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1. I n t r o d u c t i o n  

Let f E S ( R  2) be a Schwartz function in the plane. A well-known inequality in elliptic 

partial differential equations says that  

02f p 
5 [IAfllp (1) 

for l<p<cx~, where 
02 02 

is the Laplace operator. 

To prove (1) one just has to observe that  

- -  = cRIR2 A f, OxiOx2 

where 

Rj f (x )  = f ~ ] ( ~ ) e  2~ix~ d~, j =  1, 2, 
JR 2 Iql 

are the Riesz transforms, and they are bounded linear operators on LP(R 2) [181. 

An estimate of a similar flavour in non-linear partial differential equations is the 

following inequality of Kato and Ponce [9]. If f, g E S ( R  2) and T)a~-'f(~):=l~[~f(~), c~>0, 

is the homogeneous derivative, then 

[17)~(fg) lit ~ [[T)~fllp Ilgllq + IIf[[p [IT)'~gllq (2) 
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for l < p , q ~ o c ,  1/r=l /p+l /q  and 0 < r < o c .  

Heuristically, if f oscillates more rapidly than g, then g is essentially constant with 

respect to f ,  and so l)a(fg) behaves like (Z)~f)g. Similarly, if g oscillates more rapidly 

than f ,  then one expects Z)a(fg) to be like f(Z)~g), and this is why there are two terms 

on the right-hand side of (2). In order to make this argument rigorous, one needs to 

recall the classical Coifman-Meyer theorem [7], [11], [13]. Let m be a bounded function 

on R 4, smooth away from the origin and satisfying 

1 
IO~m(7)l ~ 1711Zl (3) 

for sufficiently many/3. Denote by Tm (f,  g) the bilinear operator defined by 

Tm (f, g)(x) = fa4m((, v)f(~)~(~)e 27rix(5+n) d~ dTI. (4) 

Then, Tm maps LPxLq--+L T as long as l<p,q~<co, 1/r=l /p+l /q  and 0 < r < c ~ .  

This operator takes care of the inequality (2) in essentially the same way in which the 

Riesz transforms take care of (1). The details will be presented later on in the appendix 

(see also [9]). 

But sometimes (see [10]) in non-linear partial differential equations one faces the 

situation when a partial differential operator such as 

acts on a nonlinear expression such as the product of two functions. It is therefore 

natural to ask if there is an inequality analogous to (2) for these operators. The obvious 

candidate, according to the same heuristics, is the inequality 

IID?7~(fg) lit < [[z)~z)~f lip @llq + I]f[[p [ID~D~glIq + IIZ)~fllp IID~gllq + 117)?gllp flD~fllq. 
(5) 

If one tries to prove it, one realizes that one needs to understand bilinear operators whose 

symbols satisfy estimates of the form 

1 1 
c~aX O a 2 Z ~ O ~ 2 m  (f: ~ < (6) 

51 52 v ~ l  ~/2 t ,%,' /]  ~ ] ( ~ l , q l ) [ O l i + f l  I ](~2,/]2)]o~2+f~ u" 

Clearly, the class of symbols verifying (6) is strictly wider than the class of symbols 

satisfying (3). These new m's behave as if they were products of two homogeneous 

symbols of type (3), one of the variables (~1, ql) and the other of the variables ( 6 ,  72). 

The main task of the present paper is to prove LV-estimates for such operators in 

this more delicate product setting. Our main theorem is the following result: 
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THEOREM 1.1. I f  m is a symbol in R 4 satisfying (6), then the bilinear operator T,~ 

defined by (4) maps LP• r as long as l<p,q~<c~, 1 / r = l / p + l / q  and 0 ~ r < c ~ .  

It will be clear from the proof of the theorem that  the n-linear analogue of this result 

is also true (see w for a precise statement). Particular cases of this theorem have been 

considered by Journ@ (see [8] and also [3]), who proved that  in the situation of tensor 

products of two generic paraproducts, one has L2•  2 estimates. Our approach 

is different from his and is based on arguments with a strong geometric structure. The 

reader will notice that  part of the difficulties of the general case comes from the fact 

that  there is no analogue of the classical Calderdn-Zygmund decomposition in this bi- 

parameter framework, and so the standard argument [7], [11], [13] used to prove such 

estimates has to be changed. 

The paper is organized as follows. In the next section, we discretize our operator 

and reduce it to a bi-parameter general paraproduct.  In the third section we present 

a new proof of the classical one-parameter case. This technique will be very helpful to 

handle an error term later on in w w167 5 and 6 are devoted to the proof of our main 

theorem (Theorem 1.1). w contains a counterexample to the boundedness of the double 

bilinear Hilbert transform, and then, the paper ends with some further comments and 

open questions. In the appendix we explain how Theorem 1.1 implies inequality (5). 

Acknowledgement. We would like to express our thanks to Carlos Kenig for valuable 

conversations and to the referees for their suggestions, which improved the presentation 

of the paper. 

The first two authors were partially supported by NSF grants. The third author is a 

Clay Prize Fellow and is partially supported by a Packard Foundation grant. The fourth 

author was partially supported by the NSF grants DMS 9985572 and DMS 9970469. 

2. Reduction to bi-parameter paraproducts 

In order to understand the operator Tm, the plan is to carve it into smaller pieces well 

adapted to its bi-parameter structure. First, by writing the characteristic functions of the 

planes (~1, ~1) and (~2, ~72) as finite sums of smoothed versions of characteristic functions 

of cones of the form {(~, ~?): I~1 ~<Cb?l} or {(~, ~?): I~1 >~CI771}, we decompose our operator 

into a finite sum of several parts. Since all the operators obtained in this decomposition 

can be treated in the same way, we will discuss in detail only one of them, which will 

be carefully defined below (in fact, as the reader will notice, the only difference between 

any arbitrary case and the one we will explain here is that  the functions MM, SS, MS 

and SM defined in w have to be moved around). 
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Let q~ and ~# be two Schwartz bumps on [0, 1], symmetric with respect to the origin 
and such that suppqSC [ -~ ,  ~1 and s u p p ~ C  I~, 5]. Recall the translation and dilation 

operators ~-h and D~ given by 

~-hf(x) = f ( x - h ) ,  

D~f(x) = X-~/Pf(A-~z), 

and then define 

and 

f 4)( ~1 ) D2k, #~( ?], ) dk c ' ( ~ t ,  r/~) = t D ~ ,  ^ ~ ^ ' 
J R - -  

P 

C (~2,  ?]:) = D 2 k , , f . ( ~ 2 ) D 2 ~ . , e P ( ? ] 2 )  . 
J~ R 

As we said, we will now study the operator whose symbol is mC'C". It can be written 
f18 

Tmc'C" (f,, f2)(x) -=/Rm((, r/) D~, r D~, ~(r h ) D~,, (#(~2) D~,, r 

x ]1 ((~, ~21/2 (r/,, r/2)e 2,~x(~ + e) d~ dr/dk'  dk" 

