \tag{2.1}
\end{equation*}
$$

extends to all of $\mathbf{C} \times L^{(-)} \mathbf{C}$, and the extension (also denoted $g F$) belongs to \mathfrak{F} (resp. $\widetilde{\mathfrak{F}}$). The action thus defined makes \mathfrak{F} and $\widetilde{\mathfrak{F}}$ holomorphic G-modules. The nth isotypical subspace \mathfrak{F}^{n} (resp. $\widetilde{\mathfrak{F}}^{n}$) is the subspace of $(n+1)$-posthomogeneous functions. In this section we shall describe the space \mathfrak{F}^{0}, and, for $W^{1, p}$ loop spaces, the spaces \mathfrak{F}^{n} as well, $n \geqslant 1$.

Theorem 2.1. $\mathfrak{F}^{0} \approx\left(L^{-} \mathbf{C}\right)^{*} / \mathbf{C}$, the dual endowed with the compact-open topology. If $L^{-} \mathbf{C}$ is interpreted as the space of one-forms on S^{1} of the corresponding regularity, then the isomorphism is Diff S^{1}-equivariant.

Proof. Indeed, the map $\left(L^{-} \mathbf{C}\right)^{*}=\widetilde{\mathfrak{F}}^{0} \rightarrow \mathfrak{F}^{0}$ associating with $\Phi \in\left(L^{-} \mathbf{C}\right)^{*}$ the function $F(y)=\langle\Phi, \dot{y}\rangle($ or $\langle\Phi, d y\rangle)$ has one-dimensional kernel and a right inverse by Theorem 1.1.

Theorem 2.2. In the case of $W^{1, p}$ loop spaces, $\mathfrak{F}=\bigoplus_{n=0}^{p-1} \mathfrak{F}^{n}$. Furthermore,

$$
\mathfrak{K}_{n} \otimes L^{p /(n+1)}\left(S^{1}\right)^{*} \approx \mathfrak{F}^{n}, \quad 1 \leqslant n \leqslant p-1
$$

as G-modules, G acting on $L^{p /(n+1)}\left(S^{1}\right)^{*}$ trivially. Indeed, the map $\varphi \otimes \Phi \mapsto F$ given by

$$
\begin{equation*}
F(\zeta, y)=\psi(\zeta)\left\langle\Phi, \dot{y}^{n+1}\right\rangle, \quad \varphi(\zeta)=\psi(\zeta)(d \zeta)^{-n} \tag{2.2}
\end{equation*}
$$

induces the isomorphism above. (To achieve Diff S^{1}-equivariant isomorphism, replace $L^{p /(n+1)}\left(S^{1}\right)$ by the space $L_{n+1}^{p /(n+1)}\left(S^{1}\right)$ of $(n+1)$-differentials.)

We shall need a few auxiliary results to prove the theorem.
Lemma 2.3. Let $m \geqslant 2$ be an integer and Ψ a distribution on S^{1}. If the function

$$
\begin{equation*}
C^{\infty}\left(S^{1}\right) \ni x \longmapsto\left\langle\Psi, x^{m}\right\rangle \in \mathbf{C} \tag{2.3}
\end{equation*}
$$

extends to a homogeneous polynomial E on $L^{p}\left(S^{1}\right)$, then $\Psi \equiv 0$, or $m \leqslant p$ and Ψ extends to a form Φ on $L^{p / m}\left(S^{1}\right)$. In the latter case the map $E \mapsto \Phi$ is continuous and linear.

Proof. There is a constant C such that

$$
\begin{equation*}
\left|\left\langle\Psi, x^{m}\right\rangle\right|=|E(x)| \leqslant C\left(\int|x|^{p}\right)^{m / p}, \quad x \in C^{\infty}\left(S^{1}\right) \tag{2.4}
\end{equation*}
$$

Let $z \in C^{\infty}\left(S^{1}\right)$ be real-valued and $x_{\varepsilon}=(z+i \varepsilon)^{1 / m} \in C^{\infty}\left(S^{1}\right)$. By (2.4),

$$
|\langle\Psi, z\rangle|=\lim _{\varepsilon \rightarrow 0}\left|\left\langle\Psi, x_{\varepsilon}^{m}\right\rangle\right| \leqslant C\left(\int|z|^{p / m}\right)^{m / p}
$$

As the same estimate holds for imaginary z, it will hold for a general $z \in C^{\infty}\left(S^{1}\right)$ too, perhaps with a different C. Therefore Ψ extends to a form Φ on $L^{p / m}\left(S^{1}\right)$. Unless $p \geqslant m$, $\Phi=0$ by Day's theorem [D]. With $z \in L^{p / m}\left(S^{1}\right)$, any choice of measurable m th root $z^{1 / m}$, and $y_{\varepsilon} \in C^{\infty}\left(S^{1}\right)$ converging to $z^{1 / m}$ in L^{p},

$$
\langle\Phi, z\rangle=\lim _{\varepsilon \rightarrow 0}\left\langle\Phi, y_{\varepsilon}^{m}\right\rangle=\lim _{\varepsilon \rightarrow 0} E\left(y_{\varepsilon}\right)=E\left(z^{1 / m}\right)
$$

This shows that Φ is uniquely determined by E, and depends continuously and linearly on E.

In the rest of this section we work with $W^{1, p}$ loop spaces. Write $\mathfrak{E}^{n} \subset \mathfrak{E}$ and $\widetilde{\mathfrak{E}}^{n} \subset \widetilde{\mathfrak{E}}$ for the space of $(n+1)$-homogeneous functions.

Lemma 2.4. If $m \geqslant 2$ and $E \in \widetilde{\mathfrak{E}}^{m-1} \subset \mathcal{O}\left(L^{p}\left(S^{1}\right)\right)$, then $E(x)=\left\langle\Phi, x^{m}\right\rangle$ with a unique $\Phi \in L^{p / m}\left(S^{1}\right)^{*}$. In particular, $E=0$ if $m>p$. Also, the map $E \mapsto \Phi$ is an isomorphism between $\widetilde{\mathfrak{E}}^{m-1}$ and $L^{p / m}\left(S^{1}\right)^{*}$.

Proof. We shall prove this by induction, first assuming $m=2$. By Theorem 1.5 there are distributions Φ_{α} so that

$$
E(x)=\sum_{\alpha=0}^{d}\left\langle\Phi_{\alpha}, x x^{(\alpha)}\right\rangle, \quad x \in C^{\infty}\left(S^{1}\right)
$$

Now any $x^{(\alpha)} x^{(\beta)}$ will be a linear combination of expressions $\left(x^{(j)} x^{(j)}\right)^{(h)}$, as one easily proves by induction on $|\alpha-\beta|$. It follows that E can be written with distributions Ψ_{j} as

$$
\begin{equation*}
E(x)=\sum_{j=0}^{d}\left\langle\Psi_{j},\left(x^{(j)}\right)^{2}\right\rangle, \quad x \in C^{\infty}\left(S^{1}\right) \tag{2.5}
\end{equation*}
$$

Next we show that $d=0$.
Indeed, assuming $d>0$, for fixed $x \in C^{\infty}\left(S^{1}\right)$,

$$
\begin{equation*}
E(\cos \lambda x)+E(\sin \lambda x)=\lambda^{2 d}\left\langle\Psi_{d}, \dot{x}^{2 d}\right\rangle+\sum_{j=0}^{2 d--1} c_{j}(x) \lambda^{j} \tag{2.6}
\end{equation*}
$$

is a polynomial in λ. For fixed $\lambda \in \mathbf{C}$ the maps $x \mapsto \cos \lambda x$ and $x \mapsto \sin \lambda x$ map the Banach algebra $W^{1,1}\left(S^{1}\right)$ holomorphically into itself, hence into $L^{p}\left(S^{1}\right)$. Therefore the lefthand side of (2.6) extends to $W^{1,1}\left(S^{1}\right)$, and consequently $\left\langle\Psi_{d}, \dot{x}^{2 d}\right\rangle$ also extends. The extension of the latter will be an additive, $2 d$-homogeneous polynomial E^{\prime} on $W^{1,1}\left(S^{1}\right)$, satisfying $E^{\prime}(x+$ const $)=E^{\prime}(x)$. By Proposition 1.3 there is therefore a unique additive
$2 d$-homogeneous polynomial \tilde{E} on $W^{0,1}\left(S^{1}\right)=L^{1}\left(S^{1}\right)$ such that $E^{\prime}(x)=\widetilde{E}(\dot{x})$. Since the restriction $\left.\widetilde{E}\right|_{C^{\infty}\left(S^{1}\right)}$ is also unique,

$$
\widetilde{E}(x)=\left\langle\Psi_{d}, x^{2 d}\right\rangle, \quad x \in C^{\infty}\left(S^{1}\right)
$$

In particular, the expression on the right continuously extends to $L^{1}\left(S^{1}\right)$. By virtue of Lemma 2.3, $\Psi_{d} \equiv 0$. Thus (2.5) reduces to $E(x)=\left\langle\Psi, x^{2}\right\rangle, x \in C^{\infty}\left(S^{1}\right)$, and by another application of Lemma 2.3, Ψ extends to a form Φ on $L^{p / 2}\left(S^{1}\right)$.

