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O. Introduction 

Loop spaces L M  of compact complex manifolds M promise to have rich analytic co- 

homology theories, and it is expected that  sheaf and Dolbeault cohomology groups of 

L M  will shed new light on the complex geometry and analysis of M itself. This idea 

first occurs in [W], in the context of the infinite-dimensional Dirac operator, and then 

in [I-IBJ] that  touches upon Dolbeault groups of loop spaces; but in all this, both works 

stay heuristic. Our goal here is rigorously to compute the Dolbeault group H ~ of 

the first interesting loop space, that  of the Riemann sphere P1. The consideration of 

H~ was directly motivated by [MZ], that  among other things features a curious 

line bundle on LP1. More recently, the second author classified in [Z] all holomorphic line 

bundles on LP1 that  are invariant under a certain group of holomorphic automorphisms 

of L P I - - a  problem closely related to describing (a certain subspace of) H~ One 

noteworthy fact that  emerges from the present research is that  analytic cohomology of 

loop spaces, unlike topological cohomology (cf. [P, Theorem 13.14]), is rather sensitive 

to the regularity of loops admitted in the space. Another fact concerns local functionals, 

a notion from theoretical physics. Roughly, if M is a manifold, a local functional on a 

space of loops x: S 1 --+M is a functional of form 

f (x)  = f~l(I)(t, x(t), x(t), x(t),.,. ) dt, 

where �9 is a function o n  $1• an appropriate jet bundle of M. It turns out that  all 

cohomology classes in H ~  are given by local funetionals. Nonlocal cohomology 

classes exist only perturbatively, i.e., in a neighborhood of constant loops in LP1; but 

none of them extends to the whole of LP1. 
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We fix a smoothness class C k, k = l , 2 , . . . , o c ,  or Sobolev class W k'p, k=l,2,..., 
l ~ p <  oc. If M is a finite-dimensional complex manifold, consider the space LM=LkM, 
or Lk,pM, of maps SI=R/Z-+M of the given regularity. These spaces are complex 

manifolds modeled on a Banach space, except for L~M, which is modeled on a Fr~chet 

space. We shall focus on the loop space(s) LP1. As on any complex manifold, one can 

consider the space C~,~(LP1) of smooth (r, q)-forms, the operators 

Or, q: CT,~ (LP1) --+ C~,~+ i (LP1) 

and the associated Dolbeault groups 

H r'q (LP1) = Ker Or,q/Im Or,q--1 ; 

for all this, see e.g. [L1] and [L2]. On the other hand, let ~ be the space of holomorphic 

functions F: C x L C - + C  that  have the following properties: 

(1) F(~/A, A2y)=O(A 2) as C3A--+0; 

(2) F(s x+y)=F((, x)+F(~, y) if s u p p x ~ s u p p  y = ~ ;  

(3) F(ff, y + c o n s t ) = F ( ~ ,  y). 

As we shall see, the additivity property (2) implies that  F(~, y) is local in y. 

T H E O R E M  0 . 1 .  H ~  

In the case of L ~ P 1 ,  examples of F C ~  are 

F(~, y) = ~u {~, f i  y(d~)), (0.1) 
j=0 

where (I) is a distribution on S 1, y(d) denotes dth derivative, each dj ~> do = 1 and 0 ~ v ~ 2m. 

A general function in ~ can be approximated by linear combinations of functions of form 

(0.1), see Theorem 1.5. 

On any, possibly infinite-dimensional, complex manifold X, the space C~,q(X) can 

be given the compact-C ~ topology as follows. First, the compact-open topology on 

C~,o(X)=C~(X) is generated by C~ [[f[[K=SUPK [f[ for all compact KcX. 
The family of C'-seminorms is defined inductively: each C ' - l - s em in o rm  ]] �9 ]] on C ~ (TX) 
induces a C~-seminorm IIfll'=IIdfll on c~(x) .  The collection of all C'-seminorms, 

u=0,  1,..., defines the compact-C ~ topology on C~(X). The compact-C ~ topology 

on a general C~,q(X) is induced by the embedding C~,q(X)cC~((~ r+q TX). With this 

topology C~,q(X) is a separated locally convex vector space, complete if X is first count- 

able. The quotient space Hr'q(x) inherits a locally convex topology, not necessarily 

separated. We note that on the subspace O(X)cC~ of holomorphic functions, the 
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compact-C ~ topology restricts to the compact-open topology. The isomorphism in The- 

orem 0.1 is topological; it is also equivariant with respect to the obvious actions of the 

group of Ck-diffeomorphisms of S 1. 

There is another group, the group G~PSL(2 ,  C) of holomorphic automorphisms 

of P 1, whose holomorphic action on L P  1 ( b y  postcomposition) and on H ~ (LP1) will be 

of greater concern to us. Theorems 0.2-0.4 below will describe the structure of H ~ (LP1) 

as a G-module. Recall that  any irreducible (always holomorphic) G-module is isomorphic, 

for some n=0 ,  1, ..., to the space ~ of holomorphic differentials r -'~ of order - n  

on P1; here r is a polynomial, degr and G acts by pullback. (For this, see [BD, 

pp. 84-86], and note that  the subgroup ~SO(3)  formed by g C G that  preserve the Fubini- 

Study metric is a maximally real submanifold; hence the holomorphic representation 

theory of G agrees with the representation theory of SO(3).) The n th  isotypical subspace 

of a G-module V is the sum of all irreducible submodules isomorphic to ~i~. In particular, 

the 0th isotypical subspace is the space V c of fixed vectors. 

THEOREM 0.2. If  n>~l, the n-th isotypical subspace of H ~  is isomorphic 

to the space ~ spanned by functions of fo~n (0.1), with m=n.  

The isomorphism above is that  of locally convex spaces, as ~ or ~n have not been 

endowed with an action of G yet. But in w they will be, and we shall see that  the 

isomorphism in question is a G-morphism.- -The  fixed subspace of H~ can be 

described more explicitly, for any loop space: 

THEOREM 0.3. The space H~ a is isomorphic to the space C k - l ( S l )  * (resp. 

Wk-I 'p(s1)  *) if the dual spaces are endowed with the compact-open topology. 

The isomorphisms in Theorem 0.3 are not Diff SLequivariant.  To remedy this, one 

is led to introduce the spaces C~(S 1) (resp. W~'p(s1)) of differentials y(t)(dt) r of order 

r on S 1, of the corresponding regularity; L ~ = W  ~ Then H~ G will be Diff S L 

equivariantly isomorphic to C1 k-l(S1)* (resp. W1 k- 1,p(s1),). 

For low-regularity loop spaces one can very concretely represent all of H ~ 

THEOREM 0.4. (a) I f  l~<p<2, all of H~ is fixed by G. Hence it is iso- 
morphic to LP'(S1), with p ' = p / ( p -  1). 

(b) If l<<.p<~ then H~ is isomorphic to 

p--1 ( ~  p/(n+l) 1 * p--1 p 
fftn~Ln+ 1 (S ) .~ (~ ~| p n _  - - ,  

n=0 n=0 -- p- - l - -n  

and so it is the sum of its first [p] isotypical subspaees. Indeed, the isomorphisms above 

are G• Sl-equivariant, G and DiffS 1 respectively acting on one of the factors ~,~ 

and L q naturally, and trivially on the other. 
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Again, the dual spaces are endowed with the compact-open topology. 

It follows that  the infinite-dimensional space H ~ can be understood in 

finite terms, if it is considered as a representation space of S 1. Here S 1 acts on itself 

(by translations), hence also on LP1 and on H~ One can read off from Theo- 

rem 0.4 that  each irreducible representation of S 1 occurs in H ~ with the same 

multiplicity [p]2. On the other hand, for spaces of loops of regularity at least C l, in 

H~  each irreducible representation of S 1 occurs with infinite multiplicity, and, 

somewhat contrary to earlier expectations, it is not possible to associate with this co- 

homology space even a formal character of S i. This indicates that  Dolbeault groups of 

general loop spaces L M  should be studied as representations of Diff S 1 rather than S i. 

