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1. I n t r o d u c t i o n  

Let f t c R  ~, n>~2, be a bounded Lipschitz domain with connected boundary 0n .  The 

main purpose of this article is to solve the following Neumann problem for the biharmonic 

equation in Lipschitz domains: 

A 2 u = 0 ,  (i.I) 

p A u + ( 1 - - v )  Oqeu  =fo, 
(1.2) 

OAU+(l_v) l 0 ( 02u ) 
ON ONOTi  =A0. 

Here f0 is prescribed in an appropriate  Lebesgue space LP(Of~) with respect to surface 

measure ds, A0 is a linear functional prescribed in the dual space to the Sobolev space 

WI'P'(Of~) with respect to surface measure, and v is a constant known as the Poisson 

ratio. A unique solution u (modulo linear functions) is obtained in the class of solutions 

with nontangential maximal  function of the second-order derivatives in LP(oq~). 
The letter N denotes the outer unit normal vector to the domain, and T various 

tangential  directions to the Lipschitz boundary. The components of these vectors are 

not bet ter  than bounded measurable functions. If the Poisson ratio takes the value 1, 

the problem is not well-posed. Consequently the second- and third-order directional 

derivatives in (1.2) are always present. The second-order derivatives, formed with the 

Hessian matr ix  for u, do not include differentiations of the component  functions. The 

third directional differentiation does, in the sense of distributions. 

The quantities in the boundary  operators depend only on the local Lipschitz geome- 

t ry  of the domain. Because this geometry is measured in a scale-invariant way, estimates 
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for the Neumann problem (1.1) and (1.2) must also be scale invariant if they are to de- 

pend only on the geometry. Moreover, the boundary operators are independent of any 

particular choice of orientation for the rectangular coordinate system. The boundary 

operators are intrinsic to the geometry of the boundary. 

Compact polyhedral domains of R n, n~>3, offer a similar but slightly different set- 

ting, in which solving a Neumann problem like this can be considered. The geometry 

there also demands scale-invariant estimates for scale-invariant equations such as (1.1). 

But unlike Lipschitz domains the boundaries of generic polyhedra are not locally graphs 

of flmctions, even when the boundary is (topologically) a manifold. There is no orienta- 

tion of a coordinate system to exploit. Tha t  the problem (1.1) and (1.2) is formulated 

in a way that  is independent of the local graph property of Lipschitz domains suggests 

that  it might also be solvable in polyhedra. 

The above Neumann problem has another trait, established below in Lipschitz do- 

mains, which seems to be needed in the polyhedral setting. Any exceptional subspaces 

of data, for which uniqueness or existence or estimates fail, not only are finite but can be 

described explicitly and seen to be independent of the domain. The subspace of linear 

solutions is a typical example. In contrast, a problem involving oblique derivatives, per- 

haps from a smooth vector field in order to avoid some of the nondifferentiable quantities 

in (1.2), is unlikely to yield such definite information. 

These distinctive features are shared with the Neumann problem for Laplace's equa- 

tion and have been used to study that  problem in polyhedra in recent joint work with 

A.L. Vogel [45]. There the regions near nongraph corners and edges are decomposed 

dyadicly into similar Lipschitz polyhedra at all (vanishing) scales. Use is made, there- 

fore, of the orientation invariance of the problem and the scale invariance of the Lipschitz 

domain estimates. The constant functions are the only exceptional space of solutions and 

are seen to not enter into any of the estimates. In contrast, if finite-dimensional excep- 

tional spaces of solutions were allowed to accumulate from the local analysis of each 

corner and edge, one might very well conclude that  the problem is Fredholm in a com- 

pact polyhedron, but such a conclusion would not seem very meaningful. After all, the 

Neumann problem is a variational problem. In the end only the constant solutions should 

be exceptional, especially in domains that  would seem to present only a finite number of 

difficulties. 

The Neumann problem here is variational. It is a straightforward generalization, 

to higher dimensions and nonsmooth domains, of Gustav Kirchhoff's solution to the 

problem of modelling small deflections of a thin elastic plate with free edges. Our most 

immediate source was an article by J. Giroire and J.-C. N~d~lec [17], where the problem 

is considered in smooth planar domains and solutions studied in the class W2'2(ft). Their 
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results, which center around obtaining integral representations with integrable kernels, 

are extended to polygonal domains in [28]. In this same vein the problem appears in 

[2, pp. 679-681]. Each of the first two articles refers to "Kirchhoff's hypothesis". 