Now assume that the lemma is known for degree $m-1 \geqslant 2$, and consider an $E \in \widetilde{\mathfrak{E}}^{m-1}$, together with its polarization \mathcal{E}. For fixed $x_{1} \in C^{\infty}\left(S^{1}\right)$ the inductive assumption implies that there is a distribution Θ such that $\mathcal{E}\left(x_{1} \otimes \ldots \otimes x_{m}\right)=\left\langle\Theta, \prod_{j=2}^{m} x_{j}\right\rangle$; in particular,

$$
\mathcal{E}\left(x_{1} \otimes \ldots \otimes x_{m}\right)=\mathcal{E}\left(x_{1} \otimes \prod_{j=2}^{m} x_{j} \otimes 1 \otimes \ldots \otimes 1\right), \quad x \in C^{\infty}\left(S^{1}\right)
$$

The case $m=2$ now gives a distribution Ψ such that $\mathcal{E}\left(x_{1} \otimes \ldots \otimes x_{m}\right)=\left\langle\Psi, \prod_{j=1}^{m} x_{j}\right\rangle$. We conclude by Lemma 2.3: Ψ extends to $\Phi \in L^{p / m}\left(S^{1}\right)^{*}$, and $\Phi=0$ unless $m \leqslant p$. It is clear that Φ is uniquely determined by E, and the map $\widetilde{\mathfrak{E}}^{m-1} \ni E \mapsto \Phi \in L^{p / m}\left(S^{1}\right)^{*}$ is an isomorphism.

Proof of Theorem 2.2. To construct the inverse of the map defined by (2.2), write an arbitrary $F \in \mathfrak{F}^{n}, n \geqslant 1$, as

$$
F(\zeta, y)=\sum_{\nu=0}^{2 n} \zeta^{\nu} E_{\nu}(y), \quad E_{\nu} \in \mathfrak{E}^{n}
$$

cf. Proposition 1.4, and find the unique $\widetilde{E}_{\nu} \in \widetilde{\mathfrak{E}}^{n}$ so that $E_{\nu}(y)=\widetilde{E}_{\nu}(\dot{y})$, see Proposition 1.3. By Lemma 2.4 there are unique $\Phi_{\nu} \in L^{p /(n+1)}\left(S^{1}\right)^{*}$ such that $\widetilde{E}_{\nu}(x)=\left\langle\Phi_{\nu}, x^{n+1}\right\rangle$. If $p<n+1$ then $\Phi_{\nu}=0$, and so $\mathfrak{F}^{n}=(0)$. Otherwise the map

$$
\mathfrak{F}^{n} \ni F \longmapsto \sum_{\nu=0}^{2 n} \zeta^{\nu}(d \zeta)^{-n} \otimes \Phi_{\nu} \in \mathfrak{K}_{n} \otimes L^{p /(n+1)}\left(S^{1}\right)^{*}
$$

is the inverse of the map given in (2.2), so (2.2) indeed induces an isomorphism. Finally, the posthomogeneous expansion of an arbitrary $F \in \mathcal{F}$ is

$$
F=\sum_{n=0}^{\infty} F_{n}=\sum_{n=0}^{[p-1]} F_{n}
$$

which completes the proof.

3. Cuspidal cocycles

In this section we shall construct an isomorphism between $H^{0,1}\left(L \mathbf{P}_{1}\right)$ and a space of holomorphic Čech cocycles on $L \mathbf{P}_{1}$. We represent \mathbf{P}_{1} as $\mathbf{C} \cup\{\infty\}$. Constant loops constitute a submanifold of $L \mathbf{P}_{1}$, which we identify with \mathbf{P}_{1}. If $a, b, \ldots \in \mathbf{P}_{1}$, set $U_{a b \ldots}=\mathbf{P}_{1} \backslash\{a, b, \ldots\}$. Thus $L U_{a}, a \in \mathbf{P}_{1}$, form an open cover of $L \mathbf{P}_{1}$, with $L U_{\infty}=L \mathbf{C}$ a Fréchet algebra. If $g \in G$ then $g\left(L U_{a}\right)=L U_{g a}$.

Suppose that we are given $v: \mathbf{P}_{1} \rightarrow \mathbf{C}$, finitely many $a, b, \ldots \in \mathbf{P}_{1}$ and a function $u: L U_{a b \ldots} \rightarrow \mathbf{C}$. If ∞ is among a, b, \ldots, let us say that u is v-cuspidal at ∞ if $u(x+\lambda) \rightarrow v(\infty)$ as $\mathbf{C} \ni \lambda \rightarrow \infty$, for all $x \in L U_{a b \ldots}$; and in general, that u is v-cuspidal if $g^{*} u$ is $g^{*} v$-cuspidal at ∞ for all $g \in G$ that maps ∞ to one of a, b, \ldots. When $v \equiv 0$, we simply speak of cuspidal functions.

Proposition 3.1. Given a closed $f \in C_{0,1}^{\infty}\left(L \mathbf{P}_{1}\right)$ and $v \in C^{\infty}\left(\mathbf{P}_{1}\right)$ such that $\bar{\partial} v=$ $\left.f\right|_{\mathbf{P}_{1}}$, for each $a \in \mathbf{P}_{1}$ there is a unique v-cuspidal $u_{a} \in C^{\infty}\left(L U_{a}\right)$ that solves $\bar{\partial} u_{a}=\left.f\right|_{L U_{a}}$. Furthermore, $\left.u_{a}\right|_{U_{a}}=\left.v\right|_{U_{a}}$, and $u(a, x)=u_{a}(x)$ is smooth in (a, x) and holomorphic in a.

Proof. Uniqueness follows since for fixed $g \in G$ and $y \in L \mathbf{C}$, on the line $\{g(y+\lambda)$: $\left.\lambda \in \mathbf{P}_{1}\right\}$ the $\bar{\partial}$-equation is uniquely solvable up to an additive constant, which constant is determined by the cuspidal condition. To construct u_{a}, fix a $g \in G$ with $g \infty=a$, let

$$
Y=\{y \in L \mathbf{C}: y(0)=0\}
$$

and

$$
P_{g}: \mathbf{P}_{1} \times Y \ni(\lambda, y) \longmapsto g(y+\lambda) \in L \mathbf{P}_{1}
$$

a biholomorphism between $\mathbf{C} \times Y$ and $L U_{a}$. Setting $f_{g}=P_{g}^{*} f$, by [L1, Theorem 5.4] on the \mathbf{P}_{1}-bundle $\mathbf{P}_{1} \times Y$ the equation $\bar{\partial} u_{g}=f_{g}$ has a unique smooth solution satisfying $u_{g}(\infty, x)=v(a)$. It follows that $u_{a}=\left(P_{g}^{-1}\right)^{*}\left(\left.u_{g}\right|_{\mathbf{C} \times Y}\right)$ solves $\bar{\partial} u_{a}=\left.f\right|_{L U_{a}}$. Also, $g^{*} u_{a}$ is $g^{*} v$-cuspidal at ∞. On U_{a} both u_{a} and v solve the same $\bar{\partial}$-equation, and have the same limit at a; hence $\left.u_{a}\right|_{U_{a}}=\left.v\right|_{U_{a}}$.

One can also consider

$$
P: \mathbf{P}_{1} \times G \times Y \ni(\lambda, g, y) \longmapsto g(y+\lambda) \in L \mathbf{P}_{1}
$$

and $f^{\prime}=P^{*} f$. Again by [L1, Theorem 5.4], on the \mathbf{P}_{1}-bundle $\mathbf{P}_{1} \times G \times Y$ the equation $\bar{\partial} u^{\prime}=f^{\prime}$ has a smooth solution satisfying $u^{\prime}(\infty, g, x)=v(g \infty)$. Uniqueness of u_{g} implies $u^{\prime}(\lambda, g, x)=u_{g}(\lambda, x)$, whence $u_{g}(\lambda, x)$ depends smoothly on (λ, g, x), and $u_{a}(x)$ on (a, x). Furthermore, u^{\prime} is holomorphic on $P^{-1}(x)$ for any x. In particular, if $g \in G$ with $g \infty=a$ is chosen to depend holomorphically on a (which can be done locally), then it follows that $u_{a}(x)=u^{\prime}\left(g^{-1} x(0), g, g^{-1} x-g^{-1} x(0)\right)$ is holomorphic in a.