-~-/Ft m(~, 1]) ~?l,k',k" (~1, ~2) r k',k" (?]1, ?]2) 

• ]1 (~,, r ~/2)e 2'~i~(r d~ dr/dk'dk" 

=/R6rn(~, ?])(ft* r #2,k',k")^(r/)e 2~x(~+n) d~ dr/dU dU', 

where r :=D~_~, r174 r and 1 1 02,k',k" := D2_k, zb| D 2_k,, d~. 
In particular, the trilinear form 

h~,,o,c,,(ft, f~, fa ) :=  [ Tmc'C"(dt, f2)(x)fa(x) dx J R~ 
associated to it can be written as 

f~ i m~''k''(~'r/'7)(fl*~l'k'k'')~(~) 
§ o ( 7 )  

x (f2 * ~2, k', k")~0]) (f3 * 4)3, k', k")~(7) d~ d?] d'7 dk' dk", 

where r162174162 and %6' is again a Schwartz function such that 
supp@C_[-# , -#]7  1 and ~ ' = 1  on [ - ~ , - � 8 9  while mk,,k,,(~,Tl,"/)=m(~,r/)Xk, k,,(~,?],'7 ), 
where ),k',k"(~, r/, "Y) is a smooth function supported on 

2 supp(gLk,,k,, (~) ~2,k" k" (?]) $3,k" k" ("/)), 
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which equals 1 on supp(~l,k',k,, (~) ~2,k',k" (~7) ~)3,k',k" ("[)). 
Then, we write (7) as 

10 ' 'r~l ) '  ( '~2 '  ~2 ) '  ( 3 '  rt3 '))  

3 

• H ( 5  * ~J, k',k" )((X', X") -- (n~j, n 2 )) dn~j dny dx' dx" dk' dk" 
j = l  

R --4k ~ --4k H~ --k ~ / --k" // --k - k  / I  2 2 mk,,k,,((2 hi ,2  n 1), ' ' " ' ' = (2 n2,2  n 2 ) , ( 2 - k n 3 ,  ~-k'lz n 3'''')) 
10 

3 

• 1-I (fJ -k' , -~" ,, -~ , -k , ' dn~ dx' dx" dk' dk" �9 x , 2  x ) ' " ' - (2 nj, 2 n3 )) dnj 
j= l  

f 2 - -3k '2- -3k '~k , ,k ,  ' --U t - k "  t t  ' t ~' t /  ~ t " t /  ((2 n l , 2  n l ) , ( 2 - k r t 2 , 2  - k  n 2 ) , ( 2 - k n 3 , 2  - k  n3)  ) 
JR 10 

3 
X 2k'/22 k''/2 1-I(fj  , ~j,g,~,~j) d~j d~df~, 

j = l  

where 
,~--U/2 ,~-k'72 ,~ : =  Z Z, 7 "  - k '  t - - k  ' l  H - - k  I i - - k "  i ,  "~" " k t  k t t .  ~2j,g,~,~j (2 x ,2 x )--(2 nj ,2  nj ) 3, , 

Notice that our functions (}j,g,~,gj are now L2(R2)-normalized. The above expression 

can be discretized as 

Z Agl,~2,sa,g,r(fl,  f2, f3), (8) 
(~l,~2,~3,gf)CZ 1~ 

where 

A~l,~2,~3,g,r(fl, f2, f3):-= f[0 2-3(k'+~')2-3(k"+x')~nk'+x"k"+x"('") 
,1] 10 

3 
• (k''+x'')/2 I I  (fj ,  gSj,~+~,f+r,,~j+;j ) dYj d~ d~. 

j= l  

Consequently, the operator T~c,c,,  ( f l ,  f2) splits as 

Tmc'c" (f l ,  f2) = Z T~l,~2,~a,~,i'(fl, f2), 

where T~l,~2,~3,g,~- is the operator whose trilinear form is A~l,,~2,~a,;,/.. Clearly, by Fatou's 

lemma it is enough to prove estimates for the operator 

Z T~l,~2,.3,g,i'(fl, f2), (9) 

]kl,lll<N 
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as long as they are independent of the constant N. Now fix a large constant N and write 

(9) as 

~, ~( ~_, T~l,~,~3,rj(fl,A) ). (10) 
(~,~2,'~3)eZ [fiJ,fil<g 

We also observe that by using (6) and integrating by parts several times, we have 

3 k  I ~ t _ t l  t I I t  t I t t  I (2-kn2,2 -k n~), -k' , -k" t, L2- 2 -~ ~ , , k , , ( ( 2 - ~ , h , 2  -~ ~ ' ) ,  (2 ,~3,2 ~3))L 
3 1 (11) 

for M arbitrarily large. 

We are going to prove explicitly that the operator 

E T6,6,6,g,['(I"/2) =: E Tg, F(/ l '  f2) (12) 
Ikl,fl<Y [kJ,liJ<g 

satisfies the required estimates. It will be clear from the proof and (11) that the same 

argmnents give 

~ , , ~ , ~ j , i "  ,, ~ ~ 1 Z T~,i r ~13) 
<~I1 (l+]ffj])loo "1;~1 tq<N ,,L,• I|]~.],]~)< N HL •  --+L ~ j = l  , 

for any (~ l ,g2 ,g3)EZ 6. Together with (10) this would prove our desired estimates. It 

is therefore enough to deal with 

E T~f(S~, f2). 
Ifil,lq<W 

Fix now p and q, two numbers bigger than 1 and very close to 1. Let also Sl and S2 be 

such that Ilfll[p=llf211q=l. We will show that 

E Ts ~1' (14) 
I I,g-l,fl<N 

where 1 / r :  lip + 1/q. 
Using Lemma 5.4 in [1] and scaling invariance, it is enough to show that for every 

set E3_CR 2, [E31=1, one can find a subset E~C_E3 with [E~[~--1 and such that 

E f2,f3)  ~< 1, (15) h s  
fcl,fl<N 
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w h e r e  f3::XE, 3, If this is true, then by using the symmetry of our form, the symmetry 

of our arguments plus multilinear interpolation as in [14], we would complete the proof. 

In order to construct the set E~ we need to define the maximal-square function and 

the square-maximal function as follows. 

For (x', x")  E R 2 let 

Q,,~,z, ' (fl' ~l'k+'~'i+~"~/'2 ,1/2 
MS(fl)(x',x"):=sup 1 sup 2_k,, l~k,, ,,, (x"))  lik, ,, (x') 

k',t' ~ , .V,X,~ ' ' 

and 

( sup sup l(f2, ~2,Z+,~,/'+f,,~2}I )2 
( ,~  \k ,l' ~.,~,~ 2 -k''/2 lIk"'~" (X") \1/2 

SM(f2)(x',x") , 2_k,  lik,,l, (X' ) )  . 

