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1. Introduction

In the study of smooth dynamical systems from the standpoint of ergodic theory, one
of the most fundamental questions is whether the following preferable picture is true for
almost all of them: The asymptotic distribution of the orbit for Lebesgue almost every
initial point exists and coincides with one of the finitely many ergodic invariant measures
that are given for the dynamical system. The answer is expected to be affirmative in
general [14]. However, it seems far beyond the scope of present research to answer the
question in the general setting. The purpose of this paper is to provide an affirmative
answer to the question in the case of partially hyperbolic endomorphisms on surfaces
with one-dimensional unstable subbundle.

Let M be the two-dimensional torus T=R?/Z? or, more generally, a region on the
torus T whose boundary consists of finitely many simple closed C2-curves: e.g. an an-
nulus (R/Z) x [—1, 1]. We equip M with the Riemannian metric || - || and the Lebesgue
measure m that are induced by the standard ones on the Euclidean space R? in an
obvious manner. We call a C*-mapping F: M —M a partially hyperbolic endomorphism
if there are positive constants A and ¢ and a continuous decomposition of the tangent
bundle TM =E‘®E"* with dim E¢=dim E¥=1 such that

() | DE" oy | >exp(An—0);

(i) | DF™|ge (o) | <exp(~An-+e) | Do |
for all ze M and n>0. The subbundles E® and E* are called the central and unstable
subbundle, respectively. Notice that we do not require these subbundles to be invariant
in the definition, though the central subbundle E€ turns out to be forward invariant from
the condition (ii). The totality of partially hyperbolic C"-endomorphisms on M is an
open subset in the space C™(M, M), provided r>1.
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An invariant Borel probability measure u for a dynamical system F: M — M is said
to be a physical measure if its basin of attraction,

1 n—1
B(p)=B(y; F) := {zeM ’ - Z dpi(z) — 1 weakly as n—)oo},
i=0

has positive Lebesgue measure. One of the main results of this paper is the following
theorem:

THEOREM 1.1. A partially hyperbolic C™-endomorphism on M generically admits
finitely many ergodic physical measures whose union of basins of attraction has total
Lebesgue measure, provided that r>19.

More detailed versions of this theorem will be given in the next section. Here we
intend to explain the new idea behind the results of this paper. The readers should notice
that we do not (and will not) claim that the physical measures in the theorem above
are hyperbolic. Instead, we will show that the physical measures for generic partially
hyperbolic endomorphisms have nice properties even if they are not hyperbolic. This is
the novelty of the argument in this paper.

Let us consider a partially hyperbolic endomorphism F on M. The Lyapunov expo-
nent of F' takes two distinct values at each point: The larger is positive and the smaller
indefinite. The latter is called the central Lyapunov exponent, as it is attained by the
vectors in the central subbundle. An invariant measure for F' is hyperbolic if the central
Lyapunov exponent is non-zero at almost every point with respect to it. In the former
part of this paper, we study hyperbolic invariant measures for partially hyperbolic en-
domorphisms using the techniques in the Pesin theory or the smooth ergodic theory.
And, as the conclusion, we show that the following hold under some generic conditions
on F: For any x>0, there are only finitely many ergodic physical measures whose central
Lyapunov exponents are larger than x in absolute value. Further, if the complement X
of the union of the basins of attraction of such physical measures has positive Lebesgue
measure, and if a measure {4 is a weak limit point of the sequence

13 : :
EZmlon—’, n=1,2,.., (1)
=0
(m|x is the restriction of m to X), then the absolute value of the central Lyapunov
exponent is not larger than x at almost every point with respect to p. Though these facts
are far from trivial, the argument in the proof does not deviate far from the existing ones
in the smooth ergodic theory.
The key claim in our argument is the following: If the number x is small enough and
if F satisfies some additional generic conditions, then a measure u as in the preceding
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Fig. 1. The curve F™(7).

paragraph is absolutely continuous with respect to the Lebesgue measure m. Further,
the density du/dm satisfies some regularity conditions (from which we can conclude
Theorem 1.1). This claim might appear unusual, since the measure y may have neutral
or even negative central Lyapunov exponent, while we usually meet absolutely continuous
invariant measures as a consequence of the expanding property of dynamical systems in
all directions. We can explain it intuitively as follows: As a consequence of the dominating
expansion in the unstable directions E*, the measure p should have some smoothness
or uniformity in those directions. In fact, we can show that the natural extensions of
1 and its ergodic components to the inverse limit are absolutely continuous along the
(one-dimensional) unstable manifolds. So, for each ergodic component ' of y, we can
cut a curve v out of an unstable manifold so that u' is attained as a weak limit point
of the sequence n=' 37" v, 0o F~% n=1,2, ..., where v, is a smooth measure on +. Since
F expands the curve v uniformly, the image F™(y) for large n should be a very long
curve which is transversal to the central subbundle E€. Imagine looking into a small
neighborhood of a point in the support of p/. The image F™(v) should appear as a
bunch of short pieces of curve in that neighborhood; see Figure 1.

The number of the pieces of curve should grow exponentially as n gets large. And
they would not concentrate strongly in the central direction, as the central Lyapunov
exponent is nearly neutral almost everywhere with respect to u’. These consequences
suggest that the ergodic component y’ should have some smoothness or uniformity in
the central direction as well as in the unstable direction, and so the measure y should be
absolutely continuous with respect to the Lebesgue measure m.

On the technical side, an important idea in the proof of the key claim is that we
look at the angles between the short pieces of curve mentioned above rather than their
positions. As we perturb the mapping F, it turns out that we can control the angles
between those pieces of curve to some extent, though we cannot control their positions by
the usual problem of interference. And we can show that the pieces of curve satisfy some
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transversality condition generically. In order to show the conclusion of the key claim, we
relate that transversality condition to absolute continuity of the measure . To this end,
we make use of an idea in the paper [15] by Peres and Solomyak with some modification.
We will illustrate the idea in the beginning of §6 by using a simple example. Actually
we have used the same idea in our previous paper [24], which can be regarded as a study
for this work. Lastly, the author would like to note that the idea in [15] can be traced
back to the papers of Falconer [5] and Simon and Pollicot {17].

Acknowledgment. 1 would like to thank Jéréme Buzzi, Viviane Baladi, Artur Avila
and Mitsuhiro Shishikura for valuable comments in writing this paper.

2. Statement of the main results

Let PH" be the set of partially hyperbolic C™-endomorphisms on M, and PH the subset
of those without critical points. The subset R"CPH" is the totality of mappings FePH"
that satisfy the following two conditions:

(a) F admits a finite collection of ergodic physical measures whose union of basins
of attraction has total Lebesgue measure on M;

(b) A physical measure for F is absolutely continuous with respect to the Lebesgue
measure m if the sum of its Lyapunov exponents is positive.

In this paper, we claim that almost all partially hyperbolic C"-endomorphisms on M
satisfy the conditions (a) and (b) above, or, in other words, belong to the subset R".
The former part of our main result is stated as follows:

THEOREM 2.1. (I) The subset R" is a residual subset in PH", provided r>19.
(II) The intersection RTNPHY is a residual subset in PHg, provided r>2.

The conclusions of this theorem mean that the complement of the subset R" is a
meager subset in the sense of Baire’s category argument. However, the recent progress in
dynamical system theory has thrown serious doubt that the notion of genericity based on
Baire’s category argument may not have its literal meaning. In fact, it can happen that
the dynamical systems in some meager subset appear as subsets with positive Lebesgue
measure in the parameter spaces of typical families. For example, compare Jakobson’s
theorem [23] and the density of Axiom A [12], [19] in one-dimensional dynamical systems.
For this reason, we dare to state our claim also in a measure-theoretical framework,
though no measure-theoretical definition that corresponds to the notion of genericity has
been firmly established yet.

Let B be a Banach space. Let 7,: B— B be the translation by v€ B, that is, 7,(z)=
z+v. A Borel finite measure M on B is said to be quasi-invariant along a linear subspace
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LC B if Mot ! is equivalent to M for any v€ L. In the case where B is finite-dimensional,
a Borel finite measure on B is equivalent to the Lebesgue measure if and only if it is
quasi-invariant along the whole space B. But, unfortunately enough, it is known that no
Borel finite measures on an infinite-dimensional Banach space are quasi-invariant along
the whole space [6]. This is one of the reasons why we do not have obvious definitions
for concepts like Lebesgue almost everywhere in the cases of infinite-dimensional Banach
spaces or Banach manifolds such as the space C"(M, M). However, there may be Borel
finite measures on B that are quasi-invariant along dense subspaces. In fact, on the
Banach space C™(M, R?), there exist Borel finite measures that are quasi-invariant along
the dense subspace C™"2(M,R?) (Lemma 3.18). For integers s>r>1, let Q7 be the set
of Borel probability measures on C"(M, R?) that are quasi-invariant along the subspace
C?*(M,R?) and regard the measures in these sets as substitutions for the (non-existing)
Lebesgue measure.

Let us consider the space C"(M,T) of C"-mappings from M to the torus T, which
contains the space C"(M, M) of C"-endomorphisms on M. For a mapping G in C"(M, T),
we consider the mapping

®g:C"(M,R?) — C™(M,T),

(2)
F—G+F.

We now introduce the following notions:

Definition. A subset XCC"(M,M) is shy with respect to a measure M on
C™(M,R2) if 87'(X) is a null subset with respect to M for any GeC" (M, T).

Definition. A subset XCC"(M, M) is timid for the class Q7 of measures if Q7 is
non-empty and if X is shy with respect to all measures in Q7.

Remark. The former of the definitions above is a slight modification of that of
shyness introduced by Hunt, Sauer and Yorke [9], [10]. By the definitions, a subset
XCC™ (M, M) is shy with respect to some compactly supported measure M in the sense
above if and only if the inverse image ®z!(X) for some (and thus any) GEC™(M,T)
is shy in the sense of Hunt, Sauer and Yorke. Note that a controversy to the notion of
shyness is given in the paper [21] of Stinchcombe.

Put S":=PH"\R". The latter part of our main result is stated as follows:

THEOREM 2.2. (I) The subset S” is shy with respect to a measure M, in QL_, if
the integers r 22 and s=r+3 satisfy

(r=2)(r+1) < (r-v=2) (2(r—3) - ZZ2EL)

v

3)
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for some integer 3<v<r—2. Moreover, 8 is timid for QL_, if r>2 and s>r43 satisfy
the condition (3) with s replaced by s+2 for some integer 3<v<r—2.
(II) S"NPHY is timid for Qf for any =2 and s2r+2.

Remark. The measure M, in the claim (I) above will be constructed explicitly as a

Gaussian measure.

Remark. The inequality (3) holds for the combinations (r,s,v)=(19,22,3) and
(21,26, 3), for example. But it does not hold for any s>r+3 and 3<v<r—2 unless
r>19.

As an advantage of the measure-theoretical notion of timidity introduced above, we
can derive the following corollary on the families of mappings in PH", whose proof is
given in the appendix. Let us regard the space C™(M x [—1,1]¥, M) as that of C"-families
of endomorphisms on M with parameter space [—1,1]*. We can introduce the notion of
shyness and timidity for the Borel subsets in this space in the same way as we did for
those in C"(M, M). Let mgx be the Lebesgue measure on RF.

COROLLARY 2.3. The set of C™-families F(z,t) in C"(M x[-1,1]%, M) satisfying
mg:({te[-1,1]F|F(-,t)eS"}) >0

is timid with respect to the class of Borel finite measures on C™(M x[—1,1]%,R?) that
are quasi-invariant along the subspace C*~'(M x[~1,1]%,R?), provided that the inte-
gers v>2 and s>r+3 satisfy the condition (3) with s replaced by s+2 for some integer
I<vr—-2.

We give a few comments on the main results above. The restriction that the surface
M is a region on the torus is actually not very essential. We could prove Theorem 2.1
with M being a general compact surface by modifying the proof slightly. The main reason
for this restriction is the difficulty in generalizing the notion of shyness and timidity to
the spaces of endomorphisms on general compact surfaces. Since the definitions depend
heavily on the linear structure of the space C"(M,R?), we hardly know how to modify
these notions naturally so that it is consistent under the non-linear coordinate transfor-
mations. The generalization or modification of these notions should be an important issue
in the future. Besides, the restriction on M simplifies the proof considerably and does
not exclude the interesting examples such as the so-called Viana—Alves maps [1], [25].

The assumptions on differentiability in the main theorems are crucial in our argu-
ment, especially in the part where we consider the influence of the critical points on the
dynamics. We do not know whether they are technical ones or not.
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As we called attention to in the introduction, the main theorems tell nothing about
hyperbolicity of the physical measures. Of course, it is natural to expect that the physical
measures are hyperbolic generically. The author thinks it not too optimistic to expect
that R"™ contains an open dense subset of PH" in which the physical measures for the
mappings are hyperbolic and depend on the mapping continuously.

Generalization of the main theorems to partially hyperbolic diffeomorphisms on
higher-dimensional manifolds is an interesting subject to study. Our argument on physi-
cal measures with nearly neutral central Lyapunov exponent seems to be complementary
to the recent works {2] and [3] of Alves, Bonatti and Viana. However, as far as the
author understands, there exist essential difficulties in the case where the dimension of
the central subbundle is higher than one.

The plan of this paper is as follows: We give some preliminaries in §3. We first
define some basic notation and then introduce the notions of admissible curve and ad-
missible measure, which play central roles in our argument. The former is taken from
the paper [25] of Viana with slight modification and the latter is a corresponding notion
for measures. Next we introduce two conditions on partially hyperbolic endomorphisms,
namely, the transversality condition on unstable cones and the no flat contact condition.
At the end of §3, we shall give a concrete plan of the proof of the main theorems using
the terminology introduced in this section. In §4, we study hyperbolic physical measures
using the Pesin theory. §5 is devoted to basic estimates on the distortion of the iterates of
partially hyperbolic endomorphisms. Then we go into the main part of this paper, which
consists of three mutually independent sections. In §6, we prove that a partially hyper-
bolic endomorphism belongs to the subset R" if it satisfies the two conditions above.
In §§7 and 8 respectively, we prove that each of the two conditions holds for almost all
partially hyperbolic endomorphisms.

3. Preliminaries

In this section, we prepare some notation, definitions and basic lemmas that we shall use
frequently in the following sections.

3.1. Notation

For a tangent vector v€TM, v denotes the tangent vector that is obtained by rotating
v by the right angle in the counter-clockwise direction. For two tangent vectors u and v,
Z(u,v) denotes the angle between them even if they belong to the tangent spaces at
different points. Let exp,:T,T—T be the exponential mapping, which is defined simply
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by exp,(v)=z+uv in our case. For a point z in the torus T (or in some metric space,
more generally) and a positive number 4, let B(z,8) be the open disk with center at z
and radius 4. Likewise, for a subset X, let B(X,d) be its open d-neighborhood. For
a positive number 4§, we define a lattice L(4) as the subset of points (z,y) in T whose
components, x and y, are multiples of 1/([1/d]+1), so that the disks B(z,d) for points
2€L(8) cover the torus T.

Throughout this paper, we assume r>2. Let F: M — M be a C"-mapping. The set
of critical points of F is denoted by C(F'). For a tangent vector v€T, M at a point 26 M,

we define
D*F(z,v)=w if v#0,
[lv]]
and
det DF,
* =——"%  if DF .
D*F(z,v) D.F(z.0) if DF(v)#0

Remark. If v#0 and DF(v)#0, we can take orthonormal bases (v/||v||, v*/|jv*]]) on
T;M and (DF(v)/||DF(v)||, DF(v)*/||DF(v)*|]) on Tr(;yM. Then the representation
matrix of DF,: T, M —T}y,yM with respect to these bases is an upper triangular matrix
with D, F(z,v) and D*F(z,v) on the diagonal.

Note that we have |D*F(z,v)|=|/(DF)*(v*)||/||lv*|| for any cotangent vector v*#0
at F(z) that is normal to DF (v). We shall write D, F(v) and D*F(v) for D,F(z,v) and
D*F(z,v), respectively, in places where the base point z is clear from the context.

For a C"-mapping F: M —R2, the C"-norm of F is defined by

| Fllcr = max

8‘”"’F
max (2)],
z€M 0<a+-bgr

83z Dby

where (z,y) is the coordinate on T that is induced by the standard one on R2. Similarly,
for C"-mappings F and G in C™(M, T), the C"-distance is defined by

do(F,6) = g m{d(F(2),6(2) gty ) ey |

oz 8by 9oz bty

, Imax
1<a+bgr

3.2. Some open subsets in PH"

In this subsection, we introduce some bounded open subsets in PH"™ whose elements
enjoy certain estimates uniformly. As we will see, we can restrict ourselves to such open
subsets in proving the main theorems. This simplifies the argument considerably.



PHYSICAL MEASURES FOR PARTIALLY HYPERBOLIC SURFACE ENDOMORPHISMS 45

Let S7 be the subset of mappings F in PH" that violate either of the conditions:

(A1) The image F(M) is contained in the interior of M;

(A2) The function z+>det DF, has 0 as its regular value;

(A3) The restriction of F' to the critical set C(F') is transversal to C(F').

Notice that the conditions (A2) and (A3) are trivial if the mapping F' has no critical
points. To prove the following lemma, we have only to apply Thom’s jet transversality
theorem {7] and its measure-theoretical version [22, Theorem C].

LEMMA 3.1. The subset Sf is a closed nowhere dense subset in PH" and shy with
respect to any measure in Q7 for s=r22.

Remark. The terminology in [22] is different from that in this paper. But we can
put Theorem C and other results in [22] into our terminology without difficulty.

Consider a C"-mapping Fy in PH" and let TM =E°@E" be a decomposition of the
tangent bundle which satisfies the conditions in the definition that F'=F} is a partially
hyperbolic endomorphism. Notice that, although the central subbundie E¢ is uniquely
determined by the conditions in the definition, the unstable subbundle E* is not. Indeed
any continuous subbundle transversal to E° satisfies the conditions in the definition,
possibly with different constants A and ¢. Making use of this arbitrariness, we can
assume that E* is a C®-subbundle. Further, by taking E* nearly orthogonal to E¢
and by changing the constants A and ¢, we can assume that there exist positive-valued
C°°-functions 8¢ and 8* on M such that the cone fields

§%(2) = {ve TM\{0}| £(v, E*(2)) <6"(2)},
8%(2) ={ve€ T.M\{0} | Z(v*, E*(2)) < 6°(2)}

satisfy the following conditions at every point z€ M:

(B1) S¢(2)NS%(2)=w;

(B2) E°(z)\{0} is contained in the interior of the cone S°(z);

(B3) DFy(S"(z)) is contained in the interior of S*(Fy(z));

(B4) (DEy);(S¢(Fy(2))) is contained in the interior of S¢(z);

(B5) For any v€S%(z) and n>1, we have

(i) [|D«Ef (2, v)||>exp(An—c);
(ii) ||D*Fy{(z,v)||<exp(—An+tc)|| DFf (2, v)].

Suppose that the mapping Fy does not belong to S§. Then we can take positive
constants A and ¢, a small number ¢>0 and a large number A>c¢ such that the following
conditions hold for any C"-mapping F' satisfying dc-(F, Fy)<2¢:

(C1) The conditions (B3), (B4) and (B5) with Fy replaced by F hold,
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(C2) The parallel translation of E¢(Fy(z)) to F(z) is contained in S¢(F(z))uU{0} for
any zeM;

(C3) d(F(M),0M)>¢;

(C4) The function z+—>det DF, has no critical points on B(C(F'), p), and it holds
that |det DF,|>pd(z,C(F)) for ze B(C(F), 0);

(C5) If a point 26 M satisfies d(z,w;)<g and d(F(z),w2)<p for some points
wy, w2 €C(F) and if v€S¥(z), then the angle between DF(v) and the tangent vector
of C(F) at wo is larger than g;

(C6) ||DF,||<A for any ze M.

We can choose countably many pairs of a C"-mapping Fy in PH"\Sj and a positive
number g as above so that the corresponding open subsets

UI{FECT(M,M)Idcr(Fu,F)<Q}

cover PH"\S. In order to prove the main theorems, Theorems 2.1 and 2.2, it is enough
to prove them by restricting ourselves to an arbitrary such open subset /. For this reason,
we henceforth fix a C"™-mapping Fyy in PH"\Sp, subbundles E¢ and E*, C*-functions 6°
and 6%, cone fields S°(-) and S*(-), and positive numbers g, A, A and c as above, and

consider the mappings in the corresponding open subset U.

3.3. Remarks on the notation for constants

In this paper, we shall introduce various constants that depend only on

(1) the objects that we have just fixed at the end of the last subsection;

(2) the integer r>2.
In order to distinguish such constants, we make it a rule to write them by symbols with
subscript g. Obeying this rule, we shall write Ag, ¢4, g4 and A, for the constants A, ¢, ¢
and A hereafter (and we will use the symbols A, ¢, g and A for other purposes). Notice
that, once a constant is denoted by a symbol with subscript g, we mean that it is a
constant of this kind. In order to save symbols for constants, we shall frequently use a
generic symbol C, for large positive constants of this kind. Note that the value of the
constants denoted by Cy may be different from place to place even in a single expression.
For instance, ridiculous expressions like 2Cy, <C, can be true, though we shall not really
meet such ones. Also note that we shall omit the phrases on the choice of the constants
denoted by Cy in most cases.

For example, we can take a constant A,>0 such that

DF™(2,w)| _ Z(DF™(w), DF"(v)) _ , |D"F"(z,w)|

A7 <
9 D,F™(z,w) Z(u,v) ¥ D.F*(z,w)
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for any ze M, n>1 and u,v, wg¢S°(2)U{0}. We shall use the following relations fre-
quently: For any Feld, ze M, veS*(z) and n>1, we have

Cyd(2,C(F)) < |det DF| < exp(Ag) || D"F (2, v) | < Cyd(z,C(F)), (5)
Cy ' < DuF™ (2, 0)| < IDFF| < Gl D« F™ (2, 0) (6)

and, if z¢C(F'), also

Cq D F™ (2, 0)| <[[(DFZ) Y|~ < IDF™ (2, ). (7)

3.4. Admissible curves

In this subsection, we introduce the notion of admissible curve. From the forward invari-
ance of the unstable cones S* or the condition (B3) with Fj replaced by F, the mappings
in the set U preserve the class of C'-curves whose tangent vectors belong to S*. We
shall investigate such a class of curves and find a subclass which is uniformly bounded in
Cm!-sense and essentially invariant under the iterates of mappings in &. We shall call
the curves in this subclass admissible curves.

In this paper, we always assume that the curves are regular and parameterized by
length. Let 7:{0,a]>M be a C"-curve such that ' (t)eS“(y(t)) for t€[0,a]. As we
assume ||¥'(¢)||=1, the second differential of ~ is written in the form

d? 2 reyL
271 =d () (' (1),
where d2v:[0,a] >R is a C"~2-function. We define d*v(t) for 3<k<r as the (k—2)nd
differential of the function d2v(¢). Let d'(t) be the differential ~/(¢), for convenience.

Let F.v:[0,a'] = M be the image of the curve ¥ under a mapping Fel{. Notice that
F.~v is not simply the composition Fovy, because we assume F,~v to be parameterized by
length. The right relation between v and F,~ is given by

Foy(p(t)) = F(x(t)), (8)

where p: [0, a]—[0, '] is the unique C"-diffeomorphism satisfying p(0)=0 and dp(t)/dt=
D,F(v(t),¥'(t)). Differentiating both sides of (8), we get the formula

D.F(v(t),7 (£))-(Fxy) (p(t)) = D,y (7' (1))

for t€[0,a]. Differentiating both sides again and considering the components normal to
(Fu7) (p(t)), we get

DF(y(t),~'(t))

_ (+(8),7 (1), F)
D.F((0),7(0)?

Q
O D FaO O

d*Fy(p(1)) z

(9)

~—
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where

Q2(a,b; F) = (D*Fy(b,), (DFa())*).

Note that Q2(a,b; F) is a polynomial of the components of the unit vector b whose
coefficients are polynomials of the differentials of F at a up to the second order. Likewise,
examining the differentials of both sides of (9) by using the relation

d
; / — || DEy sy (v (t))]?
4 DF OO 0) = S5

we obtain, for 3<k<r,

d*F.y(p(t)) = D'F(y(t),7'(t) (t)+Qk(7(t)’ ,(ti

{div@)}i); F)
= D0, 7 O D.F((0), 71 (10)

G
where Qx(a, b, {c;}*=}; F) is a polynomial of the components of the unit vector b and the
scalars ¢; whose coefficients are polynomials of the differentials of ' at a up to the kth

order.

Remark. In addition, we can check that Qx(a,b, {c;}F=}; F) for 2<k<r is written
in the form

F(a,b)%*3u*((D*F)o(b,b, ..., b))+ Qr(a, b, {c: }s=); F),

where v* is a unit cotangent vector at the point F(a) that is normal to DF,(b), and
Qx(a,b,{c;}*2}; F) is a polynomial of the components of b and the scalars ¢; whose
coefficients are polynomials of the differentials of F' at a up to the (k—1)st order.

Fix an integer ny,>0 such that ngA;—cy>0. Then we have the following result:

LEMMA 3.2. There exist constants Kék)>1 for 2<k<r such that, if a curve
~:[0,a]—= M of class C™ satisfies

(i) ¥(£)eS“(v(t)) for t€(0,a];

(i) |d*y(2)| <K for 2<k<r and te(0,q),
then EFl7y for nzng satisfies the same conditions.