Since f determines v up to an additive constant, we can uniquely associate with f the Čech cocycle $\mathfrak{f}=\left(u_{a}-u_{b}: a, b \in \mathbf{P}_{1}\right)$. The components of \mathfrak{f} are cuspidal holomorphic functions on $L U_{a b}$. One easily verifies:

Proposition 3.2. The form f is exact if and only if $\mathfrak{f}=0$. Hence \mathfrak{f} depends only on the cohomology class $[f] \in H^{0,1}\left(L \mathbf{P}_{1}\right)$. The components $h_{a b}([f], x)$ of \mathfrak{f} depend holomorphically on $a, b \in \mathbf{P}_{1}$ and $x \in L U_{a b}$, and satisfy the transformation formula

$$
\begin{equation*}
h_{g a, g b}([f], g x)=h_{a b}\left(g^{*}[f], x\right), \quad g \in G, x \in L U_{a b} \tag{3.1}
\end{equation*}
$$

Set

$$
\Omega=\left\{(a, b, x) \in \mathbf{P}_{1} \times \mathbf{P}_{1} \times L \mathbf{P}_{1}: a, b \notin x\left(S^{1}\right)\right\}
$$

Let \mathfrak{H} denote the space of those holomorphic cocycles $\mathfrak{h}=\left(\mathfrak{h}_{a b}\right)_{a, b \in \mathbf{P}_{1}}$ of the covering $\left\{L U_{a}\right\}$ for which $\mathfrak{h}_{a b}(x)$ depends holomorphically on a, b and $x \in L U_{a b}$, and each $\mathfrak{h}_{a b}$ is cuspidal. Then $\mathfrak{H} \subset \mathcal{O}(\Omega)$, with the compact-open topology, is a complete, separated, locally convex space. The action of G on Ω induces a G-module structure on \mathfrak{H} :

$$
\begin{equation*}
\left(g^{*} \mathfrak{h}\right)_{a b}(x)=\mathfrak{h}_{g a, g b}(g x), \quad g \in G \tag{3.2}
\end{equation*}
$$

Proposition 3.2 implies that the map $[f] \mapsto \mathfrak{f}$ is a monomorphism $H^{0,1}\left(L \mathbf{P}_{1}\right) \rightarrow \mathfrak{H}$ of G modules.

Theorem 3.3. The map $[f] \mapsto f$ is an isomorphism $H^{0,1}\left(L \mathbf{P}_{1}\right) \rightarrow \mathfrak{H}$.

The proof would be routine if the loop space $L \mathbf{P}_{1}$ admitted smooth partitions of unity; but a typical loop space does not, see [K]. The proof that we offer here will work only when the loops in $L \mathbf{P}_{1}$ are of regularity $W^{1,3}$ at least, and we shall return to the case of $L_{1, p} \mathbf{P}_{1}, p<3$, in $\S 6$.

Those $g \in G$ that preserve the Fubini-Study metric form a subgroup (isomorphic to) $\mathrm{SO}(3)$. Denote the Haar probability measure on $\mathrm{SO}(3)$ by $d g$.

Lemma 3.4. Unless $L \mathbf{P}_{1}=L_{1, p} \mathbf{P}_{1}, p<3$, there is a $\chi \in C^{\infty}\left(L \mathbf{P}_{1}\right)$ such that $\chi=0$ in a neighborhood of $L \mathbf{P}_{1} \backslash L \mathbf{C}=\left\{x: \infty \in x\left(S^{1}\right)\right\}$, and $\int_{\mathrm{SO}(3)} g^{*} \chi d g=1$.

Proof. With $c_{0} \in(0, \infty)$ to be specified later, fix a nonnegative $\varrho \in C^{\infty}(\mathbf{R})$ such that $\varrho(\tau)=1$ (resp. 0) when $|\tau|<c_{0}$ (resp. $>2 c_{0}$). For $x \in L \mathbf{C}$ let

$$
\psi(x)=\varrho\left(\int_{S^{1}}\left(1+|x|^{2}\right)^{3 / 4}\right)
$$

and define $\psi(x)=0$ if $x \in L \mathbf{P}_{1} \backslash L \mathbf{C}$. We claim that ψ vanishes in a neighborhood of an arbitrary $x \in L \mathbf{P}_{1} \backslash L \mathbf{C}$. This will then also imply that $\psi \in C^{\infty}\left(L \mathbf{P}_{1}\right)$.

Indeed, suppose $x\left(t_{0}\right)=\infty$. In a neighborhood of $t_{0} \in S^{1}$ the function $z=1 / x$ is $W^{1,3}$, hence Hölder continuous with exponent $\frac{2}{3}$ by the Sobolev embedding theorem [Hö, Theorem 4.5.12]. In this neighborhood therefore $|x(t)| \geqslant c\left|t-t_{0}\right|^{-2 / 3}$ and $\int_{S^{1}}\left(1+|x|^{2}\right)^{3 / 4}=\infty$. When $y \in L \mathbf{C}$ is close to $x, \int_{S^{1}}\left(1+|y|^{2}\right)^{3 / 4}>2 c_{0}$, i.e. $\psi(y)=0$.

Next we show that for every $x \in L \mathbf{P}_{1}$ there is a $g \in \operatorname{SO}(3)$ with $\psi(g x)>0$. Let $d(a, b)$ denote the Fubini-Study distance between $a, b \in \mathbf{P}_{1}$; then with some $c>0$,

$$
1+|\zeta|^{2} \leqslant \frac{c}{d(\zeta, \infty)^{2}} \quad \text { and } \quad \int_{S^{1}}\left(1+|x|^{2}\right)^{3 / 4} \leqslant c \int_{S^{1}} d(x, \infty)^{-3 / 2}
$$

Hence

$$
\int_{\mathrm{SO}(3)} \int_{S^{1}}\left(1+|g x(t)|^{2}\right)^{3 / 4} d t d g \leqslant c \int_{S^{1}} \int_{\mathrm{SO}(3)} d(g x(t), \infty)^{-3 / 2} d g d t=c I,
$$

where, for any $\zeta \in \mathbf{P}_{1}$,

$$
I=\int_{\mathrm{SO}(3)} d(g \zeta, \infty)^{-3 / 2} d g=\int_{\mathbf{P}_{1}} d(\cdot, \infty)^{-3 / 2}<\infty
$$

the last integral with respect to the Fubini-Study area form. If c_{0} is chosen larger than $c I$, then indeed $\int_{S^{1}}\left(1+|g x|^{2}\right)^{3 / 4}<c_{0}$ and $\psi(g x)=1$ for some $g \in \operatorname{SO}(3)$.

It follows that $\int_{\mathrm{SO}(3)} \psi(g x) d g>0$, and we can take $\chi(x)=\psi(x) / \int_{\mathrm{SO}(3)} \psi(g x) d g$.
Proof of Theorem 3.3. Given $\mathfrak{h} \in \mathfrak{H}$, extend $\left(g^{*} \chi\right) \mathfrak{h}_{a, g^{-1} \infty}$ from $L U_{a, g^{-1} \infty}$ to $L U_{a}$ by zero, and define the cuspidal functions

$$
u_{a}=\int_{\mathrm{SO}(3)}\left(g^{*} \chi\right) \mathfrak{h}_{a, g^{-1} \infty} d g, \quad a \in \mathbf{P}_{1}
$$

Then $u_{a}-u_{b}=\int_{\mathrm{SO}(3)}\left(g^{*} \chi\right) \mathfrak{h}_{a b} d g=\mathfrak{h}_{a b}$, so that $f=\bar{\partial} u_{a}$ on $L U_{a}$ consistently defines a closed $f \in C_{0,1}^{\infty}\left(L \mathbf{P}_{1}\right)$. It is immediate that the map $\mathfrak{h} \mapsto[f] \in H^{0,1}\left(L \mathbf{P}_{1}\right)$ is left inverse to the monomorphism $[f] \mapsto \mathrm{f}$, whence the theorem follows.

4. The map $\mathfrak{H} \rightarrow \mathfrak{F}$

Consider an $\mathfrak{h}=\left(\mathfrak{h}_{a b}\right) \in \mathfrak{H}$. The cocycle relation implies that $d_{\varsigma} \mathfrak{h}_{a \zeta}(x)$ is independent of a; for $\zeta \in \mathbf{C}$ we can write it as

$$
\begin{equation*}
d_{\zeta} \mathfrak{h}_{a \zeta}(x)=F\left(\zeta, \frac{1}{\zeta-x}\right) d \zeta, \quad x \in L U_{\zeta} \tag{4.1}
\end{equation*}
$$

where $F \in \mathcal{O}(\mathbf{C} \times L \mathbf{C})$. Set $F=\alpha(\mathfrak{h})$. Since $\mathfrak{h}_{a a}=0$,

$$
\begin{equation*}
\mathfrak{h}_{a b}(x)=\int_{a}^{b} F\left(\zeta, \frac{1}{\zeta-x}\right) d \zeta, \tag{4.2}
\end{equation*}
$$

provided a and b are in the same component of $\mathbf{P}_{1} \backslash x\left(S^{1}\right)$-which we shall express by saying that x does not separate a and b-, and we integrate along a path within this component. The main result of this section is the following theorem.

Theorem 4.1. $\alpha(\mathfrak{h})=F \in \mathfrak{F}$.
The heart of the matter will be the special case when \mathfrak{h} is in an irreducible submodule $\approx \mathfrak{K}_{n}$. A vector that corresponds, in this isomorphism, to const $(d \zeta)^{-n} \in \mathscr{K}_{n}$ is said to be of lowest weight $-n$. Thus, if \mathfrak{l} is of lowest weight $-n \leqslant 0$, then

$$
\begin{array}{lll}
g_{\lambda}^{*} \mathfrak{l}=\lambda^{-n} \mathfrak{l}, & \text { when } g_{\lambda} \zeta=\lambda \zeta, & \lambda \in \mathbf{C} \backslash\{0\} \\
g_{\lambda}^{*} \mathfrak{l}=\mathfrak{l}, & \text { when } g_{\lambda} \zeta=\zeta+\lambda, & \lambda \in \mathbf{C} \tag{4.4}
\end{array}
$$

Conversely, an $\mathfrak{l} \neq 0$ satisfying (4.3) and (4.4) is a lowest-weight vector and spans an irreducible submodule, isomorphic to \mathfrak{K}_{n}, but we shall not need this fact.

