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1. I n t r o d u c t i o n  

In the s tudy of smooth dynamical  systems from the standpoint  of ergodic theory, one 

of the most fundamental  questions is whether the following preferable picture is true for 

almost all of them: The asymptot ic  distribution of the orbit  for Lebesgue almost every 

initial point exists and coincides with one of the finitely many ergodic invariant measures 

tha t  are given for the dynamical  system. The answer is expected to be affirmative in 

general [14]. However, it seems far beyond the scope of present research to answer the 

question in the general setting. The purpose of this paper  is to provide an affirmative 

answer to the question in the case of partially hyperbolic endomorphisms on surfaces 

with one-dimensional unstable subbundle. 

Let M be the two-dimensional torus T = R 2 / Z  2 or, more generally, a region on the 

torus T whose boundary consists of finitely many  simple closed C2-curves: e.g. an an- 

nulus ( R / Z )  x [- �89 1]. We equip M with the Riemannian metric []-[] and the Lebesgue 

measure m tha t  are induced by the s tandard ones on the Euclidean space R 2 in an 

obvious manner.  We call a Cl -mapping  F: M--+M a partially hyperbolic endomorphism 

if there are positive constants A and c and a continuous decomposition of the tangent 

bundle TM-- E c G E u with dim E e = dim E u = 1 such that  

(i) ]lDFnlE,~(~)ll>exp(An-c); 
(ii) IIDFnIEo(z)I[ <exp(-An+c)[[DFnlE,,(z)[1 

for all zEM and n>~0. The subbundles E e and E u are called the central and unstable 

subbundle, respectively. Notice tha t  we do not require these subbundles to be invariant 

in the definition, though the central subbundle E e turns out to be forward invariant from 

the condition (ii). The totali ty of partially hyperbolic Cr-endomorphisms on M is an 

open subset in the space Cr(M, M), provided r/> 1. 
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An invariant Borel probability measure # for a dynamical system F: M--+M is said 

to be a physical measure if its basin of attraction, 

n--1  

B(#) = B(#; F)  := z - 5F,(z) --+ # weakly as n--+ c~ , 
n i=o 

has positive Lebesgue measure. One of the main results of this paper is the following 

theorem: 

THEOREM 1.1. A partially hyperbolic Cr-endomorphism on M generically admits 

finitely many ergodic physical measures whose union of basins of attraction has total 

Lebesgue measure, provided that r >~ 19. 

More detailed versions of this theorem will be given in the next section. Here we 

intend to explain the new idea behind the results of this paper. The readers should notice 

that  we do not (and will not) claim that  the physical measures in the theorem above 

are hyperbolic. Instead, we will show that  the physical measures for generic partially 

hyperbolic endomorphisms have nice properties even if they are not hyperbolic. This is 

the novelty of the argument in this paper. 

Let us consider a partially hyperbolic endomorphism F on M. The Lyapunov expo- 

nent of F takes two distinct values at each point: The larger is positive and the smaller 

indefinite. The latter is called the central Lyapunov exponent, as it is attained by the 

vectors in the central subbundle. An invariant measure for F is hyperbolic if the central 

Lyapunov exponent is non-zero at almost every point with respect to it. In the former 

part  of this paper, we study hyperbolic invariant measures for partially hyperbolic en- 

domorphisms using the techniques in the Pesin theory or the smooth ergodic theory. 

And, as the conclusion, we show that  the following hold under some generic conditions 

on F: For any X>0, there are only finitely many ergodic physical measures whose central 

Lyapunov exponents are larger than X in absolute value. Further, if  the complement X 

of the union of the basins of attraction of such physical measures has positive Lebesgue 

measure, and if  a measure It is a weak limit point of the sequence 

I u-1 
- ~ m l x ~  -~, n = 1, 2, ..., (1) 
n 

i ~ 0  

(m[x  is the restriction of m to X ) ,  then the absolute value of the central Lyapunov 

exponent is not larger than X at almost every point with respect to #. Though these facts 

are far from trivial, the argument in the proof does not deviate far from the existing ones 

in the smooth ergodic theory. 

The key claim in our argument is the following: I f  the number X is small enough and 

if  F satisfies some additional generic conditions, then a measure it as in the preceding 
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Fig. 1. The curve Fn(V).  

paragraph is absolutely continuous with respect to the Lebesgue measure m.  Further, 

the density d # / d m  satisfies some regularity conditions (from which we can conclude 

Theorem 1.1). This claim might appear  unusual, since the measure # may have neutral  

or even negative central Lyapunov exponent, while we usually meet absolutely continuous 

invariant measures as a consequence of the expanding property of dynamical  systems in 

all directions. We can explain it intuitively as follows: As a consequence of the dominating 

expansion in the unstable directions E ~, the measure # should have some smoothness 

or uniformity in those directions. In fact, we can show tha t  the natural  extensions of 

# and its ergodic components to the inverse limit are absolutely continuous along the 

(one-dimensional) unstable manifolds. So, for each ergodic component  #1 of #, we can 

cut a curve V out of an unstable manifold so that  #t is at tained as a weak limit point 

of the sequence n -1 ~-,n-1 ,~-i ?--,i=0 ~ ~  , n--1,  2,..., where ~ is a smooth measure on V- Since 

F expands the curve V uniformly, the image Fn(~)  for large n should be a very long 

curve which is transversal to the central subbundle E c. Imagine looking into a small 

neighborhood of a point in the support  of #~. The image Fn(V) should appear  as a 

bunch of short pieces of curve in that  neighborhood; see Figure 1. 

The number  of the pieces of curve should grow exponentially as n gets large. And 

they would not concentrate strongly in the central direction, as the central Lyapunov 

exponent is nearly neutral  almost everywhere with respect to #~. These consequences 

suggest that  the ergodic component  #~ should have some smoothness or uniformity in 

the central direction as well as in the unstable direction, and so the measure # should be 

absolutely continuous with respect to the Lebesgue measure m.  

On the technical side, an important  idea in the proof of the key claim is tha t  we 

look at the angles between the short pieces of curve mentioned above rather than  their 

positions. As we per turb the mapping F,  it turns out that  we can control the angles 

between those pieces of curve to some extent, though we cannot control their positions by 

the usual problem of interference. And we can show that  the pieces of curve satisfy some 
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transversality condition generically. In order to show the conclusion of the key claim, we 

relate that  transversality condition to absolute continuity of the measure #. To this end, 

we make use of an idea in the paper [15] by Peres and Solomyak with some modification. 

We will illustrate the idea in the beginning of w by using a simple example. Actually 

we have used the same idea in our previous paper [24], which can be regarded as a s tudy 

for this work. Lastly, the author would like to note that  the idea in [15] can be traced 

back to the papers of Falconer [5] and Simon and Pollicot [17]. 

Acknowledgment. I would like to thank J@r5me Buzzi, Viviane Baladi, Artur  Avila 

and Mitsuhiro Shishikura for valuable comments in writing this paper. 

2. S t a t e m e n t  o f  t h e  m a i n  r e s u l t s  

Let 7)~ r be the set of partially hyperbolic Cr-endomorphisms on M, and :PT-/~) the subset 

of those without critical points. The subset T~rCP~/r is the totality of mappings FETe7-/r 

that  satisfy the following two conditions: 

(a) F admits a finite collection of ergodic physical measures whose union of basins 

of attraction has total Lebesgue measure on M; 

(b) A physical measure for F is absolutely continuous with respect to the Lebesgue 

measure m if the sum of its Lyapunov exponents is positive. 

In this paper, we claim that  almost all partially hyperbolic C~-endomorphisms on M 

satisfy the conditions (a) and (b) above, or, in other words, belong to the subset 7~ ~. 

The former part of our main result is stated as follows: 

THEOREM 2.1. (I) The subset T~ ~ is a residual subset in 7)~ r, provided r~>19. 

(II) The intersection ~ n ' P ~  is a residual subset in ~PT-l~, provided r>~2. 

The conclusions of this theorem mean that  the complement of the subset T~ r is a 

meager subset in the sense of Baire's category argument. However, the recent progress in 

dynamical system theory has thrown serious doubt that  the notion of genericity based on 

Baire's category argument may not have its literal meaning. In fact, it can happen tha t  

the dynamical systems in some meager subset appear as subsets with positive Lebesgue 

measure in the parameter spaces of typical families. For example, compare Jakobson's 

theorem [23] and the density of Axiom A [12], [19] in one-dimensional dynamical systems. 

For this reason, we dare to state our claim also in a measure-theoretical framework, 

though no measure-theoretical definition that  corresponds to the notion of genericity has 

been firmly established yet. 

Let B be a Banach space. Let Tv: B--~B be the translation by v E B ,  that  is, T.o(X)---- 

X+V. A Borel finite measure A/I on B is said to be quasi-invariant along a linear subspace 
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L C B if ~4 o~-~-1 is equivalent to .hd for any v E L. In the case where B is finite-dimensional, 

a Borel finite measure on B is equivalent to the Lebesgue measure if and only if it is 

quasi-invariant along the whole space B. But, unfortunately enough, it is known that  no 

Borel finite measures on an infinite-dimensional Banach space are quasi-invariant along 

the whole space [6]. This is one of the reasons why we do not have obvious definitions 

for concepts like Lebesgue almost everywhere in the cases of infinite-dimensional Banach 

spaces or Banach manifolds such as the space Cr(M, M). However, there may be Borel 

finite measures on B that  are quasi-invariant along dense subspaces. In fact, on the 

Banach space Cr(M, R2), there exist Borel finite measures that  are quasi-invariant along 

the dense subspace C~+2(M, R 2) (Lemma 3.18). For integers s~r>~l, let Q~ be the set 

of Borel probability measures on Cr(M, R 2) that  are quasi-invariant along the subspace 

CS(M, R 2) and regard the measures in these sets as substitutions for the (non-existing) 

Lebesgue measure. 

Let us consider the space Cr(M, T)  of C~-mappings from M to the torus T,  which 

contains the space C~(M, M) of C~-endomorphisms on M. For a mapping G in C~(M, T),  

we consider the mapping 

OG: Cr(M, R 2) ---+ C~(M, T), 
(2) 

F~---+G+F. 

We now introduce the following notions: 

Definition. A subset 2dcC~(M,M) is shy with respect to a measure ~4 on 

C~(M, R 2) if O ~ I ( x )  is a null subset with respect to M for any GEC~(M, T).  

Definition. A subset 2daCe(M, M) is timid for the class Q~ of measures if Q~ is 

non-empty and if 2d is shy with respect to all measures in Qr 
8 "  

Remark. The former of the definitions above is a slight modification of that  of 

shyness introduced by Hunt, Sauer and Yorke [9], [10]. By the definitions, a subset 

2dC C ~ (M, M) is shy with respect to some compactly supported measure ~4 in the sense 

above if and only if the inverse image ~ l ( ~ , )  for some (and thus any) GEC~(M,T) 
is shy in the sense of Hunt, Sauer and Yorke. Note that  a controversy to the notion of 

shyness is given in the paper [21] of Stinchcombe. 

Pu t  $ ~ : = P ~ / ~ \ ~ .  The latter part of our main result is stated as follows: 

THEOREM 2.2. (I) The subset S ~ is shy with respect to a measure Ms in Qr 8--1 i f  

the integers r>~2 and s>~r+3 satisfy 

( r -2 ) ( r+l )<(r -y -2 ) (2 ( r -3 )  2 s - r - - v + l ) v  (3) 
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for some integer 3<~u~r-2. Moreover, s is timid for Qr~-I if r>.2 and s>~r+3 satisfy 

the condition (3) with s replaced by s + 2  for some integer 3~<u~<r-2. 

(II) 3rA7)74~ is timid for Q~ for any r>~2 and s>~r+2. 

Remark. The measure A/[~ in the claim (I) above will be constructed explicitly as a 

Gaussian measure. 

Remark. The inequality (3) holds for the combinations (r, s, u)=(19,  22, 3) and 

(21,26,3), for example. But it does not hold for any s>~r+3 and 3<~u<~r-2 unless 

r~>19. 

As an advantage of the measure-theoretical notion of timidity introduced above, we 

can derive the following corollary on the families of mappings in PT-U, whose proof is 

given in the appendix. Let us regard the space C~(M • [-1,  1] k, M)  as that  of Cr-families 

of endomorphisms on M with parameter space [-1,  1] k. We can introduce the notion of 

shyness and timidity for the Borel subsets in this space in the same way as we did for 

those in C~(M, M). Let tu rk  be the Lebesgue measure on R k. 

COROLLARY 2.3. The set of C~-families F ( z , t )  in C ~ ( M •  1]k,M) satisfying 

mRk ({t e [-1, 1]kl F ( . ,  t) e St})  > 0 

is timid with respect to the class of Borel finite measures on Cr( M• [-1,  1]k,R 2) that 

are quasi-invariant along the subspace Cs- I (M•  [-1,  1]k,R2), provided that the Ante- 

gets r~2 and s~r  +3 satisfy the condition (3) with s replaced by s + 2  for some integer 

3<~u<~r-2. 

We give a few comments on the main results above. The restriction that  the surface 

M is a region on the torus is actually not very essential. We could prove Theorem 2.1 

with M being a general compact surface by modifying the proof slightly. The main reason 

for this restriction is the difficulty in generalizing the notion of shyness and timidity to 

the spaces of endomorphisms on general compact surfaces. Since the definitions depend 

heavily on the linear structure of the space Cr(M, R2), we hardly know how to modify 

these notions naturally so that  it is consistent under the non-linear coordinate transfor- 

mations. The generalization or modification of these notions should be an important  issue 

in the future. Besides, the restriction on M simplifies the proof considerably and does 

not exclude the interesting examples such as the so-called Viana-Alves maps [1], [25]. 

The assumptions on differentiability in the main theorems are crucial in our argu- 

ment, especially in the part where we consider the influence of the critical points on the 

dynamics. We do not know whether they are technical ones or not. 



P H Y S I C A L  M E A S U R E S  F O R  P A R T I A L L Y  H Y P E R B O L I C  S U R F A C E  E N D O M O R P H I S M S  43 

As we called attention to in the introduction, the main theorems tell nothing about 

hyperbolicity of the physical measures. Of course, it is natural to expect that  the physical 

measures are hyperbolic generically. The author thinks it not too optimistic to expect 

that  T~ r contains an open dense subset of PT-/r in which the physical measures for the 

mappings are hyperbolic and depend on the mapping continuously. 

Generalization of the main theorems to partially hyperbolic diffeomorphisms on 

higher-dimensional manifolds is an interesting subject to study. Our argument on physi- 

cal measures with nearly neutral central Lyapunov exponent seems to be complementary 

to the recent works [2] and [3] of Alves, Bonatt i  and Viana. However, as far as the 

author understands, there exist essential difficulties in the case where the dimension of 

the central subbundle is higher than one. 

The plan of this paper is as follows: We give some preliminaries in w We first 

define some basic notation and then introduce the notions of admissible curve and ad- 

missible measure, which play central roles in our argument. The former is taken from 

the paper [25] of Viana with slight modification and the latter is a corresponding notion 

for measures. Next we introduce two conditions on partially hyperbolic endomorphisms, 

namely, the transversality condition on unstable cones and the no ]]at contact condition. 

At the end of w we shall give a concrete plan of the proof of the main theorems using 

the terminology introduced in this section. In w we study hyperbolic physical measures 

using the Pesin theory. w is devoted to basic estimates on the distortion of the iterates of 

partially hyperbolic endomorphisms. Then we go into the main part  of this paper, which 

consists of three mutually independent sections. In w we prove that  a partially hyper- 

bolic endomorphism belongs to the subset T~ r if it satisfies the two conditions above. 

In w167 7 and 8 respectively, we prove that  each of the two conditions holds for almost all 

partially hyperbolic endomorphisms. 

3. P r e l i m i n a r i e s  

In this section, we prepare some notation, definitions and basic lemmas that  we shall use 

frequently in the following sections. 

3.1. N o t a t i o n  

For a tangent vector v E T M ,  v • denotes the tangent vector that  is obtained by rotating 

v by the right angle in the counter-clockwise direction. For two tangent vectors u and v, 

L(u ,  v) denotes the angle between them even if they belong to the tangent spaces at 

different points. Let exp,: T z T - + T  be the exponential mapping, which is defined simply 
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by expz(V)-~z+v in our case. For a point z in the torus T (or in some metric space, 

more generally) and a positive number 5, let B(z,  (i) be the open disk with center at z 

and radius (i. Likewise, for a subset X,  let B(X,  (f) be its open (f-neighborhood. For 

a positive number (i, we define a lattice L(5) as the subset of points (x, y) in T whose 

components,  x and y, are multiples of 1 / ( [1/ ( i ]+l) ,  so tha t  the disks B(z,( i)  for points 

zEL((i) cover the torus T.  

Throughout  this paper, we assume r ) 2 .  Let F: M-+M be a C~-mapping. The set 

of critical points of F is denoted by C(F). For a tangent vector vET~M at a point zEM, 
we define 

and 

D.F(z,v)-IIDF.(v)II if v r  
I1"11 

det DFz D*F(z, v) - if DR(v) ~ O. 
D.F(z,v) 

Remark. If  v # 0  and DF(v)#O, we can take orthonormal  bases (v/llvi] , v•177 on 

TzM and (DF(v)/iiDF(v)]l, DF(v)•177 ) on TF(z)M. Then the representation 

matr ix  of DFz: TzM-+Ts(~)M with respect to these bases is an upper  triangular matr ix  

with D.F(z, v) and D*F(z,  v) on the diagonal. 

Note that  we have ]D*F(z, v) I=  [I(DR)* (v*)II/II v* ]1 for any cotangent vector v* 5 0  

at F(z) that  is normal to OF(v). We shall write D.F(v) and D*F(v) for D.F(z, v) and 
D*F(z, v), respectively, in places where the base point z is clear from the context. 

For a Cr -mapping  F: M - + R  2, the C~-norm of F is defined by 

o~+bF 
IIFrlc~ = max max (z) , zEM O~a+b<~r 

where (x, y) is the coordinate on T that  is induced by the s tandard one on R 2. Similarly, 

for C~-mappings F and G in C~(M, T),  the C~-distance is defined by 

dc~ (F, G) = m ~  max{d(F(z), G(z)), l<.m~bb<r I ~a__~_~y (Z Oa__~y (Z I }. 

3.2.  S o m e  o p e n  s u b s e t s  in "Par/~ 

In this subsection, we introduce some bounded open subsets in PT-/r whose elements 

enjoy certain est imates uniformly. As we will see, we can restrict ourselves to such open 

subsets in proving the main theorems. This simplifies the argument  considerably. 
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Let S~ be the subset of mappings F in PT-/~ that  violate either of the conditions: 

(A1) The image F(M)  is contained in the interior of M; 

(A2) The function zF+det DF~ has 0 as its regular value; 

(A3) The restriction of F to the critical set C(F) is transversal to C(F). 

Notice that  the conditions (A2) and (A3) are trivial if the mapping F has no critical 

points. To prove the following lemma, we have only to apply Thom's jet  transversality 

theorem [7] and its measure-theoretical version [22, Theorem C]. 

LEMMA 3.1. The subset S~ is a closed nowhere dense subset in PT-I ~ and shy with 

respect to any measure in Qr s for s ) r ) 2 .  

Remark. The terminology in [22] is different from that  in this paper. But we can 

put  Theorem C and other results in [22] into our terminology without difficulty. 

Consider a Cr-mapping F~ in PT-/~ and let TM=EC@E ~ be a decomposition of the 

tangent bundle which satisfies the conditions in the definition that  F=F~ is a partially 

hyperbolic endomorphism. Notice that,  although the central subbundle E c is uniquely 

determined by the conditions in the definition, the unstable subbundle E ~ is not. Indeed 

any continuous subbundle transversal to E ~ satisfies the conditions in the definition, 

possibly with different constants A and c. Making use of this arbitrariness, we can 

assume that  E ~ is a C~-subbundle.  Further, by taking E ~ nearly orthogonal to E ~ 

and by changing the constants A and c, we can assume that  there exist positive-valued 

Ca-funct ions  0 ~ and 0 ~ on M such that  the cone fields 

SU(z) ={vCTzM\{O}lA(v, EU(z)) ~ 0~(z)}, 

S~(z) = {v E TzM\{O}[A(v • E~ (z)) ~< 0~(z)} 

satisfy the following conditions at every point z CM: 

(]31) SC(z)nS~(z)=O;  

(82) EC(z)\{0} is contained in the interior of the cone SO(z); 

(B3) DF~(S~(z)) is contained in the interior of S~(F~(z)); 

(84) (DF~)zl(SC(F~(z))) is contained in the interior of SO(z); 

(B5) For any v E S t ( z )  and n>~l, we have 

(i) IlD.F~(z, v)[[ >exp(An-c ) ;  

(ii) ][D*F~(z, v)[[ < e x p ( - A n + c ) I l D . F ~ ( z ,  v)N. 

Suppose that  the mapping F~ does not belong to S~. Then we can take positive 

constants A and c, a small number Q>0 and a large number A > c  such that  the following 

conditions hold for any Cr-mapping F satisfying dcr(F, F~)<2a: 

(C1) The conditions (83), (B4) and (85) with F~ replaced by F hold; 
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(C2) The parallel translation of E~(F~(z)) to F(z) is contained in N~(F(z))U{O} for 

any zCM; 
(C3) d(F(M), 0M)>t) ;  

(C4) The function z~-*detDFz has no critical points on B(C(F) ,  ~), and it holds 

that  IdetDF~l>Qd(z,C(F)) for z e B ( C ( F ) ,  0); 

(C5) If a point zEM satisfies d(z, wl)<O and d(F(z),w2)<Q for some points 

wl,w2EC(F) and if vES"(z), then the angle between DF(v) and the tangent vector 

of C(F) at w2 is larger than 0; 

(C6) I]DF~II<A for any zeM. 
We can choose countably many pairs of a C~-mapping FI in 7~7-/~\S~ and a positive 

number t) as above so that  the corresponding open subsets 

Lt = {Fe C~(M, M) I de r (FI, F) < O} 

cover PT-/r \S~. In order to prove the main theorems, Theorems 2.1 and 2.2, it is enough 

to prove them by restricting ourselves to an arbitrary such open subset b/. For this reason, 

we henceforth fix a Cr-mapping F~ in PT-/~\S0, subbundles E c and E ~, C~-funct ions 0 c 

and 0 4, cone fields S~(. ) and S~( �9 ), and positive numbers 0, A, ,~ and c as above, and 

consider the mappings in the corresponding open subse t / / .  

3.3 .  R e m a r k s  o n  t h e  n o t a t i o n  for c o n s t a n t s  

In this paper, we shall introduce various constants that  depend only on 

(1) the objects that  we have just fixed at the end of the last subsection; 

(2) the integer r~>2. 

In order to distinguish such constants, we make it a rule to write them by symbols with 

subscript g. Obeying this rule, we shall write ~g, c 9, Og and Ag for the constants ~, c, t) 

and A hereafter (and we will use the symbols A, c, 0 and A for other purposes). Notice 

that,  once a constant is denoted by a symbol with subscript g, we mean that  it is a 

constant of this kind. In order to save symbols for constants, we shall frequently use a 

generic symbol Cg for large positive constants of this kind. Note that  the value of the 

constants denoted by Cg may be different from place to place even in a single expression. 

For instance, ridiculous expressions like 2Cg <C 9 can be true, though we shall not really 

meet such ones. Also note that  we shall omit the phrases on the choice of the constants 

denoted by Cg in most cases. 

For example, we can take a constant Ag>0 such that  

[D*F~(z,w)l A(DFn(u),DFn(v)) [D*Fn(z,w)[ 
A-g1 D.F~(z,w) <" Z(u,v)  <~Ag D.F~(z,w ) (4) 
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for any zEM,  
quently: For any FE/4, zCM, vESt(z)  and n~>l, we have 

C~ld(z,C(F)) <. IdetDFzl <~exp(Ag)llD*F(z,v)l I <. Cgd(z,g(F)), (5) 

C~1< IlD.Fn(z, v)l I <~ IlnF2l I <. CgllD.Fn(z, v)l I (6) 

and, if z~C(F), also 

C[~IID*Fn(z, v)II <~ II(DF2)-~I1-1 ~< IID*Fn(z, v)II . (7) 

n~>l and u,v, wf~SC(z)U{O}. We shall use the following relations fre- 

3.4. Admiss ib l e  curves  

In this subsection, we introduce the notion of admissible curve. From the forward invari- 

ance of the unstable cones S u or the condition (B3) with F~ replaced by F, the mappings 

in the set/ , /  preserve the class of Cl-curves whose tangent vectors belong to S ~. We 

shall investigate such a class of curves and find a subclass which is uniformly bounded in 

Cr-l-sense and essentially invariant under the iterates of mappings in/4. We shall call 

the curves in this subclass admissible curves. 

In this paper, we always assume that  the curves are regular and parameterized by 

length. Let V: [0, a]--+M be a Cr-curve such that  "y'(t)ES~(v(t)) for tE[0, a]. As we 

assume IW(t)]]--1, the second differential of ~/is written in the form 

d 2 
: • 

where d2~: [0, a ] -+R is a C~-2-function. We define dkv(t) for 3<~k<.r as the ( k - 2 ) n d  

differential of the function d2v(t). Let dlv(t)  be the differential v'(t), for convenience. 

Let F,V: [0, a'] --+M be the image of the curve ~ under a mapping FE/4. Notice that  

F, V is not simply the composition Fov, because we assume F, V to be parameterized by 

length. The right relation between 7 and F ,7  is given by 

E,V(p(t)) : F(~(t)),  (8) 

where p: [0, a]-+ [0, a'] is the unique C~-diffeomorphism satisfying p ( 0 ) : 0  and dp(t ) /dt :  
D,F(~/(t), v'(t)). Differentiating both sides of (8), we get the formula 

D,F(v(t) ,  v'(t))" ( F, v)' (p(t ) ) = DF~(t) (~' (t) ) 

for tC [0, a]. Differentiating both sides again and considering the components normal to 

(F,~/)'(p(t)), we get 

D*F(~/(t), ~/(t)) Q2 (v(t), 7'(t); F )  d2F, v(p(t)) = d2v(t) -~ (9) 
D,F(7(t) ,v '( t))  2 D,F(~/(t),~/(t)) 3' 
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where 

Q2(a, b; F)  = ( D2F~(b, b), ( DF~(b) )• ). 

Note that  Q2(a, b; F) is a polynomial of the components of the unit vector b whose 

coefficients are polynomials of the differentials of F at a up to the second order. Likewise, 

examining the differentials of both sides of (9) by using the relation 

d 
_d dt D.F(7( t ) ,  7'(t)) = dt [[DRy(t)('~'(t))I] 2 

2D.F(~(t) , 'r ' ( t))  ' 

we obtain, for 3<~k<~r, 

t i k - -1 .  
dkF.3,(p(t)) = D*F(3"(t),~/(t)) dk~/(t)_ t Qk(~,(t),~/(t),{d "),(t)}i= 2 , F )  (10) 

D . F ( ' y ( t ) ,  "~'(t)) k D . F ( ' y ( t ) ,  ~ ' ( t ) )  3 k - 3  ' 

where Qk(a, b, k-1. {c~}i=2, F )  is a polynomial of the components of the unit vector b and the 

scalars ci whose coefficients are polynomials of the differentials of F at a up to the k th  

order. 

Remark. In addition, we can check that  Q~(a, k-1. b, {c~}i= 2 , F)  for 2<~k~r is written 

in the form 

D,F(a,  b)2k-3v*((DkF)a(b, b, ..., b))+Q.k(a, b, k-1 {c~h=2 ;F), 

where v* is a unit cotangent vector at the point F(a) that  is normal to DF~(b), and 

Qk(a,b, k-1 {ci}i=2;F) is a polynomial of the components of b and the scalars c~ whose 

coefficients are polynomials of the differentials of F at a up to the ( k -  1)st order. 

Fix an integer ng >0 such that  ngA 9 -cg>O.  Then we have the following result: 

LEMMA 3.2. There exist constants K ( k ) > l  for 2<.k~r such that, if a curve 
-y: [0, a]---> M of class C r satisfies 

(i) ~/'(t)eSU(9,(t)) for te[0,a] ;  

(ii) [dkT(t)l<~K (k) for 2 < k < r  and te[0,  a], 

then Fn~/ for n>~ng satisfies the same conditions. 