Then, we also define the double square function, 

SS(f3)(x',x"):= ( E sup 
I ( fa, ~3,/~+,~, g'+X, ~3 ) 12 

\1/: 
lIk,.,,(x')lIk,,,,,,(X")) , 2--k'2--k" 

M,l',k",l" 

where in general, Ik,z is the dyadic interval 2 -k [l, l+  1]. Finally, we recall the bi-parameter 

Hardy-Lit t lewood maximal function 

MM(g)(x',x"):= sup 1 (~,,z")~R ~ Ig(Y',Y")t dy'dy", 

where R ranges over all rectangles in the plane whose sides are parallel to the coordinate 

a~es .  

The reader should not worry too much about the presence of the suprema over >:, ),, 

zq, u2 and ua in the above definitions. They need to be there for some technical reasons, 

but  their appearance is completely harmless from the point of view of the boundedness 

of the corresponding operators. 

It is well known that both the bi-parameter maximal function MM and the double 

square function SS map LP(R 2) into LP(R 2) whenever l < p < o o ,  see [2]. 

Similarly, it is not difficult to observe, by using Fubini's theorem and the Fefferman- 

Stein inequality [5], that  the operators MS and SM are also bounded on LP(R 2) if 

l < p < o c  (first, one treats the SM-function iteratively, as we said, and then one simply 

observes that the MS-function is pointwise smaller than SM). 

We then set 

a0 = {x e R 2 :  MS(f l ) (x)  > C}U {x e R 2 :  SM(f2) (x) > C} 

t.J{x e R2: MM(fl)(X) > C} 

U {x E R2: MM(f2) (x) > C }. 
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Also, define 

and finally 

1 f~ = { x E R 2 :  MM(lao) (X)>  1W6} (16) 

5 =  { x E R 2 : M M ( l a ) ( x ) >  �89 

Clearly, we have 151 < �89 if C is a big enough constant, which we fix from now on. Then, 

we define E ~ : = E 3 \ 5 = E 3 A 5  c and observe that IE~[~-,1. 

Since the form Y~'lfil, Igl <N Aft, i" (fl ,  f2, f3) is an average of some other forms depending 

on the parameters (s X, ul, u2, ~,a)E[0, 111 ~ it is enough to prove our inequality (15) for 

each of them, uniformly with respect to (K,, ~, t71, z72, z73). We will do this in the particular 

case when all these parameters are zero, but the same argument works in general. In 

this case, we prefer to change our notation and write the corresponding form as 

A~(f l ,  A,  fa) = s HV(fl ,  f2)(x) f3(x)  dx 

1 (fl,Ofi,)(f2,~fi2)(f3,~Pfi3), = E _  - lip[l~2 
P E P  

(17) 

where the /3 ' s  are bi-parameter tiles corresponding to the indices k', 1/, k", l". More pre- 

cisely, we have 

= , 2 k'' /31 (p ; , p ; , )=(2 -k ' [ l , ,F+l i x2k ' [_ �88188  2 -k"[ l , , , l ,+ l j x  [3 ,5] ) ,  

/32 (P~,P~ )=(2-k '[ l ' ,  ' k '  3 " ! 2 k ' '  = ' " / + 1 1 •  [~ ,5 ] ,2 -k  [ / ' , l " + l ] x  [--�88188 

3 3 :  p !  k" 7 ( 3, P~ ' )=(2-k ' [ l ' , l '+ lJx2k ' [ - - �88188  [--~,--�88 

and 11 I := 11 1 [ = I = I--- 

will be a finite set of such bi-parameter tiles. Note that t31, t32 and /33 are 

the bi-parameter Heisenberg boxes of the L2-normalized wave packets 4Ppl, r and OP3' 

respectively. These new functions r are just  the old functions q)j,g,g- previously defined, 

for j = l ,  2, 3. We therefore need to show the inequality 

1 

PEP  

(18) 

in order to finish the proof. This will be our main goal in the next sections. 

At the end of this section we would like to observe that it is very easy to obtain 

the desired estimates when all the indices are strictly between 1 and oo. To see this, let 
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f lEL  p, f2EL q and faEL ~, where l<p ,  q, r < o c  with 1/p+l /q+l /r=l .  Then, 

1 
2IIp(fl'f2)(x)f3(x)dx ~ ~eg' IIPlU21(fl' ~Px)l [(f2'rb!~2)[ l(fa' ~Pa)l 

=/R ~ I (A,~, ) ,  [(f2,I'~2)1 I(f3,'I'~)l 
5 . _  lip[l~ 2 lip] 1/2 IzpF/  

< fmMS(fl)(X) SM(f2)(x) SS(f3)(x) dx 

~< IIMS(fl)IIp [[SM(f2)Ilq IISS(f3)[1~ 

IIf~ lip I[f211q IIf311~. 

277 

Xi~(x)dx 

3. P r o o f  o f  t h e  o n e - p a r a m e t e r  c a s e  

In the particular case when P = P ' •  P "  and all the functions fj are functions of tensor 

product type (i.e. f j -  ' " - f j  | j = 1, 2, 3), our bi-parameter paraproduct splits as 

, : Ap, ( f l ,  f2, f3) Ap,, (f~', f6,  f~ ) .  A~(fl  f2, fa) ' ' ' " " 

In this section, we describe an argument which proves LP-estimates for these one- 

parameter paraproducts Ap, and Ap,,. On one hand, this method will be very useful for 

us in w and on the other hand, it provides a new proof of the classical Coifman-Meyer 

theorem. A sketch of it in a simplified "Walsh framework" has been presented in the 

expository paper [1]. 

If I is an interval on the real line, we denote by Xz(X) the function 

/ + dist(x, I )  
= / 1  [IL / ' \ 

where M > 0  is a big and fixed constant. For simplicity of notation we will suppress the 

"primes" and write (for instance) hp,  (f~, ]I,  f~) simply as 

1 
Ap(f l ,  A,  A) = Z iipi1/2 (fl,  (I)p1)(A, (I)p2)(f3, (I)P3). 

P E P  

(19) 

Notice that  in this case, as P runs inside the finite set P,  the frequency supports supp ~Ppj, 

j = 2 ,  3, lie inside some intervals which are essentially lacunarily disjoint, while the fre- 

quency intervals supp ~P1 are all intersecting each other. 

In order to deal with the expression (19) we need to introduce some definitions. 
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Definition 3.1. Let P be a finite set of tiles as before. For j = 1 we define 

I(fj, r 
sizep(fj)  := sup 

PEP liP[ 1/2' 
and for j = 2, 3 we set 

(p,~Cl ,(fj, ~p;)[2 -~1/2,1 1 
sizep(fj) := sup l ie , )  1,~" 

Also, for j = l ,  2, 3 we define 

energyp(fj)  := DC_pllSUp pE~D <lfjI,XI1,>llpi lip 1,~' 

where D ranges over all subsets of P such that  the intervals {IF : PE~D} are disjoint. 