Proof. Consider a C"-curve +: [0, a] = M that satisfies the conditions (i) and (ii), and
let F*y:[0,a,]— M be its image under the iterate F™. From the formulae (9) and (10},
we can see that, for n,<n<2n,,

P alt)] € ST O] + Rl KD, KED), (1)
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where p,:[0,a]—(0, a,] is the unique diffeomorphism satisfying p,,(0)=0 and dp,(t)/dt=
DF2(y(t),~'(t)) and where R(ng,KéQ), ...,K_,gk_l)) is a constant that depends only on
ng,Kéz), ...,K,gk_l) besides the objects that we have already fixed at the end of §3.2.
The coefficient of |d*v(t)| on the right-hand side of the inequality (11) is smaller than
exp(—ngAg+cy)<1 from the condition (C1) and the choice of ng. Thus, if we take a
large Kék) according to the choice of the constants KS(,2), e K_,gk—l) in turn for 2<k<r,
the conclusion of the lemma holds for ng<n<2n,. And, employing this repeatedly, we
obtain the conclusion for all n>n,. O

Henceforth we fix the constants Kék), 2<k<r, in Lemma 3.2. Now we make the
following definition:

Definition. A C™-curve ~:[0,a)— M is an admissible curve if it satisfies the con-
ditions

(a) ¥'(t)€8"(y(2)) for t€[0, al;

(b) |d*y(t)| <K for 2<k<r—1 and t€[0, a);

(¢) the function d”"~'v satisfies a Lipschitz condition with the constant K ér):

|d" 1y () ~d" 1y (s)| S K|t —s| for any 0<s<t<a.

Remark. When r=2, the condition (b) above is vacuous and the symbol | - | on the
left-hand side of the inequality in the condition (c) should be understood as the norm
on R?. (Recall that we put d'v(t)=+(t).)

Note that a C"~-curve ~: [0, a]— M is an admissible curve if and only if it belongs to
the closure, in the space C"~1(|0, a], M), of the set of C"-curves satisfying the conditions

(i) and (ii) in Lemma 3.2. Thus we have the following consequence from Lemma, 3.2:
COROLLARY 3.3. If a C""-curve v is admissible, so is Fy for n>n,.

For a positive number a, let A(a) be the set of C'-curves v:[0,a]— M of length a
such that v'(t)eS“(y(t)) for t€[0,a]. For a subset JC(0,00), we define A(J) as the
disjoint union of A(a) for a€.J:

A(J):=]] Ala).

acJ

Also we define
A(J):=]] (Ala)x[0,a]) C A(J)xR.
aeJ
We can regard the space A((0,00)) as the totality of C'-curves whose length are finite

and whose tangent vectors are contained in the unstable cone 8*. From the condition
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(C1) in the choice of the open neighborhood U, each mapping F €U naturally acts on
the space A((0, 00)),

F,: A((Ov OO)) — A((Ov OO)),
v € A(a) — Foy € A(p(a)),

and also on the space A((0,00)),

F.: A((0,00)) —s A((0,00)),
(7,t) € A(a) X [0, a] — (Fuv, p(8) € A(p(a)) X [0, p(a)],

where p: [0, a]—[0,p(a)] is the unique diffeomorphism satisfying p(0)=0 and dp(t)/dt=
D.F(4(8),7 (1)

For a positive number a, let .AC(a) C.A(a) be the set of admissible curves of length a,
and, for a subset JC(0,00), we put

AC(J):=]] AC(a)c A(J) and AC(J):=[] AC(a)x[0,a] C A(J).
acJ aeJ

Note that AC(a) is a compact subset of C"~1((0,a], M).
We equip the space AC((0, c0)) with the distance d4¢ defined by

dac(m,72) =llv2—nllcr-1+Clag—ai|

for v;€.AC(a;), i=1, 2, where ||va—71]|cr-1 is

max  max{d(72(0), 11(6)), £(71(6),72(6)) |d*72(6) ~d* 1 ()}

,  max
0<f<min{ay,a2} 2<kgr—1

and the constant C is defined by

Note that the constant C' above is chosen so that d4c satisfies the triangle inequality.
We equip the space AC((0,00)) with the distance

dac((11:t1), (72, t2)) = dac(y1,72) +lt2 —t1]

for (i, ;) €AC(a;) x [0, 4], i=1,2. It is not difficult to check that the spaces AC((0, oc))
and AC((0, 00)) with these distances are complete separable metric spaces and that the
subsets AC(.J) C.AC((0, 00)) and AC(J)CAC((0,00)) for a subset JC (0, 00) is compact
if and only if J is compact.
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From Corollary 3.3, the iterate F of the mapping F.:.A((0,00))—.A((0,0))
(resp. F.:A((0,00))—=A((0,00))) for any n>n, carries the subset AC((0,00)) (resp.
AC((0,00))) into itself. Further we have, for any n>ng and a>0,

F2(AC([a, %)) C AC([a exp(Agn—cg), 00) (12)

and
FY(AC([a,00))) C AC([aexp(Agn—cy),0)). (13)

We define the mapping IT: A((0, 00))— M and m: A((0, 00))—.AC((0, 00)) by II(v, t)=~(t)
and 7(y,t)=~. Obviously we have the commutative relations

A((0,00)) —=> A((0,00)) A((0,00)) —=> A((0,00))
Hl o and ﬂl ,rl (14)
F F,
M———M A((0, 00)) —> A((0, 0)).

3.5. Admissible measures

In this subsection, we are going to introduce the notion of admissible measure. First
we introduce this notion in a simple case. Let ~:[0,a]— M be an admissible curve and,
for n>1, let pn:[0,a]—[0, a,] be the unique diffeomorphism that satisfies p,(0)=0 and
dpn(t)/dt=D,F™(y(t),~'(t)) for t€[0,a]. Since mappings FEU act on the admissible
curves as uniformly expanding mappings with uniformly bounded distortion, a standard

argument on the iterations of uniformly expanding mappings gives the following result:
LEMMA 3.4. The mapping p, satisfies dp,(t)/dt=exp(Agn—c,) and

dpy, dpn,
log %(s)——log %(s') < Cylpn(s)—pn(s')| for s,s'€[0,a],

where Cy is the kind of constant that we mentioned in §3.3 and, in particular, does not
depend on the mapping FEU, the admissible curve v nor n>ng.

We say that a measure p on an interval ICR has Lipschitz logarithmic density with
constant L if p is written in the form p=¢mg|;, where p: IR is a positive-valued
function satisfying

llog (s)—logp(s')| < L|s—s’| for any t,s€el,

and mg|; is the restriction of the Lebesgue measure on R to I. Note that the sum
(or integration) of measures on an interval I having Lipschitz logarithmic density with
constant L again has the same property. From the lemma above, we can obtain a
corollary:
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COROLLARY 3.5. There is a positive constant L, such that, if a measure p on [0, a
has Lipschitz logarithmic density with constant Ly, then so does the measure pop, Lon
[0,a,] for any n>ng, any FEU and any admissible curve v:[0,a] > M.

We henceforth fix the constant L, for which the claim of Corollary 3.5 holds. And we
say that a measure v on M is an admissible measure on an admissible curve 7: [0, a] - M
if v=poy~! for a measure pu on [0,a] that has Lipschitz logarithmic density with con-
stant L,. The following corollary is a consequence of Corollary 3.5:

COROLLARY 3.6. If a measure v is an admissible measure on an admissible curve
v:[0,a) =M, then, for n>n, and Fel, the measure voF ™™ is an admissible measure
on the admissible curve Fly.

We have introduced the notion of admissible measure on a single curve and seen
that the iterates of mappings F'€U preserve such a class of measures. Now we are go-
ing to introduce more general definitions. Let Zac be the measurable partition of the
space AC((0,0)) into the subsets {y}x[0,a] for >0 and y€.AC(a). In other words,
we put Zpc=7""'e, where ¢ is the measurable partition of AC((0,00)) into individual
points and 7 is the mapping defined at the end of the last subsection. On each element
€={v}x]0,a] of the partition Eac, we consider the measure m, that corresponds to
the Lebesgue measure on [0, a] through the bijection (v,t)~+t. For a Borel finite mea-
sure i on AC((0,00)), let {fic}cczac be the conditional measures with respect to the
partition Za¢c. We put the following two definitions:

Definition. A Borel finite measure i on AC({0,00)) is said to be an admissible
measure if the conditional measures {fi¢}¢c=,o have Lipschitz logarithmic density with
constant L, ji-almost everywhere.

Definition. A Borel finite measure . on M is said to have an admissible lift if there
exists an admissible measure i on AC((0,00)) such that oIl '=pu. The measure ji is
said to be an admissible lift of the measure p.

For a subset JC(0,00), let AM(J) be the set of admissible measures that is sup-
ported on AC(J), and AM(J) the set of measures on M that have admissible lifts
contained in AM(J). Then we have the following results:

LEMMA 3.7. If a measure i belongs to AM([a,00)) for some a0 and if Fcld,
then jioF™ belongs to AM([a’,00)) for n>ng, where a’=aexp(Agn—cg)>a.

Proof. The conditional measures of the measure fic F”™ with respect to the partition
EAc are given as integrations of the images of the conditional measures {fi¢ }sez, under
the mapping F. From Corollary 3.5 and the fact noted just above it, they have Lipschitz
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logarithmic density with constant L. Hence fic 7" is an admissible measure. The claim
of the lemma follows from this and (13). O

COROLLARY 3.8. If pe AM([a,00)) for some a>0 and if FEU, then the measure
po =™ belongs to AM(la’,00)) for n=ny, where o' =aexp(Agn—cy)>a. In particular,
if an tnvariant measure for FEU has an admissible lift, it belongs to AM([a,00)) for
any a>0.

LEMMA 3.9. The subset AM(J) for a closed subset JC(0,00) is closed in the space
of Borel finite measures on AC((0,0)).

Proof. For a real number ¢, we define the mapping T, from AC((0,c0)) xR to itself
by Te(7y,t)=(v,t+¢). Then a measure i on AC((0,00))C.AC((0,00)) xR is admissible
if and only if it satisfies

T di<explLldl) [ pd

/AC((O’OO))ﬁTs_l(AC((O,OO))) AC((0,00))

for any non-negative-valued continuous function ¢ on AC((0,00)) xR and for any £>0.
For each non-negative-valued continuous function ¢ on AC((0,00)) xR and e€R, the set
of Borel measures ji that satisfy the inequality above and that are supported on AC(J)
is a closed subset in the space of Borel finite measures on AC((0, 00)). Hence so is their
intersection, AM(J). O

LEmMA 3.10. AM([a,0))=AM([a,2a]) for a>0.

Proof. For a>0, let A,: AC([a,00))— AC([a,2a]) be the mapping that brings an
element (v,t)€. AC(b) x[0,b] to

Ba((7,)) = (Vm(e),m(t)+b/n), t—m(t)) € AC(b/n) x [0, /7], (15)

where n=[b/a] and m(t)=[tn/blb/n. Then we have MoA,=II, and for any ji€
AM([a, 00)), the image ficA;' belongs to AM([a,2a]). Thus we obtain the lemma. [

From the lemma above and Lemma 3.9, a corollary follows:

COROLLARY 3.11. The set AM([a,0)) for a>0 is a compact subset in the space of
Borel finite measures on M. In particular, for a mapping F€U, the subset of F-invariant
Borel probability measures that have admissible lifts is compact.

Suppose that P is a small parallelogram on the torus T whose center z belongs to M
and two of whose sides are parallel to the unstable subspace E*(z). Then the restriction
of the Lebesgue measure m to P has an admissible lift, provided that P is sufficiently
small. Moreover any linear combination of such measures has admissible lifts. Thus we
obtain the following result:
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LEMMA 3.12. For any Borel finite measure v on M that is absolutely continuous
with respect to the Lebesque measure m, there exist a sequence b,—+0 and measures
Un €AM([br, 0)) such that [v—vy|—0 as n—oo. Further we can take the measures v,
so that the densities dv,/dm are square integrable.

The next lemma is a consequence of the last two lemmas and Corollary 3.8.

LEMMA 3.13. Let F be a mapping in U and v a probability measure on M that is
absolutely continuous with respect to the Lebesgue measure m. Then any limit point of
n-—1

the sequence n™' Y 1 voF ™' is contained in AM([a,00)) for any a>0. In particular,
physical measures for F are contained in AM([a,o0)) for any a>0.

Finally we prove another lemma.

LEMMA 3.14. Let F be a mapping in U. If an F-invariant Borel probability measure
has an admissible lift, so do its ergodic components.

Proof. From Corollary 3.11, it is enough to show the following claim: If an F-
invariant measure p that has an admissible lift splits into two non-trivial F-invariant
measures g1 and po that are totally singular with respect to each other, then the measures
f1 and pg have admissible lifts. We are going to show this claim. From Corollary 3.8, we
can take an admissible lift ji of u that is supported on AC([1, 00)). Consider the mapping
G=A1oF"*: AC([1,00))—AC([1,2]), where A, is the mapping defined by (15). Then
the measure 1oG~! is an admissible lift of x. Replacing i by fioG~!, we can assume
that [i is supported on AC(]1,2]). From the assumption of the claim, we can take an
F-invariant Borel subset XC M such that p; (M \X)=p2(X)=0. Then, by the relation
Frso[I=II-G, the set X::H“I(X) is G-invariant. Below we prove that X is a ZacC-
set, that is, a union of elements of the partition =5 ¢, modulo null subsets with respect
to ji. This implies the claim above because the restriction of the measure ji to X is an
admissible lift of y;.

Put E;=EAc and define the sequence Z,, n=1,2,..., inductively by the relation
Z,4+1=G (Z,)VE). Then E, is increasing with respect to n and the limit \/,o ; =
is the measurable partition into individual points. Thus the conditional expectation
E(X |Er) with respect to i converges to the indicator function of X as n— oo, ji-almost
everywhere. Note that the restriction of G™ to each element of the partition =, is a
bijection onto an element of =;, and its distortion is uniformly bounded. Hence, using
the assumption that f is an admissible measure and the invariance of X , We can see
that the conditional expectation E()? |Z1) equals the indicator function of X, orXisa
Zac-set modulo null subsets with respect to f. O
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3.6. The no flat contact condition

In this subsection, we consider the influence of the critical points on ergodic behavior of
partially hyperbolic endomorphisms. We first explain a problem that the critical points
may cause. And then we give a mild condition on the mappings in U, the no flat contact
condition, which allows us to avoid that problem. In the last part of this paper, we will
prove that this condition holds for almost all partially hyperbolic endomorphisms in .

Let us consider a mapping Feld. Let x.(z; F)<xu(z; F) be the Lyapunov exponents
at z€ M. For a Borel finite measure u on M, we define

|det DF, |

1 1
Xl F =——/log DF|ge(pyl|du(z) and  xo(u; F :—/log—————
U6 E =1y | o8 IPF el dute) Wi EY =11 ] Y8 Do

du(z).
These are called the central and unstable Lyapunov exponent of y, respectively. For an
invariant probability measure u for F, we have

xe(u; F) = / xe(2)dp(z) and  xu(; F)= / xul?) dp2).

Further, if 1 is an ergodic invariant measure for F€l, the Lyapunov exponents x.(z; F')
and x.(z; F') take constant values x.(u; F) and x.(u; F) at p-almost every point z,
respectively.

Let p,, n=1,2,..., be a sequence of ergodic invariant probability measures for F
that have admissible lifts, and suppose that u, converges weakly to some measure foo
as n—o00. Then py has an admissible lift from Corollary 3.11. It is not difficult to see
that the Lyapunov exponent x.(u,;F') always converges to X (poo; F). However, for
the central Lyapunov exponent, we only have the inequality

li?l)songc(ﬂn§F)<Xc(ﬂoo;F) (16)

when F' has critical points, because the function log || DF|ge(.)| is not continuous at the
critical points. Though the strict inequality in (16) is not likely to hold often, we cannot
avoid such cases in general. And, once the strict inequality holds, the ergodic behavior
of F can be wild by the influence of the critical point.

Remark. It is not easy to construct examples in which the strict inequality (16)
holds. For example, consider the direct product of the quadratic mappings given in the
paper [8] and an angle-multiplying mapping #+—d# on the circle.

Remark. We could consider a similar but more general problem: Suppose that a
point z€M is generic for an invariant probability measure p, that is, the sequence

n~1 Z;:Ol dpi(s) converges to p as n—oco. The problem is that the strict inequality
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Xc(2; F)<xc(w; F) can hold, though the equality x.(z; F)=x.(u; F) always holds. (If
we did not assume the mapping F to be partially hyperbolic, these relations would be
looser.) We may call this kind of problems Lyapunov irregularity, as this is the case
where the so-called Lyapunov regularity condition [13] does not hold.

In order to avoid the irregularity described above, we introduce a mild condition:
Definition. We say that a mapping Fel satisfies the no flat contact condition if

there exist positive constants C=C(F'), no=no(F)>n, and f=F(F) such that, for any
admissible curve y€.AC(a) with a>0, n2ng and £>0,

mg({t€[0,a] | d(F"(~(t)),C(F)) <¢e}) < Ce” max{a, 1},

where mp is the Lebesgue measure on R. If F has no critical points, we say that
d(z,C(F))=1 for ze M and that F satisfies the no flat contact condition.

Remark. The definition above is motivated by the argument in a paper of Viana [25],
in which the condition as above for 3 =% is considered.

Below we give simple consequences of the no flat contact condition. For F'el{ and
z€M, we define

L{z; F):=1log IIsllI(l )|D*F(z,v)]€RU{—oo}. (17)
veESY (2

This function is continuous outside the critical set C(F') and satisfies
L(z; F) 2logd(z,C(F))—Cy
from (5), provided that C(F)#@. Thus we get the following lemma:

LEMMA 3.15. Suppose that F€lU satisfies the no flat contact condition and let no=
no(F) be as in the condition. For any §>0 and a>0, we can choose a positive number
h=h(8,a; F) such that

/ min{0, L(z; F)+h} d(poF~™)(2) > —6ul

for any pe AM([a,0)) and n=ng.

Using the inequality log || DF|ge(,)|| > L(z; F')—-Cg, which follows from (5), together
with Lemma 3.15, Corollary 3.8 and Corollary 3.11, we can obtain the following corollary:

COROLLARY 3.16. Suppose that a mapping FEU satisfies the no flat contact con-
dition. Then the central Lyapunov exponent x.(u; F), considered as a function on the
space of F-invariant probability measures having admissible lifts, is continuous and, in
particular, uniformly bounded away from —oo.

This corollary implies that the irregularity of the central Lyapunov exponent we
mentioned does not take place under the no flat contact condition.



PHYSICAL MEASURES FOR PARTIALLY HYPERBOLIC SURFACE ENDOMORPHISMS 57

3.7. Multiplicity of tangencies between the images of the unstable cones

By an iterate of a mapping Felf, the unstable cones S*(z) at many points z will be
brought to one point, and some pairs of their images may be tangent, that is, have
non-empty intersection. (Recall that S“(z) does not contain the origin 0.) In this
subsection, we introduce quantities that measure the multiplicity of such tangencies and
then formulate a condition, the transversality condition on unstable cones, for mappings
inl.

We introduce analogues of the so-called Pesin subsets. Let x={x,x}, x5, x}} be
a quadruple of real numbers that satisfy

Xe <X <Xu <Xa- (18)

Let € be a small positive number. For a mapping Fel{, an integer n>0 and a real
number k>0, we define a closed subset A(y, ¢, k,n; F) of M as the set of all points ze M
that satisfy

Xz (§=1)—e(n—35)—k <log [D*"F'~* (v)| < xZ (j—i) +e(n—j)+k
and
X (G—1)—e(n—7)~k <log DL Fi 7 (v) < x} (5 1) +e(n—j)+k

for any 0<i<j<n and veS*(Fi(z)). Applying the standard argument in the Pesin
theory [16], [18] to the inverse limit system, we can show the following result:

LemMma 3.17. If p is an invariant probability measure for FEU and if
Xe <Xe(zF)<x? and x,<xu(z;F)<x. for u-almost every z,

then limy_, oo liminf, o u(A(x, &, k,n; F))=1.

Note that we have

A(x,e,k,n; F)CA(x, €', k', n; F) if k<k’ and e <€/, (19)
FY(A(x,€,k,n; F)) C A(x, &, k,n—1; F) for 0<i<mn, (20)
A(x,e,k,n; F)CA(x, e, k+ei,n—4; F) for 0<i<n. (21)

By (4), we can take a constant Hy such that

£(DF™(u), DF" () < H, 2"z w)|

Ll W et B g p— 22
b Py <Heow(OE—xant2) ()
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for any z€A(x,¢,k,n; F) and u,v,weS%(z). For ze M, let £(z; x,¢,k,n; F') be the set
of all pairs (w, w’) of points in F~"(2)NA(x, ¢, k,n; F') such that

Z(DF"(E*(w")), DF™(E*(w))) < 5Hy exp((x< —Xu, )1 +2k)- (23)

Note that, if a pair (w,w’) of points in F~"(z)NA(x,¢,k,n; F) does not belong to
E(z;x,€,k,n; F), we have

Z(DF™(u), DF"™(u)) > 3Hg exp((x{ —xu)n+2k) (24)

for any u€S(w) and v'€S(w’), from (22).
As a measure for the multiplicity of tangencies, we consider the number

N(x, e, k,n; F) = max m #{w' | (w,w')e&(z; x,¢,k,n; F)}.

ax
ze€M weF—"(z)NA(x.e,kn; F)

This is increasing with respect to k and e.
Definition. Let X={x(l) f"zl be a finite collection of quadruples of numbers x(I)=

{xz ), xt (1), xz (1), xt (1)} that satisfy (18). We say that a mapping FelU satisfies the
transversality condition on unstable cones for X if

. R logN(x(1),¢e,k,n; F)
S 2235, T max{n(xc‘(l)+xa(l)—x?(l)—xﬁ(l))

where X2 ()=x¢ () —xc (1) and X3 ()=x3 () —x5 (-

Remark. We will consider only the case where x; (I)+x5 (1) —x2 (1) —x5 (1) >0.

(1<l<l0}<1,

3.8. Measures on the space of mappings

In this subsection, we give some additional arguments concerning measures on the space of
mappings. Recall that 7y: C™(M,R?)—C7(M,R?) is the translation by Y €C"™(M,R?),
that is, 7 (¢)=¢+1. For an integer s>0 and a positive number d>0, we put

D*(d)={GeC*(M,R?*)|||G|lc- <d}. (25)
The following lemma gives measures on C™(M, R?) with nice properties:

LEMMA 3.18. For an integer 53, there exists a Borel probability measure Ms on
C*3(M,R?) such that

(1) M, is quasi-invariant along C*~1(M, R?);

(2) there exists a positive constant p=ps(d) for any d>0 such that
1 dMsery h
2 dM,
for any YveC*(M,R?) with |[¢]lcs<eo-

S <2  M,-almost everywhere on D*~3(d)
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We will give the proof of Lemma 3.18 in the appendix at the end of this paper. This
is on the one hand because the lemma itself has nothing to do with dynamical systems,
and on the other hand because the proof is merely a combination of some results in
probability theory.

Henceforth, we fix the measures M, for s>3 in Lemma 3.18. Note that the measure
M belongs to QF_; when s>7+3.

LEMMA 3.19. Suppose that s>r+3. If a Borel subset X in C™(M, M) is shy with
respect to the measure Mo, then X is timid for the class Q_, of measures.

Proof. Take an arbitrary measure N in Q7 ;. The measure M, is supported
on the space C°~!(M,R?), along which A is quasi-invariant. Hence the convolution
Nx Mo is equivalent to A. From the assumption, we have

N+M,a(B51(X)) = / M0 {BZH(X)) AN () = / Mapa(@5L, (X)) dN (1) =0

for any GeC" (M, T). Thus X is shy with respect to N. O

In order to evaluate subsets in C"(M, T) with respect to the measures M, we will
use the following lemma:

LEMMA 3.20. Let s>r+3 and d>0. Suppose that mappings ;€C*(M,R?) and
positive numbers T; for 1<i<m satisfy

m
sup ti;
[t:|<T; 1

< 0s(d), (26)
Cs

i=

where gs(d) is as in Lemma 3.18. If a Borel subset X in C™(M,T) satisfies, for some
B>0, that

mpn ({{ti}:';lef[l[—n,m

for every € X, then we have

<p+iti1/1i€X}> <,Bﬁ2Ti (27)
i=1 i=1

M (@5 (X)ND*3(d)) 2™ BM, (85 (Y)) < 2™

for any GeC™(M,T), where

Y= {7/) +§: tivi

=1

YeX and |t < %}
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Proof. Put Z=®Z'(X)ND*3(d) and let 17 be the indicator (characteristic) func-
tion of Z. Using the Fubini theorem and the properties of M, we get

m T; 7 = 7
/mRm ({tER lti, < 7 and w+;ti’l/)iEZ}) dMs(’l/))

:/{tlltik%Ti}(/ 1z (mit“ﬁi) dMs(i)) dmpn(t)

i=1

:/{t||ti|<%Ti}Ms (Z—itiwl) 1)

=1

1 m
> — ;.
> QMS(Z)iI:Il:l;

The integrand of the integral on the first line is positive only if ) belongs to ®;'(Y) and
bounded by B[]~, 27T; from the assumption (27). Thus we obtain the lemma. O

3.9. The plan of the proof of the main theorems

Now we can describe the plan of the proof of the main results, Theorems 2.1 and 2.2,
more concretely by using the terminology introduced in the preceding subsections.
We split the proof into two parts. In the former part, which will be carried out in
884-6, we study ergodic properfies of partially hyperbolic endomorphisms in I/ that sat-
isfy the no flat contact condition and the transversality condition on unstable cones
for some finite collection of quadruples. The conclusion in this part is the follow-
ing theorem. For a finite or countable collection X={x({)};cr of quadruples x(I)=
{xz (O, xE D)y xz (D), xE (D)} that satisfy the condition (18), let |X| be the union of the
open rectangles (x7 (1), xF (1)) x (x5 (1), x& (1)) over l€L.

