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0. I n t r o d u c t i o n  

In this paper, we shall be looking at a special class of bordered (algebraic) varieties tha t  

are contained in the bidisk D 2 in C 2. 

Definition 0.1. A non-empty set V in C 2 is a distinguished variety if there is a 

polynomial p in C[z, w] such tha t  

v = {(z,  e p(z, = 0} 

and such that  

? N 0 ( D  2) = ? N  (0D) 2 . (0.2) 

Condition (0.2) means tha t  the variety exits the bidisk through the distinguished 

boundary of the bidisk, the torus. We shall use OV to denote the set given by (0.2): 

topologically, it is the boundary of V within Zp, the zero set of p, rather  than  in all 

of C 2. We shall always assume tha t  p is chosen to be minimal, i.e. so tha t  no irreducible 

component  of Zp is disjoint from D 2 and so tha t  p has no repeated irreducible factors. 

Why should one single out distinguished varieties from other bordered varieties? 

One of the most important  results in operator  theory is T. Andb's  inequality [7] (see 

also [12] and [24]). This says that  if 771 and T2 are commuting operators,  and both  of 

them are of norm 1 or less, then for any polynomial p in two variables, the inequality 

LIp(T1, T2)LL ,< IlplL.  (0.3) 

holds. And6's inequality is essentially equivalent to the commutant  lifting theorem of 

B. Sz.-Nagy and C. Foia~ [23J--see, e.g., [20] for a discussion of this. 

The first author was partially supported by the National Science Foundation. The second author 
was partially supported by National Science Foundation Grant DMS 0070639. 
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Our first main result, Theorem 3.1, is that if T1 and T2 are matrices, then the 

inequality (0.3) can be improved to 

lip(T1, T2)I1 <~ ftpllv, 

where V is some distinguished variety depending on T1 and T2. Indeed, in the proof 

of the theorem, we construct co-isometric extensions of the matrices that  naturally live 

on this distinguished variety. So when studying bivariable matrix theory, rather than 

operator theory, one is led inexorably to study distinguished varieties. 

Conversely, in Theorem 1.12, we show that all distinguished varieties can be repre- 

sented as 

{ (z, w) G D 2 : det(q*(z) -- wI) = 0} 

for some analytic matrix-valued function qJ on the disk that is unitary on 0D. This 

shows that the study of distinguished varieties leads back to operator theory. Consider 

the natural notion of isomorphism of two distinguished varieties, namely that there is a 

biholomorphic bijection between them. 

Definition 0.4. k function #P is holoraorphic on a set V in C 2 if, at every point A 

in V, there is a non-empty ball B(A, r centered at A and an analytic mapping of two 

variables defined on B(A, c) that agrees with �9 on B(A, ~)n V. 

Definition 0.5. Two distinguished varieties V1 and V2 are isomorphic if there is a 

function �9 that is holomorphic on V1 and continuous on V1 such that  �9 is a bijection 

from V1 onto V2 and such that  O -1 is holomorphic on I72. 

(The requirement that  O-1 be holomorphic does not follow automatically from the 

holomorphicity of O--consider,  e.g., V1 ={(z,  z): z ~ D }  and V2={(z 2, za): zED},  which 

are not isomorphic.) 

By the maximum modulus principle, �9 must map the boundary of V1 onto the 

boundary of Vs. It follows that  0 = ( r  02) is a pair of inner functions, i.e. a pair of 

holomorphic scalar-valued functions that each have modulus one on 0V1. So studying 

isomorphism classes of distinguished varieties is closely connected to the rich structure 

of inner functions. 

W. Rudin has studied when an arbitrary finite Riemann surface R is isomorphic to 

a distinguished variety, in the sense that there is an unramified pair of separating inner 

functions on R that  are continuous on /~ [22]. His results show, for example, that  a 

finitely connected planar domain is isomorphic to a distinguished variety if and only if 

the domain is either a disk or an annulus. He also showed that  for every n~>l, there is a 

finite Riemann surface R that  is topologically an n-holed torus minus one disk, and such 

that  R is isomorphic to a distinguished variety. 
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In w we show that ,  under fairly general conditions, a pair of "inner" functions 

(~bl, r on a set X must map X into a distinguished variety (i.e. the algebraic relation 

on the r  comes for free). 

Another reason to study distinguished varieties comes from considering the Pick 

problem on the bidisk. This is the problem of deciding, given points A1, ..., AN in D 2, 

and values Wl, ..., WN in C, whether there is a function in H ~ ( D 2 ) ,  the bounded analytic 

functions on D 2, that  interpolates the da ta  and is of norm at most 1. The problem is 

called extremal if there is an interpolating function of norm exactly 1, but not less. 

If  an extremal Pick problem is given, the solution may or may not be unique (see 

w for an example). Our second main result is Theorem 4.1, where we show that  there is 

always a distinguished variety on which the solution is unique. 

One can think then of the Pick problem as having two parts: 

(a) Solve the problem on the distinguished variety where the solution is unique. 

(b) Parametr ize  all the extensions of the solution to the whole bidisk. 

We give a formula (4.10) for problem (a). The extension problem (b) is non-trivial: 

unless the distinguished variety is isomorphic to a disk, there will always be some func- 

tions tha t  cannot be extended to the whole bidisk without increasing the norm [5]. Obvi- 

ously a function arising from a Pick problem will be extendable, but  what  distinguishes 

such functions remains mysterious. 

