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Consider the random power series 

1. In tro d u c t io n  

Go 

f u ( Z ) :  E an zn , (1) 
n = 0  

a where { n}n=0 are independent s tandard complex Gaussian random variables (with den- 

sity e-Z~/Tr). The radius of convergence of the series is a.s. 1, and the set of zeros forms 

a point process Z u  in the unit disk U. Zeros of Gaussian power series have been studied 

start ing with Offord [20], since these series are limits of random Gaussian polynomials. 

In the last decade, physicists have introduced a new perspective, by interpreting the zeros 

of a Gaussian polynomial as a gas of interacting particles, see Hannay [12], Lebceuf [15] 

and the references therein. Much of the recent interest in Gaussian analytic functions was 

spurred by the papers Edelman-Kost lan  [9] and Bleher-Shiffman-Zelditch [4]. A funda- 

mental  property of Z u  is the invariance of its distribution under MSbius transformations 

that  preserve the unit disk; see w for an explanation, and Sodin-Tsirelson [27] for refer- 

ences. 

Our main new discovery is tha t  the zeros Z u  form a determinantal process, and 

this yields an explicit formula for the distribution of the number of zeros in a disk. 

Furthermore, we show that  the process Z u  admits  a conformally invariant evolution 

which elucidates the repulsion between zeros. 

Given a random function f and points Zl,...; Zn, let Pe(Zl, ..., zn) denote the proba- 

bility that  for all l<.i<.n, there is a zero of f in the disk of radius s centered at zi. The 
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joint intensity of the point process of zeros of f ,  also known as the n-point correlation 

function, is defined by the limit 

p(zl, ..., zn) = lim p~(zl,..., zn) (2) 
E-+O 7rn ~ 2n  

when it exists; see (10) for a related integral formula. 

THEOREM 1. The joint intensity of zeros for the i.i.d. (independent identically dis- 

tributed ) Gaussian power series (1) in the unit disk exists, and satisfies 

p(zl,...,zn)=Tr-'~det l_zi~j)2 ,j. (3) 

Thus the zero set of the i.i.d, series fv (z )  is a determinantal process in U, governed 

by the Bergman kern el K u  (z, w ) = rr - 1 (1 - z~) - 2; see Soshnikov [28] for a survey of deter- 

minantal processes. In particular, (3) extends the known fact that  p(zl, z2)<p(zl)p(z2) 

for all zl ,z2EU, i.e., the zeros are negatively correlated. In fact, Zu  is the only pro- 

cess of zeros of a Gaussian analytic function which is negatively correlated and has a 

MSbius-invariant law; see w 

The determinant formula for the joint intensity allows us to determine the distribu- 

tion of the number of zeros of f u  in a disk, and identify the law of the moduli of the 

zeros. 

THEOREM 2. (i) The number Nr=IZuNBr(O)I of zeros of f u  in the disk of Eu- 

clidean radius r about 0 satisfies 

E(I+s)N"  = 1-[ (l+r2ks) (4) 
k = l  

X for all real s. Thus Nr has the same distribution as ~-~=1 Xk, where { k}k=l is a 

sequence of independent {0, 1}-valued random variables with P ( X k = I  )=r 2k. 
l r r l / 2 k l ,  oo 

(ii) Moreover, the set of moduli {Iz[:fu(z)=O} has the same law as tvk  Jk=l, 
i co where { k}k=l are i.i.d, random variables uniform in [0, 1] 

From Theorem 2 we readily obtain the asymptotics of the hole probability P(N~ =0). 

Furthermore, the infinite product in (4) occurs in one of Euler's partition identities, 

see (36), and this connection yields part (ii) of the next corollary. 

COROLLARY 3. (i) Let h=4~rr:/(1-r2), the hyperbolic area of B~(O). As r$1, we 

have 
[ -~h+o(h) '~  / / -~2  +o(1) 

P(Nr  = 0 ) - -  exp~ ~ ) =exp[ ) 
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(ii) The binomial moments of Nr equal 

E = (1_r2)(1_-_--~)~-.. ( l_r2k)  . 

Off) The ratio (Nr-tt~)/a~ converges in law to standard normal as r$ l, where 

r 2 r 2 
t t r = E N r =  l_r2 and a~ = V a r N r -  l _ r 4 .  

1.1. G e n e r a l  d o m a i n s  

The covariance structure E ( f o ( z ) f u ( w ) ) = ( 1 - z ~ )  -1 equals 2~" times the Szeg5 kernel 

Su (z, w)--(2~r)- l (1-  zt~)-I in the unit disk. The Szeg6 kernel So (z, w) and the Bergman 

kernel KD(Z, w) are defined, and positive definite, for any bounded planar domain D with 

a smooth boundary. (See the next section or Bell [2] for information on the Szeg5 and 

Bergman kernels.) For such domains we can consider the Gaussian anMytic function 

fD(z) with covariance structure 27rSD in D (an explicit formula for fD is given in (12)). 

Recall that  a Gaussian analytic function in D is a random analytic function f such 

that  for any choice of Zl, ..., zn in D, the random variables f (z l ) ,  ..., f(zn) have complex 

Gaussian joint distribution. 

COROLLARY 4. Let D be a simply-connected bounded planar domain, with a C ~176 

smooth boundary. The joint intensity of zeros for the Gaussian analytic function f D is 

given by the determinant of the Bergman kernel: 

p(zl,..., z~) = det (KD (zi, zj))i,j. 

Note that  for simply-connected domains as in the corollary, the Bergman and Szeg5 

kernels satisfy KD(Z,w)=n~rSD(z, w) 2, see Bell [2, Theorem 23.1]. 

1.2. T h e  o n e - p a r a m e t e r  f ami ly  o f  M S b i u s - i n v a r i a n t  z e r o  se t s  

For ~>0, let Zu,~ denote the zero set of 

co 1/ 2an z n  , 

(-n ) 
n = 0  

where {an}n~=0 are i.i.d, standard complex Gaussians. In particular, fu,1 has the same 

distribution as f u .  As explained in Sodin-Tsirelson [27] (see also Bleher-Ridzal [3]), 
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for any 6>0,  the distribution of Zu,e is invariant under MSbius transformations that  

preserve U. Moreover, these are the only zero sets of Gaussian analytic functions with 

this invariance property. However, only 6= 1 yields a determinantal zero process. 

Taking n=l  in Theorem 1, one recovers the well-known formula (1-Izl2)-2/7:  for 

the intensity of Zu.  More generally, the intensity of Zu,e in U is ~/Tr(1-M2) 2, see 

Sodin [26]. It follows that the expected number of zeros in a Borel set A c U  is p/47r 

times the hyperbolic area 

/A 4 dz 
A(A) = (1_1212) ~ . 

(Integration is with respect to planar Lebesgue measure.) This can also be inferred from 

Proposition 8 below. In w we prove the following law of large numbers: 

PROPOSITION 5. Let g>0,  and suppose that {Ah}h>0 is an increasing family of 

Borel sets in U, parameterized by hyperbolic area h=A(Ah).  Then the number N(h)-- 

IZunAhl of zeros of fu,~ in Ah satisfies 

lim N ( h ) _  p a.s. 
h - ~  h 47r 

1.3. R e c o n s t r u c t i o n  o f  Ifu,~l f r om its ze ros  

THEOREM 6. (i) Let 6>0. Consider the random function fu,~, and order its zero set 

Zu,~ in increasing absolute value as {Zk}kCr �9 Then 

o o  

Ifu,Q(0)l = %  1-[ e~/~klzkl a.s., (6) 
k = l  

where c~=e(~-~-~)/2 g-e/2 and ~/= l imn- -~(E~=l  1 / k - l o g n )  is Euler's constant. 
k c ~  (ii) More generally, given ~6U, let {~ }k=l be Zu,~, ordered in increasing hyper- 

bolic distance from C. Then 

o o  

Ifu,~(q)l = c~(1-1(12) -~/2 H e~/2k ~k-__~ (7) 
k=l I I - - ~ k  ]" 

Thus the analytic function fu ,e(z)  is determined by its zero set, up to multiplication 

by a constant of modulus 1. 

This theorem is proved in w 
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1.4. D y n a m i c s  

In order to understand the negative correlations for zeros of f u ,  we consider a dynamic 
n version of the zero set Zu.  Denote by Zu  (t) the zero set of the power series ~ n = 0  an (t)z , 

where the coefficients an (t) are independent stationary complex Ornstein-Uhlenbeck pro- 

cesses; in other words, an (t) = e-t /2 Wn (et), where { Wn (") }n~_-0 are independent complex 

Brownian motions. 