THEOREM 3.21. Let X be a finite collection of quadruples that satisfy (18),

X, <0, (28)
Xe +xu > (X —xe)+(Xo—Xa) >0 (29)

and also
{0} x[Xg, Agl C1X| C (—2A4,2A4) x(0,2A,). (30)

Suppose that a mapping F in U satisfies the no flat contact condition and the transversal-
ity condition on unstable cones for X. Then F admits a finite collection of ergodic phys-
ical measures whose union of basins of attraction has total Lebesque measure on M. In
addition, if an ergodic physical measure u for F satisfies either (x.(u; F'), xu(p; F))€|X]|
or xc(p; F)>0, then u is absolutely continuous with respect to the Lebesque measure m.
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In the latter part of the proof, which will be carried out in §§7 and 8, we show that
the two conditions assumed on the mapping F in the theorem above hold for almost all
partially hyperbolic endomorphisms in i, provided that we choose the finite collection X
of quadruples appropriately. On the one hand, we will prove the following theorem in §7.
For a finite collection X of quadruples that satisfy (18), let S1(X) be the set of mappings
Feld that does not satisfy the transversality condition on unstable cones for X.

THEOREM 3.22. There exists a countable collection X={x(1)}{2, of quadruples sat-
isfying (18), (28) and (29) such that

(a) |X| contains the subset {(xc, Tu) ER?|To+1y >0, Ag<Ty <Ay and z.<0};

(b) |X] is contained in (—2A4,2A4) % (0,2A,);

(c) the subset S1(X') for any finite subcollection X'CX is shy with respect to the
measures My for s=r+3 and is a meager subset in U in the sense of Baire’s category
argument.

On the other hand, we will show the following theorem in §8. Let Sy be the set of
mappings F'elf that does not satisfy the no flat contact condition.

THEOREM 3.23. If an integer s=r+3 satisfies the condition (3) for some integer
3<v<r—2, then the subset Sy is shy with respect to the measure M. Moreover, Sy is
contained in a closed nowhere dense subset in U, provided that r>19.

It is easy to check that the three theorems above imply the main theorems: Consider
a countable set of quadruples X={x(!)}{2; in Theorem 3.22 and put X,,={x(1)}2,
for m>0. Theorem 3.21 implies that the complement of (|Jor_; 81(Xm))US: in U is
contained in R”. Thus the main theorems, Theorems 2.1 and 2.2, restricted to U follow
from Theorems 3.22, 3.23 and Lemma 3.19. As we noted in §3.2, this is enough for the
proof of the main theorems.

4. Hyperbolic physical measures

In this section, we study hyperbolic physical measures for partially hyperbolic endomor-
phisms. Throughout this section, we consider a mapping F in U that satisfies the no
flat contact condition.

4.1. Physical measures with negative central exponent

In this subsection, we study physical measures whose central Lyapunov exponent is
negative.



62 M. TSUJII

LEMMA 4.1. If an ergodic probability measure p with negative central Lyapunov
exponent has an admissible lift, then it is a physical measure.

Proof. The central Lyapunov exponent of the measure p is bounded away from
—00 by Corollary 3.16. From Oseledets’s theorem and the assumption that p has an
admissible lift, we can find an admissible curve v such that almost all points with respect
to the smooth measure on it are forward Lyapunov regular for y. According to the Pesin
theory, the so-called Pesin’s local stable manifold exists for all such points on . These
local stable manifolds are transversal to v and contained in the basin B(u) of p. Further,
the union of them has positive Lebesgue measure from absolute continuity of Pesin’s
local stable manifolds [18, §4]. Therefore 4 is a physical measure. O

From this lemma and Lemma 3.14, we get the following result:

COROLLARY 4.2. If an F-invariant probability measure p has an admissible lift, it
has at most countably many ergodic components with negative central Lyapunov exponent,
each of which is a physical measure and absolutely continuous with respect to .

The basin of an ergodic physical measure with negative central Lyapunov exponent
may have empty interior, even though we ignore null subsets with respect to the Lebesgue

measure m. Nevertheless, we have the following lemmas:

LEMMA 4.3. For an ergodic physical measure p with negative central Lyapunov
exponent, there is an open subset U with u(U)=1 such that, for a Borel finite measure v
that has an admissible lift, we have v(B(p))>0 if and only if limsup,,_, . voF~™(U)>0.
In particular, if we assume v to be F-invariant, we have v(B(p))>0 if and only if
v(U)>0.

Proof. Recall the proof of Lemma 4.1. From absolute continuity of Pesin’s local
stable manifolds, there exists an open neighborhood U, for u-almost every point z such
that, if an admissible curve +:[0,a]—M with length a>2 satisfies v([1,a—-1])NU,#2,
the inverse image v~1(B(u)) has positive Lebesgue measure. Let U be the union of such
neighborhoods U,. Then we obviously have p(U)=1. If limsup,,_,,, voF~"(U)>0 for a
Borel finite measure v that has an admissible lift, we have v(B(u))>0 from the choice
of U, and Corollary 3.8. Conversely, if we have v(B(1)) >0, then

lim_}sup vo F™™(U) 2 v(B(p))u(U) > 0. O
n—oo

LEMMA 4.4. Let p;, i=1,2, ..., be a sequence of mutually distinct F-invariant Borel
probability measures each of which is ergodic and has an admissible lift. If p; converges
to some measure poo as i—>00, we have x.(z; F )20 for po-almost every ze M.
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Proof. From Corollary 3.11, uoo has an admissible lift. If the conclusion of the lernma
were not true, there should be an ergodic physical measure pl < po With negative central
Lyapunov exponent, from Corollary 4.2. Take the open set U in Lemma 4.3 for p_. On
the one hand, p. (U)=1 and hence pis(U)>0. On the other hand, since p;# pl, except
for one i at most, we should have p;(B(uh,))=0 and hence p;(U)=0. This contradicts
the fact that p; converges to pioo. a

From this lemma and Corollary 3.16, the next corollary follows:

COROLLARY 4.5. For any negative number x <0, there exist at most finitely many
ergodic physical measures for F that satisfies x.(1; F)<x.

Finally we show a lemma:

LEMMA 4.6. Let v be a Borel finite measure that is absolutely continuous with re-
spect to the Lebesgue measure m, and let y be a limit point of the sequence of measures
n IS voFt n=1,2,.... Then we have either

(a) xc(z; F)=0 for p-almost every point z€M, or

(b) there is an ergodic physical measure p'<<p with negative central Lyapunov ex-
ponent and v(B(u'))>0.

In particular, for a physical measure u for F, we have either (a) or

(b") u is ergodic and has negative central Lyapunov exponent.

Proof. Suppose that (a) does not hold. Then, from Corollary 4.2, there exists an
ergodic physical measure u’ < with negative central Lyapunov exponent. Take the open
set U in Lemma 4.3 for u/. We have p/(U)=1 and hence u(U)>0. Thus

n—oo M 4

n—1
1 A
lim sup — g vo ' (U) = n(U) > 0.
i=0

Although the measure v may not have an admissible lift, we can use the approximation
in Lemma 3.12 to conclude that v(B(x'))>0 from the property of U. O

4.2. Physical measures with positive central exponent

In this subsection, we investigate physical measures with positive central Lyapunov ex-
ponent. We shall prove the following three propositions:

PROPOSITION 4.7. Any physical measure p with positive central Lyapunov exponent
is ergodic and absolutely continuous with respect to the Lebesque measure m. Moreover,
the basin B(w) is an open set modulo Lebesgue null subsets.
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PROPOSITION 4.8. For any positive number x>0, there exist at most finitely many
ergodic physical measures for F that satisfies x.(u; F)>x.

Let B*(F') (resp. B~ (F)) be the union of the basins of ergodic physical measures

with positive (resp. negative) central Lyapunov exponent.

PROPOSITION 4.9. Suppose that a Borel probability measure v on M is absolutely
continuous with respect to the Lebesgue measure m and supported on the complement of
B~ (F)UB*(F). If vy is a weak limit point of the sequence of measures n™* E;:(} voF—J,
n=1,2,..., then we have x.(z; F)=0 for vy-almost every point z.

We derive the propositions above from the following single proposition: Let X (1),
i=1,2, ..., be Borel subsets in M with positive Lebesgue measure. Let my; be the
normalization of the restriction of the Lebesgue measure m to X (i). For each ¢2>1, let
Wi oo be a weak limit point of the sequence n~! Z;:Ol my ;o F7, n=1,2,... Assume
that the sequence p; o, converges weakly to some measure pio, as t—00. Also assume
that xc(tteo; F)>0 and that x.(z; F)20, peo-almost everywhere.

PROPOSITION 4.10. In the situation as above, there exist an ergodic physical mea-
sure V; oo and an open disk D; in M for sufficiently large © such that

(8) ViooK lhioo aNd V; 0o KM

() Xe(¥i,00; F)>0;

(c) the radius of D; is positive and independent of 1;

(d) Vi,00(D;)>0 and D;CB(v;,c) modulo Lebesgue null subsets.

Below we prove Propositions 4.7, 4.8 and 4.9 using Proposition 4.10.

Proof of Proposition 4.7. Let u be a physical measure such that x.(u; F)>0. From
Lemma 4.6, we have x.(z; F') >0 for y-almost every point z. Apply Proposition 4.10 to the
situation where X (i):=B(u) and p; oo =pco=p for all i>1. And let v; o, and D; be those
in the corresponding conclusion, which we can assume to be independent of 7. Consider
the open set V=|J;>, F~™(D;). Then B(v;,c0)=V modulo Lebesgue null subsets. Since
Vioo (V) 2 V4,00(D;) >0 and since v; o< pt, we have p(V')>0. Hence

n—1

.1 —i
M) (B(¥,00)) = lim ~ Z% Mg F 7 (B(vie0)) 2 (V) > 0.
This implies p=v; . We have proved Proposition 4.7. 0

Proof of Proposition 4.8. Suppose that there exist infinitely many ergodic physical
measures f;, =1, 2, ..., that satisfy x.(u;; F') 2x>0. By taking a subsequence, we assume

that p; converges to an invariant probability measure g, as i—o0o. Then we have
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Xe(foo; Fy 2 x>0 from Corollaries 3.11 and 3.16. From Lemma 4.4, we have x.(z; F) >0
for poo-almost every point z. Thus we can apply Proposition 4.10 to the situation where
X(4):=B(p;) and p; co=p; for i>1. Since the u;’s are ergodic, the disks D; in the
corresponding conclusion are contained in B(u;) modulo Lebesgue null subsets and hence
mutually disjoint. But this is impossible because the radii of the disks D; are positive
and independent of 1. a

Proof of Proposition 4.9. Let X=M\(B~(F)UB*(F)). For the proof of the propo-
sition, it is enough to show the claim in the case when m(X)>0 and v=mx. Let v, be
a weak limit point of the sequence n~! Z;.:Ol voF~J. From Lemma 4.6, x.(z; F)>0 for
Voo-almost every z€ M. Thus we have only to prove x.(veo; F)<0. Suppose that we have
Xc(Voo; F)>0. Then we can apply Proposition 4.10 to the situation where X (i):=X for
all i21. Let v; oo Vs and D; be those in the corresponding conclusion, which we can
assume to be independent of i. We should have

v(B(vi,00)) 2 1im_>sup v(F™™(D;)) 2 veo(D;) > 0.

But this contradicts the definition of X because v; o is an ergodic physical measure with
positive central Lyapunov exponent. O

We proceed to the proof of Proposition 4.10. For positive numbers x, €, k and a
positive integer 1, we define a closed subset I'(x, €, k,n; F') as the set of all points z€ M
such that, for any 0<m<n and any veS*(F™(z)),

(1) [D*F™=m(v)|>exp(x(n—m)—k);

(T2) |D*F(v)|>exp(—e(n—m)—k).

For the points in I'(x, €, k,n; F'), we have the following estimates on distortion:

LEMMA 4.11. For positive numbers x>0, 0<e< % x and k>0, there erists a posi-
tive constant a=a(x, &, k), which depends only on x, € and k besides the objects that we
fized at the end of §3.2, such that, for any n>0 and z€l'(x, &, k,n; F), the restriction
of F™ to some neighborhood V of z is a diffeomorphism onto the disk B(F™(z),a) and
we have

1) (DFR)~ I~ >C5  exp(xn—k) for weV;

2) |log |det DF|—log |det D || <1 for w,w'eV.

Proof. Fix veS*(z) and put §(i)=|D*F"~¢{(DF*(v))|~! for 0<i<n. Let D, be the
disk in the tangent space Tpn(,)M with center at the origin and radius o. We define

the regions D; CTp:(,) M for 0<i<n so that DF(D;) is the §(i)a-neighborhood of D; ;.
Then we have

diam D; < ||(DFp: ) 1||a+2 IDFR D 180



66 M. TSUJII

for 0<i<n. Using the relation (7), we can check that

NDFLE ") H18(5) < Co| D*F(DF? (v))| 7 8(2).

Thus, from the conditions (I'1) and (I'2), we get
diam D; < Cy(n—i+1)exp(e(n—i)+k)6(i)a < Cy(n—i+1) exp(—(x—¢)(n—1)+2k)c.
From the condition (I'2) and the relation (7), we have

”D ;il(z)”_l 2z Cg_leXP(_E(n_i)_k)'

For ve D;, we have the estimates

Hexp;}H(z)oFoexppi(z)(v)—DFFi(Z)(v)H < C,(diam D;)?
< Cyn?exp(—(x—2¢)(n—1)+3k)6(i) o?

and

[ D(exPisa(,)° Foexppi(z)), — DFpi(z)|l < Cy diam D;
L Cynexp(—(x—e)(n—i)+2k)a.

Hence, if we take sufficiently small o depending only on x, €, k and Cy, the restriction of I
to exppi(,)(D;) is a diffeomorphism onto a neighborhood of the subset exp Fi+1(z) (Dit1)
for 0<i<n. This implies the first claim of the lemma. We can check, by straightforward
estimates, that the other claims, (1) and (2), hold if we take sufficiently small a. a

From now to the end of this section, we consider the situation in Proposition 4.10.
For each i, we take a subsequence n(j;1)— 00 (j—>00) such that the sequence of measures
n(g;4)~! zfn(i}f)_lmx(i)oF"" converges t0 f; oo as j—o0o. The following is the key
lemma in the proof of Proposition 4.10:

LEMMA 4.12. There exist x>0, 0<s<%x and k>0 such that

n(j;i)—1
. 1 . .
hjn_l)g.}f m mgzo mx;)((x,e,k,m; F)) >0  for sufficiently large . (31)

The point of this lemma. is that we can take x, € and k& uniformly for sufficiently
large i. Before proving this lemma, we finish the proof of Proposition 4.10 assuming it.
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Proof of Proposition 4.10. Let the constants x, € and & be those in Lemma 4.12 and
a=a(x, €, k, F) that in Lemma 4.11. We consider a large integer i for which (31) holds.
Then we can take a compact subset KCX (i) and a point zp€ M such that

n(§;8)—1

_ 1 —m
thI_l)LI.}fn(j;i) mz::O (m|kAr(x,e,kmpy o F ™) (B (20, 30)) >0. (32)

Let Dy, be the union of the connected components of F~™(B(z, $a)) that meet
KNI (x,&,k,m; F). Then, on each of the connected components of D,,, the mapping F™
is a diffeomorphism onto B(zo, %a) and satisfies the estimates in Lemma 4.11. Let v;
be a limit point of the sequence {n{j;i)~} Zﬂig)_lmlpmof’"m};";l. Then we have

v; <M(X (%)) i 00 and v;<m, and, further,

We can check that v; is ergodic and x.(z; F)>0 for v;-almost every point z. (See
the remark below.}) Hence there is an ergodic component Vioo Of pi oo such that v <
ViooK Mi,co- The measure v; o, and the disk D;=B(z, %a) satisfy the conditions in
Proposition 4.10. O

Remark. Actually, it is not completely simple to prove that the measure v; in the
proof above is ergodic and that x.(z; F)>0 for v;-almost every point z. But there are
a few standard ways for it. For example, we can argue as follows: Consider the inverse
limit space of F,

Mp={{2}3_o| z;€ M and F(z;) =211},

and the projection m: Mp—M defined by 7({2}9=_0o)=20. Let fi; 00 be the natural
extension of p; . We can check that the part #; of [i; oo that corresponds to v; is
supported on a union of local unstable manifolds, each of which is projected onto the
disk B(z0, 1) by m. Further, the conditional measures on those local unstable manifolds
given by ; are absolutely continuous with respect to the smooth measures on them. For
any continuous function ¢ on M, the backward time average of o is constant on each
of the local unstable manifolds. From the ergodic theorem, the forward time average
coincides with the backward time average almost everywhere with respect to ¥; < fi; oo,
and is the pullback of a function on M by 7. Thus it must be constant ;-almost
everywhere. This implies that v; is ergodic. The positivity of the central Lyapunov
exponent is obtained by considering Lyapunov exponents with respect to the backward
iteration.



68 M. TSUJII

In the remaining part of this subsection, we prove Lemma 4.12. To begin with, we
fix several constants: Fix xo>0 and 0<sp<1 such that

uoo({z eEM | Xc(z) > XO}) > 8- (33)

Also fix a positive number e such that 0<e9<10"4sgxo. Recall that we are considering
a mapping F'€U that satisfies the no flat contact condition. From Lemma 3.15, we can

fix a large positive constant hg>xg such that

1
/min{O, L(z; F)+ho} d(peF ™) (2) > ~1g S0c0
for any measure p in AM([1,00)) and n>no(F), where L(z; F) is the function defined
by (17) and no(F) is the constant in the definition of the no flat contact condition. From
(33) and the assumption that y.(z; F)>0 for g.-almost every z, we can fix a constant
ko> hg such that

Hoo({z€M | |D*F™(v)| > exp(xon—ko) for all v€ S¥(2) and n >0}) > so,
Sp€o

too({z€ M| |D*F™(v)| > exp(—eon—ko) for all veS¥(z) and n>0})>1— T
0

Finally we fix a positive integer mo that satisfies egmo>10ko.

Next we introduce the following subsets of M:

A={zeM||D*F™(v)| > exp(xom—2ko) for all v€S“(z) and 0 <m <mop},
B={zeM||D*F™(v)| > exp(—eom—2kg) for all v€S*(z) and 0 <m<mg} D A,
C=M\B,

D={zeC|L(zF)<—ho} CC.

Note that A and B are open subsets. From the assumption that the sequence u;
converges to flo a5 1—00, we have

n(j;4)—1

1
. o m .
lim inf "G m§=0 my ;) (F(A)) > so, (34)

n(j;i)—1
m So€
Z mx ;) (F (B))>1—18h(; (35)
m=0

1
lim inf ——
j—oo n(J;4)

for sufficiently large i.
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We fix a large integer ¢ for which (34) and (35) hold. Using Lemma 3.12, we can
find a small number by >0 and a probability measure pg in AM([bg, 00)) such that

lmx ) — pol < 550, (36)
n(Gsi)~1
liminf s 7;) po(F~™(A4)) > so, (37)
o n(g;i)—1 ~ 020
lim inf Y 7:{‘0 po(F~™(B))>1— T (38)
By modifying the measure pg slightly if necessary, we can assume that
no(F)
> /min{O,L(Fm(z);F)+hg}d,u0 > —00
m=0
in addition. Then, from Corollary 3.8 and the choice of hg, we also have
. 1 e . S0€0
lim inf ) mz;o /mln{O,L(Fm(z); F)+ho} dpto > —=10°- (39)

For z€ M and integers m<mn, let A,(m,n), B,(m,n), C,(m,n) and D,(m,n), be the
set of integers m<g<n for which F4(z) belongs to A, B, C and D, respectively. Then
we have the following result:

LEMMA 4.13. A point ze M belongs to T'(3550x0,4¢€0,6ko,n; F') for n>0 if
(A) #A.(m,n)>s0(n—m) for any 0<m<n;

(C) #C,(m,n)<eo(n—m)/hg for any 0<m<n;

(D) Xiep.(mny min{0, L(F(2); F)+ho} 2 —go(n—m) for any 0<m<n.

Proof. Consider a point z€ M and an integer n that satisfy the conditions (A), (C)
and (D). Let 0<m<n and I={m,m+1,..,n—1}. We call a set of mg consecutive
integers {q,q+1,...,q+mo—1} an A-interval (resp. a B-interval) if its smallest element ¢
belongs to A,(m,n) (resp. B,(m,n)). If {g,q+1,...,g+mo—1} is an A-interval, we have

m()—l
> log |D*F(DF? ()] > xomo —2ko > (Xo—¢0)mo+2ko (40)
j=0
for veS“(F9(z)), where the second inequality follows from the choice of mg. Similarly,
if {q,q41,...,g+mg—1} is a B-interval, we have
mo—l

> log |D*F(DF? (v))| > ~egmo—2ko > —2e0mo (41)
7=0
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for veS*(F(z)).

Take mutually disjoint A-intervals that cover A,(m,n), and let I4 be the union of
them. Then take mutually disjoint B-intervals that cover B,(m,n)\I4, and let Ig be
the union of them. We can take the B-intervals in Ig so that their smallest elements are
not contained in I4. Note that I4 and I are not necessarily contained in 1.

Consider an arbitrary vector v€S*(F™(z)). Then DF?~™(v) belongs to S*(F(z))
for gzm. From (40) and the fact that all the A-intervals in I4 but one is contained in I,

we have

> log|D*F(DFI™™ (v))] > (xo—€0) #(TaNT ) +2ko(#1a/mo—1) — 2ko.

q€lanI

Each A-interval in I4 meets at most one B-interval in Ig. Thus the number of B-intervals
in Ip whose intersection with 7'\ T4 has cardinality less than mg is at most #I4/mo+1.
From this and (41), we obtain

> log|D*F(DFI~™(v))| > —2e0 #(IpN(I\Ia))—2ko(#1a/mo+1).
qGIBﬂ(I\IA)

Since the complement of I4,Ulp in I is contained in C,(m,n), the condition (I'l) in
the definition of the set F(ﬁszo, 4eq, 6k, n; F ) follows from the two inequalities above,
the assumptions (A), (C) and (D), and the choice of €. If m belongs to B,{(m,n), the
condition (I'2) obviously holds. Otherwise, the condition (I'2) follows from (D) because
we have eg(n—m)/ho2#C,(m,n)>1 in that case from (C). O

In order to prove Lemma 4.12, we see how often the assumptions (A), (C) and (D)
in the lemma above hold. For this purpose, we prepare the following elementary lemma,
which we shall use again in §6:

LEMMA 4.14. Let 1 be a measure on a measurable space X and ¥, m=0,1,...,
be a sequence of non-negative-valued integrable functions on X. For a positive number
a>0 and an integer p>0, let Y, (o) be the set of points yeX such that

p—1
Z vi(y) 2 a(p—q) for some 0<g<p.
l=q

(So Yo(a)=2.) Then, for any n>0,

n—1 n

n-1
S Hn@) < 3wl <5 3 [ v

m=0 m=0
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Proof. For each point z€ M, we define integers

n=qo(z) 2p1(2) > q1(2) 2 p2(2) > q2(2) 2 ... 2 Pj(2) > () 20
in the following inductive manner: Suppose that ¢;(z) has been defined. If there exist
integers p<q;(2) such that zeY,(a), let p;+1(%) be the maximum of these integers and
¢;j+1(2) the smallest integer g<p;+1(2) such that

pi+1(2)—1
Y ) 2 a(pi(2)-q). (42)
l=¢q
Otherwise we put j(2)=j and finish the definition. Consider the subsets
Zm={2€M|q;(2) <m<p,(z) for some 1<j<j(2)}
for 0<m<n. Then we have Yy, 11(a)CZ,,. From (42), we obtain

n—1 n—1 n n
> [tmduza uZn)za Y p¥m(@)=a Y w(Yn(). O
m=0 m=0 m=1 m=0

Now we can complete the proof of Lemma 4.12.

