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1. I n t r o d u c t i o n  

Construction of lattices in PU(n, 1) has been a major challenge in the last decades. In 

particular, in contrast with the situation in real hyperbolic space, non-arithmetic lattices 

have been found only in dimensions up to three (see [Moll, [DM] and [Mo21). 

Mostow's first examples in PU(2, 1) were constructed by giving explicit generators, 

and verifying that  the corresponding groups are discrete by finding a fundamental domain 

for their action. In complex hyperbolic space, or in any space where sectional curvature 

is not constant, such an approach is bound to be at least somewhat difficult since there 

are no totally geodesic real hypersurfaces. 

Other direct proofs of discreteness have led to domains bounded by various types 

of hypersurfaces, each of them adapted to the situation at hand (see the constructions 

in [FPk], IS1] and [$2]). There is a canonical construction due to Dirichlet, where the 

boundary of the domain is made up of bisectors, i.e. hypersurfaces equidistant from two 

given points. One chooses a point P0, and considers the set F of points closer to P0 than 

to any other point in its orbit under the group. It is obvious that the group is discrete 

if and only if F contains a neighborhood of P0, but the set F is in general very difficult 

to study or describe. Such a description amounts to solving a system of infinitely many 

quadratic inequalities in four variables (the real and imaginary part of the coordinates 

in the complex 2-ball). In particular, bisector intersections are neither transverse nor 

connected in general. 

Nevertheless, this was the original approach taken by Mostow ([Mol D to study a 

remarlcable class of groups, r ( p ,  t) (where p=3,  4, 5 and t is a real parameter).  Each 

of these is generated by three braiding complex reflections, R1, R2 and Ra, of order p; 

it is contained with finite index in the group F(p, t) generated by R1 and the elliptic 

element o r which conjugates Ri into Ri+l (see w for further details). 
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There are very few values of the parameter t for which F(p, t) is discrete; for these 

values Mostow shows discreteness using Dirichlet domains, discovered by computer ex- 

perimentation. They turn out to be the intersection of the three Dirichlet domains for 

the finite groups (Ri, Rj) generated by only two of the generators Ri. The advantage of 

working with a finite group is obvious, namely one needs to solve a finite set of inequali- 

ties. However, the fact that  the inequalities are quadratic is still an important  difficulty, 

and in fact using current computer technology, it is fairly easy to convince oneself that  

Mostow's domains for these finite groups (see [Mol, p. 220]) are incorrect. The missing 

faces, most of which do not contain the common fixed point of the finite group, are 

described in [De] (it turns out that  many of the extra faces disappear when taking the 

intersection of the three domains for different finite groups). 

Part  of Mostow's mistake comes from the assumption that  the Dirichlet domain for 

each of the finite groups Fij is a cone with vertex given by its fixed point Pij, which is 

far from being the case. Conical fundamental domains for finite subgroups of U(2) have 

been constructed in [FPp], but these are not Dirichlet domains. Our constructions also 

naturally yield cone fundamental domains for Fij, having eight cone faces over the eight 

faces in Figure 5. 

The fact that  these mistakes are particularly difficult to notice in Mostow's paper, 

and that  they seem quite difficult to fix, prompted us to write a detailed argument, 

using more geometric techniques. Another motivation for our work is to obtain simpler 

domains than the ones obtained by the Dirichlet construction, by allowing totally real 

2-faces, which are necessarily excluded from Dirichlet domains (see Proposition 2.5). 

The presence of totally real faces is related to the fact that  Mostow's groups are 

index-2 subgroups of groups generated by three involutions fixing Lagrangian totally 

geodesic submanifolds (see w This observation makes them part  of a large family 

containing infinite covolume groups (see [FK]) and all finite subgroups of U(2) (see [FPp]), 

among which one would expect to find other lattices as well. 

We construct new fundamental polyhedra II=YIp,t in H ~  for the action of F(p, t). 

Our fundamental domains have the same vertices as Mostow's domains, but their higher- 

dimensional skeletons are simpler and more natural. All our 1-faces are geodesic seg- 

ments, and many (but not all) of our 2-faces are either real or complex totally geodesic 

submanifolds. The 3-faces are either on bisectors, or on cones over totally geodesic 

submanifolds. Note that  this construction is related to a fundamental domain for the 

Eisenstein-Picard group constructed in [FPk]. 

The main advantage, beyond the simplification of the combinatorics of the domains 

(see w is that  most verifications can be phrased in concrete geometric terms and the 

arguments are often completely synthetic, i.e. very few calculations are needed. 
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In order to prove discreteness, we show that  II and its images under the group tile 

complex hyperbolic space, by using the appropriate version of the Poincar~ polyhedron 

theorem. In particular, to show that  II and VII have disjoint interior for every non-trivial 

group element 7, we are reduced to showing this for a finite set of group elements, pro- 

vided that  we can check some detailed compatibility conditions along the codimension-2 

faces of II. 

It turns out that  only the cycles of complex geodesic faces impose conditions on 

the parameters, known as the Picard integrality conditions. The corresponding cycle 

transformations are simply complex reflections, whose angle of rotation is required to be 

an integer fraction of 7r, see Proposition 5.4. The heart of the proof consists of a careful 

justification (incomplete in [P], and not quite satisfactory in [Mol]) that  these are the 

only conditions. The main result is the following theorem (see w for the definition of 

the group, and w for the description of II): 

The group F(p, t) cP U (2 ,  1), for p=3,  4, 5 and It] < 1 / 2 - 1 / p ,  is dis- THEOREM 1.1. 

crete if  (1 01 (1 
k -- ~ - ~p + and l=  2p 2 

are in Z. In that case, H is a fundamental domain with side pairings given by J, R1, 

R2, R2R1 and R1R2, and the cycle relations give the following presentation of the group: 

F(p, t) = (J, R1, R2 I j3 = R p = R p = j - 1 R ~ I J R ~ I  = R 1 R 2 R I R ~ I R ~ I R f l  

= ( R 2 R I J ) k =  ( (R1R2)- IJ ) t=  I ) .  

The condition I t l<1 /2 -1 /p  shall be referred to as small phase shift, following 

Mostow. In fact, the conclusion of the theorem holds for large phase shift as well, 

but the combinatorics of the fundamental domains are then quite different. For the sake 

of brevity, we shall only sketch the corresponding changes in our fundamental domain, 

see w 

There are finitely many values of t for which the integrality conditions hold, and 

among the corresponding groups, seven are non-arithmetic. The list is given in Re- 

mark 5.2. 

Our cone polyhedra turn out to be very convenient when proving that  II and VII 

have disjoint interiors. In most cases we find a bisector By that  separates them (but these 

bisectors are certainly not all equidistant from a given point P0, unlike in the Dirichlet 

construction). In order to verify that  II or VII lies entirely on one side of BT, we carefully 

argue that  it is enough to verify this on the level of its 1-skeleton. Note that  verifications 

on the 0-skeleton would quite clearly not be enough to prove that  our polyhedron is on 
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one side of a bisector, since the two complementary components of a bisector are far from 

being convex. 

Verifications on the 1-skeleton become relatively easy, as they amount  to analyzing 

the intersection of a bisector with geodesic segments (see Lemma 4.2). Note that  the 

strength of the reduction is that  we only need to check the position of a finite number  

of geodesic segments with respect to finitely many bisectors, which in turn amounts to 

checking finitely many  inequalities. The verifications can be done very efficiently with 

the aid of a computer;  however, our proofs are geometric and most of the t ime synthetic. 

For the case p = 3 ,  the small number of calculations could in principle even be done by 

hand. 

Going from the 1-skeleton to the 2-skeleton involves geometric arguments of gen- 

eral interest about  the projection of totally geodesic submanifolds onto a given complex 

geodesic, which is usually the complex spine of the relevant bisector (see Lemma 2.1). 

The main point is to analyze when a geodesic projects onto a geodesic, as in Lemma 4.1. 

Finally, passing to the 3-skeleton is quite natural  using the structure of our 3-faces, either 

the slice decomposition of bisectors, or the cone structure of the other faces. 

The paper  is organized as follows. In w we review a number of geometric facts about  

complex hyperbolic space and bisectors, and give a description of the relevant groups. We 

construct our polyhedra IIp,t in w and w is devoted to a detailed verification tha t  they 

have no self-intersection and are homeomorphic to a closed ball in complex hyperbolic 

space. In w we prove the main theorem by verifying the conditions of the Poincar5 

polyhedron theorem, following the strategy outlined above. w states the modifications 

needed in order to t reat  all the cases from [Moll, allowing Itl>~l/2-1/p. w contains 

a comparison with Mostow's original fundamental  domains, including some difficulties 

encountered with the arguments in [Mol]. For the reader 's  convenience, the last section 

lists the faces of our polyhedra and their lower-dimensional skeletons. 

2. C o m p l e x  h y p e r b o l i c  s p a c e  

We use [Go] as a general reference for this section. Let ( - , . )  be a Hermit ian form of 

signature (2, 1) on C 3. The set of complex lines in C 3 on which the Hermitian form is 

negative definite is a model of complex hyperbolic space. One can write the distance 

between two points as 

I(x 'y)l  (2.1) 
cosh (�89 d([x], [y])) - v/(X ' x)(y, y) 

The factor ~1 is chosen so as to get a metric with sectional curvature between - 1  and - la .  
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More explicitly, we consider a Hermitian form (z, w) ----zTHw, where H is a Hermitian 

matrix of signature (2, 1), and the following subsets of C3: 

Y 0 = { Z E C 3 \ { 0 } : ( z , z )  =0} ,  

v_ = {z e c 3 \ { 0 }  : <z, z> < 0}. 

Let 7r: C 3 \ { 0 } - + C P  2 be the canonical projection onto the complex projective space. 

Then H2=Tr(V_) is complex hyperbolic space. In the case where 

(i 0 H =  1 

0 1 

we obtain in non-homogeneous coordinates the complex ball 

H 2 = {(zl, z2) E C2: [zll 2 + Ix212 < 1}. 

The group of holomorphic isometrics of H ~  is then PU(2, 1) (the projectivization of the 

unitary group of the Hermitian form), and the full group of isometrics of complex hyper- 

bolic space, which we denote PU(2, 1), is obtained by adjoining just one antiholomorphic 

involution. 

Antiholomorphic involutions are also called real reflections (R-reflections) or La- 
grangian reflections. In the ball coordinates as above an example of such a transformation 

is (Zl, Z2)~(Z,1, Z2). Their fixed-point set is a totally real totally geodesic submanifold 

which is a Lagrangian submanifold for the symplectic structure on H ~  defined by the 

imaginary part of the Hermitian metric. 

Given a vector v with (v, v)=1,  we consider the isometry of C 3 given by 

Hv,<(x) = x + ( r  1)(x, v)v, (2.2) 

where ~ is a complex number of absolute value one. The corresponding isometry of 

complex hyperbolic space is called a complex reflection; it fixes the totally geodesic 

subspace corresponding to the linear hyperplane v J-, and rotates in the normal direction 

by an angle 0, where ~=e i~ 

Totally geodesic subspaces of complex hyperbolic space have the following natural 

description: 

PROPOSITION 2.1. The complete totally geodesic subspaces of H~ are either geo- 
desics, fixed subsets of complex reflections (complex lines, also called C-planes) or fixed 
subsets of Lagrangian reflections (Lagrangian planes, also called R-planes). 

The following lemma describes the projection of geometrical objects into a complex 

line: 



160 M. D E R A U X ,  E. F A L B E L  AND J. P A U P E R T  

LEMMA 2.1. Let 7rc be the orthogonal projection of complex hyperbolic space onto 

a complex line C. 

