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Pluripolar graphs are holomorphic 

b y  
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Univer s i t y  o f  Wupper ta l  
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1. I n t r o d u c t i o n  

A function ~ defined on a domain U c C  n with values in [-c~, +oc) is called plurisub- 

harmonic in U if 9~ is upper semicontinuous and its restriction to the components of the 

intersection of a complex line with U is subharmonic. 

A set E c C  n is called pluripolar if there is a neighbourhood U of E and a plurisub- 

harmonic function ~ on U such that E C { ~ = - c e } .  By a result of B. Josefson [J], the 

function p in this definition can be chosen to be plurisubharmonic in the whole of C n 

(i.e. u : e n ) .  

In 1963 T. Nishino raised the following question in connection with his paper [N1]: 

Let A be the unit disk in Cz and let f: A--+C~ be a continuous function such that 

its graph F(f )  is a pluripolar subset of 2 Cz, ~. Does it follow that f is holomorphic? 

The main result of this paper gives a positive answer to Nishino's question and can 

be formulated as follows: 

THEOREM. Let ~ be a domain in C n and let f: fL-+C be a continuous function. 

The graph F(f )  of the function f is a pluripolar subset of C n+l if and only if  f is 

holomorphic. 

As a consequence of this theorem one can easily obtain the following more general 

statement: 

COROLLARY. Let ft be a domain in C n and let E be a closed subset of f~x C ~ C  

Cn+l such that the fibers E ( z ) = { w C C ~  : (z, w) EE  } of E are finite and depend continu- z,~ 
ously on zEf t  in the Hausdorff metric. Assume that the number fr of points in the 

fiber E(z)  is bounded from above in fL Then E is a pluripolar subset of C, n+l if and - -  Z~W 
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only if it has the form 

E---- {(z, w) E ~ • Cw:  w m + a l ( Z ) W  m-1 + . . . + a m ( Z )  = 0}, (1) 

where the functions al(z),a2(z), ..., am(z) are holomorphic in ~. 

Note that  the proof of the theorem cannot be directly applied to the set E de- 

scribed in the corollary. Namely, the topological argument used in the proof of Lemma 3 

and based on the fact that  the first homology group H I ( F t x C ~ \ F ( f ) , Z )  is nontrivial 

does not work in this case. In the last section of the paper we construct an example of 

a compact subset E of /~xCwCC2z,w ( A = { z :  Iz]<l})  with finite fibers E(z) depend- 

ing continuously on z C/~ in the Hausdorff metric such that  HI (A x Cw\E,  Z)=0.  In 

particular, there is a neighbourhood U(E) of E which does not contain any subset of 

/~ x C~ defined by a Weierstrass pseudopolynomial (i.e. defined by the equation (1) with 

al (z), a2(z), ..., am(z) being continuous functions in ~). 

Remark. In the special case when the function f is assumed to be Cl-smooth  and 

its graph r ( f )  is assumed to be completely pluripolar (i.e. F ( f ) - - { ~ = - o c }  for some 

function ~, plurisubharmonic in a neighbourhood of F( f ) ) ,  a positive answer to Nishino's 

question was given by Ohsawa [O] using L2-estimates for c~. In this case one can also 

apply Pinchuk's method adapted to Cl-surfaces in [CH, pp. 59-62] and construct, to get 

a contradiction, a one-parameter family of hotomorphic disks {D~}~ attached to a totally 

real piece of F ( f )  by an arc on the boundary. Restricting the plurisubharmonic function 

such that  F ( f ) c  { ~ = - o c }  to each of these disks, we get that  ~ - - o c  on D~ and, hence, 

Us D~ c { ~ = - o o } ,  which gives the desired contradiction, since the set Us  D~ has real 

dimension 3. Note that  neither of the methods mentioned here can be applied to prove 

our theorem. 

Acknowledgement. Part  of this work was done while the author was a visitor at the 

Max Planck Institute of Mathematics (Bonn). It is my pleasure to thank this institution 

for its hospitality and excellent working conditions. I would like to thank E.M. Chirka 

who communicated to me the problem stated above, T. Ohsawa for informing me that  

the problem was first raised in 1963 by T. Nishino, and E.L.  Stout for pointing out to 

me the reference for the paper [A]. 