The following John-Nirenberg-type inequality holds in this context (see [14]). 

LEMMA 3.2. Let P be a finite collection of tiles as before and j=2,  3. Then 

sizep(fJ) "~ sup ( 1 P E P  ~ IW~CIp ]<fj'oP~)'2)l/2"_ 

We will also need the following lemma (see also [14]). 

LEMMA 3.3. Let P be a finite collection of tiles and j=2,  3. Then, we have 

( p,~cI I(f'#PP~)[2 '1/21' 
I _ e [[P'l lle,fl 1,m < I]fX,elll. 

The following proposition will be very helpful. 

PROPOSITION 3.4. Let j=1,2,3,  P '  be a subset of P, nEZ,  and suppose that 

sizep, (fj) ~< 2-nenergyp(f~). 

Then, we may decompose P ' = D " U P ' "  so that 

sizer,,, (fj) ~< 2 - n -  1 energyp (k )  (20) 

and so that P"' can be written as a disjoint union of subsets T E T  such that for every 

T E T ,  there exists an interval IT (corresponding to a certain tile) having the property 

that every P E T  has IpCIT,  and also such that 

E [ITl<2n" (21) 
TET 



BI-PARAMETER PARAPRODUCTS 279 

Proof. The idea is to remove large subsets of P '  one by one, placing them in pm 

until (20) is satisfied. 

Case h j = l .  Pick a tile P E P '  such that  lip I is as big as possible and such that  

t(fj, ~Pi>] > 2-n-1 energyp(fj) .  
[Ip]l/2 

Then, collect all the tiles P ' E P  p such that  Ip, C Ip in a set called T, and place T in P '" .  

Define IT :=Ip. Then look at the remaining tiles in P '  \ T  and repeat the procedure. Since 

there are finitely many tiles, the procedure ends after finitely many steps producing the 

subsets T E T .  Clearly, (20) is now satisfied, and it remains to show (21). To see this, 

one can write 

T~T'IT]~- T~TIIT 1~- 51IT 1,oo' 
since by construction, our intervals IT are disjoint. 

above equality is smaller than 

(IfJ[,Xz~) 
2~ energyP ( fJ ) - i  E lIT{ 

TET 

Then, the right-hand side of the 

liT 1,cr <~ 2n" 

Case 2: j = 2 ,  3. The algorithm is very similar. Pick again a tile PEP' such that  

lip I is as big as possible and such that  

1 ( E I<fj,4)~>l 2 Ilw) 1/2 1, c~>  2 _ n _  1 
I/p] [l\ip, C lp ~I~,] energyp (fj). 

Then, as before, collect all the tiles P ' c P '  such that  Ip, C_Ip in a set named T, and place 

this T in pro. Define, as in Case 1, IT:=Ip. Then look at the remaining tiles P ' \ T  and 

repeat the procedure, which of course ends after finitely many steps. Inequality (20) is 

now clear, and it only remains to understand (21). 

Since the intervals IT are disjoint by construction, we can write 

-= = E lIT 5 IITI ~ I'T1 T6T 1,cr 

~2nenergyP(fJ )-1T~T [~-~] (ip~C_lr 

<lfJl, iT>  <2 energyP(f ) -1 Z II 1 
TET 

< 2L 

I(fJ' P;>12 "d/21l 1,T 
lip, ] lip,) 1,~ 1,~ 

lit 1,oo 

by using Lemma 3.3, and this ends the proof. [] 

By iterating the above lemma, we immediately obtain the following consequence: 
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COROLLARY 3.5. Let j = l ,  2, 3. There exists a partition 

P =  UP ,~  
nEZ 

such that for every nEZ  we have 

sizep,(fj)  ~< min{2-nenergyp(f j ) ,  sizep(fj)}. 

Also, we may write each Pn as a disjoint union of subsets T E T n  as before, such that 

Z II~1 <~2~. 
TETn 

We now prove the following proposition. 

PROPOSITION 3.6. Let P be a set as before. Then, 

3 1 E Ilpll/2 I(fl, 'I'P,>I I(f2, ':I'P~> I I(f3, 'I'p~>l < H sizep(fJ)l-~176 (22) 
PCP j=l 

for any 0~<01,02, 03<1 such that 91 +02+03---1, with the implicit constant depending 

on Oj, j = 1 , 2 , 3 .  

Proof. During this proof, we will write for simplicity 

Sj :=s izep( f j )  and Ej :=energyp(f j )  

for j = 1 , 2 , 3 .  If we apply Corollary 3.5 to the functions f j /E j ,  j = 1 , 2 , 3 ,  we obtain a 

decomposition 

P =  U P  j 
nEZ 

such that  each P~ can be written as a union of subsets in T~ with the properties described 

in Corollary 3.5. In particular, one can write the left-hand side of our described inequality 

(22) ~s 

1 f2 --4~s~>[, (23) E1E2E3 E Z Z ,IpI1/2 ]/  fl 'qSPl> <E2'(I)p2>I ]< f3 
nl,n2,n3 TETnl'n2'n3 PET \ E1 E3 ' 

where T ~1'~2'~3 := T~nl N T~2 M T33 . By using HSlder's inequality on every T E T ~'~2'n3 

together with Lemma 3.2, one can estimate the sum in (23) by 

EIE2E3 E 2-n'2-n22-n3 Z IIT], (24) 
nl ,n2,n3 TEWnl'n2'n3 
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where (according to the same Corollary 3.5) the summation goes over those nl ,  n2, n3 E Z 

satisfying 

2_nJ < S j  (25) 
"~Ej" 

On the other hand, Corollary 3.5 allows us to estimate the inner sum in (24) in three 

different ways, namely 

E [1T1<2 nj, j = 1 , 2 , 3 ,  
TCTnl,n2 ,n3 

and so, in particular, we can also write 

E IITI <~ 2nlO12n2022n303 (26) 
TETnl,n2 ,n3 

whenever 04~ 01,02,03 < 1 with 01 +02 +03 = 1. Using (26) and (25), one can estimate (24) 

further by 

I S1 ~1-011 $2 \1 -021  $2 hi-03 
E1E2E3 E 2-nl(1-O1)2--n2(1-O2)2-n3(1-O3)<'~E1E2E3(-'E-() (E99) (-E~o) 

\ 11 \ 21 \ 21 ?'~1~lt2~n3 
3 3 

j = l  j = l  

which ends the proof. [] 

Using this Proposition 3.6, one can prove the LP-boundedness of one-parameter 

paraproducts, as follows. We just need to show that  they map L 1 • L 1 --+L 1/2'0~ because 

then, by interpolation and symmetry one can deduce that  they map L p • L q --+L ~ as long 

as l<p,q~oo,  0 < r < c ~  and 1 / p + l / q = l / r .  