Proof of Lemma 4.12. For n3>0, let A,, C, and D, be the set of points zeM
for which the condition (A), (C) and (D) does mot hold, respectively. First, apply
Lemma 4.14 to the case where a=1—35s9, n=n(j;) and ¢, is the indicator function
of the complement of F~™(A). Then, from (37), we obtain

, mEn-r 1 | - 1—s0 9
—— Am(2) € —1— == M\F~™(A)) < ——<1-—
T 2 Holhn@) ST o 3 MM\ A) < T <1 g

for sufficiently large j. Second, apply Lemma 4.14 to the case where a==¢q/hg, n=n(j;1%)
and 4, is the indicator function of the set F~™(C)=M\F~"(B). Then, from (38), we
obtain

1 n(ji)-1 he 1 n(j;i)—1 1
— Cn(2)) € — —— FT™(C) < —=s
T 2 WG SR o 3 wlFO) < o

for sufficiently large j. Third, apply Lemma 4.14 to the case where a=¢g, n=n(j;?) and
¥m(z)=—min{0, L(F™(z); F)+ho}. Then, from (39), we obtain
1 n(jii)—1 n(5;i)~-1

2 walDn@) <=5ty 3 [ min0, L))o} duof) < 10

n(J;1)
for sufficiently large j. From the three inequalities above and (36), we conclude that
1 n(j;i)~1

~ ~ o~ 6
Z my ;) (A,UCLUD,) <1 i—(—)So

n(j;i) =
for sufficiently large j. Since the complement of A, UC,UD,, is contained in the subset

(%5 50X0, 4€0, 6ko, m; F') from Lemma 4.13, this implies Lemma 4.12. O
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5. Some estimates on distortion

In this section, we give some basic estimates on distortion of the iterates of mappings
in U. The estimates are straightforward and may look rather tedious. But we need to
check that some constants in the estimates can be taken uniformly for the mappings in I{.
This is important especially in our argument in §7, where we consider perturbations of
mappings in U.

Let x={xZ, X% Xu> X5} be a quadruple satisfying (18), (28) and x; +x, >0, and let
€>0 be a small positive number satisfying

£ <108 min{xC +x5. X2 X ~Xas Ag}- (43)

In the argument below, we will take several constants that depend only on X and ¢ besides
the integer 7 and the objects that we have already fixed in §3.2. In order to distinguish
such constants, we will use symbols with subscript £ for them. Also we will use a generic
symbol C. for large positive constants of this kind. The usage of this notation is the
same as the one introduced in §3.3. The following lemma is the main ingredient of this

section:

LEMMA 5.1. There exist positive constants 0< g, <1, ».>1 and x,>1 such that the
following claim holds for any FEU, k>0, n>1, 20€ A(x, &, k,n; F) and 0<p< 0o, where

= —d4en—2k . . *j—i S - _ ' 4
00:=Qce o SR vESP(lIl?‘Iil(zo))‘DF (v)] > o exp((xc —5e)n—3k) (44)

For every mapping GEC™(M, M) that satisfies do1(F,G)<p, we can take a point 2(G)
and a neighborhood V,(G)32z(G) in a unique manner so that

(i) 2(G) depends on G continuously and z(F)=2zp;

(i) G (x(@)=F(z0);

(iil) the restriction of G™ to V,(G) is a diffeomorphism onto B(F™(20), 0)-
Further it holds that

(iv) diam Vy(G)<sz0exp(—x_n+k);

(v) B(2(G), 2, toexp(~xin—k))CV,(G);

(vi) Vo(G)CA(x,¢e,k+1,n; F);

(vii) Z(DG™(E*(w)), DF™(E*(2)))<s.€%*0 for any point weV,y(G);

(viii) any admissible curve in B(zo, 3, ") meets V,(F) in a single curve.

Proof. First of all, notice that the inequality in (44) follows from the assumption
20€A(x,€,k,n; F). We will give the conditions on the choice of the constants pe, s
and », in the course of the argument below. For 0<i<n, we put (i)=F"(z0) and

eexp(e(n—i)+k)
min;¢i<n MiNyes(¢(:) |D*F'—i(v)|

8(i) =
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Then we have
o< oexple(n—1)+k) <8(i) < p. exp(—3en—k) for0<i<n. (45)
Using the relation (7), we can see that

; in;<i<n Milpese (i) | D F'
3(7) < exp(—e(j—i)) Taysi<n Milvesu(g( ) | (v)|

8(7)

min;ign MiNyesu () [D*F =9 (v))] (46)
< Cyexp(—e(j—1)) |(DFI) ™~
for 0<i<j<n, and

0(i+1)
6(4)

min{l, mini+1<l<n minvesu(c(i)) |D*Fl_i(’0)|}
ming 4 1<1<n Milyegu(c(i+1)) [D*FI1{(v)| (47)

> Cy " exp(—¢) [ (DF¢(i)) I

= exp(—¢)

for 0<i<n.

We put D,=B(0,0)CT¢n)M and define the region D;CT;;)M for 0<i<n in-
ductively so that DFg;(D;) is the 26(i+1)-neighborhood of D;y1CT¢41yM. Put
B, =exp,(;(Ds). Then

diam B; = diam D; < 20 |(DF) M|+ > 48(/) II(DFL) |
j=i+1 (48)
< C. (%) € C.o. exp(—3en—k)

for 0<i<n, where the second inequality follows from (46) and the third from (45). Since
C(0)=z€A(x;¢€, k,n; F'), we have

[(DFe) M7t > Cg—l exp(—e(n—i)—k) for0<i<n (49)
by (7). Therefore, if we take the constant g, sufficiently small, we can obtain
IDGw— DF¢(3)|| < dei (F, G )+ Cy diam B; < || (DFiy) 1|17
and
d(G(w), expc(iﬂ)oDFC(,-)oexpEé)(w)) <der(F, G)+Cy(diam B;)? < 26(i+1)

for 0<i<n, weB({(i),diam B;) and any mapping GEC" (M, M) satisfying dc1(F, G)<
2< g0, where we have used the relation

(diam B;)? < C.6(3)? < C- gc exp(—2en)8(i+1),
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which follows from (45), (47) and (49). These two inequalities imply that the mapping G
restricted to B(((i), diam B;) D B; is a diffeomorphism and maps B; onto a neighborhood
of By for 0<i<n. Put V,(G)=[;_, G~*(B;). Then the restriction of G to V,(G) is
a diffeomorphism onto B,=B(F"(z), 0). Let z(G) be the unique point in V,(G) that
G™ brings to F™(zg). Clearly 2(G) and V,(G) satisfy the conditions (i), (ii) and (iii).

We show the conditions (iv)—(viii). Using (6) and (7), we can check that (iv) and
(v) follow from (vi). We prove (vi) and (vii). Let GEYU be a mapping that satisfies
doi(F,G)<p< 00 and w a point in V,(G). We put w(i)=G*(w) for 0<i<n. Consider
an integer 0<7<n and tangent vectors veS*(¢(¢)) and ueS*(w(i)). For 0<m<n—1i, we
have

£(DG7;y (u), DF(;) (v) < L(DFy (uw), DF(;) (v))

i+1 1
+Z‘ DF( 2, (DGL (W), DF (DGl (w).

Remark. In the expression above, we identified tangent vectors with their parallel

translations and abused the notation slightly. In fact, DF[(;, +’] (DG{U( )(u)) should have

been written DFC"(I :fj)( (DGw(z)( u))), where 7 is the parallel translation from w(i+j) to

¢(i+37). We continue to use such identifications below.

Since w(i+j—1)€B;4,-1 and DG{U( 1) (u)eS*(w(i+j—1)), the parallel translation

of DGfu(zl)( u) to ((i+j—1) does not belong to S¢({(i+j—1)), provided that we take
sufficiently small p.. Also we have

L(DF¢(i45-1) (DG} (w), DG () < Cy(diam Byyj 1 +dor (F, G))

for 0<j<n—i. Using these consequences and (4) in the inequality above, we obtain

|D*F™ (v)|
9 D.F™(v)

|D*F™=3 (DF(u))
G Z D.F=3(DF3(v))

£(DGys)(u), DFf)(v)) S A £(u,v)

(diam Bi+j-1 +Q)
(50)
< Cgexp(—Agm) £(u,v)

+Cy z exp(—Ag(m—j))(diam B;y;_1+0).

In order to prove the condition (vii), we consider (50) in the case where i=0, m=n
and v and u are unit tangent vectors in E%(zy) and E*(w), respectively. In this case, we
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have

|D*F"=3(DF? (v))|

) |D*F™~7(DFY (v))|
D.F"i(DFi(v))

D.F"=i(DFi(v))
< Cepexp(e(n—j)+k)

|D*F*Y(DF!(v))| |D*F(DF'"*(v))| "
A D.FY(DF(v)) D.F'3(DFi(v))

< Ceoexp(—(Ag—2)(n—j) +2k)

(diamBj_1+Q) < Ce‘s(j_l)

for 1<j<n, where we used (45) and (48) in the first inequality, (7) in the second, and
the assumption zo€A(x,¢,k,n; F) in the third. Likewise, using the estimate /(v,u)<
Cyd(20, w)<Cqydiam By, we can show that

|D*F"(v)|

Z(u,v) £ m Cydiam By < Cepexp(—(Ag —2e)n+2k).

|D*F"(v)|
D, Fn(v)

Putting these inequalities in (50), we obtain the condition (vii).

Next we prove the condition (vi). Consider an integer 0<i<n and a vector u€
S*(w(z)). Since w(i) belongs to B;, there is a vector v€S¥(((7)) such that Z(u,v)<
Cydiam B;. From this, (48) and (50), we obtain

|D*G(DG, y (v) — D*F(DFL ) ()] < Cy ((det DGy 1y —det DFegis|
+|D.G(DG., ;) (v) - DLF (DF{ 3y (w))])
< Cg (dcl (F, G) +diam Bi+l
+4(DG'y;(v), DF{ ()
< Cyoc exp(—3en—k)

for 0<I<n—i—1. Thus, using (49), we can obtain

D*Gi~(v)
D*Fi—i(y) H(u)

IZY ID*G(DGE (v
log ‘ w(l)( )

Z D+F( DFé( ) (u u))

=0

’<1 for0<i<j<n, (51)

provided that we take the constant . sufficiently small. Likewise, we can get

DG’ (v) L
1Og‘ﬁj—‘—i(u_)‘<l forOSzngn.
The condition (vi) follows from these two inequalities and the assumption that z; belongs
to A(x,&,n, k; F).
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Finally we check the condition (viii). Let v be an admissible curve in B(zo, ;).
From the argument in §3.4, the curvature of Fiy for 0<i<n is bounded by some con-
stant Cy, even though Fv for 0<i<n, may not be admissible. Thus we can take the
constant s, so large that the following holds: the intersection of any arc ¥ in Fivy with
length less than 4Agc; ! with any ball with diameter not larger than 23! is a single
subarc of 7 with length less than 4, 1. The diameter of B; is bounded by 2, * provided
that we take the constant g. sufficiently small. Thus, by induction on 0<j<n, we can
check that v;:=vyN( {=0 F~YB(¢(l),diam By))) consists of a single arc. We obtain the
condition (viii) as the case j=n. a

Note that the claim of Lemma 5.1 remains true even if we get the constant g, smaller
and s and s, larger. By letting the constant g, be smaller and s, larger if necessary,

we can show the following claim in addition:

ADDENDUM TO LEMMA 5.1. Suppose that FeU, n>1 and k>0. Then there exists
a neighborhood W (z) for each point z€ A(x, €, k,n; F') such that

(ix) the restriction of F™ to W(z) is a diffeomorphism onto the image. Further,
if WENW(w)#£2 for some welA(x, e, k,n; F), then F™ is injective on the union
W(z)UW (w).

(x) MW (2))> 5 Lexp(—(xt +max{xZ, 0} +7)n—6k).

Proof. We consider a point 20€A(x,¢, k,n; F') and continue to use the notation in
Lemma 5.1 and its proof. Let -y be the curve in V,,(F') that F™ maps onto the segment
{¢(n)+tec(¢(n)) | [t| <00} CB(¢(n), o), where €°(-) is a unit vector in E(-). From
backward invariance of the central cones S°(-), the tangent vectors of v is contained in
the central cones, provided that we take a sufficiently small g.. From (51) and (7), the
length of Flv satisfies

|Fiy] < Cye0 ||(DF<"(:)’)'1|| < Cypoc exp(—4en—2k)
and, for the case i=0,
1> G5 ool (D)1 > 5 i gee = |(DEL)) ™ || (DFi)

> C; o exp(— max{x},0}n—5en—4k).
Next consider the family of parallel segments
() =y+te"(z0), [t| < oeexp(—(x;+2¢e)n—2k)

parameterized by the points y€~, where e¥(2p) is a unit vector in E¥%(zp). We define
W {(z) as the region that this family of segments sweeps. From the estimate on the
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length of v above, we can see that W(z) satisfies the condition (x), provided that we
take a sufficiently large constant s.. Since the mapping F is uniformly expanding in the
unstable directions, we can show that

|Fiy| < Cgoeexp(—(xi +26)n—2k) DL F*(e*(2)) < Cy0: exp(—en—k)
for 0<i<n. Hence the diameter of F*(W(2)) is bounded by
|Fiy|+2 max | F,| < Cooeexp(~en—k).

If W(z)NW(w)#2 for some point we€A(x,e,n,k; F), the diameter of the image
FYW (29)UW (w)) is bounded by 4C, . exp{—en—k). On the other hand, the distance
from ¢(i) to the critical set C(F) is not less than C; ! exp(—en—k) from (49). Thus, if
we take a sufficiently small constant g., the restrictions of F to F*(W (z)UW (w)) for
0<i<n are diffeomorphisms, and hence (ix) holds. O

The condition (ix) implies that, if two points z and w in A(x,e,k,n; F) satisfy
F™(z)=F"(w), then the neighborhoods W (z) and W (w) are disjoint. Thus we obtain
the following corollary from the condition (x):

COROLLARY 5.2. For any FelU, n>1, k>0 and {cM, we have

#(A(x, &, k,n; FYNF~™(C)) < s exp((x; +max{x},0}+7¢)n+6k).

6. Physical measures with neutral central Lyapunov exponent

In this section, we study physical measures with nearly neutral central Lyapunov expo-
nent. The goal is the proof of Theorem 3.21, which will be carried out in the last three
subsections.

6.1. An illustration of the idea of the proof

The argument in this section is based on a new idea that relates the transversality
condition on unstable cones to absolute continuity of physical measures with nearly
neutral central Lyapunov exponent. In this subsection, we illustrate the idea in a simple
example.

As a simplified model of a partially hyperbolic endomorphism, we consider the skew
product F:{0,1)xR—[0,1) xR defined by

F(z,y)=(dz,a;x+by+c;) onli/d, (i+1)/d)xR, i=0,1,2,...,d—1,
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where d>2 is an integer and a;, b; and ¢; are real numbers. And we assume that

(1) |b;l<d for 0<i<d, so that F is partially hyperbolic with E°=(d/8y);

(2) |b;]>d~! for 0<i<d, so that F is volume-expanding;

(3) E?;ol log |b;| <0, so that most of the orbits are bounded.
Put 6=max;¢;¢aai|/(d—|b;]) and bmax=maxi<igd |b;|- Then F brings a segment with
slope less than 6 in absolute value to a union of segments with the same property. Assume
in addition that

|a;—air| > 30bymax for any i #4'. (52)

This is a much simplified analogue of the transversality condition on unstable cones.
Indeed, if I, is a segment in [i,/d, (i, +1)/d) xR for 6=1,2, and if their slopes are
bounded by # in absolute value, then (52) implies that the difference between the slopes
of their images under the mapping F is larger than 8b,,,,/d, provided i;#1,.

We prove the existence of an absolutely continuous invariant measure for F' with
negative central Lyapunov exponent. First of all, observe the following fact: if Lebesgue-
integrable functions v, and 12 on [0,1] xR take constant values on lines with slopes k;
and ko, respectively, or, in other words, satisfy 1;(x,y)=:(0,y—k;z) for 0<z<1 and
y€R, then we have, with y'=y—k; z,

(W1,2) 2 :/7/11(:’37 y)va(z,y) dz dy

_ / D1(0,5) (0, y' + (k1 — ko)) der iy’

< k1 —ko|"Hlvr Il L 92l 2

provided ki1#k,. Let ¢(z,y) be an L2-function on [0,1] xR and suppose that it is the
sum of non-negative functions 1, (y), j=1,2, ..., m, that take constant values on lines with
slopes k; with |k;| <8, respectively. Let Pr and P;, 0<i<d, be the Perron-Frobenius
operator associated to F' and its restriction to [i/d, (i+1)/d) xR, respectively, so that
'PF=Z?=_01 P;. By using the transversality condition (52) and the fact that we observed

above, we can obtain

1
dmini lbll

d

9122+ = I¥llE:.  (53)

d
1PElIe =D P2 +D (P, Puth)re < T~

i=0 i
Remark. We can regard this inequality as an analogue of the so-called Lasota—Yorke
inequality.

Note that the coefficient 1/d min; |b;| is smaller than 1 by assumption. The Perron—
Frobenius operator Pr preserves the L!'-norm of non-negative functions and is not dis-
sipative because of the assumption Zf;ol log |b;| <0. Since the images P21y again satisfy
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the condition that we assumed for v, we can apply the inequality (53) repeatedly and
see that PRy, n=1,2, ..., are uniformly bounded with respect to the L2-norm. Thus we
can find a non-trivial fixed point of P in L2([0, 1] xR) as an L2?-weak limit point of the
sequence n~ ! Y"1 PRy, n=1,2,.... The measure y having this fixed point as density
is an absolutely continuous invariant measure for F', whose central Lyapunov exponent
is d=1 7, log |b;| <0.

In the argument above, we used the assumption Eleloglbil<0 only to ensure
that the Perron-Frobenius operator P is not dissipative. So, if we consider mappings
on compact surfaces, the same argument should be valid in the case where the central
Lyapunov exponent is neutral or even slightly positive. This is the key idea that we will
develop in the following subsections.

6.2. Semi-norms on the space of measures

For a Borel finite measure p on M and 0<d<1, we define the function

I TR, gtw) = 2B = T 1500, duce),

where
1, if d(w,z) <4,

1 TxT —R, 15(w,z)=
0, otherwise.

And we put, for Borel finite measures 1 and v on M,

(1, v)s = (Jsp, Js¥)r2(my  and  lplls = /(1 w)s =I5l 22 (m)-

Obviously | - ||s is a semi-norm and satisfies

|yl

- (54)

lleells <

The semi-norm ||u||s for a measure u is essentially decreasing with respect to the auxiliary
parameter 0. More precisely, we can prove the following lemma:

LEMMA 6.1. There is an absolute constant Co>1 such that

el < Collpll, (55)

for any 0<p<d<1 and any Borel finite measure p.
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Proof. There is an absolute constant C such that, for any 0<p<d<1, we can cover
the disk B(0,6) in R? by disks B(w;, ¢), 1<i<[C§%/0?], by choosing the points w; ap-
propriately. Using the Schwarz inequality, we obtain

Il = =35z [ n(B(z.0)R dm(:)

1 (C5%e°) 2
<o (3 Bl o)) dente)
i=1
1 52 (C8%/e)
< WC’E Z u(B(z+wi, 0))? dm(z)
i=1
<C?ulll
for any Borel finite measure p on M. 0
We will make use of the following properties of the semi-norm || - ||s:

LEMMA 6.2. If we have liminfs_ ,q||u|ls <oo for a Borel finite measure u, then
the measure p is absolutely continuous with respect to the Lebesque measure m, and

lims o [|lls= || dps/dm|| L2 () -

Proof. The assumption implies that there exists a sequence 8(i)—+0 such that
Js(ip is uniformly bounded in L?(m). Taking a subsequence, we can assume that Js(iy1
converges weakly to some 1€ L?(m) as i—oc. Since

()12t = Jim [ Fsyudm= [ fau

for any continuous function f on M, we have u=vYm. Now the last equality is stan-
dard. O

LEMMA 6.3. If a sequence of Borel finite measures p;, 121, converges weakly to
some Borel finite measure poo, then we have ||ftoo|ls =lim; o0 || 1|6 for 6>0.

Proof. We have po.(0B(z,0))=0 for Lebesgue almost every point z, because

/uoo(BB(z,é))dm(z)= dptoo (W) dm(z)=/m(33(w,5))duoo(w)=0.

d(z,w)=6é
This implies that Jsu; converges to Jspueo Lebesgue almost everywhere as i—oco. Since
the semi-norms ||Jsu;|ls, i1, are uniformly bounded from (54), the lemma follows from
Lebesgue’s dominated convergence theorem. O
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6.3. Two lemmas on the semi-norm | - ||5

Let x={x:,x%,xa, x5} be a quadruple satisfying the conditions (18), (28) and (29), and
€ a small positive constant satisfying (43). For simplicity, we put

Xe=xi-x; and x5 =x}-xa-

Let F' be a mapping in U, k a positive number, n a positive integer and u a Borel finite
measure on M that is supported on the subset A(x, ¢, k,n; F'). The aim of this subsection
is to give two lemmas that estimate ||uoF~"||s. Below we shall use the notation in §5.

Suppose that the measure p is absolutely continuous with respect to the Lebesgue
measure m and that the density dp/dm is square integrable. Then we have

2 2

H d(poF™)
dm

d
<mexp(—(x; +XE)"+2’9)HEI%

L2(m) L2(m)’

where m=max{#(F~"(w)NA(x, ¢, k,n; F))|we M}, because
|det DF™| zexp({x, +x5)n—=2k) on A(x,e,k,n; F).
The following lemma is a counterpart of this simple fact for the semi-norm || - ||,. Recall

the constants 0< g, <1 and s, 3,>1 in Lemma 5.1.

LEMMA 6.4. Let p be a positive number satisfying

exp((x7 —5¢)n—3(k+1))

O<e<ee 1052

and put
6 =103, 0exp(—x, n+k+1).

Suppose that a measure p in AM([,0)) is supported on a Borel subset X in
Alx,e,k,n; F). Then we have

||qu‘"||g <Igmexp((—x; —xu +X5 +x5)n+6k) flu|l3 (56)

for some constant I,>0, where m=max{#(F~"(w)NB(X,§))|weM}.

Remark. The point of the lemma above is that the auxiliary parameter of the semi-
norm on the right-hand side of (56), that is, §, is larger than that on the left-hand
side, that is, p. If the auxiliary parameter on the right-hand side were allowed to be
mmuch smaller than that on the left-hand side, the inequality (56) would hold without the
assumption that yx has an admissible lift.
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Proof. For each point yeA(x,¢,k+1,n; F), there is a unique neighborhood V'(y)
such that F™ restricted to V' (y) is a diffeomorphism onto the disk B(F™(y), ¢), according
to Lemma 5.1. Note that the diameter of V(y) is smaller than %(5 by Lemma 5.1 (iv)
and the definition of . Let U be the union of the neighborhoods V(y) for all y€ X. Then
U is contained in B(X, 6) and also in A(x,¢,k+1,n; F) from Lemma 5.1 (vi) because
X is a subset of A(x,¢,k,n; F). From the definition of U and the assumption that x is
supported on X, it follows that

1 . 1
e F T (Bw,e)=— Y, uV()
¢ QzeF—"(w)ﬁU

Jo(poF ™) (w) =

for we M. Suppose that we have proved

2
BV (2)) < Coexp(~(x: +xa)n+28) (5 ) 1(B(2,9)) (57)
for any z€A(x,¢,k+1,n; F). Then it follows that
Jo(uoF~™)(w) < Coexp(—(x; +xa)n+2k) Y Jou(2) (58)
z€F—™(w)NU

for each we M. As we have
|det DF™| <exp((xf+xi)n+2k+2) on UCA(x,& k+1,mF),

we can obtain the inequality (56) from (58) by integrating the squares of both sides and
using the Schwarz inequality. Therefore, in order to prove the lemma, it is enough to
show the inequality (57). Since both sides of (57) are linear with respect to p, we may
assume without loss of generality that u has an admissible lift that is supported on a
single element of the partition Zac in AC([4, 00)).

Let v:[0,a]—+M be an admissible curve with length a>4, and let z be a point
in A(x,e,k+1,n;F). Consider a connected component I of y~!(V(2)), and let J be
the connected component of v~1(B(z,48))D>y 1(V(2)) that contains I. As d<sx;?,
Lemma 5.1 (viii) says that the interval I is the unique connected component of y~*(V(2))
in J. For the length of I, we have

mg (1) = |yl <|FP(;)| exp(—xan+k+2) < Cgoexp(—xzn+k+2),

where the first inequality follows from the fact that -y|; is an admissible curve in V(2)C
A(x, €, k+2,n; F) and the second from the fact that F(v|;) is a curve in F*(V(z))=
B(F™(z), o) whose tangent vectors are contained in the unstable cones S*. For the length
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of J, we have mg(J) > 16 because the curve 7| ; meets V(2) CB(z, 16) while the length

of 7y is not less than 4. These estimates hold for each connected component of y~1(V (2)).
Thus we obtain

“H(V(z xp(—~x 2
mrr;l?,5,11((B‘/(vz(,,35))))) <Cg@e p( ;(uTH—k) <Cg§—2 exp(—(x; + x5 )n+2k),

where we used the definition of § in the second inequality. From this and the definition
of admissible measure, we can conclude (57) for any measure u that has an admissible
lift supported on {v} %[0, a]. O

The next lemma is a counterpart of the inequality (53). Recall the definition of
N(x, e, k,n; F) in §3.7.

LEMMA 6.5. Let p and & be positive numbers that satisfy
eexp((—x; +e)n) <8 <exp((x; —2x, —3¢)n).
Suppose that a measure p in AM([8,00)) is supported on A(x, e, k,n; F'). Then we have

N(x,&,k+1,n; F)||ul2 exp((—2xt+2¢e)n)

Y 2< 2’
s le exp((xz +xz —x& —x5 —2¢e)n) 42 I

provided that n is larger than some integer n.=n.(x, &, k) which depends only on x, €
and k besides the objects that we have fized at the end of §3.2.