2. P r e l i m i n a r i e s  

For bounded nonempty sets E1 and E2 in Cw, the Hausdorff distance is defined as 

d(E1,E2)= sup inf Iwl -w21+ sup inf IWl-W21. 
~v2EE2 wlEE1 w2EE 1 wlcE2 
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A family of compact sets E(z) in C~ parametrized by z C ~t c C~ is said to be continuously 

dependent on z in the Hausdorff metric if, for each sequence {Zn}n~__l of points in 

converging to a point z0e~ ,  one has d(E(z~), E(zo))--+O as n--+oo. In particular, if 

is a domain in Cz ~ and E is a nonempty closed subset of ~ • C~ with bounded fibers 

E(z) = {w E C~ : (z, w) c E} depending continuously on z E ~ in the Hausdorff metric, then 

each fiber E(z) ,  zE~ ,  is nonempty. 

For a compact set K in C ~, the polynomial hull B[ of K is defined as 

/ ( =  { z e C ~ :  tP(z)t <~ sup IP(w)l for all holomorphic polynomials P in C~}. 
w E K  

The set K is called polynomially convex if K =  K. 

The first simple lemma is classical and follows, for example, from Theorem 4.3.4 

in [H], 

LEMMA 1. A compact set K in C ~ is polynomially convex if and only if for any 

point Q c C ~ \ K  there is a function ~, plurisubharmonic in C ~, such that 

sup ~(z) < ~(Q). (2) 
z C K  

LEMMA 2. Let K be a polynomially convex compact set in C '~ and let E be a pluri- 

polar compact set in C ~. Then the set K U E  \ K  is pluripolar. 

Proof. From pluripolarity of the set E it follows that  there is a function @E, plurisub- 

harmonic in C '~, such that  EC{pE=--cxD}. To prove Lemma 2, we shall prove that 
A 

K U E  \ K c  {~E=-c~} .  
A 

Assume, by contradiction, that  there is a point Q c K U E \ K such that  PE (Q) > -c~-  

Since Q~K,  and since the set K is polynomially convex, it follows from Lemma 1 that  

there is a function ~K, plurisubharmonic in C n, such that  

sup  K(z) < 
z E K  

Then, for c positive and small enough, one also has that  

sup (~K(z)+c~E(z)) < ~K(Q)+C~E(Q). 
z c K  

Since ~E(Z)=--oc  for zEE, it follows that  

sup ( ~ c ( z ) + e ~ E ( z ) )  < ~K(Q)+c~E(Q). 
z 6 K U E  

A 

By Lemma 1 applied to the function ~K+C~E,  we get that  Q~KUE.  This gives the 

desired contradiction. [] 

The next statement was first proved by H. Alexander (see Corollary 1 in [A]). For 

the reader's convenience we include its proof. 
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LEMMA 3. Let U be a bounded domain in Cz 2 x R u C C z ,  w (w=u+iv)  and let 
A 

g:bU-+R, be a continuous function. Then UCTr(F(g)), where F(g) is the graph of g 
2 and u:Cz,~,--+CzxRu is the projection. 

Proof. Consider an approximation of the domain U by an increasing sequence 

{Un}n~_-i of domains with smooth boundary. Further, consider a sequence of smooth 

functions {gn}n~ gn:bUn-+Rv, which approximate the function g, i.e. F(gn)--+F(g) 

in the Hausdorff metric. Then it follows from the definition of polynomial hull that  
A 

l imsup~_~  F(gn)CF(g), where convergence is understood to be in the Hausdorff met- 

ric. Hence, it is enough to prove the statement of Lemma 3 in the case where the domain 

U has a smooth boundary and the function g is smooth. 
A 

Now we argue by contradiction and suppose that  there is a point QEU\~r(F(g)). 

Without loss of generality, we may assume that  Q is the origin O in Cz x Ru. We know by 

Browder [B] that  _~2 (F~-), C ) =  0 (here ~2 (F~g), C) is the second Cech cohomology group 

with complex coefficients). Then, by Alexander duality (see, for example [Sp, p. 296]), 

we get 

Hz ( C L \  ETCh), C) : c ) :  o 

(here HI(C~2,w\F(g), C) is the first singular homology group with complex coefficients). 