A direct calculation gives that,  for the process Zu,  the intensity ratio 

p(zl ,  z2) 

p(zl)p(z2)  

is strictly less than 1, and decreases to 0 as the hyperbolic distance between zl and z2 

tends to 0. This repulsion suggests that  when two zeros get close, there is a drift in their 

motion that  pushes them apart. However, this is not the case. Instead, we have the 

following result: 

THEOREM 7. Consider the process of zeros {Zu(t )}  in the unit disk, and condition 

on the event that at time t--0,  there is a zero at the origin, i.e., 0EZu(0) .  The movement  

of this zero is then described by a stochastic differential equation which at t ime t = 0  has 

the form 

dz = a dW, 

where W is complex Brownian motion, there is no drift term, and 

1 _ Ifb(o)l cl 1 ]  el/2klzkl a.s. 
~T 

k = 2  

Heuristically, any zero of f u  oscillates faster when there are other zeros nearby; this 

causes repulsion. 

Analogous processes ZD(t) can be defined in general domains, and we shall show 

in w that  the family of processes ZD(t) is conformally invariant (no time change is 

needed). Theorem 7 can be extended to Q~I  as well. 

Conditioning to have a zero at a given location. It is important  to note that  the 

distribution of f u  given that  its value is zero at 0 is different from the conditional 

distribution of f u  given that  its zero set has a point at 0. In particular, in the second 

case the conditional distribution of the coefficient al is not Gaussian. The reason for this 

is that  the two ways of conditioning are defined by the limits as E--+0 of two different 

conditional distributions. In the first case, we condition on Ifu(0)l <~. In the second, we 

condition on f u  having a zero in the disk Be(0) of radius ~ about 0; the latter conditioning 

affects the distribution of al .  See Lemma 18 in w 
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1.5. Hammersley~s formula 

The starting point of the proof of Theorem 1 is a general permanent formula for the joint 

intensity of zeros for Gaussian analytic functions. A version for polynomials is due to 

Hammersley Ill] and Friedman [10]. The permanent form (9) for Gaussian polynomials 

appears in the physics literature (Hannay [12]). Closely related formulas for correlations 

between zeros of random sections of a positive holomorphic line bundle over a compact 

complex manifold were established by Bleher-Shiffman-Zelditch [4]. 

The version we need is for Ganssian analytic functions, that are not necessarily 

polynomials. 

PROPOSITION 8. Let f be a Gaussian analytic func t ion  in a planar domain D such 

that E f ( z ) = 0  for  all z E D.  Given points Zl , ..., z~ E D , consider the matrices  

A =  ( E f ( z i ) f ( z j ) ) ,  B =  ( E f ' ( z ~ ) f ( z j ) )  and C =  ( E f ' ( z ~ ) f ' ( z j ) ) .  

A s s u m e  that A is nonsingular. 

(i) The jo in t  in tensi ty  for  the zeros of  f exists and satisfies 

R(Zl ' Zn) : E ( t f t ( z l ) . , .  f ' (zn)l  2 ] f ( z~ )  . . . . .  f (Zn) = O) 
"'" det(TrA) (8) 

Consequently, 
p e r m ( C - B A - 1 B * )  (9) 

p(zl,  ..., zn) = det (TrA) 

(ii) A s s u m e  that A = A ( Z l , ..., z,~ ) is nonsingular when z l , ..., zn C D are distinct. Let 

Z ~  ~ denote the set of  n- tuples  of  dist inct  zeros of  f . Then  fo r  any Borel set  B E D  ~ we 

have 

E # ( B M Z  ^'~) = ] s p ( Z l , . . . ,  Zn) dZl ... dzn. (10) 

The proof of this proposition is given in w 

In the derivation of Theorem 1 from Proposition 8, we use conformal invariance, the 

i.i.d, property of the coefficients, and the beautiful determinant-permanent identity (26) 

of Borchardt [6]. 

Remarks  on the literature. A nice introduction to the theory of Gaussian analytic 

functions is given in Sodin [26]; for earlier results, see Hammersley [11], Friedman [10], 

Bogomolny-Bohigas-Lebceuf [5], gost lan [14], Edelman-Kostlan [9] and Hannay [12]. 

Close to the topic of this paper are Shiffman-Zelditch [23] and Sodin-Tsirelson [27]. 

Determinantal processes are also being intensively studied, see Soshnikov [28]. Theo- 

rem 1 provides further evidence for the analogy, suggested in Lebceuf [15], between zeros 

of Gaussian polynomials and the Ginibre ensemble of eigenvalues of (non-Hermitian) 

random matrices with i.i.d. Gaussian entries, which is known to be determinantal. 
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2. Conformal invariance and preliminaries 

Complex Gaussian random variables. Recall that  a standard complex Gaussian random 

variable a has density e-Ze/~, expected value 0 and variance Ead=l. A vector V of 

random variables has a complex Gaussian (joint) distribution if there is a deterministic 

vector V0 such that  V-Vo is the image under a linear map of a vector of i.i.d, standard 

complex Gaussian random variables. 

If X and Y are real Gaussian random variables of mean zero, then X + i Y  is complex 

Gaussian if and only if X and Y are independent and have the same variance. A complex 

Gaussian random variable Z with E Z = 0  satisfies Ezn=o for any integer n>~l. 

The complex Gaussian power series. Recall the power series f u  in (1). A Borel-  

Cantelli argument shows that  the radius of convergence of f u  equals 1 a.s. Clearly, the 

joint distributions of fu(zk)  for any finite collection {zk} are complex Gaussian, so the 

values of fw form a complex Gaussian ensemble. Since f u  is continuous, its distribution 

is determined by the covariance structure 

oo 

E f u ( Z ) f u ( W )  = E (ZW)n = ( 1 - - Z W )  - 1 .  

n----0 
(11) 

The right-hand side is 2~r times the Szeg6 kernel in the unit disk; it suggests a natural 

way to generalize the power series f u .  

The Szeg6 kernel. Let D be a bounded planar domain with a C ~176 smooth boundary 

(the regularity assumption can be weakened). Consider the set of complex analytic 

functions in D which extend continuously to the boundary 019. The classical Hardy 

space H 2 (D) is given by the L2-closure of this set with respect to length measure on 019. 
Every element of H2(D) can be identified with a unique analytic function in D via the 

Cauchy integral (see Bell [2, w 

Consider an orthonormal basis {r176176 0 for H2(D);  e.g., in the unit disk, take 

r for n~>0. Use i.i.d, complex Gaussians {an}n=0~176 to define the random 

analytic function 
oo 

fD(Z) = V ~  E anCn(Z) (12) 
n~O 

(cf. (6) in Shiffman-Zelditch [23]). The factor of ~ is included just to simplify formulas 

in the case where D is the unit disk. The covariance function of f o  is given by 27rSD(Z, w), 
where 

(:x) 

so  (z, w) = Cn (z) r  (w) (13) 
n---~0 
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is the Szeg5 kernel in D. The Szeg6 kernel SD does not depend on the choice of ortho- 

normal basis and is positive definite (i.e., for points z jED the matrix (SD(zj, Zk))j,k is 

positive definite). 

Let T:A-+D be a conformal homeomorphism between two bounded domains with 

C ~ smooth boundary. The derivative T' of the conformal map has a well-defined 

square root, see Bell [2, p. 43]. If {r is an orthonormal basis for H2(D), then 

(v/TT(r forms an orthonormal basis for H2(A). In particular, the Szeg6 ker- 

nels satisfy 

SA(Z, w) = T'(z) '/2 T'(w)U2SD(T(z), T(w)). (14) 

When D is a simply-connected domain, it follows from the transformation formula (14) 

that  SD does not vanish in the interior of D, so for arbitrary 0>0 powers S~) are defined. 

Let {r/n}n~__0 be an orthonormal basis of the subspace of complex analytic functions 

in L 2 (D) with respect to Lebesgue area measure. The Bergman kernel 

KD(z, w) = ~ rb~(z),n(w) 
n=0  

is independent of the basis chosen, see Nehari [18, formula (132)]. 

The Szeg5 random functions with parameter ~. Recall the one-parameter family of 

Gaussian analytic functions fu ,e  defined in (5). The binomial expansion yields that  the 

covariance structure Efu,e(z) fu ,e(w) equals 

n : O  n=O 

The invariance of the distribution of Zu, e under MSbius transformations of the unit disk 

is a special case of the following result: 

PROPOSITION 9. Let D be a bounded planar domain with a C ~ boundary and let 

~)>0. Suppose that either (i) D is simply-connected, or (ii) p is an integer. Then there 

is a mean-zero Gaussian analytic function fD,e in D with covariance structure 

EfD,o(Z)fD,e(W) = [27rSD(z,w)] ~ for z, wCD. 

The zero set ZD,~ of fD,o has a conformally invariant distribution: if A is another 

bounded domain with a smooth boundary, and T: A-+ D is a conforvnal homeomorphism, 

then T(ZA,0) has the same .distribution as ZD,o. Moreover, the following two random 

functions have the same distribution: 

f i ,e(z)  d T,(z)e/2(fD,~oT)(z). (16) 
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We call the Gaussian analytic function fD,o described in the proposition the Szeg6" 
random function with parameter ~ in D. 