Proof. Consider a Cr-curve -y: [0, a]--+M that  satisfies the conditions (i) and (ii), and 

let F.n'~: [0, an]--+M be its image under the iterate F n. From the formulae (9) and (10), 

we can see that ,  for ng~n<~2ng, 

fD*F(~/(t)' "Y'(t))l ]dk'~(t)] + R(ng, Kg (2), F((k-1)~ (11) 
]dkF*~(Pn(t))[ <" D.F(~/(t), ~/'(t)) k ..., ~ g  / ,  
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where Pn: [0, a]--+ [0, an] is the unique diffeomorphism satisfying pn(O)-~0 and dpn(t)/dt-- 
DF.~(7(t),v'(t)) and where R(ng, K (2), ..., K (k-l)) is a constant that  depends only on 

ng, K (2), ..., K (k-l) besides the objects that  we have already fixed at the end of w 

The coefficient of Idk~/(t)l on the right-hand side of the inequality (11) is smaller than 

exp(-ngAg+Cg)<l from the condition (C1) and the choice of ng. Thus, if we take a 

large K (k) according to the choice of the constants K (~), ..., K (k-l) in turn for 2<~k<<.r, 

the conclusion of the lemma holds for ng<~n<.2n 9. And, employing this repeatedly, we 

obtain the conclusion for all n ~> ng. [] 

Henceforth we fix the constants K (k), 2<<.k<~r, in Lemma 3.2. Now we make the 

following definition: 

Definition. A C~-l-curve 7: [0, a]--+M is an admissible curve if it satisfies the con- 

ditions 

(a) 7 ' ( t )eS~(v(t))  for te[0, a]; 

(b) ]dkT(t)l<~K (k) for 2<~k<~r-1 and tE[0, a]; 

(c) the function d~-i 3, satisfies a Lipschitz condition with the constant K(~): 

]dr-17(t)-d~-1T(s)l<<.K(~)]t-sl for any0<<.s<t<~a.  

Remark. When r=2 ,  the condition (b) above is vacuous and the symbol I" I on the 

left-hand side of the inequality in the condition (c) should be understood as the norm 

on R 2. (Recall that  we put dlv(t)=~'(t).) 

Note that  a Cr-Z-curve 7: [0, a]--+M is an admissible curve if and only if it belongs to 

the closure, in the space C r-1 ([0, a], M),  of the set of Cr-curves satisfying the conditions 

(i) and (ii) in Lemma 3.2. Thus we have the following consequence from Lemma 3.2: 

COROLLARY 3.3. If a C ~-l-curve ~/ is admissible, so is Fnv for n>~ng. 

For a positive number a, let .A(a) be the set of CLcurves "7: [0, a]--+M of length a 

such that  7 ' ( t )cS~(v(t))  for tE[0, a]. For a subset J c ( 0 ,  cc), we define A(J)  as the 

disjoint union of .4(a) for aCJ: 

A(J) := H A(a). 
aCJ 

Also we define 

A ( J )  := H (A(a) • [0, hi) C A(J)  • R. 
aEJ  

We can regard the space ~4((0, c~)) as the totality of CLcurves whose length are finite 

and whose tangent vectors are contained in the unstable cone S ~. From the condition 
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(C1) in the choice of the open neighborhood L/, each mapping F �9  naturally acts on 

the space A((0, oc)), 

F.: A((0, ~ ) )  ) A((0, ~)) ,  

")' �9 .A(a), ) F.'~ �9 .A(p(a)), 

and also on the space A((O, oc)), 

p,: A((O, or ---, A((O, ~)) ,  

(% t) �9 M(a) x [0, a] ~ (F.'),, p(t)) �9 A(p(a)) x [0, p(a)], 

where p: [0, a]--+[O,p(a)] is the unique diffeomorphism satisfying p(O)=O and dp(t)/dt= 
D.F(~/(t), 7'(t)). 

For a positive number a, let AC(a) CA(a) be the set of admissible curves of length a, 

and, for a subset J c (O ,  oc), we put 

AC(J) := H AC(a) C A(J) and A C ( J )  := H AC(a) • [0, a] C A ( J ) .  
aCJ aEJ 

Note that AC(a) is a compact subset of C r-1 ([0, a], M) .  

We equip the space .AC((0, c~)) with the distance dAc defined by 

dAc ("/1, ")'2) = Ih'2 -~1116~-1 + C la2-al  I 

for ~/~ E.AC(a~), i =  1, 2, where 11"~2 -~1 IIc ,'-1 is 

' 0  max Idk',/2(O)-dk"fl(O)l} max max{d('72(O), ")'1 (0)), Z("/~ (0), 72 ( ) ) ,  2~<k~<r-1 
O<~ O<~ min{al,a2 } 

and the constant C is defined by 

C = max K(~ k). 
2 ~ k ~ r  

Note that the constant C above is chosen so that dAc satisfies the triangle inequality. 

We equip the space AC((0,  oo)) with the distance 

dAc ((V1, tl),  (')'2, t2)) = dAc(~/1, "/2)+ It2 - t l  ] 

for ('~i, ti)EAC(ai)• [0, ai], i =  1, 2. It is not difficult to check that the spaces AC((0, co)) 

and AC((0,  ~c)) with these distances are complete separable metric spaces and that the 

subsets AC(J)c.AC((0,  c~)) and A C ( J ) c A C ( ( 0 ,  co)) for a subset g c ( 0 ,  co) is compact 

if and only if J is compact. 
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From Corollary 3.3, the iterate F,  ~ of the mapping F,:~4((0, c~))--+A((0, c~)) 

(resp. F , :A((0 ,  ce))--+A((0, c~))) for any n ) n  9 carries the subset .Ag((0, ce)) (resp. 

AC((0, c~))) into itself. Further we have, for any n ) n g  and a>0,  

F,~( Ag([a, oo))) C AC([aexp( Aon-cg), oo)) (12) 

and 

F.~ (AC([a, de))) C AC([a exp(Agn-Cg), c~)). (13) 

We define the mapping II: A((0, oc))-+M and 7r: g((0,  cc))-~AC((0, co)) by II(% t) =~/(t) 

and 7r(7 , t)=q'. Obviously we have the commutative relations 

A((0, oo)) F. > A((0, ec)) A((0, or F. > A((0, oe)) 

M , M A((O, oc)) > A((O, oc)). 

(14) 

3.5. Admis s ib l e  m e a s u r e s  

In this subsection, we are going to introduce the notion of admissible measure. First 

we introduce this notion in a simple case. Let "y: [0, a]--+M be an admissible curve and, 

for n~>l, let p,~: [0, a]--+[0, an] be the unique diffeomorphism that  satisfies pn(0)=0 and 

dpn(t)/dt=D.Fn(~/(t),~'(t)) for tE[0, a]. Since mappings FE/./ act on the admissible 

curves as uniformly expanding mappings with uniformly bounded distortion, a standard 

argument on the iterations of uniformly expanding mappings gives the following result: 

LEMMA 3.4. The mapping Pn satisfies dpn(t)/dt>.exp(Agn-cg) and 

log -ji- s - og _ (s') <.. CglPn(S)--pn(s')l for s,s'e[0, a], 

where Cg is the kind of constant that we mentioned in w and, in particular, does not 

depend on the mapping FeLt, the admissible curve ~/ nor n>~ng. 

We say that  a measure # on an interval I c R  has Lipschitz logarithmic density with 

constant L if p is written in the form / - t=~mRIi ,  where ~ : I - + R  is a positive-valued 

function satisfying 

I log~(s) - log~(s ' ) l  ~ L I s - s '  I for any t, s E I ,  

and mRl i  is the restriction of the Lebesgue measure on R to I. Note that  the sum 

(or integration) of measures on an interval I having Lipschitz logarithmic density with 

constant L again has the same property. From the lemma above, we can obtain a 

corollary: 
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COROLLARY 3.5. There is a positive constant Lg such that, i ra  measure # on [0, a] 

has Lipschitz logarithmic density with constant La, then so does the measure pop~l on 

[0, an] for  any n>~na, any FELl  and any admissible curve 7: [0, a] -+M. 

We henceforth fix the constant Lg for which the claim of Corollary 3.5 holds. And we 

say that  a measure u on M is an admissible measure on an admissible curve ~/: [0, a ] ~ M  

if v = # o ~  -1 for a measure # on [0, a] that  has Lipschitz logarithmic density with con- 

stant Lg. The following corollary is a consequence of Corollary 3.5: 

COROLLARY 3.6. I f  a measure v is an admissible measure on an admissible curve 

7: [O,a]-+ M ,  then, for n>~ng and FELl,  the measure uoF -n  is an admissible measure 

on the admissible curve F n %  

We have introduced the notion of admissible measure on a single curve and seen 

that  the iterates of mappings FEL/preserve  such a class of measures. Now we are go- 

ing to introduce more general definitions. Let -EAC be the measurable partit ion of the 

space AC((0,  c~)) into the subsets {~/}• [0, a] for a > 0  and ~e.AC(a).  In other words, 

we put ~AC = r - l ~ ,  where ~ is the measurable partit ion of AC((0, oc)) into individual 

points and ~r is the mapping defined at the end of the last subsection. On each element 

~={7}•  [0, a] of the partit ion ~AC, we consider the measure m~ that  corresponds to 

the Lebesgue measure on [0, a] through the bijection (7, t)~-~t. For a Borel finite mea- 

sure /5 on AC((0,  co)), let {/5~}~-----AC be the conditional measures with respect to the 

partit ion "--AC- We put the following two definitions: 

Definition. A Borel finite measure /5 on AC((0,  r is said to be an admissible 

measure if the conditional measures {/5~}~e---AC have Lipschitz logarithmic density with 

constant Lg,/5-almost everywhere. 

Definition. A Borel finite measure # on M is said to have an admissible lift if there 

exists an admissible measure/5 on AC((0,  co)) such that  /5oI1-1 =It- The measure/5 is 

said to be an admissible lift of the measure It. 

For a subset J c ( 0 ,  c~), let A M ( J )  be the set of admissible measures that  is sup- 

ported on A C ( J ) ,  and AJ~4(J) the set of measures on M that  have admissible lifts 

contained in A M ( J ) .  Then we have the following results: 

LEMMA 3.7. I f  a measure /5 belongs to AM([a,  c~)) for some a>~O and i f  FeL l ,  

then ~5oF, n belongs to AM([a ' ,  c~)) for  n ~ n g ,  where a ' = a e x p ( A g n - c g ) > a .  

Proof. The conditional measures of the measure/5oF. -n  with respect to the parti t ion 

~AC are given as integrations of the images of the conditional measures {/2~ }~e~AC under 

the mapping F.  ~. From Corollary 3.5 and the fact noted just above it, they have Lipschitz 
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logarithmic density with constant Lg. Hence/5oF,  n is an admissible measure. The claim 

of the lemma follows from this and (13). [] 

COROLLARY 3.8. I f  #6.A~4([a, ce)) for some a > 0  and if FELl, then the measure 

poE -n  belongs to A~4([a' ,ce)) for n>~ng, where a '=aexp( )~gn-cg)>a.  In particular, 

if an invariant measure for FELl has an admissible lift, it belongs to .AA4([a, ce)) for 

any a>0.  

LEMMA 3.9. The subset A M ( J )  for a closed subset J c ( 0 ,  oo) is closed in the space 

of Borel finite measures on AC((0, oo)). 

Proof. For a real number ~, we define the mapping T~ from .AC((0, c e ) ) •  to itself 

by T~('~, t )=(% t+~).  Then a measure/5 on AC((0, c~))C.4C((O, c o ) ) •  is admissible 

if and only if it satisfies 

d/5  exp(Lg I l) d/5 

for any non-negative-valued continuous function ~ on ~4C((0, o c ) ) •  and for any e>0. 

For each non-negative-valued continuous function ~ on ~4C((0, co)) • R and ~ER, the set 

of Borel measures/5 that  satisfy the inequality above and that  are supported on A C ( J )  

is a closed subset in the space of Borel finite measures on AC((0, 0o)). Hence so is their 

intersection, A M ( J ) .  [] 

LEMMA 3.10..AA4([a, oc))=.Ajt4([a, 2a]) for a>0.  

Proof. For a>0,  let Aa: AC([a, oo))--+AC([a, 2a]) be the mapping that  brings an 

element (%t)Ec4C(b)• [0, b] to 

Aa( ('/, t) ) = (~/][m(t ) ,m(t )+b/nl ,  t - m ( t )  ) 6 AC(b/n)  • [0, b/n], (15) 

where n=[b/a] and m(t)=[tn/b]b/n.  Then we have HoA~=H, and for any /bE 

AM([a,  oc)), the image/5oA~ 1 belongs to AM([a,  2a]). Thus we obtain the lemma. [] 

From the lemma above and Lemma 3.9, a corollary follows: 

COROLLARY 3.11. The set Jt~4([a, c~)) for a > 0  is a compact subset in the space of 

Borel finite measures on M.  In particular, for a mapping FELl, the subset of F-invariant 

Borel probability measures that have admissible lifts is compact. 

Suppose that  P is a small parallelogram on the torus T whose center z belongs to M 

and two of whose sides are parallel to the unstable subspace E~(z). Then the restriction 

of the Lebesgue measure m to P has an admissible lift, provided that  P is sufficiently 

small. Moreover any linear combination of such measures has admissible lifts. Thus we 

obtain the following result: 
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LEMMA 3.12. For any Borel finite measure v on M that is absolutely continuous 

with respect to the Lebesgue measure m ,  there exist a sequence b~--++O and measures 

v,~E,AA/I([b~, oc) ) such that Iv-vnl--+O as n--+oc. Further we can take the measures vn 

so that the densities d v n / d m  are square integrable. 

The next lemma is a consequence of the last two lemmas and Corollary 3.8. 

LEMMA 3.13. Let F be a mapping in Lt and v a probability measure on M that is 

absolutely continuous with respect to the Lebesgue measure m .  Then any limit point of 
n - - 1  the sequence n -1 ~-~i=o v ~  is contained in .AA/[([a, co)) for  any a>0 .  In particular, 

physical measures for F are contained in ,A.M([a, c~)) for  any a>0 .  

Finally we prove another lemma. 

LEMMA 3.14. Let F be a mapping in U. I f  an F-invariant  Borel probability measure 

has an admissible lift, so do its ergodic components. 

Proof. From Corollary 3.11, it is enough to show the following claim: If an F-  

invariant measure # that  has an admissible lift splits into two non-trivial F-invariant 

measures #1 and #2 that  are totally singular with respect to each other, then the measures 

#1 and #2 have admissible lifts. We are going to show this claim. From Corollary 3.8, we 

can take an admissible lift/5 of # that  is supported on AC([1, c~)). Consider the mapping 

G = A l o F . ~ :  AC([1, c~))-+AC([1,2]) ,  where A1 is the mapping defined by (15). Then 

the measure /5oG -1 is an admissible lift of #. Replacing/5 by/5oG -1, we can assume 

tha t /5  is supported on AC([1, 2]). From the assumption of the claim, we can take an 

F-invariant Borel subset X c M  such that  # I ( M \ X ) = # 2 ( X ) = O .  Then, by the relation 

FngoII=IIoG,  the set . ~ : - H - I ( X )  is G-invariant. Below we prove that  ) (  is a SAC- 

set, that  is, a union of elements of the parti t ion SAc,  modulo null subsets with respect 

to/5. This implies the claim above because the restriction of the measure/5 to )~ is an 

admissible lift of #1. 

Put  E l=SAC and define the sequence "~n, n = l , 2 , . . . ,  inductively by the relation 

E n + l = G - l ( E n ) V ~ l .  Then - ~  is increasing with respect to n and the limit Vn~=l En 

is the measurable partit ion into individual points. Thus the conditional expectation 

E(.~l-=n) with respect to 15 converges to the indicator function of ) (  as n-+co,/5-almost  

everywhere. Note that  the restriction of G n to each element of the parti t ion F-n is a 

bijection onto an element of El,  and its distortion is uniformly bounded. Hence, using 

the assumption that  /5 is an admissible measure and the invariance of )( ,  we can see 

that  the conditional expectation E()~]-~I) equals the indicator function of )( ,  or .~ is a 

F-AC-set modulo null subsets with respect to/5. [] 
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3.6. T h e  no  fiat c o n t a c t  c o n d i t i o n  

In this subsection, we consider the influence of the critical points on ergodic behavior of 

partially hyperbolic endomorphisms. We first explain a problem that  the critical points 

may cause. And then we give a mild condition on the mappings in L/, the no flat contact 
condition, which allows us to avoid that  problem. In the last part of this paper, we will 

prove that  this condition holds for almost all partially hyperbolic endomorphisms in 5/. 

Let us consider a mapping FEL/. Let X~(z; F)<Xu(z; F )  be the Lyapunov exponents 

at zcM. For a Borel finite measure # on M, we define 

1 / 1 / ,detDF~, 
X~(#;F)=~p-~ logllDFlEc(z)lldp(z ) and X u ( p ; F ) = ~  log IIDFIEc(z)II d#(z). 

These are called the central and unstable Lyapunov exponent of #, respectively. For an 

invariant probability measure # for F,  we have 

X~(p;F)= f X~(z)d#(z ) and X~(#;F)= f X~(z)d#(z ). 

Fhrther, if # is an ergodic invariant measure for FCLr the Lyapunov exponents Xc(z; F) 
and X~(z; F) take constant values Xc(#; F) and X~(#; F )  at p-almost every point z, 

respectively. 

Let #n, n = l ,  2, ..., be a sequence of ergodic invariant probability measures for F 

that  have admissible lifts, and suppose that  #n converges weakly to some measure # ~  

as n--+cc. Then # ~  has an admissible lift from Corollary 3.11. It is not difficult to see 

that  the Lyapunov exponent Xu(Pn; F) always converges to X~(#~; F) .  However, for 

the central Lyapunov exponent, we only have the inequality 

lira sup xc(#n; F) <<. xc(#~; F) (16) 

when F has critical points, because the function log IIDFIEc(z)II is not continuous at the 

critical points. Though the strict inequality in (16) is not likely to hold often, we cannot 

avoid such cases in general. And, once the strict inequality holds, the ergodic behavior 

of F can be wild by the influence of the critical point. 

Remark. It is not easy to construct examples in which the strict inequality (16) 

holds. For example, consider the direct product of the quadratic mappings given in the 

paper [8] and an angle-multiplying mapping O~+dO on the circle. 

Remark. We could consider a similar but more general problem: Suppose that  a 

point zEM is generic for an invariant probability measure #, that  is, the sequence 
n--1 n-1 ~i=o 5F~(z) converges to # as n--+oc. The problem is that  the strict inequality 



56  M. TSUJII  

Xc(z; F)<Xc(#;  F )  can hold, though the equality Xu(z; F)=X~,(#; F )  always holds. (If 

we did not assume the mapping F to be partially hyperbolic, these relations would be 

looser.) We may call this kind of problems Lyapunov irregularity, as this is the case 

where the so-called Lyapunov regularity condition [13] does not hold. 

In order to avoid the irregularity described above, we introduce a mild condition: 

Definition. We say that  a mapping F L U  satisfies the no flat contact condition if 

there exist positive constants C=C(F) ,  no=no(F)>~ng and ~ = ~ ( F )  such that,  for any 

admissible curve ~EAC(a) with a>0,  n~no and e>0,  

mR({ t  E [0, a]I d(Fn(~(t)), 6(F) )  < e}) < Ce ~ max{a, 1}, 

where mR is the Lebesgue measure on R.  If F has no critical points, we say that  

d(z ,C(F) )=l  for z E M  and that  F satisfies the no flat contact condition. 

Remark. The definition above is motivated by the argument in a paper of Viana [25], 

in which the condition as above for/3= �89 is considered. 

Below we give simple consequences of the no flat contact condition. For FE/4 and 

zEM,  we define 

L(z ;F)  := log min ID*F(z, v)l E RU{-co} .  (17) 
vES~(~) 

This function is continuous outside the critical set C(F) and satisfies 

L(z; F) ) log d(z,C(F) ) - C g  

from (5), provided that  C(F)r  Thus we get the following lemma: 

LEMMA 3.15. Suppose that FELl satisfies the no fiat contact condition and let no= 

no(F) be as in the condition. For any 5>0 and a>0,  we can choose a positive number 

h=h(5, a; F)  such that 

min{0, F ) + h }  d(#oF-'~)(z) >1 -(fip] L(z; 

for any pEAJ~4([a, co)) and n>~no. 

Using the inequality log ]]DFIEc(z)]] ~L(z;  F ) - C  9, which follows from (5), together 

with Lemma 3.15, Corollary 3.8 and Corollary 3.11, we can obtain the following corollary: 

COROLLARY 3.16. Suppose that a mapping FELl satisfies the no fiat contact con- 

dition. Then the central Lyapunov exponent X~(P; F), considered as a function on the 

space of F-invariant probability measures having admissible lifts, is continuous and, in 

particular, uniformly bounded away from -co.  

This corollary implies that  the irregularity of the central Lyapunov exponent we 

mentioned does not take place under the no flat contact condition. 
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3.7. Mult ip l ic i ty  of  tangenc ies  b e tw een  the  images  of  the  unstable  cones  

By an iterate of a mapping FE/4,  the unstable cones S~(z) at many points z will be 

brought to one point, and some pairs of their images may be tangent, that  is, have 

non-empty intersection. (Recall that  S~(z) does not contain the origin 0.) In this 

subsection, we introduce quantities that  measure the multiplicity of such tangencies and 

then formulate a condition, the transversality condition on unstable cones, for mappings 

in 5/. 
+ - + We introduce analogues of the so-called Pesin subsets. Let X= {X~, Xc, Xu, X~ } be 

a quadruple of real numbers that  satisfy 

x ;  < x~ + < x ;  < x~ +. (18) 

Let e be a small positive number. For a mapping FE/g,  an integer n > 0  and a real 

number k>0,  we define a closed subset A(X , ~, k, n; F )  of M as the set of all points z E M  

that  satisfy 

X~ ( j - i ) - r  <. log ID*FJ-i(v)l <~ x+ ( j - i ) + e ( n - j ) + k  

and 

X~ ( j - i ) - r  ~ log D, FJ-i(v) ~ x + ( j - i ) + r  

for any O ~ i < j ~ n  and vESU(Fi(z)) .  Applying the standard argument in the Pesin 

theory [16], [18] to the inverse limit system, we can show the following result: 

LEMMA 3.17. If  p is an invariant probability measure for FELt and if 

X; < Xc(z; F) < X + and X~ < Xu(z; F) < X + for p-almost every z, 

then l i m k ~  lim i n f n _ ~  p(A(x, r k, n; F ) ) =  1. 

Note that  we have 

A(X, ~, k, n; F) c A(x, g, k', n; F) (19) 

Fi (A(x, e, k, n; F ) )  C A(X, ~, k, n - i ;  F) (20) 

A(X , r k, n; F )  C A(X, e, k+r n - i ;  F) (21) 

By (4), we can take a constant H a such that  

ID*Fn(z'w)l <Hgexp((x+-x~)n+2k)  (22) / (DF~(u),  DEn(v)) < Hg D.F~(z  ' w) 

if k ~< k' and ~ ~< ~', 

for 0 ~ i < n ,  

for O<~ i < n. 
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for any zEA(;)(, 6, k, n; F )  and u,v, wES~(z). For zEM, let s X, r k,n; F) be the set 

of all pairs (w, w') of points in F-~(z)nh(x,e ,  k,n; F) such that  

/ (  DFn(E~(w') ), DFn(E~(w) ) ) <~ 5Hg exp((x + -x~  )n+ 2k ). (23) 

Note that,  if a pair (w,w') of points in F-n(z)MA(x,E,k,n;F) does not belong to 

s X, e, k, n; F) ,  we have 

L(DFn(u), DFn(u')) > 3Hg exp((x + - X ~ ) n + 2 k )  (24) 

for any uE$(w) and utES(w'),  from (22). 

As a measure for the multiplicity of tangencies, we consider the number 

N(x,r  ~ max #{w' i (w,w')Eg(z;x ,r  
zEM w E F -  (z)AA(x,e,k,n;F) 

This is increasing with respect to k and r 

Definition. Let X={x(l)}Zt~ be a finite collection of quadruples of numbers X(I)= 

+ l  {Xc (1), Xc (), X~ (1), X~+(I)} that  satisfy (18). We say that  a mapping FE/A satisfies the 
transversality condition on unstable cones for X if 

(( logN(x(l),e,k,n; F)(1)_xu (l)) I } lira lira inf max A ~ ~< < lim k - ~  n - ~  ~n(x~(l)+x~(l)_x~ 1 l<.lo 1, r 

where A _ + X~ (l)--Xr (1)-X;(l) and X~(l)=X+(l)-X)(l). 

Remark. We will consider only the case where X; (l)+x~(l)-x~(1)-X~(1)>0. 

3.8. M e a s u r e s  on  t h e  space  o f  m a p p i n g s  

In this subsection, we give some additional arguments concerning measures on the space of 

mappings. Recall that  re: Cr(M, R2)-+Cr(M,  R 2) is the translation by CEC~(M, R2), 
that  is, Tr162 For an integer s~>0 and a positive number d>0, we put 

DS(d) = {G E CS(M, R 2) ] [[GIIc~ • d}. (25) 

The following lemma gives measures on C~(M, R 2) with nice properties: 

LEMMA 3.18. For an integer s>~3, there exists a Borel probability measure .h48 on 
Cs-3(M, R 2) such that 

(1) Ads is quasi-invariant along C~-I(M, R2); 
(2) there exists a positive constant O=os(d) for any d>0  such that 

d(Mso  l) 
1 <~ <~ 2 .Ads-almost everywhere on D~-3(d) 
2 dAds 

for any CECS(M,R 2) with [[r 
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We will give the proof of Lemma 3.18 in the appendix at the end of this paper. This 

is on the one hand because the lemma itself has nothing to do with dynamical systems, 

and on the other hand because the proof is merely a combination of some results in 

probability theory. 

Henceforth, we fix the measures A4~ for s~>3 in Lemma 3.18. Note that the measure 

A48 belongs to Qr when s>~r§ s--1 

LEMMA 3.19. Suppose that s>~r+3. If a Borel subset X in C~(M,M)  is shy with 

respect to the measure A48+2, then X is timid for the class Q~-I of measures. 

Proof. Take an arbitrary measure Af in Q~ The measure A48+2 is supported s - - l "  

on the space Cs-I(M, R2), along which Af is quasi-invariant. Hence the convolution 

Af*A48+2 is equivalent to Af. From the assumption, we have 

= ~p-1 . A f * J ~ s + 2 ( ~ G I ( x ) ) = / M s + 2 ~  2) / J ~ 8 + 2 ( G + o ( X ) )  d ~ ( ~ ) )  : 0  

for any GEC~(M, T). Thus X is shy with respect to Af. [] 

In order to evaluate subsets in Cr(M, T) with respect to the measures Ms, we will 

use the following lemma: 

LEMMA 3.20. Let s>~r+3 and d>0. Suppose that mappings r  2) and 

positive numbers Ti for 1 <~ i <~ m satisfy 

m 

sup E t i r  ~< Q~(d), 
Itd<~Tr 1 IIC 

(26) 

where Qs(d) is as in Lemma 3.18. If  a Borel subset X in Cr(M, T) satisfies, for some 

/3>0, that 

mR-~ {ti}~_l e [-Ti,Ti] ~ +  t i O i e X  </3 2Ti 
i=l i : l  i=l 

(27) 

for every ~ E X ,  then we have 

A/ls(~31(X)NDS-3(d)) ~< 2m+l~Ms(~31 (Y)) ~< 2m+13 

for any GECr(M,  T), where 

Y :    Xand �9 

i=1 
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Proof. Put Z = r  and let l z  be the indicator (characteristic) func- 

tion of Z. Using the Fubini theorem and the properties of Ms ,  we get 

mR m t e R  m It~l~<~ a n d r 1 6 2  dMs((~) 
i = l  

=~{,,,,,,.�89 lz(r '~r162 dmR'(t) 
[ = . _  M s  Z -  tir dmRm(t) 
J t  tllt~l<�89 i = 1  " 

m 

i = 1  

The integrand of the integral on the first line is positive only if @ belongs to ~ 1  (y )  and 
fl m bounded by l-Ii=l 2Ti from the assumption (27). Thus we obtain the lemma. [] 

3.9. T h e  p l an  of  t h e  p r o o f  o f  t h e  m a i n  t h e o r e m s  

Now we can describe the plan of the proof of the main results, Theorems 2.1 and 2.2, 

more concretely by using the terminology introduced in the preceding subsections. 