Let fx, f2EL 1 be such that  I]fl l[ l=]if2Hl=l.  As before, it is enough to show that  

given EuCR,  [E3[=l,  one can find a subset E~CE3 with ]E~l~l  and 

1 
iiPil12 I(/1, ~P1)l 1(/2, ~p=)l I(f3, 'I>P~)l < 1, (27) 

PCP 

where f3:=XE~. For we define the set U by 

U :=  {x E R :  21//(fl) (x) > C}U{x  e R :  M(f2)(x)  > C}, 

1 if where M ( f )  is the Hardy-Lit t lewood maximal operator of f .  Clearly, we have [U I < 

C > 0  is big enough. We define our set ' c E3:=E3NU and remark that  IE~[~I.  

Then, we write 

P= UPd, 
d>~O 
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where 
dist (Ip, U c) 

Pd := P e P :  ilel 

After that,  by using Lemma 3.3, we observe that  

sizeed (fa) < 2-  Nd for an arbitrarily big number N > 0. 

energypa (fj)  < ]]M(fj)l]l,~ < 

By applying Proposition 3.6 in the particular c a s e  01 

hand side of (27) can be majorized by 

,-~ 2d}. 

s izepe(f j )<2 a for j = l , 2 ,  while 

We also observe that  

Ilfalll= 1. 

= 02 = 0a = �89 we get that  the left- 

1 
~ iipi1/2 I(fl, ~P1 )I I(A, ~P~)] I(fa, ~?~}l 5 ~ 22d/322d/32-2Na/a < 1 

d ) O  PC=P d d ) O  

as wanted, and this finishes the proof of the one-parameter case. 

The reader should compare this Proposition 3.6 with the corresponding Proposi- 

tion 6.5 in [16]. Our present "lacunary setting" allows for an Ll-type definition of the 

"energies" (instead of L2-type as in [16]), and this is why we can obtain the full range of 

estimates this time. 

4. P r o o f  of  T h e o r e m  1.1 

We reduced our proof to showing (18). Clearly, this inequality is the hi-parameter ana- 

logue of the inequality (27) above. Unfortunately, the technique just described in w so 

useful when estimating (27), cannot handle our sum in (18) this time. In fact, we do 

not know if there exists a satisfactory bi-parameter analogue of Proposition 3.6, and this 

is where some of the main new difficulties are coming from. Hence, we have to proceed 

differently. 

We split the left-hand side of that  inequality into two parts, 

E = E + E =: I+ I I ,  (28) 

where f~ is the set defined in (16). 

5. E s t i m a t e s  for t h e  t e r m  I 

We first estimate the term I. The argument goes as follows. 

Since I ~ n ~ c # ~ ,  it follows that  IIpNftol/Ilpl< 1@6, or equivalently, 
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We are now going to describe three decomposition procedures, one for each function 

f l ,  f2 and f3. Later on, we will combine them, in order to handle our sum. 

First, define 

Ftl = {xER2:MS(fl)(x) > C}  

and set 

then define 

and set 

1 T1 = { P E P :  I IpOal ]  > ~-~llpl}, 

f~2 = {xE R2: MS(fl)(x) > C}  

1 
T2 --= {/~E P \ T 1  : II pN~21 > i-if6 II pl } , 

and so on. The constant C > 0  is the one in the definition of the set E~ in w Since there 

are finitely many tiles, this algorithm ends after a while, producing the sets {f~n} and 

{Tn} such that  P = U n T n .  

Independently, define 

and set 

Q~ = {xER2:SM(f2)(x) > ~ } 

T~ = { P E P :  ]IpNft~[ > ~lIp[}, 

then define 

and set 

T2 {PEP\TI :IIpNFt~I> y6-61Ip] }, 

and so on, producing the sets { f~}  and {T~} such that  P=UnT'. We would like to 

have such a decomposition available for the function f3 also. To do this, we first need to 

construct the analogue of the set ft0 for it. Pick N > 0 ,  a big enough integer such that  

for eve ry /6CP  we have II~C? f~'~v] > ~ ]I~1 , where we defined 

a'-'N = {~ ea2: SS(/,)(~) > C2N}. 

Then, similarly to the previous algorithms, we define 

{ c2N  
a"N+l= xEn2:ss(f2)(x)> 21 J 
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and set 
1 

T'_' N+ 1 ---- { R e  P: II:nfl~N+ 11 > ]66 IIPl }, 

then define 

and set 

C2 N } 
~"-~+2  = ~ R  ~ : s s ( f a ) ( x )  > 

T _ N +  2 "  = {15@ P \ T ' / N + I  : _  lI:nD"-N+2t > ~-~tI:I}, 

and so on, eonstructing the sets { ~ }  and {T g } such that ~ = ~  T" 
Then we write the term I as 

1 
~'~ is:13/2 I</1,@:,>11(f2,r IS:l, 

n l  n2>0 P=T ~ nl,n2,n 3 n3>--N 

(29) 

where Tnl n2 na . - - T  nT'  n T "  Now, if [5 belongs to Tnl n2 ha, this means in particu- 
, , " - - ~ n l '  ' n2' ' n 3 "  ~ 

far that/5 has not been selected at the previous nl  - I, n2 - 1 and ?2 3 - -  l steps, respectively, 
1 II:l and whichmeans that II:nr~n,-ll<T~lI:l, I I : n ~ _ , l <  ' ,, 1 

t c  Hc 99 I . o1" equivalently, I I fNQ~,_II>I~oII f l ,  II~N~,~2_II> 1-~o1I:[ and II:MQn3_II>Tb-6[ :1 
But this implies that 

(30) 

In particular, using (30), the term in (29) is smaller than 

1 c ,c D . c  ~ i/:13/2 I ( / , , , I , o . > l l ( S 2 , , t % > l l ( f ~ , q , & ) l l I : n f ~ n . _ l n f L , . _ ~ n  ,,~-11 
n l , n 2 > O  !SETnl,n2,n3 
n3>--N 

= ~ na '~  n~"~ ~ ll:}3/-----~l(f1,ff':~)J [(f2,'~:=)[ l(f3,r dx 
7~1~7~2 > 0  n l - -1  n2--1 n3--1 ~ETnl,n2,n 3 
n3>--N 

<~ Z f ,, MS(fl)(x)SM(f2)(x)SS(f3)(x)dx (31) 
d~C 1 N ~ t c  l n P , ~  ~ l n ~ T n  n n n1~7/2~0 n l  -- 2-- 3-- 1, 2, 3 

n 3 > - N  

Z 2--n12--n22--n3]aTni'n2'n3 I' 
~ i ~ 2  ~'0 
n3>--N 

where 

~Tnl,n2,n 3 :~ U IF.  
13ETnl .n2,n3 
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On the other hand, we can write 

[aT~,~2,~31 ~< If~w-~l ~< I{xER2:MM(x~.~)(x) > ~6o}[ 

5[anll ~- xER2:MS(f~)(x)>-~ <2 nlp. 