Proof. In the course of the proof below, we will give some conditions on the choice
of n.=n.(x,¢,k). First, we require that n, is so large that we have

exp((x; —5¢)n.—3(k+1))
10%3

exp((Xe —Xu —€)) < e

Consider an integer n>n, and put g;:=exp((x; —x} —¢)n). Let L(p1) be the lattice
that we defined in §3.1.

For weL(g;), define Ds(w,i), 1<i<m(w), to be the connected components of
F~™(B(w,3¢1)) that meet A(x,¢,k,n; F). By Lemma 5.1 and the choice of n. above,
we can check that the restriction of F™ to D3(w,1) is a diffeomorphism onto B(w, 301),
and that Ds(w, 1) is contained in A(x,e,k+1,n; F). Let Di(w,i) and D2(w,%) be the
part of D3(w, %) that F™ maps onto B(w, g1) and B(w, 2¢;), respectively. For 0=1,2,3,
let D,(w) be the union of D, (w,%) for 1<i<m(w).

Since the disks B(w, g1) for weL(g;) cover the torus T, we have

poF" g Z (Lo F ™) |B(w, e1)-
weL(e1)
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The function J,((¢£oF ~")|B(w,e,)) is supported on the disk B(w,2¢;) as ¢<g1 from the
assumption on g. And the intersection multiplicity of the disks B(w,2g;) for weL(p)
is bounded by 102 at most. Thus we obtain, by the Schwarz inequality,

2
IwoF i< [ ( 3 Jg<<qu—">|B(w,g,>)(z)) dm(2)

weL(g1)

<102 / S Jol(1oF B, ) (2) dm(z)
wEL(gl)

=102 Z (1o F ™) B(w,en) 13-
weL(ey)

Since the intersection multiplicity of the regions Do (w) for weL(p1) is also bounded
by 102, we have Y weL(er) HlDa(w) <10%u and hence

> Iluloz(u,)llf_,:/ D" Jo(bl Do) (2)? dm(2)

wEL(p1) weL(e1)

< [ @027,2)% dm() <10 ul,
Therefore we can deduce the inequality in the lemma from its localized version:
N(X3 &, k+17 n; F) “p’|D2(w)”Z
exp((Xz +Xu —X& —xu' —€)n)
exp((=2xc +e)n)
+ 52
for weL(p;), provided that we take the constant n, so large that exp(en.)>106.
Below we fix weL(g1) and prove the inequality (59). From the definition of D3(w, )

(o F~™)|B(w,en)l12 <
(59)

(D (w))?

and the assumption that y is supported on A(x,¢, k,n; F'), we have

m(w)

(/I’OF_H)|B(w,Ql) = Z I“"lD](w,i)OF—n‘

i=1
Hence the left-hand side of the inequality (59) is written in the form
> Wpywiyo P 1Dy w,.i) o F e (60)
1<, 5 <m(w)

For 1<i<m(w), let z; be the unique point in D3(w, 1) such that F™(z;)=w, which belongs
to A(x, &, k+1,n; F). For 1<, j<m(w), we write ihj if the pair (z;, z;) does not belong
to the subset £(w; x, e, k+1,n; F'), that is,

Z(DF"™(E"(z:)), DF™(E"(2;))) > 5Hg exp((xc — X, )n+2(k+1)).
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(See §3.7 for the definition of the set £(-).) We split the sum (60) into two parts according
to the condition ¢thj, and reduce the inequality (59) to the two inequalities

N(Xa €, k+1: n; F) “/"Dg(w)Hg

Z(M‘Dl('wyi)oF_n’ ﬂIDl(w,j)oF—")Q<

o  exp((xz +xa —Xxe —Xg —&)n)
and (=2t +&)n)
_n —n exp((—2x. +¢&)n

Z(/‘L|D1(w,i)°F uulDl(w,j)oF )Q< 52 /L(Dz(’ll)))2

ithj
Let X4 and X4 be the sums on the left-hand sides of these two inequalities, respectively.
We prove the first inequality. By the Schwarz inequality, we have

1 _ _
2y <Y 5 (1001w F 3+ 1lpy o,y o F " 13)-
ifhs
Since each term ||u|p, (ws)°F "|l, appears at most 2N(x,¢,k+1,n; F) times on the
right-hand side, this implies that

m(w)

So KNG &k+1,1F) Y i, wiy o F 13

=1

Moreover, we have $°7(*) | 4| Da(w,i) 12 <[l Dy w) |3 Therefore it is enough to show that
114l Dy o 17

exp(x; +xz —x2—x2—¢€)

PPN el 1 (61)
We show this inequality by using Lemma 6.4. Unfortunately, we cannot apply Lemma 6.4
directly to the measure | p, (w,s) because some part of its admissible lift may be supported
on the part of AC((0,00)) that corresponds to very short admissible curves, as a con-
sequence of the restriction. We argue as follows: Observe that F™ brings any C!-curve
with length less than  in D3(w, i) CA(x,€,k+1,n; F) to a curve with length less than o4
from the assumption on ¢ and (6), provided that n, is larger than some constant which
depends only on €, k and the constant Cy in (6). Suppose that an admissible curve
v with length a>§ meets Do(w,4) and that a connected component I of y~1(Da(w,1))
has length less than 6. Then the curve 7|, meets the boundary of Dy(w,?), and hence
F}(|;) meets the boundary of B(w, 2¢;1). From the observation above, F7*(|;) does not
meet B(w, g;), and hence v|; does not meet D;(w,%). Using this fact, we can construct
a measure ji in AM([d,00)) that satisfies p|p, (w,i) <E< | D,y (w,i) by discarding the part
of the admissible lift of u|p,(,,i) that is supported on AC((0,0)). Note that the obser-
vation above also implies that the §-neighborhood of Dy(w,4) is contained in Ds{w,1),
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so that max{#(F~"(z)NB(D2(w,1),d))| 2€ M }=1. Now we apply Proposition 6.4 to i
and X=Dy(w,i). Then the corresponding conclusion and (55) imply (61), provided that
n, is larger than some constant which depends only on ¢, k, g., 7, and .

Next we prove the second inequality. It is enough to show that

(1] (0,0 0 F ", 1l Dy w, )0 F ™) <02 exp((=2x¢ +€)n) (D2 (w, §)) p(Da(w, §)) - (62)

for 1<, j<m(w) such that ithj. Both sides of this inequality are linear with respect to
1| Dy(w,i) and p|p,(w, ;). Hence, without loss of generality, we can assume that p|p,(w,i)
(resp. |p,(w,s)) has an admissible lift supported on a single element {7;} x [0, a;] (resp.
{7;} %[0, a;]) of the partition Eac, and that the curve -; (resp. 7;) is a connected compo-
nent of the intersection of Dy (w, i) (resp. D2(w, j)) with an admissible curve of length >4.
From the argument in the proof of the first inequality above, if the length of the curve -y;
(resp. ;) is less than 4, it cannot meet D;(w, @) (resp. Di(w, j)), and hence the inequal-
ity (62) is trivial. Thereby, we can also assume that the lengths of v; and +;, that is,
a; and a;, are not less than 4. .
By the definition of admissible measure and that of the semi-norm || - ||,, we have

(1l Dy (w,iy o F ™™ 1l Dy (,5)° F ™)
(Do (w, 1)) (Do (w, 7))

C
<-——g—/ 1,(F™oi(t), y) 1,(F™ov;(s), y) dm(y) dt ds
aiaj(ﬂ'gz)z T x[0,a:]%[0,a;] g( () ¢ ’ (

<096_2Q—2/ lzg(F"o'y,-(t),F"o’yj(s))dtds.

[0,0.,'] b [O,Gj]

We estimate the last term by using the assumption ithj. From (22), it follows that
Z(DF™(E*(7i(t))), DF™(v(t))) < Hgexp((xZ — X3 )n+2(k+1))
for t€(0, a;]. From Lemma 5.1 (vii), it follows that
Z(DF™E"(2;)), DF™(E*(7i(t)))) < s €**+V201 < Hyexp((x3 —xa)n+2(k+1))

for t€[0, a;], where the second inequality follows from the definition of g1, provided that

n, is larger than some constant which depends only on ¢, ». and Hy. Thus we have
Z£(DF™(E"(z)), DF" (7}())) < 2H exp((x? Xz )n+2(k+1)) for t€[0,a],

and the same estimate with the index i replaced by j. Therefore the condition irhj
implies that, for any t€(0,a;] and s€[0, a;],

L(DF™(7i(t)), DF"(v;(s))) > Hgexp((xz =Xy )n+2(k+1)).
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By simple geometric consideration using this fact, we can see that the part of the curve
Fv; that is within distance 2o from the curve F[*y; has length less than

Cpoexp(~(xt —xz)n—2(k+1)).
Since y; and ; are admissible curves in A(x,&,k+1,n; F), we obtain

Cgoexp(—(xf ~xz)n—2(k+1))
exp(x,n—(k+1))

=Cyoexp(—xin—(k+1))

mg ({t € [0, a;] | d(F" (7:(t)), FI'v;) < 20}) <

and the same inequality with the indices ¢ and j exchanged. These facts imply that
/[ " ]12Q(F(%(t)),F(%(S)))dtds<Cg£)2exp(—2xin—2(k+1))-
0,a1]%x[0,a2

Therefore we can conclude (62) by taking the constant n, larger if necessary. |

6.4. The proof of Theorem 3.21: Part I

We give the proof of Theorem 3.21 in the following three subsections. From this point
to the end of this section, we consider the situation assumed in the theorem: Let X be a
finite collection of quadruples x(I)={x; (1), x (1), xa (1), x& (1)}, 1<y, satisfying (18),
(28), (29) and (30); Let F' be a mapping in I{ that satisfy the no flat contact condition
and the transversality condition on unstable cones for X. The aim of this subsection is
to derive the conclusions of Theorem 3.21 from the following proposition:

PROPOSITION 6.6. Under the assumptions as above, the following claim holds: Let
ti, 121, be a sequence of Borel probability measures on M. We assume that either

(A) every p; is invariant and has an admissible lift, or

(B) pi=n(i)~! 2;‘53“1mon—j for some subsequence n(i)— o0, where myx is the
normalization of the restriction of the Lebesgue measure m to some Borel subset XC M
with positive Lebesgue measure.

Further, we assume that p,; converges weakly to a Borel probability measure o as
i—o0, and that the pair of Lyapunov exponents (x.(z; F'), xu(2; F')) is contained in the
region |X| for peo-almost every point z. Then, for sufficiently large i, there erists a
measure v; < p; such that

(@) |wil>3;

(b) v; is absolutely continuous with respect to the Lebesque measure m, and the
L2-norm of the density dv;/dm is bounded by a constant independent of i.
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We assume Proposition 6.6 and prove Theorem 3.21.

Proof of Theorem 3.21. First, note that, if an ergodic invariant measure y has an
admissible lift, and if the pair of Lyapunov exponents (xc(u; F'), xu(1t; F)) of p is con-
tained in |X]|, then u is absolutely continuous with respect to the Lebesgue measure m,
and hence is a physical measure. This follows immediately from Proposition 6.6 if we set
i =l =/ in the assumption (A).

We show that there exist at most finitely many ergodic physical measures. Suppose
that there exist infinitely many mutually distinct ergodic physical measures y;, i=1,2,....
By taking a subsequence, we can assume that p; converges weakly to some measure fioo
as i—00. We have X.(tioo; F')=0 from Corollary 4.5, Proposition 4.8 and Corollary 3.16.
Moreover, we have x.(z; F)=0 for p.-almost every point z. In fact, otherwise, there
should be an ergodic physical measure u’ < poo With negative central Lyapunov exponent
from Lemma 4.6, and hence p;=p/  for sufficiently large ¢ from Lemma 4.3, which
contradicts the assumption that p; are mutually distinct. Since Ag<xu(2; F))<Ay for
any point z&€ M from the choice of the constants A, and Ay, the assumption (30) implies
that the pair of Lyapunov exponents (x.(2;F), xu(2; F)) is contained in |X| for peo-
almost every point z. Therefore we can apply Proposition 6.6 with assumption (A) to
the sequence p; and conclude that there is a measure v; <p; for sufficiently large ¢ such
that |1;]>% and ||dv;/dm|| p2(m) <C for a constant C that is independent of 7. For these

measures v;, the Schwarz inequality gives
dl/,; 2

dm

< C?m(B(w:)).
L2{m)

G) <Jul? < m(Blj))

Obviously this contradicts the fact that the basins B(u;) are mutually disjoint.

Let B° be the union of the basins of the ergodic physical measures whose central
Lyapunov exponent is neutral. Below we prove that the Lebesgue measure of the subset
X:=M\(B-UBPUB") is zero. Again the proof is by contradiction. Suppose that the
subset X has positive Lebesgue measure. Then, by choosing a subsequence n(#)— oo ap-

propriately, we can assume that the sequence of measures p;=n(i)™* Z?gg_lm xoF ™I
converges to some measure i, as i—o0o. Note that the measures yu; are supported
on X for F(X)CX. From Proposition 4.9, we have x.(z;F)=0 for p-almost ev-
ery point z. Thus the assumption (30) implies that the pair of Lyapunov exponents
(xe(2; F), xu(2; F)) is contained in |X| for peo-almost every point z. Each ergodic com-
ponent of i has an admissible lift from Lemma 3.14, and hence it is a physical measure
with neutral central Lyapunov exponent from the fact we noted in the beginning. In par-
ticular, poo is supported on B°. Now apply Proposition 6.6 with assumption (B) to the

sequence /;, and then let v; be those in the corresponding conclusion. Since the density
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;:=dv; /dm has uniformly bounded L?-norm for sufficiently large i, we can assume that
¥; converges weakly to some 1),,€L?(m), by taking a subsequence of n(i). Note that
s 18 not trivial because

(Y00, 1) L2(m) = il_i{go(iﬁi, 1) £2(m) = lim vl = 3.
On the one hand, we have f ; dpteo =0 since v; < p; is supported on XC M \B°. On the
other hand, we should have

lim [ i dpoo > lim / ithoo i = Tim (s, Yoo) 12 = Yoo |2y > 0
11— 00 1— 00

1—00

because YoM < tioo. We have arrived at a contradiction.

We have proved that there exists only finitely many ergodic physical measures for F
and that the union of basins of them has total Lebesgue measure. The last statement of
Theorem 3.21 follows from Proposition 4.7 and the fact that we noted in the beginning
of this proof. ]

6.5. The proof of Theorem 3.21: Part II

In this subsection, we give the proof of Proposition 6.6, assuming a lemma, Lemma 6.8,
whose proof is left to the next subsection. Let p; and po be those in Proposition 6.6.
We put

X2 =xt0)-x; (1) and xZ;O)=xiO—xz(1) for 1<I<o.

To begin with, we fix several constants in the following order:
(K1) Take 0<e<1 so small that (43) holds for all the quadruples x€X and that

lim liminf max log N(x(),¢, k,n; F)

1.
koo b0 12128 (s () + X (1) —xA () X2 ()~ 100€)

This is possible from the transversality condition on unstable cones for X.

(K2) Take positive constants g. so small and s, so large that Lemma 5.1 and
Lemma 6.4 hold for all the quadruples x€X and ¢ above.

(K3) Take a positive constant 1 so small that

10Agn<e and 7n<1073:<107°.

(K4) Take positive constants ko and mq so large that ho>Ag>1, mg>ny and

[ min{0, L™ @) F)+ho} dit2) > 10
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for any pe AM([1,00)) and n>mg, where L(-) is the function defined in (17). This is
possible from Lemma 3.15 (n, is the constant we took in §3.4).
(K5) Take a positive constant kg such that ko> ho and
,u.oo( 6 Alx(l),e,ko—1 nF)) >1-—1—  for any n.> 0.
= T o 200hg
This is possible from Lemma 3.17 and the assumption on fi.
(K6) Take a large positive integer py such that
(a) N(x(1);€; ko+2,p0; F)<exp((xc (1) +x5 (1) = x& (1)~ x5 (1) —100€) po);
(b) po>ma(x(D), €, ko-+1)
for 1<y, where n,(-) is given in Lemma 6.5. This is possible from the choice of €
and the fact that N(x (1), ¢, k, po; F') is increasing with respect to k.

Hereafter we will never change the constants taken in (K1)-(K5). Note that we can
choose the integer pg arbitrarily large in the condition (K6) above. In some places below,
we shall put additional conditions that pg is larger than some numbers that depend only
on X, ¢g, Ag, Ag, 44, ly and the constants taken in (K1)~(K5).

For a point ze M, we let

lo
U AGKD), & k,po; F) | > o

k(2) :min{kEZ l k>ko and z€
=1

and k(z)=oo0 if the set {-} above is empty. We also put

I( 0, lfk(2)=ko,
1, if k(2) > ko.

This is the indicator function of the complement of U§0=1A( x(1), e, ko, po; F'). Let m be
a positive integer and write it in the form m=q(m)po+d(m), where g(m)=[m/po], so
that 0<d(m) <po. We define the subset R(m) as the set of points z&€ M that satisfy
(R1) #{1<j<q|L(F™=7 (2))=1} <ng/10ho for 1<q<q(m);
(R2) 375 1 (k(F™7P0(2)) —ko) <ngpo for 1<q<q(m);
(R3) k(z)—ko<nm.
The following lemma gives a sufficient condition in order that R{m}, m=1,2, ..., are not
very small with respect to a measure u:

LEMMA 6.7. Let u be a Borel probability measure pn on M, and n a positive integer
such that n>10py. Assume that

n-—1
> [IF RPN E) du) < I (63
j=0
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and that

) / I(F9(2)) d(z) < 157010. (64)

Then we have n=1 37 w(R(m))>1.

Proof. For 0<m<n, let Q;1(m), Q2(m) and Qz(m) be the sets of points 2 that
violate the conditions (R1), (R2) and (R3), respectively. We are going to estimate the
measures of these subsets by using Lemma 4.14. First we give the estimate on the subset
Q1 (m) for 0<Km<n. If z6 Q;(m), we have

q

Z I(Fm—jpo (2)) 2 e
= 10hg

for some 1<g<q(m). Using Lemma 4.14 with the assumption (64), we obtain

po_[(n—d)/po]

S W(Qi(m)) = 23 uel=d)=im)

m=0

Po [(n—d)/po]

<Z(1°h° > [t dua)) < f

d=1

Next we give the estimate on the union Q2(m)UQz(m). Let us put
¥(2) = (|L(z; F)|+544) I(2).

We claim that

po—1

k(z)—ko< D %(F'(z)) for ze M. (65)

j=0
For a point z, take the smallest integer 0<p<pg such that k(FP(z))=ko, and set p=po if
there are no such integers. If p=0, the inequality (65) is trivial. So we assume p>0. In the
case 0<p<po, we choose an integer 1<I<ly so that A(x(l),e, ko, po; F)) contains F?(z).
In the case p=py, we choose 1<I<ly arbitrarily. For 0<i<4'<p and veS*(F*(z)), we
have the obvious estimates

i'—1

Z L(FI(2); F) <log |D*F* ~(v)| < Ay ('),

—Ay < —¢, <log | D F¥H(v)| < Ay (i’ —i).
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Using these estimates and the fact that FP(z)€A(x(l),¢, ko, po; F) in the case p<po, we
can check that z belongs to A(x(1),¢, k, po; F) for
p—1
k=ko+ [Z(|L(FJ(z);F)|+3Ag+s) +1.
§=0
This implies (65).
If a point 2z belongs to Qa(m) or Q3(m) for po<m<n, we have, from (65),

m-—1
Z Y(F?(2)) 2n(m—m') for some 0 < m'<m.

j=m’

As we took hg so that hg>Ag, the assumptions (63) and (64) imply

]Z;O / P(F(2)) du(z) < 3’53

Therefore, by using Lemma 4.14, we can obtain

n—1

> 1(Qa(m)UQs(m)) <

m=po

o 3

Note that we have 3-P°_o u(Q2(m)UQ3(m))<po< 151, as we assume that n>10po in
the lemma. Since R(m) is the complement of Q;(m)UQ2(m)UQ3z(m), we can obtain the
lemma from the estimates above. O

The following lemma is the key step in the proof of Proposition 6.6:

LEMMA 6.8. Let u be a Borel finite measure on M, and n a non-negative integer. If
u has an admissible lift ji such that fioF, " belongs to AM([exp(—nn),o0)) for 0<i<n,
then we have

Ry o F " le < Clul+Cexp(—en) || ull g exp(~10nm)

for 0< o<exp(—10A4po), where C>0 is a constant that does not depend on the measure p
nor the integer n.

Remark. Actually, the constant C'>0 above depends only on ¢, pg, ¢4 and Ag.

We give the proof of this lemma, in the next subsection. Below we assume this lemma
and complete the proof of Proposition 6.6.

Proof of Proposition 6.6. First consider the case where the assumption (A) holds.
From the choice of kg, we have

U Alx(D). . ko, po; F)) > 1 —"
/J'i(lgl (x(1),€, ko, po; ))> _IfTh(f
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or, in other words,

n
I(z2)dy; < ——
/(z) b < o

for sufficiently large i, because A(x(!), e, ko, po; F') contains an open neighborhood of the
compact subset A(x(l),e,ko—1,p0; F). The measure y; belongs to AM([1,00)) from
Corollary 3.8. Thus, it follows from the choice of hqy that

- : : _n
/mm{O, L(z; F)+ho} dpi(z) > 100"

Hence

7 n n
Lz )1 i 100 " 10°
/ 1Lz F)I1(2) dus(2) < ho g0+ 155 < 1o

Now we can apply Lemma 6.7 to the invariant measure y; for sufficiently large i, and

obtain
1n—l 1
- W(R(j)) == & 2 10pg.
w2 (R()> 5 for n>10py
We put
n—1
Vi,nzgg)uiln(j)oF"’Sm forn>1,
J:

so that |Vi’n|2% for n>210pg. Obviously the measure u; has an admissible lift that
satisfies the assumption of Lemma 6.8 for any n>0. Thus it holds that

n—1 n—1

1 s C 3
¥inlle < D lllrey o F e < C+— > exp(—eh) | ill pexp(-10ms)
7=0 =0

for 0<p<exp(—10Agpo). This, together with (54) and the choice of 7, implies that
limsup,,_, o [¥inlle<C. Let v; be a weak limit point of the sequence v; ,, n=1,2,....
Then it holds that v;<y; and |1;]>3. Also we have ||v;]|,<C for 0<p<exp(—10A4po)
from Lemma 6.3. From Lemma 6.2, this implies that v; is absolutely continuous with
respect to the Lebesgue measure m, and the density satisfies ||dv;/dml||12(m)<C. Thus
the measures v; satisfy the conditions in Proposition 6.6.

Next we consider the case where the assumption (B) holds. Let ng=no(F)>ng
be as in the definition of the no flat contact condition. Let X and myx be as in the
assumption (B). Using Lemma 3.12, we can find a small positive number >0 and a
probability measure w'€ AM([b, 00)) such that

(1) [mx —w'|<1072n/ho;

(2) w'eF~™ is absolutely continuous with respect to the Lebesgue measure m;

(3) the density of the measure woF'~™, d(w'cF~")/dm, is square integrable.
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Remark. In the third condition above, we do not care how large the L2-norm is.

We put w=w'-F~™ and
n(i)—1

1
Z woF™7 fori=1,2,.

’
by = n(z

Then, for sufficiently large ¢, we have |s — ph|<1073n/ho and hence

lo
, n . ] n
f . [ h I AP L
(0 MG koo P) > 1= g, ehat s, [ 1(:)di < g

from the choice of ky. From Corollary 3.8, woF 7 belongs to AM([1, 00)) for sufficiently
large 7. Thus we have
Ui Ui
L( LN/
/I 2 F)1(z) dy(z )<h°100h0+100 10
for sufficiently large 4, from the choice of hg. Now we can apply Lemma 6.7 to p=w and
n=n({) in order to obtain

1 = 1
ol > w(R(m)>5
m=0

for sufficiently large 7. Let &’ be an admissible lift of ' that belongs to AM([b, 00)), and
put @=&'oF; ™, Then & is an admissible lift of w. Take a large positive integer n; that
satisfies exp(—nn;) <bexp(—c,). From Lemma 3.7, the measures &oF, =&/ F;"*"™ for
120 belongs to AM([exp(—7n}, 00)), provided that n>n;. Thus we can apply Lemma 6.8
to w, and obtain

”wl”R(n)"F—n”Q < C|w|+Cexp(~6n) ”w“gexp(—mnn)

for 0< p<exp(—10A4pp) and n>n,. We put
n(i)~1
vi=—= Y wirpoF 7 <u, i=12....

j=ny
Then, for sufficiently large i, we have |v}|>2 and
C n(i)—1
“ ’|Q<C+ ( Z eXp ej)tlwllgexp( 107m5)
j=n1

for 0<p<exp(—10Agpo). Letting p—+0 in the last inequality, we obtain
n(i)—-1

il <o+ GG 2 =)

by Lemma 6.2. Since we have |u}—pu;|<1072 and v/<pyl, we can find a Borel measure

v; such that v; <y, v <p, |1/i|>§ and ||dv;/dm| 2 <2C for sufficiently large i. The
measures v; satisfy the conditions in Proposition 6.6. O
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6.6. The proof of Theorem 3.21: Part III

In this subsection, we give the proof of Lemma 6.8 and complete the proof of Theo-
rem 3.21. Let n, u and /i be as in Lemma 6.8. Recall the mapping II: A((0, 00))—»M
and the commutative relation (14) in §3.4. Below we divide the measure fi into many
parts, so that we can evaluate the semi-norms of their images under the mapping Il F}
by the two inequalities we gave in §6.3.