(1) The image under 7re of a polygon in a complex line is either a point or another 

polygon such that the angles at the vertices are preserved. 

(2) The image under 7rc of a polygon in a Lagrangian plane is either contained in 

a geodesic, or a polygon or the union of two polygons with a common vertex. 

Proof. The first item follows from the fact that  the projection is holomorphic. For 

the second item, suppose that  the image of the projection is not contained in a geodesic. 

The projection is either a diffeomorphism, and in that case the image is another polygon, 

or the projection is singular at a point. Tha t  means that  the differential of the projection 

has a non-trivial kernel. Every vector in the kernel generates a geodesic which projects 

to a point; in fact, such a geodesic is contained in the Lagrangian and in the complex line 

tangent to the vector. We then claim that  there is at most one of these geodesics: if there 

are two of them then clearly they are ultraparallel, and the common orthogonal geodesic 

is contained in C, which therefore intersects the Lagrangian in a geodesic. This would 

mean that  the Lagrangian projects to that  geodesic, which we have ruled out. Then the 

singular geodesic separates the Lagrangian in two, and in each half the projection is a 

diffeomorphism. [] 

Remark 2.1. One can easily show, by using coordinates with center at the intersec- 

tion, that  if the Lagrangian intersects the complex line, its projection is either a geodesic 

(and in that  case that  geodesic is precisely the intersection) or a geodesic cone in the 

complex line at the intersection point. 

2.1.  B i s e c t o r s  

Recall that  the bisector equidistant from two points xl ,  x2 E H ~  is given by 

B(Xl, x2) = {x e n ~ :  d(x, Xl) = d(x, x2)}. (2.3) 

In what follows we will also denote by xl  and x2 lifts to C 3, by a slight abuse of notation. 

In view of equation (2.1), if we normalize two vectors xl and x2 to have equal norms, 

the bisector is simply the projectivization of the set of vectors x that  satisfy 

I(X, Xl)l = [(x, x2)l. (2.4) 

An example in the ball model is the "standard" bisector 

B o = { ( z , t ) r 1 6 2  and t c R } ,  
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which is equidistant from x l = ( 0 ,  �89 and x2=(0 ,  *" -~*) ,  for instance. 

A bisector is a smooth real hypersurface diffeomorphic to a ball, but  it is not totally 

geodesic. The complex spine E of B(Xl ,  x2) is by definition the complex geodesic that  

contains Xl and x2. The real spine a is the real geodesic in E that  is equidistant from 

Xl and x2. 

PROPOSITION 2.2. (1) (Mostow) B is foliated by complex geodesics of the form 

~ I ( { p } )  for p e a .  These are called the complex slices of B.  

(2) (Goldman) B is the union of all the Lagrangian planes that contain its real 

spine o. These are called the meridians of B.  

The complex slice decomposition is quite easy to understand from equation (2.4), 

which is equivalent to saying that  x E (x l - a x 2 )  • for some complex number (~ with I(~1= 1. 

The hyperplanes corresponding to the orthogonal complements of Xl-(~x2 (whenever 

such a vector has positive norm) are precisely the complex slices of B. 

Remark 2.2. (1) The complex slice decomposition makes it clear that  a bisector is 

uniquely determined by its real spine. 

(2) The Lagrangian reflection in any meridian of B fixes its real spine, hence pre- 

serves its complex spine. It must then interchange the two points xl  and x2. In fact, if 

x is on the complex spine (but not on the real spine), and # is the Lagrangian reflection 

in any meridian of B, then B is equidistant from x and #(x) .  

The following result gives a refinement of the statement that  bisectors are not totally 

geodesic: 

PROPOSITION 2.3. (See [Go, Theorem 5.5.1].) Let B be a bisector and x, y E B .  

Then the real geodesic between x and y is contained in B if  and only if  x and y are in 

either a complex slice or a meridian of B.  

2.1.1. Intersection with complex lines. In view of the slice decomposition for bisec- 

tors, it is clear that  the following result is important  in order to understand bisector 

intersections. 

PROPOSITION 2.4. ([Moll) Let C be a complex geodesic that is not a complex slice 

of a bisector B.  Then BN C is either empty or a hypercycle in the complex geodesic. 

Recall that  a hypercycle in C is a curve at constant distance from a real geodesic. 

In particular, unless the two bisectors share a common slice, the proposition implies 

that  their intersection is foliated by arcs of circles. Since the complex slices map into 

the real spine under projection onto the complex spine, one sees that  each connected 

component of the intersection BIN B2 is a disk (indeed it fibers over an interval, with 
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intervals as fibers). It  can be proven that  there are at most two connected components.  

If the bisectors are coequidistant, more can be said: 

PROPOSITION 2.5. Let B1 and B2 be two coequidistant bisectors, i.e. such that their 

complex spines intersect outside their real spines. Then B1 N B2 is diffeomorphic to a disk. 

I f  the disk is totally geodesic, then it is in a common complex slice. 

A proof of this can be found in [Go]. When the intersection is not geodesic, we call 

it a Giraud disk (such surfaces were analyzed in [Gi]). Observe that ,  in particular, the 

intersection of two coequidistant bisectors cannot contain a meridian. The latter fact 

can be seen directly: if two equidistant bisectors B l = B ( x o ,  Xl) and B2=B(xo ,  x2) share 

a meridian with R-reflection #, then as we have just seen, # exchanges on one hand x0 

and xl ,  and on the other x0 and x2, so that  the bisectors are equal. 

The following lemma characterizes complex lines intersecting a bisector in a geodesic: 

LEMMA 2.2. Let C be a complex geodesic, and let B be a bisector with real spine a. 

Suppose that C is not a complex slice of B ,  and C N B  is non-empty. Then C A B  is a 

geodesic if and only if  the extensions to projective space of C and a intersect. 

Proof. Let E be the complex spine of B, which is the complex geodesic containing 

the real geodesic a.  

(1) Suppose tha t  E and C intersect in H ~ .  If the real spine goes through their 

intersection, then taking the origin of our ball coordinates to be tha t  intersection point 

makes the equation of B linear, and hence the intersection is a line through the origin, 

which is a geodesic. 

Conversely, if C intersects E outside of a, we still take coordinates centered on a, 

so tha t  the intersection is again given by a straight line. If this line were a geodesic, it 

would have to be contained in a meridian of B, but then it would intersect cr in projective 

space (but two complex projective lines intersect in exactly one point). 

(2) The case where E and C intersect on 0 H ~  is similar to the previous one. 

(3) Suppose that  E and C intersect outside of H ~ U O H ~ .  Then these two complex 

geodesics have a common perpendicular complex geodesic D. We may assume tha t  E 

is given by z2=0, that  C is z2=c, cr  and that  D is z l=0 .  The real spine is either a 

straight line or a circle, depending on whether or not it goes through the origin. 

Note that  the intersection B A C  is the intersection with C of the inverse image of 

a under the linear projection (zl, z 2 ) ~ z l .  Remembering tha t  real geodesics in complex 

geodesics are orthogonal to the boundary, we see that  B n C  is a geodesic if and only if a 

is a straight line. This in turn is equivalent to saying that  C and a intersect in projective 

space (since any intersection would have to take place at infinity in C2). [] 
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2.1.2. Intersection with Lagrangian planes. The intersections of Lagrangians with 

bisectors have the following general property (which expresses the fact that  a suitable 

normalization of the coordinates gives a quadratic equation for such an intersection): 

PROPOSITION 2.6. Let L be a Lagrangian which is not a meridian of the bisector B .  

Then B N L  is a conic in L. 

Note that  singular conics can occur (two intersection lines). We describe that  sit- 

uation more explicitly. Using the ball coordinates, the Hermitian metric is written at 

p=(b, 0) with b real as (see [Go]) 

1 
0 (1-b2) 2 

1 
0 

1 - b  2 

LEMMA 2.3. Consider coordinates of the standard bisector {(z, t) : zEC and t c R }  

at a point p=(b, 0) with bER,  and let two tangent vectors V l : (Z l , t l )  and v2=(z2,t2) 

be in TpB. Then 

(1) vi is tangent to a meridian if and only if  ziER; 

(2) Vl and v2 arc tangent to a common Lagrangian if and only if  z l z2 ER .  

Proof. The first item is obvious. For the second, we need iv l•  Computing, using 

the form of the metric defined above at the point (b, 0), 

( 1 1 ) 
g(ivl, v2) = Re (ivl, v2} -- Re ((izl, it1), (z2, t2)} =- Re izlz2 (1-b2) 2 ~-itlt2 ~ , 

we see that  the Hermitian product is purely imaginary if and only if z122cR.  [] 

PROPOSITION 2.7. Suppose that the tangent space to a Lagrangian L is contained 

in the tangent space to a bisector B ,  i.e. TpLCTpB.  Then 

(1) L c B  is a meridian, or 

(2) L N B  is the union of two geodesics passing through p, one being in a meridian 

and orthogonal to a slice which contains the other one. 

Proof. It follows from the lemma and proposition above. If L is not contained in B, 

we first observe that  the tangent space TpL in the coordinates of the lemma contains the 

vector (0, t) which is tangent to the meridian passing through p=(b, 0). The geodesic 

along that  vector is contained in both the meridian and L. Analogously, the vector (z, 0) 

is tangent to the slice, and the geodesic defined by it belongs to the slice and to L. The 

above proposition implies that  there can be no more intersection. [] 
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LEMMA 2.4. Let g be a geodesic in a meridian of a bisector B,  ultraparallel to its 

real spine. Then there exists a unique slice of B which is orthogonal to g; moreover, it 

is orthogonal to the complex geodesic containing g. 

Proof. Observe that  in the meridian there exists a unique geodesic orthogonal to the 

real spine which is also orthogonal to g. The lemma follows from the fact that  orthogonal 

geodesics in a Lagrangian plane are contained in orthogonal complex geodesics. [] 

P R O P O S I T I O N  2.8. Let B be a bisector with real spine a, and L a Lagrangian not 

contained in B .  Suppose that L A B  contains a geodesic g which is in a meridian of B 

but not in a slice. 

(1) I f  g is ultraparallel to a, then L A B  contains another geodesic which is in a 

complex slice of B.  

(2) I f  g intersects a in H ~ U O H ~ ,  then L N B = g .  

Proof. In the first case, by the above lemma, there exists a unique slice of B or- 

thogonal to the complex geodesic containing g. This implies that  L also intersects that  

slice in a geodesic. In the second case, by Proposition 2.7, we can exclude a singular 

intersection because g is not orthogonal to any slice. To show that  there is only one 

component in the intersection, in the case where g intersects a in H ~  we can use ball 

coordinates such that  both the bisector and the Lagrangian are linear. In the parallel 

case we observe that  there is a point p at infinity belonging to the boundary of both a 

and L. If L A B  were to contain a point outside of g, then the geodesic joining that  point 

to p would belong to B and L; there would then exist a complex slice of B having two 

points in L, and therefore L A B  would contain another geodesic intersecting g, which is 

a contradiction. [] 

We also need the following corollary to Proposition 2.7: 

PROPOSITION 2.9. Fix four points in H ~ .  I f  three triples of these points are con- 

tained in Lagrangian planes, then the four are contained in a common Lagrangian plane. 

Proof. First observe that  the four triples are in fact contained in Lagrangians. In- 

deed, it can easily be seen (as in [Go, p. 219]) that  the Cartan angular invariants of 

various triples among four points Xl, x2, x3, x4 E H 2 satisfy the relation 

A(Xl, x2, x3) + A ( x l ,  x3, x4) = A(xl ,  x2, x4) +A(x2,  x3, x4). 