Similarly, we have 

and also 

I~'~Tnl,n2,n31 5 2n2q, 

for every a > l .  Here we used the fact that  all the operators SM, MS, SS and MM are 

bounded on L 3 as long as l < s < o c ,  and also that  IE~I~I.  In particular, it follows that  

[~Tnl,n2,n31 ~ 2nlPO12n2q022 n3a03 ( 32 )  

for any 0 <~ 01,02, 03 < 1 such that  01 + 02 + 03 = 1. 

Now we split the sum in (31) into 

2--'~2--'~2--n~l~Wn..~,,~31+ ~ 2-n'2--n22--n3[~Tn~,,~2,,~3 I. (33) 
nl~n2>0 Ttl~2>0 

n3>0 0>n3>- -N 

To estimate the first term in (33) we use the inequality (32) in the particular case 01= 

02=�89 and 03=0, while to estimate the second term we use (32) for 0j, j = 1 , 2 , 3 ,  such 

that  1 - p 0 1 > 0 ,  l - q 0 2 > 0  and o~03-1>0. With these choices, the sum in (33) is O(1). 

This ends the discussion of the term I. 

6. E s t i m a t e s  for  t h e  t e r m  I I  

It remains to estimate the term II in (28). The sum now runs over those tiles having the 

property that  I~CQ.  For every such fi  there exists a maximal dyadic rectangle R such 

that  I~CRCgl. We collect all such distinct maximal rectangles into a set called Rmax. 
d For an integer d>~l, we denote by Rma x the set of all RERmax such that 2dRC~ and 

d is maximal with this property. 

By using Journ6's lemma [8](1) in the form presented in [6], we have that  for every 

~>0, 

E [RI <~2~l~t[" (34) 
RC R ~  x 

(1) T h e  use  of Journ~ ' s  l e m m a  in e s t ima t i ng  th i s  error t e r m  can  be  replaced by a s impler  a rgumen t ,  
which  works in t he  m u l t i p a r a m e t e r  se t t ing  as well. Therefore ,  t he  proof  p resen ted  in th i s  pape r  readi ly 
ex t ends  to  th ree  or more  pa rame te r s .  T h e  detai ls  will appea r  elsewhere.  
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Our initial sum in the term II is now smaller than 

1 
E E E 1ipll/21(fl"~P~)l[(f2"I'G)ll(f3'C'G>)" (35) 
d>/1 ReRdma• I ,:CRnf~ 

We claim that  for every d RERma x we have 

1 
E ]Ip1112 I(fl,  ~p,)[ I{f2, ~fi2)l {(f3, ~:3)1 ~2-gdIRI (36) 

IpCRNf~ 

for any number N > 0 .  If (36) is true, then by combining it with (34), we can estimate 

(35) by 

d~>l ReRdma• d>/1  RERdmax d~ l  

which would complete the proof. 

It remains to prove (36). Fix R:=I• in d Rmax. Since 2dR:=ixJC_fl, it follows 

that  2dRrqE~=2~, and so XE3'=~E3)~(/xJ ) '  - -c.  Now we write 

XClxd)c = Xlc +Xjc-XIo 'Xdc .  

As a consequence, the left-hand side in (36) splits into three sums. Since all are similar, 

we will treat only the first one. 

Recall that  every Ip  is of the form I p = I p ,  X/p,,, and let us denote by s the set 

s {~,:~:  oR}. 

Then split 

where 

and observe that 

s U s 
dl~>O 

s {K'Ef-.: ~,.,2al}, 

Y] IK'[ < III. 
K~Es 

Then, we can majorize the left-hand side of (36) by 

1 ~ ~ ll:[~/21{fl,<~:,)lt{f2,~G)l}{f3,'~G)t 
dl)O KIE~.dl I ~ C R  

Ip, =K'  

1 
= E E E Ixp1)izp,,l /--- 

dl~0 KtE~dl I p C R  
I W = K  / 

~ "4 I Ip, I1/2 lip,)1~2 ' l ip,  11/2 , Op~,/ , 

(37) 
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where we redefined fa := XE'3 XI c" 
Let us observe that  if t 6 is such that  Ip,=K I, then the one-parameter tiles Pj, 

j = l ,  2, 3, are fixed, and we will denote for simplicity ~ p ; = : ~ , .  We also write 

PK, := {P": Ip C R and Ip,= K'}. 
With this notation, we rewrite our sum as 

E E ]KI' ~ 1 f l  ((fj,@JK,) ~2p;, ) (38) 
lip,, 11/2 )K'I1/2 ' �9 

dl>~OK'EL:Ul P EPKI j = l  

Next we split Pg ,  as 
PK' U d2 = P K ' ,  

d2 >/0 

where 

As a consequence, (38) splits as 

E E ' K ' I E  E 1 ~iI((fj,~JK,) ~pj,) 
d l )0  K'e~,d I d2)0 P"eP/~ lIP" 11/2 j = l  IK/I1/2 ' 

1 f l  / (fJ-:2 ~ ( ' }  ) 
= ~ ~ IK'] ~ iip,,ll/2 \ ]K, I1/2 ,~p;' 

dl >~O KIEEdl ~ d2 j = l  P ~Ud2 <dlPgl 

1 f l ( < / j , < I , } , > ~ , , \ .  + E E IK'I E Ii.,,I,/' ' " ; /  
dl >~O K'Cs 1 p,,EUa2>~dlPd2 j = l  

To estimate the first term on the right-hand side of (39) we observe that  

size /" (fl,  ~5}~,)) < pd, +d LId2~dlPdK~L i-~,1~/--~ _ ~ -  , 

size d~/' (y2' 4~2') ) ( r)dl+d 
_ ~ -  ' 

size d2 ['(A, @~")) < 9-N(d,+d) 

where N is as big as we want. Similarly, we have 

{ if1, @IK,) ~ < 2d,+d energyu~2~<~,P~2, t ~ ) IJI, 

e r ((f2'@'2K')'~ 2 d'+d 
ne gyud2~<glpdK2 L ~ ) % IJl' 

5 2-N(dl+d)  energYUd2~.dy2,~, IK'I1/-----~ J 

(39) 



288 C. MUSCALU, J. PIPHER, T. TAO AND C. THIELE 

Using these inequalities and applying Proposition 3.6, we can majorize that first term by 

E E IK'12d*+d2d*+d2-N(d*+d)lJl=2-(N-2)dlJI E 2-(N-2)d* E [K'I 
da >/0 K;CEd 1 dl ~0 KtCI:d 1 

<~2-(u-2)~lJI ~ 2-(N-2)~'IZl 
dl~>o (40) 

2-(N-2)d[II IJI 

= 2-(N-2)d]R[, 

also by using (37). Then, to handle the second term on the right-hand side of (39), we 

decompose 

[.j p]<2, = U PK',d3, (41) 
d2~dl  d3 

where PK',d3 is the collection of all tiles " d2 P G[.Jd2>~dlPK, SO that 2d3(K'XIp,,)C~ and 

d3 is maximal with this property. 