If one starts  with an inner function on V and wants to extend this to a rational inner 

function on D ~, there can be more than one extension. However, there is a restriction 

on the degree, given by Theorem 2.8. If  the variety is of rank (nl ,n2) ,  i.e. there are 

generically nl  sheets above every first coordinate and n2 above every second coordinate, 

then any regular rational inner extension of degree (dl, d2) must have dln l+d2n2 equal 

to the number of zeroes that  the original function had on V. 

An admissible kernel K on a set {A1, ..., AN} in D 2 is a positive definite N x N - m a t r i x  

such that  

[(1-AiAr Kij] /> 0, r = 1, 2. 

It  is known [1], [4] that  studying all the admissible kernels on a set is essential to un- 

derstanding the Pick problem. A key idea in the proof of Theorem 4.1 is tha t  every 

admissible kernel automatically extends to a distinguished variety. 

Distinguished varieties have been studied in a somewhat more abstract  and general 

setting by J. Ball and V. Vinnikov [9]. They have a determinantal  representation that  is 

analogous to Theorem 1.12. 

We would like to thank the referees for many  valuable remarks. 
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1. Representing distinguished varieties 

Let V be a distinguished variety. We say that  a function f is holomorphic on V if, for 

every point of V, there is an open ball B in C 2 containing the point, and a holomorphic 

function r of two variables on B, such that  r =f[BnV.  We shall use A(V)  to denote 

the Banach algebra of functions that  are holomorphic on V and continuous on V/. This is 

a uniform algebra on OV, i.e. a closed unital subalgebra of C(OV) that  separates points. 

The maximal ideal space of A(V )  is V. 

If # is a finite measure on a distinguished variety V, let H2(#) denote the closure 

in L2(#) of the polynomials. If ~ is an open subset of a Riemann surface S, and ~ is a 

finite measure on ~, let .A2(~) denote the closure in L2(~) of A(~),  the functions that  

are holomorphic on f~ and continuous on ~. We say that  a point A is a bounded point 

evaluation for H2(p) (or .A2(v)) if evaluation at A, a priori defined only for a dense set 

of analytic functions, extends continuously to the whole Hilbert space. If A is a bounded 

point evaluation, we call the function k~ that  has the property 

(f,  k~) = f(A) 

the evaluation functional at A. 

The following lemma is well known. It is valid in much greater generality, but this 

will suffice for our purposes. If the boundary of ~ consists of closed analytic curves, 

the lemma follows from J. Wermer's proof [25] that  A(~) is hypo-Dirichlet, and the 

description of representing measures for hypo-Dirichlet algebras given by P. Ahern and 

D. Sarason in [6]. (Actually Wermer's proof extends without difficulty to the case where 

the boundary is just piecewise C 2, but we shall not need this fact). For a detailed 

description of the measures in this case, see K. Clancey's paper [10]. 

LEMMA 1.1. Let S be a compact Riemann surface. Let ~ C S  be a domain whose 

boundary is a finite union of piecewise smooth Jordan curves. Then there exists a measure 

on O~t such that every A in ~ is a bounded point evaluation for .A2(~), and such that 

the linear span of the evaluation functionals is dense in r 

Proof. Because its boundary is nice, ~t is regular for the Dirichlet problem (see, e.g., 

[14, w Let ~ be harmonic measure for D with respect to some fixed base-point. 

Then by Harnack's inequality, harmonic measure for any other point in the domain is 

boundedly absolutely continuous with respect to ~. As harmonic evaluation functionals 

are afortiori  analytic evaluation functionals, we get that  every point of ~t is a bounded 

point evaluation (with an L ~ evaluation functional) for A2(~). 

Ahern and Sarason [6, p. 159] proved that  the span of the evaluation functionals is 

dense. Their argument, in brief, was to find an exhaustion ~n of gt, i.e. an increasing 
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family of open sets, each contained compactly in the next, whose union was ft. Let vn 

be harmonic measure for each ft~, with respect to the same fixed base-point. Then they 

showed that  for every u in Ll(Of~, u), its norm was equal to 

f 
lim ] [uldu~, 

n---~oo gOf~n 

where ~ is the harmonic extension of u to ~. In particular, any function in .A2(v) that  

vanishes identically on ~t must  be the zero function. [] 

LEMMA 1.2. Let V be a distinguished variety. There is a measure # on OV such 

that every point in V is a bounded point evaluation for H2(#), and such that the span of 

the evaluation functionals is dense in H2(p). 

Proof. Let p be the minimal polynomial such that  V is the intersection of Zp with D 2. 

Let C be the projective closure of Zp in C P  2. Let S be the desingularization of C. This 

means tha t  S is a compact  Riemann surface (not connected if C is not irreducible) and 

there is a holomorphic function r S--+C tha t  is biholomorphic from S t onto C I and 

finite-to-one from S \ S '  onto C \ C q  Here C ~ is the set of non-singular points in C, and 

S '  is the preimage of C'.  See, e.g., [15] or [17] for details of the desingularization. 

Let ~ = r  (V). Then Oft is a finite union of disjoint curves, each of which is analytic 

except possibly at a finite number of cusps. Let v be the measure from Lemma 1.1 (or 

the sum of these if ~t is not connected). 