If $\mathfrak{l} \in \mathfrak{H}$ satisfies (4.4), then $\mathfrak{l}_{\infty \zeta}(x)=\mathfrak{l}_{\infty, \zeta+\lambda}(x+\lambda)$ by (3.2), whence $d_{\zeta} \mathfrak{l}_{\infty \zeta}(x)$ depends only on $\zeta-x$, and $\alpha(\mathfrak{l})$ is of form $F(\zeta, y)=E(y)$. If, in addition, l satisfies (4.3), then similarly it follows that $E \in \mathcal{O}(L \mathbf{C})$ is homogeneous of degree $n+1$. We now fix a nonzero lowest-weight vector $\mathfrak{l} \in \mathfrak{H}$, the corresponding ($n+1$)-homogeneous polynomial E and its polarization \mathcal{E}, cf. (1.2).

PROPOSITION 4.2. $\mathcal{E}\left(1 \otimes y_{1} \otimes \ldots \otimes y_{n}\right)=0$, and so $E(y+$ const $)=E(y)$.
Proof. Since $\mathfrak{l}_{\infty 0} \in \mathcal{O}\left(L U_{\infty 0}\right)$ is cuspidal and homogeneous of order $-n$,

$$
0=\lim _{\lambda \rightarrow \infty} \mathfrak{l}_{\infty 00}\left(\frac{1}{\lambda+x}\right)=\lim _{\lambda \rightarrow \infty} \lambda^{n} \mathfrak{l}_{\infty 0}\left(\frac{1}{1+x / \lambda}\right)
$$

Thus $\mathfrak{l}_{\infty 0}$ vanishes at 1 to order $\geqslant n+1$. Hence

$$
\left.\frac{\partial}{\partial \zeta}\right|_{\zeta=0} \mathfrak{l}_{\infty 0}(x-\zeta)=\left.\frac{\partial}{\partial \zeta}\right|_{\zeta=0} \mathfrak{l}_{\infty \zeta}(x)=E\left(\frac{1}{x}\right)
$$

vanishes at $x=1$ to order $\geqslant n$, and the same holds for $E(x)$. Differentiating E in the directions y_{1}, \ldots, y_{n}, we obtain at $x=1$, as needed, that $n!\mathcal{E}\left(1 \otimes y_{1} \otimes \ldots \otimes y_{n}\right)=0$.

Let $\mathfrak{K}_{n} \ni \varphi \mapsto \mathfrak{h}^{\varphi} \in \mathfrak{H}$ denote the homomorphism that maps $(d \zeta)^{-n}$ to \mathfrak{l}.

Proposition 4.3.

$$
\begin{equation*}
d_{\zeta} \mathfrak{h}_{a \zeta}^{\varphi}(x)=\psi(\zeta) E\left(\frac{1}{\zeta-x}\right) d \zeta, \quad \varphi(\zeta)=\psi(\zeta)(d \zeta)^{-n} \tag{4.5}
\end{equation*}
$$

By homogeneity, the right-hand side can also be written $\varphi(\zeta) E(d \zeta /(\zeta-x))$.
Proof. Denote the form on the left-hand side of (4.5) by ω^{φ}. In view of (3.2), it transforms under the action of G on $\mathbf{P}_{1} \times L \mathbf{P}_{1}$ as

$$
\begin{equation*}
g^{*} \omega^{\varphi}=\omega^{g \varphi}, \quad g \in G \tag{4.6}
\end{equation*}
$$

If we show that the right-hand side of (4.5) transforms in the same way, then (4.5) will follow, since it holds when $\psi \equiv 1$, see (4.1). In fact, it will suffice to check the transformation formula for $g \zeta=\lambda \zeta, g \zeta=\zeta+\lambda$ and $g \zeta=1 / \zeta$, maps that generate G. We shall do this for the last map, the most challenging of the three types. The pullback of the right-hand side of (4.5) by $g \zeta=1 / \zeta$ is

$$
(g \varphi)(\zeta) E\left(\frac{d(g \zeta)}{g \zeta-g x}\right)=(g \varphi)(\zeta) E\left(\frac{d \zeta}{\zeta-x}-\frac{d \zeta}{\zeta}\right)=(g \varphi)(\zeta) E\left(\frac{d \zeta}{\zeta-x}\right)
$$

by Proposition 4.2, which is what we need.
The form \mathcal{E} defines a symmetric distribution D on the torus $T=\left(S^{1}\right)^{n+1}$ as in $\S 1$, cf. (1.14). By (1.15), (4.2) and Proposition 4.3,

$$
\begin{equation*}
\mathfrak{h}_{a b}^{\varphi}(x)=\int_{a}^{b} \psi(\zeta)\left\langle D, \frac{1}{\zeta-x} \otimes \ldots \otimes \frac{1}{\zeta-x}\right\rangle d \zeta, \quad \varphi=\psi(\zeta)(d \zeta)^{-n} \tag{4.7}
\end{equation*}
$$

provided $x \in L_{\infty} U_{a b}$ does not separate a and b. To prove Theorem 4.1, we have to understand $\operatorname{supp} D$. Let

$$
O=\left\{x \in C^{\infty}\left(S^{1}\right): \pm i \notin x\left(S^{1}\right)\right\} \quad \text { and } \quad O^{\prime}=\left\{x \in O:[-i, i] \cap x\left(S^{1}\right)=\varnothing\right\}
$$

where $[-i, i]$ stands for the segment joining $\pm i$.
Lemma 4.4. With Δ a symmetric distribution on $T=\left(S^{1}\right)^{n+1}$ and $\nu=0, \ldots, 2 n-2$, let

$$
I_{\nu}(x)=\int_{[-i, i]}\left\langle\Delta, \frac{1}{\zeta-x} \otimes \ldots \otimes \frac{1}{\zeta-x}\right\rangle \zeta^{\nu} d \zeta, \quad x \in O^{\prime}
$$

If each I_{ν} continues analytically to O then Δ is supported on the diagonal of T.
In preparation for the proof, consider a holomorphic vector field V on O, and observe that $V I_{\nu}$ also continues analytically to O. Such vector fields can be thought of as holomorphic maps $V: O \rightarrow C^{\infty}\left(S^{1}\right)$. Using the symmetry of Δ we compute

$$
\begin{equation*}
\left(V I_{\nu}\right)(x)=(n+1) \int_{[-i, i]}\left\langle\Delta, \frac{V(x)}{(\zeta-x)^{2}} \otimes \frac{1}{\zeta-x} \otimes \ldots \otimes \frac{1}{\zeta-x}\right\rangle \zeta^{\nu} d \zeta, \quad x \in O^{\prime} \tag{4.8}
\end{equation*}
$$

Proof of Lemma 4.4, case $n=1$. Let $\bar{s}_{0} \neq \bar{s}_{1} \in S^{1}$. To show that Δ vanishes near $\bar{s}=\left(\bar{s}_{0}, \bar{s}_{1}\right)$, construct a smooth family $x_{\varepsilon, s} \in O$ of loops, where $\varepsilon \in[0,1]$ and $s \in T$ is in a neighborhood of \bar{s}, so that

$$
\begin{equation*}
x_{\varepsilon, s}(\tau)=(-1)^{j}\left(\varepsilon^{2}+\left(\tau-s_{j}\right)^{2}\right), \quad \text { when } \tau \in S^{1} \text { is near } \bar{s}_{j}, j=0,1 \tag{4.9}
\end{equation*}
$$

here, perhaps abusively, $\tau-s_{j}$ denotes both a point in $S^{1}=\mathbf{R} / \mathbf{Z}$ and its representative in \mathbf{R} that is closest to 0 . Make sure that $x_{\varepsilon, s} \in O^{\prime}$ when $\varepsilon>0$. Fix $y_{0}, y_{1} \in C^{\infty}\left(S^{1}\right)$ so that $y_{j} \equiv 1$ near \bar{s}_{j}, and (4.9) holds when τ and s_{j} are in a neighborhood of supp y_{j}. This forces y_{0} and y_{1} to have disjoint support. With constant vector fields $V_{j}=y_{j}$,

$$
\begin{equation*}
\left(V_{1} V_{0} I_{0}\right)(x)=2 \int_{[-i, i]}\left\langle\Delta, \frac{y_{0}}{(\zeta-x)^{2}} \otimes \frac{y_{1}}{(\zeta-x)^{2}}\right\rangle d \zeta, \quad x \in O^{\prime} \tag{4.10}
\end{equation*}
$$

analytically continues to O. In particular, for $\varepsilon>0$ and $t=\left(t_{0}, t_{1}\right) \in T$, setting

$$
K_{\varepsilon}(t, s)=\int_{[-i, i]} \frac{y_{0}\left(t_{0}\right) y_{1}\left(t_{1}\right) d \zeta}{\left(\zeta-x_{\varepsilon, s}\left(t_{0}\right)\right)^{2}\left(\zeta-x_{\varepsilon, s}\left(t_{1}\right)\right)^{2}}, \quad s \text { near } \bar{s}
$$

it follows that $\left\langle\Delta, K_{\varepsilon}(\cdot, s)\right\rangle$ stays bounded as $\varepsilon \rightarrow 0$. Therefore, if $\varrho \in C^{\infty}(T)$ is supported in a sufficiently small neighborhood of \tilde{s}, then

$$
\begin{equation*}
\left\langle\Delta, \varepsilon^{4} \int_{T} K_{\varepsilon}(\cdot, s) \varrho(s) d s\right\rangle \rightarrow 0, \quad \varepsilon \rightarrow 0 \tag{4.11}
\end{equation*}
$$