Consider then the tetrahedron formed by the four points. Taking opposite edges as 

real spines of two bisectors we obtain that  the intersection contains at least the other 

four edges. Using Proposition 2.7 we conclude that  if the Lagrangians do not coincide, 

then there exists one of the faces with all its edges meeting at right angles, which is a 

contradiction. [] 
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2.2.  T h e  g r o u p  r(p,t) 

The most natural description of a complex reflection group is done by means of a Coxeter 

diagram, where the nodes correspond to generating reflections, and the edges translate 

into braiding relations between the generators. In the case of complex reflection groups, 

there is an extra parameter attached to each loop in the diagram, the so-called phase 

shift. More details on the general case can be found in [Mol] or [C], but  for the sake of 

brevity we only discuss the following special case. 

Consider the groups with Coxeter diagrams of the form 

L/ 
for p=3,  4 or 5. Each such group is generated by three complex reflections R1, R2 and R3 

of order p, satisfying the braid relation 

R RjR  = RjR Rj. (2.5) 

We write the mirror of Rj as @- (take v=ej  and ~=e 2'~i/p in equation (2.2)). We may 

assume after rescaling the vectors ei that  (ei, ei} = 1 and @1, e2}= @2, ca}= @3, el}. The 

braid relation imposes a condition on the angle between the mirrors of the generating 

reflections, which translates as 

1 
I(ei, ej}[ -- 2 sin(rr/p)" (2.6) 

In what follows we shall write o~=l/2sin(Tr/p). 
The phase shift ~ that  appears in the above diagram corresponds to specifying the 

common value of the argument of the inner products (el, ei+l); specifically we take 

( e i , e i + l } = - ~ ,  (2.7) 

where Iqol=l. We follow Mostow's notation and write ~3=eTrit, and denote the corre- 

sponding group by r(p, t). 
In the basis {el, e2, e3}, the matrix for the Hermitian form is given by 

H - -  - a ~  1 - ~ . 

- o ~  - o ~  

(2.8) 
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The existence of a triple of positive vectors ei satisfying (2.7) is equivalent to the require- 

ment that  H be of signature (2, 1), which in turn is equivalent to 

In what follows, we shall always use coordinates in this basis and the Hermitian form (2.8). 

The linear transformation (001) 
J =  1 0 0 (2.10) 

0 1 0 

is clearly an isometry, which is a regular elliptic element fixing p0=[1, 1, 1] r .  Moreover, 

there are three natural antiholomorphic isometric involutions 0-i j, given by complex con- 

jugation of the coordinates followed by exchanging two of the standard basis vectors. For 

instance, 

0.12: [Xl,X2,X3] r' > [X2, X l ,  2~3] T. (2.11) 

We will denote by Lij the fixed-point set of 0-ij, which is a Lagrangian plane by Propo- 

sition 2.1. 

One checks that  R1 is given in the basis {el, e2, ca} by the matrix 

R1 = 1 , (2.12) 

0 

where rl=e '~i/p. Note that J conjugates Ri into Ri+l, where indices are taken modulo 3, 

so that  the matrices for R2 and R3 are easily deduced from the matrix above. 

The condition that  p<6  is equivalent to requiring that  the mirrors of two reflections 

Ri and Rj intersect in the ball, in a point denoted by Pij. The common fixed point of 

R1 and R2 can be written as 
�9 [ a ~ + a 2 ~ 2 ]  

P12 = / O ~ A - C t 2 $  92 , (2.13) 

1_ 1 - a  2 

and the other Pij are deduced by applying the isometry J.  

We study the group F(p, t) generated by J and R1. It is instructive to decompose 

these generators as a product of antiholomorphie involutions 

J = 0120"23 and R1 = 0"23 T, (2.14) 

where the aij are as in (2.11), and T is by definition 0.23R1. We shall write l~(p, t) for 

the group generated by 0-12, 0-23 and T. Note that  the subgroup F ( p , t ) c F ( p , t )  is the 

index-2 subgroup of holomorphic elements. 

We write Lij and L~- for the fixed-point set of 0-~j and T, respectively. 
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PROPOSITION 2.10. The Lagrangians fixed by the generating antiholomorphic invo- 

lutions intersect as follows: 

(1) L12nL23 is the isolated fixed point Po of J; 

(2) L12NLz is the isolated fixed point Pl of JR1; 

(3) L23ALT is a geodesic gl, contained in the mirror of R1. 

Proof. The first part follows from the definition of J. In order to get the second part, 

note that  JR1 has three distinct eigenvalues, its characteristic polynomial being given 

by -(A+~i~)(A2+~]i~).  The eigenvector with negative norm is the one corresponding 

to xffA--~i~ = e  ~ i ( 1 / 4 - 1 / 2 p - t / 6 )  for t > - ( 1 / 2 - 1 / p ) ,  and corresponding to -?]i~ otherwise. 

We now prove part (3). Since o23el=e1, 023 preserves the mirror of R1, and this 

implies that  L23 intersects the mirror in a geodesic (cf. [FPp]). [] 

We wish to use these three Lagrangians and their intersections, of dimension 0, 1 

and 2, as building blocks for a fundamental polyhedron. The first observation is that  

these objects define a 3-dimensional object, namely the bisector B1 having gl as its real 

spine. This bisector then has Fix(R1) as complex spine, L23 and L~ as meridians, and 

contains the points P0 and Pl, so it is indeed well adapted to our configuration. 

In the following definition, we collect the groups introduced above: 

Definition 2.1. For any integer p and [t[<3(1/2-1/p) define 

(1) F(p, t)=(o12,023, T); 

(2) F(p, t) = (R1, J} C F(p, t) of index 2; 

(3) F(p, t ) :  (R1, R2, R3} CF(p, t), 
where Rl:023T, J:a12023,  R 2 : J R 1 J  -1 and R3:J2R1J  -2. 

Note that  the index of F(p, t) in ]~(p, t) could be 1 or 3. Although we are not going 

to use the next proposition, we observe that  using the main theorem we can decide, in 

certain cases, what the index is. 

PROPOSITION 2.11. (Cf. [Mol, Lemma 16.1].) Let p and t in Theorem 1.1 be such 

that 

(~ 1 t'~-I (~ 1 2)-1 2p 
k= - ~ p + ~ J  and l= 

are in Z. Then F(p , t )cF(p , t )  is an index-3 subgroup i l k  and 1 are both divisible by 3, 

and otherwise the groups are equal. 

Proof. Clearly, the quotient F(p, t)/F(p, t) is represented by the class of J.  From 

the main theorem we obtain the presentation with relation (R2RIJ)k=I,  so 

(1) (R2RIJ)k=(R2R1R3) 2m if k=3m; 
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(2) (R2RIJ)k=(R2RIR3)2mR2R1J if k = 3 m + l ;  

(3) (R2R1J)k=(R2R1R3)2m+IR2J 2 if k=3m+2.  

Therefore J is generated by R1, R2 and R3 if 3 does not divide k. Using the relation 

((R1R2)-IJ)Z=I we obtain an analogous result for l. [] 

2.3. A c a n o n i c a l  h e x a g o n  

Let B1 be the bisector with real spine gl, the geodesic where L23 and L~ intersect. Note 

that  its complex spine is by construction the mirror of the complex reflection R1, and 

the Lagrangians L23 and L~ are two of its meridians. In particular, it also contains the 

points {po}--L12NL23 and {pl}=LI2AL~ (see Proposition 2.10). 

The bisector B1 can also be described as being equidistant from two understood 

points. Indeed, the isometry a23, which is the involution in a meridian of B1, sends P12 

to P31- This implies that  B1 is equidistant from P12 and P31 (see Remark 2.2). 

Recall that  we would like to construct a 3-face of a fundamental domain on B1. We 

need this face to intersect "well" with its neighbors, i.e. its images under short words in 

the group. This leads us to explore the intersection of the whole bisector B1 with some 

of its images. Now R1 stabilizes B1 (in fact, each slice is stabilized), and J cyclically 

permutes 

B1, B2 := J (BI )  and B3 := j2(B1).  

We thus study the intersection S n = B1 A J (B1). 

The surface S n is by construction equidistant from the three fixed points P12, 

P23--JPI2 and p31=J2p12. This also makes it apparent that  S n is the intersection of 

any two among the three bisectors B1, B2 and B3. 

PROPOSITION 2.12. (1) S n is a smooth non-totally geodesic disk. 

(2) S n contains six geodesics, arranged in a hexagon with right angles. 

The extension to projective space of the hexagon S n is shown in Figure 1. Note that  

the hexagon appears already in Mostow [Mol, Figure 14.1], but  not as a face. In his 

notation the six vertices are s12, s13, s23, ~21, s31 and ~32, and are given by 

s23:Js12, s31:Js23, s 3 2 - - J s 2 1  a n d  8 1 3 = J s 3 2 .  

The next section, which provides a proof of Proposition 2.12, is devoted to a more 

detailed analysis of this situation. It is somewhat technical and can be skipped during a 

first reading; the reader can simply assume Proposition 2.12 and refer to Figure 1. 
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L~ 312 

V132 

V231 

Fig. 1. A r igh t -angled  geodesic hexagon  on t he  Gi raud  disk BINB2NB3, for t =  ~gs" T h e  figure 

shows a ne ighborhood  of t he  disk in its t o rus  ex tens ion  to projec t ive  space.  

2.4. C o m p u t i n g  the  vert ices  of  the  hexagon  

We now prove Proposition 2.12. The first part follows from Proposition 2.5. Indeed, 

the bisectors Bi and B j  are co-equidistant, since their complex spines intersect at the 

point pi j .  

In the following arguments, we shall often refer to intersections taking place in 

complex projec t ive  space rather than hyperbolic space. We denote by S~ the extension 

to projective space of Sv, which is the set of lines Ix] (not necessarily negative definite 

with respect to the Hermitian form) such that  

I(x ,p12}l=l(x,  p23)l=l(x ,  p31)l �9 (2.16) 

It is readily checked that  Ss is a torus in projective space (cf. [Go, Lemma 8.3.4]). 

Similarly, 8j denotes the extension to projective space of the real spine aj .  It is simply 

the circle parameterized by P i j -  c~pjk, I~1 = 1. It is clear from the definitions that  [x] E S~ 

is equivalent to saying that  x is orthogonal to two vectors of the form Pij--o~iPki and 

Pij - (~jPjk, I c~il = I c~j I = 1. 

The second statement follows from the following observations: 
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PROPOSITION 2.13. (1) For each i, there are precisely two complex slices of Bi that 

intersect S,  in a geodesic. We choose vectors vjik and vkij polar to these two complex 

slices. 

(2) The vectors vjik and vkij correspond to the two intersection points of Eri and S~ 

in projective space. 

(3) Vijk~-Vji k and Vijk~_Vik j .  

(4) The union of any two adjacent sides of the hexagon is the intersection with Sv 

of a meridian of one of the three bisectors Bi. 

The reader should keep Figure 1 at hand when reading the proof of the proposition. 

The picture of S~ is drawn using spinal coordinates on BIN B2, so that  the complex slices 

of B1, B2 and B3 intersect S~ in vertical, horizontal and slope-1 lines, respectively. 

Proof. Lemma 2.2 implies that  any slice of Bi that  intersects S~ in a geodesic must 

intersect both ~j and ~k in projective space. By the slice decomposition, their points 

of intersection with the slice are orthogonal to some vector zE~i. Such a z is clearly 

contained in S~, since it is orthogonal to two points from two different extended real 

spines. 