The desired measure # is the push-forward of ~ by r i.e. it is defined by #(E)---- 

, ( r  Indeed, if ~ is in V and r  let k r  be a representing measure for 

in A(~t). Then the function k~or -1 is defined #-a.e., and satisfies 

f0vp( k r 1 6 2  d r  = f o a ( p o r 1 6 2  d .  = = [] 

Note that  {gor  is a finite-codimensional subalgebra of A(•). For a de- 

scription of what  finite-codimensional subalgebras look like, see Gamelin 's  paper  [16]. 

For positive integers m and n, let 

U =  D : C ' ~ |  > C m G C  n (1.3) 

be a unitary (rn+n) x (m+n) -ma t r ix .  Let 

�9 (z) = A + z B ( I - z D ) - I C  (1.4) 
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be the re•  function defined on the unit disk D by the entries of U. This 

is called the transfer function of U. Because U*U=I,  a calculation yields 

I -  ~P (z)* ~(z)  = (1 - Iz[  2) C* ( I - 2 D * ) - I  ( I - z D ) - I C ,  (1.5) 

so qJ(z) is a rational matrix-valued function that  is unitary on the unit circle and con- 

tractive on the unit disk. Such functions are called rational matrix inner functions, and 

it is well known that  all rational matrix inner functions have the form (1.4) for some 

unitary matrix decomposed as in (1.3) see, e.g., [4] for a proof. 

Let V be the set 

V = {(z, w) C D2: de t (q J ( z ) -wI )  = 0}. (1.6) 

We shall show that  V is a distinguished variety, and that  every distinguished variety 

arises in this way. 

let 

and let 

LEMMA 1.7. Let 

u,(D* B*) 
: cn~c TM ). c n ~ c  m, 

C* A* 

kW(z) = D* + z B * ( I - z A * ) - I c  * 

V' = {(z, w) e D2: de t (~ ' (w)  - z I )  : 0}. 

Then V = V ' .  

Proof. The point ( z , w ) E D  2 is in V if and only if there is a non-zero vector vl in C m 

such that  

[A + zB(1 - z D ) - i  C] vl = WVl. (1.8) 

CLAIM. (1.8) holds i f  and only if there is a non-zero vector v2 in C n such thai 

ZV2 \ V2 

Proof of the claim. If (1.9) holds, then solving gives (1.8). Conversely, if (1.8) holds, 

define 

v2 = ( I - z D ) - l C v l .  

Then (1.9) holds. Moreover, if v2 were 0, then Vl would be in the kernel of C and be 

a w-eigenvector of A. As A * A + C * C = I ,  this would force Iw[=l,  contradicting the fact 

that  ( z , w ) E D  2. [] 
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Given the claim, the point (z, w) is in V ~ if and only if there are non-zero vectors vl 

and v2 such that  

C* A* wvi k Vl / 

Interchanging coordinates, (1.10) becomes 

Clearly, (1.9) and (1.11) are equivalent. [] 

Note that if C has a non-trivial kernel Af, then (1.5) shows that ~(z) is isometric on 

N" for all z, and so by the maximum principle is equal to a constant isometry with initial 

space Af. If C has a trivial kernel, we say that �9 is pure. Every rational inner function 

decomposes into the direct sum of a pure rational inner function and a unitary matrix-- 

see, e.g., [24]. Since A*A+C*C=I, we see tha t  C has no kernel if and only if IIAII<I. 
Since AA*+BB*=I,  this in turn is equivalent to B* having no kernel. Therefore �9 is 

pure if and only if ~r is pure. 

THEOREM 1.12. The set V, defined by (1.6) for some rational matrix inner func- 

tion ip, is a distinguished variety. Moreover, every distinguished variety can be repre- 

sented in this form. 

Pro@ Suppose that  V is given by (1.6), and that  (z, w) is in V. Without  loss of 

generality, we can assume that  �9 is pure. Indeed, any unitary summand of �9 would add 

sheets to the variety de t (~(z ) -wI )=O of the type C x{w0}, for some unimodular w0. 

These sheets are all disjoint from the open bidisk D 2. 

If Izl < 1, equation (1.5) then shows tha t  q~(z) is a strict contraction, so all its eigen- 

values must have modulus less than 1, and so Iwl<l also. To prove that  Iwl<l implies 

Izl<l, just  apply the same argument to W. Therefore (0.2) holds, and V is a distin- 

guished variety. 

To prove tha t  all distinguished varieties arise in this way, let V be a distinguished 

variety. Let p be the measure from Lemma 1.2, and let H2(p)  be the closure of the 

polynomials in L 2 (#). The set of bounded point evaluations for H2(p)  is precisely V. 

(It cannot be larger, because V is polynomially convex, and Lemma 1.2 ensures that  it 

is not smaller). 

Let T=(Tx,T2) be the pair of operators on H2(p)  given by multiplication by the 

coordinate functions. They are pure commuting isometrics(1) because the span of the 

(1) A pure isometry S is one that has no unitary summand; this is the same as requiring that 
f-l~~176 - 1 ran(Si) = {0}. 
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evaluation functionals is dense. The joint eigenfunctions of their adjoints are the evalu- 

ation functionals. 

By the Sz.-Nagy-Foia~ model theory [24], T1 can be modelled as Mz, multiplication 

by the independent variable z o n  H2QC TM, a vector-valued Hardy space on the unit circle. 