On the other hand, we shall show that for such ϱ,

$$
\begin{equation*}
\varepsilon^{4} \int_{T} K_{\varepsilon}(\cdot, s) \varrho(s) d s \rightarrow c \varrho, \quad \varepsilon \rightarrow 0 \tag{4.12}
\end{equation*}
$$

in the topology of $C^{\infty}(T)$; here $c \neq 0$ is a constant.
It will suffice to verify (4.12) on $\operatorname{supp} y_{0} \otimes y_{1}$, since both sides vanish on the complement. Thus we shall work on small neighborhoods of \bar{s}; we can pretend that $\bar{s} \in \mathbf{R}^{2}$, and work on \mathbf{R}^{2} instead of T. When $s, t \in \mathbf{R}^{2}$ are close to \bar{s}, the left-hand side of (4.12) becomes

$$
\begin{equation*}
\varepsilon^{4} y_{0}\left(t_{0}\right) y_{1}\left(t_{1}\right) \int_{\mathbf{R}^{2}} \int_{[-i, i]} \frac{\varrho(s) d \zeta d s}{\left(\zeta-\varepsilon^{2}-\left(s_{0}-t_{0}\right)^{2}\right)^{2}\left(\zeta+\varepsilon^{2}+\left(s_{1}-t_{1}\right)^{2}\right)^{2}} \tag{4.13}
\end{equation*}
$$

Substituting $s=t+\varepsilon u$ and $\zeta=\varepsilon^{2} \xi$, we compute that the limit in (4.12) is

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} y_{0}\left(t_{0}\right) y_{1}\left(t_{1}\right) \int_{\mathbf{R}^{2}} \int_{\left[-i / \varepsilon^{2}, i / \varepsilon^{2}\right]} \frac{\varrho(t+\varepsilon u) d \xi d u}{\left(\xi-1-u_{0}^{2}\right)^{2}\left(\xi+1+u_{1}^{2}\right)^{2}} \tag{4.14}\\
& \quad=4 \pi i y_{0}\left(t_{0}\right) y_{1}\left(t_{1}\right) \int_{\mathbf{R}^{2}} \frac{\varrho(t) d u}{\left(2+u_{0}^{2}+u_{1}^{2}\right)^{3}}=c \varrho(t)
\end{align*}
$$

if $y_{0} \otimes y_{1}=1$ on $\operatorname{supp} \varrho$. This limit is first seen to hold uniformly. However, since the integral operator in (4.13) is a convolution, in (4.14) in fact all derivatives converge uniformly. Now (4.11) and (4.12) imply that $\langle\Delta, \varrho\rangle=0$, so that Δ vanishes close to \bar{s}.

Proof of Lemma 4.4, general n. The base case $n=1$ settled and the statement being vacuous when $n=0$, we prove by induction. Assume that the lemma holds on the n dimensional torus, and with $y \in C^{\infty}\left(S^{1}\right)$, consider the holomorphic vector fields $V_{\mu}(x)=$ $y x^{\mu}, \mu=0,1,2$. (These vector fields continue to all of $L \mathbf{P}_{1}$, and generate the Lie algebra of the loop group $L G$.) In view of (4.8), for $x \in O^{\prime}$,

$$
\begin{equation*}
\int_{[-i, i]}\left\langle\Delta, y \otimes \frac{1}{\zeta-x} \otimes \ldots \otimes \frac{1}{\zeta-x}\right\rangle \zeta^{\nu} d \zeta=\frac{1}{n+1}\left(V_{0} I_{\nu+2}-2 V_{1} I_{\nu+1}+V_{2} I_{\nu}\right) \tag{4.15}
\end{equation*}
$$

Therefore the left-hand side continues analytically to O, provided $\nu=0, \ldots, 2 n-4$. If Δ^{y} denotes the distribution on $\left(S^{1}\right)^{n}$ defined by $\left\langle\Delta^{y}, \varrho\right\rangle=\langle\Delta, y \otimes \varrho\rangle$, the left-hand side of (4.15) is

$$
\int_{[-i, i]}\left\langle\Delta^{y}, \frac{1}{\zeta-x} \otimes \ldots \otimes \frac{1}{\zeta-x}\right\rangle \zeta^{\nu} d \zeta
$$

The inductive hypothesis implies that Δ^{y} is supported on the diagonal of $\left(S^{1}\right)^{n}$. This being true for all y, the symmetric distribution Δ itself must be supported on the diagonal.

Corollary 4.5. The distribution D in (4.7) is supported on the diagonal of T.
Proof of Theorem 4.1. First assume that $\mathfrak{h} \in \mathfrak{H}$ is in an irreducible submodule $\approx \mathfrak{K}_{n}$, and $\mathfrak{l} \neq 0$ is a lowest-weight vector in this submodule. Thus $\mathfrak{h}=\mathfrak{h}^{\varphi}$ for some $\varphi \in \mathfrak{K}_{n}, \varphi(\zeta)=$ $\psi(\zeta)(d \zeta)^{-n}$. With I we associated an $(n+1)$-homogeneous polynomial E on $L \mathbf{C}$ and a distribution D on $\left(S^{1}\right)^{n+1}$. By Proposition 4.3, $F(\zeta, y)=\psi(\zeta) E(y)$, and so $F(\zeta, y+$ const $)=$ $F(\zeta, y)$ by Proposition 4.2. Since $\operatorname{deg} \psi \leqslant 2 n, F\left(\zeta / \lambda, \lambda^{2} y\right)=O\left(\lambda^{2}\right)$ as $\lambda \rightarrow 0$. Finally, take $x, y \in L \mathbf{C}$ with disjoint supports. If $x, y \in C^{\infty}\left(S^{1}\right)$, then

$$
E(x+y)=\left\langle D,(x+y)^{\otimes(n+1)}\right\rangle=\left\langle D, x^{\otimes(n+1)}\right\rangle+\left\langle D, y^{\otimes(n+1)}\right\rangle=E(x)+E(y)
$$

as $\operatorname{supp} D$ is on the diagonal. By approximation, $E(x+y)=E(x)+E(y)$ follows in general, whence F itself is additive. We conclude that $F \in \mathfrak{F}$ if \mathfrak{h} is in an irreducible submodule.

By linearity it follows that $F \in \mathfrak{F}$ whenever \mathfrak{h} is in the span of irreducible submodules. Since this span is dense in \mathfrak{H} (cf. [BD, III.5.7] and the explanation in the introduction connecting representations of G with those of the compact group $\operatorname{SO}(3)), \alpha(\mathfrak{h}) \in \mathfrak{F}$ for all $\mathfrak{h} \in \mathfrak{H}$.

ThEOREM 4.6. The map α is a G-morphism.
Proof. It suffices to verify that the restriction of α to an irreducible submodule of \mathfrak{H} is a G-morphism, which follows directly from Proposition 4.3.

5. The structure of \mathfrak{H}

The main result of this section is the following theorem:
Theorem 5.1. The G-morphism $\alpha: \mathfrak{H} \rightarrow \mathfrak{F}$ has a right inverse β. Its kernel is onedimensional, spanned by the G-invariant cocycle

$$
\begin{equation*}
\mathfrak{h}_{a b}(x)=\operatorname{ind}_{a b} x \tag{5.1}
\end{equation*}
$$

(the winding number of $x: S^{1} \rightarrow U_{a b}$).
We shall need the following result:
Lemma 5.2. With notation as in §1, suppose that $z_{1}, \ldots, z_{N} \in L^{-} \mathbf{C}$ are such that no point in S^{1} is contained in the support of more than two z_{j}. If $\widetilde{F} \in \widetilde{\mathfrak{F}}$ then

$$
\begin{equation*}
\widetilde{F}\left(\zeta, \sum_{j=1}^{N} z_{j}\right)=\sum_{i<j} \tilde{F}\left(\zeta, z_{i}+z_{j}\right)-(N-2) \sum_{j=1}^{N} \tilde{F}\left(\zeta, z_{j}\right) \tag{5.2}
\end{equation*}
$$

In particular, if $N \geqslant 3$, and, writing $z_{0}=z_{N}$, only consecutive $\operatorname{supp} z_{j}$'s intersect each other, then

$$
\widetilde{F}\left(\zeta, \sum_{j=1}^{N} z_{j}\right)=\sum_{j=1}^{N} \tilde{F}\left(\zeta, z_{j-1}+z_{j}\right)-\sum_{j=1}^{N} \widetilde{F}\left(\zeta, z_{j}\right)
$$

Proof. It will suffice to verify (5.2) when $\widetilde{F}(\zeta, z)=\widetilde{E}(z)$ is homogeneous, in which case it follows by expressing both sides in terms of the polarization of \widetilde{E}, and using Lemma 1.2 (a). The second formula follows from (5.2) by applying additivity to terms with nonconsecutive i and j.