On the other hand, since OEU\F(g) ,  it follows that  the curve 7R consisting of the 

segment {(z, u+iv):  z--0, u=0,  - R ~ v ~ R }  and the half-circle {(z, w): z=0,  w=Re  i~ 
A 

1 1 -57r~0~<~r} does not intersect the set F(g) for R big enough. Moreover, the link- 
A 

ing number of F(g) and 7R is not equal to zero. Therefore, Hl(Cz2 w\F(g), C)#0 .  This 

is a contradiction, and the lemma follows. [] 

LEMMA 4. Let U be a simply-connected domain in Cz and let f ( z )=u(z )+iv ( z ) :  

U-+C~ be a function such that both u(z) and v(z) are harmonic in U. If  the graph F(f)  

of the function f is a pluripolar subset of 2 C . . . .  then f is holomorphic. 

Proof. If f is not holomorphic, we argue by contradiction and suppose that  the 
2 set F( f )  is pluripolar. Then there is a function ~p, plurisubharmonic in Cz,~, such that  

F ( f ) c { ~ = - e c } .  Let ~ be the harmonic conjugate function to u in the domain U such 

that  ~(Zo)=V(Zo) for some fixed point zoEU. Then the set {zEU:~(z )+e=v(z )}  is 

nonempty and consists of real-analytic curves for all r small enough. Therefore, each of 

the holomorphic curves 

: {(z, w):z c u, 

intersects the set F ( f ) C  { p = - c o }  in real-analytic curves. Since a real-analytic curve is 

not polar (see, e.g., [T, Theorem II.26, p. 50]), it follows that  F s c { p = - c o }  for all 
2 small enough. This implies that  p - - o c  in Cz, w and gives the desired contradiction. [] 
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3. P r o o f  o f  t h e  t h e o r e m  and t h e  coro l lary  

Proof of the theorem. If the function f is holomorphic, then the same argument as in the 

proof of Lemma 4 shows that  F( f )  is pluripolar. Namely, the function 

 (zl, ..., zn+l)  : log I z n + l - f ( z l ,  . . . ,  zn)l 

is plurisubharmonic in f tx  C and r ( f ) = { ~ = - o c } .  Therefore, the set r ( f )  is pluripolar 

in C n+l. 

Suppose now that the graph F( f )  of f is pluripolar. To prove that f is holomorphic 

we consider two cases. 

(1) The special case n = l .  In this case a is a domain in Cz, and f (z)=u(z)+iv(z):  

f~--+C~ is a continuous function such that its graph is pluripolar. Since holomorphicity 

is a local property, we can restrict ourselves to the case when ft is a disk in Cz; moreover, 

to simplify our notation, we can assume without loss of generality that f t = A = { z  : [z I < 1} 

is the unit disk and that the function f is continuous on its closure /~. It follows from 

Lemma 4 that either the function f is holomorphic or at least one of the functions u 

and v is not harmonic. Since both cases can be treated in the same way, we can, to get 

a contradiction, assume that  the function u is not harmonic. Denote by g the solution 

of the Dirichlet problem on A with boundary data u. Since u is not harmonic, one has 

that ~ # u  in A. Without loss of generality we can assume that  

u(z0) <  (z0) (3) 

for some Zo �9 A. Let 

Consider the set 

C =  max{sup_ lu(z)l, sup Iv(z)l}. 
z E A  z E A  

K =  { ( z , w ) E A x C ~  :5(z) <~ u<~ 3C, Ivl <~ C}. 

LEMMA 5. The set K is polynomially convex. 

Proof. To prove polynomial convexity of K we use Lemma 1. Consider an arbitrary 

point ( z*, w* ) 2 ECz,~\K.  If the point (z*, w*) belongs to the set 

2 . A1 = {(z, w) �9 Cz, ~ . Izl > 1 or u > 3C or Ivl > C}, 

then inequality (2) will be satisfied for the point Q=(z*,  w*) and the function 

~a(Z,W) = max{lz l -1 ,  u -3C ,  I v l - C }  
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2 plurisubharmonic in Cz, w. 