In this model, T2 can be modelled as .]tl~,, multiplication by ~P(z) for some pure rational 

matr ix  inner function ~.  A point (z, w) in D 2 is a bounded point evaluation for H 2 (#) 

if and only if (2, 3 )  is a joint eigenvalue for (Ta*, T~). In terms of the unitarily equivalent 

Sz.-Nagy Foia~ model, this is equivalent to ~ being an eigenvalue of ff~(z)*. 

Therefore 

V = {(z, w) e D2: d e t ( k ~ ( z ) - w I )  = 0}, 

as desired. [] 

If ffJ is the transfer function of a unitary U as in (1.3), and �9 is pure, we shall say 

that  V is of rank (m, n). This means that  generically there are m sheets above each z, 

and n sheets above each w. 

2. Inner  f u n c t i o n s  

Rudin 's  results [22] show that  planar annuli can be mapped isomorphically into distin- 

guished varieties by a pair of inner functions. The advantage of doing this is tha t  the 

coordinate functions are then easier to deal with than the original inner functions. In- 

ner functions on a finite bordered Riemann surface can be shown to satisfy an algebraic 

equation. In this section, we show that  even without the Riemann surface structure, 

inner functions must satisfy an algebraic equation. The result is reminiscent of Livgic's 

Cayley-Hamil ton theorem for a pair of commuting operators  with finite-rank imaginary 

par t s - - see ,  e.g., the book [19]. 

Let X be a set. By a kernel on X we mean a self-adjoint map k: X• tha t  is 

positive definite, in the sense that  for any finite set {A1, ..., AN} of distinct points in X,  

the self-adjoint matr ix  k(Aj, Ai) is positive definite. Given any kernel k, there is a Hilbert 

space 7-/k of functions on X for which k is the reproducing kernel, i.e. 

( f ( . ) , k ( .  , A ) ) = f ( A )  for all fET-lk and AEX.  

(For details of the passage between a kernel and a Hilbert function space, see, e.g., [4].) 

Let 01 and r be functions on X with modulus less than one at every point. Assume 

that  we can find some kernel k on X so tha t  multiplication by each r is a pure isometry 

on 7-/k with finite-dimensional cokernel. For example, X could be a distinguished variety, 

the r  could be the coordinate functions, and 7-/k could be the closure of the polynomials 
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in L2(aX). Or, X could be a smoothly bounded planar domain, the r could be inner 

functions that  are continuous on X and have finitely many zeroes, and 7-/k could be the 

closure in L2(aX) of the rational functions with poles off X. 

Let el,-.., em be an orthonormal basis for (r • Then 

{r  : i E N ,  1 <~j ~<rn} 

is an orthonormal basis for 7-/k. So by Bergman's formula [4, Proposition 2.18], 

Similarly, if f l ,- . . ,  fn is an orthonormal basis for (r • we get 

A 
k ( r  Ej=~fj(r ) (2.2) 

1-r162 

Equating the right-hand sides of (2.1) and (2.2), and cross-multiplying, we get 

m n rn n 

E eY(~)e-e-~+E r (4)f~(4)r (A)/~(A) = E r 
j : l  i=1  j = l  i=1  

( 2 . 3 )  

Let f(r be the vector in C ~ with components fl(~),-..,  fn(~), and let 

= . . . ,  

Then (2.3) can be rewritten as saying that  the map 

U =  D : c m G c n  > c m |  

r  ~ > \ f ( ~ )  ] 

is an isometry on the linear span of the vectors 

\ r 1 6 2  

Even if these vectors do not span all of CmOC ", we can always extend U to be unitary 

from CmOC n onto C '~ |  n, and we shall assume that  we have done this. 

Let 

q2(z) = d+ zB(I -zD)- lC (2.4) 
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be the toxin-matr ix-va lued  function defined on the unit disk D that  is the transfer 

function of U. Moreover, we have 

( r  = 

Therefore the points (r r all lie in the set 

V = {(z, w) e D2: d e t ( ~ ( z ) - w I )  = 0}, (2.5) 

which we know from Theorem 1.12 is a distinguished variety. Thus we have proved the 

following theorem: 

THEOREM 2.6. Let 7-lk be a reproducing kernel Hilbert space on a set X .  Let r 

and r be multipliers of 7-lk such that multiplication by each Oi is a pure isometry with 

finite-dimensional cokernel, and such that [r  for all ( f f X .  With notation as 

above, the function 

i I ) ((~1(~), r  ( ; ) )  

maps X into the distinguished variety V given by (2.5). 

Note that  applying Theorem 2.6 to H2(#) ,  the space in Lemma 1.2, we get the 

second part  of Theorem 1.12. 

If V is a distinguished variety, an inner function on V may or may not extend to an 

inner function on D 2. If it does extend, the extension may not be unique. It is curious, 

however, that  there is a rigidity in the degree of this extension. Let r be a rational inner 

function on D 2. Then it can be represented as 

(2 .7 )  r162 - p ( r  

for some polynomial p tha t  does not vanish on D 2 [21], where (=(~1,  ~2) and d is a multi- 

index. The representation is not unique--e .g ,  taking p(z, w ) = i ( z  2 - w  2) and d=(2 ,  2), 

one gets the constant function 1. The representation will be unique if p is restricted so 

that  ZBNT 2 is finite. In this event, we shall call d=(dl ,  de) the degree of r 

If r is an inner function in A(D2), then it is rational and, moreover, the function p 

will not vanish on 2 2 [21, Theorem 5.2.5]; we shall call such a function regular. 