Proof. Case (i): D is simply-connected. Let ~: D--+U be a conformal map onto U, 

and let {an}n~=o be i.i.d, standard complex Gaussians. We claim that  

oo ^ . 1 / 2  

f(z) =~ ' (z )~  E ( - : )  ang2(z)" (17) 
n = 0  

is a suitable candidate for fD,u. Indeed, repeating the calculation in (15), we find that  

E(f (z)  f(w)) = [qz'(z) ~ ]  0/2 [1- ~(z) ~(w)]-~  

= o/2 

The last expression equals [2zcSD(z, w)] o by the transformation formula (14). Thus we 

may define fD,~ by the right-hand side of (17). If T: A--+D is a conformal homeomor- 

phism, then ~ o T  is a conformal map from A to U, so (17) and the chain rule give the 

equality in law (16). Since T I does not have zeros in A, multiplying fD,ooT by a power 

of T ~ does not change its zero set in A, and it follows that  T(ZA,0) and ZD,o have the 

same distribution. 

Case (ii): Q is an integer. Let {r be an orthonormal basis for H2(D). Use 

i.i.d, complex Gaussians {an1 ..... no: hi ,  ..., n o)O} to define the random analytic function 

fm,o(z) = (27c) ~/2 E anl . . . . . .  o@nl (Z )  ... ~2no(Z); (18) 
nl,...,no)O 

see Sodin [26] for convergence. A direct calculation shows that  fD, o, thus defined, satisfies 

EfD'o(Z)fD'o(w) = (27r)~ E ~2n~(Z)r Cno(Z)~2no(W) --~ [27rSD(Z'W)]~ 
nl,...,no~O 

The transformation formula (14) implies that  the two sides of (16) have the same co- 

variance structure, [2~rSA(z, w)] ~ This establishes (16) and completes the proof of the 

proposition. [] 

The general theory of Gaussian analytic functions implies that,  up to multiplication 

by a deterministic analytic function, the random functions fu,o are the only Gaussian 

analytic functions with marginal intensity of zeros proportional to the hyperbolic area 

element. See Sodin [26] for a proof. 

Similarly, the zeros of the Gaussian analytic function 

n~O 
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Fig. 1. The translat ion-invariant  root process and a Poisson point  process with the same 

intensity on the plane. 

have distribution which is invariant under rotations and translations of the complex 

plane. Note that  here Q is a simple scale parameter: Fc,e(z)=Fc,l(v/-~z). 
Letting Q-+oc in the definition of fu,e ,  one recovers that  the limit of the rescaled 

point processes Q1/2Zu, ~ is the zero set of Fc,1; this phenomenon and its generalizations 

have been studied by Bleher-Shiffman-Zelditch [4]. 

Figure 1 shows a realization of the whole plane Ganssian zero process along with a 

Poisson point process of the same intensity. The orderliness of the zeros suggests that  

there is a local repulsion taking place. One gets similar pictures for the Szeg5 random 

functions in the unit disk. The two-point intensity for zeros at the points r and 0 is given 

by (9). The most revealing formula is the ratio p(0, r)/p(O)p(r), which shows how far 

the point process is from a Poisson point process, where this ratio is identically 1. For 

general L), with s = l - r  2, this ratio equals 

1+(LO2--2~O--2)(SQ+S2+2~)+(o+l)2(S2~+S2+~)--2Q2(S1+~+S1+2~)+S2+3~ (19) 
(l_se)3 

and in the case 6=1 it simplifies to r2(2-r2) .  For every distance r, the correlation is 

minimal when 6=1 (see Figure 2). For all values of Q different from 1, for small distances 

zeros are negatively correlated, while for large distances the correlation is positive. 

When 6--1, the zeros are purely negatively correlated: this special phenomenon is 

explained by the determinantal form of the joint intensity. 

Remark. The Szeg5 random function for Q=2, 

O O  

n, 
n~O 
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coincides with the limit when n--+ec of the logarithmic derivative of the characteristic 

function of a random n x n unitary matrix. (see Diaconis-Evans [8]). 

The analytic extension of white noise. Next, we show that up to the constant term, 

the power series fu  has the same distribution as the analytic extension of white noise on 

the unit circle. Let B(. ) be a standard real Brownian motion, and let 

~0 2~r u(z) = Poi(z, e it) dB(t). 

Here the integral with respect to B can be interpreted either as a stochastic integral, 

or as a Riemann-Stieltjes integral, using integration by parts and the smoothness of the 

Poisson kernel. Recall that the Poisson kernel 

( 2 )  1 1 ( l + z ~  1 1 =2ReSu(z,w) 2~r P~ l - z ~ J  =-~rRe 1 

has the kernel property 

Poi(z, w) = Poi(z, eit)Poi(e it, w) dt. 

(This follows from the Poisson formula for harmonic functions, see Ahlfors [1, w The 

white noise dB has the property that if f l  and f2 are smooth functions on an interval and 

fi#=ffi(t) dB(t), then Ef~f~=ffl( t) f2(t)dt .  By this and the kernel property we get 

Eu(z)u(w)=Poi(z, w). Therefore if b is a standard real Gaussian independent of B(. ), 

then 

1 (20) ~(z)= u(z)+-~b 

has covariance structure E~t(z)~t(w)=TrReSv(z,w). Now if v and v' are mean-zero 

complex Gaussians, then Re E v ~ = 2 E R e  v Re v'; thus (11) implies that ~ has the same 

distribution as Re fu- 
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Remark. Similarly, since fu,2 is the derivative of ~-~=1 amzm/v '-~' the zero set 

Zu,2 can be interpreted as the set of saddle points of the random harmonic function 

Re(amz m) 

in U. More generally, in any domain D, the zero set ZD,2 can be interpreted as the set 

of saddle points of the Gaussian free field (with free boundary conditions) restricted to 

harmonic functions. 

Joint moments of complex Gaussians. We will need the following known fact for the 

proofs of Hammersley's formula and Theorem 1. 

FACT 10. If Z1, ...,Zn are mean-zero jointly complex Gaussian random variables 
with covariance matrix Mjk= EZjZk, then E IZ1... Znl2- -perm(M).  

Proof. We will check that  in general for jointly complex normal, mean-zero random 

variables Zj and Wj we have 

k 

E Z 1  "'" ZnW1 "'" Wn  = Y ~  I ~  EZj~ra(J)  = perm(EZjWk)j,k, 
a j=l  

where the sum is over all permutations aESn. (See the book of Simon [25] for a similar 

statement in the real case.) Both sides are linear in each Zj and Wj, and we may assume 

that  the Zj and Wj are complex linear combinations of some finite i.i.d, standard complex 

Gaussian sequence {Vj}j~__I . The formula is proved by induction on the total number of 

nonzero coefficients that  appear in the expression of the Zj and Wj in terms of the Vj. 

If the number of nonzero coefficients is more than one for one of Zj or Wj, then we 

may write that  variable as a sum, and use induction and linearity. If it is 1 or 0 for all 

Zj and Wj, then the formula is straightforward to verify; in fact, using independence it 

suffices to check that  V=Vj has EVnVm-=n! l{m=n}. For nr  this follows from the fact 

that  V has a rotationally symmetric distribution. Otherwise, I VI 2n has the distribution of 

the n th  power of a rate-one exponential random variable, so its expectation equals n!. [] 

3. A d e t e r m i n a n t  f o r m u l a  in t h e  i.i .d, case  

The goal of this section is to prove Theorem 1 and Corollary 4. The proof relies on the 

i.i.d, nature of the coefficients of f-=-fu, MSbius invariance, Hammersley's formula and 

Borchardt 's  identity (26). 
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For/3EU let 

Tz(z)-  z-t3 (21) 
1-13z 

denote a M6bius transformation fixing the unit disk, and define 

~(z)- (1- I/~12)~/2 
1 - ~ z  ' 

so that  T~(z)=T~(z). 

Remark 11. Recall that  for two jointly complex Gaussian random vectors X and Y, 

the distribution of Y given X--0 is the same as the distribution of Y with each entry 

projected to the orthocomplement (in L 2 of the underlying probability space) of the 

subspace spanned by the components Xi of X. 

PROPOSITION 12. Let f= fu  and Zl,...,znEU. The distribution of the random 
function 

Tzl(Z) ...Tz,(z)f(z) (22) 

is the same as the conditional distribution of f(z) given f(zl) . . . . .  f ( zn )=0 .  