If the point (z*, w*), w*=u*+iv*, belongs to the set 

A2= {(z,w) C fX xC~:u< ft(z)}, 

then u*<5(z*). Let c = } ( 5 ( z * ) - u  *) and consider a function 5~ harmonic on the whole 

of Cz such that maxzc h 15 (z ) -~ (z ) ]<c .  Since for (z, w)eK one has u>~(t(z)>~ft,(z)-c, 
and since u*----fz(Z*)--3E<~t~(Z*)--2E, it follows that inequality (2) will be satisfied for 

the point Q=(z*, w*) and the function 

~2(z,w) = ~ ( z ) - ~  

2 plurisubharmonic in Cz, w. 

Since C2z,w\K=A1UA2, we conclude from Lemma 1 that  the set K is polynomially 

convex. This completes the proof of Lemma 5. [] 

Consider now the domain 

u =  {(z, u) �9 ~ x R . :  u(z) < .  < . ( z ) + 2 C }  

in Cz x R~ and the real-valued function g(z, u)=v(z) on bU. Since SUpzc 5 lu(z)l ~<C, one 

has supze5 I~(z) l ~<C and hence ft(z)<~u(z)+2C<~3C. It then follows from the definitions 

of U and g that  the graph F(g) of the function g is contained in the set F ( f ) UK.  
A 

Therefore, we get F(g)cF(f)UK. Since, by Lemma 3, 7r(F(g))DU, we conclude that  

A 

7r(F(f)UK) D U. (4) 

Consider the following open subset of U: 

5 = {(z, ~) �9 a • R~:  ~(z) < ~ < ~(z)}. 

Inequality (3) obviously implies that  the set U is nonempty. Since, by the definition of 

the sets K and U, 7 r (K)NU=~,  it follows from (4) that  

7~(F(f)UK\K) D U. (5) 

Since, by our assumption, the graph F(f )  of f is pluripolar, we conclude from Lemma 2 
A 

and Lemma 5 that  the set F(f)UK\K is pluripolar, i.e. 

A 

F ( f ) U K \ K c  {f  = -c~} (6) 

for some plurisubharmonic function ~a. 
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From (3) one has that  there is a neighbourhood V of the point z0 in Cz such tha t  

u(z) < e(z) (7) 

for all zEV.  For each a E C  consider the complex line l~={(z,  w ) E C 2 : z = a }  and the set 

E a = ( F ( f ) U K \ K ) M l a .  

It  follows from (5) and (7) that  for a E V  the projection of Ea on the real l ine /aM{v=0} 

contains an open segment. Since a polar set in C has Hausdorff dimension zero (see, e.g., 

IT, Theorem III.19, p. 65]), it cannot be projected on an open segment in R.  Therefore, 

the set E~ is not polar. I t  then follows from (6) that  ~ = - o c  on la. Since this argument  
2 holds true for all aEV,  we conclude that  ~ = - o c  on Cz, w. This contradiction proves the 

theorem in the case n =  1. 

(2) The general case. Let kE{1,2 , . . . ,n} .  For each a=(a l ,a2 , . . . , an )E f t  consider 

the function 

f~(zk) -- f (a l , . . . ,  ak-1, zk, ak+l,..., an) 

defined on the domain 

ft~ --- ~t M {zl = al ,  ..., zk-1 = ak-1, zk+l = ak+l, ..., zn = an} C Czk. 

Since, by our assumptions, the set F ( f )  is pluripolar, there is a function ~, plurisubhar- 

monic in C n+l, such that  F ( f ) c { ~ = - o o } .  For all points a except for a pluripolar set 

in C ~ one obviously has that  the function 

a 
~k(Zk, Zn+l) ---- ~(a l ,  ..., ak-1, zk, ak+l, ..., an, Zn+l) 

is not identically equal to - e c  in C 2 For all such points a we can use the ar- 
Z k ~ Z n _ t _  1 " 

gument from case (1) and conclude from the continuity of the function f~: f~ -+Czn+l  

and from the inclusion F ( f ~ ) c { ~ = - o c }  tha t  the function f~ is holomorphic. Since 

the complement of a pluripolar set is everywhere dense, it follows from continuity of f 

that  the functions f~ are holomorphic for all aEl2. This argument holds true for any 

k = l ,  2, ..., n, so we conclude from the classical Hartogs theorem on separate analyticity 

tha t  the function f is holomorphic. The proof of the theorem is now completed. [] 