The structure of this paper is as follows. In w167 1 and 2 we study the space 3 as a 

G-module. Theorem 1.1 connects it with a similar but simpler space of functions that  

are required to satisfy only the first two of the three conditions defining 3. This result 

will be needed in proving the isomorphism H ~ ( L P 1 ) ~ C |  and also in concretely 

representing elements of 3- Further, we shall rely on Theorem 1.1 in identifying isotypical 

subspaees of 3 (Theorems 2.1 and 2.2). This will then prove Theorems 0.2-0.4, modulo 

Theorem 0.1. 

To prove Theorem 0.1, we shall cover LP1 with open sets 

L U a = { x E L P I : a ~ x ( S 1 ) } ,  a E P l ,  

each biholomorphic to LC. Given a cohomology class [f]EH~ represented by 

a closed fEC~,I(LP1) , we first solve the equation Oua=flnu~, see w If an appropri- 

ate normalizing condition is imposed on the solution, ua will be unique and depend 

holomorphically on a. At this point it is natural to introduce the Cech cocycle 

~= (U a --Ub: a, bEP1)  �9 z i ({LUa: a �9 P1}, O). (0.2) 

It turns out that  ~ depends only on the class [f], and the map [f] ~-~f is an isomorphism 

between H~ and a certain space ~ of cocycles (Theorem 3.3). 

In w we consider the infinitesimal version of (0.2). The function Our is 

holomorphic in x and ~, as long as ~r We write it as 

Ou~(x) 

and prove that F satisfies conditions (1), (2) and (3) above (Theorem 4.1). In w we 

prove that  the map H ~ 1 4 9  has a right inverse and its kernel is one- 

dimensional, whence Theorem 0.1 follows. In the final w we tie together loose ends, 

and also represent explicitly some Dolbeault classes in H ~ (LP1); for W I'p loop spaces 

with l~<p<2, this amounts to a concrete map LP(Si)*---+C~,I(LP1) that  induces the 

isomorphism in Theorem 0.4 (a). 
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1. T h e  space  

In this section and the next we shall study the structure of the space 5, independently of 

any cohomological content. It will be convenient to allow k to be any integer (but only 

in this section!); when k<0,  elements of Ck(S 1) and Wk'P(S ~) are distributions, locally 

equal to the - k t h  derivative of functions in C(S 1) and LP(S1), respectively. Let L C 

denote the space Ck-I(S ~) (resp. Wk-~'P(S1)). We shall write L(- )C to mean either 

LC or L - C .  Consider the space ~ of those FEO(C x L - C )  that  have properties (1) and 

(2) of the introduction. We shall refer to (2) as additivity. A function FEO(C x L(-)C) 

will be said to be posthomogeneous of degree m if F(r  ) is homogeneous of degree m 

for all r E C. Posthomogeneous degree endows the spaces ~ and ~ with a grading.--All 

maps below, unless otherwise mentioned, will be continuous and linear. 

THEOREM 1.1. The graded linear map ~F~-~FE~ given by F ( ~ , y ) = F ( ~ , y )  has 
a graded right inverse, and its kernel consists of functions F(~, x)=cons t  fSl x. 

First we shall consider functions E E ~  (resp. 5) that  are independent of ~. We 

denote the space of these functions ~ c O ( L C )  (resp. ~ c O ( L - C ) ) ,  graded by degree of 

homogeneity. Additivity of E E O (L(-)C) implies E(0)--0, which in turn implies property 

(1) of the introduction. Let 

/o 1 E= E,~, E,~(y) = E(e2~i'y)e -2m~i~ dT, (1.1) 
m = l  

be the homogeneous expansion of a general EEO(L( - )C)  vanishing at 0. Consider tensor 

powers (L(-)C) | of the vector spaces L(-)C over C. In particular, C~(Sx) | is an 

algebra, and a general (L(-)C) | is a module over it. Each E,~ in (1.1) induces a 

symmetric linear map 

Sm:(L(-)C) | ~C, 

called the polarization of E,~. On monomials, $m is defined by 

1 
~m(Yl| 2mm! E g l  ...gmEm(glYl-~-...--I-gmYra), (1 .2)  

~j =-4-1 

see e.g. [He, w and then extended by linearity. Thus Em(y)=gm(y| shall 

call w E (L(-) C) | degenerate if it is a linear combination of monomials Yl | | ym with 

some yj = 1. 

LEMMA 1.2. 

(b) 

(a) E is additive if and only if 

gm(Yl|174 =0 whenever N suppy j - -O .  
j=l 

E(y§ if and only if $m(W)=O whenever w is degenerate. 
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Proof. (a) Clearly E is additive precisely when all the Em are, whence it suffices to 

prove the claim when E itself is homogeneous, of degree m, say. In this case s  nr 
Denoting s by s it is also clear that  the condition on s implies that  E is additive. 

We show the converse by induction on m, the case m = l  being obvious. Let x, y E L ( - ) C  

have disjoint supports, so that 

E((z +y)  = E(z| + (1.3) 

Write Ax for x and separate terms of different degrees in A to find s174174  which 

settles the case m=2 .  Next, if we already know the claim when m is replaced by r n -  1~>2, 

take a z E L ( - ) C  with supp yNsupp z=O ,  and write x+)~z for x in (1.3). Considering the 

terms linear in A we obtain 

E(zQ(x+y) | =s174163 (1.4) 

the last term being 0. The same will hold if s u p p x N s u p p z = O .  Since any z E L ( - ) C  

can be written zl+z" with the support of z ~ (resp. z ~) disjoint from the support of x 

(resp. y), (1.4) in fact holds for all z. By the induction hypothesis applied to s174  ), 

s174174 if A s u p p y j = ~ .  
j = 2  

m I _j._ I !  Suppose now that  m j = l s u p p y j = O  and write yl=y y with yl=O near N j#2suppy j  

and y " = 0  near Nj#3 supp yj. Then 

E(yl| | = 8(y'| | +E(y"|174 = 0. 

(b) Again we assume that  E is m-homogeneous, and again one implication is trivial. 

So assume that  s174174 where s163  Differentiating both sides in the 

directions Y2, ...,ym and setting y = 0  we obtain s174174174 whence the claim 

follows. 

PROPOSITION 1.3. The graded map ~sF,~-+EE~ given by E(y)= /~(y)  has a graded 
right inverse, and its kernel is spanned by E(x)=fs1 x. 

We shall write f x  for f51 x. 

Proof. (a) To identify the kernel, because of homogeneous expansions, it will suffice 

to deal with homogeneous /~. So assume that  E E ~  is homogeneous of degree m and 

tha t /~ (y ) - -0  for all yELC. Its polarization s s a t i s f i e s  ~(yl |174  If r n = l ,  this 

implies that  E(x)=constfx, so from now on we assume that  rn~>2, and first we prove 
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by induction that  ~(Xl| YI fxj.  Suppose that  we already know this for 

m -  1. Then 
m 

With arbitrary xlEL-C the function x l - f x l  is of form ~), so zl=y+fxl  and 

m 

fx , 
j = 2  

where l(Xl)=C(xl-fxl) is linear in Xl. If fxl=O and s u p p x ] • S  1, then we can choose 
m x2, ... so that  Nj=I s u p p x j = •  but fxjr j~2. This makes the left-hand side of (1.5) 

vanish by Lemma 1.2 (a), and gives /(Xl)--0. Since any xlEL-C with fxl=O can be 

written Xl=X'+X" with fx'--fx"=O and suppx', s u p p x " r  1, it follows that  / (Xl)=0 

whenever fXl - -0 .  Hence l(xl)=constfxl. In particular, the first term on the right 

of (1.5) is symmetric in xy. Therefore the second term must be symmetric too, which 

implies that  this term is const lljm=l f xj. Thus/~(x)  =cons t  (f  z) m. 
Yet for m~>2, E(x)=const(fx) m is additive only if it is identically zero; so indeed 

/~(x) =const  f x, as claimed. 