THEOREM 2.8. Let V be a variety of rank n=(n l ,n2) ,  and let r be a regularrational 

inner function on D 2 of degree d. Then r restricted to V has exactly n .d=nld l+n2d2  

zeroes, counting multiplicities. 

Proof. By applying an automorphism of D 2, we can assume that  (0, 0) is not in V 

and that  all points with first or second coordinate 0 are regular. 
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Consider first the case r w ) = z  dl w d2, i.e. p-= 1 in (2.7). Then each of the nl points 

in V with second coordinate 0 has a zero of multiplicity dl, and each of the n2 points 

in V with first coordinate 0 has a zero of multiplicity d2. 

Now let p be an arbitrary polynomial that  does not vanish on 2 2, normalized so 

that  p(0, 0)=1.  Let pr(4)=p(r~) and 

As r increases from 0 to 1, the function Cr changes continuously from ~d t o  (~. AS each 

Cr is in A(V)  and is inner, the number of zeroes must remain constant. [] 

Example. Let V be the distinguished variety {(z, w): z 2=w3}, of rank (3, 2). The 

inner function r w) = z  2 can be extended to either the function z u of degree (2, 0), or 

w 3 of degree (0, 3). In either event, n .d=6.  

3. A s h a r p e n i n g  o f  A n d 6 ' s  i n e q u a l i t y  

THEOREM 3.1. Let T1 and T2 be commuting contractive matrices, neither of which has 

eigenvalues of modulus 1. Then there is a distinguished variety V such that, for any 

polynomial p in two variables, the inequality 

IIp(T1, T2)II IIPlIv (3.2) 

holds. 

Proof. Let the dimension of the space on which the matrices act be N. 

(i) First, let us assume that  each Tr has N linearly independent unit eigenvectors, 

{vj}N_l. So we have 

T r v j = ~ v j ,  r = l , 2 ,  I<. j<~N,  

for some set of scalars {A~}. As each Tr is a contraction, we have that  I - T * T ~  is positive 

semi-definite, so 
- r  r =  j)<vj, >/0. (3.3) 

As the matrix in (3.3) is positive semi-definite, it can be represented as the Grammian 

of vectors u~, which can be chosen to lie in a Hilbert space of dimension dr equal to the 

defect of T~ (the defect of Tr is the rank of I-T~.T~).  So we have 

- 1  1 1 1 ( 1 - ~  Aj ) ivj, v~} = (uj, ui }, 
- 2  2 2 2 ( l -A{ ,kj ) (vj, vi} = (uj, u i }. 

(3.4) 
(3.5) 
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Multiplying the first equation by -2 2 -1 1 1 - h  i Aj and the second equation by 1-A~ A j,  we see 

that  they are equal. Therefore 

(1  - 1  1 2 2 - 2  2 1 -'~i s u i ) = (1-)~i ~j)(uj, u~}. (3.6) 

Reordering equation (3.6), we get 

(U 1 1 - 1  1 2 2 2 - 2  2 1 , ~ )+~ ~ (~j, ~) = (~j, ~ ) + ~  ~j (~j, ~ ) .  (3.7) 

Equation (3.7) says that  there is some unitary matrix 

such that  

( ;  B )  C~leCd ~ Cd, eCd ~ (3.8) U =  : ----4 
D 

) = ~J~J ~ (3.9) D , 2  u~ ] "  \ Aj uj 
1 1 2 If the linear span of the v e c t o r s  UjO)kjUj is not all of c d l ~ c  d2, then U will not be 

unique. In this event, we just choose one such U. Define the dlxdl-matr ix-valued 

analytic function ~ by 

�9 (z) = A + z B ( 1 - z D ) - l c .  (3.10) 

For any function O of two variables, scalar- or matrix-valued, let 

Let ~ = ~ u ,  so that  

ou(z, w):= [o(z*, w*)]*. 

O(z) =A*+zC*(1- zD*) - IB  *. 

Equation (3.9) implies that  

1 1 r o t ~ h ~ *  1 2 1 ~(Aj)Uj:[ I j)J u j :Aju j .  

Let s be the Szeg6 kernel in the Hardy space H 2 of the unit disk, so that  

s~(z) - 

Let kj be the vector in H2|  C dl given by 

1 - - ~ Z  " 

kj:= s~| 

(3.11) 

(3.12) 
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Consider the pair of isometrics (Mz, M,~) on H2(~C dl, where Mz is multiplication by the 

coordinate function (times the identity matrix on C dl) and Me is multiplication by the 

matrix function (I). Then 

1 M*: kj , > )~jkj, 

M$: k j, ~ ,~Icj. 

Therefore the map that  sends each vj to kj gives a unitary equivalence between (7"1, T2) 

and the pair (M*, M~) restricted to the span of the vectors {kj}N_l. Therefore the pair 

(M*, M~), acting on the full space H2 |  d~, is a co-isometric extension of (T1, T2). 