Proof of the corollary. Since, by our assumption, the number  # E ( z )  of points in 

the fiber of E is bounded from above in ft, we can consider rn- -maxze~ # E ( z )  and then 

the open subset l . t - -{zEf~:CpE(z)=m} of ft. Let z0 be a point of L/ and let hi(z), i - -  

1, 2, ..., m, be the functions defining single-valued branches of E(z)  in a neighbourhood U 
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of z0. Since, by our assumption, E(z) depends continuously on z c f t  in the Hausdorff 

metric, we conclude from the theorem that  the functions hi(z) are holomorphic in U. 

Hence, F(z)=I-[iCj (h i (z ) -h j  (z)) is a well-defined holomorphic function in U such that  

for each ztGbblAft one has F(z)--+O as z--+z t, z�9 Then the function 

~(z) = ~ F(z) for z �9 U, 

L 0 for z E ~\/ , / ,  

is continuous in ~ and holomorphic in/.4= f t \{z  : F(z) =0}. Therefore, by Radh's theorem 

(see, e.g. [C, p. 302]), /~ is holomorphic in ft. In particular, the set { z � 9  is 

an analytic hypersurface. 

Consider now the function 

m 

H ( w -  hi (z)) = w m + al  (Z)W ra-1 -~-...-~ am (Z). 
i = l  

Since al(z),a2(z), ...,am(z) are symmetric functions of hi(z), h2(z), ...,hm(z), they are 

well defined and holomorphic in L/. Moreover, since E(z) depends continuously on 

z �9 in the Hausdorff metric, these functions are locally bounded near the set f~\L/= 

{z : F(z)  =0}. It follows then from removability of analytic singularities that  the functions 

al (z), a2 (z), ..., am (z) are holomorphic in the whole of f~. Since, by our construction, 

E = {(z, w) �9 a • C ~ :  w'~ + a l  ( z ) w m - l + . . . + a m ( z )  = 0}, 

the corollary follows. [] 

Remark. The statement of the corollary was first proved in [Sh] for sets represented 

by Weierstrass pseudopolynomials by a different (and more complicated) method. It was 

later observed independently by the author and by A. Edigarian [E] that  the methods of 

Chapter 4 in IN2] give a simpler proof for these sets. 

4. Example 

We first prove the following simple lemma: 

LEMMA 6. Let f and g be holomorphic functions, defined in a neighbourhood U 

of a point aECz, such that f(a)=g(a) and f'(a)7~g'(a). Let r be a positive number 

such that Ar(a)={zECz:  I z - a i < r } C U  and f (z )~g(z)  for zEAr(a)\{a}.  Then for all 

sufficiently small ~>0 the complex curve E c A ~ ( a ) x  C~ defined by the equation 

G(z, w) d e_f (w-- f (z) )(W-- g(z) ) -- ~ = 0 (8) 
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is a branched covering over the disk A~(a) with two branches and two branching points 

b•177  , 2 i ,  ~ +0(~). (9) 
f (a)-g  (a) 

Proof. Equation (8) is quadratic with respect to w, and hence E is a branched 

covering over A~(a) with two branches. A point b is a branching point of E if for 

some Wb such that  (b, wb)CE one has O=C,~w(b, wb)=2wb-f(b)-g(b).  Therefore, Wb= 
1 ~(f(b)+g(b)), and then (8)implies that  -~( f (b)-g(b))2-c=O,  i.e. 

f(b) -g(b) = • (10) 

Hence, in view of our choice of r, b--+a as c--+0. Then, using Taylor expansions of 

f and g at the point a, we conclude from (10) and the assumption f(a)=g(a) that  

(if (a)-g'(a))(b-a) +O(Ib-a[ 2) =-1-2ivY. Finally, the assumption if(a) #g'(a) implies 

that  
2i 2i 

b-a  = •  ) -g'(a) vq  +O([b-a[2) = • if" a ) -g'(a) v~ +O(~). [] 