Hence the slices Ci of B / t h a t  intersect S~ in a geodesic are polar to points of inter- 

section ~iNS~. Now ai is not contained in By for j ~ i ,  and it intersects (the extension) 

of By (hence Sj) in at most two points. 

We now describe the intersection points 5j NS~. The corresponding six points appear 

already in [Moll, and are denoted vijk (where all indices are distinct among 1, 2 and 3). 

We give the coordinates of two of them, the other ones being deduced by applying J and 

the according cycle in the indices: 

V123  ~ and V321 ~ . 

L ~i~ A L--~li~J 

(2.17) 

These vectors have geometric meaning, namely vijk can be checked to be orthogonal to 

the mirrors of a complex reflection given by J• where the power is 1 if k = j + l  

and - 1 if k = j -  1. 

Using (2.13), one verifies that  

P12+~i~p23 ---- a2(~2~2 +~i~)v123, 

P12 --~i~P23 = (~2 (~2~2 --T/i~)v321, 

(2.1s) 
(2.19) 

which implies that  v123 and v32 l are indeed on the extended real spine of B2. Similarly, 

applying J, we see that  vii k is on the extended real spine of Bj. Another unenlightening 
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computation yields 

{v123, P12} ---- ~ig~x, (2.20) 

(V123, P23} = --?~i~x, (2.21) 

<V123,P31) = X, (2.22) 

<V321, P12} = -~?i~x, (2.23) 

(V321, P23> ---- ~]i~t' ,  (2.24) 

@321, P31} = x, (2.25) 

where x =det  ( H ) =  1 -  3a 2 -  a 3 (~3+ ~3). Note that  all the complex numbers in equations 

(2.20) (2.25) have the  same absolute  value, so v123 and v321 are in Sv, see (2.16). The 

above result remains true for any vijk simply by applying the 3-cycle J.  

This proves parts (1) and (2) of the proposition. We now check the orthogonality 

claim, namely that  two successive spikes of the star of Figure 1 are represented by 

orthogonal vectors. We only check that  v32a and v312 are orthogonal (the other orthogo- 

nality properties are easily deduced from this one). This follows at once from direct 

calculation, but a better interpretation is that  the group contains a number of pairs of 

• is the commuting complex reflections. Namely, v312• is the mirror of J-1RxR2, and v321 

mirror of JR2Rx. Now these two mirrors are orthogonal, since 

(J-1R1R2)(JR2R1) = J - 1 R 1 j j - 1 R 2 J R 2 R  1 =/~3R1/~2R1,  (2.26) 

(JR2R1)(J-1RIR2) = JR2J-1JRI j -1R~R2 = R3R2R1R2, (2.27) 

and these two are equal because of the braiding relation (these commutation relations 

become more transparent in the description of the groups given in [DM]). 

It can be checked that,  for I t]<l /2-1/p ,  all vijk are positive vectors, so that  

• n v~21 is a negative line. The corresponding point in complex hyperbolic space is V312 

denoted by s12 in [Mol]. Similarly, there is a point s21 which can be described as 

One can compute explicit homogeneous coordinates for these points, and obtain 

expression (2.15). Coordinates for the other four vertices of the hexagon are easily 

obtained from s12 and s21 by applying the symmetry J ,  namely s23=Js12, s31=Js23, 

g32=Jg21 and ~13=J~32. 

It follows from the above orthogonality property that  the complex geodesics that  

contain two successive sides of the hexagon are orthogonal, and hence the real geodesics 

themselves must be orthogonal. The orthogonality of the complex geodesics also implies 

that  two successive sides of the hexagon are contained in a totally real 2-plane, which 

must then be a meridian of one of the three bisectors intersecting in the Giraud disk 

(indeed, it contains two points of its extended real spine). This gives part (4). [] 
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H' 

I 

Fig. 2. A schematic view of the fundamental domain. The two 3-faces H and H ~ intersect in 

a 2-face (a hexagon) r/. The domain is a geodesic cone from p12- 

Fig. 3, The boundary of the fundamental domain is a sphere divided into 10 cells. The cone 

point P12 is represented at infinity and only two of the 3-cells are finite. They correspond 

to H and H ~ and intersect in a hexagon. There are 4 pentagonal prisms and 4 tetrahedra 

containing Pt2 as a vertex. The 1-cells are all geodesics. 

3.  D e s c r i p t i o n  o f  a f u n d a m e n t a l  p o l y h e d r o n  I I  i n  H ~  

O u r  f u n d a m e n t a l  d o m a i n  is a p o l y h e d r o n  II  c o n s t r u c t e d  as  a c o n e  a t  a p o i n t  PI~ ove r  

t h e  u n i o n  of  t w o  3-cel ls  n a m e d  H a n d  H 1 i n t e r s e c t i n g  in  a h e x a g o n a l  2-cell  U. 
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PO �9 

812 

~23 

1 

823 

Fig. 4. T h e  3-face H in t he  bisector  B1. One  of its 2-faces is t he  hexagon  ~ conta ined  in t he  

in tersect ion B1N J ( B1). 

3.1.  T h e  c o r e  h e x a g o n  

In order to construct the first 3-faces of the fundamental  domain we recall that  the 

intersection Sv=B1NJ(B1) is a topological disc which contains six geodesics, arranged 

along a hexagon with right angles, see Proposition 2.12. We thus define a 2-face U of 

our polyhedron to be the par t  of the surface Sv bounded by the hexagon; this 2-face is 

contained in two 3-faces, H in B1 and H ~ in B~=J(B1), which we define below. Here 

and in what follows, we write 

, .  ,,. j2(B1)" B1, B I .=J (B1)  and B I . =  

3.2.  T h e  3 - f a c e s  H a n d  H '  

We first take a closer look at the position of the hexagon in the first bisector B1. We 

have tha t  

(1) 812 , 831 and 832 a r e  in the meridian L~; 

(2) s13, s23 and s21 are in the meridian RI(L~);  

(3) s31 and s21 are in a common slice; 

(4) s12 and s13 are in a common slice. 
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The situation can be seen in Figure 4, where we use coordinates on B1 adapted to 

the bisector structure, in the sense that  the (real) spine is the vertical axis, slices are 

horizontal planes and meridians are vertical planes containing the axis. We call such 

coordinates spinal coordinates on B1. 

We are now ready to complete the 3-face H by adding two vertices, t23 and t32 in 

Mostow's notation. They are given by the projection onto the spine of B1 of the two slices 

containing the pairs (s31,~21) and (s12,~13), respectively. An elementary computation 

t 23  z 

gives the formulas 

p-vi~ 2 and t32= I ~+~i~2 

L 

(3.1) 

We then enclose H by adding four 2-faces: 

(1) two C-planar geodesic triangles, "r11=(t23,831,-~21) in the "top" slice and T 2 1 :  

(t32, s12, s13) in the "bottom" slice; 

(2) two R-planar  geodesic right-angled pentagons, 7c1=(t23, s31, s32, s12, t32) in the 

meridian Lr,  and 7r2-- (t23,821,823,813, t32) in the meridian R1 (Lr).  

It is natural to construct this wedge from the spine gl because R1 acts on the bisector 

B1 by rotation around its spine. These five 2-faces enclose a region in B1 which is our 

first 3-face H. 

Now the next face H '  is easily derived: we simply consider H'=J(H) in B~=J(B1). 
This new face, isometric to H, is glued to H along the 2-face ~ (with a rotation of 
2 ~Tr in the orientation of the picture), and it only has two new vertices t31=J(t23) and 

t13=J(t32) which are on the spine of B~. 

We have thus closed the 2-face ~! in the sense that it belongs to two 3-faces; we 

eventually want to close all the 2-faces we have introduced, which is what we now do. 

3.3. The  whole  p o l y h e d r o n  YI 

Recall from w that  P12 is the intersection of the mirrors of R1 and R2 (see equa- 

tion (2.13)). Alternatively, it can be seen as the intersection of the complex spines of the 

two bisectors we have used so far, B1 and B~. 

We then construct our polyhedron II as the geodesic cone over the "core" part HUH ~ 
from the point P12. We use the notation 

Cone(o~) = U [Pl2q], 
qCc~ 

where [pq] denotes the geodesic segment from p to q, so that  

II := Cone(HUH') .  
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t23 

$31 ~ $21 

71" 1 

812 $13 

Fig. 5. The core part HUH' in B1UB~. The pentagonal 2-cells ~rl and ~2 contain the spine 
gl, and ~ and ~r~ contain the spine g2. The side-pairing transformation which interchanges 

H a n d H '  is J. 

This is analogous to the construction in [FPk] for the Eisenstein-Picard modular  group, 

where the cone vertex was at infinity. 

With  this construction, the interior of H is the cone over the interior of HUH', and 

its boundary is the cone over the boundary of HUH', together with HUH'. Thus the 

boundary  of II consists of ten 3-faces: H,  H '  and eight faces of two combinatorial  types, 

te t rahedra  (cones over a triangle) and pentagonal pyramids (cones over a pentagon). 

We will see, in fact, that  these two types are also geometrically different, because the 

te t rahedra  live in bisectors whereas the pentagonal pyramids do not. 

Wha t  is less obvious, and which we leave to the next section, is that  this construc- 

tion does not yield any unwanted intersection between the faces. We first describe the 

remaining 3-faces. 

3.4. The  remaining 3-faces 

3.4.1. Description of a tetrahedron. The "top" and "bot tom" triangles Tll and ~-21 are not 

isometric (unless t---0); however, the te t rahedra  based on them have the same structure, 

so we need only describe the te trahedron T1 based on 7-11. 

Recall that  Tll=(t23, S31,821) is C-planar .  Now when we add the point P12, we 
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P12 

(R2R1) l /  

P12 

Fig. 6. T h e  four t e t r a h e d r a  in t he  b o u n d a r y  of t he  po lyhedron  II ac tua l ly  have  t he  c o m m o n  

ver tex/)12.  Shown are t he  cor respond ing  s ide-pair ing t r ans fo rma t ions .  

R1 

Fig. 7. T h e  four pen t agona l  p y r a m i d s  in t he  b o u n d a r y  of II and  thei r  s ide-pair ing t ransfor-  

ma t ions .  Again ,  t hey  are defined as  cones  to t he  c o m m o n  ver tex  P12- 
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obtain a special configuration: 

LEMMA 3.1. The triangles ~-12=(t23, s31,P12) and ~-13=(t23,~21,P12) are R-planar. 

Proof. This can be seen by computing the two Hermitian triple products. An- 

other proof is obtained by observing that  the complex geodesics containing [t23 , 831 ] and 

[t23,P12], respectively, are orthogonal. Indeed, by construction, the first one is a slice 

of B1 and the second is the complex spine of B1. [] 

This shows that  three faces of the tetrahedron are naturally reconstructed from its 

vertices; there remains some flexibility in the choice of the fourth face, and we have 

chosen the union of geodesics from P12 to the opposite edge (this ensures that  this face is 

also a face of the neighboring pentagonal pyramid). We can moreover see the following 

result: 

LEMMA 3.2. The tetrahedron T1 is contained in a (unique) bisector. 