We split the proof into two parts. In the former part, which will be carried out in 

w167 we study ergodic properties of partially hyperbolic endomorphisms in b / tha t  sat- 

isfy the no flat contact condition and the transversality condition on unstable cones 

for some finite collection of quadruples. The conclusion in this part is the follow- 

ing theorem. For a finite or countable collection X={X(1)}teL of quadruples X(1)= 

{X~ (1), x+(l)), X~ (/), X+(I)} that  satisfy the condition (18), let IX[ be the union of the 

open rectangles (X; (1), X+(1)) x (X~(1), X+~(1)) over l eL .  

THEOREM 3.21. Let X be a finite collection of quadruples that satisfy (18), 

x; < o, (28) 

X; +X~ > (X + - X ; ) + ( X + u - X ~ )  > 0 (29) 

and also 

(o} • G ,  &] c Ixl c ( - 2 & ,  2&) • (0, 2&). (30) 

Suppose that a mapping F in lg satisfies the no flat contact condition and the transversal- 

ity condition on unstable cones for X .  Then F admits a finite collection of ergodic phys- 

ical measures whose union of basins of attraction has total Lebesgue measure on M.  In 

addition, if an ergodic physical measure # for F satisfies either (Xc(#; F),  X~(#; F)  ) E [X[ 

or Xc(#; F ) > 0 ,  then # is absolutely continuous with respect to the Lebesgue measure m.  
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In the latter part of the proof, which will be carried out in w167 7 and 8, we show that  

the two conditions assumed on the mapping F in the theorem above hold for almost all 

partially hyperbolic endomorphisms in 14, provided that  we choose the finite collection X 

of quadruples appropriately. On the one hand, we will prove the following theorem in w 

For a finite collection X of quadruples that  satisfy (18), let S I ( X )  be the set of mappings 

F E b / t h a t  does not satisfy the transversality condition on unstable cones for X. 

THEOREM 3.22. There exists a countable collection X--{X(I)}~= 1 of quad~ples sat- 

isfying (18), (28) and (29) such that 

(a) IXl contains the subset {(xc, x u ) E R  2 I xc+x~,>0, ~ g ~ x u ~ A g  and xc~<0}; 

(b) IXl is contained in (-2Ag, 2Ag) • (0, 2Ag); 

(c) the subset SI(X')  for any finite subcollection X~cX is shy with respect to the 

measures M s  for s>/r+3 and is a meager subset i n /4  in the sense of Baire's category 

argument. 

On the other hand, we will show the following theorem in w Let ,-q2 be the set of 

mappings FE/4 that  does not satisfy the no flat contact condition. 

THEOREM 3.23. I f  an integer s>/r+3 satisfies the condition (3) for some integer 

3 ~ < r - 2 ,  then the subset 82 is shy with respect to the measure Jt4s. Moreover, 82 is 

contained in a closed nowhere dense subset in /4 ,  provided that r~>19. 

It is easy to check that  the three theorems above imply the main theorems: Consider 

a countable set of quadruples X={X(I )}~I  in Theorem 3.22 and put Xm={X(1)}~= 1 

for m>0 .  Theorem 3.21 implies that  the complement of ((Jm~=~ 81(Xm))US2 in /4 is 

contained in 7r r. Thus the main theorems, Theorems 2.1 and 2.2, restricted to /4  follow 

from Theorems 3.22, 3.23 and Lemma 3.19. As we noted in w this is enough for the 

proof of the main theorems. 

4. Hyperbol ic  physical measures 

In this section, we study hyperbolic physical measures for partially hyperbolic endomor- 

phisms. Throughout this section, we consider a mapping F in /4 that satisfies the no 

fiat contact condition. 

4.1. Physical  measures with  negative central exponent  

In this subsection, we study physical measures whose central Lyapunov exponent is 

negative. 
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LEMMA 4.1. I f  an ergodic probability measure # with negative central Lyapunov 

exponent has an admissible lift, then it is a physical measure. 

Proof. The central Lyapunov exponent of the measure # is bounded away from 

- c o  by Corollary 3.16. From Oseledets's theorem and the assumption that  # has an 

admissible lift, we can find an admissible curve 3' such tha t  almost all points with respect 

to the smooth measure on it are forward Lyapunov regular for #. According to the Pesin 

theory, the so-called Pesin's local stable manifold exists for all such points on 3". These 

local stable manifolds are transversal to 3" and contained in the basin B(#) of #. Further, 

the union of them has positive Lebesgue measure from absolute continuity of Pesin's 

local stable manifolds [18, w Therefore # is a physical measure. [] 

From this lemma and Lemma 3.14, we get the following result: 

COROLLARY 4.2. I f  an F-invariant probability measure It has an admissible lift, it 

has at most countably many ergodic components with negative central Lyapunov exponent, 

each of which is a physical measure and absolutely continuous with respect to #. 

The basin of an ergodic physical measure with negative central Lyapunov exponent 

may have empty  interior, even though we ignore null subsets with respect to the Lebesgue 

measure m.  Nevertheless, we have the following lemmas: 

LEMMA 4.3. For an ergodic physical measure Iz with negative central Lyapunov 

exponent, there is an open subset U with # ( U ) = I  such that, for a Borel finite measure u 

that has an admissible lift, we have u(B(#))> 0 if  and only if  lim supn__+c ~ v o F - n ( u ) >  O. 

In particular, if we assume u to be F-invariant, we have u(B(# ) )>0  if and only if  

.(u)>0. 

Proof. Recall the proof of Lemma 4.1. From absolute continuity of Pesin's local 

stable manifolds, there exists an open neighborhood Uz for/z-almost  every point z such 

that ,  if an admissible curve 3": [0, a ] - + M  with length a > 2  satisfies 3'([1, a - 1 ] ) n  Uz r  

the inverse image 3 '-1(B(#))  has positive Lebesgue measure. Let U be the union of such 

neighborhoods U~. Then we obviously have # ( U ) = I .  If  l imsupn~  ~ uoF-'~(U)>O for a 

Borel finite measure u that  has an admissible lift, we have u (B(# ) )>0  from the choice 

of Uz and Corollary 3.8. Conversely, if we have u (B(#) )>0 ,  then 

lim sup u o F-n (U )  >>. u(B(p) )#(U) > O. 
n -..+ o o  

[] 

LEMMA 4.4. Let #i, i= 1, 2, ..., be a sequence of mutually distinct F-invariant Borel 

probability measures each of which is ergodic and has an admissible lift. I f  #i converges 

to some measure # ~  as i--+oo, we have Xc(z;F)>~O for Iz~-almost every z E M .  
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Proof. From Corollary 3.11, #oo has an admissible lift. If the conclusion of the lemma 

were not true, there should be an ergodic physical measure #~o << poo with negative central 

Lyapunov exponent, from Corollary 4.2. Take the open set U in Lemma 4.3 for #oo.t On 

the one hand, # ~ ( U ) = I  and hence #oo(U)>0. On the other hand, since # ~ r  except 

for one i at most, we should have #~(B(#~))=0 and hence #~(U)---0. This contradicts 

the fact that  #i converges to #oo. [] 

From this lemma and Corollary 3.16, the next corollary follows: 

COROLLARY 4.5. For any negative number X<0, there exist at most finitely many 

ergodic physical measures for F that satisfies Xc(P; F)<~X. 

Finally we show a lemma: 

LEMMA 4.6. Let ~ be a Borel finite measure that is absolutely continuous with re- 

spect to the Lebesgue measure m,  and let # be a limit point of the sequence of measures 
7%--1 x--~n--i r~--i Li=0 ~ o r  , n = l ,  2,. . . .  Then we have either 

(a) Xc(z;F)>~O for #-almost every point z C M ,  or 

(b) there is an ergodic physical measure #1<<# with negative central Lyapunov ex- 

ponent and ~(B(#')) >0. 

In particular, for a physical measure # for F,  we have either (a) or 

(b I) # is ergodic and has negative central Lyapunov exponent. 

Proof. Suppose that  (a) does not hold. Then, from Corollary 4.2, there exists an 

ergodic physical measure #P<<# with negative central Lyapunov exponent. Take the open 

set U in Lemma 4.3 for p'. We have # ' ( U ) = I  and hence #(U)>0.  Thus 

n--1 

lim sup 1 E u ~  >~ #(U) > O. 
n--+oo n 

i = 0  

Although the measure ~ may not have an admissible lift, we can use the approximation 

in Lemma 3.12 to conclude that  u(B(#l))>0 from the property of U. [] 

4.2. Physical  measures wi th  posit ive central exponent  

In this subsection, we investigate physical measures with positive central Lyapunov ex- 

ponent. We shall prove the following three propositions: 

PROPOSITION 4.7. Any physical measure # with positive central Lyapunov exponent 

is ergodic and absolutely continuous with respect to the Lebesgue measure m.  Moreover, 

the basin B(#) is an open set modulo Lebesgue null subsets. 
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PROPOSITION 4.8. For any positive number x >O, there exist at most finitelymany 

ergodic physical measures for F that satisfies Xc(#; F)>~X. 

Let B+(F) (resp. B- (F) )  be the union of the basins of ergodic physical measures 

with positive (resp. negative) central Lyapunov exponent. 

PROPOSITION 4.9. Suppose that a Borel probability measure ~ on M is absolutely 

continuous with respect to the Lebesgue measure m and supported on the complement of 

B - ( F )  t213 + (F). If  L,~ is a weak limit point of the sequence of measures n -1 X-'n-1 z_~j=0 I]~ F-J,  
n = l ,  2, ..., then we have Xc(Z; F)=O for ~,~-almost every point z. 

We derive the propositions above from the following single proposition: Let X(i) ,  

i=1,2,..., be Borel subsets in M with positive Lebesgue measure. Let rex(i)  be the 

normalization of the restriction of the Lebesgue measure m to X(i) .  For each i ~> 1, let 
n--1  Pi,~ be a weak limit point of the sequence n -1 ~-~j=o mx(i)  ~ n = l , 2 ,  .... Assume 

that  the sequence pi ,~ converges weakly to some measure p ~  as i--+c~. Also assume 

that  Xc(P~; F)  >0 and that  Xc(Z; F) ~>0, p~-a lmost  everywhere. 

PROPOSITION 4.10. In the situation as above, there exist an ergodic physical mea- 

sure vi,~ and an open disk Di in M for sujfficiently large i such that 

(a) vi,~<<#i,~ and v~,~<<m; 

(b) X~(-i,~; E)  >0; 

(c) the radius of Di is positive and independent of i; 

(d) v i ,~ (Di )>0  and Dic13(~i,~) modulo Lebesgue null subsets. 

Below we prove Propositions 4.7, 4.8 and 4.9 using Proposition 4.10. 

Proof of Proposition 4.7. Let # be a physical measure such that  Xr F)>0.  From 

Lemma 4.6, we have X~(z; F) >~0 for p-almost every point z. Apply Proposition 4.10 to the 

situation where X(i):=13(p) and Pi,~ = P ~  = #  for all i~> 1. And let L'i,r162 and Di be those 

in the corresponding conclusion, which we can assume to be independent of i. Consider 

the open set V =  U~-0 F-n(Di)  . Then 13(L,i,~)----V modulo Lebesgue null subsets. Since 

~i,~(V)>>.v~,~(Di)>O and since ~i,~<<P, we have p (V )>0 .  Hence 

n--1  

mt3(~)(13(ui,~)) = lim -1 E mB(,) ~ >~#(Y) >0.  
n ~  n 

i = 0  

This implies p--vi ,~ .  We have proved Proposition 4.7. [] 

Proof of Proposition 4.8. Suppose that  there exist infinitely many ergodic physical 

measures Pi, i--1, 2, ..., that  satisfy )/~(Pi; F )  ~>X>0. By taking a subsequence, we assume 

that  Pi converges to an invariant probability measure p ~  as i-+oc. Then we have 
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Xc(#cr F)~>X>0 from Corollaries 3.11 and 3.16. From Lemma 4.4, we have Xc(z; F)>~O 

for #oc-almost every point z. Thus we can apply Proposition 4.10 to the situation where 

X(i):=13(#i) and # i , ~ = p i  for i~>1. Since the #i 's are ergodic, the disks Di in the 

corresponding conclusion are contained in B(#i) modulo Lebesgue null subsets and hence 

mutually disjoint. But this is impossible because the radii of the disks Di are positive 

and independent of i. [] 

Proof of Proposition 4.9. Let X = M \ ( B - ( F ) U B + ( F ) ) .  For the proof of the propo- 

sition, it is enough to show the claim in the case when m ( X ) > 0  and v = m x .  Let voo be 
n--1  a weak limit point of the sequence n -1 ~-~j=0 ~~ From Lemma 4.6, Xc(Z; F ) ) O  for 

u~-almost every zEM.  Thus we have only to prove Xc(vo~; F ) 4 0 .  Suppose that  we have 

Xc(Uc~; F ) > 0 .  Then we can apply Proposition 4.10 to the situation where X( i ) :=X  for 

all i ) 1 .  Let Yi,~<<uor and Di be those in the corresponding conclusion, which we can 

assume to be independent of i. We should have 

~(B(vi,o~))/> lim sup u(F-n(ni )  ) >1 ~'oo(Di) > O. 
n--+o0 

But this contradicts the definition of X because yi,o~ is an ergodic physical measure with 

positive central Lyapunov exponent. [] 

We proceed to the proof of Proposition 4.10. For positive numbers X, a, k and a 

positive integer n, we define a closed subset F(X, a, k, n; F )  as the set of all points z E M  
such that,  for any O~rn<n and any vCSU(Fm(z)), 

(rl) In*Fn-m(v)l>~exp(x(n-m)-k); 
(F2) ID*F(v)l~>exp(-e(n-m)-k). 

For the points in F(X, e, k, n; F) ,  we have the following estimates on distortion: 

LEMMA 4.11. For positive numbers x>O, 0 < r  and k>0,  there exists a posi- 

tive constant a=a(X, ~, k ), which depends only on X, e and k besides the objects that we 

fixed at the end of w such that, for any n > 0  and zEF(x ,~ ,  k,n; F), the restriction 

of F n to some neighborhood V of z is a diffeomorphism onto the disk B(Fn(z),  a) and 

we have 

(1) [ l (DFn) - l l l - l>C~lexp(xn-k  ) for w e Y ;  

(2) I log ]det OF n ] - log I det DF~, I ] < 1 for w, w'e Y.  

Proof. Fix v E S t ( z )  and put 5(i)=]D*Fn-i(DFi(v))[ -1 for O<i<n. Let On be the 

disk in the tangent space TF%z)M with center at the origin and radius a. We define 

the regions Di CTF~(z)M for O<~i<n so that  DF(Di) is the 5(i)a-neighborhood of Di+l. 
Then we have 

n--1  
n - - i  --1 diamDi  < [[(DF~(z)) [ [a+  E ~[DF j+l-i~-lFi(z ) / 5( j )a  

j=i 
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for O<~i<n. Using the relation (7), we can check that  

II -111 5(J) < Co ID*F(DF  

Thus, from the conditions (F1) and (F2), we get 

diam Di <~ Cg ( n -  i + 1) exp (~ ( n -  i) + k) 5(i) ~ <. C o ( n -  i + 1) e x p ( - ( X -  e ) ( n -  i) + 2k) a. 

From the condition (F2) and the relation (7), we have 

IIDF;  z) II -1/> C;  1 e x p ( - e ( n - i ) - k ) .  

For v C Di, we have the estimates 

I I exPF~+~ (~)o F o exPF ~ (z) (V) -- DF F, (z)(v)ll ~ Cg (diam Di) 2 

< Cgn2exp(-(X-2e)(n-i)+3k)5(i)c~ 2 

and 

IID(exPFl+l (~)oFo exPF~(~)) v -DFF,(~)II <~ Cg diam Di 

<~ Cgn exp ( - (X -e ) (n - i )+2k )  c~. 

Hence, if we take sufficiently small c~ depending only on X, ~, k and C 9, the restriction of F 

to expF~(z ) (Di) is a diffeomorphism onto a neighborhood of the subset expf~+l (z)(Di+l) 

for O<~i<n. This implies the first claim of the lemma. We can check, by straightforward 

estimates, that  the other claims, (1) and (2), hold if we take sufficiently small c~. [] 

From now to the end of this section, we consider the situation in Proposition 4.10. 

For each i, we take a subsequence n(j;i)-+ co (j--+ co) such that  the sequence of measures 

n(j;i) -1 ~ ( j ~ ) - i  mx(i)oF_,~ converges to tti,~ as y-+co. The following is the key 

lemma in the proof of Proposition 4.10: 

LEMMA 4.12. There exist X>0, 0<c<~0X and k>0  such that 

1 n(j;i)-I 
l i m i n f - -  E mx( i ) (F(x ,e ,k ,m;F) )>O 
j--*~ n(j;i)  m=O 

for sufficiently large i. (31) 

The point of this lemma is that  we can take X, c and k uniformly for sufficiently 

large i. Before proving this lemma, we finish the proof of Proposition 4.10 assuming it. 
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Proof of Proposition 4.10. Let the constants X, ~ and k be those in Lemma 4.12 and 

a = a ( X ,  E, k, F )  that  in Lemma 4.11. We consider a large integer i for which (31) holds. 

Then we can take a compact subset KcX(i)  and a point zoEM such that  

~(j;i)-i 

lim inf 1 j-+~ n(j;i--~ E (mlgnr(X,~,k,m;F)~189 (~))>0" (32) 
m~-O 

Let :Dm be the union of the connected components of F - m ( B ( z 0 ,  �89 that  meet 

K N F ( x ,  s, k, rn; F) .  Then, on each of the connected components of Din, the mapping F ~ 

is a diffeomorphism onto B(zo,  �89 and satisfies the estimates in Lemma 4.11. Let u~ 

be a limit point of the sequence {n(j;i) -1E~=J~)-lm oF -m~~ Then we have "Din J ' j= l"  

~ < m ( X ( i ) ) # ~ , ~  and ~'i<<m, and, further, 

e_l-,(B(z0, �89 
m(B (z0, �89 e m(B(z0, �89 

We can check that  ~i is ergodic and Xc(z;F)>O for ~i-almost every point z. (See 

the remark below.) Hence there is an ergodic component v~,~ of #i ,~ such that  v~<< 

Yi,~<<#i,~. The measure v~,~ and the disk D~=B(z0,  �89 satisfy the conditions in 

Proposition 4.10. [] 

Remark. Actually, it is not completely simple to prove that  the measure v~ in the 

proof above is ergodic and that  Xc(z;F)>O for ~-almost  every point z. But there are 

a few standard ways for it. For example, we can argue as follows: Consider the inverse 

limit space of F,  

MR = {{zj}~ I zj E M and F(zj) = zj+l}, 

and the projection ~:/~rF--+M defined by ~({z j}~  Let t~,~ be the natural 

extension of #i ,~.  We can check that  the part  Pi of ~i ,~ that  corresponds to ~i is 

supported on a union of local unstable manifolds, each of which is projected onto the 

disk B (z0, 1(~) by ~. Further, the conditional measures on those local unstable manifolds 

given by P~ are absolutely continuous with respect to the smooth measures on them. For 

any continuous function ~ on M, the backward time average of ~o~ is constant on each 

of the local unstable manifolds. From the ergodic theorem, the forward time average 

coincides with the backward time average almost everywhere with respect to Pi<<Pi,~, 

and is the pullback of a function on M by ~r. Thus it must be constant Pi-almost 

everywhere. This implies that  ~i is ergodic. The positivity of the central Lyapunov 

exponent is obtained by considering Lyapunov exponents with respect to the backward 

iteration. 
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In the remaining part of this subsection, we prove Lemma 4.12. To begin with, we 

fix several constants: Fix Xo>0 and 0 < s o < l  such that  

~({zeMlxc(z) > :~o}) > so. (33) 

Also fix a positive number ao such that  0<ao < 10-4soXo. Recall that  we are considering 

a mapping F E U  that  satisfies the no flat contact condition. From Lemma 3.15, we can 

fix a large positive constant ho > Xo such that  

1 
min{O, L(z; F ) + h o }  d(#oF-n)(z) > - ~  sos 

for any measure # in A.h4([1, co)) and n>~no(F), where L(z; F) is the function defined 

by (17) and no(F) is the constant in the definition of the no fiat contact condition. From 

(33) and the assumption that  Xc(Z; F)>10 for #or every z, we can fix a constant 

ko > h0 such that  

/.too ({z e M I ] D*Fn ( v ) l )  e x p ( x o n -  ko) for all v E S u (z) and n ) 0}) > so, 

#~r ({z E M llD*Fn(v)l ~ e x p ( - e o n - k o )  for all v E SU(z) and n ) 0}) > 1 -  - -  
80s  

10ho" 

Finally we fix a positive integer m0 that  satisfies s > 10k0. 

Next we introduce the following subsets of M: 

A = {z E M I ID*Fm(v)[ > exp(xom-2ko) for all v E SU(z) and 0 < m E too}, 

B = {z E M I I D*Fm (v)I > e x p ( - s  for all v E S" (z) and 0 ~< m ~< mo} D A, 

C = M \ B ,  

D = {z E C I L(z; F) <. - ho}  C C. 

Note that  A and B are open subsets. From the assumption that  the sequence #i ,~ 

converges to # ~  as i - + ~ ,  we have 

n(j ; i ) - - I  

lira inf 1 j - ~  n(j;i-----) E mx(i) (F-m(A)) >so,  (34) 
m = 0  

n( j ; i ) - - i  
1 80~0 

lim inf (35) j - ~  n(j;i----~ E mx(i)(F-m(B)l>l-loh---- ~ 
m~O 

for sufficiently large i. 
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We fix a large integer i for which (34) and (35) hold. Using Lemma 3.12, we can 

find a small number bo>0 and a probability measure #o in .AA4([bo, co)) such that 

Irnx(i)-#ot < ~s0, (36) 
n(y;i)-i 

lim inf 1 j~o~ n(j;i-----) E #~ >s~ (37) 
m~O 

n(j;i)--i  
lim inf 1 Sor (38) j - ~  n(j;i---~ E #~ > 1 -  lOh---o' 

m = O  

By modifying the measure #o slightly if necessary, we can assume that 

no(F) 

E / m i n { 0 ,  L(Fm(z); F ) + h 0 }  d#o > - c o  
m ~ 0  d 

in addition. Then, from Corollary 3.8 and the choice of ho, we also have 

n(j;i)--i  

liminfy__+~ --n(j;1 i) fmin{O,L(Fm(z);F)+ho}d.o>  ___s~176 (39) 

For zEM and integers m<n, let Az(rn, n), B~(rn, n), C~(m, n) and D~(rn, n), be the 

set of integers m~q<n for which Fq(z) belongs to A, B, C and D, respectively. Then 

we have the following result: 

LEMMA 4.13. A point zEM belongs to r(lso)io,4~o,6ko,n;F) for n > 0  if 
(A) 4r ~so(n -m)  for any 0 < r e < n ;  

(C) ~Cz(m,n)<eo(n-m)/ho for any 0~<m<n; 

(D) ~qEDz(m,,~) min{0, L(Fq(z); F)+ho}>~-eo(n-m) for any O<m<n. 

Proof. Consider a point zEM and an integer n that satisfy the conditions (A), (C) 

and (D). Let O<.m<n and I={m,m+l , . . . , n -1} .  We call a set of mo consecutive 

integers {q, q+  1, ..., q+mo- 1} an A-interval (resp. a B-interval) if its smallest element q 

belongs to Az (m, n) (resp. Bz (m, n)). If {q, q + 1, ..., q+  mo - 1 } is an A-interval, we have 

t oo - -1  

E log ID*F(DFJ(v))] >1 Xomo-2ko > (Xo-eo)mo+2ko (40) 
j : 0  

for vESU(Fq(z)), where the second inequality follows from the choice of mo. Similarly, 

if {q ,q+ l ,  . . . , q + m o - 1 }  is a B-interval, we have 

vn0-- I  

E log I D*F(DF j (v)) I >~ -eomo - 2ko > -2eomo (41) 
j = 0  
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for veSU(Fq(z)). 

Take mutually disjoint A-intervals that  cover Az(m, n), and let IA be the union of 

them. Then take mutually disjoint B-intervals that  cover Bz(m,n) \ IA,  and let IB be 

the union of them. We can take the B-intervals in IB so that  their smallest elements are 

not contained in IA. Note that  IA and IB are not necessarily contained in I. 

Consider an arbitrary vector veS~(Fm(z)).  Then DFq-m(v) belongs to SU(Fq(z)) 

for q~m. From (40) and the fact that  all the A-intervals in IA but one is contained in I,  

we have 

log ID*F(DFq-~(v) )[ >1 (Xo--eo) # ( I A N I ) +  2ko(#IA/mo--1)--2ko. 
qEInnI 

Each A-interval in IA meets at most one B-interval in IB. Thus the number of B-intervals 

in IB whose intersection with I \ I A  has cardinality less than m0 is at most # I A / m o + l .  

From this and (41), we obtain 

log [D*F(DFq-m(v))I >1 --2EO#(Isn(I \ IA))--2ko(#IAImo+ l). 
qEIBN(I\IA) 

Since the complement of IAUIB in I is contained in Cz(m,n), the condition (F1) in 

the definition of the set F ( ~ s 0 x 0 ,  4e0, 6k0, n; F )  follows from the two inequalities above, 

the assumptions (A), (C) and (D), and the choice of e0. If m belongs to Bz(m,n),  the 

condition (F2) obviously holds. Otherwise, the condition (F2) follows from (D) because 

we have s o ( n - m ) l h o ~ # C z ( m ,  n)~>l in that  case from (C). [] 

In order to prove Lemma 4.12, we see how often the assumptions (A), (C) and (D) 

in the lemma above hold. For this purpose, we prepare the following elementary lemma, 

which we shall use again in w 

LEMMA 4.14. Let # be a measure on a measurable space X and era, m = 0 ,  1,..., 

be a sequence of non-negative-valued integrable functions on X.  For a positive number 

a > 0  and an integer p>~O, let Yp(a) be the set of points y E X  such that 

p--1 

l=q 

for some O <<. q < p. 

(So Yo(a)=O.) Then, for any n >0 ,  

< < 
~ ,~0  'm~O ~'r~O 
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Proof. For each point zCM, we define integers 

n = qo(z) >~ Pl (z) > at (z) >~ P2 (z) > q2(z) ~... ~ Pj(z) > qj(z) >~ 0 

in the following inductive manner: Suppose that qj(z) has been defined. If there exist 

integers p<qj(z) such that ZEYp(~), let Pj+l(z) be the maximum of these integers and 

qj+l(z) the smallest integer q<pj+~ (z) such that 
pj+l(z)-i 

E ~)l(Z) ~ o~(Pj+l(z)--q). (42) 
l=q 

Otherwise we put j (z)=j and finish the definition. Consider the subsets 

Z,~= {zEMI qj(z) <m <pj(z ) for some l ~ j  <.j(z)} 

for O<m<n. Then we have Ym+I(~)cZm. From (42), we obtain 

fern du > u(Zm) > #(Ym(a)) = a #(Ym(a)). [] 
m=O m = 0  m = l  m=O 

Now we can complete the proof of Lemma 4.12. 

Proof of Lemma 4.12. For n~>0, let An, Cn and /9~ be the set of points zCM 
for which the condition (A), (C) and (D) does not hold, respectively. First, apply 

Lemma 4.14 to the case where a = l - l s 0 ,  n=n(j; i) and Cm is the indicator function 

of the complement of F-m(A). Then, from (37), we obtain 
n( j ; i ) - - I  n ( j ; i ) - - I  

l - s 0  9 
1 1 1 E #~ l_~oS-------~ ~ < 1 - ~  s~ n(j;i) m=oE #o(A,~(z))~ 1 - ~ s 0  n(j;i) m=o 

for sufficiently large j .  Second, apply Lemma 4.14 to the case where a--g0/h0, n=n(j; i) 
and r is the indicator function of the set F-m(C)=M\F-m(B) .  Then, from (38), we 

obtain 
n(j;i)-i n(j;i)-i 

1 h0 1 1 
n(j;i) E #0(Cm(z)) ~< E #~ <'-~s~ 

m=O ~o n(j;i) m=o 
for sufficiently large j. Third, apply Lemma 4.14 to the case where a=So, n=n(j; i) and 

r  min{0, L(Fm(z); F)+h0}.  Then, from (39), we obtain 
n ( j ; i ) - - i  1 1 1 ,~(j#)-lf  1 

n(j;i) E #o(/9,~(z))~ - -  E /min{O'L(Fm(z);F)+h~176176 
m=o ~o n(j;i) m=o -- 

for sufficiently large j .  From the three inequalities above and (36), we conclude that 

1 ~(j;i)-i 6 
n(j;i) E mx(i)( f tmUCmUL)m)<l--~ sO 

m=O 

for sufficiently large j. Since the complement of-4m U Cm U/gin is contained in the subset 

F ( l s o x o ,  4Eo,6ko,m; F)  from Lemma 4.13, this implies Lemma 4.12. [] 
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5. S o m e  e s t i m a t e s  o n  d i s t o r t i o n  

In this section, we give some basic estimates on distortion of the iterates of mappings 

in L/. The estimates are straightforward and may look rather tedious. But we need to 

check that  some constants in the estimates can be taken uniformly for the mappings in/4. 