Construction of the set E. Let 0 be a smooth real-valued function defined on the 

segment [0, 1] such that  

Consider the set 

1 f o r  O ~ t ~  1 5' 
1 2 o(t)= decreasing for 5 < t <  5, 

2 ~ t ~ 1 .  0 for 5 

E~ = {(z, ~) e ~, • C~: ~ = ~(Izl)z), 

where, as above, A = { z E C ~ : I z [ < I }  is the unit disk. This set has two branches over 

the disk A2/3(0) with one branching point at z=0 .  The branches are glued to each 

other along the circle A = { ( z ,  w): b l = ~ ,  w=0}  and become one branch {(z, w): w=0} 
for 2 5~<lzl~<l. Consider some points A l = ( a l , 0 )  and Aa=(a3,  v / ~ )  of E1 and a point 

2 1 and A2 = (a2, C) with al,  a2, aa and C real and positive such that  5 < a l <  1, 0<a3 < 5 

a3 <a2 <a l .  Further, consider the complex line s  passing through the points A2 and A1, 

and the complex line s  passing through the points A2 and A3. Let al ,  a2 and a3 be 

already chosen and consider C so big that  the line s  intersects E1 in two points A3 
'- ' a' a~d A~-(a~,-V'~), with a~ real such that O<a~<a~, and the line ~:' intersects El 

only at the point A1. The set E will be constructed as a small deformation of the set 

El tJ ( ( s163  near the points Ak, k=1 ,2 ,3 ,  that  creates, as in Lemma 6, 

two branching points instead of each self-intersection point. 
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Let r > 0  be so small that  the disks A l= /~ r (a l ) ,  A2=Ar(a2)  a n d / ~ 3 = / ~ ( a 3 )  neither 
2 intersect each other nor the circle { [z[= 5 } and, moreover, do not contain the point a~. 

Denote by $1 the set (ElUg')N(AlXCw), by g2 the set ( s 1 6 3  and by g3 

the connected component of the set (EIU~:")~ (A3 x Cw) containing the point A3. Then 

each of the sets g~, k-- 1, 2, 3, is the union of the graphs of two holomorphic functions f~, 

j = 1, 2, having the same value and different derivatives, both of them real (which is easy 

to check by direct calculation) at the center of the respective disk Ak. Therefore, we 

can apply Lemma 6 to each of these sets and, if ~ is small enough, we will get branched 

coverings El,  E2 and Ea over the disks A1, A2 and A3, respectively, with two branches 

and two branching points contained in the smaller disks A t = A~/3 (al), A~ = A~/3 (a2) and 

A~=AT/3(a3). Moreover, since for each k = l ,  2, 3 the derivatives at the centers of the 

disks Ak of the functions i f ,  j = 1, 2, are real, we conclude from (9) that  one of the two k 
branching points contained in A S is contained in the half-disk { z C A ~ : I m z > 0 } ,  while 

the other is contained in the half-disk {zEA~ : Im z<0 } .  Since both branching points of 

each set Ek are contained in the respective disk A S, the set E k n ( ( A k \ A ~ ) x C ~ )  will 

be the union of the graphs of two holomorphic functions ]J ,  j = l ,  2, defined on Ak\A~ k 
and, moreover, if e is small enough, then each function j~J will be close enough to the k 
corresponding function fJ Define the functions k" 

fJ  (z)--O~------~)jk(Z)+[iz--aki'~[J ( l - - o ( ~ ) ) f ~ ( z ) ,  

for zE k\Z  , k=1,2 ,3 ,  j = l , 2 .  Let be the union of the graphs of and ]: .  Now 
we can define the set E as 

3 3 
g ~  ( ( E 1 U ( ( ~ t L J ~ t l ) A ( S X C w ) ) ) \ 2 1 ~ k ) =  I Jk=lU (~k[-J(~-~kN(~lkXCw)))" 

Define also the set E r~g as E with the circle ,4, the point A~ of the transversal self- 

intersection of E and all the branching points of E being removed. Then, by our 

construction, E reg is a smooth connected 2-dimensional surface transversal to the w- 

direction. 

Note that  each fiber E(z) of the set E has at most four points and that  the fibers 

E(z) depend continuously on z E/~ in the Hausdorff metric. 

CLAIM 1. H I ( A x C ~ \ E , Z ) = 0 .  