Proof of Theorem 5.1. (a) Construction of the right inverse. By Theorem 1.1, for $F \in \mathfrak{F}$ we can choose $\widetilde{F} \in \widetilde{\mathfrak{F}}$, depending linearly on F, so that $F(\zeta, y)=\widetilde{F}(\zeta, \dot{y})$. With $x \in L \mathbf{P}_{1}$ consider the differential form

$$
\begin{equation*}
F\left(\zeta, \frac{1}{\zeta-x}\right) d \zeta=\widetilde{F}\left(\zeta, \frac{\dot{x}}{(\zeta-x)^{2}}\right) d \zeta \tag{5.3}
\end{equation*}
$$

holomorphic in $\mathbf{C} \backslash x\left(S^{1}\right)$. In fact, it is holomorphic at $\zeta=\infty$ as well, provided $\infty \notin x\left(S^{1}\right)$, since the coefficient of $d \zeta$ vanishes to second order at $\zeta=\infty$. This latter is easily verified when $\widetilde{F}(\zeta, z)=\zeta^{\nu} \widetilde{E}(z)$ and \widetilde{E} is ($n+1$)-homogeneous, $\nu \leqslant 2 n$; in general it follows from the posthomogeneous expansion

$$
\widetilde{F}(\zeta, z)=\sum_{n=0}^{\infty} \widetilde{F}_{n}(\zeta, z)=\sum_{n=0}^{\infty} \sum_{\nu=0}^{2 n} \zeta^{\nu} \widetilde{E}_{n \nu}(\zeta)
$$

Hence, if $x \in L \mathbf{P}_{1}$ does not separate a and b, the integral

$$
\begin{equation*}
h_{a b}(x)=\int_{a}^{b} \widetilde{F}\left(\zeta, \frac{\dot{x}}{(\zeta-x)^{2}}\right) d \zeta \tag{5.4}
\end{equation*}
$$

is independent of the path joining a and b within $\mathbf{P}_{1} \backslash x\left(S^{1}\right)$, and defines a holomorphic function of a, b and x.

We claim that $h_{a b}$ can be continued to a cuspidal cocycle $\mathfrak{h}=\left(\mathfrak{h}_{a b}\right) \in \mathfrak{H}$. First we prove a variant. Let $\sigma \in C^{\infty}\left(S^{1}\right)$ be supported in a closed $\operatorname{arc} I \neq S^{1}$. Given finitely many $a, b, \ldots \in \mathbf{P}_{1}$, set

$$
W_{a b \ldots}=\left\{x \in L \mathbf{P}_{1}: a, b, \ldots \notin x(I)\right\} \supset L U_{a b \ldots}
$$

We shall show that the integrals

$$
\begin{equation*}
\int_{a}^{b} \tilde{F}\left(\zeta, \frac{\sigma \dot{x}}{(\zeta-x)^{2}}\right) d \zeta, \quad x \text { does not separate } a \text { and } b \tag{5.5}
\end{equation*}
$$

can be continued to functions $\mathfrak{k}_{a b}(x)$ depending holomorphically on $a, b \in \mathbf{P}_{1}$ and $x \in W_{a b}$. The main point will be that, unlike $L U_{a b \ldots . .}$, the sets $W_{a b \ldots}$ are connected.

If $x_{1} \in W_{a b}$, construct a continuous curve $[0,1] \ni \tau \mapsto x_{\tau} \in W_{a b}$, with x_{0} being a constant loop. Cover S^{1} with open arcs $J_{1}, \ldots, J_{N}=J_{0}, N \geqslant 3$, so that only consecutive \bar{J}_{j} 's intersect, and no $x_{\tau}\left(\bar{J}_{i} \cup \bar{J}_{j}\right)$ separates a and b. Choose a C^{∞} partition of unity $\left\{\varrho_{j}\right\}_{j=1}^{N}$ subordinate to $\left\{J_{j}\right\}_{j=1}^{N}$. For x in a connected neighborhood $W \subset W_{a b}$ of $\left\{x_{\tau}: 0 \leqslant \tau \leqslant 1\right\}$ define

$$
\begin{equation*}
\mathfrak{k}_{a b}(x)=\sum_{j=1}^{N} \int_{a}^{b} \widetilde{F}\left(\zeta, \frac{\left(\varrho_{j-1}+\varrho_{j}\right) \sigma \dot{x}}{(\zeta-x)^{2}}\right) d \zeta-\sum_{j=1}^{N} \int_{a}^{b} \widetilde{F}\left(\zeta, \frac{\varrho_{j} \sigma \dot{x}}{(\zeta-x)^{2}}\right) d \zeta \tag{5.6}
\end{equation*}
$$

In the first sum we extend $\left(\varrho_{j-1}+\varrho_{j}\right) \sigma \dot{x} /(\zeta-x)^{2}$ to $S^{1} \backslash\left(J_{j-1} \cup J_{j}\right)$ by 0 , and integrate along paths in $\mathbf{P}_{1} \backslash x\left(\bar{J}_{j-1} \cup \bar{J}_{j}\right)$; we interpret the second sum similarly. The neighborhood W is to be chosen so small that no $x\left(\bar{J}_{i} \cup \bar{J}_{j}\right)$ separates a and b when $x \in W$.

As above, the integrals in (5.6) are independent of the path, and define a holomorphic function in W. By Lemma 5.2, $\mathfrak{k}_{a b}$ agrees with (5.5) when x is near x_{0}. Furthermore, the germ of $\mathfrak{k}_{a b}$ at x_{1} depends on the curve x_{τ} only through the choice of the ϱ_{j}. In fact, it does not even depend on ϱ_{j} : let $\mathfrak{k}_{a b}^{\prime}$ be the function obtained if in (5.6) the ϱ_{j} are replaced by another partition of unity ϱ_{h}^{\prime}. It will suffice to show that $\mathfrak{k}_{a b}=\boldsymbol{k}_{a b}^{\prime}$ under the additional assumption that each ϱ_{h}^{\prime} is supported in some J_{j}. In this case, $\mathfrak{k}_{a b}^{\prime}$ is holomorphic in W and agrees with $\mathfrak{k}_{a b}$ near x_{0}, hence on all of W.

Therefore, by varying the partition of unity ϱ_{j}, we can use (5.6) to define $\mathfrak{k}_{a b}(x)$ depending holomorphically on $a, b \in \mathbf{P}_{1}$ and $x \in W_{a b}$. Also, $\mathfrak{k}_{a b}+\mathfrak{k}_{b c}=\mathfrak{k}_{a c}$ on $W_{a b c}$, since this is so in a neighborhood of constant loops, and $W_{a b c}$ is connected.

Now, to obtain a continuation of $h_{a b}$ in (5.4), construct a partition of unity $\sigma_{1}, \sigma_{2}, \sigma_{3} \in C^{\infty}\left(S^{1}\right)$ so that $\operatorname{supp}\left(\sigma_{i}+\sigma_{j}\right) \neq S^{1}$ and $\bigcap_{j=1}^{3} \operatorname{supp} \sigma_{j}=\varnothing$. Setting $\sigma_{0}=\sigma_{3}$, in light of Lemma 5.2 we can rewrite (5.4) as

$$
h_{a b}(x)=\sum_{j=1}^{3} \int_{a}^{b} \widetilde{F}\left(\zeta, \frac{\left(\sigma_{j-1}+\sigma_{j}\right) \dot{x}}{(\zeta-x)^{2}}\right) d \zeta-\sum_{j=1}^{3} \int_{a}^{b} \widetilde{F}\left(\zeta, \frac{\sigma_{j} \dot{x}}{(\zeta-x)^{2}}\right) d \zeta
$$

and continue each term to $L U_{a b}$, as above. We obtain a holomorphic cocycle $\beta(F)=$ $\mathfrak{h}=\left(\mathfrak{h}_{a b}\right)$, with $\mathfrak{h}_{a b}$ depending holomorphically on a and b, and one easily checks that each $\mathfrak{h}_{a b}$ is cuspidal. Therefore $\beta(F) \in \mathfrak{H}$. Finally, $\alpha \beta(F)$ can be computed by considering $d_{\zeta} \mathfrak{h}_{a \zeta}(x)$, with a in the same component of $\mathbf{P}_{\mathbf{1}} \backslash x\left(S^{1}\right)$ as ζ, so that (5.4) gives

$$
d_{\zeta} \mathfrak{h}_{a \zeta}(x)=d_{\zeta} h_{a \zeta}(x)=\tilde{F}\left(\zeta, \frac{\dot{x}}{(\zeta-x)^{2}}\right) d \zeta=F\left(\zeta, \frac{1}{\zeta-x}\right) d \zeta
$$

Thus $\alpha \beta(F)=F$ as needed.
(b) The kernel of α. Take an irreducible submodule of $\operatorname{Ker} \alpha$, spanned by a vector \mathfrak{l} of lowest weight $-n \leqslant 0$. Since $F=\alpha(\mathfrak{l})=0$, (4.2) implies that $\mathfrak{l}_{a b}(x)=0$ if x does not separate a and b; hence, by analytic continuation, whenever ind ${ }_{a b} x=0$. By the cocycle relation $\mathfrak{l}_{a c}(x)=\mathfrak{l}_{b c}(x)$ if $\operatorname{ind}_{a b} x=0$, i.e., if ind ${ }_{a c} x=\operatorname{ind}_{b c} x$.