Proof. First consider n--1. The assertion is clear for Zl--0; here the i.i.d, property 

of the {ak}k~__0 is crucial. More generally, for z1----/3, by (16) the random function ] =  

TZ(IoTB) has the same distribution as f .  Since TB(/3)=0, from the formula 

OO 

](z) = 7"~(z) E ak(T~(z))k 
k=O 

it is clear that  the distribution of TB] is identical to the conditional distribution of ] 

given ](/~)=0, whence the same must hold for f in place of ] .  The proposition for n > l  

follows by induction: To go from n to n + l ,  we must condition (f If(z1) . . . . .  f ( zn )=0)  

on f(zn+l)--0.  By the assumed identity for n points, this is equivalent to conditioning 

(Tz 1...Tz~I)(z) on f(Zn+l)=O. By Remark 11, conditioning is a linear operator that  

commutes with multiplication by the deterministic functions T~,. Applying the equality 
d 

of distributions (f(z)[f(Zn+l)=O)= Tz~+l(z)f(z) completes the proof. [] 

Fix Zl, ..., znEU and let 
n 

T(z) = H T~j(z). (23) 
j = l  

Since Tzk(Zk)=O and T~zk(Zk)=l/(1--Zk2k), we have 

, f i  1 
T'  (zk) =T~k(Zk) H Tzj(Zk)= ~" 1--zj2k H (zj--zk) (24) 

j : j?~k j = l  j :  j ~ k  

for each k <~ n. 
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COROLLARY 13. Let f = f u  and zl , ..., zn E U. The conditional joint  distribution of 

the random variables ( f ' ( z k ) : k = l ,  ...,n) given that f ( z l )  . . . . .  f ( z n ) = 0  is the same as 

the unconditional joint distribution of (T'(zk) f ( Zk ) : k = 1,..., n ) . 

Proof. The conditional distribution of f given that f ( z j )=O for l<.j<~n is the same 

as the unconditional distribution of Tf .  Since T(zk)=0,  the derivative of T ( z ) f ( z )  at 

z=zk  equals T' (zk) f ( zk) .  [] 

Consider the n • n-matrices A and M, with entries 

Aj, k = E f ( z j ) f ( z k )  ---- (1 - zj2k) -1, 

Mj, k=(1- - z j2k )  -2. 

By the classical Cauchy determinant formula, see Muir [17, p. 311], we have 

d e t A = H  1 H ( z j _ z k ) ( 2 j _ 2 k ) .  
k , j  1--zjzk k < j  

Comparing this to (24), we see that  

d e t g =  12I ]T'(zk)]. (25) 
k = l  

We will need the classical identity of Borchardt [6] (see also Minc [16]): 

p e r m ( ~ l  ~ d e e ( - - 1  ~ = d e t ( ( x j l y k ) 2 ) j ,  k. (26) 
\ x j + Y k / j , k  \ x j + Y k / j , k  

Setting xj =z~ -1, Yk =--2k and dividing both sides by 1-I~=1 z~ gives that  

perm(A) det A = det M. (27) 

We are finally ready to prove Theorem 1. Corollary 4 is a direct consequence of the con- 

formal invariance in Proposition 9 and the way the Szeg6 and Bergman kernels transform 

under conforlnal maps (see (14)). 

Proof of Theorem 1. Recall from (8) that 

p(zl ' ..., Zn ) = E( t f ' ( z l  ) ... f'(zn)[21 f ( z l )  . . . . .  f ( zn)  ---- 0) (28) 
r n det A 

By Corollary 13, the numerator of the right-hand side of (28) equals 

E(I f (z l )  "'" f(zn)12) H IT'(zk)12 = perm(A) det(A) 2, (29) 
k ~ l  

where the last equality uses the Gaussian moment formula of Fact 10 and (25). Thus 

p(zl , . . . ,  Zn) : lr -n  perm(A) det A -- 7r -n  det M 

by (27). [] 
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4. T h e  n u m b e r  o f  zeros  o f  f v  in a d isk  

In this section we prove Theorem 2 and Corollary 3. In fact, the corollary only uses 

part (i) of the theorem, so we delay the proof of part (ii) to the end of the section. 

LEMMA 14. Let rl•...<rm, let Bj=Br~(0) and let N j=~(ZuNBj ) .  Then 

2 
r~ (30) E N I ( N 2 - 1 ) " ' ( N m - r n + I ) = E  H (--1)]~'+1 l _ r 2 '  

a ~,Ea 

where the sum is over all permutations a of {1, ...,m}, the product is over all cycles 9 

of the permutation, ]9] is the length of 9, and rv=l-Ije~ rj .  

Proof. Applying Proposition 8 (ii) to the set B1 x... x B~ we get 

E N I ( N 2 - 1 )  ... ( / V m - m +  1) = / B  p(zl,...,zm)dZl...dzm 
1 X . . . X B m  

= / d e t ( K ( z i ,  z j ) ) i , j  d z l  ... d z m .  
J B  1X.. . •  

Expanding the determinant and exchanging sums and integrals we get a sum over all 

permutations of m elements: 

E sgn(~) f K(Zl,Zal) ...K(zm,zam)dZl...dzm. 
o" J B I X . . . X B m  

For each permutation a, the corresponding integral is a product over cycles 9 of ~ of 

I ,  =- /K(Zl ,  z2)K(z2, z3)... K(Zl, I, z,) dzl ... dzl, I, (31) 

where 9 is an ordered subset of {1, ..., m} and each variable zi ranges over the disk B,~ 

of radius r,~. The formula for the Bergman kernel gives 

1 1 ,-% 
f (n+l)(z122) n. K(zl'z2)=Tc(1-z122)2 7rn= 0 

Using this, we expand the product in (31) into a sum of monomials in the variables 

{zj}j~=l and {z%}j~=l; then we integrate term by term. Each monomial in which the 

exponents of zj and 2j are different for some j integrates to 0. Thus in all remaining 

terms the exponents of zj and 2j are the same. Since zj always comes as part of a product 

zj2j+l, the exponents of zj and 2j+1 have to be the same as well. This implies that  in 

nonvanishing terms all exponents agree, and we are left with 

0 ( 3  

= Z 1)1"1 (Zl l . . .  zl.l l.i) n d z l  . . .  d z l .  I Iv 
n = 0  
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Since 

(n+l)S. 
~(o) ao - 

setting ru----i]je~ rj we get 
2 

I u :  _ 2 ( n + l )  __ r u  

n = 0  

Since sgn a--  H~E~ ( -  1) l~i+ I this completes the proof of the lemma. 

Proof of Theorem 2 (i). Put  

[] 

and let P be chosen uniformly at random from all permutations of {1, ..., k}. Let q=r  2. 

Then by (30), we have 

~ k = E  H (-1)IYI+I qlyl 1-qly l '  yE~ 

where the product is over cycles y of 7 ). Since the cycle containing 1 of 7 ~ has length that  

is uniform on {1, ..., k}, and given that  cycle, the other cycles form a uniform permutation 

on the rest of {1, ..., k}, we get the recursion 

1 k l 
~3k = ~ ~ ( -1 ) l+ '  l @ / ~ k _ l  , (32) 

/=1  

oe k with ~0=1. Consider the generating function ~(s)=~k=O ~kS �9 Multiplying (32) by ks k 

and summing over k ~> 1, we get 

s~'(s) = ~(s) sr (33) 

where 
ql ~ 

~)(8) : ~-~ ( - - 8 ) l - l - -  : E E (--8)l-lqkl. 
1-q l  

l = l  k = l  l = l  

We write (33) in the form 

(log ~(s))' = r 

which we integrate to get 

k = l  /=1 k = l  
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where the constant term is zero as /~0=~(0)=1.  Thus 
oo 

~(s) = H (l+qks)" 
k = l  

Taking expectations of the identity 

gives 

(34) 

E(S+I)N" = E Nksk = ~(S), 
k = 0  

and this concludes the proof of Theorem 2 (i). [] 

Proof of Corollary 3. (i) Theorem 2 implies that P ( N r = 0 ) -  ~oo "1 2k~ - I l k = l (  - r  ) and the 

asymptotics for the right-hand side are classical, see Newman [19, p. 19]. For the reader's 

convenience we indicate the argument. Let L = logP(Nr=0)=~-~k_  1 log(1--r2k), which 

we compare to the integral 

~ 1 /_21ogrl~ I= l~ 21ogr (1-e-~)dx" (35) 

We have I+log(1-r2)<L<I, so L=I+o(h). Since - l o g ( 1 - e - X ) = ~ = l  e-nX/n, the 

integral in (35) converges to - ~ r  2. But  

1 _ 1+o(1)  _ h t-o(h), 
2 log r 1 - r 47r 

and we get 
L -  V27r2+~ 7rh 

1 - r  24 +o(h),  

as claimed. 

(ii) One of Euler's partition identities (see Pak [21, w gives 

H ( X + q k s ) : E  ~ i - ! i  ~-  (36) 
k=l k=0 (1-- . .  __qk)' 

SO the claim follows from (34). 