1 Consider the point Proof. Let a be a real positive number such that  a 3 ~ a <  ~. 

A=(a,-v/-a)CE and a disk ~={(z,w):z=a, ]w+v~i<s} so small that  it intersects 

the set E only at the point A. We first prove that  the circle C~ = b7)~ is homological to 

zero in A x C ~ \ E .  
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Consider the curve z(t) in Cz defined as 

l a(1-t)+(ai+r)t 
al + re ~r~( t- 1) 

z ( t ) =  (al-r)(3-t)+(a3+r)(t-2) 
a3 + re ~i(t-3) 

(a3-r)(5-t)+~(t-4) 

for O~<t~< 1, 

for l < t ~ < 2 ,  

for 2 < t ~ < 3 ,  

for 3 < t ~ < 4 ,  

for 4 < t ~ < 5 .  

2 If 7r~:Cz, w--+C~ is the projection, then the curve z(t) admits  a uniquely defined lifting 

by 7r z 1 to the piecewise smooth curve 3  ̀in E with the initial point A. 

The curve 3' is transversal to the w-direction and has one point of self-intersection, 
2 0 ,  namely, the endpoint ( 5 , )  where two smooth curves on the side { Iz [<~}  meet each 

other. 

The geometric description of the curve 3  ̀ looks as follows. We star t  from the point 

A= (a,-v l-a), and then, over the segment {z: a~<Re z<25, Im z = 0 } ,  the curve 3  ̀ is con- 

2 <.Rez<~al-r, tained in the "lower" branch of the set El ,  while over the segment {z: 5 

I m z = 0 } ,  3  ̀ is contained in the only branch {(z,w):w=O} of E1 for [z]>-~. Since 

both branching points of E1 are contained in A l = { Z :  Iz-all<r}, and since only one 

of them is contained in the half-disk { z E A l : I m z > 0 } ,  we conclude that  over the seg- 

ment {z:al-r ~<Re z<~al +r, Im z = 0 }  the curve 3  ̀ will "change from the branch E1 to 

the branch s Then, over the half-circle {z: [z-al[=r, Imz>O} and the segment 

{ z : a2 + r ~< Re z ~< al - r, Im z = 0}, 3  ̀is coat ained in E I. After that,  applying the same ar- 

gument as we used for the segment { z : a l - r ~ < R e  z<<.al +r, I m z = 0 } ,  we conclude that ,  

over the segment {z:a2-r<.Rez<.a2+r, I m z = 0 } ,  the curve 3  ̀ will "change from the 

branch s to the branch s Then, over the segment {z : a 3 + r ~< Re z ~< a2 - r, Im z = 0} 

and the half-circle {z: Iz-a31=r, I m z > 0 } ,  3' is contained in/2//. After that ,  the same 

argument  as above shows that ,  over the segment {z:a3-r<.Rez<.a3+r, I m z = 0 } ,  the 

curve 3  ̀will "change from the branch s the branch E l" .  And finally, over the segment 

{z: a3 + r  < R e  z ~< 2, Im z = 0 } ,  the curve 3  ̀ is contained in the "upper" branch of E1 up 

to the endpoint (-~,0), where we meet the first part  of the curve 3  ̀which is (for Izl <-~) 

contained in the "lower" branch of El. 

For each zoETrz(3`) and each s>O, consider the sets 

and 

Fs(zo)={(zo,w): min ]w-w'l=s } 
(z0,w')~7 

as(zo)={(zo,w): min ]w-w'l<s }. (zo,w')e~/ 
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Then, for s small enough, each set f~s(z0) is the union of finitely many (at most three) 

disks in {z0}xew,  which are disjoint if z0 is far enough from the circle {Izl=~}, and 

is the union of two connected components, one of which is a disk and the other one is 

2 and z0 is close enough the union of two disks having nonempty intersection, if Iz01< 5 
2 to the circle {Izl=~}. As Iz01~-~ from the side {Izl<~}, the centers of the two disks 

constituting the second connected component of f~s(z0) become closer to each other, 

and for [zol~> ~ this component becomes just one disk. Each set f~s(z0) has a natural 

orientation induced from Cw and, hence, Fs (z0)= bf~s (z0) has also a natural orientation. 

Consider the set 

r s =  U G(z0) .  