Proof. We need to find a bisector B such that  the R-planar  triangles ~-12 and ~-13 

are each in a meridian of B and such that  the C-planar triangle ~-11 is in a slice. This 

is possible because the geodesic (t23P12) c o m m o n  to both R-planes (which is the only 

possible spine) lives in a C-plane orthogonal to the possible slice. [] 

3.4.2. Description of a pentagonal pyramid. We also have a priori two isometry 

classes of pentagonal pyramids. They share, however, the same structure, and we only 

describe the pyramid P1 based on the R-planar  pentagon ~1. What  happens now is that  

when we add the point P12, we obtain five triangular 2-faces, one of which is C-planar 

((t23t32P12) is contained in Fix(R1)), the two adjacent faces (t23831P12) and (t32s12p12) 

are R-planar  (they are also faces of the tetrahedra TI and Tu, respectively), and the two 

remaining faces are not geodesic. In particular, we have the following lemma: 

LEMMA 3.3. The pentagonal pyramid P1 is not contained in a bisector. 

Proof. Indeed, three of its faces are R-planar,  intersecting in two distinct geodesics, 

whereas any three (or more) R-planes contained in a bisector intersect in a common 

geodesic (the real spine). [] 

4. Topo logy  and combinator ia l  s tructure  of  II 

The reader can skip this section if he assumes Proposition 4.1. We will now show how 

the combinatorial structure of II ensures that  its topology is reasonable, in the following 

sense: 
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C - s p i n e ~  

R-spine / 

jected ~ / 
desic 

Fig. 8. Gener ic  in tersec t ion  of a geodesic and  a bisector.  

PROPOSITION 4.1. Topologically, the boundary polyhedron OH is a sphere S 3, and 

the whole polyhedron II is a ball B 4. 

Proof. We show that OH is homeomorphic to S 3. The technical aspect is to show 

that  the 3-faces as we have defined them intersect only where we expect them to, i.e. 

in common 2-faces or unions of 1-faces; this will be seen below and follows from the 

structure of the bisector faces and the special position of our cone point P12- Assuming 

this, the fact that  every 2-face belongs exactly to two 3-faces ensures that  OH is a 3- 

manifold; in fact, we have a realization of 0H in S 3 by considering the core part HUH'  

(a topological B 3) in R 3 and setting the point P12 at infinity. The boundary polyhedron 

OH is then the union of HUH'  with the cone from P12 over O(HUH'), which is the 

exterior of this ball; the verifications below ensure that  this is an embedding. [] 

We now want to check that  the different 3-faces that  we have defined intersect 

pairwise as expected (in 2-faces or unions of 1-faces), i.e. that  there is no unwanted extra 

intersection. A real difficulty resides in the fact that bisectors are not geodesically convex 

and that,  more precisely, the generic intersection between a geodesic and a bisector is 

empty or a pair of points. This is a problem for us as we have defined our polyhedron as 

a geodesic cone over certain objects living in bisectors. For instance, it is possible that  

a geodesic between P12 and a point qEH meets H ~ before reaching q. We will see that  

this does not happen, the key point being that  P12 is on the complex spines of both B1 

and B~. 

LEMMA 4.1. Let C be a complex line and ~c be the orthogonal projection onto it. 

If  7 is a geodesic intersecting C then ~c(V) is a geodesic in C. 

Note that  this is not true in general, 7rc(~) being an arc of a Euclidean circle (see 

Figure 8). 
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Proof. Normalize the coordinates in the ball model so that C={(Zl ,  0 ) e B  2} and 

CN~/={(0, 0)}. Then the projection is simply (z], z2)~-~(zt, 0), and the result is obvious 

knowing that  the geodesics through the origin are the Euclidean segments. [] 

We apply this simple fact to the context of bisectors. Recall the slice decomposition 

of a bisector: if B is a bisector with (real) spine g and complex spine C, and if as above 

7rc is the orthogonal projection onto C, then B=Trc 1 (g), where the fibers 7rcl({p}) for 

p e g  are the slices of B. The above lemma has the following consequences: 

LEMMA 4.2. Let B be a bisector with (real) spine g and complex spine C, and let 

pEC.  Then the geodesics through p 

(1) intersect B in {p} or are contained in B if  peg;  

(2) intersect B in at most one point if p~g.  

Proof. The first part comes from the fact that  the (real) spine is contained in all 

meridians. For the second part, the preceding lemma shows that  if ~/ is a geodesic 

through p, then 7cc(7) intersects g in at most one point q. Then BNV is contained in 

the slice 7rcl({q}). The slice being totally geodesic, this shows that  BNV contains only 

one point. [] 

We are now ready to analyze the different intersections of 3-faces. 

4.0.1. Intersection of the pentagonal pyramids with H and H ~. There are two types 

of intersection between a pentagonal pyramid and a core face H or H 1, as follows: 

PROPOSITION 4.2. (1) P1 intersects H in the pentagon 7ft. 

(2) P1 intersects H' in two geodesic segments, [s32sal] and [s32s12]. 

Proof. We prove the stronger statement that  

Plr~Bl=Trl and P1AB~=[s32s31]U[~32s12], 

by projecting to the C-spine of the appropriate bisector and using the above lemma. Let 

7rc1 (resp. 7rc~) denote the orthogonal projection to the C-spine of B1 (resp. B~). 

For the first point: since 7rlCB1, 7rcl(Trl) is contained in the (real) spine of B1, so 

that  the preceding lemma implies that  each geodesic from Pt2 to a point q of Irl intersects 

B1 only in q. 

It remains to see how P1 intersects H ~. We start off by showing that  the pentagon 71-1 

is entirely contained in the half-space bounded by B~ and containing P12. Recall that  7cl 

is contained in the R-plane L~ (see Proposition 2.10). Now L~ has singular intersection 

with B~, consisting in the two orthogonal geodesics (g32s31) and (g32s12) which separate 

L~ into four regions as in Figure 9 (where + and - indicate the half-spaces bounded 
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Fig. 9. The trace of B~ on the R-plane Lr. 

by B~). Thus ~rl (which is convex) is entirely contained in one of these half-spaces, 

which contains the vertices t23 and t32- Now we can check, using two points from which 

B~ is equidistant, such as p12 and P23, that  t23 and t32 a r e  on the same side of B~ as 

the point P12. (Figure 10 illustrates the difference coshQ(t23,p23)-cosh~(t23,p12) as a 

function of the phase shift t, the point being that  it remains positive for Itl < 1 / 2 - 1 / p . )  

We can then conclude, by projecting to the C-spine of B~ and using the lemma, that  the 

whole cone P1 is on the same side of B~ as P12, which implies that  P1 and B~ have the 

desired intersection, which is the pair of edges [832331] and [$32S12]. [] 

The same argument applies to the other pentagonal pyramids, knowing that  t13 and 

t31 are on the same side of B1 as the point p12. 

4.0.2. Intersection of the tetrahedra with H and H'. These intersections are exactly 

as above, replacing the pentagons with triangles. We have in this case: 

PROPOSITION 4.3. (1) T1 intersects H in the triangle T1]. 

(2) T1 intersects H'  in the geodesic segment [821831]. 

4.0.3. Intersection of two cone faces. The intersection of two faces which are unions 

of geodesics from P]2 is not much of a problem. 

LEMMA 4.3. I f  a and 13 are subsets of ~ (HUH') ,  then 

Cone(a) A Cone(~) = Cone(a n~) .  

Proof. It is obvious that  Cone(aN/~)cCone(a)NCone(~)-  Tha t  there is no extra 

intersection follows from what we have seen on the other faces. [] 
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Fig. 10. t23 is on the  s ame  side of B~ as P12. 

4.0.4. Intersection of the two core faces H and H'. This is the easiest case because 

we have defined the 2-face ~ so that  HNH~=~. Note that  H (resp. H ~) lies entirely on 

one side of the bisector B~ (resp. B1), which is the same side as P12 as we have seen by 

testing the vertices. 

5. Using Poincar6's polyhedron theorem 

In this section we review Poincar6's polyhedron theorem. We will follow the general 

formulation of the theorem given in Mostow [Mol, w p. 197], and we refer to it for a 

proof (see also [FPk] and [Ma D. We define a polyhedron as a cellular space homeomorphic 

to a compact  polytope. In particular, each codimension-2 cell is contained in exactly two 

codimension-1 cells. Its realization as a cell complex in a manifold X is also referred to 

as a polyhedron. We will say tha t  a polyhedron is smooth if its faces are smooth. 

Definition 5.1. A Poincar6 polyhedron is a smooth polyhedron D in X with co- 

dimension-1 faces Ti such that  

(1) the codimension-1 faces are paired by a set A of homeomorphisms of X which 

respect the cell structure (the side-pairing transformations); we assume tha t  if ~ C A then 
~ / - 1 E A ;  

(2) for every VijCA such that  T~=VijTj, we have 7ijDND=Ti. 

Remark 5.1. If Ti=Tj~ i.e. if a side pairing maps one side to itself, then we impose, 

moreover, tha t  V~j be of order 2 and call it a reflection. We refer to the relation 7~---1 

as a reflection relation. 
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Let T1 be an (n -1) - face  and F1 be an (n -2) - face  contained in T1. Let T[ be the 

other (n -1) - face  containing F1. Let T2 be the (n -1 ) - face  paired to T[ by glCA and 

F2=gl(F1). Again, there exists only one (n -1) - face  containing F2, which we call T~. 

We define recnrsively gi and Fi so that gi-1 . . . . .  gl(F1)=Fi. 

Definition 5.2. Cyclic is the condition that  for each pair (F1,T1) (an (n -2) - face  

contained in an (n-1)- face) ,  there exists r~>l such that,  in the construction above, 

gro .... gl(T1)=T1 and g~o .... gl restricted to F1 is the identity. Moreover, calling g= 

g~ . . . . .  gl, there exists a positive integer m such that 

g11(p) u(g2ogl)- l(P)U.. .Ug-l(P)U(glog)-l(P)U(g2oglog)-1(p)u. . .u(gm)-1(P) 

is a cover of a closed neighborhood of the interior of F1 by polyhedra with disjoint 

interiors. 

The relation gm=(gro .... gl)m=--Id is called a cycle relation. 

THEOREM 5.1. Let D be a compact Poincard polyhedron with side-pairing trans- 

formations A c I s o m ( H ~ )  in H~ satisfying the cyclic condition. Let F be the group 

generated by A. Then F is a discrete subgroup of Isom(H~),  and D is a fundamental 

domain. A presentation is given by 

F = <A I cycle relations, reflection relations}. 

5.1.  S ide  pa ir ings  

The side pairings of our polyhedron II are, writing R 2 = J R I J  -1, 

T1 

H J > H', 

P1 R1) p2, p; R=> p~, 

5.2. Cyc le s  a n d  orb i t s  o f  faces  

We now write the cycles of 2-faces induced by the side pairings, according to the type of 

2-face. 

(1) The hexagon cycle 
J J J r/----+ r/ )r/ >r/. 
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(2) 

(3) 

The pentagon cycle 

RI) J>Tr~ R21 ! j - i  
7/ I 7F 2 ) 7V 1 ) 771 . 

The C-planar triangle cycles 

( R 2 R 1 ) - I  ! j - 1  
7-11 ) TI1 > TII~ 

R1R2 # j - 1  
T21 > 7-21 > T21, 

Tel  Tc l ,  

R2 > 
mc2 7c2. 

(4) The R-planar triangle cycles 

R-1 Ri> (R2RI) I>T~3 2 > , R2RI) 
7-12 T13 T12 T12~ 

R - 1  R1 > RIR2 , 2 > , (RIR2) -1 
"/-22 7-23 > 7-23 T22 ) 7"22. 

(5) The generic triangle cycles 

(R2R1)  -1  ! R1)  R2 )  
T14 ) 7-14 Tg2 T14~ 

R 1 RIR2 , i > R21 
"]-24 > 7"24 Tgl > 7"24. 