(iii) The formulas for the mean and variance of NT follow from the binomial moment 

formula (30). Using the general central limit theorem due to Costin-Lebowitz [7] and 

Soshnikov [29, p. 497] for determinantal processes, we get that as r -+ l ,  the normalized 

distribution of N~ converges to standard normal, as required. Alternatively, the last 

claim can be easily verified by computing the asymptotics of the moment generating 

function directly. Yet another way is to apply Lindeberg's triangular array central limit 

theorem to the representation of NT as the sum of independent random variables, as 

given in Theorem 2 (i). [] 
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4.1. T h e  j o in t  d i s t r i b u t i o n  o f  t h e  m o d u l i  o f  Z u  

Proof of Theorem 2 (ii). The zero set of f u  is determinantal with the Bergman kernel 

K(z, w). Let 
1 n - - 1  

Kn(z,w) = ~ E ( J+l ) (zw)J"  
j = 0  

Since Kn(z,w)-+K(z,w),  as n---~oo, uniformly on compact subsets of U 2, Proposi- 

tion 3.10 of Shirai-Takahashi [24] yields that  the determinantal point processes with 

kernels Kn converge weakly, as n--+c~, to Zu.  Thus it suffices to prove that the set 

of absolute values {IQI}j~__I of the n random points of the determinantal process with 
I r ] - I / 2 j l n  kernel Kn has the same law as t v j  Jj=l, where U s are i.i.d, uniform on [0,1]. 

For any zl, ..., Zn, 

Kn(Zl,Zl) ... Kn(Zl,Zn) I 
: " ' .  i 

K~(z , ,z l )  ... K,(z,~,zn) / 

n - 1  /i z)(i0l 1 z2 ... z 2 2 ... 21 ... 2n 
71-n : ". .  : : "..  - -  . .  : 

n - - 1  0 2 --1 - n - - 1  
Z n . . .  Z n . . .  . . .  Z n 

Setting zj=rje~~ we find that the joint intensity o f  {l~jl}jn=l, evaluated at {rj}j~__l, 

equals 

~0 det(Kn(zj ,  zk))jn, k=l rl dO1 ... rn don 
,2~r]- 

(37) 
n!~o  ( ~ s g n ( a )  l~I ,,j 'l"~ ( ~ ]  fi sgn(T) -- zj ) rl au1.., r~ don. 

j=l j=l 
When we expand the sums, for a~7- the integrand contains a factor of the form zP2 q with 

n n 2o ' j - -  1 pCq, and therefore the integral vanishes. When a=T,  we get (2~) 1-Iy=l rj  . Thus 
(37) equals 

2nn! E I- [ 2a~-i . ( 3 8 )  

a j = l  

Now U)/2y has density 2jx 2j-1 in [0, 1]. Hence, the joint intensity of {U 1/2, ..., U~/2n} is 

precisely (38). This proves the theorem. [] 

Remark. The proof above is modeled after an argument of Kostlan [13] for the 

distribution of the eigenvalues of a random complex Gaussian matrix. It is simpler than 

our original proof that  relied on random permutations. 
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5. Law of  large n u m b e r s  

The goal of this section is to prove Proposition 5, the law of large numbers for the number 

of zeros of fu,e- We will use the following lemma in the proof: 

LEMMA 15. Let # be a Borel measure on a metric space S, and assume that all 
balls of the same radius have the same measure. Let r [0, c~)--+ [0, c~) be a nonincreasing 
function. Let A c S  be a Borel set, and let B=BR(X) be a ball centered at xES with 
#(A)=#(BR(x)). Then for all yeS,  

~Ar z) ) dP(z) <~ /Br dist(x,z) ) d#(z). 

Proof. It suffices to check this claim for indicator functions @(x)=l{x~<~}. In this 

case, the inequality reduces to 

#(ANB~(y)) <. #(BR(x)AB~(x)), 

which is clearly true both for r ~< R and for r > R. [] 

Proof of Proposition 5. We have 

EN(h)= fhP(Z)dz= ? h .  

Let Q(z, w)=p(z, w)/p(z)p(w). Then by formula (19) we have 

Q(O, w) - 1 < C(1 -Iw12) 

We denote the right-hand side by r w) and extend r to U 2 so that  it only depends 

on hyperbolic distance. We obtain 

E(N(h)(N(h)- I ) ) - (EN(h))2= ~ fh (p(z 'w)-p(z)p(w))dwdz 

= fh fh(Q(z ,w)- l )p(w)dwp(z)dz  

< fff(z,w)p(w)dwp(z)dz 

Let BR(O) be a ball with hyperbolic area h=41rR2/(1 -R2). Note that  p(w) dw is constant 

times the hyperbolic area element, so we may use Lemma 15 to bound the inner integral 

by 

/. // ,(0)r w)p(w) dw = c ( l - r 2 )  ' ( 1 - r 2 ) - 2 r  dr = s "-2 ds 
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with S =  1 -  R 2. Thus we get 

hQ + chQ ~1 
VarN(h) =EN(h)+E(N(h) (N(h) - I ) ) - (EN(h) )  2 <~ -~ ~ s~ (39) 

For Q>I this is integrable, so VarN(h)<<.O(h). For g < l  we can bound the right-hand 

side of (39) by O(hSe-1)=O(h2-e). Thus in both cases, as well as when 6=1 (see 

Corollary 3 (iii)), we have 
Var N(h) <~ c(EN(h) ) 2-~ 

with ~=QAI>0 .  For ~>1/~ ,  we find that  

N(k n ) - E g ( k  ~) 
Yk -- EN(kn)  

E o~ satisfies EY~=O(k-OZ), whence ~-~k=lY2<c~, so Yk---~0 a.s. Monotonicity and inter- 

polation now give the desired result. [] 

6.  R e c o n s t r u c t i n g  t h e  f u n c t i o n  f r o m  i t s  z e r o s  

The goal of this section is to prove Theorem 6. The main step in the proof is the following 

result: 

PROPOSITION 16. Let c~-~e ~/2-'r/2. We have 

Ifv,o(0)l =c~ lim ( l - r 2 )  -e/2 H Izl a.s. 
r--~l 

zE ZtJ,o 
Izl<T 

We first need a simple lemma. 

LEMMA 17. If X and Y are jointly complex Gaussians with variance 1, then for 

some absolute constant c we have 

ICov(log Ixl,  log IYI)l ~< c lEXYI.  (40) 

Proof. Write Y = ~ X + ~ Z ,  where X and Z are i.i.d, standard complex Gaussian 

variables, c~=EXY and 1~12+ 1~12=1. It clearly suffices to consider I~1 < �89 Since 

log 1 c~X , log I YI = log I/3zI + + 

the inequality (40) reduces to 

Cov(loglXl ,  log 1 aX ~ <<. +~--Z ) till. (41) \ 
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We will use the estimate 

E log 1 + ~  ~cll~l for AEC, (42) 

which can be verified by considering the positive and negative parts of log II+)~/ZI as 

follows. The positive part is handled using the numerical inequality log II+wl ~< Iwl and 

the integrability of IZ1-1. For the negative part, when I~1~>1, the density of II+)~/ZI 

is uniformly bounded in the disk of radius �89 so it remains to consider the case IAI <1. 

Then E log_ II+A/ZI can be controlled by partitioning into the events 

Gk = {e -k  < I I+ ,VZI  ~< e l - k  }. 

Since P(Gk)=O(]A21e-2k), we get 

1cklog_ 1 + ~  =O(k E I~le-2k). 

Summing over k establishes (42). 

By conditioning on X, (42) yields 

1+o  ). c1 
This bounds the first term (expectation of the produet) in the covarianee on the left-hand 

side of (41). The second term (product of expectations) can be bounded by the same 

argument. [] 

Proof of Proposition 16. Assume that f=fu,~ has no zeros at 0 or on the circle of 

radius r. Then Jensen's formula (Ahlfors [1, w gives 

1 f0 2~ log If(0)l = ~ log If(re~'~)l da + E log IZ~'r 
zCZ 
Izl<v 

where Z=Zu,e .  Let If(re ~)  12 =a~Y, where 

2 Varf(rei~)= [2~rSv(r,r)]O (l_r2)-o O" r z 

and Y is an exponential random variable with mean 1. We have 

Elog [f(re~)l = 1 2 (log a~ + E  log Y) = �89 ( -0  log(1-r  2) - 'y), 
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where the second equality follows from the integral formula for Euler's constant 

/? 2( = - e -:~ log x dx. 

Introduce the notation 

9~(a) = log If(~e~=)l + 1 (t~ log(1-r2)  +7)  

so that  the distribution of g~(a) does not depend on r and a,  and Egg(a)=0.  Let 

Lr = ~ g~(a) da. 