Since the curve "7 is piecewise smooth, it follows from the definition of F~(z0) that  the 

set Ts is a piecewise smooth surface of dimension 2 in A x Cw with the boundary on 

the above chosen circle G .  Moreover, since "7 is oriented, and since each set F~(z0) is 

oriented, we can also orient the surface T~. Topologically, T~ is a torus with a disk 

removed, C~ being the boundary of this disk. Since the curve "y cE  is transversal to the 

w-direction, we conclude that  T ~ c A  x C ~ \ E  for s sufficiently small. This implies that  

the homology class [Cs] of the circle C~ in H1 (A x C ~ \ E ,  Z) is trivial. 

Now we observe that,  for each point (z, w)EE reg, the circle 

G(z,  w) = {(z, w ' ) :  Iw-w'l = 

is homological to zero, if s>O is small enough. Indeed, since the set E reg is connected, 

there is a smooth curve ~ C E  reg connecting the points A and (z, w). Then, for s>O small 

enough, the set 

34s = {(z,w'): fw-w'l (z, w) 

is a smooth "cylinder" of dimension 2 which is contained in A x C w \ E  and has its bound- 

ary on C~(z, w) and C~. Therefore, the circles G(z, w) and C~ represent the same homol- 

ogy class in HI (A  x C ~ \ E ,  Z). Since C~ is already proved to be homological to zero in 

A x Cw\E ,  it follows that  C~(z, w) is also homological to zero in A x Cw\E.  

Finally, let C be any smooth closed curve in A x C ~ \ E .  Then, there is a 2-dimen- 

sional disk/9 smoothly embedded into A x C~ such that  C = b79. We can assume that  the 

disk 79 is in general position, in particular, that  79 intersects E in finitely many points 

{(zp, Wp)}pk=l which are contained in E reg. Without loss of generality, we can also assume 

that  79 is parallel to the w-direction in a neighbourhood of each point (Zp, Wp). Then 

the disks 79~(Zp, Wp)={(Zp, w'): Iw~-~'l~<~} are contained in 79 for s > 0  small enough. 
k Therefore, C=b79 is homological to Up=l b79s(zp, wp) in A x C ~ \ E ,  the homology being 

79\Upk=l 79~(Zp, Wp). Since each circle Cs(zp, Wp)=b79s(Zp, Wp) is already proved to be 
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homological to zero in A • C ~ \ E ,  we conclude that  C is also homological to zero. The 

proof of the claim is now completed. [] 

As an application of Claim 1 we show the following property of the set E: 

CLAIM 2. There exists a neighbourhood U(E) of the set E which does not contain 

any subset of ~ • C~ defined by a Weierstrass pseudopolynomial. 

Proof. Assume, to get a contradiction, that  every neighbourhood U(E) of E con- 

tains a subset defined by a Weierstrass pseudopolynomial. For R big enough consider the 

circle CR = { (z, w): z =0,  I wl= R} C A • C ~ \  E oriented counterclockwise in the w-variable. 

Then, in view of Claim 1, there is a 2-chain S such that  bS=CR and supp SC A • C ~ \ E .  

The last inclusion implies that  there exists a neighbourhood U(E) of E such that  

suppSNU(E)=O.  By our assumption, there is a subset /~ of U(E) which is defined 

by a Weierstrass pseudopolynomial, i.e. it has the form (1) with al(z), a2(z), ..., am(Z) 

being continuous functions. Since supp S N/~= ~,  the homology class [gR] of the circle gR 

in HI (A • C ~ \ E ,  Z) is trivial. Consider the continuous map ~: A • C w \ E - + S  1 defined 

by 

w'~+al(z)w'~- l  + '"+am(z)  (11) 
�9 (z, w) = iwm+al (z)wm_ 1 ~-..._~am(Z) I . 

Then, on one hand, [gR]=0 in H I (A  • C ~ \ E ,  Z) and, hence, O.([gR])=0 in HI(S  1, Z). 

On the other hand, the term w m in the numerator of formula (11) will dominate for 

(z, w)CCR, if R is big enough. Therefore, the degree of the restriction of �9 to CR (it is a 

map from S 1 to S 1) is equal to m. Hence, O.([CR])=m[S1]r in HI(S  1, Z). This gives 

the desired contradiction and proves the claim. [] 
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