5.3.  Ver i fy ing  t h e  t e s s e l l a t i o n  c o n d i t i o n s  

5.3.1. First step: the side pairings send H off itself. We show in this section that each 

side pairing g of II satisfies 
o o 
n n g ( n )  = 0 .  

This is more easily seen in the case where the faces corresponding to the side pairing live 

in a bisector, because the bisector in question separates YI and its image, and hence the 

intersection of these polyhedra has dimension at most 3, and their interiors are disjoint. 

We now verify this claim. 

�9 Side pairing J. J maps H to H I, which lives in the bisector B~. We have the 

following result: 
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PROPOSITION 5.1. B~ separates I1 and J(II) .  

Proof. We first see this for the core parts HUH' and J(HUH')=H'UH".  Now H '  

is in B~, so we only need to check that  H is on one side of B~ and H "  on the other. 

We already know that  H is on the same side of B~ as P12 (see w and the second 

part follows, knowing that  the R-reflection Crl3 (in the meridian L13 of B~) exchanges H 

and H",  as can be checked on the vertices. 

The cone parts are then easily seen to be on the appropriate sides of B~, because 

the cone points P12 and P23=J(p12) are in the C-spine of B[, each on the same side as 

the base of its cone. [] 

�9 Side pairings R1R2 and R2R1. We treat the case of R1R~, the other being com- 

pletely analogous. The side pairing R1R2 maps T2 to T~, which is contained in the 

bisector BT~, having as real spine the geodesic (t13P12). We have the following result: 

PROPOSITION 5.2. BT~ separates I1 and RIR2(II). 

Proof. It suffices to show that  II is entirely on one side of BT~. Indeed, Fl is then 

analogously entirely on one side of BT2, so that  by the side pairing R1R2, RIR2(H) is 

entirely on one side of BT~ =R1R2(BT2). We then check one point in each polyhedron to 

see that  they are indeed on opposite sides. 

The fact that  II is entirely on one side of BT~ can be seen by projecting to the 

C-spine of BT~ (the mirror of R2), which contains the points P12, t13 and t31. 

Position of H'. H' lives in the bisector B~, which has the same C-spine as BT,~ ; 

its projection is thus contained in the geodesic (t13t31) (the real spine of B~), and in light 

of the foliation of H' by complex triangles it is in fact inside the segment [t13t31]. 

- -  Position of H. Recall that  the 2-skeleton of H consists of r/, 7rl, rr2, 7-11 and 721. 

The 2-face r/is also in H',  so it projects in the segment [t13t31]. For the pentagons 

we need the following lemma: 

LEMMA 5.1. The four points P12, s21, t13 and t23 (resp. P12, s12, t31 and t32) lie 
in a common R-plane. 

Proof. Indeed, as we have seen earlier, the triples (P12, s21, t13), (P12, s21, t23) and 

(s21, t13, t23) each lie in an R-plane because the pairs of geodesics (p12t13) and (s21t13), 

(p12t23) and (s21t23), (s21t13) and (s21t23) lie in pairwise orthogonal complex lines. 

Thus we have a tetrahedron of which three faces are R-planar;  by Proposition 2.9 this 

is possible only if the four points lie in the same R-plane. [] 

We can now analyze the position of rr2. As we have just seen, the geodesic (821t23) is 

contained in (a meridian of) BT~, which also contains (s21s23) in a complex slice. Thus 
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t13,823,821 831,813 t31,812,832 

P12 

Fig. 11. Projection of H to the C-spine of BT~. 

the intersection of the R-plane containing 7r2 with BT~ is exactly a pair of geodesics, 

which are two sides of ~r2, so that  7r2 lies entirely on one side of BT~, as in Figure 9. 

We now use the other quadruple of points of the lemma: these lie on an R-plane 

which is, for instance, a meridian of the bisector BTI having (P12t31) as real spine (and 

having the same C-spine as BT~). Thus the entire quadrilateral projects into the segment 

[p12t31]. We now know that  the 1-skeleton of H projects to the appropriate side of BT~, 

except maybe for the edge [831t23 ]. This is the third side of the C-planar triangle Tn, 

whose two other sides, [g21t23] and (~21s31), project, as we have seen, into the segments 

[t13Pz2] and [t13t31], respectively (see Figure 11). This gives us sufficient control over the 

third side. Indeed, the projection restricted to a complex face is holomorphic, thus an 

open and angle-preserving map. This rules out the possibility that  the image of the edge 

[s31t23] (which is an arc of hypercycle in the C-spine of BT~) would pass through the 

real spine (t13P12) (see Figure 12; the first case is ruled out by "angle-preserving" and 

the second by "open"). We then conclude by saying that  the image of H is bounded by 

the image of its boundary, using, for instance, the foliation of H by complex triangles. 

- -  Position of the cone faces. As earlier, the geodesics through P12 project to 

geodesics because p12 is in the complex line onto which we are projecting; moreover, 

P12 is in the real spine of BT~, so that  the cone on an object is entirely on the same side 

of BT~ as t h a t  objec t .  [] 

�9 Side pairings R1 and R2. This is the most delicate case because II and its im- 

age cannot be separated by a bisector (or else this bisector would contain one of the 

pentagonal pyramids, which we have seen to be impossible). 

To prove that  RI(II) and H have disjoint interiors, a possible approach would be 

to show that  H is contained in a fundamental domain for R1 (as suggested to us by the 
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t13 831, 813 t13 831, 813 

~ t 2 3  

Fig. 12. Non-admissible projections of a complex triangle. 

referee). In fact, R1 acts on complex lines orthogonal to its mirror as a rotation. There- 

fore, the choice of a wedge (of angle 2Trip) in each of these lines defines a fundamental 

domain for R1. Unfortunately, there does not seem to be a simple global choice of such 

wedges. 

Instead we have to consider separately the core faces and the cone faces, and use 

the fact that  if the interiors of the polyhedra were to meet, then so would the interiors 

of some of their 3-faces. 

PROPOSITION 5.3. 
o o 
HNRI(H)  = 0 .  

Proof. We follow the lines given above, first separating the core faces (H and H ~, 

RI(H)  and RI(H')) .  The only obvious intersection between these faces is that  of H 

and RI(H)  (namely P2), which live in the same bisector B1. 

We first prove the following lemma: 

LEMMA 5.2. There exists a bisector BR1 which separates H U H  t and RI(HUH~). 

In particular, these two objects have disjoint interiors. 

Observe that  the four faces in question all have the edges [~13s23] and [s23~21] in 

common, so that  a suitable bisector must contain these edges. In fact, our bisector will 

contain the whole R-plane R1 (LT) as a meridian. 

The most natural idea is to use one of the complex slices of B1 as a C-spine for our 

bisector (the C-plane onto which we will project). For practical reasons we use the slice 

containing s23 and s32 (this is the slice containing the largest section of H ) .  We thus 

define BR1 by its real spine, which is the geodesic joining s23 and its projection to the 

vertical axis (t23t32). The first thing to say is stated in the next lemma: 

LEMMA 5.3. The bisectors B1 and BR1 intersect only along the common merid- 

ian RI(Lr ) .  

Proof. It is clear that  B1 and BRI share this meridian, because it contains both real 

spines. One can then invoke [Go, p. 174], or use Proposition 2.9 on R-planar  te trahedra 

to conclude. [] 
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Fig. 13. Projection of H and H ~ to the C-spine of BR 1. 

This shows that  H is entirely on one side of BR1 (and R1 (H) on the other). Consider 

now H~; we examine each 2-face separately. 

- -  The most obvious is the hexagon ~, which also belongs to H.  

- -  The C-planar triangle ~-~1 has an edge, [s23~21], which is in BR1. That  geodesic 

can be the only intersection between BR1 and the C-plane containing ~-~1, so that  ~-~1 is 

entirely on one side of BR1. 

The R-planar  pentagon 7r~ also has an edge which is in BR1, namely [s23g13]. Now 

this geodesic meets the R-spine of BR1, in s23, so that  by Proposition 2.8 it can be the 

only intersection between the R-plane R1 (L~) and BR1. Thus the whole pentagon is on 

one side of BR1. 

So far, we know that  the entire l-skeleton of H ~ is on one side of BR1, except maybe 

for the edge [.~32t31]. Now this edge meets the C-spine of BR1 (in ~32), so it projects to 

a geodesic and stays on the same side of BRI as its endpoints. Having the l-skeleton, we 

extend the result to the 2-skeleton: the only non-obvious faces are a C-planar triangle 

and an R-planar  pentagon of H ~, which are handled by Lemma 2.1. Finally, we get the 

corresponding result for all of H '  by using the foliation of H ~ into C-planar triangles. 

Thus HOH ~ is entirely on one side of BR1; the same arguments (replacing the R-  

plane RI(L~) by L~) prove that  HOH ~ is entirely on one side of BR{-1 (the bisector 

analogous to BR1, but containing L~), so that  in fact HOH' is entirely in the "wedge" 

of angle 27r/p between BR1 and BRI1 (see Figure 13). 

We conclude by noting that  R1 rotates the C-spine of BR1 by an angle 27r/p (around 

the point image of t23, t32 and P12), sending the wedge off itself. [] 

To conclude the proof of the proposition, it remains to see what happens with the 
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Rl(S,) 

Fig. 14. View of a complex slice of B1 (for p=4). 

cone faces: we have already seen, when describing the self-intersection of [I, that  the cones 

from P12 on H and H '  have no other intersection than  the cone on their intersection. 

There remain three intersecting pairs to analyze: 

L E M M A  5 . 4 .  (1)  Cone(H')NCone(Ri(H))=Cone(g'NRl(H)). 
(2) Cone(H) N Cone (R l (H ' ) )  = Cone(HA R1 ( g ' ) ) .  

Proof. We star t  with the first item. We project the cones to both  complex spines of 

B1 and B~. If a geodesic containing P12 is in the intersection of the cones, it projects onto 

a geodesic under both  projections by Lemma 4.1. Such a geodesic will meet either H '  or 

R I ( H )  first. The lemma is proven if we show that  the geodesic meets H '  and R1 (H) at 

the same time. To see this, recall from w that  the projection of H '  in the complex 

spine of B1 is on the same side as P12 with respect to the real spine (which contains the 

projection of R1 (H)).  

This shows tha t  the geodesic meets H '  first. Projecting to the complex spine of B~ 

shows analogously tha t  the same geodesic meets R1 (H) first. Indeed, R1 (H) is contained 

in B1, on the same side of the surface S n as H,  as can be seen slice by slice (if C is a slice 

of B1, S n N C is a hypercycle, i.e. an arc of a Euclidean circle meeting twice the boundary  

circle, bounding CNH, and CNRI(H) is on the same side of this arc as tha t  of CNH, 
see Figure 14); thus R I ( H )  is on the same side of B~ as H and P12. 
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The second item is proven analogously, noting that  in a slice C of B1, CNH is on 

the same side of the hypercyele CNR1 (S~) as CUR1 (H). [] 

LEMMA 5.5. Cone(H')A Cone(R1 (H'))  = Cone(H'NR1 (H')) .  

Proof. We project the cones on the complex spines of B~ (which contains H ' )  and 

R 1 (g[)  (which contains R1 (H')) .  Since P12 is in both complex spines, as in the previous 

lemma, the projections of the cones are cones over the projection by Lemma 4.1. The 

same argument as above will hold if we show that  each projection is on the same side as 

P12 with respect to the corresponding real spine; we will refer to that  side as the good 
side. 