We first prove that  L~-+0 a.s. over a suitable deterministic sequence rn~l. We compute 

1 f2nf2~r 

Since the above is absolutely integrable, we can exchange integral and expected value to 

get 

f0 r2,~f2,~ 1 E(g~(a)g~(0)) da, 
1 Jo ]o E(gr(a)gr(~))d~da=-~ Var LT = (2~r)---- ~ 

where the second equality follows from rotational invariance. By Lemma 17, we have 

c [Ef(re~)f(r)[ 1-r2 [Q 
Egr(a)gT(0) ~< Var f(r) = c l 1-r2ei" I " 

Let E= 1 - r  2 < �89 Then for aE  [0, 7r] we get the bound 

{~, lo4 ~< E, 

II-r2ei~[>~ 2r2sin�89189 e < a < � 8 9  

1, �89 4 a E T r ,  

which gives 

z" { 1 VarLT~< da  1 r,~/2 1Ir c ~, 0 < 1 ,  
2ce----~ ] l - r2ei~le  <~r176 a d a + 2  <~ c'[loge[, o = l ,  

c~ 1-~, Q > 1. 

By Chebyshev's inequality and the Borel-Cantelli lemma, this shows that,  as r--+ 1 over 

the sequence r n = l - n  -Ov(UQ)+~), we have a.s. L~ --+0 and 

E log Izl # l o g ( I - r 2 ) + 7  
- -  - +  l o g  l Y ( 0 ) I ,  
r 2 zEZ 

Izl<~ 
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or, exponentiating, 

e-~12(1-r2)-~ H I~/_+lf(0)l. (43) 
zCZu,o 

Izl<~ 

Since the product is monotone decreasing and the ratio 2 2 ( 1 - r n ) / ( 1 - r n + l )  converges to 1, 

it follows that the limit is the same over every sequence rn -+ l  a.s. 

Finally, by the law of large numbers (Proposition 5), the number of zeros N~ in the 

ball of Euclidean radius r satisfies 

N~ = r2Q (1+o(1)) - -  Q+o(1) 
1 - r  2 1 - r  2 a.s., (44) 

whence 
r N~ = exp(N~ log r) = e -~12+~ a.s. 

Multiplying this with (43) yields the claim. [] 

Proof of Theorem 6. (i) By the law of large numbers for Nr (see also (44)), 

1 
E ~ = 7 + l ~  Nr +o(1) = "/+log ~-log(1-r 2) +o(1). (45) 

Multiplying by iQ and exponentiating, we get that  2 

H eQ/2k = e~QI2Qe12(1--r2)-e12(1+~ (46) 

Izkl~<~ 

In conjunction with Proposition 16, this yields (6). 

(if) Let f = f u , e  and 

T(z)- z-r 
1 - - ~ z  " 

By (16), f has the same law as 

] :  (T') e/2 (foT).  (47) 

Now T'(r -1. Therefore 

] ( ( )  = (1-1<12)-e/21(0) = c~ H e~i~k Izkl a.s., 
k = l  

k oo where {Zk}~-i are the zeros of f in increasing modulus. If T(~k)=zk then {~ }k=l are 

the zeros of ] in increasing hyperbolic distance from 4. We conclude that 
o c  

1(4)=c~(1-1r -~/2 H eQi2klT(r a.s. [] 
k = l  

For our study of the dynamics of zeros in the next section, we will need a recon- 

struction formula for IfO,0(0)l when we condition on the event 0EZu,e.  
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LEMMA 18. Denote by ~ the event that the power series fu,e defined in (5) has 

a zero in B~(O). As ~--+0, the conditional distribution of the coefficients al,a2,a3,..., 

given ~ ,  converges to a product law, where al is rotationally symmetric, lall has density 

2r3e -~2, and a2,a3, ... are standard complex Gaussians. 

Proof. Let a0 and al be i.i.d, standard complex normal random variables, and 

6>0. Consider first the limiting distribution, as ~--40, of al given that  the equation 

ao+alv/-~z=O has a root Z in Be(0). The limiting distribution must be rotation- 

ally symmetric, so it suffices to compute its radial part. If S=laol 2 and T=lall  2, set 

U=Q{Z{2=S/T. The joint density of (S,T) is e -s- t ,  so the joint density of (U,T) is 

e-~t- t t .  Thus as E--+0, the conditional density of T given U<0c  2 converges to the con- 

ditional density given U=0,  i.e., te -t .  This means that  the conditional distribution of al 

is not normal; rather, its radial part has density 2r3e -r2. 

We can now prove the lemma. The conditional density of the coefficients al,  a2, . . .  

given f~,  with respect to their original product law, is given by the ratio 

P(F4 l al,  a2, ...) 
P ( f ~ )  

By Lemma 30, the limit of this ratio is not affected if we replace fu,Q by its linearization 

ao+alv/-~z. This yields the statement of the lemma. [] 

Kakutani 's absolute continuity criterion (see Williams [31, Theorem 14.17]) applied 

to the coefficients gives the following lemma: 

LEMMA 19. The distributions of the random functions fu,e(z) and ( fv ,Q(z) -a0) /z  

are mutually absolutely continuous. 

Remark 20. By Lemma 18, conditioning on 0EZu,e  amounts to setting a0=0 and 

changing the distribution of al in an absolutely continuous manner. Thus, by Lemma 19, 

given 0EZu,e  the distribution of the random function g( z )= fv , e ( z ) / z  is absolutely con- 

tinuous with respect to the distribution of the unconditioned fu,0(z).  Hence we may 

apply Theorem 6 to g(z) and get that  given 0EZu,e,  if we order the other zeros of fu ,e  

in increasing absolute value as {zk}k~__l, then 

! 0 ~ If~,~( )1 Ig(o)l %l-Ie~/2klzk{ 
k = l  

a.s. (48) 
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7. D y n a m i c s  o f  z e ro s  

In order to understand the point process of zeros of f v  it is useful to think of it as a 

s tat ionary distribution of a t ime-homogeneous Markov process. 

Define the complex Ornstein-Uhlenbeck process 

a(t) := e-t/2W(et), W(t):= Bl(t)+iB2(t) 
' 

where B1 and B2 are independent s tandard Brownian motions, and W(t) is complex 

Brownian motion scaled so that  E W ( 1 ) W ( 1 ) = I .  The process {a(t)} is then s tat ionary 

Markov with the s tandard complex Gaussian as its s ta t ionary distribution. First we 

consider the process 

~t(z)~t(z;D)=EWn(t)r t > 0 ,  
n = 0  

Z oo where Wn are independent complex Brownian motions and {r )}n=0 is an orthonormal 

basis for H2(D) .  With  t=e ~ we get the t ime-homogeneous process 

oo  

fT (z) -~ e -~'/2 ~e" (z) = E an (T) Cn (Z). 
n=O 

Then the entire process ~t(z) (and so f~(z)) is conformally covariant in the sense that  if 

T: A--+D is a conformal homeomorphism, then the process 

has the same distribution as ~t(z; A), t>0 .  For this, by continuity, it suffices to check 

tha t  the covariances agree. Indeed, for s<~t, 

E~s(z)~t(w) = E ~ ( z ) ~ s ( w ) ,  

so the problem is reduced to checking the equality of covariances for a fixed time, which 

has already been done in Proposition 9. 

I t  follows automatically that  the process {ZD(t)} of zeros of ~t is conformally in- 

variant. To check that  it is a Markov process, recall from w that  ZD(t) determines ~t 

up to a multiplicative constant of modulus 1. I t  is easy to check that  ~t modulo such a 

constant is a Markov process; it follows tha t  ZD(t) is a Markov process as well. 

Remark 21. This argument  works in the case Q=I .  By replacing the i.i.d, coeffi- 

cients an in (5) with Ornstein-Uhlenbeck processes, it is possible to define a dynamic 
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version of the case Qr in the unit disk. The same argument  as above shows that  these 

are Markov processes with distribution invariant under Mhbius transformations of U. 

Finally, we give a stochastic differential equation description of the motion of zeros. 

Condition on start ing at t ime 1 with a zero at the origin. This implies that  W0(1)--0, 

and by the Markov property all the Wi are complex Brownian motions star ted from some 

initial distribution at  t ime 1. For t in a small t ime interval (1, 1+~) and for z in the 

neighborhood of 0, we have 

~t(z)  = W o ( t ) + W l ( t ) z + W 2 ( t ) z 2  +O(z3) .  

If Wl(1)W2(1)~O, then the movement of the root zt of ~t where z l=O is described by 

the movement of the solution of the equation Wo (t) + W1 (t) zt + W2 (t) z2t = 0 (z 3). Solving 

i 1-  1 +o(w3) .  

the quadratic gives 

Expanding the square root we get 

_ W o  2 W~W2 3 
w1 

Since Wo(t) is complex, W2(t) is a martingale,  so there is no drift term. The noise 

te rm then has coefficient - 1 / W 1 ,  so the movement of the zero at 0 is described by the 

stochastic differential equation (at t = l )  dzt = - W 1  (t) -1 dWo(t), or, rescaling t ime for the 

time-homogeneous version, for any T with a0(7)----0 we get 

1 
dz~ - - -  dao(~-). (49) 

The absence of drift in (49) can be understood as follows: in the neighborhood we are 
oo interested in, this solution zt will be an analytic function of the {Wn}n=O, and therefore 

has no drift. 