Let p be any polynomial (scalar- or matrix-valued) in two variables. We have 

lip(T1, T2)II = lip(M;, M~)IV(kj>II < IIp(ML M~)II H=~C~* 

= lip U (Mz, M~)IIH=| ~< lip U (Mz, M~,)IIL~| = liP ~ I[0V~ 
(3.13) 

where V U and V a r e  the sets 

V U = {(z, w) C D2: d e t ( O ( z ) - w I )  = 0}, 

V -- {(z, w) e D2: d e t ( ~ ( z ) - w I )  = 0}. 
(3.14) 

Equality (3.13) follows from the observation that  

IIpU (M~, Me)IIL=~Cdl = sup I[pU(e~OI, ~(ei~ 
0 

(3.15) 

where the norm on the right is the operator norm on the dl • dl-matrices. Equation (1.5) 

shows that,  except possibly for the finite set a (D)NT,  the matrix ~(e i~ is unitary, and 

so the norm of any polynomial applied to O(e i~ is just the maximum value of the norm 

of the polynomial on the spectrum of ~(e~e). By continuity, we obtain (3.13). Taking 

complex conjugates, (3.13) gives 

IIp(T1,T2)II < Ilpllv, 

the desired inequality. 

By Theorem 1.12, we see that  V and V U are distinguished varieties, and by con- 

struction, V contains the points {(A}, A~): l<.j<~N}. 
(ii) Now, we drop the assumption that  T=(T1,T2) be diagonizable. J. Holbrook 

proved that  the set of diagonizable commuting matrices is dense in the set of all com- 

muting matrices [18]. So we can assume that  there is a sequence T(n)=(T(n),T(n)) of 

commuting matrices that  converges to T in norm and such that  each pair satisfies the 

hypotheses of (i), i.e. each T (n) is a pair of commuting contractions that  have N linearly 
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independent eigenvectors and no unimodular eigenvalues. Each T (n) has a unitary Un 

associated to it as in (3.8). By passing to a subsequence if necessary, we can assume 

tha t  the defects dl and d2 are constant, and that  the matrices Un converge to a uni- 

ta ry  U. The corresponding functions ffJ~ from (3.10) will converge to some function ffJ. 

Let qn(Z, w)=det(q2,~(z)-wI) and q(z, w)=det(kO(z)-wI). Let Y be defined by (3.14) 

for this ~ ,  and Vn be the variety corresponding to ~n.  Notice that  the degrees of qn are 

uniformly bounded. 

CLAIM.  V i8 non-empty. 

Indeed, otherwise it would contain no points of the form (0, w) for w C D. Tha t  would 

mean that  cr(A)_CT, and so B and C would be zero. Tha t  in turn would mean that  the 

submatrices An in Un would have all their eigenvalues tending to T,  and hence by (3.9), 

the eigenvalues of T (n) would all tend to T.  Therefore T2 would have a unimodular 

eigenvalue, contradicting the hypotheses. 

CLAIM.  V is a distinguished variety. 

This follows from Theorem 1.12. 

CLAIM. The inequality (3.2) holds. 

This follows from continuity. Indeed, fix some polynomial p. For every c>0 ,  and for 

every n~>n(~), we have 

IIp(T) ll ~ ~+ IIp(T<n>) II ~ c+  IIplIv~. 

We wish to show that  

lim ]]P]]v~ ~< HPlIv- 

Suppose the contrary. Then there is some sequence (Zn, wn) in Vn such that  

IP(Zn, Wn)I >>" IIPIIv+~ (3.16) 

for some ~>0. Moreover, we can assume that  (Zn, Wn) converges to some point (Zo, Wo) 
in ~2.  The point (Zo, wo) is in the zero set of q, so if it were in D 2, then it would be 

in V. Otherwise, (z0, w0) must  be in T 2. To ensure that  (z0, w0) is in V, we must  rule 

out the possibility that  some sheet of the zero set of q just  grazes the boundary of D 2 

without ever coming inside. 

But this cannot happen. For every z in D, there are dl roots of det(~(z)-wI)=O, 
and all of these occur in D. So as z tends to z0 from inside D, one of the dl branches 

of w must tend to wo from inside the disk too. Therefore (Zo, w0) is in the closure of V, 

and (3.16) cannot happen. [] 
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Remark 1. If T1 has a unimodular eigenvalue A, then the corresponding eigenspace 

H/wi l l  be reducing for T2. Indeed, writing 

( ) T I =  0 T~' and T2=  T~ X 
0 T~' ' 

the commutativity of 7"1 and T2 means X(T~ ' -A)=0 .  As A is not in the spectrum of T~', 

it follows that  X=0 .  

Therefore for any polynomial p, we have 

IIp(Ta, T2)II = max{  IIP(~I, T~)II, IIp(r~', T~')II }. (3.17) 

By yon Neumann's inequality for one matrix, the first entry on the right-hand side of 

(3.17) is majorized by 

IIpII(~• 
So if we allow the matrices to have unimodular eigenvalues, we can still obtain (3.2) by 

adding to V a finite number of disks in the boundary of D 2. The new V, however, will 

not be a distinguished variety. 

Remark 2. Once one knows And6's inequality for matrices, then it follows for all 

commuting contractions by approximating them by matr ices--see [13] for an explicit 

construction. Of course, the set V must be replaced by the limit points of the sets that  

occur at each stage of the approximation, and in general this may be the whole bidisk. 

Remark 3. We have actually constructed a co-isometric extension of T that  is lo- 

calized to V, and a unitary dilation of T with spectrum contained in OV. 