(b) To construct the right inverse, consider E E ~ with homogeneous expansion (1.1). 

We shall construct m-homogeneous polynomials/~mE ~ such that  E,~(y)=Em(y). Define 

EI(X)=EI(y), where y is chosen so that  ~]=x-fx. Now assume m~>2. Let us say that  

an n-tuple of functions Q,: S1--+C is centered if N~=I supp Q,~O.  We start  by fixing a 

C ~ partit ion of unity ~ e e P  p = l  on S 1 such that  each supp P is an arc of length less 

than �88 This implies that  n is arc 1 if Pl, Pn E P  U~=I s u p p  p ~  an of length less than ~ ..., 

are centered. Given xEL-C, for each centered R=(pl,..., On) in P construct yRELC 
so that  yR = x  on a neighborhood of un=I  supp p~, making sure that  YR----YQ if Q and R 

agree as sets. For noncentered n-tuples R in P let yRELC be arbitrary. We shall refer 

to the YR as local integrals. 

If Q and R are centered tuples in P then 

( u su p  o( u sappy) (1.6) 
~ E Q  ~ \QER 

When the intersection in (1.6) is empty, or one of Q and R is noncentered, fix CO, REC 

arbitrarily. Define 
fcQR 

VQR = mJo (yR+~-) | d~" E (LC)  |  , (1.7) 

and with the polarization Cm of Em from (1.2) consider 

z z 
R : ( e l  ..... ~Om) S : ( c r 2  ..... o 'm) 
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we sum over all m-tuples R and (m-1)- tuples  S in P. (We will not need it, but here is 

an explanation of (1.8). Say that  tensors w, wlEL(-)C | are congruent, w=-w ~, if w - w  ~ 

is the sum of a degenerate tensor and of monomials xl|174 with ~ j  suppxj--=~. De- 

note by 0 m the linear map (LC) |  | defined by O'*(ylQ...|174174 . 

Then the symmetrization of the argument of Cm in (1.8) is a solution w of the congruence 

O m w - x  | in fact it is the unique symmetric solution, up to congruence. It follows that  

for the/~m sought, /~rn(X) must be equal to Cm(w), which, in turn, equals (1.8).) 

We claim that  the value in (1.8) depends only on x (and g,~), but not on the partition 

of unity P and the local integrals YR. Indeed, suppose first that  the local integrals YR are 

changed to ?)R, so that  the CQR change to ~OR and voR to 7)QR; but we do not change P. 

There are cRE C such that for all centered R, 

~)R = YR +CR on  U s u p p  O. 
eER 

Let ]  cR( UR = m yR+w) | dr. (1.9) 

Clearly dQR=CQR+CQ--CR if QtAR is centered. In this case one computes also 

1 ^ f~Q" -mVQR = JO (~]R-~T) | dT 

CQR cR _-[ (1.10) 
JO JO 

+ foCQ(#R--CR+CQR+ T) | dr. 

Because of Lemma 1.2 (a), in (1.8) only centered R, and such S that  R t J S  is centered, 

will contribute. When yR ~m is changed to ~)~m, the corresponding contributions change 

by 

EEm (u .+  r) | dt 
R 

(/5 ) : E gm COl| | dr 
R 

= E c~"m((cOl@'"|174 
R 

When VQR is changed to ~?OR, in view of (1.10), (1.6) and (1.9), the contribution of the 

terms in the double sum in (1.8) changes by 

s ((mOl |174174 ( 9s r)N(m-l) dr--/ooCR(yR-t-r)| dr)) 

=gm((Ol|174174174174 
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The net change in (1.8) is therefore 

gm(E(OI|174174 =gm(E(I@o'2|174 
R,S " S 

by Lemma 1.2 (b), as needed. 

Now to pass from P to another partit ion of unity p/, introduce 

H = { 0 d :  o E P  and o'EPI}. 

One easily shows that  P and H give rise to the same value in (1.8), hence so do P and p/ .  

Therefore (1.8) indeed depends only on x, and we define E,~(x) to be this value. We 

proceed to check tha t /~m has the required properties. 

If x=~) then all YR can be chosen as y, and (1.8) gives Em(~))=E~(y). Next suppose 

that  x l , x 'CL-C  have disjoint supports, and x=x~+x ". If the supports of all p E P  are 

sufficiently small, then the local integrals y~ and y~ of x I and x ' ,  respectively, can be 

chosen so that  for each R one of them is 0. Hence the local integrals yR=yR YR of x 

will satisfy ~ | o/| .| 9 R  = ~ J R  T~]R  , whence FJm(x)=Em(xt)-~-F_lm(X II) follows. 

To show that  }-~.m~=l/~m is convergent and represents a holomorphic function, note 

that  Era(x) is the sum of terms 

C~(O]yRN...| 

fo I~m(QlCSR@Q20"2(YR-'FCSRT)@...@QmO'm(YR+CSRT) ) dT 
(1.11) 

(we have substituted CqRZ" for ~" in (1.7)). Since yRELC and CQREC c a n  be chosen 

to depend on x in a continuous linear way, each E,~ is a homogeneous polynomial of 

degree m. Furthermore, let K c L - C  be compact. For each xEK,  m E N  and m-tuples 

Q and R in P,  we can choose YR and CqR so that  all the functions 

LOCQR a n d  Od(yR+CQRT), 

~, o t cP ,  0~T~I, belong to some compact H c L C .  By passing to the balanced hull, it 

can be assumed that  H is balanced. If A>0, (1.1) implies 

max IEml : N--m m a x  l e v i  ~ ~-m m a x  IEI = A ~  - m ,  
H ,kH NH 

so that  by (1.2), 

Igm(Zl|174 <~ A--~-f. A <~ A [ ~ )  , 
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if each z ,  EH. Thus each term in (1.11) satisfies this estimate. If IPI denotes the 

cardinality of P, we obtain, in view of (1.8), 

mKaxtE,~]<<.(IPI"~+mlPI~"~-I)A(~) ~. 

Choosing I,~l >elPI 2 we conclude that ~r~=l ,~ uniformly converges on K, and, K being 

arbitrary, =Y'~m=l Em is holomorphic. By what we have already proved for/~m, E E ~  

and/~(?))=E(y). The above estimates also show that the map E ~ E  is continuous and 

linear, which completes the proof of Proposition 1.3. 

Now consider an F E O ( C  x L(-)C) and its posthomogeneous expansion 

~01 e2~i'y) e -2m~i~ dT F =  Fm, Fm(~,y)= F(~, . (1.12) 
m = 0  

PROPOSITION 1.4. The function F satisfies condition (1) of the introduction if and 

only if each Fm is a polynomial in I, of degree ~<2m-2 (in particular, F0=0). 

Proof. As F satisfies (1) precisely when each Fm does, the statement is obvious. 

Proof of Theorem 1.1. Apply Proposition 1.3 on each slice {I} x L(-)C. Accordingly, 

an F in the kernel is posthomogeneous of degree 1, hence, by Proposition 1.4, independent 

of I. Thus indeed F(I ,  x )=cons t f x .  Fhrther, the slicewise right inverse applied to FE;~ 

produces an additive /~, which will be holomorphic on C x LC, since the map E~-+/~ 

is continuous and linear. To see that _F also verifies condition (1) of the introduction, 

expand F in a posthomogeneous series 

c~ o0 2 r n - 2  

m = l  m = l  v = 0  

(1.13) 

by Proposition 1.4, so that 

c~ 2 r n - 2  

1  mv(x), 
r n = l  u = 0  

with E,~v m-homogeneous. Again by Proposition 1.4, /~ satisfies condition (1), and so 

belongs to 5- 

Theorem 1.1 can be used effectively to describe elements of the space 5- With 

ulterior motives we switch notation r n = n + l ,  and consider a homogeneous polynomial 
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E E O(L-C)  of degree n +  1~> 1. Its polarization s defines a distribution D on the torus 

( s1)n+I=T.  Indeed, denote the coordinates on T by tj E R / Z  and set 

/ n  / 
D, II =E(Xo| (1.14) 

- j=O " 

Since E is continuous, 

Is174174 <~crI I]xjllcq(s1) with some c > 0  and qEN.  
j=0 

Hence (1.14) can be estimated, in absolute value, by c' 1-I~-0 (1 + ]uj I) q, and it follows 

by Fourier expansion that  D extends to a unique linear form on C~(T) .  Clearly, D is 

symmetric, i.e., invariant under permutation of the factors S 1 of T. Also, 

s |174 -- (D, Xo| (1.15) 

n t if on the right xo|174 is identified with the function [Iy=0 x j ( j ) .  