We write the integer n in the form n=gq(n)po+d(n), where g(n)=[n/po], so that
0<d(n)<po. For integers —1<g<¢(n), we put

gpot+d(n) for 0<q<q(n),
()=
0 for g=—1,

so that 7(g(n))=n, and we also put

5(q) = exp(—4n(n—7(q))—TAgpo—cy) for 0<g<q(n),
9 exp(—4nn—TAg4po) for g=-1.

Fix a number 0< p<exp(—10A4po) arbitrarily and put

0(q) = 0exp(=109(n—7(g))) for —1<g<q(n).

We put W=AC([exp(—nn),0)), so that joF,* for 0<i<n are supported on W, by
assumption.

We begin with constructing measurable partitions £(q), —1<g<g(n), of the space W
such that:

(21) &(q) subdivides the partition Eac on W, which is defined in §3.5. And £(q) is
increasing with respect to g, that is, £(¢g+1) subdivides £(g).

(22) Each element of the partition £(g) is of the form {y}xJ, where v is an
admissible curve in AC(a) with a>exp(—nn) and J is an interval in [0,a] such that
5(@)<|FT ™ (v],)| <26(0)-

The construction is easily done by induction on ¢. Since §(—1)<exp(—nn), we can
construct a partition £(—1) that satisfies (1) and (=2) by subdividing the partition
Zac on W. Let 0<qg<q(n) and suppose that we have constructed the partitions £(j) for
—1<j<q. For each element {7} xJ of £(g—1), the length of the curve Fr@ (7l;) is not
less than

5(a—1) exp(r(7(q) ~7(g = 1)) —¢5) > 8(a),

provided that we take the constant pg so large that (A;—4n)po>c,. (Recall the remark
on the choice of the constant py in the last subsection.) Hence we can construct the
partition £(q) satisfying (1) and (22) by subdividing &(g—1).
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A Borel measurable subset in W is said to be a £(g)-subset if it is a union of elements
of £(gq). Note that, if Y is a £(q)-subset, the measure ji}y oFy T@.TI-1 is contained in
AM([6(q),25(g)]) by the condition (Z2).

For —1<¢<q(n) and an element P={v} xJ of the partition £(g), we define

k,(P) :=min{k(F™D(y(t))) | t€ J} > ko,
where k(-) was defined in the last subsection. For simplicity, we put
7]l :=||#oII"Y||, for a measure 7 on W.

The following result is a consequence of the two inequalities in §6.3:

SUBLEMMA 6.9. Let Y be a &£(q)-subset in W for some —1<q<q(n), and let k be
an integer such that
ko <k < ko+n(n—T(q)). (66)

If ko(P)<k for all elements P€&(q) that are contained in Y, we have
lizly o F= 7 g(q1) < exp(10Agpa+6(k—ho)) iy o™l ofq)-

Moreover, if k=ko and ¢=0 in addition, we have either

Iy o ™ ge1) < exp(—48epo) Ely o Fr ™l oga)

or

iy o F ™ g1y < 8(q) " exp(3Agp0) il Y).

Proof. We put p=7(g+1)—7(q)<po. So p is smaller than py only if g=~1. By
assumption, we can divide the subset Y into &(g)-subsets Y'(I), 1<I<ly, such that
HoF:(q)(P)ﬂA(x(l),s, k,po; F)#@ for each P€£(q) that is contained in Y'(I). The mea-
sures fily (o F~"(@oII"! belong to .AM([5(g), o0)), as we noted above.

We prove the first claim. By using (66) and (30), we can check that

26(q) < 2, " 0e exp((xz (D) —xif () —5¢) po—4k),

provided that pg is larger than some constant that depends only on ko, o, 5, and Ag.
This and the claims (v) and (vi) of Lemma 5.1 imply that the subset IToFy (Q)(Y(l)) is
contained in A(x(l), e, k+1,po; F'), and hence is contained in A(x(l),e,k+1+€po,p; F)
even in the case p<pg, by (21).
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For simplicity, we put
6:=10s50(q+1) exp(—x; ()p+k+epo+2).
We can check that
8 < 5 0e exp((xz — X —5€)p—4(k+1+epo)), (67)

olg) <6 <6(g), (68)

¢ exp((x; (1) —5¢)p—3(k+2+epo))
105¢2 !

0<o(g+1)< (69)
by (66) and (30), provided that py is larger than some constant which depends only on ko,
QOc, #4, ¢qg and Ay. The subset HoFI(q)(Y(l)) is contained in A{x(l),&, k+1+4¢€po,p; F)
as we noted, so the claims (v) and (vi) of Lemma 5.1 and the inequality (67) imply that
the d-neighborhood of HoFf(q)(Y(l)) is contained in A(x(!),e,k+2+epo,p; F'). From
Corollary 5.2, it follows that

mex ##(F~P(w)NB(l-FY @ (v(1)),8)) < exp(6A,po+6k),

provided that po is larger than some constant that depends only on s, and A,. Now we
can apply Lemma 6.4 and obtain

il @yo B T V112 1) < Tg exp(16Agpo+6(k-+epo+1)+6Kk) | fily gy o Fe ™3
<l 2 exp(20Agpo-+12(k—ko)) | sly = s ™12,

using (55), provided that pg is larger than some constant which depends only on I, ko,
lo and Ay, Summing up the square root of both sides over 1<I<ly, we obtain the first
claim.

We prove the second claim by using Lemma 6.5. Note that IIoF} (q)(Y(l)) is con-
tained in A(x(l),&,ko+1,po; F) in this case, by the argument above. We can check
that

o(g+1) exp((—x; (1) +€)po) <8(q) <exp((x; (1) —2x; (1) —3¢) po),

provided that pq is larger than some constant which depends only on ¢; and A4. Recall
that we took pg so large that po>n.(x(l),€, ko+1) in the condition (K6). Hence we can
apply Lemma 6.5 and obtain

T(g+1 ~ -
(@ )”i(qﬂ) < exp(—98epo) |l itly (o Fs T(")llimn

+8(q) " exp((—2x2 (1) +2€) po) (Y (1))?,

“ﬁly(z)"F:
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where we used the condition (K6) (a) in the choice of pp. This implies that

Ialy o BT yig41) < exp(—49ep0) |itly o B ™Dl gty
+6(q) " texp((—xZ () +€)po) (Y.

Summing up both sides for 1<I<lp and using (55), we conclude that

[ly o 7 D ar1) < Colo exp(—49epo) i)y o Fr ™ [l ota)
+108(q) ' exp((2A4+€)po) A(Y).

The second claim follows from this inequality, provided that py is larger than some
constant that depends only on lg, Ag and e. d

For integers —1<¢'<q<q(n), let K(q',q) be the set of sequences c={o; }g;;, of g—¢

integers that satisfy
0<a; <n(n—7(4)) forgd<ji<q (70)
In the case ¢'=q, we say that K(¢’,q)=K(q, q) consists of one empty sequence, which is
denoted by @,. We put
K(g)=U{K(d\q) | -1<q'<q}

for 0<g<q(n). Below we construct subsets D(c) in W for aeug(:"_)l K(q) so that the
following conditions hold:

(D1) D(o) for 0€K(q) are mutually disjoint &(g~1)-subsets.

(D2) The union of D(o) for all 0€X(q) contains the subset I~} (R(n))NW.
(D3) For —1<¢’<q<q(n) and az{oj}j-’;;,e/C(q’, q), we have

~ ~ - ~r(g—1
kD) o Bl o(q < exp(10Agpo+604 1) il oy o Fr ™4 ytq-1y,
where ¢’ :{aj}g;g,é K¢ q-1) (so o'’=2y if ¢ =g—1). Further, it holds that
- - . —r(g—1
llp(ey> Fx ™l oty < exp(—48cpo) litlpiory*Fr ™Vl gtq-1)

in the case where ¢21 and g4_1=0.
(D4) For the empty sequence @, €K (g, q) for g0, we have

IlDzg) o F ™ @l gq < 6(a—1) "  exp(3A400) A(D(2,))-
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The construction is done by induction on ¢. For the case ¢g=—1, we just put
D(@_1)=W. For the case g=0, we have to define D(c) for c=29€K(0,0) and o=
{o_1}€K(-1,0), where 0<o_1<nn from (70). We let P(&¢) be the empty set and put

D({O'_l}) = U{Peg(—l) | k(_l)(P) :k0+0’_1} for 0o <nn.

Then the conditions (D1) and (D4) obviously hold. The condition (D2) follows from the
condition (R3) in the definition of the subset R{(n). The first claim of Sublemma 6.9
implies that the condition (D3) also holds.

Next, let ¢>1 and suppose that we have defined D(o) for c€K(g—1) so that the
conditions (D1)—(D4) hold for them. Consider an element o:{aj};l;;, in X{q¢, q) with
¢'<q and put a’:{aj}g;Z,EIC(q’,q—l). Let us set

D.(0)=J{Pe&(g—1)| PCD(o') and kg1 (P)=ko+0q-1}. (71)

In the case 0,_1>0, we put D(c)=D.(o). In the case 0,-1=0, we define D(c) in the

following manner: From the second claim of Sublemma 6.9, we have either

1D (o) 2 F= ™ p(q) < exp(~48p0) ||, (o) Fs ™™ (a1 (72)
or
171D, 0y Fr ™l () < 6(g—1) "L exp(3Agp0) i Da (0)). (73)
We let
D.(c), when (72) holds,
D(o) =

a, otherwise.

Finally we define D(@,) as the union of D,(o) for the sequences o={o; }';;3, in
U—1<gr<o K(d',0)=K(g)\{24} such that 0,1 =0 and such that (72) does not hold. Asa
consequence of this definition, the condition (D4) holds for the empty sequence @4. The
condition (D1) obviously holds. We can check the condition (D2) by using the condition
(R2) in the definition of the subset R(n). The condition (D3) follows from the first claim
of Sublemma 6.9 and the construction above. We have finished the definition of the
subsets D(0).

For —1<q¢'<q(n), let K.(q') be the set of sequences a:{aj};(:;),—l in K(q¢,q(n))
that satisfy the conditions

lolo<n(g(n)—¢') and |o|1<2n(g(n)~q")po,
where
q(n)-1
lolo:=#{d<j<q(n)|j>0and 0, >0} and |o|;:= Z gj.
j=q’
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Then, from the definition of the subsets R{n) and D(o), we have

q(n)
O R@)Nwc U U Dlo)

9=-10€K.(q")

and hence
q(n)

i ren o FIt< Y Y. AlpeyeFo™
¢=—10eK.(q')

q

For each o={0; }j(;;),—l in K.(¢') with ¢’ >0, we can obtain

13Dy F e = I121D(0y P ™™l ytq0mny
<exp(10Agpolofo-+6lo]s —48e(g(n)— ¢ —|olo)po) ||ﬂ|v(zq,)°F*—T(q Mot

from the condition (D3), and hence

|2l p(o) o Fi ™l < exp(—45¢e(g(n) —q')po+11Agpo+cg) |l

from the condition (D4) and the choice of 5. Similarly, for o={o; };’i"z;l in Ku(—1), we

can obtain

il Doy o Fy ™ ||o < exp(10Agpo(lofo+1)+6|coy —48e(g(n) —lolo)po) ll&ll o(-1)

and hence
Doy B o < exp(—45en+10Agpo) | Al o(-1)-

For the cardinality of the set K.(q'), we have

, g(n)—q [2npo(g(n)—q')]+[n(g(n)—q')]
#EAg) < ([n(q(n)—q’)]) ( in(a(n)—q')] ) :

where the first factor on the right-hand side is an upper bound for the number of possible
arrangements of integers j >0 for which o; may be positive, and the second factor is an
upper bound for the cardinality of ¢ €K, (q’) when one arrangement is given. For positive
numbers «, 3>0 and an integer m>1 such that am>1 and fm>1, we have

log (am—}-ﬂm) <amlog <1+é> +8m log<1+g> + Ao
B/m «a B

from Stirling’s formula, where Ag is an absolute constant. Hence we can obtain

log #K.(q')

1
an—q < —(1-n)log(1—n)—nlogn+2npo log<1+ —) +nlog(1+2po)+2Ao

2po
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for —1<¢'<q(n). This implies that
#K.(q') <exp(epo(q(n)—¢')) for -1<q'<q(n),
provided that pg is larger than some constant which depends only on € and 1. Now we

can conclude that

el (my o F ™"l = | Elm-1(r(n)) ° Fx " llo

<(§f ) nmp(,)oF:"ug)+( S laloweF="l )

q'=00eK.(¢’) c€K.(—1)

q(n)
<Y exp(—44e(g(n)—q )po+11Agpo+cq) 1|
=0

+exp(—44en+10Apo) |l o(~1)-
This implies the inequality in Lemma 6.8.

7. Genericity of the transversality condition on unstable cones

In this section, we consider multiplicity of tangencies between the images of the unstable
cones under iterates of mappings in U, and investigate to what extent we can resolve
the tangencies by perturbation. The goal is the proof of Theorem 3.22. The point of
our argument in this section is that the dominating expansion in the unstable direction
acts as uniform contraction on the angles between subspaces in the unstable cones. This
enables us to control the images of the unstable cones in perturbations of mappings in U.
Notice that the content and the notation in this section is independent of those in the
last section.

7.1. Reduction of Theorem 3.22: The first step

In this subsection and the next, we reduce Theorem 3.22 to more tractable propositions
in two steps. For a quadruple x=(xz,x?, x5, X:), we put

X2 i=max{x},0}, xS=xi-x; and X2 :=X{—Xau-

For a quadruple x satisfying (18) and a positive number ¢, let S;(x,€) be the set of
mappings F'elf that satisfy

. 1 o,
hzri}sol(l)p ;logN(X,s,an,n;F) >0 +xs X2 x5 —e. (74)

The first step of the reduction is simple. We show that we can deduce Theorem 3.22
from the following proposition:
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PROPOSITION 7.1. Suppose that s>7+3 and let M, be the measure on C™(M,R?)
introduced in Lemma 3.18. The subset Sy(x,€) is shy with respect to the measure M,
for s=>r+3, if the quadruple x=(x-,x%, Xs, Xs) satisfies the conditions

—2A, <x; <XI <Xz <Xz <2Aq, (75)
X. <0, (76)
XE+xE < X2 +Xa (77)
_ Xa+Xxa A, A
Xu+X —x++>( +1 J(x2 +xa) (78)
vone ne Xe +Xa —XE X8 e

and if €>0 is smaller than some constant which depends only on x and s besides the
integer 22 and the objects that we fized in §3.2.

Below we prove Theorem 3.22 assuming this proposition.

Proof of Theorem 3.22. For any point (X., X») in the subset given in the claim (a),
{(z, xu)€R2 | Ze+Ty >0, Ag <y <Ag and . <0},

we can take a quadruple x=(x7, X}, x5, xs) satisfying the conditions (75), (76), (77)
and (78) such that the rectangle (x;,x})x(xg,Xx}) contains the point (xc,Xw). Thus
we can choose a countable collection X of quadruples that satisfy (75), (76), (77) and (78)
such that the conditions (a) and (b) in Theorem 3.22 hold. We are going to show the
condition (c¢) in Theorem 3.22. We fix s>7+3. Let X’ be an arbitrary finite subset of X.
Then we can take a positive number >0 so small that the conclusion of Proposition 7.1
holds for all the quadruples in X’. For each y€X’ and n>>1, let 8§ (x,¢,n) be the closed
subset of mappings Fel that satisfy

N(x,e,en,n; F) > exp((xz +Xz = X5 —X& —€)n).

If a mapping FelU belongs to S;(X'), or F does not satisfy the transversality condition
on unstable cones for X', then

log(N(x, g,en,n; F'))
{n(x; +xa X8 —x2)
because N(x, £, k,n; F) is increasing with respect to € and k. Hence we have

SX)clU N USixenc U Silxe)

m>0n>m yeX’ x€X’

lim inf max
n—ooc

x=(x£,x27x;,xi)ex’}>1

From Proposition 7.1, the subset | ], .x, S1(x; €) is shy with respect to the measure M.,
and hence so is S1(X’). Further, the closed subset (., U, ex' ST(x;€,n) is nowhere
dense, because it is shy with respect to the measure M. Thus S;(X') is a meager subset

in U in the sense of Baire’s category argument. O
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7.2. Reduction of Theorem 3.22: The second step

The second step of the reduction is rather involved. We reduce Proposition 7.1 to yet
another proposition, Proposition 7.3, which will be proved in the remaining part of this
section. Below we consider an integer s>r+3, a quadruple x={x.,xJ,Xxz:X+} and
a positive number £. We assume that the quadruple x satisfies the assumptions in
Proposition 7.1, that is, the conditions (75), (76), (77) and (78).

In this section, we will introduce several constants that depend only on the quadruple
x and the integers s >r>2 besides the objects that we fixed in §3.2. In order to distinguish
such constants, we will use symbols with a subscript y for them. Also we will use a generic
symbol C, for large positive constants of this kind. The usage of this notation is the
same as that introduced in §3.3 and §5.

The choice of the number £>0 is important for our argument not only in this sub-
section but also in the remaining part of this section. We claim that our argument in this
section is true if ¢ is smaller than some constant ,,. Below we will assume that 0 <e<e,
and give the conditions on the choice of ¢, in the course of the argument.

From the condition (78), we can fix a positive constant h, such that

X2 X
Xz +Xa —X2—x&

hy+1>

and
XuTXe =X > (hy+2) (X2 +x5)-

Then we fix a positive integer ¢, such that

S 206 X)X —xe +x2+2x5

X7 xa X —xE = (hx F2) (XA +x2)
Also we put
h, +1)2A2
rleoo—( X /\) g > 100. (79)
g

Definition. For integers 0<p<n and a point ze M, let S1(x,¢&,n,p, z) be the set
of mappings FeU such that there exist a subset {w;}iX, in F~P(z) and subsets E;,
0<i<gy, in F7"P(w,;)CF~"(z) that satisfy the following three conditions:

(81) The subsets E; for 0<i< gy are contained in A(x, ¢, 2(hy+1)en,n; F), and

#Ei = [exp((xz +Xu —Xe ~Xa —Tx€)n)]+1.
(S2) For any points y and y’ in the union |J7X, E;, we have

Z(DF™(E"(y)), DF"(E*(y"))) < exp((x¢ —xu +6e+hy (x& +x3 +4€))n).
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(83) For 0<j<p and 0<i,%'<gy, we have
F7(B(w;, 10 exp(—ryen))NB(w;r, 10 exp(—ry£n)) = 2,

except for the case where both i=i’ and j=0 hold.

For an integer n>1, we consider the lattice

L, =L(exp((x: —x.)n)),

where L(-) was defined in §3.1. The following lemma is the main ingredient of this
subsection:

LEMMA 7.2. We have

81(X1 E)Climsup U U Sl(Xveanap7 Z)’ (80)
n—00 ¥4 ZGLH

where Up indicates the union over integers p satisfying

3hy(Ag/Ag)en <p<3hy(hy+1)(Ag/Ag)en+1. (81)

Proof. Let F be a mapping in S1(x,&). We show that there are an arbitrarily
large integer n, an integer p satisfying (81) and a point z€L, such that F' belongs to
S1{x,€,n,p, z). From the definition of S;(x, €), there are infinitely many integers m that
satisfy

N(x,&,em, m; F) > exp((xz +Xa —Xo —X& —26)m). (82)

In the argument below, we consider a large integer m satisfying the condition (82). Note
that, since we can take the integer m as large as we like, we may and will replace m by
a larger one if it is necessary. From the definition of N(-), there exist a point (€M and
a subset P in A(x,¢€,em, m; F') with cardinality

#P > exp((xz +X5 ~Xe —Xa —26)m)
such that F™(P)={¢} and
Z(DF™(E*(w)), DF™(E*(w'))) < 10Hg exp((xc — X, +2€)m)
for w,w'e P. We put p:=[3hy(Ag/Ag)em]+1 and consider the subsets of P,

Py(w)={w'eP| F"P(u/) = F"'?(w)}



PHYSICAL MEASURES FOR PARTIALLY HYPERBOLIC SURFACE ENDOMORPHISMS 105

for 0<I<[m/p] and we P. Since P;(w) is contained in A(x, €, (m+Ip)e, m—Ip; F') by (21),

we have
#Pi(w) < s exp((xq +x2 " +7€)(m—Ip)+6(m+Ip)e)

<exp((x:+xiT+7e)(m—Ip)+7(m+Ip)e)

by Corollary 5.2, where the second inequality holds when m is sufficiently large. In

(83)

particular, for the case [=[m/p|, we have

# Pl o) (w) < exp((X7 + X2 +7¢)p+14em) < exp(—[m/plep) #P,

where the second inequality holds if €, is smaller than some constant that depends only
on X, hy, Ag and )y, and if we consider sufficiently large m according to the choice of €.
Thus there exist integers 0</<[m/p] such that

max #Pi1(w) <exp(—ep) max #FPy(w). (84)
Let lp be the smallest integer 0<I<|m/p] such that (84) holds. Then we have
max # Py (w) > exp(~elop) #P-

Take a point woE€P such that #P, (wo)=max,ecp #P,(w), and put n=m—Ilop, 2=
F™(wp) and E=P, (wp). Then

#E =#Py,(wo) > exp(~e(m—n)) #P > exp((x; +Xx3 —Xe —Xu —3€)m).
Comparing this with (83) for I=ly, we obtain

X+ X
m< n < (hy+1)n,
Xz +Xa— X2 —x52—17e (hx

where the second inequality follows from the choice of h, provided that e, is smaller
than some constant that depends only on x and h,,. Hence n and p satisfy the condition
(81) and we get

ECA(x,e,em,m; FYCA(x, &,(m+lop)e, m~lop; F) C A(x, €, (2hy+1)en,n; F).
From (4), we can obtain, for any points w and w' in E,

Z(DF"(E*(w)), DF™(E*(w')))

D, F™ " (e“*(F™(w)))
| D*Fm=n(et(F™(w)))]
< Agexp((~x; +x5)(m—n)+2em) 10Hg exp((x3 — x5 +2¢e)m)
=10Hg Agexp((x; —X, +4€)n+(Axc+Axut4e)(m—n))
<exp((xF —xa +5e+hy (X2 +x5 +4¢))n),

<A

Z(DF™(E*(w)), DF™ (E*(uw")))
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provided that m is sufficiently large.

Let us consider the subset {w;}% CF~P(z) of all points weFP(z) such that
FrP(w)NE#@. By (19) and (21), it is contained in A(x,&,e(m+ply),p; F'). Corol-
lary 5.2 gives the following estimate for its cardinality io:

io < s exp(5Agp+6e(m+plp)) < 3. exp(5Agp+12em).

We put E;={ycFE|F* P(y)=w;} for 1<i<1y, so that E:Uf":lE,-.
By changing the index 4, we assume that the cardinality of the subset E; is decreasing
with respect to 7. Let 7; be the smallest positive integer such that

3

1 #E
Z#Ei>—2-§#E,-=——2—-.

i=1

Then we have #FE,,-({o—i1+1) 22:‘;[ #E;> % #E and hence

E .
H#E,>#E; > Z&T >exp((X; +Xz —X5 —Xa —Txe)n)  for 1<i<is,
0

where the last inequality follows from the definitions of p and r, provided that m is
sufficiently large. We also have

0> Yo #E; > #E 5, eXPEp
#E, 2#E, 2

from the condition (84) for I=I,.

Notice that the point z that we took above may not be contained in Ly, while we
would like it to be. So we want to shift it to the closest point in L,,. The distance
from the point z to the closest point in L,, is bounded by exp((x, —xz)n), and hence by
e exp((xz; —5e—3(2h, +1)e)n), provided that e, is smaller than some constant which
depends only on y and that we took sufficiently large m. Thereby, by virtue of Lemma 5.1,
we can move the points w; and those in E; accordingly so that the relations FP(w;)=z
and F" P(E;)={w;} are preserved. Henceforth, we consider the points z€L,, w; and
the subsets E; thus obtained. Lemma 5.1 guarantees that the subsets E; are contained
in A(x,€,2(hy+1)en,n; F') and that

Z(DF™(E*(w)), DF™(E*(w"))) < exp((x? —xz +5& +hy (x> +x5 +4€))n)
+ 25z, exp((X; — Xy +(4hy+2)€)n)
<exp((x¢ —xz +6e+hy (x& +x5 +4£))n)
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for any points w, w'e U:lzl E;, provided that £, is smaller than some constant which de-
pends only on x and that m is sufficiently large. Up to this point, we have found an arbi-
trarily large integer n, an integer p, points z,w;, 1<i<4;, and subsets E;, 1<i<¢;, that
satisfy the conditions (81), (S1) and (S2). It remains to choose g, +1 points among w;,
1<i<3, so that the condition (S3) holds.