Consider the components of $L U_{0 \infty}$

$$
X_{r}=\left\{x \in L U_{0 \infty}: \operatorname{ind}_{0 \infty} x=r\right\}, \quad r \in \mathbf{Z}
$$

Let

$$
\begin{equation*}
x_{1}(t)=e^{2 \pi i r t} \quad \text { and } \quad y(t)=e^{4 \pi i r t}+e^{6 \pi i r t-4} \tag{5.7}
\end{equation*}
$$

We shall presently show that whenever $x \in L U_{0 \infty}$ is in a sufficiently small neighborhood of x_{1}, and $(\varkappa, \lambda) \in \mathbf{C}^{2} \backslash\{(0,0)\}$, then $z_{\varkappa \lambda}=\varkappa x+\lambda y \in X_{r}+\mathbf{C}$. It follows that with such x and y we can define $h(\varkappa, \lambda)=\mathfrak{l}_{a \infty}\left(z_{\varkappa \lambda}\right)$, where a is chosen so that $\operatorname{ind}_{a \infty} z_{\varkappa \lambda}=r$. Thus $h \in$ $\mathcal{O}\left(\mathbf{C}^{2} \backslash\{(0,0)\}\right)$, and by Hartogs' theorem it extends to all of \mathbf{C}^{2}; also, it is homogeneous of degree $-n$. It follows that h is constant, indeed zero when $n>0$. In all cases, $\mathfrak{l}_{0 \infty}(x)=$ $h(1,0)=h(0,1)$ is independent of x. This being true for x in a nonempty open set, $\mathfrak{l}_{0 \infty}$ is constant on X_{r}. It follows that $\mathfrak{l}_{a \infty}(x)=\mathfrak{l}_{0 \infty}(x-a)$ is locally constant, and so is $\mathfrak{l}_{a b}=\mathfrak{l}_{a \infty}-\mathfrak{l}_{b \infty}$. Moreover, $\mathfrak{l}_{a b}=0$ unless $n=0$.

Suppose now that $n=0$, and let $\left.\mathfrak{l}_{0 \infty}\right|_{X_{1}}=l \in \mathbf{C}$. We have $\mathfrak{l}_{a \infty}(x)=\mathfrak{l}_{0 \infty}(x-a)=l$ if $\operatorname{ind}_{a \infty} x=1$. Choose a homeomorphic $x \in L \mathbf{C}$ and $a, b \in \mathbf{C} \backslash x\left(S^{1}\right)$ so that $\operatorname{ind}_{a b} x=1$; say that b is in the unbounded component. Then $\mathfrak{l}_{a b}(x)=\mathfrak{l}_{a \infty}(x)-\mathfrak{l}_{b \infty}(x)=l$, and the same will hold if x is slightly perturbed. It follows that $\mathfrak{l}_{a b}(x)=l$ whenever $\operatorname{ind}_{a b} x=1$, and
in this case $\mathfrak{l}_{b a}(x)=-l$. Finally, with a generic $y \in L U_{a b}$ choose $a_{0}=a, a_{1}, \ldots, a_{m}=b$ in $\mathbf{P}_{1} \backslash y\left(S^{1}\right)$ so that $\operatorname{ind}_{a_{j-1} a_{j}} y= \pm 1$. Then

$$
\mathfrak{l}_{a b}(y)=\sum_{j=1}^{m} \mathfrak{l}_{a_{j-1} a_{j}}(y)=l \sum_{j=1}^{m} \operatorname{ind}_{\mathbf{a}_{j-1} a_{j}} y=l \operatorname{ind}_{a b} y
$$

We conclude that any irreducible submodule of $\operatorname{Ker} \alpha$ is spanned by \mathfrak{h} in (5.1), whence Ker α itself is spanned by \mathfrak{h}, as claimed.

We still owe the proof that $\varkappa x+\lambda y \in X_{r}+\mathbf{C}$ unless $\varkappa=\lambda=0$, for x near x_{1} and y given in (5.7). In fact, the general statement follows once we prove it for $r=1$ and $x=x_{1}$, which we henceforward assume. If $|\varkappa| \geqslant 2|\lambda|$ then $z_{\varkappa \lambda} \in X_{1}$ by Rouché's theorem. Otherwise consider the polynomial

$$
P(\zeta)=\varkappa \zeta+\lambda\left(\zeta^{2}+e^{-4} \zeta^{3}\right), \quad \zeta \in \mathbf{C}
$$

For fixed $|\zeta|<2$ the equation $P(\eta)=P(\zeta)$ has two solutions with $|\eta|<5$, again by Rouché's theorem. One of the solutions is $\eta=\zeta$. Let $\eta=R(\zeta)$ be the other one, so that R is holomorphic. There are only finitely many ζ with $|\zeta|=|R(\zeta)|=1$. Indeed, otherwise $|R(\zeta)|=1$ would hold for all unimodular ζ, and by the reflection principle R would be rational. However, $P(R(\zeta))=P(\zeta)$ cannot hold with rational $R(\zeta) \neq \zeta$. We conclude that $z_{\varkappa \lambda}\left(S^{1}\right)$ has only finitely many self-intersection points.

Since $P(0)=0, \operatorname{ind}_{0 \infty} z_{\varkappa \lambda} \geqslant 1$. Drag a point a from 0 to ∞ along a path that avoids multiple points of $z_{\varkappa \lambda}\left(S^{1}\right)$. Each time we cross $z_{\varkappa \lambda}\left(S^{1}\right)$, ind $a_{a \infty} z_{\varkappa \lambda}$ changes by ± 1. It follows that $\operatorname{ind}_{a \infty} z_{\varkappa \lambda}=1$ for some a, which completes the proof.

For the space $L_{1, p} \mathbf{P}_{1}$, Theorems 2.1, 2.2 and the construction in Theorem 5.1 lead to explicit representations of elements of \mathfrak{H}. First there are the multiples of the cocycle (5.1), and then there is the complementary subspace $\beta(\mathfrak{F})=\bigoplus_{n=0}^{p-1} \beta\left(\mathfrak{F}^{n}\right)$, see Theorem 2.2. According to Theorems 2.1 and 2.2 elements of \mathfrak{F}^{n} are of form

$$
F(\zeta, y)=\sum_{\nu=0}^{2 n} \zeta^{\nu}\left\langle\Phi_{\nu}, \dot{y}^{n+1}\right\rangle, \quad \Phi_{\nu} \in L^{p /(n+1)}\left(S^{1}\right)^{*}
$$

Following the proof of Theorem 5.1, to compute $\mathfrak{h}=\beta(F)$ we set

$$
\widetilde{F}(\zeta, z)=\sum_{\nu=0}^{2 n} \zeta^{\nu}\left\langle\Phi_{\nu}, z^{n+1}\right\rangle
$$

The substitution $\zeta=\xi+c$ shows that

$$
R_{\nu}(a, b, c)=\int_{a}^{b} \frac{\zeta^{\nu} d \zeta}{(\zeta-c)^{2 n+2}}, \quad 0 \leqslant \nu \leqslant 2 n, c \in \mathbf{P}_{1} \backslash\{a, b\}
$$

are rational functions with poles at $c=a, b$, so that

$$
\mathfrak{h}_{a b}(x)=\int_{a}^{b} \widetilde{F}\left(\zeta, \frac{\dot{x}}{(\zeta-x)^{2}}\right) d \zeta=\sum_{\nu=0}^{2 n}\left\langle\Phi_{\nu}, R_{\nu}(a, b, x) \dot{x}^{n+1}\right\rangle
$$

when x does not separate a and b. However, the right-hand side makes sense for any $x \in L U_{a b}$ and, as one checks, defines $\mathfrak{h}=\beta(F)$. For example, if F, and hence \mathfrak{h}, are of lowest weight, then $\Phi_{\nu}=0$ for $\nu \geqslant 1$, and

$$
\begin{equation*}
\mathfrak{h}_{a b}(x)=\left\langle\Phi_{0}, \frac{\dot{x}^{n+1}}{2 n+1}\left(\frac{1}{(x-a)^{2 n+1}}-\frac{1}{(x-b)^{2 n+1}}\right)\right\rangle \tag{5.8}
\end{equation*}
$$

Letting $n=0$ and $\left\langle\Phi_{0}, z\right\rangle=\int_{S^{1}} z / 2 \pi i$, formula (5.8) recovers the locally constant cocycle (5.1) as well. Thus we have proved the following result:

Theorem 5.3. In the case of $W^{1, p}$ loop spaces, any lowest-weight cocycle in the n-th isotypical subspace $\mathfrak{H}^{n} \subset \mathfrak{H}$ is of form (5.8) with (a unique) $\Phi_{0} \in L^{p /(n+1)}\left(S^{1}\right)^{*}$, $0 \leqslant n \leqslant p-1$.