Assume now that  E E l .  Lemma 1.2 (a) implies that  D is supported on the diagonal 

of T. The form of distributions supported on submanifolds is in general well understood; 

in the case at hand, e.g. [Hh, Theorem 2.3.5], gives that  D is a finite sum of distributions 

of form 
~ \ 

C ~ ~ L01 ) V, ~ . ~ . ~  diag/ Olj ~0, 

where �9 is a distribution on the diagonal of T. In view of Theorem 1.1 and (1.12)-(1.13) 

we have therefore proved the following result: 

THEOREM 1.5. The restriction of an (n+l)-posthomogeneous F E ~  (resp. 3) to 

C •  1) is a finite sum of functions of form 

f ( ~ , y ) = ~ ,  ~, y(dj) , u<~2n, dj>~do----1 (resp. O), 

where �9 is a distribution on S 1. For a general F E ~ ( resp. 3 ) the restriction F I c •  

is the limit, in the topology of O(C x C~(S1)) ,  of finite sums of the above functions. 

2. T h e  G - a c t i o n  o n  

For gEG let Jg(~)--d(g~)/d~. By considering the posthomogeneous expansion (1.12)- 

(1.13) of F E ~  (resp. 3),  one checks that  the function gF defined by 

(gF) (~, y) = F(g~, y/Jg(~)) Jg(~) (2.1) 
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extends to all of C x L(-)C, and the extension (also denoted gF) belongs to 3 (resp. 5). 

The action thus defined makes 3 and ~ holomorphic G-modules. The nth isotypical 

snbspace 3 n (resp. ~n) is the subspace of (n+l)-posthomogeneous functions. In this 

section we shall describe the space 3 ~ and, for W I'p loop spaces, the spaces 3 n as well, 

n~>l. 

THEOREM 2.1. 3 ~  the dual endowed with the compact-open topology. 

If L - C  is interpreted as the space of one-forms on S 1 of the corresponding regularity, 

then the isomorphism is Diff Sl-equivariant. 

Proof. Indeed, the map ( L - C ) * = ~ ~  ~ associating with (I)E(L-C)* the function 

F ( y ) = ( ~ ,  y) (or ((i5, dy)) has one-dimensional kernel and a right inverse by Theorem 1.1. 

THEOREM 2.2. In the case of W I'p loop spaces, 3 - - - - (~ -o3  ~. Furthermore, 

. ~ @ L P / ( n + I ) ( s 1 ) *  ~ 3 n  , l <~ n<~p-1,  

as G-modules, G acting on LP/(n+I)(S1) * trivially. Indeed, the map ~ |  given by 

F((,y)=~b(~)<O,y"+l),  ~(( )=g)(( ) (d()  -'~, (2.2) 

induces the isomorphism above. (To achieve Diff Sl-equivariant isomorphism, replace 
L p/(n+l) (S 1) by the space rp/(n+l) t~l~ ~ + 1  ~ j of (n+l)-differentials.) 

We shall need a few auxiliary results to prove the theorem. 

LEMMA 2.3. Let m>~2 be an integer and �9 a distribution on S 1. If the function 

c ~ ( s l )  ~x,  > < ~ , x ~ > e c  (2.3) 

extends to a homogeneous polynomial E on LP(S1), then Q-O,  or m ~ p  and ko extends 

to a form �9 on Lp/m(s1). In the latter case the map E~+~ is continuous and linear. 

Proof. There is a constant C such that 

i(~,x,~)l=lE(x)l<<.C Ixl p) , xeC~(S~).  (2.4) 

Let z e C ~ 1 7 6  1) be real-valued and x~=(z+ic ) l /mec~  By (2.4), 

/ I" \m/p  

k d  / 
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As the same estimate holds for imaginary z, it will hold for a general zEC~176 1) too, 

perhaps with a different C. Therefore ~ extends to a form 4) on LP/'~(S1). Unless p>~m, 
4)=0 by Day's theorem [D]. With zCLB/'~(S~), any choice of measurable rnth root z 1/'~, 
and y~EC~176 1) converging to z 1/m in L p, 

{4), z) -- lim (4), y y )  = lira E(y~) = E(zl/'~). 
e~O e--,',O 

This shows that 4) is uniquely determined by E,  and depends continuously and linearly 

on E. 

In the rest of this section we work with W l'p loop spaces. Write ffnC ff and ~ C 

for the space of (n+l)-homogeneous functions. 

LEMMA 2.4. / f  rn>~2 and EG~m-IcO(LP(S1)),  then E(x)=(4),x m) with a unique 
4)ELP/m(S1)*. In particular, E = 0  if rn>p. Also, the map E~+4) is an isomorphism 
between ~m-1 and Lp/m(s1) *. 

Proof. We shall prove this by induction, first assuming m =2 .  By Theorem 1.5 there 

are distributions 4)~ so that  

d 

Now any x(~)x (~) will be a linear combination of expressions (x(J)2g(J)) (h), a8 one easily 

proves by induction on [a-/31. It follows that  E can be written with distributions ~ j  as 

d 

j=O 

(2.5) 

Next we show that  d=O. 

Indeed, assuming d>O, for fixed z c C c ~ ( S 1 ) ,  

2d-1 

E ( c o s  )~x) + E(sin )~x) = )~2d ( l~ d ' ~2d) _~ E cj (X) )~J (2.6) 
j = 0  

is a polynomial in ),. For fixed )~EC the maps x~+cos Ax and x~+sin Ax map the Banach 

algebra WI'I(S ~) holomorphically into itself, hence into LP(S1). Therefore the left- 

hand side of (2.6) emends to W1'1($1), and consequently (~d ,2  2a) also extends. The 

extension of the latter will be an additive, 2d-homogeneous polynomial E '  on W 1'1 ($1), 
satisfying E'(x+const)=E'(x). By Proposition 1.3 there is therefore a unique additive 
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2d-homogeneous polynomial E on W~ 1) such that  E ' (x)=/~(k) .  Since the 

restriction E [c~ (s~) is also unique, 

= zEC (SI). 

In particular, the expression on the right continuously extends to LI(S1). By virtue of 

Lemma 2.3, ~d----0. Thus (2.5) reduces to E(x)=(kO, x2), xEC~(S1), and by another 

application of Lemma 2.3, ko extends to a form (I) on LP/~(SI). 
Now assume that  the lemma is known for degree m - 1  ~> 2, and consider an E E ~m-1, 

together with its polarization g. For fixed xl E C ~ (S 1) the inductive assumption implies 
m 

that  there is a distribution O such that  g(xl|174 1-Ij=2 xj); in particular, 

~ ( X l | 1 7 4  X l |  X j @ I @ . . . |  , x E C ~ 1 7 6  

j=2 

m 
The case m = 2  now gives a distribution ko such that  g(xl|174 1-[j=lxj). We 

conclude by Lemma 2.3: ko extends to r *, and (I)=0 unless m~p. It is 

clear that  �9 is uniquely determined by E, and the map ~m-ISE~-~ELP/m(S1)* is an 

isomorphism. 

Proof of Theorem 2.2. To construct the inverse of the map defined by (2.2), write 

an arbitrary FE~ n, n~ l, as 

")/t 

F(r = E CE (y), E ,  E ~n, 

cf. Proposition 1.4, and find the unique E~ E ~ so that E,(y)=E~(y), see Proposition 1.3. 