4. T h e  u n i q u e n e s s  variety 

A solvable Pick problem on D 2 is a set (A1, ..., AN} of points in D:  and a set (wl,  ..., wN} 

of complex numbers such that  there is some function r of norm less than or equal to 1 in 

H ~ (D 2) that  interpolates (satisfies r = wi for all 1 ~< i ~< N ). An extremal Pick problem 

is a solvable Pick problem for which no function of norm less than 1 interpolates. The 

points Ai are called the nodes, and wi are called the values. By interpolating function we 

mean any function in the closed unit ball of H ~ ( D  2) that  interpolates. 

Consider the following two examples, in the case N = 2 .  

1 Then a moment 's  thought Example 1. Let AI=(0,0) ,  .~2--(1,0), Wl--0 and w2--~. 

reveals that  the interpolating function is unique, and is given by r w)=z.  
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Example 2. Let )~1~_(0,0) ' ,~2__(3 , -  1 3)'1 W I = 0  and w2-3.-1 Then the interpolating 

function is far from unique--e i ther  coordinate function will do, as will any convex com- 

bination of them. (A complete description of all solutions is given by J. Ball and T. Trent 

in [8]). But on the distinguished variety {(z, z) :zCD},  all solutions coincide by Schwarz's 

lemma. For an arbitrary solvable Pick problem, let 5 /be  the set of points in D 2 on which 

all the interpolating functions in the closed unit ball of H ~ ( D  2) have the same value. 

The preceding examples show t h a t / t / m a y  be either the whole bidisk or a proper subset. 

In the event that  5/is not the whole bidisk, it is a variety. Indeed, for any AN+I not in U, 

there are two distinct values WN+l and w~v+l so that  the corresponding (N + l ) -p o in t  

Pick problem has a solution. By [8] and [2] these problems have interpolating functions 

that  are rational, of degree bounded by 2 (N+1) .  The set 5/ must lie in the zero set 

of the difference of these rational functions. Taking the intersection over all )~N+I not 

in 5/, one gets that  5/ is  the intersection of the zero sets of polynomials. Therefore 5/ is  

a variety, and indeed, by factoring these polynomials into their irreducible factors, we 

see that  5/ is  the intersection with the bidisk of the zero set of one polynomial, together 

with possibly a finite number of isolated points. We shall call/~ the uniqueness variety. 

(If the problem is not extremal, 5/ is  just the original set of nodes.) 

We shall say that  an N-point  extremal Pick problem is minimal if none of the ( N -  1)- 

point subproblems is extremal. The main result of this section is that  if the uniqueness 

variety is not the whole bidisk, then it at least contains a distinguished variety running 

through the nodes. If N--3 ,  it is shown in [3] that  either 5 / = D  2 or the minimal extremal 

problem has a solution that  is a function of one coordinate function only. 

THEOREM 4.1. Let N >~ 2, and let A1, ..., AN and Wl, ..., WN be the data for a minimal 

extremal Pick problem on the bidisk. The uniqueness variety 5/ contains a distinguished 

variety V that contains each of the nodes. 

For a point A in D 2, we shall write A 1 and A 2 for the first and second coordinates, 

respectively. Given a set of points {A1, ..., AN} in D 2, an admissible kernel K is a positive 

definite N• with all the diagonal entries 1, such that  

[(1 ~ - ~  -AiAj )Ki j ]  ~> 0, r = l , 2 .  (4.2) 

A theorem of the first author [1] asserts that  a Pick problem on D 2 is solvable if and 

only if, for every admissible kernel K,  the matrix 

[ (1-wi~j)K~j]  (4.3) 

is positive semi-definite (see [11], [8] and [2] for alternative proofs). We shall say that  

an admissible kernel is active if the matrix (4.3) has a non-trivial null space, i.e. if it is 

positive semi-definite but not positive definite. 
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LEMMA 4.4. A solvable Pick problem has an active kernel if and only if it is ex- 

tremal. 

Proof. ( 3 )  If the problem were not extremal, then for some ~<1 one would have 

0 (4 .5 )  

for all admissible kernels. Take K to be an active kernel, with 7 a non-zero vector in 

the null space of [(I -wi~j)Ki j] .  Then taking the inner product of the left-hand side of 

(4.5) applied to 7 with ~/gives - ( 1 - 0 2 )  117112, which is negative. 

( ~ )  As the problem is extremal, for each Q<I there is some admissible kernel K 

such that  [(Q2I-wi~j)Kij] is not positive semi-definite. By compactness of the set of 

positive semi-definite N•  with l 's  down the diagonal, there therefore exists 

some positive semi-definite K,  satisfying (4.2), and such that  (4.3) is not positive definite. 

It just remains to show that  this K is actually positive definite, and therefore a kernel. 

Suppose it were not, so that  for some non-zero vector v = (v l, ..., v N ) t  we have Kv--O. 

By (4.2), for each r = l ,  2, the vector Ar.v (i.e. the vector whose i th  component is A~v i) is 

also in the null space of K.  Iterating this observation, one gets that  for any polynomial p, 

the vector 

p ( A ) . v  = i 

\p(AN)vN/ 
is in the null space of K.  Taking p to be a polynomial that  is 1 at A1 and zero on the 

other nodes, we get K l l = 0 ,  a contradiction. [] 

LEMMA 4.6. Every admissible kernel on a set {A1, ..., AN} can be extended to a con- 

tinuous admissible kernel on a distinguished variety that contains the points {A1,..., AN}. 