To show this, let us first consider the projection of RI (H')  on the complex spine 

of B~. We check that  the vertices of R I (H ' )  are all on the same side of B[ as P12. That  

gives a hint that  the whole 3-face R1 (H')  is on the good side. More precisely, we divide 

the proof in several steps: 

(1) We check numerically that  Rl(t l3)  and Rl(t31) are on the good side of B~. 

(2) From the knowledge of Sv=B1NB[, which is a union of hypercycles, one in each 

slice of B1, we obtain that  R1 (7) intersects Sv in precisely two geodesic segments, [~21s23] 

and [s23sx3], and, moreover, is contained in the good side of B[. 

(3) As the intersection of RI(~-~I) (a slice of RI(H')) with B~ is a hypercycle and 

contains the geodesic segment [s23913], we conclude that  Rl(7~l ) is on the good side. 

(4) We have to check that  the pentagonal faces Rl(Tr~), i=1,  2, project on the good 

side. Observe that  the Lagrangian pentagon Rl(Tr~) has a geodesic in common with the 

bisector B~, namely [gms23]. Now the intersection of the whole Lagrangian with the 

bisector could contain at most one more geodesic, orthogonal to the first (see Proposi- 

tion 2.8). However, if such a second geodesic existed and met the pentagon Rl(Tr~), the 

vertices of R1 (Try) would lie on both sides of this geodesic (because the pentagon has only 

right angles), and thus on both sides of B~. This is impossible since we have verified that  

all points are on the same side of B~. We conclude that  the whole pentagon is on the 

good side. 

Concerning the other pentagon, RI (Try), the same argument does not apply (because 

a priori it has no intersection with B[),  and it remains to check that  one of its edges is 

on the good side, namely the edge JR1 (t13)RI (s23)]. This is done in the next item. 

(5) We need to prove the following statement, which seems quite obvious in Fig- 

ure 15: the geodesic segment between Rl(txa) and Rl(s2a) does not intersect the bisec- 

tor B~. Computer investigation shows that  a stronger statement is true, namely that  the 

entire geodesic (and not only the segment) does not intersect the relevant bisector. We 

shall explain how this can be done for the first case only, the second one being completely 
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(a) Cone(Rl(H'))  projected onto e} (b) Cone(H') projected onto Rl(e#)  

Fig. 15. T he  s t ra igh t  line s egmen t s  represent  t he  spine  of t he  re levant  bisector,  which  we 

need to sepa ra te  H ~ and  R I ( H ' ) .  T h e  th ick s egmen t  is t he  only one t h a t  we need to check 

numerical ly.  T h e  p ic tures  are d rawn  for p = 3  and  t =  ~s" 

analogous. 

Let 7 be the geodesic segment between p=Rl(t13) and q = R l ( 8 2 3 ) .  We claim that  

it never intersects the bisector B~ equidistant from P12 and P23- 

We write 7 ( x ) = ( 1 - x ) p + x q / ( q , p } = v + x w  (note that  the geodesic is not param- 

eterized with constant speed, so the parameter x should range through some interval, 

whose endpoints are irrelevant to our computation). 

Any possible intersection of 7 with B~ would be found by solving the equation 

I<v+xw, P12)1 = I(v+xw, P23> l- (5.1) 

Using the linearity of the Hermitian product and squaring both sides of the equation, we 

can rewrite it in the form of a quadratic equation 

ax 2 +bx +c = O, (5.2) 

where 

a =  I<w,p~2>12-1<w,P23>l 2, 

b-- 2Re((v,P12} (P12, w)-  (v,P23)(P23, w)), 
c =  I(v,p12)l=-](v,p23)l 2. 

(5.3) 
(5.4) 
(5.5) 

It can easily be checked that  the discriminant of this quadratic equation is negative for 

small phase shift. The values of A--_ b 2 -4ac  for the values of t corresponding to discrete 
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Fig. 16. T h e  3-faces H ~, RI (H~) ,  H and  RI(H). Note t h a t  H and  RI(H) are conta ined  in 

t he  bisector B1. 

groups with p=3 are given in the following table: 

t A 

0 -0.2369... 

-0.2465... 

1 -0.2472... 

~2 -0.2414... 

5 -0.2236... 

(6) The projection of the face RI(H ~) in the complex spine of B~ is bounded by the 

image of its 2-skeleton, because R1 (H I) is foliated by triangles in slices and the image by 

the projection (a holomorphic map) of each triangle is a triangle in the complex spine 

of B~. In fact, it is also bounded by the projection of the l-skeleton by Lemma 2.1. 

Using the items above we then conclude the proof that the projection of the face R1 (H l) 

in the complex spine of B~ is on the good side. 

The same argument shows that H ~ is on the good side of RI(B~). In particular, 

a key step is to show that the geodesic segment between t31 and ~3~ does not intersect 

the bisector RI(B~) (see again Figure 15). 

To conclude the proof of the lemma we show as above, by projecting to both C- 

spines, that the intersection on the cones over the bases has to contain a point of the 
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intersection of the bases. [] 

The proposition follows from the three main lemmas. [] 

5.3.2. Second step: further along the cycles. In this section we verify the cyclic con- 

dition of the Poincar6 theorem. Recall that  for a cycle of codimension-2 faces r 

r gl> r g~ >... g~-i > Ck 9k> r 

the cycle transformation gkogk_l . . . . .  gl has a certain finite order m (this is one of the 

hypotheses we have to check; the side pairings gi are explicit in matrix form, which allows 

us to find m). We will call k the length of the cycle, and mk its total length. The cyclic 

condition ensures that  the mk images of II 

g l l  (Y[), ( g 2 o g l ) - I  (I~), -.-, ((gkogk_l . . . . .  g l ) r n ) - I  (I~) : I ]  

tile a neighborhood of the face r In fact, each of these polyhedra shares a codimension-1 

face with its two closest neighbors, so that  we only need to check that  all of these 

polyhedra have pairwise disjoint interiors. 

We have shown in the preceding section that  this is true for all pairs of adjacent 

polyhedra (those differing by a side pairing). This settles the case of all cycles of maxi- 

mum total length 3; for greater total length we must check that  II and its non-adjacent 

images have disjoint interiors. We will start  with the three cycles of total length 4, where 

we only need to compare II with its "diagonal" image (see diagrams below). The cycles 

of total length 4 are as follows: 

�9 The pentagon cycle 

R1 > J > 7]'2 R21 ! j - 1  
71-i 71"2 > ?l'l > ?~I- 

A schematic picture of the tiling of a neighborhood of the 2-face ~rl (represented by the 

central vertex) is 

j-l(n) =R IJ-1R2(II) II 
J-1R I(II)=RilJ-I(II) R -I(yI) 

The fact that  1-I and its "diagonal" image J-1R~I (YI)= R[1J -1 (H) have disjoint interiors 

follows easily from what we have already seen. Indeed, we know that  the bisector B1 

separates II and J - I ( H ) .  Now R1 fixes pointwise the C-spine of B1 (which is its mirror) 

and commutes with the orthogonal projection onto it, so that  it preserves each of the 

half-spaces bounded by B1. 

Thus, applying R~ -1 to J - l ( I I ) ,  we see that  B1 separates II from RI-IJ-I(Y[). 
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�9 The R-planar triangle cycles 

RI> (R2R1)-I > ! R2 -I ! R2RI> 
T12 7-13 T13 ) T12 T12, 

R-I  RI > RIR2 > , 2 , (RIR2) -1 
T22 7"23 7-23 ~ 7-22 > 7"22. 

A diagram for the first cycle is 

R2R1 (II) =R1]R2RIR2(II) II 

R~lR2R](II)=R2R1R21(II) R~-I(H) 

As above, we can easily separate II and its diagonal image R11R2 R1 (H)--R2 RIR21 (II), 
this time by the bisector BT1. Indeed, BT1 separates II and R2RI(II), as we have already 

seen, and as above, R1 preserves the half-spaces bounded by BT1 (whose C-spine is again 

the mirror of R1), so that  BT1 separates II and R11R2Rl(II). 
The second cycle is analogous. 

Now the only other cycles with total length greater than 3 are the C-planar triangle 

cycles 

(R2R1) I> ! j i 
7-11 TI1 > Tll, 

RIR2 > ! j - i  
T21 T21 > T21 

on one hand, which has length 2 but arbitrarily large total length, and 

R1 > 
Tcl Tcl,  

R2 
~-c2 ~ Tc2 

on the other, of length 1 and of total length p (in our cases, p=3 ,  4 or 5). 

�9 We start with the first pair of cycles. The cycle transformations are respectively 

(R2 R1 J ) -  1 and J -  1R1 R2; they both fix pointwise a C-plane, namely the one containing 

the triangle ~-11 (resp. ~-21). Computing the eigenvalues of these two elements tells us that  

they act on C-planes orthogonal to their mirror by multiplication by ~i~ 3 (resp. _~i~3),  

corresponding to rotations of angle 7r(1/2-1/io + t). If the group is discrete, these elliptic 

elements are to have finite order. In fact, imposing the angles to be of the form 2~/k and 

2~//l with k, IEZU{c~} is sufficient to obtain the cyclic condition for these two cycles, 

and thus discreteness of our group. More precisely we have the following proposition: 
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PROPOSITION 5.4. (1) If  

/ 1  1 t~  -1 

then the polyhedra 

H, R2RI(H),  R2R1J(II), ..., (R2R1J)k(II), (R2R1j)kR2RI(II) 

have disjoint interiors. In fact, two of these share a common 3-face if they are adjacent, 

or else they only have the 2-face Tll in common. 

(2) Analogously, if 

l = 2p E Z,  

then the polyhedra 

II, (R1R2)-I(1-[), (R1R2)-IJ(II), ..., ((R1R2)-IJ)Z(II), ((RIR2)-IJ)I(RIR2)-I(II)  

have disjoint interiors, and two of them share a common 3-face if they are adjacent, or 

else they only have the 2-face 7-21 in common. 

Proof. We have just seen that  the elements (R2RIJ) -1 and J-1R1R 2 act on C- 

planes orthogonal to their mirror by certain rotations, the two integrality conditions 

saying that  these are of angle 27c/k and 2~/l. Now we know that  the C-plane containing 

the points t23, ta2 and P12 (which is the common spine of the bisectors B1, BT1 and BT2) is 

orthogonal to the mirrors of (R2R1J) -1 and J-1R1R2, at points t23 and t32  , respectively. 

We project to this C-plane, which contains the geodesic triangle (t23, t32, P12), each of the 

sides being the real spine of one of the bisectors B1, BT1 and BT2. We have shown that  

the polyhedron II is entirely on one side of each of these bisectors, which means that  its 

projection is entirely inside of the triangle (t23, t32,P12)- This proves the proposition. [] 

Remark 5.2. There are finitely many values of t for which the two numbers 

are integers; these are listed in the table 

P 

3 0 , 1  1 ~ 2  5 
30 ~ ' ~ 42 

4 O, 1 3 
12~ 20 

1 1 
5 10 '  5 

I t l < l / 2 - 1 / p  I t l = l / 2 - 1 / p  I t l>1/2-1/p  

7 1 
30 ~ 3 

5 
12 

11 7 
30 ' 10 
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Remark 5.3. It  follows from what we have done tha t  the group generated by A--  

(R2R1J) -1 and B=J-1R1R2 is a C-Fuchsian triangle goup, preserving the mirror of R1. 

Indeed, one checks that  the product  AB acts on this complex geodesic as a rotat ion by 

an angle 27r/N, where N=2p/(6-p), fixing Pl2 (a geometric reason for this value can be 

found in [Mol, p. 243]). In particular, a fundamental  domain for its action is given by 

the union of the triangle r d  and its reflection about  the geodesic (t23t32). 