By Lemma 2.4 there are unique r * such that  E,(x)=(O,,x~+l}. If 

p < n + l  then (I).=0, and so ~ = ( 0 ) .  Otherwise the map 

2n 

~ F ,  > E~' (d~)-~|174 * 
v~O 

is the inverse of the map given in (2.2), so (2.2) indeed induces an isomorphism. Finally, 

the posthomogeneous expansion of an arbitrary F E ~  is 

[p-l] 

n~0 n=O 

which completes the proof. 
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3. Cuspidal cocycles 

In this section we shall construct an isomorphism between H ~ (LP1) and a space of holo- 

morphic Cech cocycles on LP1. We represent P1 as CU{c~}. Constant loops constitute 

a submanifold of LP1,  which we identify with P1. If a, b, . . . �9  set U,b... = P l \ { a ,  b, ...}. 

Thus LUa, aEP1,  form an open cover of LP1,  with LU~=LC a Fr6chet algebra. I fg �9  
then g(LU~)=LUg~. 

Suppose that  we are given v : P I - + C ,  finitely many a,b,...�9 and a function 

u: LUab...--+C. If oo is among a, b, ..., let us say that  u is v-cuspidal at c~ ifu(x+A)-+v(oc) 
as C~A-+oo,  for all x�9 and in general, that  u is v-cuspidal if g*u is g*v-cuspidal 

at oo for all g�9  that  maps c~ to one of a, b, .... When v--0, we simply speak of cuspidal 

functions. 

PROPOSITION 3.1. Given a closed f�9 ) and v � 9  such that Ov= 
l iP1,  for each a � 9  there is a unique v-cuspidal u~eC~(LU~) that so lves  ~ U a = f l L u  . 

Furthermore, u~lv =vlv,, and u(a, x)=u,(x) is smooth in (a, x) and holomorphic in a. 

Proof. Uniqueness follows since for fixed g�9  and y �9  on the line {g(y+A): 

A �9  } the c~-equation is uniquely solvable up to an additive constant, which constant is 

determined by the cuspidal condition. To construct Ua, fiX a g�9  with goo=a, let 

Y = { y � 9  

and 

Pg:PI• >g(y+)~)ELP1, 

a biholomorphism between C x Y  and LUa. Setting fg=P~f, by [L1, Theorem 5.4] 

on the Pl -bundle  P1 •  the equation Oug=f9 has a unique smooth solution satisfying 

Ug(CX~,X)=v(a). It follows that  ua=(P~-l)*(uglc• solves Ou,=flLv.. Also, g*ua is 

g*v-cuspidal at oo. On Ua both u ,  and v solve the same ch-equation, and have the same 

limit at a; hence u, lua=vlu. 
One can also consider 

P:PI•215  >g(y+)~)eLP1 

and f '=P*f .  Again by [L1, Theorem 5.4], on the Pl -bundle  P I •  the equation 

Ou'--f' has a smooth solution satisfying u'(oo, g, x)=v(gc~). Uniqueness of ug implies 

u'(A, g, x)=ug()~, x), whence Ug(A, x) depends smoothly on (A, g, x), and ua(x) on (a, x). 

Furthermore, u' is holomorphic on P-l(x)  for any x. In particular, if gCG with g ~ = a  
is chosen to depend holomorphically on a (which can be done locally), then it follows 

that  ua(x)=u'(g-lx(O), g, g-lx-g-Zx(O)) is holomorphic in a. 



256 L. L E M P E R T  AND N. Z H A N G  

Since f determines v up to an additive constant, we can uniquely associate with f 

the Cech cocycle f=(u,--Ub :a, bEP1). The components of f are cuspidal holomorphic 

functions on LU~b. One easily verifies: 

PROPOSITION 3.2. The form f is exact if and only if ~=0. Hence ~ depends only 
on the cohomology class [f]EH~ The components h~b([f],x) of ~ depend holo- 
morphieally on a, bEP1 and xELUab, and satisfy the transformation formula 

hg~,gb([f],gx) =hab(g*[f],x), gEG, xELU~b. (3.1) 

Set 

gt = {(a, b,x) EP1 xP1 •  :a, b~x(S1)}. 

Let f) denote the space of those holomorphic cocycles O=(Oab)a,b~P1 of the covering 

{LUa} for which b~b(X) depends holomorphically on a, b and xELU~b, and each O~b is 

cuspidal. Then 2)C(9(12), with the compact-open topology, is a complete, separated, 

locally convex space. The action of G on ~ induces a G-module structure on f): 

=  ga,gb(gx), g G. (3.2)  

Proposition 3.2 implies that  the map [f]~-+f is a monomorphism H~ of G- 

modules. 

THEOREM 3.3. The map [f]~-+f is an isomorphism H~ 

The proof would be routine if the loop space LP1 admitted smooth partitions of 

unity; but a typical loop space does not, see [K]. The proof that  we offer here will work 

only when the loops in LP1 are of regularity W 1'3 at least, and we shall return to the 

case of LI,pP1, p<3,  in w 

Those gEG that  preserve the Fhbini-Study metric form a subgroup (isomorphic to) 

SO(3). Denote the Haar probability measure on SO(3) by dg. 

LEMMA 3.4. Unless LPI=LI,pP1, p<3,  there is a xEC~(LP1) such that X=0 in 
a neighborhood of LPI \LC={x:  ocEx(S1)}, and f so (3 )g*xdg=l .  

Proof. With CoE (0, c~) to be specified later, fix a nonnegative e E C ~ ( R )  such that  

p(T)=l  (resp. 0) when 17-]<c0 (resp. >2c0). For xELC let 

r  (l+ix12)3/4) 

and define r  if xELPI\LC.  We claim that  r vanishes in a neighborhood of an 

arbitrary xELPI\LC.  This will then also imply that  CEC~(LP~) .  



D O L B E A U L T  C O H O M O L O G Y  OF A L O O P  SPACE 257 

Indeed, suppose x( t0)=cc .  In a neighborhood of toES 1 the function z=l/x is W 1,3, 
hence H61der continuous with exponent -~ by the Sobolev embedding theorem [Hh, Theo- 

rem 4.5.12]. In this neighborhood therefore Ix(t)l>-clt-t01 -=/3 and fsz (X+lxlZ) 3/4 = ~ .  

When yELC is close to x, fs~(l+iy[2)3/4>2co, i.e. r  

Next we show that  for every xELP~ there is a gESO(3) with r Let d(a, b) 
denote the Fubini-Study distance between a, bE P1; then with some c> 0, 

1+[<12 ~ d(~, oc)------ ~ and (1§ ~d(x'~176 -3/2. 

Hence 

~0(3) g( l§ ,gx(~)12)314 d~g ~ c~1 go(3)d(gx(~), ~)-3/2 dg d~-- c~, 
where, for any ~EP1, 

I-- ~0(3/(~, ~)-3/, ~ _-/~d(, ~)-3/~ (30, 

the last integral with respect to the Fubini-Study area form. If Co is chosen larger than cI, 
then indeed fs~(l+lgxl2)a/4<eo and ~(gx)=l for some gESO(3). 

It follows that  fso(3) r dg>O, and we can take X(X)=r ~(gx) dg. 
Proof of Theorem 3.3. Given i)E~, extend (g*x)[~,,g-~oo from LUa,g-~ to LU~ by 

zero, and define the cuspidal functions 

Ua= fs (g*x)b~,9-~dg, aEP1. 0(3) 

Then Ua--Ub--~fso(3)(g*x)[)abdg=l~ab, SO that  f=bua on LU~ consistently defines a 

closed fEC~,,I(LP1 ). It is immediate that  the map b~-+[f]EH~ is left inverse 

to the monomorphism [fib+f, whence the theorem follows. 