For other values of ~) the same argument  gives 

1 
dz~-- - -  dao(T). 

V/~ a l (T )  

Of course, it is more informative to describe this movement  in terms of the re- 

lationship to other zeros, as opposed to the coefficient al .  For this, we consider the 

reconstruction formula in Remark  20, which gives 

oo 

lull---- Ifb,Q (0) 1 : cL~ 1-I  e~/2klzk] a.s. 
k----1 
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This means that  when there are many other zeros close to a zero, the noise term in its 

movement grows and it oscillates wildly. This produces a repulsion effect for zeros that  

we have already observed in the point process description. The equation (49) does not 

give a full description of the process as the noise terms for different zeros are correlated. 

8. H a m m e r s l e y ' s  f o r m u l a  for  G a u s s i a n  a n a l y t i c  funct ions  

A version of the following theorem was proved by Hammersley [11]. The present version is 

from Friedman [10, Appendix B]. We say that  a point process has integral joint intensity p 

if formula (10) holds for its counting function N. 

THEOREM 22. Let f ,~=anzn+.. .+ ao be a random polynomial so that (a0, ..., a,~) has 

an absolutely continuous distribution with respect to Lebesgue measure on C n+l. Then 

the integral joint intensity of zeros exists and equals 

p(zl ,  ..., Zk) = e-+01im (7r~2) -k  f I f ' (zl)  ... f ' (zk)l  2 dao ... da,~. 

f(zi)EBe(O) 
i=l, . . . ,k 

(5o) 

We also need the following consequence of Cauchy's integral formula: 

FACT 23. Let D be a bounded domain, and let B C D  be a closed disk. Then for 

every m>~O there exist constants cm so that for every f analytic on D and every z E B  

the m-th derivative satisfies If(m)(z)l~Cm(fD If(w)12 dw) 1/2. 

Proof. Cauchy's integral formula gives a uniform bound on f(m)(z) for z C B  in terms 

of the LLnorm of the function on any circle in D about B. Integration yields a bound in 

terms of the Ll-norm on an annulus, which is bounded above by the L2-norm on D. [] 

Next, we note some consequences of the Taylor expansion for Gaussian analytic 

functions. 

LEMMA 24. Let f be a Gaussian analytic function defined on a domain D, and let 

B c D be a closed disk about Zo. Consider the partial sums of the Taylor series expansion 

about z0: 
n 

f (z) = Z ak(z-z~ k 
k=O 

Then for all m>~O, the m-th derivative satisfies 

supEIf (m)- f (m)12- -~0  as n--+oo. (51) 
B 
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Consequently, for all ml,  m2>~O the covariance function of the derivatives of orders ml  

and m2 of f,~ converges uniformly on B 2 to the covariance function of the corresponding 

derivatives of f .  

Proof. Note that  finite a.s. limits of jointly Gaussian random variables are jointly 

Gaussian with finite variance. This implies that  the derivative of a Gaussian analytic 

function f is a Gaussian analytic function. Moreover, the Taylor series of f has jointly 

Gaussian coefficients. Consider the L2-space of functions on the set X-- ft • D with the 

product of P and Lebesgue area measure. Assume without loss of generality that  B is 
n j centered at 0, and let f ~ ( z ) = ~ j = o  ajz . Since f,~ is a projection of f in the space X to 

the subspace spanned by f0, ..., f~, it follows that  fn--~f in L2(X). By Fact 23, we have 

Esup  ]f( '~)-  f(m)12 ~ 0 
B 

and therefore 

sup E (m) o, 
B 

which implies the claim for the covariance functions. [] 

COROLLARY 25. Let gn be polynomial of degree n with i.i.d, standard Gaussian 

coefficients independent of fn. Then fn+gn/n! approximates f in the sense of (51), and 

for each n has coefficients with continuous joint density. 

We first show a preliminary version of Proposition 8; (i) will then follow from the 

integral formula and a general lemma about point processes. 

PROPOSITION 26. Using the notation of Proposition 8, assume that A=A(zl , . . . ,  zk) 

is nonsingular when Zl, ..., znED are distinct. Denote by N(A) the number of zeros of f 

in A. Then for any n disjoint bounded Borel subsets A1, ..., An of D, we have 

n 

E 1-I g (Ai )  = / p(zl,..., zn) dzl.., dzn, (52) 
i~1 JAIX. . . xAn  

where the integrations are with respect to Lebesgue area measure. 

Proof. Case 1: f is a polynomial whose coefficients have joint density. This is a 

consequence of Hammersley's formula, Theorem 22. 

Case 2: D is the unit disk or the whole plane. 

A Fubini argument implies that  there is a dense set ~]'~D of rectangles in D such that  

for R~r~D, almost surely f does not vanish on OR. 

It clearly suffices to show the claim when the Ai are disjoint elements of 7r 

Let ( fM}~=l  denote the approximations of f by polynomials in Corollary 25. 
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For AET~D, the argument principle implies that  the number NM(A) of zeros of fM 

in A, converges a.s. to the number N(A) of zeros of f in A. 

As M varies, the random variables 1-Ii~__l NM(Ai) are uniformly integrable, as they 

are uniformly bounded in L 2 by Lemma 27. 

The covariance functions of fM and f~4 converge uniformly on each Ai • Aj to those 

of f and f ' ,  whence the permanent-determinant formula (on the right of (9)) for fM 

converges uniformly on A1 • ... • An to the permanent-determinant formula for f .  

Applying formula (10) to fM and letting M--+co we see that  it converges to the 

desired formula for f .  

Case 3: D is simply-connected. The claim follows from the Riemann mapping 

theorem and Case 2. 

Case 4: A general domain D. It suffices to prove (10) when each Aj is a closed 

square in D. Then we can find a simply-connected domain Do CD that  contains all 

the A j, and we apply Case 3. [] 

For simple point processes, the following lemma implies Proposition 8 (ii). 

LEMMA 27. Consider a simple point process (a random subset) Z in a domain D 

with counting function N ( A ) = # ( Z n A ) .  Suppose that for any disjoint Borel subsets 

A1,...,Ak of D, we have 

k 

EIIN(A~)= / p(z~,...,zk)dz~...dzk. (53/ 
i = l  J A I • 2 1 5  

Let ZAkcZk  denote the set of k-tuples of distinct points. Then for any Borel set 

B c D  k, we have 

E # ( B N Z  ^k) = ]Bp(zl , ..., zk) dzl ... dzk. (54) 

Proof. Note that  both sides of (54) define a Borel measure on subsets B c D k ;  thus 

it suffices to show the equivalence for the case when B=B1 • ... • Bk is a product set. 

Consider a finite Borel partit ion P of D and let 

M k ( P ) =  E # ( Q I • 2 1 5  
Q1 ..... Qk 

k 

Z HN(Q nB ), 
Q1,...,Qk i = 1  

where the sum is over ordered k-tuples (Q1, .-., Qk) of distinct elements of 7 ). Then the 

hypothesis (53) implies that  

f 
E M k ( P )  = E I p(zl, . . . ,zk) dzl.. .dzk, (55) 

Q1,...,Qk J QI •215 
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where we sum over the same k-tuples as above. Consider a refining sequence of partitions 

7)j of D where the maximal diameter of the elements of 7)j tends to 0 as j -+c~.  By 

definition, Mk (7)) counts the number of k-tuples (zl, ..., zk)E B where Zl, ..., zk are points 

of Z in distinct elements of 7 ). We deduce that  

Mk(7)j) -~ ]BNZ^kl 

monotonically as j -+co .  Taking expectations and letting j--+oo yields (54). [] 

We now proceed to analyze the behavior of Gaussian analytic functions near their 

zeros. 

LEMMA 28. Let f be a Gaussian analytic function in a domain D, and assume that 

for every z E D  a.s. z is not a double zero of f .  Then a.s. f has no double zeros. 

The Gaussian assumption is needed: consider ( z - 7 )  2 with ~ a continuous random 

variable. 

Proof. We may assume that  there exists zoED such that  W = f ( Z o ) - E f ( z o )  is not 

identically zero (otherwise there is nothing to show). Let g ( z ) = E ( f ( z ) W ) / E I W I  2 and 

h ( z ) = f ( z ) - W g ( z ) .  Then g is a deterministic analytic function with g(z0)=l ,  and h(.  ) 

is independent of W. By assumption all the zeros of g are not double zeros of f .  Any 

other double zero of f would also be a double zero of r  If h/g is a random 

constant, then ~b a.s. has no zeros. Otherwise, a.s. Ct=(h/g)'  has at most countably many 

zeros {~j}, and they are a.s. not zeros of r since W r  a.s. by independence. [] 

LEMMA 29. Let f be a Gaussian analytic function (not necessarily of mean zero) 

with radius of convergence ro, and let Mr be its maximum modulus over the closed disk 

of radius r<ro. There exists c , ~ > 0  so that for all x > 0  we have 

P ( M r  > x )  ~< ce -'yx2. 