It is not difficult to observe that in fact we have the constraint dl +d<~d3. Taking 

this into account, the second term can be written as 

l I-II<(fJ'cbJK'>r ) . (42) E E [K'I E E iip,,Ix/2 [-K'-O'~' 
dl>/O K ' 6 s  1 d3>>-dl+d P"6PK,.d a j = l  

Now we estimate as before the sizes and energies as follows: 

sizep~,, d3 ( (fl,IK, I 1/~ r ]j ~< 2 ~3 , 

sizepK, d3 ( (f2' 'I)~"} ) < 2 d3 
IK, L1/: ~ , 

iz { if3, dP3, ) < 2--Nda,  s ep,, ,d~, N ,  rl/-- 3 ] 

where, as usual, N is as big as we want. Similarly, we have 

f (fl ,  ffP~(,) < 2d3 lJ[, 

ener /' <f2, ~ , )  ~< 2da[d], 

~:p~,~ IK, I1/2 j<  Igl. 
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Using all these estimates, the term (42) is seen to be smaller than 

dl)O K'EEd 1 dl+d~d3 d l ) 0  KtEEdl 

<~ III IJI2 -(N-2)d= 2(N-2)g[R], 

by using (37), and this completes the proof. 
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(43) 

7. C o u n t e r e x a m p l e s  

The next step in understanding this bi-parameter multilinear framework is to consider 

more singular multipliers. The most natural candidate is the double bilinear Hilbert 

transform, defined by 

R dtl tit2 Bd(f,g)(x,y)= 2f(x-tl 'y--t2)g(x+tl 'y+t2) t---1 t--2 

= s162 -r sgn(,1 -,2)/(r ,1)0(r (44) 

• e2~i(*,y).((r d~ dr/. 

It is the bi-parameter analogue of the bilinear Hilbert transform studied in [12] and given 

by 

[ --(dt = fR sgn(~_~)/(~)O(,7)e2~,~(r d~ d~. (45) B(fl, f2)(x) = jRfl  (x-t)  f2(x +t) 

This time, the functions f l  and f2 are defined on the real line. It is known (see [12]) that  

B satisfies many LP-estimates. 

However, regarding Bd we have the following theorem: 

THEOREM 7.1. The double bilinear Hilbert transform Bd defined by (44) does not 
satisfy any LP-estimates. 

Proof. It is based on the following simple observation. Let f(x,y)=g(x,y)=e i~y. 
Since 

(x-Q)(y- t2)+(x +tl)(y+t2) = 2xy+ 2tlt2, 

one can formally write 

B(e~*V'e~V)(x'Y)=e2~ faR2e2U~t~ dQ dt2 =4e2i~Y fo~fo~ Sin(tlt2) t2 tit2 

f ~ ( f ~  ) d t l  4e2~Y~o~dt  _4e2iXy sin(Qt2) dr2 - -  = --. 
- -  a0 \ a 0  t2 tl  2 t 

To obtain a quantitative version of this, we need the following lemma: 
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LEMMA 7.2. There are two universal constants Cl,C2>0 such that 

L N f N  dxdy >~ C l l o g N  (46) sin(xy) 

Jo xy 
as long as N>C2. 

Proof. Since f o  (sin t/t) dt =1 dTr, there is a constant C > 0  such that  

/o x sin t dt C (47) 
t 

whenever x>C. Then, 

__ ) dx f"f"sin(xy) tizzy= f" (  f"sin .) -- 
do do xy do \do Y x 

= fN(  fNXsint ) dx 
Jo \Jo 7 dt --x 

(48) 

Jo \Jo -~ dt - - +  dt - -  X /N \ J o  7 X 

= f c ( f ~ s i n t  ) d x  ic~ ( f N ~ s i n t  ) d x  
Jo \Jo t dt - - +  dt - -  x /YkJo t x " 

Since the function x~-~ ( l / x ) f o ( s i n  t / t )dt  is continuous on [0, C], it follows that the first 

term in (48) is actually O(1). To estimate the second term in (48), we observe that  since 

x>C/N,  it follows that  Nx>C,  and so, by using (47) we can write 

/N \ J 0  t -X 7 /N -~- = ~ (2log N - l o g  C), 

and this ends the proof of the lemma, if N is big enough. [] 

Now, coming back to the proof of the theorem, we define 

f N(x, y) = gN(X, y) ~- r (X) X[-N,1V] (Y) 

and observe that  

[Bd(fu, gN)( x, Y)l ~ C f N l ' ~  Nlw sin(zt) dzdt +O(1)/> ClogN+O(1) 
,so Jo 77 

as long as x, yE[-l~ooN, lo-~N]. This pointwise estimate precludes that  we have 

[IBd (fN, gN)fir • C llfN lip 119g liq uniformly in g .  [] 

At the end of this section, we would like to observe that, in the same manner, one 

can disprove the boundedness of the following operator considered in [15]. Let V be the 

trilinear operator V defined by 

V(f ,  g, h)(x) = f ](~1) 0(~2)h(~3)e 2"'~(r -~2+~) d~l d~2 d~a. (49) 
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The following theorem holds (see [15]): 

THEOREM 7.3. The trilinear operator V constructed above does not map 

L 2 x L ~ x L 2 --+ L 2/3' ~z. 

291 

Proof. First, by a simple change of variables one can reduce the study of V to the 

study of V1 defined by 

V1 (f, g, h)(x) = f ](~1) ~(52) h(53)e 2=~(~1+~2+~3) dS~ d52 d~3. (50) 

Also, we observe that  the behaviour of V1 is similar to the behaviour of V2 defined by 

V2 (f, g, h)(x) = L3sgn(~l  +~2) sgn(~2 +43) ](41) g(42) h(~3) e 2~r/x(~l +~2+~3) d41 d42 d~3, 

(51) 

since the difference between V1 and V2 is a sum of simpler bounded operators. 

But then, V2 can be rewritten as 

R dtl dt2 V2( f , g ,h ) ( x )=  2 f ( x - t l ) g ( x - t l - t 2 ) h ( x - t 2 )  t-'T t-~ 

The counterexample is based on the following observation, similar to the one before. 