Proof. Let K be an admissible kernel on the set {AI, ...,AN}. As it is positive 

definite, there are vectors vi in C N such that  Kij=(vj ,v i ) .  Because K is admissible, 

equations (3.4) and (3.5) hold. Following the proof of Theorem 3.1, one gets that  for 

every point (z, w) in the variety Y given by (3.14), one has non-zero vectors 51 (z, w) and 

52(z, w) such that  
?s (Z' W) ~ w~tl(z'w) 

 2(z,w) ) 
Moreover, as the vector (~t 1, ~2)t must just be chosen in the null space of 

( A ~ I  z B )  

z D - I  ' 
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it can be chosen continuously. When (z, w) is one of the nodes Aj, we choose 

1 

2 

Normalize the vectors so that  

I[ X(z, w)ll =  l-lzl 2 . 

Now let 

k(z ,w)  

where s is the Szeg5 kernel on the disk as in (3.12). 

The desired extension of K to V is given by 

= k ( i ) ) .  

This is obviously a kernel that  extends K ,  it is continuous on V• V by construction, and 

the fact that  it is admissible follows, in the language of Theorem 3.1, from the fact tha t  

Mz and M s  are contractions. [] 

Proof of Theorem 4.1. 

Step 1. By Lemma 4.4, the problem has an extremal  kernel, and by Lemma 4.6, this 

kernel can be extended to a distinguished variety V that  contains all the nodes. Let us 

call the extended kernel K.  

Let ~/=(.~i, ...,~/N) be a non-zero vector in the null space of [ ( 1 - w ~ j ) K ~ j ] .  Let 
1 AN+I-=(AN+I, A~V+I ) be any point in V that  is not one of the original nodes. Let WN+I 

be some possible value that  an interpolating function can take at AN+I. As the ( N + I ) -  

point Pick problem with nodes )~1, ..., AN+I and values wl, ...,WN+I is solvable, and as 

K is admissible, we must have that  

[(1--wi@y)Kij]N+_l 1 >~ O. 

Therefore, for every t E C ,  we have 

([(1-wi~j)K~j](~t),(Tt)}>~O. (4.7) 

As ~ is in the null space of [(1--wi~j)Ko]Nj=l, inequality (4.7) reduces to 

N 

2Re[tE(1-@jw~v+l)KN+l,jTJ]+Itl2(1-IWN+ll2)~O. (4.8) 
L j = l  
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As this holds for all t, we must have that  the linear term vanishes, and so we can solve 

for WN+I and get 

N N 

WN+I(j~lWjKN+I,J7J) :EKN+I ,J7J ,  
- j = l  

EN1 KN+I,j7 j 
WN+I ~ N -- ." 

E j = I  WjKN+I,J 7 3 

(4.9) 

(4.10) 

As long as both sides of (4.9) do not reduce to zero, this gives a formula for WN+I, which 

must therefore be unique. 

Step 2. So far, we have not used the minimality of the problem. Minimality ensures 

that  no component of 7 can be zero, for otherwise an ( N - 1 ) - p o i n t  subproblem would 

have an active kernel. 

Fix one of the nodes, A1 say, and consider what happens when AN+I tends to A1 

along some sheet of V. By continuity, KN+I,j tends to K1, j for each j .  If 

N 

E wjKI,j7 j ~s 
j = l  

then by continuity 
N 

E WjKN+I,J7J ~ 0 
j = l  

for AN+I in V and close to A1, and so formula (4.10) gives the unique value that  the 

interpolating function must take at AN+I. 

Assume instead that  
N 

E wjKI,jVJ = 0. (4.11) 
j = l  

Consider the N-point Pick problem with nodes A1, ..., AN, and values wl +~, w2, ..., WN 
for some s in C. If this problem were solvable, then, since K is an admissible kernel, one 

would have 

where 

[ ( 1 - w ~ } ) K i j ]  >1 O, (4.12) 

/ [ wi, i r  

w ~ = ~ W l + ~ ,  i = 1 .  
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Take the inner product  of the left-hand side of (4.12) applied to V with 7. We get 

N N 

(1-w~w;)KiJ "yygi= E (1-wiwy)KiJvJTi  
i,j=l i , j = l  (4.13) 

N 
- 2 Re [c~I E ~jKI,j~JI - ,c,2Kll ,~/1,2. 

j = l  

The first sum in (4.13) vanishes because "y is in the null space of [(1-wi@j)Kij]. The 

second sum vanishes by hypothesis (4.11). Therefore for any e r  (4.13) is negative. 

This means tha t  the value wl at A1 is uniquely determined by the choice of the other 

N - 1  values at A2,..., AN. Therefore this ( N - 1 ) - p o i n t  subproblem must be extremal, 

contradicting the minimality hypothesis. 

We therefore conclude that  (4.10) gives a well-defined formula for the unique value 

of wy+l at points /~Y+l in V near the nodes. As we know that  some solution to the 

problem is given by a rational function, we therefore know that  this rational function 

gives the unique solution near the nodes. Hence the union of the irreducible components 

of V tha t  contain the nodes is a distinguished variety contained in b/. [] 

Question 4.14. Is the distinguished variety constructed in the proof equal to all of b/? 

Given any function on any subset of the bidisk, the result in [1] tells whether it can be 

extended to a function in the closed unit ball of H~176 If  the set is a distinguished 

variety, and the function is analytic on it, is there a bet ter  criterion, which one might 

think of as solving problem (b) in the introduction? 

Question 4.15. How can one tell whether a function on a distinguished variety ex- 

tends to all of D 2 without increasing its norm? 
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