This is important  especially in our argument in w where we consider perturbations of 

mappings in L/. 
- -  - + - + Let )C-{Xc, )G, X~, X~} be a quadruple satisfying (18), (28) and Xc-+X~ >0, and let 

e > 0 be a small positive number satisfying 

e < 10 -3 min{xc +X~, IXcl, X + -X~,  ~g}. (43) 

In the argument below, we will take several constants that  depend only on X and e besides 

the integer r and the objects that  we have already fixed in w In order to distinguish 

such constants, we will use symbols with subscript e for them. Also we will use a generic 

symbol C~ for large positive constants of this kind. The usage of this notation is the 

same as the one introduced in w The following lemma is the main ingredient of this 

section: 

LEMMA 5.1. There exist positive constants 0 < p~ < 1, x~ > 1 and xg > 1 such that the 

following claim holds for any FEb[, k>0,  n~> 1, z0EA(x, ~, k, n; F)  and 0<Q~<p0, where 

-a~n-2k �9 (44) 60 :-- p~e mln min ID*FJ-i(v)l >1 Pc exp((xc - 5 c ) n - 3 k ) .  
O~i~j~n vES~(Fi(zo)) 

For every mapping GECT(M, M)  that satisfies de1 (F, G)<~6, we can take a point z(G) 

and a neighborhood Ve(G)~z(G) in a unique manner so that 

(i) z(G) depends on G continuously and z(F)=zo; 

(ii) Gn(z(G)) -Fn(zo) ;  

(iii) the restriction of G '~ to Vo(G) is a diffeomorphism onto B(Fn(z0) ,  P)- 

Further it holds that 

(iv) diana Ve(G) <xg6  e x p ( - x ~ n + k ) ;  

(v) B(z(C), 
(vi) Ve(G) cA()/ ,  ~, k+  1, n; F) ;  

(vii) s DFn(E~(zo)))<~ee2kp for any point weVe(G); 

(viii) any admissible curve in B(z0, ~ -1 )  meets Ve(F) in a single curve. 

Proof. First of all, notice that  the inequality in (44) follows from the assumption 

z0EA(x,~, k ,n;F) .  We will give the conditions on the choice of the constants p~, x~ 

and xg in the course of the argument below. For O~i~n,  we put ~(i)=Fi(zo) and 

6exp (e (n - i )+k )  
= 

mini~<l~<~ min.es~(r ]D*Ft-i(v)]" 
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Then we have 

< oexp(~(n-i)+k) <~ 5(i) <~ Q~ e x p ( - 3 E n - k )  for 0 < i ~< n. (45) 

Using the relation (7), we can see that 

5( j )  minj~<l~<n min, es~ (r I D *Fl-i (v)l 
5(i) <~exp(-s(J-i)) : 

mmi~<t~<n minves~(r ID*F z-j (v)l (46) 

~< Cg e x p ( - r  - i))II  ( D F ~ )  -1 [I--1 

for O<.i<~j<.n, and 

5(i+1) = exp( -e )  min{1, min,+l~<l~<n minves~(r IO*FZ-~(v)l} 
5(i) mini+l<.l<<.n minves~(r ID *Fz-i-1 (v)[ (47) 

C g  1 exp(-c)N (DF~(i)) -1 I1-1 

for O <~ i <<. n. 
We put Dn=B(O,Q)cTr and define the region D~cTr for O<~i<n in- 

ductively so that  DFr is the 25(i+l)-neighborhood of D~+~cTr Put  

Bi=expr 0 (D~). Then 

n - - i  --i d i a m B i = d i a m D i  <~ 2OII(DF~(i) ) tl+ 45(J)It(DF~ir 
j=i+l (48) 

< CeS(i) <~ Ceoe e x p ( - 3 e n - k )  

for O<~i<~n, where the second inequality follows from (46) and the third from (45). Since 

4(0) =z0 cA(x,  s, k, n; F) ,  we have 

]1 (DFr l ll-I >1 C~1 e x p ( - s ( n -  i) - k) for 0 ~< i ~< n (49) 

by (7). Therefore, if we take the constant ~ sufficiently small, we can obtain 

IIDG~ -DFr <~ dcl (F, G) + C a diam Bi < II (DFr -1 I[ -~ 

and 

d(G(w), expi(i+l)ODFr <~ dcl(F, G)+Cg(diamBi) 2 < 25(i+1) 

for 0~<i<n, wEB(4(i),diamB~) and any mapping GECr(M, M) satisfying dcl(F, G)<. 
Q~< Q0, where we have used the relation 

(diam B~) 2 <~ C~5( i) 2 <~ C~Q~ exp( -2En)5( i+  1), 
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which follows from (45), (47) and (49). These two inequalities imply that  the mapping G 

restricted to B(~(i), diam B.i) DBi is a diffeomorphism and maps Bi onto a neighborhood 

of Bi+l for O<.i<n. Put Vo(G)=Ni~=o G-i(Bi). Then the restriction of G '~ to Vo(G ) is 

a diffeomorphism onto Bn=B(F~(zo), 0). Let z(G) be the unique point in Vo(G ) that  

G n brings to Fn(zo). Clearly z(G) and Vo(G ) satisfy the conditions (i), (ii) and (iii). 

We show the conditions (iv)-(viii). Using (6) and (7), we can check that  (iv) and 

(v) follow from (vi). We prove (vi) and (vii). Let GEL/ be a mapping that  satisfies 

gel(F, G)<<.O<<.Oo and w a point in Vo(G ). We put w(i)=Gi(w) for O<.i<.n. Consider 

an integer O<<.i<~n and tangent vectors vES~(r and uES~(w(i)). For O<~m<~n-i, we 

have 

A( DG~m(i) (u), DF~i ) (v) ) <~ Z (DF~(m) (u), DF~( m ) (v) ) 
m 

+ Z Z( DF~iTi+-'i) ( DGJw(:) (u) )' DF~i+~i) ( DGJw(i) (u) ) )" 
j = l  

Remark. In the expression above, we identified tangent vectors with their parallel 

translations and abused the notation slightly. In fact, DF~i+ j) (DGJ(i)(u)) should have 

been written nF~+~)(T(DG~(i)(u))), where T is the parallel translation from w(i+j) to 

~(i+j). We continue to use such identifications below. 

Since w( i+ j -  1) EBi+j-1 and DGJ-(~)(u) ESU(w(i+j- 1)), the parallel translation 

of DGJw-(:)(u) to ~ ( i + j - 1 )  does not belong to SC(~(i+j-1)), provided that  we take 

sufficiently small 0~. Also we have 

/ (DFr 1)(DG~())(u)), DG~(i) (u) ) <~ C 9 (diam Bi+j-1 + dc~ ( F, G) ) 

for O<.j<.n-i. Using these consequences and (4) in the inequality above, we obtain 

ID*Fm(v)[ A(u,v) DF (% < D.Fm( ) 

+Cg ~ [D*Fm-3(DFJ(v))[ (diamBi+~_l+O) 
D.Fm-J(DFJ(v)) 

j = l  (50)  

<~ C a exp(-~gm) Z(u, v) 

m--1 

+ Cg Z exp ( -Ag(m- j ) ) (d i am Bi+j-1 +0). 
j = l  

In order to prove the condition (vii), we consider (50) in the case where i=0,  m=n 
and v and u are unit tangent vectors in E~(z0) and E~(w), respectively. In this case, we 



PHYSICAL MEASURES FOR PARTIALLY HYPERBOLIC SURFACE ENDOMORPHISMS 75  

have 

ID*Fn-Y(DFJ(v))I [D*Fn-J(DF3(v))I C~5( j -  1) 
D.Fn_J(DFJ(v) ) (diamBj_l+0) ~< D.Fn_J(DFJ(v)) 

<~ Csoexp(e(n-j)+k) 

ID*Fn-*(DF*(v))[ ID*F(DF3-~(v))I-~ 
X m a x  j~l~n D.Fn-Z(DFl(v)) D.F~-J(DFJ(v)) 

~< Ce0 exp(-  (Ag - 2 e ) ( n - j )  +2k) 

for l<.j<~n, where we used (45) and (48) in the first inequality, (7) in the second, and 

the assumption zo EA(x, ~, k, n; F)  in the third. Likewise, using the estimate Z(v, u) 

Cgd(zo, w) <~ Cg diam B0, we can show that 

ID*F'~(v)I ID*Fn(v)l /(u, v) <. CgdiamBo ~ C~t) exp(-(Ag -2r 2k). 
D.Fn(v) D.F~(v) 

Putting these inequalities in (50), we obtain the condition (vii). 

Next we prove the condition (vi). Consider an integer O<~i<~n and a vector uC 

S~(w(i)). Since w(i) belongs to Bi, there is a vector veS~(~(i)) such that / ( u , v ) <  

Cg diam Bi. From this, (48) and (50), we obtain 

ID*G(DG~(o (v) ) -  D*F(DF~( 0 (u) )] <. Cg (Idet DGw(i+z)-det DFr 

+ ID.G(DG~(i)(v))-D,F(DF~(~)(u))I) 

<~ Cg (de 1 (F, G) +diam Bi+l 

+ /(DG~( 0 (v), OFt( 0 (u))) 

<~ Cge~ e x p ( - 3 ~ n -  k) 

for O<~l<~n-i-1. Thus, using (49), we can obtain 

D.CJ_~(v) j-~-I D*G(DG~(~)(v)) 
log D.FJ_i(u ) < E l o g  <1 forO<~i~j~n, 

t=o D*F(DF~(i)(u)) 
(51) 

provided that we take the constant 0~ sufficiently small. Likewise, we can get 

D.GJ-i(v) 
log D.FJ_i(u ) <1 forO<.i<.j<.n. 

The condition (vi) follows from these two inequalities and the assumption that z0 belongs 

to A(X, ~, n, k; F). 
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Finally we check the condition (viii). Let 7 be an admissible curve in B(z0, x~-l). 

From the argument in w the curvature of F**7 for O<~i<~n is bounded by some con- 

stant Cg, even though F.i7 for O<~i~ng may not be admissible. Thus we can take the 

constant x 9 so large that  the following holds: the intersection of any arc ~ in F.i7 with 

length less than 4Agxg 1 with any ball with diameter not larger than 2Xg 1 is a single 

subarc of ~ with length less than 4x~ -1. The diameter of Bi is bounded by 2x~ -1 provided 

that  we take the constant Q~ sufficiently small. Thus, by induction on O<~j<~n, we can 

check that  "Tj : = T n  (N~=o F- I (B(~( / ) ,  diam Bl))) consists of a single arc. We obtain the 

condition (viii) as the case j=n .  [] 

Note that  the claim of Lemma 5.1 remains true even if we get the constant Q~ smaller 

and x~ and xg larger. By letting the constant 0~ be smaller and x~ larger if necessary, 

we can show the following claim in addition: 

ADDENDUM TO LEMMA 5.1. Suppose that FELt, n>~l and k>0.  Then there exists 

a neighborhood W(z) for each point zEA(x,  6, k, n; F) such that 

(ix) the restriction of F n to W(z) is a diffeomorphism onto the image. Further, 

if W(z)AW(w)TLO for some wEA(x , r  then F n is injective on the union 

W(z)uw(w). 
(x) m(W(z ) )  >x~ -1 exp( - (Xu + + m a x { x  +, 0} +7~)n-6k) .  

Proof. We consider a point zoEA(x,~, k, n; F )  and continue to use the notation in 

Lemma 5.1 and its proof. Let 7 be the curve in Veo(F ) that  F = maps onto the segment 

{~(n)+teC(~(n))lltl<Qo}CB(~(n),po), where eC(.) is a unit vector in EC(.).  From 

backward invariance of the central cones S~( - ), the tangent vectors of ~/is contained in 

the central cones, provided that  we take a sufficiently small 0E. From (51) and (7), the 

length of F.i7 satisfies 

]F.iTI < CgQo II ( DF~(~i) -1 ]1 < CgQ~ e x p ( - 4 ~ n - 2 k )  

and, for the case i=O, 

~> CglQr e x p ( -  max{x +, O}n-hen-4k ) .  

Next consider the family of parallel segments 

7y(t) =y+teU(zo), Itl < Qeexp(-(X+ +2e)n-2k)  

parameterized by the points yET, where e~(zo) is a unit vector in EU(z0). We define 

W(zo) as the region that  this family of segments sweeps. From the estimate on the 
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length of ~f above, we can see that  W(zo) satisfies the condition (x), provided that  we 

take a sufficiently large constant x~. Since the mapping F is uniformly expanding in the 

unstable directions, we can show that  

i [F~/y] • CgQ~exp(-(X+ +2~)n-2k)D.F~(eU(zo)) < Cg~exp(-cn-k) 

for O<~i<~n. Hence the diameter of F~(W(zo)) is bounded by 

i IF~]  +2 max [Fi~/y I < Cg~ e x p ( - c n -  k). 
yC"/ 

If W(zo)NW(w)#;~ for some point weA(x,E,n,k;F), the diameter of the image 

Fi(W(zo)UW(w)) is bounded by 4CgQ~exp(-r On the other hand, the distance 

from ~(i) to the critical set C(F) is not less than C~ -1 e x p ( - r  from (49). Thus, if 

we take a sufficiently small constant Q~, the restrictions of F to F~(W(zo)UW(w)) for 

0 ~ i  < n are diffeomorphisms, and hence (ix) holds. [] 

The condition (ix) implies that,  if two points z and w in A(x,c,k,n;F) satisfy 

Fn(z):Fn(w), then the neighborhoods W(z) and W(w) are disjoint. Thus we obtain 

the following corollary from the condition (x): 

COROLLARY 5.2. For any Fclg, n>~l, k >0  and CEM, we have 

~(A(x ,  ~, k, n; F)NF-n(~)) < x~ exp((x  + +max()/+,  0} +7~)n+6k) .  

6. P h y s i c a l  m e a s u r e s  w i t h  n e u t r a l  c e n t r a l  L y a p u n o v  exponent  

In this section, we study physical measures with nearly neutral central Lyapunov expo- 

nent. The goal is the proof of Theorem 3.21, which will be carried out in the last three 

subsections. 

6.1. A n  i l l u s t r a t i o n  o f  t h e  idea  o f  the proof 

The argument in this section is based on a new idea tha t  relates the transversMity 

condition on unstable cones to absolute continuity of physical measures with nearly 

neutral central Lyapunov exponent. In this subsection, we illustrate the idea in a simple 

example. 

As a simplified model of a partially hyperbolic endomorphism, we consider the skew 

product F: [0, 1) • R -~  [0, 1) • R defined by 

F(x,y)=(dx, aix+biy+ci) on [i/d,(i+l)/d)xR, i = 0 , 1 , 2 , . . . , d - 1 ,  
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where d>~2 is an integer and ai, bi and c~ are real numbers. And we assume that 

(1) Ibil<d for 0 ~ i < d ,  so that F is partially hyperbolic with EC=(O/Oy}; 
(2) Ibi]>d -1 for O<.i<d, so that F is volume-expanding; 

d - 1  (3) ~i=o log Ibil <0, so that most of the orbits are bounded. 

Put  O=maxl<i<~d lail/(d-lbi[) and bmax=maxl<i<d Ibil. Then F brings a segment with 

slope less than 0 in absolute value to a union of segments with the same property. Assume 

in addition that 

lai-ai, I >30bmax for any i~i ' .  (52) 

This is a much simplified analogue of the transversality condition on unstable cones. 

Indeed, if l~ is a segment in [i~/d, (i~ + 1)/d)•  R for a = l ,  2, and if their slopes are 

bounded by 0 in absolute value, then (52) implies that the difference between the slopes 

of their images under the mapping F is larger than Obm~x/d, provided i1~i2. 
We prove the existence of an absolutely continuous invariant measure for F with 

negative central Lyapunov exponent. First of all, observe the following fact: if Lebesgue- 

integrable functions r and r on [0, 1] x R take constant values on lines with slopes kl 

and k2, respectively, or, in other words, satisfy r y )=r  y-k ix)  for 0~<x~< 1 and 

y E R ,  then we have, with y~=y-klx, 

(~)1, ~)2) L 2 ~-- / ~)1 (X, y) r (x, y) dx dy 

/ r  (0, y') r y ' +  (kl -k2)x) dx dy' 

~< Ikl -k21-1 rlr IlL' 11r IlL1 

provided k ick2 .  Let r be an L2-function on [0, 1] x R  and suppose that it is the 

sum of non-negative functions Cj (y), j = 1, 2, ..., m, that  take constant values on lines with 

slopes kj with Ikjl<0, respectively. Let PF  and Pi, O<~i<d, be the Perron-Frobenius 

operator associated to F and its restriction to [i/d, ( i+l) /d)xR,  respectively, so that 
x--.d-1 F=?__.i=0 Pi. By using the transversality condition (52) and the fact that we observed 

above, we can obtain 

d 1 d 
IIPFr = ~ IlPir  +~--~ (P ie ,  P~,r ~< dmini  [bil 1[r + O--b~m~x 11r (53) 

i=0 ir 

Remark. We can regard this inequality as an analogue of the so-called Lasota-Yorke 

inequality. 

Note that the coefficient lid mini ]bi[ is smaller than 1 by assumption. The Perron-  

Frobenius operator PF preserves the LLnorm of non-negative functions and is not dis- 
d - 1  sipative because of the assumption ~-~.i=o log ]bi]<0. Since the images P ~ r  again satisfy 
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the condition that  we assumed for r we can apply the inequality (53) repeatedly and 

see that  P ~ r  n = l ,  2, ..., are uniformly bounded with respect to the L2-norm. Thus we 

can find a non-trivial fixed point of 79F in L2([0, 1] •  as an L2-weak limit point of the 
sequence n -1 x - ~ n - 1  " O m  ~/, . . . .  A~m=O r F  W, n = l ,  2, The measure # having this fixed point as density 

is an absolutely continuous invariant measure for F,  whose central Lyapunov exponent 

is d -1 ~--~d=l log ]bi] <0. 
d In the argument above, we used the assumption ~ i = l l o g l b i l < 0  only to ensure 

that  the Perron-Frobenius operator P is not dissipative. So, if we consider mappings 

on compact surfaces, the same argument should be valid in the case where the central 

Lyapunov exponent is neutral or even slightly positive. This is the key idea that  we will 

develop in the following subsections. 

6.2. S e m i - n o r m s  on  the space o f  m e a s u r e s  

For a Borel finite measure p on M and 0 < 5 <  1, we define the function 

Js#:T >R, 

where 

1 6 : T x T  ) R ,  l ~ ( w , z ) = ~  1' if d(w,  z) < 5, 

L O, otherwise. 

And we put, for Borel finite measures # and v on M, 

(~t,l])5=(JS~t, JSll)L2(m ) and II~ll~=~(~,~)~=llJ~c~llL:(m). 

Obviously I1" I1~ is a semi-norm and satisfies 

I#1 (54) 

The semi-norm ]1#11~ for a measure # is essentially decreasing with respect to the auxiliary 

parameter 5. More precisely, we can prove the following lemma: 

LEMMA 6.1. There is an absolute constant  Co> l such that 

for  any 0<~)~<5<1 and any Borel f inite measure #. 

(55) 
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Proof. There is an absolute constant C such that,  for any 0<0,.<5<1, we can cover 

the disk B(0, 5) in R 2 by disks B(w~, Q), 1 <.i <. [C52/02], by choosing the points w~ ap- 

propriately. Using the Schwarz inequality, we obtain 

1/ 
II~ll~ = ~5---i #(B(z,5))2dm(z) 

[C~lo ~1 2 
~< ~ # ( B ( z + w i , 0 ) )  dm(z)  

i = l  

1 52 [ c~2/e2] r 
~< ~--~-~4c~- ~ J 'u(B(z+w"~ 

< C ~ I1,~11~ 

for any Borel finite measure # on M. [] 

We will make use of the following properties of the semi-norm I] " [1~: 

LEMMA 6.2. If we have liminf~-~0 II#ll~<cc for a Borel finite measure #, then 
the measure # is absolutely continuous with respect to the Lebesgue measure m, and 

l i m ~ 0  IlPll~ = IId#/dmllL2(m) �9 

Proof. The assumption implies that  there exists a sequence (f(i)--++0 such that  

J~(i)# is uniformly bounded in L2(m). Taking a subsequence, we can assume that  J6(i)# 

converges weakly to some e E L 2 ( m )  as i-+oc. Since 

(f, r =ilim / f J~(i)#dm= / f d# 

for any continuous function f on M, we have # = e r a .  Now the last equality is stan- 

dard. [] 

LEMMA 6.3. If a sequence of Borel finite measures #i, i>~l, converges weakly to 
some Borel finite measure #or then we have I I#~ l l~= l imi -~  [IPill~ for 6>0. 

Proof. We have #~(OB(z, 5))=0 for Lebesgue almost every point z, because 

f m(0B(w, 5)) = 0. 

This implies that  J~#i converges to J~ttor Lebesgue almost everywhere as i-+co. Since 

the semi-norms II J~#i I1~, i )1 ,  are uniformly bounded from (54), the lemma follows from 

Lebesgue's dominated convergence theorem. [] 
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6.3. T w o  l e m m a s  on  t h e  s e m i - n o r m  [l" 

Let X={X~, + - Xc, Xu, X + } be a quadruple satisfying the conditions (18), (28) and (29), and 

a small positive constant satisfying (43). For simplicity, we put 

A + A + - X~ = X c - X ~  and X = = X ~ - X ~ .  

Let F be a mapping in ld, k a positive number, n a positive integer and # a Borel finite 

measure on M that  is supported on the subset A(X , 6, k, n; F) .  The aim of this subsection 

is to give two lemmas that  estimate NpoF-nlls. Below we shall use the notation in w 

Suppose that  the measure # is absolutely continuous with respect to the Lebesgue 

measure m and that  the density d # / d m  is square integrable. Then we have 

d(p~ 2L2(m ) dd--~m 2 d m  <~rnexp ( - (X2+x~)n+2k)  L2(m ) ' 

where m = m a x { # ( F - ~ ( w ) h A ( x ,  e, k, n; F ) ) l w e M } ,  because 

Idet DFnI >1 exp((x~ + x ~ ) n - 2 k )  on A(X, 6, k, n; F) .  

The following lemma is a counterpart  of this simple fact for the semi-norm I1" lie. Recall 

the constants 0 < p e < l  and >r x g > l  in Lemma 5.1. 

LEMMA 6.4. Let 0 be a positive number satisfying 

exp((x~ - 5 r  
0 <  Q< ~)~ lOxg 2 

and put 

Suppose that a measure 

A(X , 6, k, n; F) .  Then we have 

H#oF-~II2 <~ i g m e x p ( ( _ X ;  _ A A 2 - X .  +X~ + X .  )n+6k)II~ll~ 

for some constant Ig>O, where m = m a x { C / : ( F - n ( w ) N B ( X ,  6 ) ) l w e M } .  

6 = 10xgQ e x p ( - x ~ n + k +  1 ). 

# in AAA([5, oc)) is supported on a Borel subset X in 

(56) 

Remark. The point of the lemma above is that  the auxiliary parameter of the semi- 

norm on the right-hand side of (56), that  is, 5, is larger than that  on the left-hand 

side, that  is, Q. If the auxiliary parameter on the right-hand side were allowed to be 

much smaller than that  on the left-hand side, the inequality (56) would hold without the 

assumption that  # has an admissible lift. 
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Proof. For each point yEA(x,e,k+I,n;F), there is a unique neighborhood V(y) 
such that  F n restricted to V(y) is a diffeomorphism onto the disk B(Fn(y) ,  0), according 

to Lemma 5.1. Note that  the diameter of V(y) is smaller than 1 5  by Lemma 5.1 (iv) 

and the definition of 5. Let U be the union of the neighborhoods V(y) for all yEX. Then 

U is contained in B(X,  ~ 5 )  and also in A(X, c, k + l ,  n; F )  from Lemma 5.1 (vi) because 

X is a subset of A(X, e, k, n; F) .  From the definition of U and the assumption that  it is 

supported on X, it follows that  

1 E it(V(z)) Jo(#~ = it~ w, 0)) = 7rO2zeF_,~(,.,,)nU 

for w E M. Suppose that  we have proved 

0 2 
#(V(z)) < Cgexp(-(Xc +Xu)n+2k)(-~) it(B(z, 5)) (57) 

for any zEA(x, e, k + l ,  n; F) .  Then it follows that  

Jo(it ~ • Cgexp(-(Xc + x~)n+ 2k) E Jsit(z) 
zEF-n(w)nU 

(58) 

for each w E M. As we have 

Ide tDF ~] <~exp((x+~+X+~)n+2k+2) on UcA(x,e,k+I,n;F), 

we can obtain the inequality (56) from (58) by integrating the squares of both sides and 

using the Schwarz inequality. Therefore, in order to prove the lemma, it is enough to 

show the inequality (57). Since both sides of (57) are linear with respect to #, we may 

assume without loss of generality that  it has an admissible lift that  is supported on a 

single element of the partition EAe in AC([5, cx~)). 

Let 7: [0, a]--~M be an admissible curve with length a ) 5 ,  and let z be a point 

in A(X,s, k + l , n ;  F) .  Consider a connected component I of 7-1(V(z)),  and let J be 

the connected component of ~/-I(B(z,5))D~/-I(V(z)) that  contains I. As 5 < x g  1, 

Lemma 5.1 (viii) says that  the interval I is the unique connected component of 7-1 (V(z)) 
in J.  For the length of I, we have 

m R ( / )  = 1~/[i] ~< [F,n(~/[i)[ exp(-XunWk-t-2) < CgOexp(-Xunl-k-t-2), 

where the first inequality follows from the fact that  ~'ll is an admissible curve in V(z)C 
A(X,~,k+2, n;F) and the second from the fact that  F.~(~II) is a curve in Fn(Y(z))= 
B(F'~(z), Q) whose tangent vectors are contained in the unstable cones SU. For the length 
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of J,  we have mR(J) />  �89 because the curve ~l j  meets V(z )c  B (z, ~5)  while the length 

of ~/is not less than 6. These estimates hold for each connected component of 7 - l (V(z)) .  

Thus we obtain 

mR(v- l (V(z) ) )  oexp(_x~n+k) Q2 
mR(V_1 (S(z, 5)) ) <Cg 5 < C g ~  exp(-(Xc +X~)n+2k)' 

where we used the definition of 5 in the second inequality. From this and the definition 

of admissible measure, we can conclude (57) for any measure # that  has an admissible 

lift supported on {~/} • [0, a]. [] 

The next lemma is a counterpart of the inequality (53). Recall the definition of 

N(X, e, k, n; F )  in w 

LEMMA 6.5. Let 6 and 5 be positive numbers that satisfy 

g exp( ( -X;  +e)n)  < 5 <~ exp((x;  -2X + -3e )n) .  

Suppose that a measure # in .A.A4([5, oc)) is supported on A(X, e, k, n; F). Then we have 

[],oF-n[[2 < N(X'e'k+I'n;F)[[#][2 exp((-2X+ +2e)n)  
exp((x;  + X~ --XcA --X~A--2~) n) + 62 [#[2, 

provided that n is larger than some integer n , = n , ( x , r  , k) which depends only on X, r 

and k besides the objects that we have fixed at the end of w 

Proof. In the course of the proof below, we will give some conditions on the choice 

of n , = n , ( x ,  ~, k). First, we require that  n ,  is so large that  we have 

e x p ( ( x ; - X + - ~ ) n , )  < 6~ exp((X; 
~ 5 ~  n ~ 

10x~ 

Consider an integer n>~n, and put 6 a : = e x p ( ( x ~ - X + - e ) n ) .  Let L(01) be the lattice 

that  we defined in w 

For wEL(61), define D3(w,i), l<~i<~m(w), to be the connected components of 

F-n(B(w,301))  that  meet A(x ,e , k ,n ;F) .  By Lemma 5.1 and the choice of n,  above, 

we can check that  the restriction of F n to D3(w, i) is a diffeomorphism onto B(w, 361), 

and that  D3(w,i) is contained in A ( x , e , k + l , n ; F  ). Let Dl(W,i) and D2(w,i) be the 

part of D3(w, i) that  F '~ maps onto B(w, 61) and B(w, 261), respectively. For a=l ,  2, 3, 

let Do(w) be the union of D~(w,i) for l<i<~m(w). 