6. Synthesis

In this last section we show how the results obtained by now imply the theorems of the introduction. Theorems 0.1 and 0.2 follow from the isomorphism $H^{0,1}\left(L \mathbf{P}_{1}\right) \approx \mathfrak{H}$ of G-modules (Theorem 3.3) and from the isomorphism $\mathfrak{H} \approx \mathbf{C} \oplus \mathfrak{F}$, a consequence of Theorem 5.1. In particular, $H^{0,1}\left(L \mathbf{P}_{1}\right)^{G} \approx \mathbf{C} \oplus \mathfrak{F}^{0}$. The latter being isomorphic to the dual of $L^{-} \mathbf{C}=C^{k-1}\left(S^{1}\right)$ (resp. $W^{k-1, p}\left(S^{1}\right)$) by Theorem 2.1, Theorem 0.3 also follows. Finally, Theorem 0.4 is a consequence of Theorems 2.2 and 2.1.

Seemingly we are done with all the proofs. However, Theorem 3.3 has not yet been proved for loop spaces $L_{1, p} \mathbf{P}_{1}, p<3$, and we still have to revisit spaces of loops of low regularity. This will give us the opportunity to explicitly represent classes in $H^{0,1}\left(L_{1, p} \mathbf{P}_{1}\right)$, in fact, for all $p \in[1, \infty)$.

Generally, given a complex manifold $M, 1 \leqslant p<\infty$, and a natural number $m \leqslant p$, consider the space $C_{0, q}^{\infty}\left(\left(T^{*} M\right)^{\otimes m}\right)$ of $\left(T^{*} M\right)^{\otimes m}$-valued $(0, q)$-forms on M. If ω is such a form, $v \in \bigoplus^{q} T_{s}^{0,1} M$ and $w \in T_{s}^{1,0} M$, we can pair $\omega(v) \in\left(T_{s}^{*} M\right)^{\otimes m}$ with $w^{\otimes m}$, to obtain what we shall denote $\omega\left(v, w^{m}\right) \in \mathbf{C}$. Write $L M$ for the space of $W^{1, p}$-loops in M, and observe that the tangent space $T_{x}^{0,1} L M$ is naturally isomorphic to the space $W^{1, p}\left(x^{*} T^{0,1} M\right)$ of $W^{1, p}$-sections of the induced bundle $x^{*} T^{0,1} M \rightarrow S^{1}$ (see [L2, Proposition 2.2] in the case of C^{k}-loops).

There is a bilinear map

$$
I=I_{q}: L^{p / m}\left(S^{1}\right)^{*} \times C_{0, q}^{\infty}\left(\left(T^{*} M\right)^{\otimes m}\right) \longrightarrow C_{0, q}^{\infty}(L M)
$$

obtained by the following Radon-type transformation. If

$$
(\Phi, \omega) \in L^{p / m}\left(S^{1}\right)^{*} \times C_{0, q}^{\infty}\left(\left(T^{*} M\right)^{\otimes m}\right)
$$

$x \in L M$ and $\xi \in \bigoplus^{q} T_{x}^{0,1} L M \approx \bigoplus^{q} W^{1, p}\left(x^{*} T^{0,1} M\right)$, then $\omega\left(\xi, \dot{x}^{m}\right) \in L^{p / m}\left(S^{1}\right)$. Define $I(\Phi, \omega)=f$ by

$$
f(\xi)=\left\langle\Phi, \omega\left(\xi, \dot{x}^{m}\right)\right\rangle .
$$

One verifies that $\bar{\partial} I(\Phi, \omega)=I(\Phi, \bar{\partial} \omega)$, whence I_{q} induces a bilinear map

$$
L^{p / m}\left(S^{1}\right)^{*} \times H^{0, q}\left(\left(T^{*} M\right)^{\otimes m}\right) \longrightarrow H^{0, q}(L M)
$$

Henceforward we take $M=\mathbf{P}_{1}, q=1, m=n+1$ and ω given on \mathbf{C} by

$$
\omega=\frac{-1}{2 n+1} \frac{\bar{\zeta}^{2 n} d \bar{\zeta} \otimes(d \zeta)^{n+1}}{\left(1+|\zeta|^{4 n+2}\right)^{(2 n+2) /(2 n+1)}}, \quad \zeta \in \mathbf{C}
$$

so that $f=I_{1}(\Phi, \omega)$ is a closed form on $L \mathbf{P}_{1}$. Explicitly,

$$
\begin{equation*}
f(\xi)=\frac{-1}{2 n+1}\left\langle\Phi, \frac{\xi \bar{x}^{2 n} \dot{x}^{n+1}}{\left(1+|x|^{4 n+2}\right)^{(2 n+2) /(2 n+1)}}\right\rangle, \quad \xi \in T_{x}^{0,1} L \mathbf{P}_{1} \tag{6.1}
\end{equation*}
$$

To compute its image in \mathfrak{H} under the map of Theorem 3.3, let

$$
\theta_{a}=\frac{1}{2 n+1}\left(\frac{\zeta^{-2 n-1}}{\left(1+|\zeta|^{4 n+2}\right)^{1 /(2 n+1)}}-\zeta^{-2 n-1}+(\zeta-a)^{-2 n-1}\right)(d \zeta)^{n+1} \quad \text { on } U_{a}
$$

Thus $\bar{\partial} \theta_{a}=\left.\omega\right|_{U_{a}}$, and the cuspidal functions $u_{a}=I_{0}\left(\Phi, \theta_{a}\right) \in C^{\infty}\left(L U_{a}\right)$ solve $\bar{\partial} u_{a}=\left.f\right|_{L U_{a}}$. Hence the image of f in \mathfrak{H} is

$$
\mathfrak{h}_{a b}(x)=u_{a}(x)-u_{b}(x)=\left\langle\Phi, \frac{\dot{x}^{n+1}}{2 n+1}\left(\frac{1}{(x-a)^{2 n+1}}-\frac{1}{(x-b)^{2 n+1}}\right)\right\rangle .
$$

Comparing this with Theorem 5.3 we see that by associating a lowest weight $\mathfrak{h} \in \mathfrak{H}^{n}$ with the functional $\Phi=\Phi_{0}$ of (5.8), and then $f \in C_{0,1}^{\infty}\left(L \mathbf{P}_{1}\right)$ of (6.1), the image of f in \mathfrak{H} will be \mathfrak{h}. In particular, the class $[f] \in H^{0,1}\left(L \mathbf{P}_{1}\right)$ is also of lowest weight $-n$. Therefore the linear map $\mathfrak{h} \mapsto[f]$, defined for $\mathfrak{h} \in \mathfrak{H}^{n}$ of lowest weight, can be extended to a G-morphism $\mathfrak{H}^{n} \rightarrow H^{0,1}\left(L \mathbf{P}_{1}\right)$, and then to a G-morphism $\bigoplus_{n=0}^{p-1} \mathfrak{H}^{n}=\mathfrak{H} \rightarrow H^{0,1}\left(L \mathbf{P}_{1}\right)$, inverse to the morphism $H^{0,1}\left(L \mathbf{P}_{1}\right) \rightarrow \mathfrak{H}$ of Theorem 3.3. This completes the proof of Theorem 3.3, and now we are really done.

References

[BD] Bröcker, T. \& tom Dieck, T., Representations of Compact Lie Groups. Springer, New York, 1985.
[D] Day, M. M., The spaces L^{p} with $0<p<1$. Bull. Amer. Math. Soc., 46 (1940), 816-823.
[He] Hervé, M., Analyticity in Infinite-Dimensional Spaces. de Gruyter Stud. Math., 10. de Gruyter, Berlin, 1989.
[HBJ] Hirzebruch, F., Berger, T. \& Jung, R., Manifolds and Modular Forms. Aspects of Math., E20. Vieweg, Braunschweig, 1992.
[Hö] Hörmander, L., The Analysis of Linear Partial Differential Operators, Vol. I. Grundlehren Math. Wiss., 256. Springer, Berlin, 1983.
[K] KurzWEIL, J., On approximation in real Banach spaces. Studia Math., 14 (1954), 214231.
[L1] Lempert, L., The Dolbeault complex in infinite dimensions, I. J. Amer. Math. Soc., 11 (1998), 485-520.
[L2] - Holomorphic functions on (generalised) loop spaces. Math. Proc. R. Ir. Acad., 104A (2004), 35-46.
[MZ] Millson, J. J. \& Zombro, B., A Kähler structure on the moduli space of isometric maps of a circle into Euclidean space. Invent. Math., 123 (1996), 35-59.
[P] Palais, R.S., Foundations of Global Nonlinear Analysis. Benjamin, New York-Amsterdam, 1968.
[W] Witten, E., The index of the Dirac operator in loop space, in Elliptic Curves and Modular Forms in Algebraic Topology (Princeton, NJ, 1986), pp. 161-181. Lecture Notes in Math., 1326. Springer, Berlin, 1988.
[Z] Zhang, N., Holomorphic line bundles on the loop space of the Riemann sphere. J. Differential Geom., 65 (2003), 1-17.

László Lempert
Department of Mathematics
Purdue University
West Lafayette, IN 47907
U.S.A.
lempert@math.purdue.edu

Ning Zhang
Department of Mathematics
University of California
Riverside, CA 92521
U.S.A.
nzhang@math.ucr.edu

Received March 9, 2004

[^0]: Both authors were partially supported by the NSF grant DMS-0203072.