4. T h e  m a p  .~-+~ 

Consider an [~ = (bah)E~. The cocycle relation implies that  dr162 is independent of a; 

for ~ E C we can write it as 

dr162 ~ , - ~  d~, xELUr (4.1) 

where FE(_O(C• Set F = ~ ( b ) .  Since I )~=0,  

[),b(X) ---- F r de, (4.2) 

provided a and b are in the same component of P l \ x ( S 1 ) - - w h i c h  we shall express by 

saying that  x does not separate a and b - - ,  and we integrate along a path within this 

component. The main result of this section is the following theorem. 
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THEOREM 4.1. a ( 0 ) = F E ~ .  

The heart of the matter  will be the special case when 0 is in an irreducible submodule 

~ .  A vector that  corresponds, in this isomorphism, to c o n s t ( d ( ) - ~ E ~  is said to be 

of lowest weight - n .  Thus, if [ is of lowest weight -n~<0, then 

g*,[=A-n[, when g ~ = A ~ ,  AEC\{0} ,  (4.3) 

g~,[ = [, when g ~  = ~+A, AEC. (4.4) 

Conversely, an [50  satisfying (4.3) and (4.4) is a lowest-weight vector and spans an 

irreducible submodule, isomorphic to ~ ,  but we shall not need this fact. 

If [E~ satisfies (4.4), then [oor162 by (3.2), whence deice(X) depends 

only on ~ - x ,  and a([) is of form F(~,y)=E(y). If, in addition, [ satisfies (4.3), then 

similarly it follows that E E O(LC)  is homogeneous of degree n +  1. We now fix a nonzero 

lowest-weight vector leg), the corresponding (n+l)-homogeneous polynomial E and its 

polarization $, cf. (1.2). 

PROPOSITION 4.2. E(l|174 and so E(y+const)=E(y). 

Proof. Since [~oEO(LU~0)  is cuspidal and homogeneous of order - n ,  

(1) 
0 = l i m  [~0 = lira A n [cr . 

~-~r162 l + x / A  

Thus [~o vanishes at 1 to order ~>n+l. Hence 

0-~ r 1 7 6  ~ r 1 6 2  

vanishes at x = l  to order >~n, and the same holds for E(x). Differentiating E in the 

directions Yl, ..., Yn, we obtain at x = l ,  as needed, that n!C(l|174174 

Let ~nS~-~0~EY) denote the homomorphism that maps (d~) -n  to [. 

PROPOSITION 4.3. 

dr162 d~, ~(~) =~(~)(d~)  -n. (4.5) 

By homogeneity, the right-hand side can also be written ~(~) E(d~/ ( ~-x)  ). 

Proof. Denote the form on the left-hand side of (4.5) by w ~. In view of (3.2), it 

transforms under the action of G on P1 • LP1 as 

g*w ~ =w g~, gEG. (4.6) 
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If we show that  the right-hand side of (4.5) transforms in the same way, then (4.5) 

will follow, since it holds when ~p--1, see (4.1). In fact, it will suffice to check the 

transformation formula for g~=A~, g~=~+)~ and g~= l /~ ,  maps that  generate G. We 

shall do this for the last map, the most challenging of the three types. The pullback of 

the right-hand side of (4.5) by g~=l/~ is 

by Proposition 4.2, which is what we need. 

The form $ defines a symmetric distribution D on the torus T~-(S1) n+l as in w 

cf. (1.14). By (1.15), (4.2) and Proposition 4.3, 

b~b(X) = r D, ~ , x | 1 7 4  de, ~a=r162162 -n,  (4.7) 

provided xEL~Uab does not separate a and b. To prove Theorem 4.1, we have to under- 

stand supp D. Let 

O={xeC~177162 and O'={xeO:[- i , i]Nx(S1)=O},  

where [- i ,  i] stands for the segment joining •  

LEMMA 4.4. With A a symmetric distribution on T=(S1)  n+l and u = 0 , . . . , 2 n - 2 ,  

let 

I,(x) = =-=: |  Cd4,  xeO' .  
i,i] 

If each I,  continues analytically to 0 then A is supported on the diagonal of T. 

In preparation for the proof, consider a holomorphic vector field V on O, and ob- 

serve that  VI,  Mso continues analytically to O. Such vector fields can be thought of as 

holomorphic maps V: O--+C~(S1). Using the symmetry of A we compute 

(VI , ) (x)=(n+l)  ~[_~,~] ; A ,  (~--X) 2V(x) 1 1 )  |174174 ~'d~, xeO'.  (4.8) 

Proof of Lemma 4.4, case n = l .  Let $0r 1. To show that  A vanishes near 

$= ($o, ~1), construct a smooth family x~,s E O of loops, where ~E [0, 1] and s e T  is in a 

neighborhood of ~, so that  

x~,s(r)=(-1)J(e2+(r-sj)2), when TeS  1 is near gj, j = 0 , 1 ;  (4.9) 
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here, perhaps abusively, ~--sj  denotes both a point in S I = R / Z  and its representative 

in R that  is closest to 0. Make sure that  x~,s EO ' when c>0.  Fix Yo, YlCC~176 1) so that  

y j = l  near Sj, and (4.9) holds when T and sj are in a neighborhood of suppyj .  This 

forces Y0 and Yl to have disjoint support. With constant vector fields Vd=y j, 

(ViVoIo)(x)=2 A, de, xEO', (4.10) 
i , i j  2 2 

analytically continues to O. In particular, for ~>0 and t =  (to, t l )E  T, setting 

K~(t, s) = f[_ yo(to)yl (tl) d~ 
i,i] (~-x~,s(to))~(~-xE,~(tl)) 2' s near ~, 

it follows that (A, K~( . ,  s)} stays bounded as e-+0. Therefore, if QEC~(T) is supported 

in a sufficiently small neighborhood of $, then 

IA, e4 fTK~ (. ,s)o(s)ds)-+0, e--+O. (4.11) 

On the other hand, we shall show that  for such Q, 

en/yKs(.,s)o(s)ds-+co, e--+O, (4.12) 

in the topology of C ~ ( T ) ;  here c ~ 0  is a constant. 

It will suffice to verify (4.12) on suppy0|  since both sides vanish on the com- 

plement. Thus we shall work on small neighborhoods of g; we can pretend that  S ER 2, 

and work on R 2 instead of T. When s, t E R :  are close to $, the left-hand side of (4.12) 

becomes 

c4y0(t0)  yl  ( t l )  f f p(s) d~ds . (4.13) 
J R  2 J[--i,i] (~__~2 __ (8 0 __t0)2)2 (~Ar-s ~- (S 1 _ta)2)2 

Substituting s=t+r and ~=r we compute that the limit in (4.12) is 

o(t+~u) d~ du 
~i~moY~176 J R  2 ~[--i/~2, i/s 2] (~--1--U2)2 (~+ l+U2) 2 

(4.14) 

fR o( t ) du = 4 iy0 (to) ( t l )  ( 2 + u ]  - ce( t ) ,  

if yo |  on supp l .  This limit is first seen to hold uniformly. However, since the 

integral operator in (4.13) is a convolution, in (4.14) in fact all derivatives converge 

uniformly. Now (4.11) and (4.12) imply that  (A, Q)=0, so that  A vanishes close to $. 
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Proof of Lemma 4.4, general n. The base case n = l  settled and the statement being 

vacuous when n=0,  we prove by induction. Assume that  the lemma holds on the n- 

dimensional torus, and with y c C ~ (S 1), consider the holomorphic vector fields V~ (x) = 

yx', #=0,  1, 2. (These vector fields continue to all of LP1, and generate the Lie algebra 

of the loop group LG.) In view of (4.8), for xEO ~, 

/_i, i]lA, y| ~ x | 1 7 4  ~l~x}~'dQ=n~(VoZ~,+2-2Vllv+l+V2I~ ). (4.15) 

Therefore the left-hand side continues analytically to O, provided u=0,  ..., 2 n - 4 .  If AY 

denotes the distribution on ($1) n defined by (A y, Q)=(A,y|  the left-hand side of 

(4.15) is 

/_ l-L-| | l \cd . 
i,ij \ Q - x  "'" Q - x ~  

The inductive hypothesis implies that  AY is supported on the diagonal of ($1) n. This 

being true for all y, the symmetric distribution A itself must be supported on the diag- 

onal. 