Since the disks B(w, 61) for weL(01) cover the torus T, we have 

wEL(el)  
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The function JQ((poF-n)[B(~,,m)) is supported on the disk B(w, 201) as 0<01 from the 

assumption on 0. And the intersection multiplicity of the disks B(w, 201) for wEL(01) 

is bounded by 102 at most. Thus we obtain, by the Schwarz inequality, 

, ] .oF- ' [ , :  ~< l (  E Jo(("~ 2dm(z) 
" w E L ( e l )  + 

< 102f  E Je((#oF-'~)[n(~,ol))(z)2 dm(z) 
w E L ( 0 1 )  

= 1 0  2 �9 

w~L(0~) 

Since the intersection multiplicity of the regions D2(w) for wEL(01) is also bounded 

by 102, we have ~weL(m).ID2(w)-~<102" and hence 

E H.ID=(w)[I~-- [ E Jo("iD2<=) )(z)2dm(z) 
wEL(~Ol)  ~ w C L ( O 1 )  

f(lO2jep(z)) 2 dm(z) ~< 104 II.ll o, ~< 

Therefore we can deduce the inequality in the lemma from its localized version: 

N(X,E, k+ l ,  n; F)II.ID~(~)II~o o - - n  2 [l(. F )IB(~.m)]Io~< 
(59) 

exp((-2X + +c) n) 
62 "(D2(w)) 2 

for wEL(01), provided that we take the constant n. so large that exp(en.)>106. 

Below we fix wEL(01) and prove the inequality (59). From the definition of D3(w, i) 
and the assumption t h a t .  is supported on A(X, ~, k, n; F), we have 

m(~) 
(.oF-~)lB(=,ol) = ~ "ID~(=,i) ~ 

i = 1  

Hence the left-hand side of the inequality (59) is written in the form 

(.ID,(~,i)oF -n, .]D,(,.,j)oF-n)o. (60) 
l ~i,j<~ m(w) 

For 1 <~i<~m(w), let zi be the unique point in D3(w, i) such that Fn(zi) =w, which belongs 

to A(X , e, k+ l ,  n; F). For 1 <~i,j<.m(w), we write irhj if the pair (zi, zj) does not belong 

to the subset $(w; X, e, k+ l ,  n; F),  that is, 

/(DFn(E~(zi)), DFn(E"(zj))) > 5Hg exp((x + -x~)n+2(k+l)). 
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(See w for the definition of the set $(-).)  We split the sum (60) into two parts according 

to the condition irhj, and reduce the inequality (59) to the two inequalities 

and 

E (~tIDl (W,i) OF-n, ~tlDl (w,j) ~ F - n  ) ~ < 
i~j 

N(X, e, k+ l ,  n; F)I]#lD2(~)l] 2 
exp((x~ +X~ -Xc A-X~ A -~)n)  

(#lnl(w,~) ~ #lnl (wj)~ ~< 52 tt(D2(w)) 2. 

Let E0~ and E~ be the sums on the left-hand sides of these two inequalities, respectively. 

We prove the first inequality. By the Schwarz inequality, we have 

Since each term I I ~ ] n l ( ~ , 0 o F - n [ [ ~  appears at most 2N(x,~,k+I,n;F) times on the 

right-hand side, this implies that 

m(~) 

Er ~< N(X, ~, k+ l ,  n; F)  E l[~lnl(w,~)~ �9 
i=1  

Moreover, we have E ~ ( 1  ) H#ID:(w,O II~ ~< [i#1D2(~)112. Therefore it is enough to show that 

[]~]DI (w,i)~ [[2 < exp(x;  +X~, - X ~ - X ~ - r  (61) 

We show this inequality by using Lemma 6.4. Unfortunately, we cannot apply Lemma 6.4 

directly to the measure #1o2 (w,i) because some part of its admissible lift may be supported 

on the part of AC((0, c~)) that corresponds to very short admissible curves, as a con- 

sequence of the restriction. We argue as follows: Observe that F n brings any CLcurve 

with length less than 5 in D3(w, i) cA(x,  r k + l ,  n; F)  to a curve with length less than 01 

from the assumption on 5 and (6), provided that n. is larger than some constant which 

depends only on r k and the constant Cg in (6). Suppose that an admissible curve 

7 with lengt h a>~5 meets D2(w, i) and that a connected component I of ~/-l(D2(w,i)) 
has length less than 5. Then the curve 7[i meets the boundary of D2(w,i), and hence 

F.~(71x) meets the boundary of B(w, 201). From the observation above, F.~('ylt) does not 

meet B(w, 01), and hence 7It does not meet D~(w,i). Using this fact, we can construct 

a measure/~ in AJ~4([5, c~)) that satisfies #[DI(~,i)</5<#[D2(~,i) by discarding the part 

of the admissible lift of #]D2(~,i) that is supported on AC((0, 5)). Note that the obser- 

vation above also implies that the 6-neighborhood of D2(w, i) is contained in D3(w, i), 
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so that  max{#(F-n(z)MB(D2(w,i) ,5))IzeM}=l. Now we apply Proposition 6.4 to/5 

and X=D2(w, i). Then the corresponding conclusion and (55) imply (61), provided that 

n.  is larger than some constant which depends only on r k, Q~, xg and Ig. 
Next we prove the second inequality. It is enough to show that 

(#]Dl(w,i)oF -n, #[Dl(w,j)oF-n)~ • 5-2 exp((-2X+ +c)n)#(D2(w,i))#(D2(w,j)) (62) 

for 1 <~i, j Em(w) such that ichj. Both sides of this inequality are linear with respect to 

#[D2(~,i) and #[D2(~j). Hence, without loss of generality, we can assume that PID2(w,i) 

(resp. #[D2(~j)) has an admissible lift supported on a single element {~} x [0, a~] (resp. 

{Tj} • [0, aj]) of the partition ~Ac,  and that the curve ~/i (resp. ~,j) is a connected compo- 

nent of the intersection of D2 (w, i) (resp. D2 (w, j ) )  with an admissible curve of length ~> 5. 

From the argument in the proof of the first inequality above, if the length of the curve 3'i 

(resp. 7j) is less than 5, it cannot meet D1 (w, i) (resp. Dl(W, j)) ,  and hence the inequal- 

ity (62) is trivial. Thereby, we can also assume that the lengths of 3'i and O'j, that  is, 

ai and a j ,  a r e  not less than 5. 

By the definition of admissible measure and that of the semi-norm [[ �9 lie, we have 

(#[D,(~,i) ~ #ID,(~,j)~ 
#(n2(w,  i) ) #(D2(w,j) ) 

Cg JT l~(Fn~ y) le(F%~/J(s)' y) dm(y) dt ds 
aiaj(TrY2) 2 x[O,a~lx[O,aj] 

~< Ca 5-20-2 jf[0,ad x [O,a~ll2O(fno.~i(t), Fno~j (s)) dt ds. 

We estimate the last term by using the assumption ir From (22), it follows that 

X(DFn(EU(Ti(t) ) ), DFn(~/~(t) ) ) <~ H a exp((x + - X ~ , ) n + 2 ( k + l ) )  

for rE[0, ai]. From Lemma 5.1 (vii), it follows that 

A(DF~(EU(zi)), DFn(E~(~/~(t)))) <~ xEe2(k+l)2el ~< H a exp((x + - x ~ ) n + 2 ( k +  1)) 

for t E [0, ai], where the second inequality follows from the definition of Q1, provided that 

n,  is larger than some constant which depends only on s, x~ and Hg. Thus we have 

A(DFn(E~(zi)), DFn(~f~(t))) <~ 2Hgexp((x +-X~)n+2(k+ l)) for tE [0, ai], 

and the same estimate with the index i replaced by j .  Therefore the condition irhj 
implies that, for any tE [0, a~] and sE [0, aj], 

X( DF~(~(t) ), DF~(~j (s) ) ) > Hg exp((x + - ) c ~ ) n + 2 ( k +  1)). 
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By simple geometric consideration using this fact, we can see that  the part of the curve 

F.~Ti that  is within distance 2Q from the curve F.~Tj has length less than 

C ~  exp(-(X~ + - X : ~ ) n - 2 ( k + l ) ) .  

Since 7i and 7j are admissible curves in A(X , e, k + l ,  n; F) ,  we obtain 

CgQ exp(-(X + - x ~ ) n - 2 ( k + l ) )  
mR({t  e [0, ai] ]d(Fn(Ti(t)),F.nTj)~<2Q}) ~< e x p ( x ~ n - ( k + l ) )  

= Cgo e x p ( - x + n  - (k+ 1)) 

and the same inequality with the indices i and j exchanged. These facts imply that  

J~[0,~] [0,~=] 120(F(7i (t)), F(Tj (s))) dt ds <<. C902 e x p ( - 2 x + n -  2(k+ 1)). 
• 

Therefore we can conclude (62) by taking the constant n.  larger if necessary. [] 

6.4. T h e  p r o o f  of  T h e o r e m  3.21: P a r t  I 

We give the proof of Theorem 3.21 in the following three subsections. From this point 

to the end of this section, we consider the situation assumed in the theorem: Let X be a 

+ l  - l  + finite collection of quadruples X(1) = {)l~ (1), Xc ( ) ,  X~ ( ) ,  X~ (1) }, 1 <<. l <<. 10, satisfying (18), 

(28), (29) and (30); Let F be a mapping in /4  that  satisfy the no flat contact condition 

and the transversality condition on unstable cones for X. The aim of this subsection is 

to derive the conclusions of Theorem 3.21 from the following proposition: 

PROPOSITION 6.6. Under the assumptions as above, the following claim holds: Let 

#~, i>~1, be a sequence of Borel probability measures on M.  We assume that either 

(A) every #i is invariant and has an admissible lift, or 

(B) , i = n ( i )  -1 )-lmxoF-5 for some subsequence where m x  is the 

normalization of the restriction of the Lebesgue measure m to some Borel subset X C  M 

with positive Lebesgue measure. 

Further, we assume that #i converges weakly to a Borel probability measure # ~  as 

i--+cr and that the pair of Lyapunov exponents (Xc(Z; F ), X~(z; F ) ) is contained in the 

region IXl for #~-almost  every point z. Then, for sufficiently large i, there exists a 

measure ~i <~#~ such that 

(a) 1  1>�89 
(b) vi is absolutely continuous with respect to the Lebesgue measure m,  and the 

L2-norm of the density dt , i /dm is bounded by a constant independent of i. 
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We assume Proposition 6.6 and prove Theorem 3.21. 

Proof of Theorem 3.21. First, note that,  if an ergodic invariant measure # has an 

admissible lift, and if the pair of Lyapunov exponents (Xc(#; F) ,  Xu(#; F)) of p is con- 

tained in IXl, then # is absolutely continuous with respect to the Lebesgue measure m, 

and hence is a physical measure. This follows immediately from Proposition 6.6 if we set 

#i=#o~=# in the assumption (A). 

We show that  there exist at most finitely many ergodic physical measures. Suppose 

that  there exist infinitely many mutually distinct ergodic physical measures #i, i--1, 2, . . . .  

By taking a subsequence, we can assume that  #i converges weakly to some measure #o~ 

as i -~ee.  We have Xc(#o~; F ) = 0  from Corollary 4.5, Proposition 4.8 and Corollary 3.16. 

Moreover, we have Xr F ) = 0  for #o~-almost every point z. In fact, otherwise, there 

should be an ergodic physical measure p ~ ( ( # o c  with negative central Lyapunov exponent 

from Lemma 4.6, and hence # i = # ~  for sufficiently large i from Lemma 4.3, which 

contradicts the assumption that  #i are mutually distinct. Since Ag~Xu(z; F/-~<A9 for 

any point zEM from the choice of the constants A s and Ag, the assumption (30) implies 

that  the pair of Lyapunov exponents (X~(z; F), Xu(z; F)) is contained in IXl for #o~- 

almost every point z. Therefore we can apply Proposition 6.6 with assumption (A) to 

the sequence #~ and conclude that  there is a measure ui ~< #~ for sufficiently large i such 

1 and IIdL, i/drnlIL2(m)<C for a constant C that  is independent of i. For these that  luil> 5 
measures ui, the Schwarz inequality gives 

(1 )  2 nl(~ (]Ai)) dpi :2(m ) < ].~]2 ~< ~mm < C2m(B(u~))" 

Obviously this contradicts the fact that  the basins B(#i) are mutually disjoint. 

Let B ~ be the union of the basins of the ergodic physical measures whose central 

Lyapunov exponent is neutral. Below we prove that  the Lebesgue measure of the subset 

X:=M\(13-UB~ +) is zero. Again the proof is by contradiction. Suppose that  the 

subset X has positive Lebesgue measure. Then, by choosing a subsequence n(i)---~cx~ ap- 
~-~n(i)--i 

propriately, we can assume that  the sequence of measures #i=n(i) -1 z_~j=o mz  ~ 
converges to some measure #o~ as i--+ec. Note that  the measures #~ are supported 

on X for F(X)CX. From Proposition 4.9, we have Xr for #o~-almost ev- 

ery point z. Thus the assumption (30) implies that  the pair of Lyapunov exponents 

(Xr F) ,  X~(z; F)) is contained in IX[ for #o~-almost every point z. Each ergodic com- 

ponent of # ~  has an admissible lift from Lemma 3.14, and hence it is a physical measure 

with neutral central Lyapunov exponent from the fact we noted in the beginning. In par- 

ticular, # ~  is supported on B ~ Now apply Proposition 6.6 with assumption (B) to the 

sequence #i, and then let ~i be those in the corresponding conclusion. Since the density 
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r :=d~,i/dm has uniformly bounded L2-norm for sufficiently large i, we can assume that  

r converges weakly to some r  by taking a subsequence of n(i). Note that  

r  is not trivial because 

1 ( r  1)L2(m ) = ili m ( r  1)L2(m ) = i l i m  I~il ~> 5" 

On the one hand, we have f r  d#~=O since ~i~#~ is supported on X c M \ B  ~ On the 

other hand, we should have 

Yf +, dp,~o/> l~m f'4D, i'4D'oo dm= lim ('4hi, '4boo)z,2 = II+<>ollb(m)>0 i~m~ 
Y i--+~ 

because r  We have arrived at a contradiction. 

We have proved that  there exists only finitely many ergodic physical measures for F 

and that  the union of basins of them has total Lebesgue measure. The last statement of 

Theorem 3.21 follows from Proposition 4.7 and the fact that  we noted in the beginning 

of this proof. [] 

6.5. T h e  p r o o f  o f  T h e o r e m  3.21: P a r t  I I  

In this subsection, we give the proof of Proposition 6.6, assuming a lemma, Lemma 6.8, 

whose proof is left to the next subsection. Let #i and # ~  be those in Proposition 6.6. 

We put 

A + Xc(1)=Xc(1)-X~(1) and x~(l)=x+~(l)-x~(l) for l<~l<~lo. 

To begin with, we fix several constants in the following order: 

(K1) Take 0 < e < l  so small that  (43) holds for all the quadruples x E X  and that  

lim lim inf max log N(X(/),  e, k, n; F )  < 1. 
k - ~  ,~-+0r l<~l<<Jo n(x;(1)§ 

This is possible from the transversality condition on unstable cones for X. 

(K2) Take positive constants O~ so small and ;r so large that  Lemma 5.1 and 

Lemma 6.4 hold for all the quadruples )~EX and e above. 

(K3) Take a positive constant U so small that  

10Ag U < e  and ~ < 10-3e < 10 -3. 

(K4) Take positive constants ho and mo so large that  h o > A g > l ,  mo>~ng and 

S min{0, L(Fn(z); F ) + h o }  d#(z) > - i - ~  I#1 
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for any #EA.t~4([1, co)) and n>~mo, where L(.  ) is the function defined in (17). This is 

possible from Lemma 3.15 (ng is the constant we took in w 

(K5) Take a positive constant k0 such that ko > h0 and 

(l_u 1 ) ~ for any n > 0 .  #o~ A(X(I), e, k o -  1, n; F )  > 1 - 200h----~ 
l -  

This is possible from Lemma 3.17 and the assumption on #~ .  

(K6) Take a large positive integer P0 such that 

(a) N(X(I), r ko +2,  Po; F )  ~< exp( (x ;  (1) +X~ (l) - X~ (l) - X ~  (l) - 100r 

(b) P0 > n .  (X(1), r ko + 1) 
for l~<l~<10, where n . ( .  ) is given in Lemma 6.5. This is possible from the choice of 

and the fact that  N(X(I), r k, po; F )  is increasing with respect to k. 

Hereafter we will never change the constants taken in (K1)-(K5). Note that  we can 

choose the integer P0 arbitrarily large in the condition (K6) above. In some places below, 

we shall put additional conditions that  P0 is larger than some numbers that  depend only 

on X, cg, Ag, A~, xg, l0 and the constants taken in (K1)-(K5). 

For a point zEM,  we let 

} k ( z ) = m i n { k E Z  k ) k o  and z E U A ( x ( l ) , e , k ,  po;F) >~ko 
l=1 

and k(z)=cx~ if the set {. } above is empty. We also put 

S 0, if k ( z )=k0 ,  
I(z) / 1, if k ( z )>k0 .  

This is the indicator function of the complement of U I~ A(X(I), r ko, Po; F) .  Let m be 

a positive integer and write it in the form m=q(m)po+d(m),  where q(m)=[m/po], so 

that  O<~d(m)<po. We define the subset Tr as the set of points z E M  that satisfy 

(R1) #{l<~j<~q[I(Fm-jP~ for l<~q<.q(m); 

(R2) ~-~qj=l(k(Fm-JP~ for l <.q<~q(m); 

(R3) k ( z ) - ko<~m.  
The following lemma gives a sufficient condition in order that  7~(m), m =  1, 2, ..., are not 

very small with respect to a measure #: 

LEMMA 6.7. Let p be a Borel probability measure # on M, and n a positive integer 

such that n~>10po. Assume that 

[L(FJ(z); F)I I (FJ(z) )  d#(z) < 1---0 
j=O 
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and that 
n--1 ?~n (64) 

/ I( Fr (z) ) d"(z) < = 100 h-----o" 

n--1 1 Then we have n -1 ~-~m=o #(n(m))>~ 5" 

Proof. For 0 < r e < n ,  let Qz(m), Q2(rn) and Q3(m) be the sets of points z that  

violate the conditions (R1), (R2) and (R3), respectively. We are going to estimate the 

measures of these subsets by using Lemma 4.14. First we give the estimate on the subset 

Q l ( m )  for O<m<n. If Z E Q l ( m ) ,  we have 

q 

I(Fm-JP~ (z)) >/ ~----~q 
lOho j = l  

for some l < q < q ( m ) .  Using Lamina 4.14 with the assumption (64), we obtain 

n--1 Po [(n-d)/po] 

E # ( Q l ( m ) )  --~ E E #(Ql((n-d)-jpo)) 
m=0 d=l j : 0  

P~ ( Oh [(n-d)/P~ ) n 
1_o i(F(n_d)_jpO(z))e,(z) 41--6 . 

d=l j=O 

Next we give the estimate on the union Q2(m)uQ3(m). Let us put 

r  - (IL(z; F)I +5Ag) I(z). 

We claim that  
po--1 

k ( z ) - k 0 <  E r  for zEM. (65) 
j=0 

For a point z, take the smallest integer 0<p<p0 such that  k(FP(z))=ko, and set P=Po if 

there are no such integers. If p--0, the inequality (65) is trivial. So we assume p>  0. In the 

case 0<p<p0,  we choose an integer l<.l<lo so that  A(X(I), e, k0,p0; F)  contains FP(z). 
In the case P=Po, we choose l<l<lo arbitrarily. For O<i<i'<~p and vES~(Fi(z)), we 

have the obvious estimates 

i l - - 1  
* . t  �9 

L(FJ (z); F) < log ID F ~ -'(v)l < Ag(i'-i), 
j=i 

-Ag < - c  9 < log ID.Fr < Ag(i'-i). 
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Using these estimates and the fact that F p (z) E A(X(I), e, k0, P0; F) in the case p<po, we 

can check that z belongs to A(X(/), c, k,po; F) for 

k=k0+ (IL(FJ(z); F)I+3Ag+ ) +1. 
Lj=O 

This implies (65). 

If a point z belongs to Q2(m) or Q3(m) for po<~m<n, we have, from (65), 

m - - 1  

E ~(FJ(z)) >>'vim-re') for some 0~<m'<m. 

As we took h0 so that h0>Ag, the assumptions (63) and (64) imply 

~ / r (z) ) d#(z) <~ ~?n 
j=O 

Therefore, by using Lemma 4.14, we can obtain 

n - - 1  
n  (Q2(m)uQ3(m)) < g. 

m=po 

Note that we have po ~,~=o #(Q2(m)UQ3(m))<~P o<~ ~ n ,  as we assume that n~>10p0 in 

the lemma. Since T~(m) is the complement of Q1 (m)u Q2 (m)u Q3(m), we can obtain the 

lemma from the estimates above. [] 

The following lemma is the key step in the proof of Proposition 6.6: 

LEMMA 6.8. Let # be a Borel finite measure on M, and n a non-negative integer. If  

# has an admissible lift ft such that f~oF~ -i belongs to AM([exp(-~n), r for O<~i<n, 

then we have 

IIpln(n)~ < Cl#l+Cexp(-en)II#[leexp(-lOvn) 

for 0<Q~exp(-10Agp0), where C>0 is a constant that does not depend on the measure # 

nor the integer n. 

Remark. Actually, the constant C>0 above depends only on e, Po, ca and Ag. 

We give the proof of this lemma in the next subsection. Below we assume this lemma 

and complete the proof of Proposition 6.6. 

Proof of Proposition 6.6. First consider the case where the assumption (A) holds. 

From the choice of k0, we have 

) Pi [J A(x(1),e, ko,Po;F) >l-100h--'o 
\ l = l  
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or, in other words, 

I(z) < d#i 
100h0 

for sufficiently large i, because A(X(/), e, k0, po;F) contains an open neighborhood of the 

compact subset A(x(1),c, ko-l,po;F). The measure #i belongs to A.Ad([1, oo)) from 

Corollary 3.8. Thus, it follows from the choice of h0 that  

min{0, L(z; F ) + h o }  d#i(z) > - -  

Hence 

100 

IL(z ;F) l I ( z )d .~(z )<ho~,  + ~ < - - .  
10 .tuuno .tuu 

Now we can apply Lemma 6.7 to the invariant measure #i for sufficiently large i, and 

obtain 
n-1 1 1 

n E #i(T~(j)) >I -~ for n ~> 10p0. 
j = 0  

We put 
n - - 1  

1 E ~ Yi,n n #d~(j)  ~<#i for n/> 1, 
j=O 

so that  I~i,nl~>�89 for n~>10p0. Obviously the measure #i has an admissible lift that  

satisfies the assumption of Lemma 6.8 for any n~>0. Thus it holds that  

1 n - - 1  n - - 1  

Illzi,n[l~ • -'s E II#il~(J) ~ < C +C E exp(-gJ)ll#illoexp(-l~ 
j = 0  j = 0  

for 0<Q~<exp(-10Agp0). This, together with (54) and the choice of ~?, implies that  

l imsuPn~ ~ IIvi,nllo~<C. Let Yi be a weak limit point of the sequence ui,,~, n = l , 2 , . . . .  

Then it holds that  ,i~<#i and I~,il~> 1. Also we have Ilvillo<<.C for 0<o<~exp(-10AgP0) 

from Lemma 6.3. From Lemma 6.2, this implies that  ~,i is absolutely continuous with 

respect to the Lebesgue measure m, and the density satisfies IIdu~/dmllL2(n~)<~C. Thus 

the measures ui satisfy the conditions in Proposition 6.6. 

Next we consider the case where the assumption (B) holds. Let no=no(F)>n a 
be as in the definition of the no flat contact condition. Let X and m x  be as in the 

assumption (B). Using Lemma 3.12, we can find a small positive number b>0 and a 

probability measure JE.A.Ad([b, oc)) such that  

(1) Imx-w'l<10-arJ/ho; 
(2) J o F  -n~ is absolutely continuous with respect to the Lebesgue measure m; 

(3) the density of the measure w'oF -n~ d(w'oF-n~ is square integrable. 
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In the third condition above, we do not care how large the L2-norm is. Remark. 

We put w = j o F  -'~~ and 

~(i)-1 
1 

#~- n(i) E w~ f o r i = l , 2 , . . . .  
j = O  

Then, for sufficiently large i, we have I#i-#~l < 10-3~?/h0 and hence 

#i A(x(l),~,ko,Po;F) >1 77 that  is, I (z )d#~< 100h-----o 
"l=l 100h0' 

from the choice of k0. Prom Corollary 3.8, woF -j  belongs to A.M([1, oo)) for sufficiently 

large j .  Thus we have 

S h 77 77 
IL(z;F)lI(z)d#~(z) < ~ < 1-0 

for sufficiently large i, from the choice of h0. Now we can apply Lemma 6.7 to #=w and 

n=n(i) in order to obtain 
n - - 1  

1 1 
n(i) E w(n(m)) ~ -~ 

m=O 

for sufficiently large i. Let ~ '  be an admissible lift of w ~ that  belongs to AM([b, oc)), and 

put ~ = ~ % F ,  n~ Then ~ is an admissible lift of w. Take a large positive integer nl  that  

satisfies exp(-~?nl )<bexp(-%) .  From Lemma 3.7, the measures ~oF,  i=~'oF,  i-n~ for 

i>~0 belongs to AM([exp(-~?n), oc)), provided that  n>~nl. Thus we can apply Lemma 6.8 

to w, and obtain 

llwln(n) oF-nH~ < CIwl+Cexp(-cn)llWllaoexp(--10~n) 

for 0<Q~<exp(il0Agp0) and n>~nl. We put 
~(~)-1 

r 1 t 
"i-- n(i) E wln(J)~ <" p'~, i = 1,2,.... 

j = r t  1 

Then, for sufficiently large i, we have lull ~> 2 and 

C n(i)-I 
II-;11  < C+n-- exp(-cj)II~lloo~,(-~o,j) 

for O<Q~<exp(-lOAgpo). Letting t)--~+O in the last inequality, we obtain 

du~ / f v  n ( i ) - I  x do2 

by Lemma 6.2. Since we have I#~-#~1<10 -2 and u~<#~, we can find a Borel measure 

1 and IldvUdmllL~ ~2C for sufficiently large i. The ui such that  ui~<v~, v i~#i ,  lal>g 
measures vi satisfy the conditions in Proposition 6.6. [] 
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6.6. The  proof  of  T h e o r e m  3.21: Part  III 

In this subsection, we give the proof of Lemma 6.8 and complete the proof of Theo- 

rem 3.21. Let n, # and /5 be as in Lemma 6.8. Recall the mapping H:A((0, c~))-+M 

and the commutative relation (14) in w Below we divide the measure fi into many 

parts, so that  we can evaluate the semi-norms of their images under the mapping IIoF, n 

by the two inequalities we gave in w 

We write the integer n in the form n=q(n)po+d(n), where q(n)=[n/po], so that  

O<~d(n) <Po. For integers - 1  <~q~q(n), we put 

T(q) = ~ qpo+d(n) 
( 0 

so that  ~'(q(n))=n, and we also put 

{ exp(-4~(n- ~'(q) )-  TAgPo-Cg) 
5(q)= exp( -4z ln -  7Agpo) 

Fix a number 0 < Q~<exp(-10Agpo ) arbitrarily and put 

for O~q~q(n), 
for q = - 1 ,  

for O~q<~q(n), 
for q = - l .  

Q(q) =Qexp(-10~(n-~-(q)))  for - 1  <.q<q(n). 

We put W--hC([exp( -~n) ,c~) ) ,  so that  fitoF~ -i for O~i~n are supported on W, by 

assumption. 

We begin with constructing measurable partitions ((q), - 1  <~q~q(n), of the space W 

such that: 

(~1) ~(q) subdivides the partition --AC on W, which is defined in w And ~(q) is 

increasing with respect to q, that  is, ( ( q + l )  subdivides ~(q). 