S. Agmon [1], also working in the plane with the Hilbert space approach, exhibited 

the inhomogeneous version of (1.1) with vanishing Neumann data and u outside the closed 

interval [-3,  1] as an example of a regular self-adjoint boundary value problem that  fails 

to have its eigenvalues confined to a half-line. See w below. Earlier /~. Pleijel [34] 

had considered the eigenvalue problem with 0~<u<l, and he refers to the article of 

Friedrichs [15], where the boundary operators can be found on pp. 224 225. In [35, 

pp. 415 and 426], systems of integral equations of the second kind (singular integrals) 

on a smooth closed arc are proposed for the Dirichlet problem (clamped edges), the 

problem of supported edges, and the Neumann problem. Completely solving the systems 

is described as "evasive", and solutions are limited to those used in constructing Green 

functions after a method of H. Weyl. The classic engineering text [27, pp. 106-116 and 

251-252] contains a fascinating discussion on the mathematical history of the problem 

solved by Kirchhoff, together with its current formulation due to Kelvin and Tait. 

In this article solutions are shown to exist with derivatives up to second order that  

converge pointwise nontangentially a.e. (ds) and in LP(Oft). The third-order data  is 

shown to converge in the sense of distributions (using parallel approximating boundaries) 

in the s p a c e  W-I 'P (0~ )  dual t o  WI'p'(o~). The analysis here is basically p=2,  but a 

perturbation of all estimates to a small interval about p = 2  is shown to depend only on the 

Lipschitz geometry of the domain, and solvability there also follows. The optimal range 

for p, which from known results will also depend on dimension, must be investigated 

elsewhere. 

As with harmonic functions, the data  for the biharmonic Neumann problem is dual 

to the data (u,-Ou/ON) EWI,P'x L W for the corresponding Dirichlet problem. Also, as 

in the harmonic case, solutions to the Neumann problem coincide with those for the 

biharmonic regularity problem. This last problem is also a Dirichlet problem, but with 

data prescribed in a one-derivative-smoother space of functions than WI'p 'x L p'. See w 

The higher-order Dirichlet and regularity problems are well understood in Lipschitz do- 

mains [33], [8]. The analysis here shows for the first time that  the variational dual to 

the Dirichlet problem for higher-order elliptic equations, with distributional highest-order 

data, can be solved in the strong sense of pointwise nontangential limits at the boundary. 

This is begun with the observation that  for harmonic functions in Lipschitz domains, 

not only are there two Dirichlet problems that  can be solved in the strong pointwise 

sense, but there are two Neumann problems as well. The first, with data  in L2(Of~), was 

solved by D.S. Jerison and C.E.  Kenig [21]. This was extended by B. E. J. Dahlberg 
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and C.E.  Kenig to include data  from the LP-spaces, 1 < p < 2 + ~  [7]. The second Neu- 

mann problem takes its data  in the space of bounded linear functionals W-I'P(O~). Its 

solutions coincide with the harmonic solutions to the Dirichlet problem with data  in 

LP(0~),  inducing an isomorphism between W-I'P(Of~) and LP(Of~). This is the content 

of Proposition 4.2, which gives a concrete and independent representation for the spaces 

of data  used in the biharmonic Neumann problem. Its proof is an application of results 

on the harmonic Dirichlet, Neumann and regularity problems [6], [21], [22], [7], [41]. 

Next, the isomorphism makes it possible to interpret the biharmonic analogue of 

Jerison and Kenig's Rellich formula [21] as an energy estimate, for solutions, on the 

boundary in terms of the data  (1.2). The simple algebraic-geometric step (6.8) that  

leads to the (1 -v ) - t e rms  of (1.2) is the familiar decomposition of derivatives on the 

boundary into normal and tangential components. As shown later in the proof of The- 

orem 7.7, the formula (6.9) is a genuine Rellich formula, like the harmonic one, in that  

the regularity data and Neumann data  are shown by it to be equivalent in norm. This 

is not the case with the earlier higher-order boundary energy estimates [43], [33] that  

led to solutions of the Dirichlet and regularity problems. It is notable that  these earlier 

formulas depended on existence of conjugate solutions produced by integrations in the 

domain up to the boundary in a direction transverse to the boundary. This very useful 

idea, which originated in [39], plays no role here and is not possible in polyhedra. 

The biharmonic Rellich formula is proved for ( l - n )  - ]  ~<v<l, and the Neumann 

problem is solved in this same range. The customary range for plate problems seems to 

be 0<P< �89  ([20, p. 99], [14, p. 118] and [4, p. 129]). It is apparently tied to 3-dimensional 

considerations. In [18, p. 63] the right endpoint is said to correspond to incompressible 

materials, while on p. 167 the left endpoint is said to correspond to 1-dimensional motion. 

Both correspondences are corroborated by the nice illustration on p. 126 of [4], which 

shows ~, measuring the relative decrease in diameter to relative increase in length when an 

elastic cylinder is deformed axially. If volume were to decrease when length is increased 

(i.e. increase if the cylinder is axially compressed), calculating 1 >(1 +AL/L)(1 + AD/D) 2 
shows that  infinitesimally 

- A D / D  1 
- -  - - l ] )  - - .  