Put W={w;|1<i<4:} and §=40pexp(2A,p—ryen). Note that the points w; belong
to A(x,€,2(hy+1)en, p; F) by (19). We can check that

26 < 5, oc exp((—xi + x5 —5e)p—8(hy+1)en)

by using the definition of p and r,, and the condition (81), provided that m is large
enough. Thus F? is a diffeomorphism on the 2§-neighborhood of each point in W from
Lemma 5.1 (v). This implies that the distances between the points in WC F~™P(z) are
not less than 26. Let LCW be the set of points in W that are within distance § to either
of the points F7(z), 0<j<p. Then we obviously have #L<p.

Consider a sequence J={j,}%, of integers such that 1<, <p for 0<v<yy. The
sum of the integers in J is denoted by |J|:=3 "% . j,. For z,z’e W\L, we write x>z’
if there is a sequence of points zg=x, 1, ..., Lyy+1=2" in W\ L such that

F7(B(z,,10exp(—7ryen)))NB(zy41, 10exp(—ryen)) #@  for 0< v < vp.

From the definition of § above, it is easy to see that we have d(F!V!(z),z') <4 if z>,2'
for some J with |J|<2p. Hence, given a point z&W\L and an integer 1<i<2p, there is
at most one point 2’ in W\ L that satisfies 7z’ for some sequence J with |J|=i.

Actually, the relation z 7z’ holds for some points z and =’ in W\ L only if [J|<p. In
fact, otherwise, there should be a sequence J with p<|J|<2p and points z and z’ in W\ L
such that z>;2’, and hence d(F!71=?(2), 2’ )=d(F!7!(x),z') <J. But, since 0<|J|~p<p,
this contradicts the definition of L.

The relation z >z’ never holds if z=2'. In fact, if z>;x for some J, the relation
x> 7: x should hold for any i1, where J* is the iteration of J, i times. But this obviously
contradicts the fact proved in the preceding paragraph.

We write x>z’ for z,2’é W\L if either z=1', or z>;2’ for some sequence J=
{Jv}oo, satisfying 1<j, <p. From the argument above, this relation is a partial order
on the set W\ L, and, for each x&W\L, there exist at most p points z’ in W\ L such
that x>x'. Let Whax be the set of the maximal elements in W\ L with respect to the
partial order >. Then we have

L #HWAL) | [fexper]
D D

Zqxtl,
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provided that m is large enough. Take g, +1 points {w;}X, from Wpyax. Then the
condition (S3) holds for them. We have completed the proof of Lemma 7.2. O

Using Lemma 7.2, we can deduce Proposition 7.1 from the following proposition:

PROPOSITION 7.3. Let s2r+3. Suppose that a quadruple x satisfies the conditions
(75), (76), (77) and (78), and that a positive number ¢ satisfies 0<e<ey. Then, for any
d>0 and any mapping G in C"(M,T), there exists an integer ng such that

M (@ (S1(x, ,m,p, 2))ND*3(d)) < exp((2x; —2x, —&)7n) (85)

for n=ng, z€L, and 0<p<n satisfying the condition (81).
Remark. ®g and D*~3(d) above are defined by (2) and (25), respectively.

In fact, since we have #L,=([exp({—x; +x3)n)]+1)?, it follows from Proposi-
tion 7.3 and (80) that

M (BZH(S1(x,€))ND*"3(d)) =0 for any d >0 and G€C™ (M, T).
Since the measure M, is supported on C*~3(M,R?)=|J,,,D* 3(d), this implies that

the subset S;(x,¢) is shy with respect to the measure M.

7.3. Perturbations

In this subsection, we introduce some families of mappings and give estimates on the
variations of the images of the unstable subspaces E*(z) under iterates of the mappings
in the families. Henceforth, in this subsection and the next, we consider the situation in
Proposition 7.3: Let s27+3, let x be a quadruple that satisfies the conditions (75), (76},
(77) and (78), and let £ be a positive number that satisfies 0<e<e,.

Fix a C*-function ¢: R2—R such that ||¢]c1<1 and

for w=(z,y)€R2. For each point z€ M, we consider an isometric embedding
v {weR? | Jw| < %} —T
that carries the origin to z and the z-axis Rx {0} to E*(z). For n>1, we put

dp =exp(—ryen).
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Recall that we took the subset U of mappings as a neighborhood of a C"-mapping Fj
in §3.2. For an integer n>1 and a point 2€ M, we define the C*-mapping v, ,: M »R?
by

53 (p7 (w)/6n) e (Fy(2)), if d(w, 2) <dn,
0, otherwise,

Yn (W) = {

where e°( - ) is either of the two unit vectors in the central subspace E°(-). Note that, for
any mapping F'€U, the parallel translation of the vector e®(Fy(z)) to F(z) is contained
in S¢(F(2)) from the choice of the constant g, in §3.2.

Remark. Notice that the definition of ¢,, ,(w) does not depend on FeU.

Let n and p be positive integers that satisfy the condition (81), S={z;}X, an ordered
subset of the lattice L(350,), and F a mapping in Y. The family of mappings that we
are going to consider is

Ix
Ft(w) = F(w) +Z tiwn,zi(w): M— T,
i=1

where t={t;}X, € R% is the parameter that ranges over the region
R={t={t}%, eR%| [t <exp(xim)}.
For this family, we have
dei(Fe, F) < Cyqy 0573 |t||-|wllct for te R and 0K 1< s. (86)
From this inequality in the case {=0, we obtain
deo (FY, F7) < pexp(Agp) Cy g, 8573 exp(xzn) < 6, (87)

for 0<j<p and teR, where the second inequality follows from the condition (81) and
the definition of r, provided that n is larger than some constant N,. (Recall the notation
introduced in §5.)
Let us use the notation J; for the partial differentiation with respect to the param-
eter t;. We have
[18: Fe(w)|| < 657 (88)

and
16:(DF) (V)| < Cgb7 2 |Iv | (89)
for any we M, veS“(w) and teR. If d(w,xi)<1—106n in addition, we also have

Iv*(8i(DFe(v)))| 2 Cg 652 |v | (90)
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for any we M, veS*(w) and t€R, where v* is the unit cotangent vector at Fi(w) that
is normal to DFg(v).

In the following argument, we assume that

FI(B(xs,20,))NB(zir, 20,) =@ (91)
for 0<4,4'<¢q, and 0<j<p, except for the case where both ¢=i' and j=0 hold. Note
that (91) and the estimate (87) imply that

F(B(zi,6,))NB(zy,8,) =2 for t€R. (92)

Consider a point z€ M and families of points y;(t)eM, 0<i<g,, parameterized by
t€ R continuously. Suppose that

(Y1) Fo(ys(t))=2;

(Y2) yi(t)€A(x, 6, (2hy+3)en, n; Fy);

(Y3) d(F{ P (3:(t)), :) < 156n
for 0<i<gq, and teR. Let us put

D*FP Y (DFP 7" (e*(y:(t))))]
D.FP~Y(DE P (ex(yi(t))))

for 1<i<q,, where e“(z) is either of the two unit tangent vectors in E*(z). Then we
can show the following estimates on the motion of the subspace DF{*(E*(y;(t))) as the

parameter t moves:

LEMMA 7.4. Let the constant N, be larger if necessary. If n>N,, we have
Cq ' As(t) <10 Z(DF (E* (y:(t))), E*(2))| < Co Ai(t)
for 1<i<qy, and also
|0; Z(DF (E* (y:(t))), E*(2))] < Cg exp(—=Agp) Ai(t)

for 0<i<q, and 1<j<qy, provided that i#j.

Proof. Let 1<i<q, and 0<j<g,. For 0<m<n, let e, be the unit tangent vector
in the direction of DF{"(e*(y;(t))), and denote by e}, the unit cotangent vector that
is normal to e,,. We can choose the orientation of the cotangent vectors e;, so that
(DF™™)*(er)=D*F""™(ey,)e;,. Also we put zm=F"(y;(t)) for simplicity. Notice
that e, e, and 2, depend on the parameter t.

We first give some simple consequences of the conditions (Y1) and (Y3). By (92)
and the condition (Y3), the point z,, is not contained in B(z;,4d,) for n—2p<m<n,
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except for the case where both m=n—p and j=i hold. In particular, the points z,
for n—p<m<n are not contained in | J;X,B(z1,6,). So the condition (Y1) implies that
the point z,, for n—p<m<n does not depend on the parameter t. For 0O<m<n—p,
differentiation of both sides of the identity Fy* P+ ™™ (2 )=2p-py1 gives

n—p+1
(DFP=PH™), (Bizm)+ S (DEFPHN, ((8;F) (21-1)) = 0.
l=m+1

Applying (DF™P*17™)71 to both sides of this identity and using (88) and (7), we obtain
n—p+1 n—p+1

B52m| < Y Cal(DFET™).,)HI85H <

l=m+1 l=m+1

Cg 5z+3

L 93
|D*F™ (em)| )

Now we are going to estimate

0, £(DF (E*(yi(t))), E*(2)) = 8 £ (en, E*(2)) = (?)“;F( <(3°))) .

Differentiating both sides of
DF¢'(e0) = (DFt)z,_,°(DFt)z, 0. (DFy) z(€0)

and using the relation DF{"(eq)=D.F{"(eg)€em, we can obtain

n-1

8;(DF{(e0)) = Y (DY ™™ )10, ((95(DF),0 ) (€m)) D ™ (e0)

m=0
n—1

+ 3 (DEY ™™ 1)1 (D*Fe(em, 8j2m)) Do F{" (o)

m=0

+(DF) 2 (De*(8;20)).

From this and the relation (DE"~™)*(eX)=D*F""™(e,,)e%,, it follows that

n—1
€ (8;(DFy(e0)) = Y D*FP ™™ M em+1) €541 ((8;(DF)z.0 ) (€m)) DuF{ (e0)
m=0
n—1
+ 3 D N emyr) € i1 (D?Fe(em, 052m)) D By (€0)

m=0

+D*F(eo) e§(De* (9, 20))-
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Note that (9;(DFt)),,.=0 for n—2p<m<n, except for the case m=n—p, and that
0,2, =0 for n—p<m<n as we noted above. Thus we obtain

€,(9;(DF{(e0))) _ D*FY ™ (en—p+1) €n—ps1((95(DFr)zn_, )(€n—p))

D.F{(eo) D.F{™ (en-p+1) D,Fi(en—p)
" DE T emt1) €in((0;(DFY).,) (em))
m=0 D*Ftn—m_l(em+1) D*Ft (eM) (94)
2L D F ™ N ems1) €y (D*Fe(em, 052m))
m=—0 D*F:l—m_l(em.'.l) D*Ft(em)
D*F"(eo)
D
D Fir(ag) 5(De" (0520)).

From {89), the first sum on the right-hand side is bounded in absolute value by

C 55—}-2 ID -
D.F{~ (en——p+l)

FE (el p)| T
opt Z exp(—Ag(n—p+1—-m+2¢,)) < Cg As(t) exp(—Agp).

By the estimate (93) on 9,zm, and the condition (Y2), the second sum on the right-hand
side is bounded in absolute value by

n—p n-p+1

¢, SNy DT o) 6
bt DFUTT(em)  |IDUET™(em)|
=C; fnfl D"y (e 5o+
#2015 DoF ! (@) DuFE™ (em) D Fu(em)
< Cyber8 DB (enpn)| §X TR exp(=Agnpd —mt2ey)

D,F?  (en_pt1) exp(—(2h, +4)en)

m=0 l=m+1
< CgA;i(t)dy exp((2hy+4)en)
< CyAs(t) exp(~Agp),

where the last inequality follows from the definition of the constant r, and the condition
(81) on p. Similarly, we can show that the last term on the right-hand side is bounded

by
n—p+1

|D*Fy (o))
% 2 D Fp(eo) Do)

From (89) and (90), we have

68+3

< CyAi(t) exp(~Agp)-

Cy o5t <len_pi1(8; DFy(en—p))| <Cod3*? if j=1i,
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and 0;DFy(en—p)=0 otherwise. Using these estimates in (94), we can conclude the
lemma, by taking the constant N, larger if necessary. O

Counsider the mapping ¥: R—R%x defined by
U(t) = {L(DF (E*(ys(t))), DF{ (E* (yo(t))) }i%; (95)
As a consequence of Lemma 7.4, we have the following corollary, where we take the
constant N still larger if necessary:

COROLLARY 7.5. The mapping V¥ is injective and there is a constant B, such that
|det DU (t)| > exp(—Byen) for teR,

provided that n>N..

Proof. Let DU(t);; be the (i,j)-entry of the representation matrix of D¥(t) with
respect to the standard coordinate on R%. Lemma 7.4 tells us that the diagonal entries
satisfy

Cq Ai(t) < [D¥(t)is] < CoAi(t),

while the off-diagonal entries satisfy
|DW(t);] < Cgexp(—Agp) A;(t), Jj#i.

These facts imply that ¥ is injective on R and that |det D¥(t)| is bounded from below
by [T, CyAi(t), provided that n is larger than some constant Cy. Therefore we have

|det DU(t)] > (Cy exp((x; —Xu) P —~ (4hy +6+(s+2) 7y )en)) ™

from the condition (Y2). Using the condition (81), we obtain the corollary. O

7.4. The proof of Proposition 7.3

In this subsection, we complete the proof of Theorem 3.22 by proving Proposition 7.3.
Let G be a mapping in C™(M, T) and d>0 a positive number. We consider a large integer
n>N,, an integer p satisfying the condition (81), and a point z in the lattice L,. We
put 8, =exp(—ryen) as in the last subsection. Consider an ordered subset S={z;}%, in
the lattice L(ﬁén). Let S1(x,&,n,p,2;S) be the set of mappings F in Si(x,&,n,p, 2)
such that the subset {w;}{X, in the definition can be taken so that

(S4) d(wi,z,-)<—2—156n for 0<i<q,,.
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The subset S1(x,¢,n,p, z) is contained in the union of Si(x,¢,n,p,2;S) over all
ordered subsets S={z;}X, of the lattice L(Z%Jn). And the number of such ordered
sets S is bounded by (400, +1)2(ax+1), Therefore, in order to prove the inequality in
Proposition 7.3, it is enough to show that

M (B (S1(x,€,m,p, 2, 8))ND*3(d)) <exp((2(x; —Xu)—2rx(qx+2)e)n)  (96)

for sufficiently large n.

Take an arbitrary mapping F in S;(x,¢,n,p, 2;.S) and consider the family of map-
pings F; defined for the ordered subset S in the last subsection. Note that the conditions
{91) and (92) follow from the conditions (S3) and {S4}. Let Y be the set of continuous
mappings

y:R— MxMx..xM, y(t)={yt)}>,,
that satisfy the conditions (Y1), (Y2) and (Y3) in the last subsection. A family y(t) in
Y is uniquely determined once y(0) is given because of the conditions (Y1) and (Y2).
Thus we have

#Y < (#(A(x, &, (2hy +3)en, n; F)ﬂF”"(z)))qx+1
< exp((xg + X2 +T7e+6(2hy+3)e)(gx+1)n)
<exp((xy +xo g +1)n+Cxen)

for sufficiently large n, by Corollary 5.2 and the condition (Y2).
For a family ye), let Z(y) be the set of parameters t€ R such that

Z(DF7(E*(y;(t))), DF(E* (yo(t)))) < exp((x? — x5 +6e+hy (X2 +xi +4€))n)
for all 1<i<qg,. Corollary 7.5 implies that we have
m(Z(y)) <exp((x? —xu +hx(xe +X5)) txn+ Cxen),

provided that n> N..

Suppose that Fs belongs to S1(x, €, n,p, z; 5) for a parameter s€ R. Then there are
points w; € F;P(z), 0<i<gy, and subsets EiCFS_("_p) (w;), 0<i< gy, which satisfy the
conditions (S1)-(S4) with F replaced by F,. Consider a combination {y;};X, of points
such that y,€ F; for 0<i<q,. From (86), we can check that

der(Fy, Fs) < pe exp{(x; —5¢)n—3-2(hy+1)en) for any te R,

provided that » is sufficiently large. Thus, by the condition {S1} and Lemma 5.1, we can
check that there exists a unique element y(t)={y:(y)}, in Y such that y;(s)=y; for
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0<i<qy. The condition (S2) implies that s belongs to the subset Z(y). Therefore, if F
belongs to S1(x, &,n,p, 2;.9), the parameter s belongs to the subset Z(y) for at least

Ix

[T #E: > exp((xz +xa —x& —x8 —7x€) (gx+1)n)
1=0

elements y in Y. Now we arrive at the estimate
m({t€ R|Fs€S1(x,¢€,n,p, 2 5)})

- Zyeym(Z))
S T #E:s

< &P(((Xe ~Xa +hy O +X8) &+ O+ ) gy +1))n+ Cyen)
exp((X: +Xa = X8 — X5 —7x€) (g +1)n)

Note that we have this estimate uniformly for the mappings F in S1(x,€,n,p, 2;S). Put
m=qy, T;=exp(x;n) and ;=1 ., for 1<i<qy in Lemma 3.20. Then the assumption
(26) holds provided that n is sufficiently large. The conclusion is that

M (@5 (S1(x,€,n,p,2;5))ND*~3(d))
<295 exp((xt* —x2 —xu +(Ax+2) (XE +X5)) axn)
xexp((XF* —xz +x5 +2x5 +Cxe)n).

Using the condition in the choice of g,, we obtain (96) for sufficiently large n, provided
that we take sufficiently small €, .

8. Genericity of the no flat contact condition

In this section, we consider the situation where the images of admissible curves under
an iterate of a mapping F'€/ have flat contacts with the curves in the critical set C(F'),
and investigate whether we can resolve all such flat contacts by perturbations. Our goal
is the proof of Theorem 3.23, which will be carried out in the last subsection. The key
idea in the proof is that the non-flatness of contacts between curves is easier to establish
if we assume higher differentiability. The reader should notice that the content and the
notation in this section is independent of those in the last two sections.

8.1. The jet spaces of curves

We begin with formulating a sufficient condition for the no flat contact condition in
terms of jets. For an integer 1<qg<r and a point 2€ M, let T'? be the set of germs
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of C-curves 7: (R,0)— (M, z) at z. Recall that we always assume the curves to be
parameterized by length. Two germs 7, and 72 in I'? are said to have contact of order ¢
if d(1(t),v2(t))/|t|]?—0 as t—0. This is an equivalence relation on the space I'?. The
equivalence classes are called g-jets of curve and the quotient space is denoted by J4T°,.
Suppose that a g-jet j of curve at z€ M is represented by y€I'?. Then the tangent vector
dv(0)/dteT, M at z does not depend on the choice of the representative v, and neither
do the differentials d*v(0), 2<i<q, which are defined in §3.4. Thus we put

iO=z, j(l)z%(O) and j®=d'(0) for2<i<q.

The jet space of curves of order q is the disjoint union J9I":=I1,cs J9T,, which is
equipped with the distance defined by

da(j1, j2) = max{d({", i{”), £, 357, max{15{" 35" [ 2< i< g} }.

Then the mapping

JEIT — (I, (N )) e T'M xRI!
is a homeomorphism, where T'M is the unit tangent bundle of M. Each mapping Fel{
acts naturally on the space J9I". We write this action simply as

F:JT — JT,
[Y]— [Firl.

For 2<g<r, let JAACCJT be the compact subset of ¢-jets that are represented by germs
of admissible curves. Lemma 3.2 tells us that F™(J24C) CJYAC for n>n,.

For a C9-curve v: I - M defined on an interval I, its g-jet extension is the mapping
J9y:I1—-J9T that carries a parameter t€I to the jet in J9T,) that is represented by
the germ of v at ¢. Recall that the critical set C(F') for any mapping F in U consists
of finitely many C"!-curves. Let C(F)CJ" 2T be the union of the images of their
(r—2)-jet extensions:

C(F)={J""24(I)|y:I - M is a C""l-curve contained in C(F)}.
LEMMA 8.1. If a mapping Fcll satisfies
Fr*JI™2AC)NC(F)=@ for some n>1, (97)
then F satisfies the no flat contact condition.

Proof. For each point in C(F), we can find a small C™~!-coordinate neighborhood
(U,¢:U—R?) such that ¥(C(F)NU) is an interval on the z-axis Rx {0} and such that
either

(a) D(S°(2)) contains the z-axis R x {0} for every z€U, or

(b) Dv(S¢(z)) contains the y-axis {0} xR for every z€U.
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Since the critical set C(F') is compact, we can cover it by finitely many coordinate
neighborhoods with these properties. So, for the purpose of proving the lemma, it is
enough to show the following claim for each coordinate neighborhood (U,%) as above:
There exist C>0 and ng>0 such that

mg ({t€[0,a] | F*(7(t)) €U and d(F™(v(t)),C(F)) <&}) < Ce¥/ "~ max{a, 1}

for any a>0, y€AC(a), n>ng and £>0. If the condition (a) above holds, this claim
is clear because the images of the admissible curves in U by the mapping 1 are curves
whose slope is uniformly bounded away from 0. Thus it remains to check the claim above
in the case where the condition (b) holds. To this end, it is enough to show the following
lemma, because, in the case (b), the images of the admissible curves by ¢ are graphs of
CT~!-functions whose slopes are bounded by some constant Cy.

CrLAM 8.2. If a C""-function ¢ on a compact interval I CR satisfies

max max i1('—0() 1€g<r-1, <K
wel dz? " SAST s
. dip

Iaxclel?ma,x{ %(x) '1<q<r—2}>g

for some positive constants K and g, then we have
mg ({z€R | |p(z)| <e}) <C(r, 0, K, 1)/ for any £ >0,

where C(r, 0, K,I) is a constant that depends only on 7, o, K and the length of I.
We show this claim by using the following lemma [4, Lemma 5.3]:

LeMMaA 8.3. If a CY9-function h on an interval J satisfies |d%h(z)/dz?|z0>0 for
all ze€J. Then mg({z€J | |h(z)|<e}) <29t (e/0)"/? for any e>0.

Proof of Claim 8.2. Let XCI be the set of points €I such that |o(z)|<30. For
each point x€X, there is an integer 1<m<r—2 such that |d™y(x)/dx™|>¢ and hence
|[d™@/dz™|> %0 on the interval J(z):=(z—p/2K,z+0/2K ). We can take points z;,€X,
i=1,2,...,%, so that the intervals J(z;) cover the subset X and so that the intersection
multiplicity is 2, thus i <2mg(I)/(¢/K)+1. Applying Lemma 8.3 to each interval J(z;),
we can see that mg ({z€R||p(z)|<e}) is bounded by iOQT“l(s/%g)l/(r—m, provided
that e<p. This implies Claim 8.2. O

We have finished the proof of Lemma, 8.1. O
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8.2. Lattices in the jet space

In this subsection, we consider lattices in the space of admissible jets J"~2A4C and formu-
late a sufficient condition for the no flat contact condition by using them. Henceforth,
we fix integers 2< v <r<s satisfying the condition {3). Note that the condition (3) can
be written in the form

(r—2) (r~1—r—;§) < (r—u—2)(r-3—§i’2§ﬁ—1>.

Thus we can cover the interval [1Ag,2A,] by finitely many intervals I(1)=(A" (1), A*(1)),
1<y, such that A~(I)>3A; and

(r—2) (7"—1—7'—2—3 ;\\+§8) <(r—-v-2) (r—3—gs—%j—l).
For n>1 and 1<I<lp, let Q(n,1) be the set of jets j in J"~2AC satisfying that
(Q1) the point j© is contained in the lattice L{exp(—=A*(I)(r—2)n));
(Q2) the angle Z(jV, e*(j(®)) is a multiple of exp(~A*(I)(r—3)n);
(Q3) j'9 is a multiple of exp((—=A*(1)(r—3)+A~(I)(g—1))n) for 2<g<r—2.
We have

#Q(n,1) < Cyexp((r—2)((r—1)A* () = 3(r—3)A~ (1)) n). (98)

For integers n>1, 1<I<lp, a mapping F€U and 0=0, 1, we define V,(n,l; F) as the set
of jets j in J"~2AC that satisfy

exp(A\"()n—0) < IDLF (V) exp(At (Dn+a).

Then, from the choice of the numbers A*(l), the subsets Vy(n,l; F) for 1<I<lp cover
J"=2AC, provided that n is larger than some constant C,.

LEMMA 8.4. There is a constant By>1 such that, for any jet j in Vo(n,l; F') with
nz B, and 1K1y, there ezists a jet i€ Q(n,[)NVi(n,l; F) such that

d3(F™(j), F"(i)) < Bgexp(—=A*(I)(r—3)n). (99)

Proof. Let us take a jet jeVy(n,l; F) arbitrarily. Let w be the point in the lattice
L(exp(—A*(1)(r—2)n)) that is closest to j©. As j1) belongs to $*(j(?)), the minimum
angle between j(!) and the cone 8*(w) is bounded by C,d(j'®, w). Hence we can choose
a jet i€Q(n,!) such that

(I1) i®=w and hence d(j@,i®)<exp(-A*(l)(r—2)n);

(12) Z(D,10) <exp(—A*()(r ~3)n)+Cyexp(—A* () (r ~2)m);

(13) |59 —i@|<exp((~A*(1)(r—3)+ A~ ()(g—1))n) for 2<q<r—2.
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For 0<m<n, we put z2(m)=F™(§)©@=F"(j0), w(m)=F"{)©@=F"(i®) and

d(F™(5)©, F™(1)(9) = d(z(m), w(m)) for g=0,
AL = L(F™(§)MD, Fm(1)M) = £(DF™(§V), DE™(i(0))  for ¢=1,
[F™(5)9 —Fm(i)(@) for 2<g<r—2.