Proof. Borell's Gaussian isoperimetric inequality (see Pollard [22]; the inequality 

was also shown independently by Tsirelson-Ibragimov-Sudakov [30]) implies that  for 

any collection of mean-zero Gaussian variables with maximal standard deviation a, the 

maximum M of the collection satisfies 

P ( M  > median(M) +ba) <. P ( N  > b), (56) 

where N is standard normal. Now the median of Mr is finite because Mr < c~ a.s. Since 

the distribution of f ( z )  is continuous as a function of z, the maximal standard deviation 

a in the disk Br(0) is bounded. The mean-zero version of the lemma follows by applying 

(56) to the real and imaginary parts separately, and the general version follows easily. [] 
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LEMMA 30. Let f (z)=ao+alz+.. ,  be a Gaussian analytic function. Assume that 

ao is nonconstant. Let Ae denote the event that the number of zeros of f(z)  in the disk 

Be about 0 differs from the number of zeros of h(z)=ao+alz in Be. 

(i) For all 5>0 there is c>0  (depending continuously on the mean and covariance 

functions of f )  so that for all ~>0 we have 

P(A~) ~< ce 3-2~. 

(ii) P(A~lal,a2, ...)~<Cc 3, where C may depend on (al,a2, ...), but is finite almost 

surely. 

Proof. (i) By Rouchd's theorem, if Ih l>l f -h l  on the circle OBe, then f and h have 

the same number of zeros in Be. By Lemma 29 applied to ( f - h ) / z  2, we have 

P ( m ~  If(z) - h(z)l > ~2-6 ) < co exp(-Te-25 ) < Cl ~3. (57) 

Let O be the annulus OBal~+Be2-~, and consider the following events: 

Do = {Idol < 2r 

E={ la l l  <e-a} ,  

F = { rain Ih(z)l < ~=-z } = {-ao ~ 0}. 
zEOBe 

Note that  P ( E  c) ~<c2~ 3 and that ENFCDo. Given Do, the distribution of ao is approx- 

imately uniform on B2el-~ (i.e., its conditional density is O(e2~-2)). Since P ( E )  tends 

to one as ~--+0, this implies that 

E area(O) ~ - ~  
P(FNEIDo ) = P ( - a o E O ,  E]Do) ~< c3 area(B2~l_~) ~< c4 -5-~_ ~ =c4~, 

and therefore 

P ( F )  ~ P(FNE[Do) P(D0)  + P ( E  c) <~ C4~C5e2--25-~-C2 r ~ C6 E3-25. 

Together with (57), this gives the desired result. Since all our bounds depend continu- 

ously on the covariance function of f ,  we may choose c in a continuous manner, too. 

(ii) The argument used to bound P ( F )  in (i) also yields that  

P (  min [h(z)[ < 2[a2[~2[{aj}~=l) < c7c 3. 
zEOBe 

An application of Rouchd's theorem concludes the proof. [] 

The following lemma relates the integral joint intensity to the pointwise (strong) 

version. 
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LEMMA 31. Consider a simple point process on a domain D. Let z jED, j - - l ,  ...,n. 

Assume that there exists disjoint neighborhoods Dj of zj and a 5>0 so that the integral 

version of the joint intensity satisfies 

p(zl, . . . ,zn,z.) <c2[z j -z .[  -2+~ on D l x . . . x D n x D j  for all j. 

Let Nj,s denote the number of points in the ball of radius ~ about zj. As ~-+0, we have 

P(NI,~ . . . . .  Nn ,~=I )  ~<E(NI,~...N,~,~)=P(NI,~ -.- N,~,~=I)+o(~2n). (58) 

Proof. For nonnegative integers Nj we have 

O<< ~ I  N j - f I  I{Nj=I} <~ NI. . .Nn ~ ( N k - I  ). (59) 
j = l  j = l  k = l  

The left inequality is clear. For the right one, if for some k we have Nk > 1 then the kth  

term on the right alone gives an upper bound. We apply (59) to the Nj,~ with small r 

and take expectations. We apply Lemma 27 to the set B~(Zl)x ... xB~(z~)xB~(zk) to 

get 

ENI,~ ... Nn,~(Nk,e- 1) = IBm(z1)• 

= 

p( wl , ..., Wn+l) dWl ... dWn+ l 

[] 

LEMMA 32. Consider a Gaussian analytic function f in a domain D with mean 

zero everywhere. Let Zl, . . . ,znED, and assume that for each j ,  the random variables 

f ' ( z j ) , f ( z l ) , . . . ,  f ( zn)  are linearly independent. Then there exist neighborhoods Di of 

the zi so that for each l ~ j  ~ n and (wl, ..., wn, w.  ) E Dl • ... • D,~ • Dj, the integral version 

of the joint intensity is defined and satisfies 

p(wl, ..., wn, w,) ,< clwj -w.] 2. 

Proof. By continuity, there exists bounded neighborhoods Di of the zi so that  

(i) for all w .EUi~ l  Di and wiEDi, the random variables f ' (w . )  and f (wi) ,  l<<.i<<.n, 

are linearly independent, and the determinant of the covariance matrix is bounded away 

from 0; 

(ii) for all distinct points w.EUi~=lDi and wiEDi, the random variables f ( w . )  

and f (wi) ,  l<~i<<.n, are linearly independent. 



ZEROS OF T H E  I.I .D. G A U S S I A N  P O W E R  SERIES 33 

Part (ii) follows by considering the Gaussian analytic function 

f ( w , ) - f ( w j )  
W ,  m W j  

which has a removable singularity at wj. Taylor expansion at w implies that  for 

w, zeUi~=lDi, the conditional distribution of if(w) given f (w)=f(z)=O is Gaussian 

with variance bounded above by el ]z-wl 2. Therefore, 

E( l f ' (wl )  ... f'(wn)f'(w.)ll f (wl)  . . . . .  f (w.)  = 0) < e2c 4, 

where ~ is the distance between w. and the set {Wl, ..., wn}. F~rthermore, 

02 ..., f (wn) ,  f(w.)) w.=w, Ow2. det Coy(f  (Wl), -- det Cov(f(wl) ,  ..., f(w,~), f ' (wj)) ,  

and since the right-hand side is bounded away from 0, we get 

Idet Cov(/(wl) ,  ... f (wn) , / (w . ) ) l  > cae 2 

Now the permanent-determinant formula implies the claim of the lemma. [] 

Proof of Proposition 8. Step 1. We first verify the equivalence of (8) and (9). First 

note that  when f has Gaussian coefficients, then the values and coefficients of f are 

jointly Gaussian. In particular, the expression (50) equals 

E 0 f ' ( z l )  "" f ' (z~)l  21 f(zl) . . . . .  / ( Z n )  -~- O) g(O, ..., 0) 

= E( [P / ' ( z l ) . . .  ~ f f ( Z n ) I  =) g(o, ..., 0), 
(60) 

where g(0, ..., 0)--71 "-n det(A) -1 is the density of the Gaussian vector X={f(zj)}~_ 1 at 0, 

and ~o is the projection to the orthocomplement of the subspace spanned by the entries 
Y -  ' z  n of X. Setting - { f  ( J)}j=l, note that  the projection ( I - T  ~) of Y onto the subspace 

spanned by the entries of X is given by BA-1X. For a column vector Z of mean zero, 

recall that  Cov(Z)=E(ZZ*). Now 

Cov(~~ = Cov(Y-BA-1X)  = Cov(Y)-Cov(BA-1X)  = C - B A - 1 B  *. (61) 

This proves the equivalence of (8) and (9). 

Step 2. Part (ii). By Lemma 28, the point process of zeros is simple. 

follows from Proposition 26 and Lemma 27. 

Part (ii) 
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Step 3. Par t  (i). Let F~ denote the event that  f has a zero in each of the disks 

B~(zl), ..., B~(zn). Since the function p(zl, ..., zn) is continuous, we have 

P(F~) ~< EN(B~(z l ) ) . . .  N(B~(zn)) 

= [ p(zl , . . . ,  z,~) dzl ... dzn (62) 
JB ~(zl)x...xB~(z~) 

= p ( z , , . . . ,  + 

If, for some j ,  the derivative f ' ( z j )  is not linearly independent of {f(z~):l<<.i<<.n}, then 

p(Zl,-.. ,  zn)=0,  and the claim follows from (62). Otherwise, the claim follows from (62) 

and Lemmas 31 and 32. [] 
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