(--2) Each element of the partition ~(q) is of the form {'),} • J ,  where "7 is an 

admissible curve in .AC(a) with a>~exp(-~n) and g is an interval in [0, a] such that  

(~( q) ~ IF: (q) ('~]j) ] ~ 25(q). 
The construction is easily done by induction on q. Since 5(-1)<exp(-~?n),  we can 

construct a partition ~(-1) that  satisfies (--1) and (--2) by subdividing the partition 

"-nc on W. Let 04q<~q(n) and suppose that  we have constructed the partitions ~(j) for 

- 1  ~<j <q. For each element {V} • J of ~(q-1),  the length of the curve F[ (q) (7] j )  is not 

less than 

5(q- 1) exp(Ag (7(q) --T(q-- 1)) --%) > 5(q), 

provided that  we take the constant P0 so large that  (Ag-4~)po>cg. (Recall the remark 

on the choice of the constant P0 in the last subsection.) Hence we can construct the 

partition ~(q) satisfying (--1) and (--2) by subdividing ~(q-1).  
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A Borel measurable subset in W is said to be a ~(q)-subset if it is a union of elements 

of ~(q). Note that,  if Y is a ~(q)-subset, the measure f~[yoF,~(q)oI1-1 is contained in 

.AM([&(q), 2~(q)]) by the condition (--2). 

For -l<~q<<.q(n) and an element P={'y} x J of the partition ~(q), we define 

kq(P) := min{k(F ~(q) ('7(t))) I t E J}  ~> k0, 

where k( .  ) was defined in the last subsection. For simplicity, we put 

II')llco for a measure P on W. 

The following result is a consequence of the two inequalities in w 

SUBLEMMA 6.9. Let Y be a ~(q)-subset in W for some -l<~q<<.q(n), and let k be 

an integer such that 

ko <<. k <<. ko+~l(n--T(q) ). (66) 

If  kq(P)<<.k for all elements PE~(q) that are contained in Y, we have 

[[f~]v~ ~(q+ l) I[co(q+l) ~< exp( l OAgpo + 6( k -ko)  ) HP[v~ F* ~(q) [[co(q). 

Moreover, if k=ko and q>~O in addition, we have either 

[[fZly~ r(q+l) II0(q+l) • exp(-48ep0)[[~lyOF, r(q) ]]co(q) 

Or 

- T~--r(q+l) U # yOr .  Ilco(q+,) ~< 6(q)-lexp(3Agpo)f~(Y) . 

Proof. We put p=T(q+l)--7(q)<<.po. So p is smaller than P0 only if q = - l .  By 

assumption, we can divide the subset Y into ~(q)-subsets Y(I), l~<l~<10, such that  

HoF. ~(q) (P)NA(x(1), ~, k,po; F)•O for each PC~(q) that  is contained in Y(1). The mea- 

sures/ily(0 oF-~(q)oH -1 belong to A.M([5(q), oo)), as we noted above. 

We prove the first claim. By using (66) and (30), we can check that  

2(~(q) • X;1LOr exp((x~- (1) - X  + (1) - 5r -4k) ,  

provided that  P0 is larger than some constant that  depends only on k0, 0~, Xg and Ag. 

This and the claims (v) and (vi) of Lemma 5.1 imply that  the subset IIoF~.(q)(Y(1)) is 

contained in A(X(I), e, k+  1, Po; F) ,  and hence is contained in A(X(/), ~, k+  1 +r P; F )  

even in the case P<Po, by (21). 
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For simplicity, we put 

:= 10xyQ(q+ 1 ) exp ( -xg  (l)p+k+spo+2). 

We can check that  

(~ < Xgl~O~ exp((x ~- - X  + - 5 e ) p - 4 ( k +  l+Epo)), 

o(q) < 5 < 5(q), 

0 < o(q+ 1) ~ Q~ exp((x~ (1 ) -5e )p -3 (k+2+epo) )  
10x~ 

(67) 

(68) 

, (69)  

by (66) and (30), provided that  P0 is larger than some constant which depends only on k0, 

~ ,  xg, % and Ag. The subset HoF[  (q) (Y(1)) is contained in A(X(/), z, k + 1 +eP0, P; F)  

as we noted, so the claims (v) and (vi) of Lemma 5.1 and the inequality (67) imply that  

the &neighborhood of HoF~.(q)(Y(1)) is contained in A(x ( / ) ,~ ,k+2+cp0 ,p ;F ) .  From 

Corollary 5.2, it follows that  

max ~(F-P(w) A B(HoF.  ~(q) (Y(/)), 5)) < exp(6Agp0 +6k), 
w c M  

provided that  P0 is larger than some constant that  depends only on ~ and Ag. Now we 

can apply Lemma 6.4 and obtain 

II ftlY(1) ~ r(q+l) 112(q+1) < Ig exp(16Agp0 +6(k+epo + 1) +6k)II~tly(l)oF'. "r(q) 115 
r~ - - ' r ( q )  L,2 lo2exp(2OAgpo+12(k-ko)) 11/51Y ~ IIo(q) 

using (55), provided that P0 is larger than some constant which depends only on Ig, ko, 
10 and Ag. Summing up the square root of both sides over 1~<I ~<lo, we obtain the first 

claim. 

We prove the second claim by using Lemma 6.5. Note that  HoF~.(q)(Y(1)) is con- 

tained in A(x(1),e, ko+l,po;F) in this case, by the argument above. We can check 

that  

Q(q+ 1) exp((-X~ (1)+e)po) < 5(q) < exp((x~ (1)-2X+(/)-3e)p0),  

provided that  P0 is larger than some constant which depends only on % and A s. Recall 

that  we took P0 so large that  po>~n,(x(1), e, ko+l )  in the condition (K6). Hence we can 

apply Lemma 6.5 and obtain 

~ o LO--T(q "Jr-l) 112 #gct) ~* Ilo(q+l) ~< exp(-98sp0)11/21y(0 oF.  -'r(q) 2 Jl~(q+l) 
+ 5(q) -2 exp(( -  2X + (1) + 2e)p0) f~(Y(l))2, 
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where we used the condition (K6) (a) in the choice of P0. This implies that 

~ - ~ ( q + l )  
II~tY(o~ tlo(q+l) <~ exp(-49r176 

+6(q)-l exp( (-x+ (l)+e)po) fL(Y). 

Summing up both sides for l<<.l<~lo and using (55), we conclude that 

tl/Aty ~ IIt)(q+l ) < Colo exp(-49epo)itfZlyoF,~(q)lle(q) 

+ lob(q)-i exp((2Aa +g)P0) ~(Y). 

The second claim follows from this inequality, provided that P0 is larger than some 

constant that depends only on 10, Ag and c. [] 

For integers - 1 ~< q' <<. q <~ q(n), let ]C (q/, q) be the set of sequences a = {oj }q__-~, of q-  q' 
integers that satisfy 

O~aj ~rl(n--T(j)) for q'<~j<q. (70) 

In the case qt=q, we say that lC(q', q)=lE(q, q) consists of one empty sequence, which is 

denoted by Oq. We put 

)E(q) -- U {lC(q', q) 1-1 <~q'<~q} 

a q(~) for O<q<~q(n). Below we construct subsets D(a) in W for EUq=_ 1K:(q) so that the 
following conditions hold: 

(D1) :D(a) for aEK:(q) are mutually disjoint ~(q-1)-subsets. 

(D2) The union of D(c~) for all aEK:(q) contains the subset II-I(7~(n))MW. 
q--1  t (D3) For -l<~q'<q<~q(n) a n d  o'={o-j}j=q,E)~_,(q ,q), we have 

II~lz)(~) ~ r(q) I]o(q) ~< exp(10Agp0 +6aq_~) 1I]blv(~,) oF. -r(q-1) ]Io(q-1), 

where a'--{qj}q_-q2,eIC(q', q - l )  (so a'=Oq, if q '=q-1) .  Further, it holds that 

11/sly(-) oF* ~'(q) [Io(q) ~< exp(-48r ~(q-1) [Io(q-1) 

in the case where q~>l and aq- l=0.  

(D4) For the empty sequence OqE~(q,q) for q/>0, we have 

oF. II (q) g(q-  1)-1 exp(3Agpo)ft(D(Zq)). 
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The construction is done by induction on q. For the case q = - l ,  we just put 

7)(O_1)=W. For the case q=0, we have to define :D(a) for a=~0EK:(0,0) and a =  

{c~_I}EK:(-1,0), where 0~<c~_1 ~<r]n from (70). We let 7:)(00) be the empty set and put 

/)({a-i})-= U { P E ~ ( - 1 )  lk(-1)(P) = k 0 + a - 1 }  for 0~<a-1 ~<~n. 

Then the conditions (D1) and (D4) obviously hold. The condition (D2) follows from the 

condition (R3) in the definition of the subset T~(n). The first claim of Sublemma 6.9 

implies that the condition (D3) also holds. 

Next, let q~>l and suppose that we have defined D(a) for aEK:(q-1) so that the 

conditions (D1)-(D4) hold for them. Consider an element a={aj}q-~, in K:(q', q) with 

q'<q and put cr'={crj}q-2q, EK~(q',q-1). Let us set 

:D.(a) = [,J{PE~(q-1)]PcTP(a') and kq- l (P)  =ko+aq-1}. (71) 

In the case Ca_l>0, we put Z)(a)=7).(a). In the case aq- l=0 ,  we define ~D(a) in the 

following manner: From the second claim of Sublemma 6.9, we have either 

[[fzl.D.(a)oF.~'(q)Ho(q ) <exp(--48epo)[[f~[Tv.(a)oF.v(q-1)[[o(q_1) (72) 

o r  

We let 

[[f~lz). (~,) ~ r(q) I] o(q) <~ 6(q- 1) -1 exp(3AgPo)/5 (T), (a)). (73) 

I~lo <rl(q(n)-q') and I~l~ ~< 2r/(q(n)-q')po, 

where 

I 1o := #{q'~< J < q(n) I J >10 and cry > 0} and 

q ( n ) - - i  

lal l := E aj. j=q' 

/ 7).(a), when (72) holds, 
7)(a) 

O, otherwise. 

Finally we define Z)(Oq) as the union of :D.(a) for the sequences a={aj}q-~, in 

U-l<q,<q K;(q', q)=)U(q)\{oq} such that crq_l=0 and such that (72) does not hold. As a 

consequence of this definition, the condition (D4) holds for the empty sequence Oq. The 

condition (D1) obviously holds. We can check the condition (D2) by using the condition 

(R2) in the definition of the subset 7~(n). The condition (D3) follows from the first claim 

of Sublemma 6.9 and the construction above. We have finished the definition of the 

subsets T)(a). 
r ~ q ( n ) - - i  For -l~q'<~q(n), let )~,(q') be the set of sequences a=.iajlj= q, in ~(q',q(n)) 

that satisfy the conditions 
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Then, from the definition of the subsets T~(n) and :D(a), we have 

and hence 

q(n) 
n-~('R.(n)) nwc U U "D(a) 

q'=--I aEK:. (q') 

q(n) 

/AIH-I( ~(n))oF*-n < E E ~lv(=) ~ 
q'=--I aElC.(q') 

O" r lq(n)--I For each =tajtj=q, in/C,(q ~) with q~>0, we can obtain 

~ o F - n  l i l l y + )  . lie IIf~lv(~)~ 
<~ exp(lOigpolalo+61all - 4Se(q(n) - q'-]al0)p0)IlPlv(~,, )~ ~-(q') II 0(q') 

from the condition (D3), and hence 

[lfi[v(~,) ~ <~ exp( -45r  

from the condition (D4) and the choice of ~?. Similarly, for r ~q(n)-I ( 7 = t a j ) j = _  1 in /C . ( -1 ) ,  we 

can obtain 

[[fi[z)(~) ~ -n][o ~< exp(lOAgpo([a[o + 1) +6[a[1-48r 

and hence 

Hfilz)(a) ~ F.n[Io < exp(-45~n + l OAgPo ) H~I]~(-1)" 

For the cardinality of the set /C.  (qt), we have 

=/=/=lC.(q') <~ ( q(n)-q' [271po(q(n)-q')]+[~?(q(n)-q')]) 
[~?(q(n)-q')] ) ( [~(q(n)-q')] ' 

where the first factor on the right-hand side is an upper bound for the number of possible 

arrangements of integers j~>0 for which aj  may be positive, and the second factor is an 

upper bound for the cardinality of a E/C. (q') when one arrangement is given. For positive 

numbers a, t3>0 and an integer m ~ l  such that a m ~ l  and ~3m~1, we have 

l~ ara+~ra~13m ] ~amlog(l+~)+/3mlog(l+~)+Ao 

from Stirling's formula, where Ao is an absolute constant. Hence we can obtain 

log ~/C. (q') q(n)-q' ( ~po 1 )  ~ < - ( 1 - v ) l o g ( 1 - V ) - r l l o g r l + 2 ~ p o l o g  1+a-Z- - + r l log( l+2po)+2A0 
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for -l<~q'<q(n). This implies that  

#K..(q') <<. exp(~po(q(n)-q')) for - 1  < q '< q(n), 

provided that  P0 is larger than some constant which depends only on e and rL Now we 

can conclude that  

[I,Ir~(n) oF-'~[[~ = II/~[ri-~(r~(n)) oF,-'~ll0 

q(n) a e K ; .  (O') " a e ~ : . ( - 1 )  
~ \ql~O E ]]~tlT~(cT)~ E II~@D(ff)~ 

q(n) 
< E e x p ( - 4 4 t ( q ( n ) - q ' ) p 0 + 1 1 A g p 0 + % ) I # [  

q ' = 0  

+ exp(-44en+ 10Agpo)It 11o(-1). 

This implies the inequality in Lemma 6.8. 

7. G e n e r i c i t y  o f  t h e  t r a n s v e r s a l i t y  c o n d i t i o n  o n  u n s t a b l e  c o n e s  

In this section, we consider multiplicity of tangencies between the images of the unstable 

cones under iterates of mappings in H, and investigate to what extent we can resolve 

the tangencies by perturbation. The goal is the proof of Theorem 3.22. The point of 

our argument in this section is that  the dominating expansion in the unstable direction 

acts as uniform contraction on the angles between subspaces in the unstable cones. This 

enables us to control the images of the unstable cones in perturbations of mappings in 5/. 

Notice that  the content and the notation in this section is independent of those in the 

last section. 

7 .1 .  R e d u c t i o n  o f  T h e o r e m  3 .22 :  T h e  f irs t  s t e p  

In this subsection and the next, we reduce Theorem 3.22 to more tractable propositions 
+ - + in two steps. For a quadruple X= (Xc-, Xc, X~, X~), we put  

. _  -i- X++:=max{x+,0},  X~.-Xc-X~ and X~:=X+-X~. 

For a quadruple X satisfying (18) and a positive number 6, let Sl (X,c)  be the set of 

mappings F E L / t h a t  satisfy 

_ z~ z~ (74) lim sup 1 log N(X, 6, en, n; F ) />  Xc- +~(~ -X~ -X~ - e .  
n---+ ~ n 

The first step of the reduction is simple. We show that  we can deduce Theorem 3.22 

from the following proposition: 
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PROPOSITION 7.1. Suppose that s>/r+3 and let M s  be the measure on C r ( M , R  2) 

introduced in Lemma 3.18. The subset Sl (X,e) is shy with respect to the measure Ads 
+ - -  § for s>~r + 3, if the quadruple X=(X~, Xc , Xu, Xu) satisfies the conditions 

-2Ag < X~- < X~ + < X~ < X~ + < 2hg, (75) 

x;  < o, (76) 
A A Xc +X,~ < X~ +X~, (77) 

( ++ + ) / ,  A 
- - ++ Xi~q-X~' +1 (X~ +X~) (78) Xu + Xc  - -  Xc  > _ _ ~ 

and if e>0  is smaller than some constant which depends only on X and s besides the 

integer r>/2 and the objects that we fixed in w 

Below we prove Theorem 3.22 assuming this proposition. 

Proof of Theorem 3.22. For any point (Xc, Xu) in the subset given in the claim (a), 

{(Xc, Xu)ER21xc+Xu >0,  Ag <.Xu <~Ag and xc ~<0}, 

we can take a quadruple X=(X~, + - Xc,X~, X +) satisfying the conditions (75), (76), (77) 
- § - § 

and (78) such that  the rectangle (X~, Xc ) x (Xu, Xu) contains the point (X~, X=). Thus 

we can choose a countable collection X of quadruples that  satisfy (75), (76), (77) and (78) 

such that  the conditions (a) and (b) in Theorem 3.22 hold. We are going to show the 

condition (c) in Theorem 3.22. We fix s>.r+3. Let X '  be an arbitrary finite subset of X. 

Then we can take a positive number ~>0 so small that  the conclusion of Proposition 7.1 

holds for all the quadruples in XC For each X E X'  and n~> 1, let $~" (X, ~, n) be the closed 

subset of mappings FE/g  that  satisfy 

N(X, ~, ~n, n; F) />  exp((x~ +X~ -X~ -X~ 

If a mapping FE/4 belongs to 81 (X'), or F does not satisfy the transversality condition 

on unstable cones for X', then 

r + + ,} l iminfmax n ( X ~ + X ~ - X ~ - X ~ )  X=(X~'Xc 'X '~ 'X~' )EX >>.1 

because N(X , ~, k, n; F) is increasing with respect to e and k. Hence we have 

S ~ ( X ' ) c  U N U S;(X ,e ,n)  C U S~(x,~). 
m > O  n > m  x E X '  xEX' 

Prom Proposition 7.1, the subset Uxcx'  $1 (x, e) is shy with respect to the measure Ad~, 

and hence so is SI(X') .  Further, the closed subset N,~>m Uxex, S~(x, e, n) is nowhere 

dense, because it is shy with respect to the measure Ad~. Thus SI(X')  is a meager subset 

in/4 in the sense of Baire's category argument. [] 
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7.2. R e d u c t i o n  o f  T h e o r e m  3.22: T h e  s e c o n d  step 

The second step of the reduction is rather involved. We reduce Proposition 7.1 to yet 

another proposition, Proposition 7.3, which will be proved in the remaining part of this 
- -  - - I -  - + section. Below we consider an integer s>/r+3,  a quadruple X - { X c , X c , X u , X u }  and 

a positive number ~. We assume that  the quadruple X satisfies the assumptions in 

Proposition 7.1, that  is, the conditions (75), (76), (77) and (78). 

In this section, we will introduce several constants that  depend only on the quadruple 

X and the integers s ~> r ~> 2 besides the objects that  we fixed in w In order to distinguish 

such constants, we will use symbols with a subscript X for them. Also we will use a generic 

symbol C x for large positive constants of this kind. The usage of this notation is the 

same as that  introduced in w and w 

The choice of the number ~ > 0 is important  for our argument not only in this sub- 

section but  also in the remaining part of this section. We claim that  our argument in this 

section is true if c is smaller than some constant ~ .  Below we will assume that  O<e<~e x 

and give the conditions on the choice of ~x in the course of the argument. 

From the condition (78), we can fix a positive constant h x such that  

+ + 4 -  + 
h x + l  > - - A 

Xc + Xu - Xc - X~ 

and 
- - + +  A A 

Then we fix a positive integer qx such that  

2 ( x ; , - z ; )  + +  - +X~ -X~ +X~ +2X~ 

qx > X~ + ) G - X + + -  (hx +2)(X~ +X~)" 

Also we put 

r x = 100 (hx§ ~> 100. (79) 
Ag 

Definition. For integers 0 < p < n  and a point z E M ,  let S l ( X , e , n , p , z )  be the set 

of mappings F E H  such that  there exist a subset qx {wi}i=0 in F - P ( z )  and subsets Ei,  

O<~i<~qx , in F - n + P ( w i ) C F - n ( z )  that  satisfy the following three conditions: 

(S1) The subsets E~ for O<~i<~q• are contained in A(X, e, 2 ( h x + l ) E n ,  n; F ) ,  and 

#E~ = [exp((x~- +X~ - X ~  - X ~  - r x c ) n ) ]  § 1. 

qx ($2) For any points y and y~ in the union Ui=0 Ei, we have 

Z(DFn(EU(y ) ) ,  DFn(EU(y , ) ) )  + _ h A exp((Xc - X u  + 6 ~ + h x ( X c  +X~ +4~))n) .  
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($3) For O<<.j<~p and O<~i,i~<~q• we have 

F j (B(wi, 10 exp(-rxcn))M B(we, 10 exp(-rxvn)) = 0, 

except for the case where both i=i I and j = 0  hold. 

For an integer n/> 1, we consider the lattice 

Ln = L(exp((Xc -Xu)n)),  

where L ( . )  was defined in w 

subsection: 

LEMMA 7.2. We have 

The following lemma is the main ingredient of this 

S l (X, r  U U Sl(x,r 
n--+ oo p zELn 

where Up indicates the union over integers p satisfying 

3hx(AJ)~g)en <<.p <<. 3hx(hx+ l)(AJAg)r l. 

(80) 

(81) 

Proof. Let F be a mapping in S I ( X , r  ). We show that  there are an arbitrarily 

large integer n, an integer p satisfying (81) and a point z C L ,  such that  F belongs to 

SI(X, r n,p, z). From the definition of SI(X, E), there are infinitely many integers m that  

satisfy 

(82) N(X, r cm, m; F )  > exp((x~ +X~ -Xc -Xu 

In the argument below, we consider a large integer m satisfying the condition (82). Note 

that,  since we can take the integer m as large as we like, we may and will replace m by 

a larger one if it is necessary. From the definition of N( .  ), there exist a point ffEM and 

a subset P in A(X , r ~m, m; F )  with cardinality 

A A__2r # P  > exp((x{ +X~ -Xc - X ,  

such that  Fm(p)={~} and 

Z( DFm(E~(w) ), DFm(E~(w') ) ) <<. lOHg exp((x +-X~ +2r 

for w, w~EP. We put p :=  [3hx(Ag/)~g)r and consider the subsets of P,  

Pt(w) = {w' E P I Fm-tP(w ') = Fm-lp(w) } 
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for O<.l<~ [re~p] and wEP. Since P~(w) is contained in A(X, e, (m+Ip)~, m-lp; F) by (21), 

we have 
~r <~ ~ exp((x + +X ++ + 7E)(m--lp)+6(m+lp)~) 

(83) 
<~ exp((x + +X ++ +7e)(m-lp)+7(m+lp)e) 

by Corollary 5.2, where the second inequality holds when m is sufficiently large. In 

particular, for the case l=[m/p], we have 

~=P[m/p] (w) < exp((x + +X ++ + 7e)p+ 14era) < exp(-[m/p] ~p) ~r 

where the second inequality holds if e x is smaller than some constant that depends only 

on X, hx, Ag and/kg, and if we consider sufficiently large m according to the choice of e x. 

Thus there exist integers 0~< l< [m/p] such that 

mca ~ #Pt+l (w) < exp(-cp) max #Pl (w). (84) 
wCP 

Let lo be the smallest integer 0~<l< [re~p] such that (84) holds. Then we have 

mca ~ # Pzo(W) >~ exp(-el0p) #P.  

Take a point woeP such that ~Pto(WO)-=max~ep #Plo(W), and put n=m-lop, z= 
Fn(wo) and E=/~o(W0 ). Then 

~E -= r >1 exp(-E(m-n))  # P  >/exp((x; +X~ -X~ -X~ -3e)m).  

Comparing this with (83) for l=lo, we obtain 

X + + 4 _ v +  

m < X; +X~ - X ~ - X ~  -17E n < (hx+l)n ,  

where the second inequality follows from the choice of h x provided that ~x is smaller 

than some constant that depends only on X and h x. Hence n and p satisfy the condition 

(81) and we get 

E C A(X, ~, ~m, m; F) C A(X, ~, (m+lop)~, m-lop; F) C A(X, ~, (2h• n; F). 

From (4), we can obtain, for any points w and w t in E, 

A( DF'~(E~(w) ), DFn(E~'(w') ) ) 

D*Fm-n(eu(Fn(w))) A(DFm(EU(w)), DFm(EU(w'))) 

~< A 9 exp((-X; +X+)(m-n) +2cm) 10H 9 exp((x + - x ~  +2~)m) 

= lOHgAg exp((x +-X~ +4c)n+  (Axc+AX~,+4e)(m-n)) 

exp((x~ +-X[  +he+hx(xf +X~ +4~))n), 
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provided that  m is sufficiently large. 

Let us consider the subset {wi}~~ of all points w E F - P ( z )  such that  

F n - P ( w ) A E # ~ .  By (19) and (21), it is contained in A ( x , e , r  Corol- 

lary 5.2 gives the following estimate for its cardinality i0: 

io ~ xz exp(5Agp+6~(rn+plo)) <~ xe exp(5Agp+ 12era). 

We put E ~ = { Y ~ E I F ~ - P ( y ) = w ~ }  for 1~<i<i0, so that  E = U ~ ~  Ei. 

By changing the index i, we assume that  the cardinality of the subset Ei is decreasing 

with respect to i. Let il be the smallest positive integer such that 

#El  > ~ #E~ = - y -  
/ = 1  /=1 

Then we have #E~ 1- (i0 - il + 1) ~> ~ ~  # E l  ~> 1 # E  and hence 

-Xc -Xu ~ 0  > e x p ( ( x c + x ~  A A rxc )n  ) for l <<. i < i l ,  

where the last inequality follows from the definitions of p and r x provided that  m is 

sufficiently large. We also have 

il >~ ~ l # E i  # E  >~ expep 
~ E 1  ) 2 ~ E 1  2 

from the condition (84) for l=lo. 

Notice that  the point z that  we took above may not be contained in L~, while we 

would like it to be. So we want to shift it to the closest point in L,~. The distance 

from the point z to the closest point in L~ is bounded by e x p ( ( x g - x ~ ) n ) ,  and hence by 

~ e x p ( ( x ~ - 5 ~ - 3 ( 2 h ) c + l ) e ) n ) ,  provided that  e• is smaller than some constant which 

depends only on X and that  we took sufficiently large m. Thereby, by virtue of Lemma 5.1, 

we can move the points wi and those in Ei accordingly so that  the relations FP(wi) - -z  

and Fn-p(Ei)={wi} a r e  preserved. Henceforth, we consider the points zELn,  wi and 

the subsets El thus obtained. Lemma 5.1 guarantees that  the subsets El are contained 

in A(X, e, 2 ( h x + l ) e n  , n; F )  and that  

Z(DF~(E~(w) ) ,  DF~(E~(w ' ) ) )  .< + - ~ -~ exp((xc -X~ +5~+hx(xc  +Xu +4~))n) 

+ 2~s exp((x~- - X/~ + (4hx + 2)e) n) 
+ _ A A 

< exp((xc -Xu +6e+h•  +X~ +4e))n)  
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i l  for any points w, w'C [J~=l Ei, provided that  r215 is smaller than some constant which de- 

pends only on X and that  m is sufficiently large. Up to this point, we have found an arbi- 

trarily large integer n, an integer p, points z, wi, l~i<~il, and subsets Ei, l ~ i ~ i l ,  that  

satisfy the conditions (81), ($1) and ($2). It remains to choose q x + l  points among w~, 

1 ~ i  ~<il, so that  the condition ($3) holds. 

Put  W={w~l l~ i~ i l  } and 5=40pexp(2Agp-rxcn ). Note that  the points w~ belong 

to A(x,r162 ) by (19). We can check that  

25 < ~ -  1Qe exp((_X+ +Xc- - 5 ~ ) p - 8 ( h  x + 1)Cn) 

by using the definition of p and rx, and the condition (81), provided that  m is large 

enough. Thus F p is a diffeomorphism on the 25-neighborhood of each point in W from 

Lemma 5.1 (v). This implies that  the distances between the points in WcF-P(z)  are 

not less than 25. Let L c W  be the set of points in W that  are within distance 5 to either 

of the points FJ(z), O<~j<p. Then we obviously have #L<~p. 
�9 V 0 Consider a sequence J={3~}~=0 of integers such that  l ~ j ~ p  for 0 ~ < ~ 0 .  The 

sum of the integers in J is denoted by I J I:= ~ ~  o j~. For x, x ' e  W \ L, we write x >-j x' 

if there is a sequence of points Xo=X, Xl, ..., x ,0+ l=x '  in W \ L  such that  

FJ~(B(xv, lOexp(-rx~n)))nB(xv+l , 10exp( - rx~n) )  r O for 0 ~<, ~< ~o- 

From the definition of 5 above, it is easy to see that  we have d(FIJl(x),x')<5 if x>-jx' 
for some J with IJl<~2p. Hence, given a point x E W \ L  and an integer l~i~<2p, there is 

at most one point x'  in W \ L  that  satisfies x ~ j x '  for some sequence J with [Jl=i. 
Actually, the relation x~-jx' holds for some points x and x' in W \ L  only if I J{ <p. In 

fact, otherwise, there should be a sequence J with p ~  IJI <2p and points x and x' in W \ L  
such that  x >-j x', and hence d(FIJI-p(z), x') =d(F IJI (x), x ' )  <5. But, since 0<~ IJI-p<p, 
this contradicts the definition of L. 