In order to prove the inequality (99), it is enough to show that
AL < Cyexp(—A*(l)(r—3)n) for0<qg<<r—2.
First we prove that
A7, <2|DFf) | A < Coexp(=A* (D)(r=3)n) (100)
for 1<m<n. As jeVy(n,l; F'), we have
|DETSH| < Cy D F™=*(DF* (1))

Cy D F™ (i)
<
D.F==m(DF™(30)) D.FF(30)

<Cyexp( AT () n—Xg(n—m+k))

(101)

for 0<k<m<n. So the second inequality in (100) follows from the condition (I1). We
prove the first inequality in (100) by induction on 1<m<n. Using the simple estimate

1€XP7 ey (w(m)) = DF 1y (exp 7ty gy (w(m=1))| € C (A% ;)2

repeatedly, we can get the following inequality for A?nznexpz‘(lm) (w(m))|:

m—1
AN <IIDFRy) | A3 +Cy > IDFREHI(AR)? for 0<m <. (102)
k=0

Note that we have, from (6),
IDFL S I-I DF gyl < Cg DL F™ =Y (DF¥+1 (e¥(20))) Du F*(€*(20))

m( o (103)
D, F™(e*(z)) <G, |IDFy |

<C

? D, F(DF*(e()))

for 0<k<m—1. Consider an integer 0<mgo<n and suppose that the left inequality in
(100) holds for 0<m<mg. Then, using the estimates (101) and (103) in (102), we obtain

mo—l

A%, <IIDFTS | AS+C, 3 | DETE 51 2| D%, | AJAL
k=0

< |IDF5 | AY(1+Cynexp(=X* (1) (r—3)n)).
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This implies the first inequality in (100) for m=my, provided that n is larger than some
constant Cy. Thus we can obtain (100) for 1<m<n by induction.
Next we estimate Al for 0<m<n. We have

A}, < L(DFT (3W), DF o, (M)

m m—k— k+1 (=(1
+Z L(DF*(DFY 4, (iM)), DF 5 (DFE (),
where we omit the operations of parallel translation (see the remark given in the proof
of Lemma 5.1). For 0<k<n, we have DFj(O)(l(l))ES“(w(k)) and d(z(k),w(k))=A2<
Cgexp{—A*(1)(r—3)n). Hence the parallel translation of DF (0) (i) to z(k) does not
belong to the central cone S¢(z(k)), provided that n is larger than some constant C,.

Using (4), we can obtain

m—k + -
Z(DFL5H(DF}0)(), DF I (DESG )

ID*Fm—k—l(DFk+1(-(1)))l
<A,

D, Fm—k—1(DFF1(jD))
< Cyexp(—Ag(m—k~1)) AL
<Cgyexp(—Ag(m—k—1)=A*()(r-3)n).

Likewise we can obtain Z(DF?

2(0)
condition (I2), we conclude that

(3", DFZ; (0)(1(1)))<Cgexp(—/\gm)A}). Therefore, by

m-—1
< Cyexp(—Agm) Af+ Z Cyexp(—Ag(m—k—1)=X"({)(r—3)n)
k=0

< Cyexp(=A*())(r-3)n).

Finally, we estimate A¢ for 2<g<r. From the formula (10), we can see that

|D*F(DF™ 1 (jW)]
AZ < — 4G Y A (104)
D.F(DFm=1(jD))q e

Consider this inequality for m=n and estimate the right-hand side by using (104) recur-
sively as long as there exist terms A? with ¢>1 or m>0 on the right-hand side. Then
we see that A¢ is bounded by
IDFr ()] : IDFE @),
D,.Fn(j (1) Aj+C, Z Z H H D,F(Fi(j)D)t Ag
l<d<g O=ng<ng+1<... I=d nij<nip1—1
Lng<ngr1= n+1

|D*F(F?(5)M)] 4
TRAD DD DU | SR QR -t it
(1) —m
d=0,1 m=ng<ng1<... I=d n<G<nip1— 1D*F(FJ(J) ))
ogm<n <nq<nq+1—n+1

(105)
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Note that, for any sequence m=ng<ng4+1<...<nq<ngy1=n+1 with g<r, we have

: |D*F(FI(5))] exp(—Ag(n—m—q)+c,q)
0 I SHEGOF D)= e~y

I=d n;<j<ni41—-1

exp(—Ag(n—m))
< Cg D*Fn—m(Fm(j)(l))d—l '

Hence it follows from (105) that

a exp(—=Agn) 4 g exp(—Agn)
AnS poFa(jye—1 S0t Con > D.Fr(j0)d-1
1<d<gq

A

+Cy Y (n—m)?exp(=Ag(n—m)) (A%, +A7)

ogm<n
<Gy max (An+87)+Cy D exp(—(d=1)A (U)n) AG,

1<dggq

where the second inequality follows from the fact that the jet j belongs to Vo(n,l; F').
Using the estimates on AY, and Al , and the condition (I3) in the inequality above, we
can conclude that

AL < Cyexp(—A*(1)(r—3)n) for 2<g<r—2.
We have proved the inequality (99). The jet i belongs to Vi(n,!; F) because

D.F"(e"(1) _ y N (p0 4 Al
< < -t - 17
og D.Frer(jO) Cy ) (A, +A;) <Cynexp(—A* () (r—3)n) <

m=0

I

provided that n is larger than some constant Cj. U
For integers n=1, 1<I<]p and a jet jeQ(n,1), let Sa(n,,j) be the set of mappings
FelU such that jeVi(n,[; F) and
d3(F™(j), C(F)) < 2By exp(=A* (l)n(r—3)).

Then the last lemma implies the following result:

COROLLARY 8.5. If there exists n> By such that F¢Sz(n,l, ) for all 1<I<lo and
JeQ(n,l), then F satisfies the no flat contact condition.

In the remaining part of this section, we shall estimate the measure of the subsets
Sz(n, 1, j) for jeQ(n,1) by using Lemma 3.20.
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8.3. Perturbations

In this subsection, we introduce some families of mappings and give a few estimates on
the variation of the images of jets under the iterates of mappings in the families. In the
argument below, we fix 1<I</y and put

N
6n=exp(~i’(/l—)n) forn>1.

For 1<g<r—2, we fix a C°°-function v¢q: R?—R such that

z9/q! for (z,y)eB(0, 55),

Voloy) = { 0 for (z,y)¢B(0, 1).

Remark. We can take the functions v, so that their C"-norm is bounded by some
constant Cj.

For each point (€M, we consider an isometric embedding
e {weR2 | flw]l < %} — T

that carries the origin to the point ¢ and the z-axis R x {0} to E*(().

Recall that we took the subset U of mappings as a neighborhood of a C"-mapping Fj
in §3.2. For positive integers n, 1<g<r—2 and a point { in M, we define a C°°-mapping
Yan,c: M—R? by

85ve(p7 1 (2)/6) e°(Fy(C)), if d(2,C) <bn,

0, otherwise,

¢q,n,<(z) = {

where e°( - ) is either of the two unit tangent vectors in the central subspace E°(-). Note
that, for any mapping F'€U, the parallel translation of the vector e(Fy(z)) to F(z) is
contained in S¢(F(z)) from the choice of U in §3.2.

For a positive integer n, a mapping F'€U and a point ¢ in M, we define

r—2
Fi(z)=F(2)+ Y tgtgnc(2): M — T, (106)
gq=v+1
where t=(t,41,t,42,...,tr_2) is the parameter that ranges over R=[—1,1]"~27". This is

the family of mappings that we are going to consider.

Remark. The purpose of considering the family above is to move the images F{*(j)
of the jets jeQ(n,!) by choosing the point { appropriately. As it will turn out, we can
keep control of the coordinates F{*( j)(q) with ¢2v+1, but not of those with 0<g<w.
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This is the reason why we restricted the range of ¢ between v+1 and r—2 in (106). Note
that, if we take smaller v, we can keep control of more coordinates but the magnitude
of the perturbation becomes smaller. Thus, we have to choose a good value for v. The
inequality (3) is related to this choice.

Obviously we have
doa(Fy, F)<Cy0y7 7 and  ||0¢Fellce <Cyd577 (107)

for 0<¢<r and teR. In particular, Fy(M)CM if n is sufficiently large.
We consider a jet jeQ(n,[)NVi(n,l; F) and give some estimates on the variation of
the image F{*(j). We begin with the estimate on the position F*( §)©,

LEMMA 8.6. We have, for 0<m<n and teR,
d(F(3), F™ () < Gy || DF, 1165, < Co657"

and
18:F5" ()| < Cg | DFJG 165, < Co 37",
provided that n is larger than some constant C,.

Proof. The following argument is a modification of that in the former part of the
proof of Lemma 8.4. We put z(m)=F™(j), w(m)=F™(j) and A,,=d(z(m), w(m))
for 0<m<n, so that Ag=0. Using the simple estimate

exD 3 (w(m)) = (DF) (o1 (exp Ty (wm—1)) |  Co 85+ (Amr)?)

repeatedly, we obtain

,_.

m—

Am < Y I(DF™ 1) 4y | Co (85 +(Ak)?) (108)
k=0

for 0<m<n. Consider an integer 0<mo<n and a positive number K, and suppose that
we have

Am < K|(DF™)20)ll 67, (109)

for 0<Km<my. Then, using this, the inequality (103} and the simple estimate

C, ' exp(A\gk) < || DF, (0)“ S ClIDF ()| £ Cg6,"  for 0<k<m<n
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on the right-hand side of the inequality (108) for m=mg, we obtain

m—1

Ao < Coll(DF™) o)l > (85| DF X0y |7 + K282° | DF ) 1))
k=0
m-—1
S Cll(DF™),()165 ) (exp(—A k) +K?6,7).
k=0

This implies (109) for m=my, provided that K and n are larger than some constant C|;.
Thus we can obtain the first claim of the lemma by induction on m.
Put Al =8, F™(j®) for 0<m<n. Using the simple estimate

1A = (DF)2(m-1) 81|  Co(0n+Am-1]| A7 4 I)

repeatedly, we obtain
Z DF™ 5 1), 641y | Co (8 + Ak A% )

From this and the estimates on 4,, that we have proved above, we can obtain the second

claim of the lemma by induction on m, in a similar manner as above. O

Next we give the estimates on 8, F7*(j)(? for 1<q<r—2. We use the notation 3,
for the differentiation by the parameter ¢,. For integers p and g satisfying v+1<p<r—2
and 1<¢<r—2, and for a jet ieJ""24C and t€ R, we define
sin(£(e*(Fy(2)), Fe(i'))) 18, (DFy )i (D, i), ., i)

D, F,(iV)e ’
where (DF;).: @ T, M —Tp(,,M is the gth differential of Fy at z, and the sign on the
right-hand side will be chosen appropriately in the argument below. We have

BG,t) =+

B89, £)| < Cp b7 (110)

LEMMA 8.7. There exists a positive constant Cy such that, if n2C,, we have

D*Fm k-1 Fk+l _
W (F (1))~ Z 2R U st ] <

for any v+1<g<r—2, v+1<p<r—2, teR and 0K m<n, provided that we choose the
sign in the definition of ﬂ(q) (FE(§),t) appropriately.
Proof. Fix v+1<p<r—2 arbitrarily. For 0€¢<r—2 and 0g<m<n, we put
18, T (3) 1), if ¢=0,
A = ¢ 0, L(FP(5)M,w0), if g=1,
8 (F(3)1@), ifg>2,
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where vg is some fixed vector. For 0<m<n, we have
A(l) D* Ft(Fm—l(.)(l)) (1)
" D.R(FPTHHO) Bt

where the second inequality follows from Lemma 8.6. From this inequality and the

—BM(FEP(G), 1) < CoAY < Cy8,

estimate (110) for g=1, we see that

m—1 k

ID*EFF(FEGDON | 21y, ok« _ Y

INOIRYe/ = (BD(FEG), t)+8577) < Cybs
Z_J DFREGO)Y P ’

for 0<m<n. Recall the formula (10) and the remark after it. By differentiating both
sides of (10) with F' replaced by Fi and using (107), we obtain

- ZRUT00)
™ D.R(FT(HW)e

A9 | _g@(Fm(j), t))‘<c gtec, Yo A, (1)

0<d<ygq
for 2<¢<r—2 and 0<m<n. In particular, we have, from (110),

' A D*Ft(F:"’I‘(j)“))

D, F(F (§))e

Aﬁi’ | SCe8 T+ C Z Agg)—l

0<d<gq

for 2<g<r—2 and 0<m<n. Using this inequality repeatedly, we reach

spm—k¢ ok (1)
IA(q)|<C Z |D Fm k(Fk (J)(l))l < s—q Z A(d) )
D.E"H(F (D) 0&i<q

<C (6s 9+ max max A,(cd))
0<d<q 0<k<m

Hence, we can show the estimate ]ASZ)KC’gé;"’ for 2<q<v and 0<m<n by induction
on ¢, by Lemma 8.6 and the estimate on ]AS,IL)| above.
Next, using the inequality (111) repeatedly, we can see that the left-hand side of the
inequality in the lemma is bounded by
|D*F* M (FEG)M) po-a+1 (@
Z = + 2 A% ).
D.F"(FF(5)W)e

0<gd<q

By induction on v+1<g<r—2, we obtain the inequality in the lemma. ad

Note that, for any C"-mapping G: M — M such that de- (G, Fy) <24, the level curves
of the function det G: z—~det DG, are regular in the neighborhood B(C(G), g4) of the
critical set C(G), from the choice of the constant g, in §3.2. For a point weB(C(G), g4),
let c(w; G) be the (r—2)-jet at w that is given by the level curve passing through w.

Suppose that a jet jeJ""2AC satisfies, for all teR,

(V1) (R (5)@,0)< 56

(V2) d(F~H(3) ), C(Fr))>36n;

(V3) d(F(3), C(Fe)) <.
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From the condition (V3), we can define the mapping ¥: R—R" ™"~ by
n{s e . r—2
\I/(t) - {Ft (J)(q) —c(F§ (J)(o), Ft)(q) }

5—q
n

)

g=v+1
provided that n is so large that 6, <gy. The next lemma is the goal of this subsection:

LEMMA 8.8. If the conditions (V1), (V2) and (V3) hold for all t€R, then the
mapping V¥ is a diffeomorphism and |det DVU(t)| is bounded from below by a constant C; Y
provided that n is larger than some constant Cg.

Proof. From the condition (V1) and the definition of the family Fi, we have
BIP(FEH(3),£) =0 for ¢ >p,
BT (1), 0)| 2 C716,70 for g=p,
in addition to (110). We show that
¥ DR UE )
D.Fy ™ HEH ()W)

BEO(FE(j), 1) < Cyby ™. (112)

k=0
Suppose that ﬂ,(,Q)(Ftk( j),t)#0 for some integer 0<k<m—2. Then we find that
d(FE(§)©,¢)<8n and
d(FEP (), C(F)) SA(FET (§), Q) +d(Fe(Q), FP (D)) +d(E7 (), C(F)
<Cyén
from (V1) and (V3). This and (5) imply that |D*Fe(FF™ (§)™*)]|<Cyn, and hence
DE" Y EA (D)
D.FF R (j)W)e
Therefore we obtain (112).
The jet c(w; Fy) for we B(C(F'),d,) does not depend on the parameter t€ R because
B(¢,6,)NB(C(F),8,)=2 from (V1) and (V2). So we have
185 (c(Fy ()@; Fo) )| < Coll8p(F () < Co87™  for v+1<p,g<r—2
by Lemma 8.6. From (112) and Lemma 8.7, it follows that
185 (F7 (3@ —e(F ()@ F) @) = B TH(J), )| < Cob7 0+

Let D¥(t), , be the (g,p)-entry of the representation matrix of D¥(t) with respect to
the standard basis of R"~27%. Then, from the estimates above, we have

ﬂzgq)(Ftk §),t)| < Coy T exp(—Ag(m—k—1)+2¢).

|D¥(t)g,pl <Cydn if ¢>p,
[DY¥(t)g,p| <Cqy if ¢<p,
|D¥(t)q,p| > Cg_l if g=p.

Now we can conclude the lemma by an elementary argument. O
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8.4. Resolution of the flat contacts

In this subsection, we prove Theorem 3.23. Until the last part of the proof, we fix 1<I<y
and put §,=exp(—A*()n/v) for n>1 as in the last subsection. Let n be a large integer,
¢ a point in the lattice L(556,) and j a jet in Q(n, ). Let Yo(n,1,j,¢) (resp. Y1(n,1,],()),
be the set of mappings FEC™(M, M) that satisfy

Fr1(5)@eB(¢, 56,)  (resp. F*1(j)@eB((, 14,)). (113)
Below we estimate
M (5 (S2(n,1,5)NYo(n,1,§,¢))ND"(d)) for GEC™(M,T) and d>0,

where &g and D"(d) are defined by (2) and (25), respectively.

Take a mapping F in Sz2(n,l, j)NYo(n,l, j,¢) arbitrarily and consider the family Fi
defined by (106) in the last subsection. Note that the jet j belongs to Vi(n,l; F') from
the definition of S3(n,1,j). We check that the conditions (V1), (V2) and (V3) hold for
tER, provided that n is larger than some constant Cy. Since F belongs to Sa2(n, 1, j),
there exists a point wo€C(F') such that

d3(F™(§), c(wo; F)) < 2By 87", (114)

In particular, we have d(F™(§)(, wo) < 0y and Z(F™(§)V, ¢(wo; F)V) < g4, provided that
n is larger than some constant Cy. It follows from the condition (C5) in the choice of
the constant g4 in §3.2 that

d(F"(5),C(F)) > gy- (115)
Using (113), we can see that
d(¢,C(F)) 2 d(F" (§) ), C(F) ~d(F" 1 ()*,€) > 0g=2B, 8" > 46,

provided that n is larger than some constant Cy. This implies that the critical set C(Ft)
does not depend on teR. Hence (V1), (V2) and (V3) follow from (113), (114), (115)
and Lemma 8.6, provided that n is larger than some constant C,.

Let ¥: R—R""¥~2 be the mapping defined in the last subsection. Note that the con-
clusion of Lemma 8.8 holds for this ¥. Suppose that F, belongs to Sz(n,1,j)NYs(n,1, j, ()
for a parameter s€ R. Then, by definition, there exists a point wy;€C(F') such that

d3(F(), e(wr; Fy)) < 2By exp(=X* (D)n(r—3)).
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Since ¢( - ; Fs)=c(-; F): B(C(F), 0,)—>J T is a C'-mapping whose first-order differen-
tials are bounded by some constant Cy, it follows that

dJ(an(j), C(F:(j)(o);Fs)) \<*dJ(an(j)’C(wl;Fs))+dJ(c(wl§Fs),C(an(j)(O);FS))
< (1+C,)d3(FT(j), e(wi; Fa)) < Cyb5=2).

Hence the image ¥(s) is contained in

-2
H [_Cg(g;:(r—3)—(s—q)’ Cg(;z(r-3)—(s—q)] CcRTV2
g=v+1

We arrive at the estimate
r—2
mp,—-2({tER| F€8(n, 1, ))NYo(n, 1,5, O} < Cy ] 81777079,
q=v+1

which holds uniformly for FeSa(n,l, j)NYo(n,l, j, (), provided that n is larger than some
constant C,.
Now we apply Lemma 3.20. Fix a small number 0<7T <1 such that

r—2
m Z t <r max T < ps(d
lfqlaéXT g=v+1 WPan Cs\ v<gsr—2 Ialle 0s(d),

where g,(d) is that in Lemma 3.18. Note that we can take T independently of n. Put
X=385(n,1,j)NYy(n,1,j,¢) and T;=T in Lemma 3.20. Then the assumption (26) holds
from the choice of T, and the subset Y in the statement of Lemma 3.20 is contained
in Yi(n,1,j,¢) from the condition (V1), which we have proved above. Therefore we can
obtain, as the conclusion,

- . . r r—2
M8(¢01(82(n7l7J)mY0(nal’J’C))nD (d)) gch—r+u+2 H dz(r—S)—(s-—q)’

Ms(tbal(Yl(n,l,j,C))) g=v+1

provided that n is larger than some constant Cy. Then the subsets Yy(n,1,j,() for
¢ EL(%(F,L) cover C"(M, M ), while the intersection multiplicity of the subsets Y1(n, 1, j, ()
for ¢ EL(%JH) is bounded by some absolute constant. Hence we can conclude that the
measure M (®5'(S2(n, 1, j))ND7(d)) is bounded by
r—2
CgT—r+u+2 H 5;(1‘-—3)—(3—(1)
g=v+1

=0, T~ ™ +2exp ((r—u—?) (—(7‘—3)+ -2—3_—12—;5—11) A*(l)n) .
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The subset S, is contained in the closed subset
l

S=N U U Smbj)

n>B, 1=1 36Q(n,l)

by Corollary 8.5. Hence the measure M (®5'(S5)ND7(d)) is bounded by

C, T~ +r+2 i #Q(n, 1) exp ((r——u—?) (-(r—3)+-25—_%—’ﬁ> A*(l)n)

=1

for sufficiently large n. From the estimate (98) on the cardinality of Q(n,!) and the
condition in the choice of A*(l), this converges to 0 exponentially fast as n—oo. Thus
we conclude that M, (@5!(S2)ND7(d))=M; (D5 (S5)ND7(d))=0. As d is an arbitrary
positive number, M (®5'(S2))=0 or Sy is shy with respect to M.

Suppose that r19. Then the inequality (3) holds for s=r+3 and v=3, and so
M,13(51(S5))=0 for any GeC™(M,T). This implies that & \S} is dense. Therefore
S, is contained in the closed nowhere dense subset Sj.

Appendix A. Proof of Corollary 2.3

To see that Corollary 2.3 follows from Theorem 2.2, it is enough to show the following

result:

LEMMA A.1. If X is a Borel subset in C™(M,T?) that is timid for the class Qf of
measures for some s>r, then the subset

Y ={F(z,t)eC"(Mx[-1,1]%, T) | mg« ({t€[-1,1)* | F(-,t) € X}) >0}

is timid for the class of Borel finite measures on CT(M x[—1,1]%,R?) that are quasi-
invariant along C°(Mx[-1,1]F, R?).

Proof. Take a mapping GEC™(M x[—1,1]¥,T) and put Go(z)=G(z,0). We define
the mapping

P(f,t):=G(-,t)—Go(-)+f(-,t):C"(Mx[-1,1]¥,R?) x[-1,1}F — C"(M,R?),
so that
q)GOOP(f’t) =G(- ’t)+f( ’ vt)'

Let N be a Borel finite measure on C™(M x[~1,1]¥, R?) that is quasi-invariant along
C*(Mx[-1,1]*, R?). Then the measure (N xmgx|_11%)°P~* on C"(M,R?) belongs
to Q7, and so we have (M xmpgx)((®G,0P)~!(X))=0 from the assumption. This and
Fubini’s theorem imply that A o@&l(Y):() and hence the claim of the lemma. d
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Appendix B. Proof of Lemma 3.18

We use the definitions and results in the book [20] by Skorohod. We consider the functions
enm (2, y)=exp(2mv/—1(nz+my)) for n,meZ as a complete orthonormal basis of the
space L?(T, m). Let A: L?(T, m)— L?(T, m) be the operator defined by

A( Z anme"m): Z (n2+m2+1)_1/2anmenm-

(n,m)e22 (n,m)€Z2

Let N be the Gaussian measure [20, §5] on L?(T, m) whose characteristic function is
O(¢)=exp(~31(A%*~3y,9)r2). Then N is supported on the Sobolev space W*~3:=
As~3(L%(T, m)). We can see, from [20, §16, Theorem 2], that A is quasi-invariant along
Ws=3/250C*~1(T,R) and that

d(Nor !
Ny ) P A;” ) (p) =exp((A%%, A=*30) 12— L [A™*H3/ 29|12, ) <exp(|[¢llws [ llws-3)

for € W* and N-almost every pe W*3.

We show that the measure A is actually supported on C*~3(T,R). We follow the
argument in the proof of the fact that the measure corresponding to Brownian motion is
supported on the space of continuous paths [11]. Let ©(*~3) be one of the (s—3)rd partial
differentials of . Denoting the expectation with respect to the measure N by E(-), we
have

E(jp%=9(2)~ o~ (w)|*) < const-d(w, 2)*/?,

because the distribution of ¢{*~3)(2) —(*=3)(w) is a Gaussian distribution with average 0
and variance bounded by

Z (min{2, (n® +m?+1)/2d(z, w)} (n® +m?+1)3*)? < const -d(z, w).
(n,m)€Z2

By the Borel-Cantelli lemma, there is a constant ig>0 for N-almost every ¢ such that
=D (@2 ip, 270 q) ~ (27, 27 )P < 273

for i>1g and p, q,p’,¢'€Z such that |p—p’[<1 and |¢—¢’|<1. This implies that 03 is
continuous for A-almost every ¢, and hence N is supported on C*~3(T, R).

As C*73(T,R?) is naturally identified with C*~3(T,R)xC*~3(T,R), we regard
the product A'xA as a measure on C*~3(T,R?). Put M;=(NxN)or~!, where
7: C*~3(T, R?)—C*~3(M,R?) is the mapping that corresponds to the restriction to M.
Then M, satisfies the conditions in the lemma.
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