Consider f (x) = h(x) = e i~2 and g(x) = e -i~2. Because 

2 = x  2+2t t2, 

we can again formally write 

JR 2 tl t2 J0 t 

To quantify this, we define fN(X)=hN(x)=ei~2X[_N,N](X ) and gN(X)=e--i~2X[_N,NI(X), 
and observe as before that  

f N / l O f N / l O  s in (xy)dxdy  +O(1) 
IV2(fN,gN, hN)(X)] >~C Jo Jo xy 

1 1 if xE [-1~-6N, l~ff6N], and this, as we have seen, contradicts the boundedness of the 
operator. [] 
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8. F u r t h e r  r e m a r k s  

First of all, we would like to remark that  Theorem 1.1 has a straightforward generalization 

to the case of n-linear operators, for n~>l. 

Let mE L ~ (R ~n) be a symbol satisfying the bi-parameter Marcinkiewicz HSrman- 

der-Mikhlin condition 
1 1 < i tj , i 1[ 1 (52) 

for many multiindices c~ and/3. Then, for Schwartz functions f l , . . - ,  fn in R 2, define the 

operator T,~ by 

Tin(f1, ..., fn)(X) :=/R2 m(~, ~])]1 (~1,7h)... s  ~]n) e27rix'((~l'm)+'''+(Sn'~Tn)) d~ dT]. (53) 

We thus record the following result: 

THEOREM 8.1. The bi-parameter n-linear operator Tm maps LPl • ... x LP"--~ L p as 

long as 1<pl ,  . . . ,Pn~co, 1 / p l + . . . + l / p n = l / p  and 0 < p < c o .  

Here, when such an (n+ l ) - tup le  (Pl,. . . ,Pn,P) has the property that  0 < p < l  and 

pj =co for some 1 ~<j ~< n, then, for some technical reasons (see [14]), by L ~ one actually 

L ~ the space of bounded measurable functions with compact support. means c , 

On the other hand, one can ask what is happening if one is interested in more singular 

multipliers. Suppose that  F 1 and F2 are subspaces in R '~, and consider operators Tm 

defined by (53) where m satisfies 

1 1 
[O~O~m((, r/)[ ~< dist((, Ft)f~l I dist(rh F2)IN " (54) 

Our theorem says that  if dim F1--d imF2=0,  then we have many LP-estimates available. 

On the other hand, the previous counterexamples show that  when d i m F l = d i m F 2 = l ,  

then we do not have any LP-estimates. But it is of course natural to ask the following 

question: 

QUESTION 8.2. Let d i m F l = 0  and d i m F 2 = l  with F2 non-degenerate in the sense 

of [14]. I f  m is a multiplier satisfying (54), does the corresponding Tm satisfy any 

LP-estimates? 

9. A p p e n d i x :  d i f f e r e n t i a t i n g  p a r a p r o d u c t s  

In this section we describe how the Kato-Ponce  inequality (2) can be reduced to the 

Coifman-Meyer theorem, and also how the more general inequality (5) can be reduced 

to our Theorem 1.1. 
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The argument is standard and is based on some "calculus with paraproducts". We 

include it here for the reader's convenience. 

In what follows, we will define generic classes of paraproducts. First we consider the 

sets �9 and �9 given by 

(I) :-- (4  �9 S ( R ) :  supp r C [-1,  1]}, 

ko:= (~b �9 ~q(R): supp ~ C [1, 2]}. 

The intervals [-1,  1] and [1, 2] are not important. What  is important is the fact that  

consists of Schwartz functions whose Fourier support is compact and contains the origin, 

and ~ consists of Schwartz functions whose Fourier support is compact and does not con- 

tain the origin. Then, for various r  and r ~ ,  e ' E r ,  we define the paraproducts I]j, 

j =0, 1, 2, 3, as 

II0 (f, g)(x) :-- /a(  (f * D~k ~ )(g* D~k ~') ) * D~k ~" (x) dk, (55) 

II1 (f, g)(x):-- fR((f*D~kr ) dk, (56) 

II2(f, g)(x) := /R( (f * D~k ~ )(g* D~kr ) )* D~k r (x) dk, (57) 

II3(f, g)(x) := /a( ( f * D~k r )(g* D~k r ) )* D~k O(x ) dk. (58) 

All these paraproducts are bilinear operators for which the Coifman-Meyer theorem 

applies. For instance, one can rewrite H0(f, g) as 

where the symbol m(~l, ~2) is given by 

D~ 2-~r  ̂ D ~ 2-k~b )(~2)( ^' D ~  2-kr  ̂ " ) ( - r  dk 

and satisfies the Marcinkiewicz HSrmander-Mikhlin condition. 

The reduction relies on the following simple observation: 

PROPOSITION 9.1. Let c~>0. Then, for every paraproduct I-[1 there exists a para- 
product H~ so that 

V ~ Ha (f, g) = HI (f, 7)"9) (59) 

for all Schwartz functions f and g on R. 
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Proof. It is based on the equalities 

~D~ (f' g) = f ((f*D~kr kr dk 
J R  

=/R((f ,D~r (:Da@') dk 

/R(( f  ,D~k-'" , 2 -k~D 1 - ,~ ,D 1 ,D~,~ = o)(g 2kYJ)) ~k( ~ )dk 

=/R((f,p~kr (:D-or k (/:)or dk 

/R((f*D~k r (D-~r (:D~r dk 

=: II~ (f, :D~ 

where 7P-~r is the Schwartz function whose Fourier transform is given by :D-~r  -- 

I~I-~r which is welt defined since Ce  kO. [] 

Clearly, one has similar identities for all the other types of paraproducts Hj, j ~ 1. 

To prove the Kato-Ponce inequality, one just has to realize that  every product of two 

functions f and g on R can be written as a sum of such paraproducts, 

3 

fg = ~ Hj (f, g), 
j=O 

and then, after using the above Proposition 9.1, to apply the Coifman-Meyer theorem. 

A similar treatment is available in the bi-parameter case too. Here, one has to handle 

bi-parameter paraproducts IIi,j for i , j = 0 ,  1, 2, 3, formally defined by IIi,j :=Hi| 
One first observes the following extension of Proposition 9.1: 

PROPOSITION 9.2. Let a,~>O. Then, for every paraproduct H1,2 there exists a 
paraproduct II~, 2 so that 

= II1,2 (7:)2 f ,  :D1 g) (60) 

for all Schwartz functions f and g on R 2. 

As before, there are similar equalities for the remaining paraproducts Hi,j when 

( i , j )~(1 ,  2). Since every product of two functions f and g on R 2 can be written as 

3 

fg= ~ II i , j ( f ,g) ,  
i , j=O 
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everything follows from Theorem 1.1. In fact, the above argument  proves tha t  an even 

more general inequality holds, namely 

+ IID f[Ipa IID2 gll q3 + IIZ) g[Ip  I{D fllq  
(61) 

whenever l<p j ,  qj <<.oc, 1 / p j + l / q j = l / r  for j = l ,  2, 3, 4 and 0 < r < c c .  
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