The relation x>-jx' never holds if x=x'. In fact, if x ~ j x  for some J,  the relation 

x :>-j~ x should hold for any i~> 1, where j i  is the iteration of J ,  i times. But this obviously 

contradicts the fact proved in the preceding paragraph. 

We write x>-x ~ for x , x 'EW\L  if either x=x', or x ~ j x '  for some sequence J =  
�9 /.I 0 {3~}.=o satisfying l~j,<~p. From the argument above, this relation is a partial order 

on the set W\L,  and, for each xEW\L ,  there exist at most p points x'  in W \ L  such 

that  x>-x'. Let Wm~x be the set of the maximal elements in W \ L  with respect to the 

partial order ~. Then we have 

#Wm~x ~> # ( W \ L )  >~ [1 e x p C p ] - p  >~qx+l ' 
P P 
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qx provided that m is large enough. Take qx+l  points {wi}i=0 from Wmax. Then the 

condition ($3) holds for them. We have completed the proof of Lemma 7.2. [] 

Using Lemma 7.2, we can deduce Proposition 7.1 from the following proposition: 

PROPOSITION 7.3. Let s>~r+3. Suppose that a quadruple X satisfies the conditions 

(75), (76), (77) and (78), and that a positive number E satisfies 0<~<E x. Then, for any 

d>O and any mapping G in Cr(M, T), there exists an integer no such that 

J~s (~)G 1 (S1 (X, s n, p, Z)) MD~-3(d)) < exp((2X~- -2X~ - e ) n )  (85) 

for n>~no, zELn and 0 < p < n  satisfying the condition (81). 

Remark. 4)e and D~-3(d) above are defined by (2) and (25), respectively. 

In fact, since we have # L n = ( [ e x p ( ( - X ; + x ~ ) n ) ] + l )  2, it follows from Proposi- 

tion 7.3 and (80) that 

J~I~(~I(SI(X,~))MD~-3(d))=O for any d > 0  and G E C r ( M , T ) .  

Since the measure A/[~ is supported on C~-3(M, R2)=Ud>0 D~-3(d), this implies that 

the subset $1(X, e) is shy with respect to the measure A4~. 

7.3. P e r t u r b a t i o n s  

In this subsection, we introduce some families of mappings and give estimates on the 

variations of the images of the unstable subspaces E~(z) under iterates of the mappings 

in the families. Henceforth, in this subsection and the next, we consider the situation in 

Proposition 7.3: Let s~>r+3, let X be a quadruple that satisfies the conditions (75), (76), 

(77) and (78), and let ~ be a positive number that satisfies 0<~<~ x. 

Fix a C~-function r R2--+R such that [[r 1 ~<1 and 

x, if [[wi[~< ~o, 

r  O, if [[w[[ /> l, 

for w : ( x ,  y ) E R  2. For each point zEM,  we consider an isometric embedding 

{weR  I Ilwll < - - - * T  

that carries the origin to z and the x-axis R •  {0} to E~(z). For n~>l, we put 

~,~ = exp(-rxEn ). 
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Recall that  we took the subset/4 of mappings as a neighborhood of a Cr-mapping F~ 

in w For an integer n~>l and a point zEM, we define the C~-mapping  ~n,z: M--+R 2 

by 
S 5~+3r if d(w, z) < ~n, 

r :m_ 

0, otherwise, 

where eC( �9 ) is either of the two unit vectors in the central subspace EC( �9 ). Note that ,  for 

any mapping Feb/, the parallel translation of the vector e~(F~(z)) to F(z) is contained 

in S~(F(z)) from the choice of the constant Qg in w 

Remark. Notice that  the definition of Cn,~(w) does not depend on FEb/.  

Let n and p be positive integers that  satisfy the condition (81), qx S={xi}i=o an ordered 

subset of the lattice L ( ~ n ) ,  and F a mapping in/g.  The family of mappings that  we 

are going to consider is 

qx 

Ft(w)=F(w)+Et~r  >T, 

where t={ti}~lEI:tq• is the parameter that  ranges over the region 

R {t q• ERqxl e x p ( x ; n ) } .  = = { t i } i = l  JtiJ <~ 

For this family, we have 

C q ~-~+3 t ~ , f o r t E R a n d 0 ~ < l ~ s .  (86) dc~(Ft,F)~< g x ~ ~' c 

From this inequality in the ca se /=0 ,  we obtain 

dco (Fit, F j ) <. p exp (A~p) Cg q• 5~+3 ex p (x ;  n) < 5,~ (87) 

for O<.jEp and t E R ,  where the second inequality follows from the condition (81) and 

the definition of r x provided that  n is larger than some constant Ne. (Recall the notation 

introduced in w 

Let us use the notation 0i for the partial differentiation with respect to the param- 

eter ti. We have 

_< ~+a (88) IlO~Ft (w)ll ~ ~,~ 

and 

JlO~(DFt)(v) Jl <~ Cg5~ +2 Ilvjl 

for any wEM, v E S t ( w )  and t E R .  If d(w,x~)<~5= in addition, we also have 

(89) 

Iv*(O~(DFt(v)))l >1 c2'e~§ Ilvll (90) 
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for any wEM, vES"(w)  and t E R ,  where v* is the unit cotangent vector at Ft(w) that  

is normal to DFt (v). 

In the following argument, we assume that  

F J (B(xi, 25n))N B(xi,, 25n) = ~ (91) 

for O<<.i,i'<~qx and O<~j<~p, except for the case where both i=i ~ and j - -0  hold. Note 

that  (91) and the estimate (87) imply that  

F~(B(xi,5,))MB(z~,,Sn) = Z  for t E R .  (92) 

Consider a point z E M and families of points Yi (t) E M, 0 ~< i ~< qx, parameterized by 

t E R continuously. Suppose that  

(Y1) F~(yi(t))=z; 
(Y2) y~(t)EA(x,e, (2hx+3)~n,n; Ft); 

(Y3) d(Ft-P(yi(t)), x i )<  ~6o5n 
for 0 <~ i <~ qx and t E R. Let us put 

Ai(t) = ~+2 ] D*Fp-1 (OFt -p+ I ( e~ (Yi (t)))) I 
D,F p-I  ( DF: -p+I (e u(yi(t ) ) ) ) 

for l<<.i<<.qx, where eU(z) is either of the two unit tangent vectors in E~(z). Then we 

can show the following estimates on the motion of the subspace DFg(E~(yi(t))) as the 

parameter t moves: 

LEMMA 7.4. Let the constant Ne be larger if necessary. If n )Ne ,  we have 

C~lAi(t ) <. IOi Z( DF~(EU(yi(t ) ) ), E~(z))] ~< CgAi(t ) 

for l <. i <. qx , and also 

[Oj Z( nE~(E~(y~(t ) ) ), E~(z))l <~ C a exp(-Agp) Ai(t ) 

for O<~i<~qx and l~j<~qx , provided that i~ j .  

Proof. Let l<~i<~qx and O<~j<~qx. For O<~rn<~n, let em be the unit tangent vector 

in the direction of DF~(eU(yi(t))), and denote by e~  the unit cotangent vector that  

is normal to era. We can choose the orientation of the cotangent vectors e*  so that  

(DE~-'~)*(e~)=D*F~-m(em)e~. Also we put zm=F~(yi(t)) for simplicity. Notice 

that  em, e*  and Zm depend on the parameter t. 

We first give some simple consequences of the conditions (Y1) and (Y3). By (92) 

and the condition (Y3), the point Zm is not contained in B(xj,5~) for n - 2 p < m < n ,  
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except for the case where both m = n - p  and j=i  hold. In particular, the points z m 
for n - p < m < n  are not contained in U~_~0 B(xh 6n). So the condition (Y1) implies that  

the point zm for n-p<m<~n does not depend on the parameter t. For O<~m<~n-p, 
differentiation of both sides of the identity Ft-P+l-m(Zm)=-Z~-p+l gives 

n--p+1 
n- -p+l - -m (DFi )~m(O~ zm)+ E (DFt-p+l-')z'((OJFt)(zl-1))=O" 

/ = m + l  

Applying (DFt-P+l-m)z ~ to both sides of this identity and using (88) and (7), we obtain 

n--p+1 n--p+1 

IOjzml ,5,1 Cfi +a (93) GII((DF~ )gin) l[ <~ ~ ID*d-m(em)l" 
/ = m + l  / = m + l  

Now we are going to estimate 

Oj Z(DF~(EU(yi(t))), EU(z)) = Oj ~(era E"(z)) = e*(0s (DFt~ (e0))) 
D,F~(eo) 

Differentiating both sides of 

DF~(eo) = (DFt)~._, o (DFt)~._2 . . . . .  (DFt)~o (eo) 

and using the relation DF~(eo)=D,F~(eo)e,~, we can obtain 

n--1 
~"  ( r)F.n-m- >~ Oj(DF~(eo))= A.~'~ t ,z..+l((Oj(DFt)zm)(em))D*F~(eo) 
m = 0  

n--1 

+ E (DFg-m-1)~+ 1 (D2Ft(em' Ojz,~)) D, Fg(eo) 
m = 0  

+ (DF~), o (De ~ (Ojzo)). 

From this and the relation (DFn-'~) *(e* n J-- ~ m/em, ~ * it follows that  

n--1 

8 ; ( O J ( D / ~ t n ( e ~  = E * n--m--1 * D F~ (e.~+l)e.~+l((Oi(DFt).,~)(e.~))D.F~(eo) 
m=O 

n--1 
-}- E * n--m--i * D F~ (em+l)em+l(DZFt(em,Ojzm))D,F~(eo) 

m-~O 

+ D*F~(eo)e~(DeU(Ojzo)). 
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Note that  (Oj(DFt)).~=O for n-2p<m<n,  except for the case m=n-p ,  and that  

OjZm=O for n--p<m<~n as we noted above. Thus we obtain 

e~(Oj(DF~(eo))) D*Fff-l(en_p+l) en_p+l((Oj(DFt)z~_~)(en-p)) 
D.F~(eo) D.FP-l(en_p+l) D, Ft(en-p) 

n--2p D . F n _ m _ l [  e ~ e* O. DF, e = y ~  t ~ m+lJ m+~(( , (  t )~m)(m))  
D F,~-m-lle ~ D.Ft(em) m=0 * t I, re+l] (94) 

n-p n . F y _ m _ ~ e  , . (O2Ft(em,Ojzm)) _t_~-~ lJ  r t ~ m + l ]  em+l  

--m~==o D,F:-m-l(em+l) D, Ft(em) 

D*F~(eo) * 'n ~'~ " + ~ %( e Lojzo)j. 
~ . ~  Leoj 

From (89), the first sum on the right-hand side is bounded in absolute value by 

c a~+: In*F:< (e~_;+l)l n-~; 
g n p-1 u Z exp(-Ag(n-p+l-m+2Cg)) <<. CgAi(t) exp(-Agp ). 

D.F~ (en-v+l) m=0 

By the estimate (93) on Ojzm and the condition (Y2), the second sum on the right-hand 

side is bounded in absolute value by 

n - p  n - p + 1  . F n _ m _  1 (~s+3 
Cg ~ Z ]D t (em+l)[  

m=O/=m+l D*Ft~ -m (era) [D*Flt-m(em)l 
n--p n--p+l  (~nS + 3 [D*F~-f(ez)[ 

=Cg Z ~ n.F~-~(el) n.Flt-m(em)ln,Ft(em)] m=0 l---m+l 

n - p  n--p+1 
ID*F~-I (en_p+l)[ e x p ( - A g ( n - p + l  - m + 2 c 9 )  ) 

<Cg 5s+3 D.FtP-l(en_p+l) ~ ~ exp(-(2hx+4)en ) 
m=0 /=m+l 

< CgAi (t) an exp((2h x +4)en)  

< CgAi(t ) exp(-Agp), 

where the last inequality follows from the definition of the constant r x and the condition 

(81) on p. Similarly, we can show that  the last term on the right-hand side is bounded 

by 
n--p+l  . . . .  n" ~' ~s+3 

(7. ~ I X ) r g t e ~  
~g ~ D.Ft~(eo ) iD.Ft~(eo) I < CgA~(t) exp(-agp). 

From (89) and (90), we have 

C~15~ +2 < [e*p+ 1 (OjDFt (en-p))[ < CgS~ +2 if j = i, 
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and OiDFt(en-p)--O otherwise. Using these estimates in (94), we can conclude the 

lemma, by taking the constant N~ larger if necessary. [] 

Consider the mapping k~: R-+R q• defined by 

ko(t) -- {A(DF~(E~(yi(t))), DF~(E~(yo(t))))}qx=l. (95) 

As a consequence of Lemma 7.4, we have the following corollary, where we take the 

constant N~ still larger if necessary: 

COROLLARY 7.5. The mapping �9 is injective and there is a constant B x such that 

I d e t n ~ ( t ) [ > e x p ( - B x e n  ) for tER,  

provided that n >1 N~. 

Proof. Let D~( t ) i j  be the (i , j)-entry of the representation matrix of Dq2(t) with 

respect to the standard coordinate on R q• Lemma 7.4 tells us that  the diagonal entries 

satisfy 

C~-lAi(t) < ID~(t)~il < CgAi(t), 

while the off-diagonM entries satisfy 

ID~(t)ij l  < Cg exp(-Agp)Aj(t), j ~i. 

These facts imply that  �9 is injective on R and that  Idet DkO(t)l is bounded from below 

by q~ 1-[i=1 CgAi(t), provided that  n is larger than some constant C• Therefore we have 

Idet DkO(t)] > (Cg exp((Xc -X+)p-(4hx+6+(s+2)rx)~n))q• 

from the condition (Y2). Using the condition (81), we obtain the corollary. [] 

7.4. T h e  p r o o f  of  P r o p o s i t i o n  7.3 

In this subsection, we complete the proof of Theorem 3.22 by proving Proposition 7.3. 

Let G be a mapping in Cr(M, T) and d>0 a positive number. We consider a large integer 

n>N~, an integer p satisfying the condition (81), and a point z in the lattice L~. We 

{xi}i=o in put 5n=exp(-rx~n ) as in the last subsection. Consider an ordered subset S =  q~ 

the lattice L(4A55n ). Let Sl(X,c,n,p,z;S) be the set of mappings F in Sl(X,r 
such that  the subset q• {wi}~=o in the definition can be taken so that  

($4) d(wi,xi)<~o5n for O<~i<qx. 
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The subset 8a(X,e,n,p,z) is contained in the union of S~(X,r over all 

ordered subsets S={xi}i=oqX of the lattice L(~hn) .  And the number of such ordered 

sets S is bounded by (40(I~-1+1) 2(q~+1). Therefore, in order to prove the inequality in 

Proposition 7.3, it is enough to show that 

JM~(~Gl(sl(X,~,n,p,z;S))MD~-3(d))<exp((2(X;-X~)-2rx(qx+2)e)n)  (96) 

for sufficiently large n. 

Take an arbitrary mapping F in $1 (X, r n, p, z; S) and consider the family of map- 

pings Fr defined for the ordered subset S in the last subsection. Note that the conditions 

(91) and (92) follow from the conditions ($3) and ($4). Let y be the set of continuous 

mappings 

y : R  > M x M x  xM, y(t) q~ . . . .  (yi(t)}i= o, 

that satisfy the conditions (Y1), (Y2) and (Y3) in the last subsection. A family y(t)  in 

J; is uniquely determined once y(0) is given because of the conditions (Y1) and (Y2). 

Thus we have 

#Y ~ (#CA(x, e, (2hx +3)en, n; F)NF-n(z) ) )  q• 

<~ x~ exp((x + +X ++ + 7~+6(2h x +3) e)(q x + 1)n) 

~< exp((x + +X++)(q•215 

for sufficiently large n, by Corollary 5.2 and the condition (Y2). 

For a family yEY, let Z(y) be the set of parameters tER such that 

Z(DF~(E~(y~(t))), DF~(E~(yo(t)))) <~ exp((x + -X~ +6E+hx(x~ +X~ +4~))n) 

for all l~ i~qx .  Corollary 7.5 implies that we have 

m(Z(y)) < exp((x +-X~ +hx(x~+x~))qxn+Cxcn) ,  

provided that n ~> Ne. 

Suppose that Fs belongs to SI(X, s, n,p, z; S) for a parameter sER. Then there are 

points wi E F~P ( z ), O <~ i <~ qx , and subsets Ei c F[  (~- P) ( wi ), O <~ i <~ q x, which satisfy the 

{Y~}i=0 of points conditions (S1)-($4) with F replaced by Fs. Consider a combination q~ 

such that yiEEi for O<~i<~qx. From (86), we can check that 

dc~(Ft, Fs) < 0~exp( (x ; -he)n-3-2(hx+l )~n)  for any t E R ,  

provided that n is sufficiently large. Thus, by the condition (S1) and Lemma 5.1, we can 

check that there exists a unique element y(t)={y~(y)}qh0 in y such that yi(s)=yi for 
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O<~i<.q x. The condition ($2) implies that  s belongs to the subset Z(y).  Therefore, if Fs 

belongs to 8~ (X, E, n, p, z; S), the parameter s belongs to the subset Z(y)  for at least 

qx 

/> exp((xr +X~ -X~ -X~ -rx~l(qx+lln) 
i = 0  

elements y in y .  Now we arrive at the estimate 

m({ t eRIFseS l (X , s , n ,p ,  z; S)}) 

~< E v e y  m(Z(y) )  
qx l-L:o #Ei 

+ - A A + + +  < exp(((Xc -x~+hx(X ~ +X~ ))q• )(qx+l))n+C• 
exp((xg + X~ - X# -X~  -rxr + 1)n) 

Note that  we have this estimate uniformly for the mappings F in 81 (X, r n, p, z; S). Put  

m=q x, Ti=exp(x~n ) and ~bi=r for l<~i<~qx in Lemma 3.20. Then the assumption 

(26) holds provided that  n is sufficiently large. The conclusion is that  

A4~ (~)31 (81 (X, s, n, p, z; S))N D~-3 (d)) 
- A A < 2qx+lexp((x++-X; -X~ +(hx+2)(Xc +X~ ))qxn) 

• + x f  

Using the condition in the choice of qx, we obtain (96) for sufficiently large n, provided 

that  we take sufficiently small ~• 

8. G e n e r i c i t y  o f  t h e  no  flat c o n t a c t  c o n d i t i o n  

In this section, we consider the situation where the images of admissible curves under 

an iterate of a mapping F E H  have fiat contacts with the curves in the critical set C(F), 
and investigate whether we can resolve all such flat contacts by perturbations. Our goal 

is the proof of Theorem 3.23, which will be carried out in the last subsection. The key 

idea in the proof is that  the non-flatness of contacts between curves is easier to establish 

if we assume higher differentiability. The reader should notice that  the content and the 

notation in this section is independent of those in the last two sections. 

8.1.  T h e  je t  s p a c e s  o f  c u r v e s  

We begin with formulating a sufficient condition for the no flat contact condition in 

terms of jets. For an integer l<~q<.r and a point zEM, let Fq be the set of germs 
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of Cq-curves 7: (R, 0)-+(M, z) at z. Recall that  we always assume the curves to be 

parameterized by length. Two germs 71 and 72 in F q are said to have contact of order q 

if d(71(t),72(t))/Itlq-+o as t-+O. This is an equivalence relation on the space Fq. The 

equivalence classes are called q-jets of curve and the quotient space is denoted by JqFz. 

Suppose that a q-jet j of curve at zEM is represented by 7EFz q. Then the tangent vector 

d~/(O)/dtET~M at z does not depend on the choice of the representative 7, and neither 

do the differentials di7(0), 2<~i<<.q, which are defined in w Thus we put  

j ( i ) = - ~ ( O )  and j(i)=di7(o)for2~<i~<q. j ( ~  

The jet space of curves of order q is the disjoint union JqF:=HzEuJqFz, which is 

equipped with the distance defined by 

l- �9 , maxrd, . (o)  .(0)\ Z,.(1) o(1), max r .(i) .(i) 4i<~q}} djtJ1,J2)----- ~ (Jl ,J1 ), (J1 ,J2 ), ~ Jl -J2 I 2 

Then the mapping 

j EJqF ,  >(j(1),(j(i))q_2)ET1M• 

is a homeomorphism, where T1M is the unit tangent bundle of M. Each mapping F E n  

acts naturally on the space JqF. We write this action simply as 

F: JqF ---+ JqF, 

[71 ~ [F,7]. 

For 2 ~ q<r, let Jq~4C c JqF be the compact subset of q-jets that  are represented by germs 

of admissible curves. Lemma 3.2 tells us that  Fn(JqAC)cJqAC for n ~n g .  

For a Cq-curve 7: I--~M defined on an interval I,  its q-jet extension is the mapping 

JqT: I--+JqF that  carries a parameter t e l  to the jet in JqF~(t) that  is represented by 

the germ of 7 at t. Recall that  the critical set C(F) for any mapping F in U consists 

of finitely many c r - L c u r v e s .  Let C ( F ) c J r - 2 F  be the union of the images of their 

( r - 2 ) - j e t  extensions: 

C ( F )  = { J r - 2 7 ( I ) [  7: I - +  i is a c r - i - c u r v e  contained in C(F)}. 

LEMMA 8.1. I f  a mapping FELt satisfies 

Fn(Jr-2AC)AC(F) = ~  for some n~> 1, (97) 

then F satisfies the no fiat contact condition. 

Proof. For each point in C(F), we can find a small C~-l-coordinate neighborhood 

(U, r U - + R  2) such that  r is an interval on the x-axis R •  {0} and such that  

either 

(a) nr contains the x-axis R•  for every zEU, or 

(b) Dr contains the y-axis { 0 } •  for every zEU. 
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Since the critical set C(F) is compact, we can cover it by finitely many coordinate 

neighborhoods with these properties. So, for the purpose of proving the lemma, it is 

enough to show the following claim for each coordinate neighborhood (U, r as above: 

There exist C>O and no>O such that 

mR({t e [0, a][F n (7(t))C U and d(Fn(7(t)), C(F)) < ~}) < Cr 1/(r-2) max{a, 1} 

for any a>0, 7EAC(a), n>~no and ~>0. If the condition (a) above holds, this claim 

is clear because the images of the admissible curves in U by the mapping r are curves 

whose slope is uniformly bounded away from 0. Thus it remains to check the claim above 

in the case where the condition (b) holds. To this end, it is enough to show the following 

lemma, because, in the case (b), the images of the admissible curves by ~b are graphs of 

Cr-l-functions whose slopes are bounded by some constant Cg. 

CLAIM 8.2. I f  a Cr-l-function ~ on a compact interval I c R  satisfies 

maxmax~(x)l[l<~q<~r-l}<~K'xe, / I  

minmax~ dq~ xeI } l[~xq (x) l ~ q < ~ r - 2  >6 

for some positive constants K and 6, then we have 

m a ( { x E R  ] I~(x)] <E}) <C(r, 6, K , I )~  1/(r-2) for any ~>0,  

where C(r, O, K, I) is a constant that depends only on r, O, K and the length of I. 

We show this claim by using the following lemma [4, Lemma 5.3]: 

LEMMA 8.3. If a cq-function h on an interval J satisfies [dqh(x)/dxqI>~Q>O for 
all xEJ .  Then mFt({xCJI Ih(x)[<~})~<2q+1(~/0) 1/q for any ~>0. 

Proof of Claim 8.2. Let X C I  be the set of points xCI  such that ]~,o(x)l~<�89 For 

each point x E X ,  there is an integer l<<.rn<~r-2 such that [dm~(x)/dxml>o and hence 

[dm~/dx'~[>~�89 on the interval J (x ) :=(x -6 /2K,  x+6/2K) .  We can take points x iEX,  
i=1, 2, ..., i0, so that the intervals J(x~) cover the subset X and so that the intersection 

multiplicity is 2, thus io <~ 2 mR (I) / (6/K) + 1. Applying Lemma 8.3 to each interval J (x~), 

we can see that m R ( { x E R I  I~(x)l<~}) is bounded by io2r-1(~/�89 1/(r-2), provided 

that c<6. This implies Claim 8.2. [] 

We have finished the proof of Lemma 8.1. [] 
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8.2. Lat t ices  in the  je t  space 

In this subsection, we consider lattices in the space of admissible jets jr-2jtC and formu- 

late a sufficient condition for the no fiat contact condition by using them. Henceforth, 

we fix integers 2<~<r<~s satisfying the condition (3). Note that the condition (3) can 
be written in the form 

( r - 2 ) ( r - l - ~ - ~ ) < ( r - v - 2 ) ( r - 3  2 s - r - ~ + l ~  /" 

1 Thus we can cover the interval [~Ag, 259] by finitely many intervals I(/)=(A-(l) ,  A+(/)), 
l<~l<~lo, such that h - ( l )>~ ;~  and 

( r - 2 ) ( r - 1  r -3 )~- (1)~  < ( r - v - 2 ) ( r - 3  2 s - r - v + l ~  

For n ~> 1 and 1 ~<l ~</o, let Q (n, l) be the set of jets j in J ~-2AC satisfying that 
(Q1) the point j(0) is contained in the lattice L(exp(-)~+(1)(r-2)n)); 
(Q2) the angle Z(j (1), e~(j(~ is a multiple of exp(-A+(l)(r-3)n); 
(Q3) j(q) is a multiple of exp(( -A+(/ ) ( r -3)+A - (l)(q-1))n) for 2<q<.r-2. 
We have 

# q ( n ,  l) • Cg exp( ( r -  2) ( ( r -  1) A + (l) - �89 ( r -  3) A- (l)) n). (98) 

For integers n>~l, l<~l<~lo, a mapping FE/g and a=O, 1, we define V~(n, l; F) as the set 
of jets j in J~-2AC that satisfy 

exp(A-(1)n-a)  <~ fD, F'~(j(1))I < exp(A+(/)n+~r). 

Then, from the choice of the numbers /~+(1), the subsets Vo(n,I;F) for l<~l<~lo cover 
JT-2.AC, provided that n is larger than some constant Cg. 

LEMMA 8.4. There is a constant B g > l  such that, for any jet j in Vo(n,l;F) with 
n~Bg and l <~l<~lo, there exists a jet ieQ(n,l)NVl(n,1;F) such that 

dj (Fn(j),  Fn(i)) < Bg exp(-A+(l)(r-3)n). (99) 

Proof. Let us take a jet jEV0(n, l; F)  arbitrarily. Let w be the point in the lattice 
L(exp(-)~+(1)(r-2)n)) that is closest to j(0). As ](1) belongs to S~'(j(~ the minimum 

angle between j(1) and the cone S~(w) is bounded by Cgd(j (~ w). Hence we can choose 
a jet i cQ(n , l )  such that 

(I1) i(~ and hence d(j (~ i(~ 
(I2) Z(j(')~i(I))<exp(-), +(t)(r-3)n)+Cgexp(-A+(l)(r-2)n); 
(I3) ]j(q)-i(q)l<exp((-A+(l)(r-3)+ )~-(1)(q-1))n) for 2<~q<~r-2. 
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For O<~m<~n, we put z(m)=Fm(j) (~ =Fm(j(~ w(m)=Fm(i) (~ (~ and 

d(Fm(j) ~ Fro(i) (~ = d(z(m), w(m)) for q -- 0, 

Aqm---- Z(Fm(j )  (1), Fro(i) (1)) = A(nFm(j(1)), nFm(i(1))) for q = 1, 

[F'~(j) (q) -Fm(i)(q)l for 2 ~< q ~< r - 2 .  

In order to prove the inequality (99), it is enough to show that  

Aqn <~ Cgexp(-A+(l)(r-3)n) for0<<.q<<.r-2. 