COROLLARY 4.5. The distribution D in (4.7) is supported on the diagonal of T. 

Proof of Theorem 4.1. First assume that  beg) is in an irreducible submodule ~ ,  

and [r  is a lowest-weight vector in this submodule. Thus b=b ~ for some ~E~t~, ~(Q)= 

r -~. With [ we associated an (n+l)-homogeneous polynomial E on LC and a dis- 

tribution D on ($1) ~+1. By Proposition 4.3, F(Q, y)=~(Q)E(y), and so F(~, y+cons t )=  

F(Q,y) by Proposition 4.2. Since deg r F(Q/;~, A2y)=O(A 2) as L-+0. Finally, take 

x, yELC with disjoint supports. If x,yEC~(S1), then 

E(x+y) = (D, (x-~-y) | ) = (D,  x |  ) ~- (D,  yQ(n+l)  ) = E(x) +E(y), 

as supp D is on the diagonal. By approximation, E(x+y) =E(x)  +E(y) follows in general, 

whence F itself is additive. We conclude that  F E ~  if b is in an irreducible submodule. 

By linearity it follows that  F E ~  whenever b is in the span of irreducible submodules. 

Since this span is dense in ~) (cf. [BD, III.5.7] and the explanation in the introduction 

connecting representations of G with those of the compact group SO(3)), c~(b)c~ for all 

beg). 

THEOREM 4.6. The map a is a G-morphism. 

Proof. It suffices to verify that  the restriction of a to an irreducible submodule of 

2) is a G-morphism, which follows directly from Proposition 4.3. 
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5. T h e  s t r u c t u r e  o f  2) 

The main result of this section is the following theorem: 

THEOREM 5.1. The G-morphism ~:2)--+~ has a right inverse ~. Its kez~nel is one- 

dimensional, spanned by the G-invariant eocycle 

bah(X) =indabX (5.1) 

(the winding number of x: $1-+ Uab ). 

We shall need the following result: 

LEMMA 5.2. With notation as in w suppose that z l ,  . . . , zNEL-C are such that no 

point in S 1 is contained in the support of more than two zj. If FE~  then 

N N 

(5.2) 

In particular, if N>~3, and, writing zo=zN, only consecutive suppzj's intersect each 

other, then 
N N N 

j=l ~ j=l j=] 

Proof. It will suffice to verify (5.2) when F(~, z)=/~(z) is homogeneous, in which 

case it follows by expressing both sides in terms of the polarization of E, and using 

Lemma 1.2 (a). The second formula follows from (5.2) by applying additivity to terms 

with nonconsecutive i and j. 

Proof of Theorem 5.1. (a) Construction of the right inverse. By Theorem 1.1, for 

F E ~  we can choose FE~,  depending linearly on F, so that F(~,y)=F(~,y) .  With 

xcLP1 consider the differential form 

holomorphic in C\x(S1).  In fact, it is holomorphic at ~=oc as well, provided c~x(S1) ,  

since the coefficient of d~ vanishes to second order at ~= co. This latter is easily verified 

when F(~ ,z )=r  and /~ is (n+l)-homogeneous, ,~<2n; in general it follows from 

the posthomogeneous expansion 

o z  o o  2 n  
v N 

F(~', z )=  E :F,~(r z) : E E C E~(~).  
n = 0  n = 0  v = O  
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Hence, if xcLP1 does not separate a and b, the integral 

b 2 
hab(X)= L F(~, (~--x)2) d ~ (5.4) 

is independent of the path joining a and b within P I \x (S1 ) ,  and defines a holomorphic 

function of a, b and x. 

We claim that  hab can be continued to a cuspidal cocycle t}=(tlab)EgJ. First we 

prove a variant. Let crEC~176 be supported in a closed arc I r  1. Given finitely many 

a,b, . . .EP1, set 

Wab... = {x �9 L P I :  a, b, ... ~ x( I )}  D LUab .... 

We shall show that  the integrals 

Lb ( F  ~' (~)2(7:~)d~,xdoesnotseparateaandb, (5.5) 

can be continued to functions ~ab(X) depending holomorphically on a, bEP1 and xEW~b. 
The main point will be that,  unlike LUab .... the sets Wab... are connected. 

If XlEW~b, construct a continuous curve [0, 1]~T~+x~EW~D, with x0 being a con- 

stant loop. Cover S 1 with open arcs J1, ..., JN =J0,  N>~3, so that  only consecutive J j ' s  

intersect, and no x~-(J~UJj) separates a and b. Choose a C ~ parti t ion of unity {L0j}j=IN 

subordinate to {jj}N=I. For x in a connected neighborhood WCWab of {x~:0~<T~<I} 

define 

t~b(x)= E -P ~, d~- F ~, d~. (5.6) 

In the first sum we extend (Oj_l+Oj)a2l(r 2 to SI\(Jj_IUJj) by 0, and integrate 

along paths in P l \ X ( ~ - l U < ~ ) ;  we interpret the second sum similarly. The neighbor- 

hood W is to be chosen so small that  no x(JiUJy) separates a and b when x�9 
As above, the integrals in (5.6) are independent of the path, and define a holomorphic 

function in W. By Lemma 5.2, ~b agrees with (5.5) when x is near x0. Furthermore, the 

germ of ~b at xl depends on the curve x~ only through the choice of the Qj. In fact, it 

does not even depend on Qj: let t~b be the function obtained if in (5.6) the Qj are replaced 

by another parti t ion of unity Q~ It will suffice to show that  - ~b--~ab under the additional h" 
assumption that  each ~h is supported in some Jj. In this case, ~b is holomorphic in W 

and agrees with ~ab n e a r  x0, hence on all of W. 

Therefore, by varying the partit ion of unity ~j, we can use (5.6) to define ~ab(x) 

depending holomorphically on a, b � 9  and x�9 Also, ~ab-t-~bc-~ac on  Wabc, since 

this is so in a neighborhood of constant loops, and W~b~ is connected. 
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Now, to obtain a continuation of hab in (5.4), construct a partit ion of unity 
3 Ol,O2,o3EC(X~(S 1) so that  supp(a i+ (~ j )~S  1 and N j = l s u p p a j - - ~ .  Setting 0"0=0"3, in 

light of Lemma 5.2 we can rewrite (5.4) as 

hab(X)-~Z~ F(r ((TJ-I+(TJ):~dr F r de 
. ( C - x ) :  ) _ 

and continue each term to LU~b, as above. We obtain a holomorphic cocycle f l ( F ) =  

[?=(Oab), with Dab depending holomorphically on a and b, and one easily checks that  

each bah is cuspidal. Therefore ~ ( F ) E  ~. Finally, a3(F) can be computed by considering 

dr162 with a in the same component of P I \ x ( S  1) as ~, so that  (5.4) gives 

dr162162 T'(r (~--x) ) d~= F(~, ~-~x) d~. 

Thus a ~ ( F ) = F  as needed. 

(b) The kernel of o~. Take an irreducible submodule of Ker (~, spanned by a vector [ 

of lowest weight -n~<0. Since F=a([)=O, (4.2) implies that [~b(x)=O if x does not 

separate a and b; hence, by analytic continuation, whenever indab x=0 .  By the cocycle 

relation [ac(x)=[b~(X) if indab x=O, i.e., if ind~ x=indb~ x. 
Consider the components of LUo~ 

Xr ~- (x E LUo~ : ind0~ x -- r}, r E Z. 