�9 Now consider the last cycles, where the cycle transformations are R1 and R2, of 

order p = 3 ,  4 or 5. For p = 3  there is nothing to add, but for p = 4  or 5 we must ensure that  

the non-adjacent polyhedra II  and R2(H) have disjoint interiors. We do this by following 

the lines of the analogous verification for H and Ri(I I )  (proof of Proposition 5.3); in 

principle, the two non-adjacent polyhedra are easier to separate because they have a 

smaller intersection; however, we lose some control over this intersection. Rather,  we 

handle this by using the computer  to check the position of the sixteen core edges (as 

opposed to just one previously). 

The core faces are easily separated using the bisector BR1 which was introduced in 

the proof of Proposition 5.3: 

LEMMA 5.6. For p = 4  and p=5, BR1 separates HUH' and R~(HOH'). 

Proof. This follows from what we have seen: we know that  HOH' projects to the 

C-spine of BR1 inside a wedge of angle 27c/p (see Figure 13) whose images under R~ 

(k=0,  ..., p -  1) tile this C-plane. [] 

As before, two of the three cases of intersections of cones are easily described (using 

arguments of elementary plane geometry on hypercycles). However, the bases of the 

cones are now disjoint, so that  the cones intersect only at the common apex P12, as 

follows: 

LEMMA 5 . 7 .  (1) Cone(Ht)ACone(R2(H))={pl2}. 
(2) Cone(H)  N Cone(R 2 (H ' ) )  = {P12 }. 

The last case, which requires some numerical verifications, is contained in the fol- 

lowing lemma: 

LEMMA 5.8. Cone(H')NCone(R~(H'))={pl2}. 

Proof. As before, we consider simultaneously the projections to both  complex spines 

of the bisectors containing the bases of the cones, namely B i and R~(B D. Both complex 

spines contain the cone point P12, so tha t  the cones will behave well provided that  the 

bases H '  and R~(H') are on the appropriate  side of these bisectors. Using the same 

arguments as earlier, we reduce this to a verification on the l-skeleton of these 3-faces. 



196 M. DERAUX, E. FALBEL AND J. PAUPERT 

(a) Cone(R~(H')) projected onto e~ (b) Cone(H') projected onto R~l(e2 ~) 

Fig. 17. Cone (H ' )  and Cone(R~(H')) intersect only in the point  P12, as can be seen by pro- 

jecting each one onto the complex spine of the other. The pictures are drawn for p = 5  and 
1 t - - ~ .  

It then remains to check the position of sixteen edges for each face (thirty-two in all), for 

every value of t where the integrality condition holds, listed in Remark 5.2. One way to 

do this is to plot the projection of these edges using a computer, as done in Figure 17. 

Note that  the picture is fairly unambiguous in the sense that  all edges are "very far" from 

the real spine, i.e. at a distance much larger than the implied precision. In principle, 

a detailed verification could also be written along the lines of part (5) of the proof of 

Lemma 5.5. [] 

6. B e y o n d  t h e  cr i t ica l  phase shift 

In this section we describe the modification of the combinatorics of our polyhedron for 

Itl>~l/2-1/p. 

For small phase shift, the starting point of our construction is the hexagon ~ con- 

tained in the intersection of the two natural bisectors Bl=B(p12,P13) and B~=J(B1). 
Recall that  the sides of the hexagon are contained in the complex geodesics polar to the 

points vij k (see w 

As already observed by Mostow, when I tl = tc := 1 / 2 -  l /p,  the hexagon degenerates, 

three of its sides collapsing to points on the boundary (three of the Vijk). After this 

critical value, the corresponding vii k are inside the ball (see Figure 18), and they replace 

their polar triangles in the construction of our polyhedron. More precisely, for t>tc, the 

3-face H simplifies to a tetrahedron with vertices v132, v213, v321 and t32, having one 

C-planar and two R-planar faces (see Figure 19). The whole polyhedron II is then a 
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V213 

V132 813 

823 
"~32 

812 

V231 

V123 

821 

Fig. 18. For large phase shift,  some edges of the  hexagon ~/ are outside complex hyperbolic  

space. The corresponding face is a triangle, with vertices v132, v213 and v321, if t > 0 .  

cone over a union of two such tetrahedra, H and J(H). Note that  II is non-compact only 

for the critical values where ]tl=tc. 
The side pairings and cycles remain the same as earlier, removing those involving the 

3-faces which have disappeared (namely T1 and T~ for t>tc, and T2 and T~ for t < - t o ) .  In 

particular, there remains only one of the two integrality conditions from Proposition 5.4. 

Keeping these changes in mind, the arguments given above for small phase shift 

go through without any major modification. The main difference occurs for critical 

phase shift, since the hypotheses of the Poinca% polyhedron theorem include an extra 

verification at the cusps (see [FPk]). 

7. Compar i son  wi th  Mostow's  domains  

In this section we comment on Mostow's fundamental domains for the groups F(p, t) 

generated by R1, R2 and R3 (for more details see [De]). The goal of his construction is 

to describe the Dirichlet fundamental domain centered at P0. Mostow gives an explicit 

set of points in the orbit of P0 that  are supposed to describe all the faces of F,  namely 
4-1 Ri Po, (RiRj)+lPo, (R~RjR~)• (a total of twenty-four points). 

One then needs to prove that  the corresponding twenty-four inequalities suffice. As 

explained in [Mol], this can be done by using the appropriate version of the Poinca% 
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72213 

V321 V132 

Fig. 19. The core par t  H U H  ~ for large phase shift. 

polyhedron theorem, by verifying that  the polyhedron bounded by the above twenty-four 

hypersurfaces has side pairings, compatible along the codimension-2 faces. 

To explain what goes wrong in his agument, we observe that  Mostow describes a 

polyhedron by giving each face of its k-skeleton, 0 ~< k ~< 3, as the intersection of a number 

of bisectors (sometimes more than 4 -  k of them, some intersections not being transverse). 

Most of this skeleton is not geodesic, and in particular there are several instances of 

bigons, i.e. two different 1-faces with the same endpoints. 

Mostow's verification that  there are side pairings between the 3-faces is correct, but  

it is relatively easy to check numerically that,  for some specific values of the parameters 

p and t, he missed some of the intersections between the 3-faces. This means that  the 

polyhedron he uses is not simple, which makes it doubtful that it could be used in the 

context of a Poincard polyhedron theorem. 

Moreover, some of the verifications on the cycles of non-totally geodesic 2-faces are 

incorrect, some of his 3-faces having (very tiny) extra intersections, which are easy to 

miss at first glance with coarse numerical experiments. 

It turns out that  for two of the groups (the ones with p = 5  and large phase shift, 

namely P(5, ~ )  and F(5, ~ ) ) ,  there are more faces in the Dirichlet domain than ex- 

pected, corresponding to (R~Rj)• (see [De]). Although this might seem only like a 

minor correction, it illustrates the difficulty in using Dirichlet domains in complex hyper- 

bolic geometry. Even though the construction is quite canonical (it depends only on the 

choice of the point P0), bisector intersections are too complicated to be practical. 

The complexity of Dirichlet domains is explained in part by the fact that  none of 

its codimension-2 faces can ever be in a Lagrangian plane. Indeed, any two bisectors 
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bounding faces of a Dirichlet domain are coequidistant, since their complex spines all 

contain P0 (see w If their intersection were to contain a Lagrangian plane L, the real 

reflection fixing L would preserve both complex spines, and hence fix their intersection 

point, which is a contradiction. 

In Mostow's Dirichlet domains, certain pairs of 2-faces are close to a Lagrangian 

plane, in the sense that  their vertices are all contained in such an R-plane. These two 

non-totally geodesic faces wrap around a certain Lagrangian quadrilateral contained in 

the Dirichlet domain, forming some kind of droplet contained in a bisector having the 

Lagrangian as a meridian (see the pictures in [Mol, Figure 14.4] and [De]). One expects 

this phenomenon to be due to the rigid nature of Dirichlet domains, and indeed we get 

rid of such faces in our fundamental domains. 

8.  A p p e n d i x :  l i s t  o f  f a c e s  a n d  c o m b i n a t o r i a l  s t r u c t u r e  o f  I I  

We will now list the (proper) faces of II; the inclusions are obvious because the 1- and 

2-faces are determined by their vertices. The 1-faces are all geodesic segments, and the 

2-faces are either R-  or C-planar, or unions of geodesics from P12 to a segment (except 

for the hexagon ~ which lies on a Giraud disk). 

This contrasts strongly with Mostow's Dirichlet domain, where faces shaped like 

"bubbles" occur, in the form of distinct 1-faces having the same endpoints and of distinct 

2-faces having the same boundary. 

�9 The ten 3-faces. These are of three types (and five isometry classes): the core 

faces H and H !, the tetrahedra T1, T~, T2 and T~ (where T (!) is the cone based on the 

triangle 7-(~)), and the pentagonal pyramids P1, P~, P2 and P~ (where P(!) is the cone 

based on the pentagon -( ') ~ v~i ]"  

�9 The twenty-five 2-faces. These are of three types (and ten isometry classes): 

- -  the right-angled hexagon ~= (sl2, sla, s23, s21, s31, s32) living in the intersection 

of bisectors B1 and B~; 

- -  four R-planar  right-angled pentagons: 

~x=(t23,  s31, ~a2, s12,ta2), 

~ 2 = R l ( ~ x ) = ( t 2 3 , ~ l , s 2 3 ,  ~la,ta2), 
! 

~l=J(~1)=( t31 ,S12 ,S13 ,S23 , t13 ) ,  
! 

~2=J(~2)--(t31,832,s31,s21,t13);  

- -  twenty triangles: 
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the faces ofT1: 

the faces ofT2: 

the faces of T~: 

the faces of T~: 

four triangles belonging to 

T11=(t23, s31,821) 

T12=(t23, s31,P12) 

T13=(t23,821,P12) 

T14=(P12, s31,g21) 

(C-planar), 

(R-planar), 

(R-planar), 

(generic); 

7-21 = t32,812,813) 

"]-22= t32,S12,P12) 

T23 = t32, S13,P12) 

T24=(P12,S12, g13) 

(C-planar), 

(R-planar), 

(R-planar), 

(generic); 

! 

T l l : ( t 3 1 , S 1 2 , 8 3 2 )  

T~2-=(t31,S12,P12) 

T~3:(t31,832,P12) 
! 

T14=(P12,S12,832) 

(C-planar), 

(R-planar), 

(R-planar), 

(generic); 

T;1 : (tl3, S23, S21) 

T~2 = (tl3, S23, P12) 

7~3 = (tl3,821,P12) 

T;4 = (P12, 823, 821) 

(C-planar), 

(R-planar), 

(R-planar), 

(generic); 

two pentagonal pyramids: 

Td = (t23, t32,P12) 

Tc2 = (t13, t31,P12) 

~'gl = (831, S32, P12) 

T92 = (823,813, P12) 

(C-planar), 

(C-planar), 

(generic), 

(generic). 

�9 The twenty-six edges (l-faces). These are the sixteen edges of the core part (six 

for the hexagon, adding five for each of H and H ' )  together with the ten edges joining 

the ten vertices of the core part to the cone point P12. 

�9 The eleven vertices (O-faces). These are the vertices of the hexagon, s12, Sl3, s23, 

g21, s31 and g32, together with the vertices t23 and t32 of H, t13 and t31 of H I, and the 

cone point P12. 
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