First we prove that  

A~ ~< 2 IIDF~o)II A~ ~< Cgexp(-A+(l)(r-3) n) (100) 

for l<~m<n. As jEVo(n,l;F), we have 

DFzm-k l <~ CgD, Fm-k(DFk(j(1))) (k) 

<~ CgD*Fn(JO)) (101) 
n,E~-m( nFm (j(1))) n , F  k ( j0))  

< cg exp(A§ q)n-~An-m+k)) 

for O<k<~rn<~n. So the second inequality in (100) follows from the condition (I1). We 

prove the first inequality in (100) by induction on l ~ m < n .  Using the simple estimate 

C (A~ ~2 [lexp'~(~)(w(m))-DF~(m-1)(exp;(l_l)(w(m-1)))ll <~ gk"%~,z-1] 

repeatedly, we can get the following inequality for A ~  ][exp~-(~)(w(m))ll: 

ra--1 

~o < DIDF~0) Li ~0 +Cg ~ ~-~-~ IIDF'~(k+I) II(A~ 2 for O<m<<.n. (102) 
k = 0  

Note that we have, from (6), 

m-k- -1  IIDF'~(k+I) II" IIDFkz(o)II <<- Cg D,F m-k-1 (DR k+l (e~(zo))) D, Fk(e~(zo)) 

D, Fm(e~(zo)) (103) 
<~ Cg D,F(DFk(e~,(zo)) ) <. Cg IIDF~o ) II 

for O~k<~m-1. Consider an integer O~rno<.n and suppose that the left inequality in 

(100) holds for 0~<m<rn0. Then, using the estimates (101) and (103) in (102), we obtain 

too--1 
mo 0 D F m O - k - 1  AOo<~ llDF~(o)llAo +Cg ~ .2[iDFff(o)llAoAkO o z(1r 

k = 0  

< IIDC~3 II A~ ( )  
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This implies the first inequality in (100) for m = m o ,  provided that  n is larger than some 

constant C~. Thus we can obtain (100) for l<<.m<<.n by induction. 

Next we estimate A 1 for O<<.m<<.n. We have 

1 A~ <~ Z(DF~o)(jO)), DF~o)(iO))) 

m--1 
"~- Z m--k k m-k--1 k + l  -(1) Z(DF'~(k ) (DF~(o)(i(1))),DFz(k+l) (DF~(0)0 ))), 

k=0 

where we omit the operations of parallel translation (see the remark given in the proof 

of Lemma 5.1). For 0~<k<n, we have DFk(o)(i(1))eSU(w(k)) and d(z(k), w(k))=A~ 

Cv exp(-A+(l)(r-3)n). Hence the parallel translation of DF~(0)(i (1)) to z(k) does not 

belong to the central cone SC(z(k)), provided that  n is larger than some constant Cg. 
Using (4), we can obtain 

Z,DFm-k,,-,.',k ,.(1) . . . .  rn-k-l[D~,k+t ( z(k) ( / JPw(O) (  1 ))'lJl"z(k+l) t ~ ' w ( O ) ( i ( 1 ) ) ) )  

ID*Fm-k-I(DFk+I(JO)))] k .(1) k .(1) 
<~Ag p.Fm-k-l(DFk+l(j(1)) ) Z(DF~(k)(DF~(o)(1 )),DF~(k)(DF~(o)O ))) 

< C 9 exp ( -Ag (m-k -  1))A ~ 

< Cg exp ( -Ag (m-k -  1) -A+( l ) ( r -n )n ) .  

Likewise we can obtain Z(DF'~o ) (j0)),  DF~o ) (i(1))) ~< Cg exp(-Agm ) A~. Therefore, by 

condition (I2), we conclude that  

m--1 

Aim < Cgexp(-Agm) A~+ E Caexp(-Ag(m-k-1)-A+(1)(r-3)n) 
k=O 

<<. Cgexp(-A+(1)(r-3)n). 

Finally, we estimate A$ for 2<~q<~r. From the formula (i0), we can see that 

Aqm <. [D*F(DFm-I(JO)))[ A q ' (104) D.F(DFm-I(j(1)))q m-l:t-Cg Z Ad-l" 
O<.d<q 

Consider this inequality for m=n and estimate the right-hand side by using (104) recur- 

sively as long as there exist terms ZX~ with q > l  or m > 0  on the right-hand side. Then 

we see that  A~ is bounded by 
q 

In*Fn(j(1))[/k~-.[-Cg Z E H H [n*F(FJ(j)(1))[ 
n.F'~(j(1))q n,E(FJ(j)(1)) t Ad 

l < d < q  O=nd~nd+l~... l:d nl~j<nz+l--1 
<.nq<nq+l=n+l (105) 

q 
[D*F(F3(j)(1))I A d 

Z Z II II m 
d=0,1 m=nd<~na+l <~... l=d n,<<.j<nt+l--1 

O<~rrt<n <nq<nq+l=n+l 
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Note that,  for any sequence m =nd ~ nd+l ~ . . .  ~ nq < nq+l ---- n +  1 with q ~ r, we have 

q [D*F(FJ(j)(1))I 
H H 1D.F(FJ(j)(1))z <~ 
l=d nz~j<n~+l-- 

exp(-Ag (n - m - q) + cg q) 
D, Fn-m( Fm(j)(1) ) d-1 exp(-q2Ag) 

exp ( -Ag(n -m) )  
<. C 9 D,F~-m(Fm(j)(1))d-1 " 

Hence it follows from (105) that  

Aq ~< exp(--Agn) Aq+Cgn q E exp(-Agn) 
D.Fn(j(1))q_l o D.Fn(j(1))d_l Ad 

l < d < q  

+C9 E (n-m)qexp(-Ag(n--m))(A~ +Alm) 
O~m<n 

0 1 Ca.o<~m<nmaX . . . . . . . .  (A +A~.)+Cg E exp(-(d-1)A-(1)n)Ad~ 
l<d~q 

where the second inequality follows from the fact that  the jet j belongs to Vo(n, l; F). 
Using the estimates on A ~ and A~m, and the condition (I3) in the inequality above, we 

can conclude that  

Aqn <Cgexp(-A+(l)(r-3)n) for 2<~q<r-2. 

We have proved the inequality (99). The jet i belongs to Vz(n, l; F) because 

n--1  
D*Fn(e~(i(~ ~<Cg~--~. 0 1 

log D.Fn(e~(j(o))) (Am+Am) <~ Cgnexp(-A+(l)(r-3)n) < 1, 
m = 0  

provided that n is larger than some constant C 9. [] 

For integers n~>l, l<~l<~lo and a jet j e Q ( n , / ) ,  let 82(n, / , j )  be the set of mappings 

FE/A such that  jEVI(n, l; F )  and 

d j (Fn( j ) ,  C(F) )  < 2B 9 exp(-A+(l)n(r-3)). 

Then the last lemma implies the following result: 

COROLLARY 8.5. If there exists n>~Bg such that Fq~s for all l <.l<~lo and 
jEQ(n ,  1), then F satisfies the no fiat contact condition. 

In the remaining part of this section, we shall estimate the measure of the subsets 

S2(n,/,j) for j c Q ( n ,  l) by using Lemma 3.20. 
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8.3. P e r t u r b a t i o n s  

In this subsection, we introduce some families of mappings and give a few estimates on 

the variation of the images of jets under the iterates of mappings in the families. In the 

argument below, we fix l<~l~lo and put 

( f n = e x p (  A+~ )n)  for n~>l. 

For l<.q~r-2, we fix a Ca-funct ion Cq: R2--~R such that  

xq/q! for (x ,y)EB(O,~o) ,  

~bq(x,y)= 0 for (x,y)•B(0,1) .  

Remark. We can take the functions Cq so that  their Cr-norm is bounded by some 

constant Cg. 

For each point ~EM, we consider an isometric embedding 

~r {wER2 [ IIwiI < I} ----~ W 

that  carries the origin to the point ~ and the x-axis R x  {0} to E~(~). 

Recall that  we took the subset/g of mappings as a neighborhood of a Cr-mapping F~ 

in w For positive integers n, l<.q<~r-2 and a point ( in M, we define a C~ 

•q,n,r M-+R 2 by 

= ~ 5~r if d(z, 4) < 5n, 
Cq,n,r 

L 0, otherwise, 

where eC( �9 ) is either of the two unit tangent vectors in the central subspace EC( �9 ). Note 

that,  for any mapping FE/A, the parallel translation of the vector e~(F~(z)) to F(z) is 

contained in S~(F(z)) from the choice of U in w 

For a positive integer n, a mapping FE/g  and a point ~ in M, we define 

r - 2  

F t ( z  ) ---- F(z) q- ~ tqCq,n,r M --+ T, (106) 
q---u-kl 

where t = ( t . + l ,  t~+2, ..., t~-2) is the parameter that  ranges over R=[-1, 1] ~-~-~. This is 

the family of mappings that  we are going to consider. 

Remark. The purpose of considering the family above is to move the images Ft ' ( j )  

of the jets jEQ(n ,  l) by choosing the point ~ appropriately. As it will turn out, we can 

keep control of the coordinates Ft ' ( j )  (q) with q />u+l ,  but not of those with 0~q~<u. 
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This is the reason why we restricted the range of q between v + l  and r - 2  in (106). Note 

that, if we take smaller v, we can keep control of more coordinates but the magnitude 

of the perturbation becomes smaller. Thus, we have to choose a good value for u. The 

inequality (3) is related to this choice. 

Obviously we have 

dcq(Ft,F) <~ CgS~ -q and IlOtFtllc~ ~ C~5~ -q (107) 

for O~q<<.r and t E R .  In particular, F t ( M ) c M  if n is sufficiently large. 

We consider a jet j E Q (n, l) n V1 (n, I; F )  and give some estimates on the variation of 

the image Ft ' ( j ) .  We begin with the estimate on the position F~( j )  (~ 

LEMMA 8.6. We have, for O<<.m<~n and t cR ,  

d(Ft~ (j(~ Fm (j(~ < C o II DFj(~)[[5~ .~-< ~o ~ -n'~-~ 

and 

II0tF~ (J (~ II < Co II DFjTo)116L < coh~ - ' ,  

provided that n is larger than some constant C o. 

Proof. The following argument is a modification of that  in the former part of the 

proof of Lemma 8.4. We put z( rn)=Fm(j(~ w(rn)=F~(j (~ and Am=d(z(m), w(m)) 
for O<~rn<<.n, so that  Ao=0.  Using the simple estimate 

[lexp-~(lm) (w(m) ) - (  DF)z(m_l) (exp-~(~_l) (w(m-1) ) )l[ <<. Cg( 5~ + ( Am_ I) 2) 

repeatedly, we obtain 

m - - 1  

/xm ~< ~ N(DFm-k-1)z(k+l)] I Cg(5~+(Ak) 2) (108) 
k = 0  

for O<~m<~n. Consider an integer O~mo<~n and a positive number K, and suppose that  

we have 

Am < K II (DFm)z(o)[I ~ (109) 

for 0 ~ m < m 0 .  Then, using this, the inequality (103) and the simple estimate 

G ~  exp(Agk)< I]DF~(o)II <<.GIIDF~(o)II .~Co5 n for O<<.k<<.m 
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on the right-hand side of the inequality (108) for re=m0,  we obtain 

m - - 1  

Amo < C 9 II ( DFm~ )z(O)I[ E (5~ [[ DFkz(o) l1-1 + K 25~s II DFk(0) I[) 
k=O 

m-1 

<. Cg [[ (DF "~~ [[ (f~ ~ (exp(-Agk)+K~5~- ' ) .  
k=O 

This implies (109) for m=mo, provided that  K and n are larger than some constant Cg. 

Thus we can obtain the first claim of the lemma by induction on m. 

Put  A'm=OtF~(j (~ for O~m<~n. Using the simple estimate 

I _<: s , II A'-(DF)z(m-1)Am-lll "r Cg(6n-~ irn-l l l im-1]l)  

repeatedly, we obtain 

m - - 1  

AZ <~ ~ I[ (DFm-k-1)z(k+,)11Cg(5~ +Ak [[A~ [[). 
k=O 

From this and the estimates on Am that  we have proved above, we can obtain the second 

claim of the lemma by induction on m, in a similar manner as above. [] 

Next we give the estimates on OfF,(j) (q) for l<~q<~r-2. We use the notation Op 
for the differentiation by the parameter tv. For integers p and q satisfying ~+  1 ~<p ~< r - 2  

and l~q~<r -2 ,  and for a jet iEJ~-2AC and t E R ,  we define 

/~(q)(i, t) = • sin(Z(ec(F~(z))' Ft (i(1)))) [[OP((DqFt)i(~ i(1), ..., i O ) ) ) [ ]  

D.Ft(i(D)q 

where (DqFt)~: ~qT~M--~TF(z)M is the qth differential of Ft at z, and the sign on the 

right-hand side will be chosen appropriately in the argument below. We have 

I/~p(q)(i, t)l ~< CaS~ -q. (110) 

LEMMA 8.7. There exists a positive constant C a such that, if n>~Cg, we have 

Op(F3(J)(q)) m--1 D.F3_k_,(Fk+I(j)O)) /3p(q)(Ftk(J) , t )  
-- ~ D . F ( n - k - l ( F : + i ( j ) ( i ) ) q  < Cg5 s-q+1 

k = 0  

for any ~,+l<~q<.r-2, u+l<~p<~r-2, t E R  and O<~m<~n, provided that we choose the 
sign in the definition of flp(q)(Ftk(j), t) appropriately. 

Proof. Fix u+l~<p~<r-2  arbitrarily. For O<~q~r-2 and O<~m<~n, we put 

{ l[OpF~(j)(~ if q = 0 ,  

A(mq)= OpZ(F~'~(j)O),Vo), if q = l ,  

Ov(F~(j)(q)), if q i> 2, 
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where v0 is some fixed vector. For 0 < m ~ n ,  we have 

A~) D*Ft(F~-I(J)(1)) A~)__l-/~p(l>(Ftm-l(j),t ) ~<CgA~)l<CgS~- ' ,  
D,Ft(F~-I(j)(1)) 

where the second inequality follows from Lemma 8.6. From this inequality and the 

estimate (110) for q=l ,  we see that 

m--1 [D,F~n_k(Ftk(j)(1))l (/~(1)(Ftk(J), t)+5~ -~) < CgS~-" 
[A~)I <C9 E D.F~n-k(Ftk(j)(1)) 

k=O 
for O~rn<~n. Recall the formula (10) and the remark after it. By differentiating both 

sides of (10) with F replaced by Ft and using (107), we obtain 

A ~ ) -  D*Ft(F:-I(J)(1)) A(mq)1-/3P (q)(Et~(j)'t)) <CgS~-q+l+Cg E A ~ ) I  (111) 
D, Ft(FF-I(j)O))q - O~d<q 

for 2<~q~r-2 and O<~m<.n. In particular, we have, from (110), 

A(mq)- D*Ft(FF-I(J)O)) A ~ ) 1 ]  <Cg(~s-q+l-~Cg E A(dm)l 
D.Ft(FF-I(j)<I))q - O~d<q 

for 2~q~r-2 and O~m<~n. Using this inequality repeatedly, we reach 

D.F~-k(Ftk(j)O))q k=l O~d<q 

<~Cg(5:-q+ max max A(d)]. 
\ O~d<q 0<k<m ] 

Hence, we can show the estimate ]A(mq)[~<CgS~-" for 2 < q < ,  and 0<~m<~n by induction 

on q, by Lemma 8.6 and the estimate on IA~ ) ] above. 

Next, using the inequality (111) repeatedly, we can see that the left-hand side of the 

inequality in the lemma is bounded by 

m ]n.F~n_k(ftk(j)(1)) ] (~s-q+l_~ E h~21) " 
C~ E D.E~n-k(Ftk(j)(1))q 

k=l O~d<q 
By induction on u+l<~q~r-2, we obtain the inequality in the lemma. [] 

Note that, for any C~-mapping G: M-+M such that dc~(G, F~) <2L)g, the level curves 

of the function det G: z~+det DGz are regular in the neighborhood B(C(G), ~)g) of the 

critical set C(G), from the choice of the constant pg in w For a point wEB(C(G), ~g), 
let c(w; G) be the (r-2)- jet  at w that is given by the level curve passing through w. 

Suppose that a jet jEj~-2AC satisfies, for all tER,  

(V1) d(F~ -1 (j)(0), ~) < ~Sn; 

(V2) d(Ft~-l(j) (~ C(Ft))>35n; 

(V3) d(Ft~(j) (~ C(Ft)) <5 n. 
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From the condition (V3), we can define the mapping ko: R-+R r-~-2 by 

�9 (t)= { FC(J)(q)-r176 a) q)}i 
5 s - q  -----~+1' 

provided that n is so large that (f~<Qg. The next lemma is the goal of this subsection: 

LEMMA 8.8. If the conditions (V1), (V2) and (V3) hold for all t 6R ,  then the 
mapping �9 is a diffeomorphism and [det D~(t)[ is bounded ffom below by a constant C~ -1, 
provided that n is larger than some constant Cg. 

Proof. From the condition (V1) and the definition of the family Ft, we have 

$(pq)(F~-l(j),t)=O for q>p, 

[ ~ 3 p ( q ) ( F t n - l ( j ) , t ) ]  ~C;15 s-q for q=p, 

in addition to (110). We show that 

D*F~-k-l(F:+l(j)(1)) ~(q)(Ftk(j), t) < Cg5 s-q+1. (112) 
n 

k=0 ~ * ~  t 

Suppose that /3(q)(Ftk(j),t)#0 for some integer O<.k<.m-2. Then we find that 

d(Fk(j) (~ ~) <5,~ and 

d(Ftk+l (j)(0), C (Ft)) ~< d(Fk+l (j) (~ Ft(~))+d(Ft(~), F~(j)(~ (~ C(Ft)) 

from (V1) and (V3). This and (5)imply that ID*Ft(Ft~+l(j)(1))[<Cghn, and hence 
I . m--k--1 k + l  �9 (1) 

D F~ (F~ (]) ) f4(q)(l~k(~ ,~[ <C~5~_q+lexp(_Ag(m_k_l)+2cg). 

Therefore we obtain (112). 
The jet c(w; Ft) for wEB(C(F), 5n) does not depend on the parameter tER  because 

B(~, 5n)nB(C(F), 5~)=Z from (V1) and (72). So we have 

]]Op(c(F~(J)(~ Ft) (q)) H < Cg ]]0p(Ft~(j)(~ < C95~ -~ for v + l  ~<p, q ~ r - 2  

by Lemma 8.6. From (112) and Lemma 8.7, it follows that 

IOp(F~(j)(q)-c(F~(j)(~ Ft) (q)) -~p(q)(Ft~-1 (j), t)l < C~5~ -q+l. 

Let D~(t)q,v be the (q,p)-entry of the representation matrix of Dk0(t) with respect to 

the standard basis of R r -2- ' .  Then, from the estimates above, we have 

IDql(t)q,pl<Cghn i f q > p ,  

IDkO(t)q,pl < Cg if q ~<p, 

ID~(t)q,v] >C~ -1 if q=p.  

Now we can conclude the lemma by an elementary argument. [] 
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8.4. Resolu t ion  of the  fiat contac ts  

In this subsection, we prove Theorem 3.23. Until the last part of the proof, we fix 1 ~l  <~ l0 

and put 5n=exp(-.k+(1)n/v) for n>~l as in the last subsection. Let n be a large integer, 

a point in the lattice L(~&~) andj  ajet  in Q(n, l). Let Yo(n,/,j, ~) (resp. YI(n, l,j, ~)), 

be the set of mappings FECr(M, M) that satisfy 

Fn-I(j)(0>E B(~, ~5n) (resp. F~-I(j)(~ B(~, ~bn)). (113) 

Below we estimate 

Ms(~l(,S2(n,l,j)MYo(n,l,j,~))NDr(d)) for GECr(M,T) and d>0 ,  

where ~ c  and Dr(d) are defined by (2) and (25), respectively. 

Take a mapping F in S2(n, 1,j)NYo(n, 1,j, ~) arbitrarily and consider the family Ft 

defined by (106) in the last subsection. Note that the jet j belongs to Vl(n, l; F) from 

the definition of ,S2(n,/,j). We check that the conditions (V1), (V2) and (V3) hold for 

tER,  provided that n is larger than some constant C 9. Since F belongs to S2(n,/,j), 

there exists a point woEC(F) such that 

dj(Fn(j) ,  c(w0; F)) ~< 2B95(r-3)~. (114) 

In particular, we have d(Fn (j) (~ w0) <Q9 a n d / ( F n ( j )  0), c(w0; F)  0)) <Qg, provided that 

n is larger than some constant Cg. It follows from the condition (C5) in the choice of 

the constant Og in w that 

d(F'~-I (j) (~ C(F)) > gg. (115) 

Using (113), we can see that 

d(r C(F)) >~ d ( F  n-1 (j)(0), C(F))-d(F n-1 (j)(0),  ~) :> ~Og-2Bg5 (r-3)~ > 45n, 

provided that n is larger than some constant Cg. This implies that the critical set C(Ft) 

does not depend on tER. Hence (V1), (V2) and (V3) follow from (113), (114), (115) 

and Lemma 8.6, provided that n is larger than some constant Cg. 

Let ~: R--+R r-v-2 be the mapping defined in the last subsection. Note that the con- 

clusion of Lemma 8.8 holds for this ~. Suppose that Fs belongs to 82 (n, l, j ) n  Y0 (n, l, j, ~) 

for a parameter sER. Then, by definition, there exists a point wlEC(F) such that 

da (Fs (j), c(wl; Fs)) < 2B 9 exp(-  A + (l) n ( r -  3)). 
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Since c ( . ;  F s ) = c ( .  ; F) :  B(C(F) ,  0g)-~Jr-~r is a Cl-mapping whose first-order differen- 

tials are bounded by some constant Ca, it follows that 

dj (F~(j) ,  c(F~(j)(~ Fs)) ~< da (F~(j) ,  c(wl; Fs))+da(C(Wl; F~), c(Fs~ (j)(~ Fs)) 

< (l+Cg)dj(F:(j), c(wl; F~)) < C95~(r-3). 

Hence the image ff'(s) is contained in 

r - - 2  

I-[ [ - c a ~  (r-3)-(8-q), ca~  (~-3)-('-q)] c w -'-~. 
q=v-t- 1 

We arrive at the estimate 

r--2 

mR . . . .  ~({tcRlFtES2(n,l,J)nYo(n,l,J,r <~ Ca 1-I ~(~-3)-(,-q), 
q = v + l  

which holds uniformly for F E  82 (n, l, j )A Y0 (n, l, j ,  if), provided that n is larger than some 

constant C a. 

Now we apply Lemma 3.20. Fix a small number 0 < T < I  such that 

r - - 2  

tmqI~<~T _~v+l tq~bq'n'~ c ,<~ r.<~q<r-zmax IlCqllc~ T < p~(d), 
] q _  

where ps(d) is that  in Lemma 3.18. Note that  we can take T independently of n. Put  

X=S2(n, l,j)AYo(n,/,j, if) and Ti=T in Lemma 3.20. Then the assumption (26) holds 

from the choice of T, and the subset Y in the statement of Lemma 3.20 is contained 

in Yl(n, l , j ,  ~) from the condition (V1), which we have proved above. Therefore we can 

obtain, as the conclusion, 

r--2 
2k4,(@51(S2(n, l,j)nYo(n, l,j, r  ~< CaT_r+,+ 2 H 5~(~-3)-(s-q)' 

M,(r (Yl(n, 1,j, ~))) ~=,,+~ 

provided that n is larger than some constant C a. Then the subsets Yo(n,l,j,~) for 

~e L ( ~  5,~) cover C ~ (M, M),  while the intersection multiplicity of the subsets Y1 (n, l, j ,  r 

for leL(~05~ ) is bounded by some absolute constant. Hence we can conclude that the 

measure 2V/8 ((b51 (S: (n, l, j)) N D r (d)) is bounded by 

r--2 

ca T-~+'+~ I-[ ~("-~)-(~-~) 
q=vq-1 

=CaT_r+V+2exp((r_u_2)(_(r_3) ~ 2s-r-u+l 
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The subset 82 is contained in the closed subset 

to 
N U U S2(n,l,j) 

n>/B~ /=1 j e Q ( n , / )  

by Corollary 8.5. Hence the measure A/I~((I)51(8~)nD~(d)) is bounded by 

CgT-r+~+2~C~Q(n, l )exp( (r -~-2) ( - ( r -3)~  2 s - r - ~ + l ~ + ( l ) n )  
z=i / 

for sufficiently large n. From the estimate (98) on the cardinality of Q(n, l) and the 

condition in the choice of )~+(l), this converges to 0 exponentially fast as n-+oo. Thus 

we conclude that  J~4~(@hi(82)AD~(d))=A/I~((I)51(8~)ND~(d))=0. As d is an arbitrary 

positive number, Ads((I)~i(82))=0 or 82 is shy with respect to Ms.  

Suppose that r>~19. Then the inequality (3) holds for s = r + 3  and v=3,  and so 

2~/[~+3((I)~1($~))=0 for any GEC~(M,T). This implies that  L/\S~ is dense. Therefore 

82 is contained in the closed nowhere dense subset $~. 

Appendix  A. Proof  of  Corollary 2.3 

To see that Corollary 2.3 follows from Theorem 2.2, it is enough to show the following 

result: 

LEMMA A.1. If X is a Borel subset in C~(M, T 2) that is timid for the class Qr of 
measures for some s>r, then the subset 

Y = {F(z, t) E C~(M• [-1, 1] a, T) [ turk  ({t E [--1, 1] k I g ( - ,  t) ~ X}) > 0} 

is timid for the class of Borel finite measures on C~(M• 2) that are quasi- 
invariant along C~(Mx [-1, 1] k, R2).. 

Proof. Take a mapping GEC~(Mx [-1, 1]k,T) and put Go(z)=G(z, 0). We define 

the mapping 

P(f , t ) :=G(. , t ) -Go( . )+f( . , t ) :C~(Mx[-1 ,1]k ,  R2)• k > C~(M, R2), 

so that 

(FcooP(f, t)  = G( . ,  t ) + f ( . ,  t). 

Let Af be a Borel finite measure on C~(M• [-1, 1] k, R 2) that is quasi-invariant along 

C~(M• [-1, 1] k, R2). Then the measure (Af• mRkl[_l,1]k)oP-1 on C~(M, R 2) belongs 

to Q~, and so we have (Af•  from the assumption. This and 

Fubini's theorem imply that  A f o ~  1 (Y)=0  and hence the claim of the lemma. [] 
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Appendix B. Proof  of Lemma 3.18 

We use the definitions and results in the book [20] by Skorohod. We consider the functions 

e,~m(X,y)=exp(27rv/ET(nx+my)) for n, m e Z  as a complete orthonormal basis of the 

space L2(T, m). Let A: L2(T, m)--+L2(T, m) be the operator defined by 

\ ( n , m ) E Z  2 (n ,m)EZ 2 

Let A/" be the Gaussian measure [20, w on L2(T, m) whose characteristic function is 

O(r162162 ). Then Af is supported on the Sobolev space WS-3:= 

As-3(L2(T, m)). We can see, from [20, w Theorem 2], that AY is quasi-invariant along 

W ~-3/2 DC ~-1 (T, R) and that 

d(Ayo   1) 
dAY (~) = exp((A-Sr A - s + 3 ~ ) L 2  _ 1 [[g-s+3/2r • exp([[r [[~[[ws-3) 

for CEW * and Ay-almost every ~E W  s-3. 

We show that the measure AY is actually supported on Cs-3(T, R). We follow the 

argument in the proof of the fact that the measure corresponding to Brownian motion is 

supported on the space of continuous paths [11]. Let ~(~-3) be one of the ( s -3) rd  partial 

differentials of ~. Denoting the expectation with respect to the measure AY by E( .  ), we 

have 
E([~(s-3)(z)--~(s-3)(W)15 ) < const-d(w, z) 5/2, 

because the distribution of ~(s-3)(z) -~(~-3)(w) is a Gaussian distribution with average 0 

and variance bounded by 

E (min{2, (n 2 + m  2 + 1)1/2d(z, w)} (n 2 + m 2 + 1)-3/4)2 ~< const, d(z, w). 
(n ,m)EZ 2 

By the Borel-Cantelli lemma, there is a constant io > 0 for Ay-almost every ~ such that 

1~(~-3)(2-ip, 2-iq) -~(~-3)(2-ip', 2-~q')[ 5 ~< 2-i/3 

for i>io and p, q, pl q'EZ such that [p-p'[ ~< 1 and [q-q'[ ~< 1. This implies that ~(~-3) is 

continuous for Ay-almost every ~, and hence AY is supported on Cs-3(T, R). 

As C~-3(T,R 2) is naturally identified with C s - 3 ( T , R ) x C ~ - 3 ( T , R ) ,  we regard 

the product AYxAY as a measure on Cs-3(T, R2). Put .A.4~=(AYxAY)o~r -1, where 

7r: C*-3(T, R2)--+C~-3(M, R 2) is the mapping that corresponds to the restriction to M. 

Then f14~ satisfies the conditions in the lemma. 
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