Let 

xl(t)=e 2~irt a n d  y(t)=e4~irt+e 6~irt-4. (5.7) 

We shall presently show that  whenever x E LUo~ is in a sufficiently small neighborhood 

of xl ,  and (~, A)EC2\{(0,0)},  then zx~=xx+AyEXr+C. It follows that  with such x 

and y we can define h(x, A)=[a~(Zx~), where a is chosen so that  inda~ z~=r. Thus hE 

O(C2\{(0,  0)}), and by Uartogs' theorem it extends to all of C2; also, it is homogeneous 

of degree - n .  It follows that  h is constant, indeed zero when n>0 .  In all cases, [0~(x)=  

h(1 ,0)=h(0 ,  1) is independent of x. This being true for x in a nonempty open set, 

[0~ is constant on Xr. It follows that  [aoc(x)=[o~(x-a) is locally constant, and so is 

[ab~[ac~--[boc. M o r e o v e r ,  [ab-~O unless n----0. 

Suppose now that  n=0 ,  and let [0~Ix I= /EC.  We have [a~(X)=[o~(x-a)=l if 

inda~ x = l .  Choose a homeomorphic xELC and a, bEC\x(S 1) so that  ind~bx=l ;  say 

that  b is in the unbounded component. Then [~b(X)----[~(X)--[b~(x)=l, and the same 

will hold if x is slightly perturbed. It follows that  [~b(x)=l whenever indabx=l ,  and 
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in this case [ba(x)=-l. Finally, with a generic yELUab choose ao=a, al , ..., am =-b in 

P I \y (S  1) so that ind~j_~ y=~l .  Then 

[~b (Y) = ~_~a~ (Y) = 1 ~ ind~j_~ y = / ind~b y. 
j = l  j = l  

We conclude that any irreducible submodule of Ker a is spanned by b in (5.1), whence 

Ker a itself is spanned by b, as claimed. 

We still owe the proof that xx+AyEXr+C unless >r for x near Xl and y 

given in (5.7). In fact, the general statement follows once we prove it for r=l and 

x=xl, which we henceforward assume. If [xl>~21A I then zxxEX1 by Rouch6's theorem. 

Otherwise consider the polynomial 

P ( r  = ~ ; + A ( r  + e - 4 r  ; E C .  

For fixed [(] <2 the equation P(~)=P( ; )  has two solutions with I~?] <5, again by Rouch~'s 

theorem. One of the solutions is ~=~. Let ~--R(~) be the other one, so that R is 

holomorphic. There are only finitely many r with Ir162 Indeed, otherwise 

]R(r would hold for all unimodular ~, and by the reflection principle R would be 

rational. However, P(R(r162 cannot hold with rational R(r162162 We conclude that 

z ~ ( S  1) has only finitely many self-intersection points. 

Since P(0)=0, ind0~ zx~>l.  Drag a point a from 0 to ce along a path that avoids 

multiple points of z~(S1). Each time we cross z~x(S1), i n d ~  z~x changes by ~1. It 

follows that i n d ~  z ~ = l  for some a, which completes the proof. 

For the space LI,pP1, Theorems 2.1, 2.2 and the construction in Theorem 5.1 lead to 

explicit representations of elements of g). First there are the multiples of the cocycle (5.1), 

and then there is the complementary subspace ~ ( ~ ) : ~ P ~ _ I ~ ( ~ n ) ,  see Theorem 2.2. 

According to Theorems 2.1 and 2.2 elements of ~ are of form 

2n 
F(~,y )=~u(O~,gn+l) ,  r 

L,~O 

Following the proof of Theorem 5.1, to compute b=3(F)  we set 

2n 

v~O 

The substitution ~=~+c shows that 

=J~  ( ~ _ - ~ + 2 ,  0~<,~<2n, cePl \{a ,b} ,  
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are rational functions with poles at c=a, b, so that 

2n 

 ab(x) = F r (r 

when x does not separate a and b. However, the right-hand side makes sense for any 

xELUab and, as one checks, defines I}=~(F). For example, if F,  and hence b, are of 

lowest weight, then ~ , = 0  for ~>1, and 

/ ~ n + i (  1 1 ) )  
Oab(X)= (X_b) n+l " (5.8) 

Letting n = 0  and (D0, z)=fs~ z/27ri, formula (5.8) recovers the locally constant cocycle 

(5.1) as well. Thus we have proved the following result: 

THEOREM 5.3. In the case of W I'p loop spaces, any lowest-weight cocycle in the 
n-th isotypical subspace ~nC~ is of form (5.8) with (a unique) OoELP/(n+I)(S1)*, 
O~n~p-1.  

6. Syn thes i s  

In this last section we show how the results obtained by now imply the theorems of 

the introduction. Theorems 0.1 and 0.2 follow from the isomorphism H ~ ( L P 1 ) ~ )  of 

G-modules (Theorem 3.3) and from the isomorphism ~ C o ~ ,  a consequence of Theo- 

rem 5.1. In particular, H~174 ~ The latter being isomorphic to the dual of 

L - C = C k - I ( S  1) (resp. Wk-I,P(S1)) by Theorem 2.1, Theorem 0.3 also follows. Finally, 

Theorem 0.4 is a consequence of Theorems 2.2 and 2.1. 

Seemingly we are done with all the proofs. However, Theorem 3.3 has not yet 

been proved for loop spaces LI,pP1, p<3,  and we still have to revisit spaces of loops 

of low regularity. This will give us the opportunity to explicitly represent classes in 

H~ in fact, for all pE [1, oc). 

Generally, given a complex manifold M, 1 ~<p<cc, and a natural number m<~p, con- 

sider the space C~,q((T*M) | of (T*M)| (0, q)-forms on M. If w is such a 

form, vE(~qT~ and wET~,~ we can pair w(v)E(T{M) | with w | to obtain 

what we shall denote w(v, wm)Ec. Write LM for the space of Wl'P-loops in M, and ob- 

serve that  the tangent space T~ is naturally isomorphic to the space WI'p(x*T~ 
of Wl'P-sections of the induced bundle x*T~ 1 (see [L2, Proposition 2.2] in the 

case of Ck-loops). 

There is a bilinear map 

I=Iq:Lp/m(s1)*x C~,q((T~ *M) | ~ C~,q(LM),, 
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obtained by the following Radon-type transformation. If 

(~, 02) E LP/m(s1)* X C a IIT*M ~| O,qk\ ] ] ,  

xELM and ~E~qT~176 then w(~,:~'~)ELP/'~(S1). Define 

by 

f(~) = <~, w(~, ~m)). 

One verifies that  0I(6,, w)=I(~, cgw), whence Iq induces a bilinear map 

Lp/m(s1)* • H~ | > H~ 

Henceforward we take M = P 1 ,  q=l, m = n + l  and w given on C by 

-1 ~2nd~Q(d~)n+l 
~ =  - -  ~EC, 2 n + l  (1-t-1~14n+2)(2n+m)/(2n+1) ' 

so that  f=I1 ((I), w) is a closed form on LP I .  Explicitly, 

-1 ,~, ~ET~ (6.1) 
f(~) = 2n+----1 (l~-IX14n+2)(2n+2)/(2n+l) ' 

To compute its image in ~ under the map of Theorem 3.3, let 

1 ~ ~ - 2 n - - 1  -~-2n-l-l-(r162 on Va. 
0 a -  2n+1  \ (1+1~[4n+2)1/(2'~+1) 

Thus OOa=w[v,, and the cuspidal functions ua=Io(O,  Oa)EC~(LU,~) solve Our=f Inv.. 
Hence the image of f in ~ is 

{ ,~n+l ( ] (x-b) 2n-t-ll ) )  +, 

Comparing this with Theorem 5.3 we see that  by associating a lowest weight b E~) ~ with 

the functional ~ = ~ 0  of (5.8), and then fEC~,~(LP~) of (6.1), the image of f in ~) will 

be b. In particular, the class [f]EH~ is also of lowest weight - n .  Therefore the 

linear map t}~[f] ,  defined for bE~) n of lowest weight, can be extended to a G-morphism 

rr, p-1 ~n ~_~H0 XrLp ~ inverse to the 5~n--~H~ and then to a G-morphism ~i~=0~j =~j ' ~ 1), 

morphism H ~ (LP1)--+23 of Theorem 3.3. This completes the proof of Theorem 3.3, and 

now we are really done. 
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