AL/L 2 

Some of the authors cited above have worked in a range up to v = l  when n=2 .  It is 

mathematically possible to do so, and corresponds to replacing volume with area in the 

above calculation. Likewise, negative values for the Poisson ratio are dealt with here. 

Physically these imply simultaneous increases in an axially deformed cylinder's diameter 

and length. The last chapter of [18] describes a material called antirubber that  behaves 

in this way, invented by Roderic Lakes of the University of Iowa. 
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A priori estimates for the Neumann problem follow from the Rellich identity. Because 

pointwise limits for solutions to the biharmonic regularity problem are known, it would 

be possible by limiting arguments to identify these solutions with weak solutions to the 

Neumann problem obtained via the Lax-Milgram lemma in the manner of [21] and [22]. 

The alternative argument used here is based on the second major result of this article. 

The a priori estimates are applied to biharmonic layer potentials, both double and single, 

and invertibility on Lipschitz boundaries of layer potentials associated with higher-order 

equations is established for the first time. In fact, given the spaces of data  and t2 c R n, the 

results here seem new even for smooth domains (Theorem 11.3). Previously a systematic 

use of layer potentials on Lipschitz boundaries was confined to second-order equations 

and systems [41], [10], [13], [16], [26]. 

One justification for using the layer-potential approach to solve the Neumann prob- 

lem is that  it is theoretically possible to do so without first knowing the solution to 

the Dirichlet problem. By solving the integral equations for the Neumann problem one 

obtains a solution to the Dirichlet problem because of a duality between the boundary 

operators for the two problems. This is shown to work for the biharmonic layer poten- 

tials in w though the Dirichlet problem is already solved [9]. None of the biharmonic 

problems discussed here are as yet understood in polyhedra, however. 

Pointwise limits of derivatives of potentials, acting on LP-functions and linear func- 

tionals from the w-l,p-spaces,  are shown in w to follow from Coifman-McIntosh 

Meyer [5]. The singular integrals of theirs that  appear here are shown to map between 

the W-l 'P-spaces,  in the sense of distributions. In addition, Lemma 8.1 proves the nor- 

mal derivative of the classical double-layer potential to be invertible from L~(O~) to 

Wol'P(O~). Continuity and jump discontinuity across the boundary when the boundary 

operators (1.2) are applied to the biharmonic single-layer potential (9.1) are analyzed. 

Results precisely analogous to the classical harmonic case are obtained, resulting in a 

system of integral equations of the second kind, (9.6). 

As in the harmonic case the method of compact operators does not apply on Lip- 

schitz boundaries to solve (9.6). However, the equivalence in norm between Neumann 

and regularity data that  followed from the Rellich identity allows the method of [41]. 

The spaces of data  X p analogous to the functions of mean value zero for the harmonic 

Neumann problem are introduced in w together with a reduced space for the case 

~ = ( 1 - n )  -1. The algebraic kernels of the boundary operators are precisely described 

and closed range established. Complete descriptions of the ranges for the various sys- 

tems (interior, exterior, v-dependence, p-dependence) for all n~>2 follows by continuity 

methods from the previously mentioned solution of the integral equations in smooth do- 

mains. For this latter result the Riesz-Schauder theory applies. However, care must be 
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taken because not only are there identity operators and compact operators, but there 

are also Hilbert-transform and Riesz-transform operators involved. A perturbation ar- 

gument of A. P. Calderdn is used to pass from p = 2  to 2 - s < p < 2 + s ,  and the complete 

solution of the integral equations is stated in Theorem 12.1. 

As also discussed in the next section. Calderdn's argument, the Rellich identity 

and [5] make it transparent that  the estimates on solutions here depend only on p, u and 

the Lipschitz geometry of the domain. The biharmonic Neumann problem is stated and 

solved for interior data in in this way in Theorem 13.2. 

The biharmonic analogue of the classical double-layer potential is defined in the 

following section, and all solutions to the Dirichlet problem, 2 - s  < p <  2+c,  are shown to 

be represented by it. 

The exterior Neumann problem is resolved in Theorem 15.4, with particular at- 

tention paid to rates of decay and exceptional spaces of solutions. For example, the 

harmonic analogue of Theorem 15.2 would state that  in the plane a harmonic function 

with vanishing Neumann data and o(IXI) at infinity must be constant. 

w167 are devoted to completing the biharmonic layer-potential theory in analogy 

to that  for harmonic potentials in all dimensions and for 2 - s < p < 2 + s .  This includes 

analyzing both the single-layer potential and the double-layer potential as invertible op- 

erators that can be used to solve the problem of regularity for the Dirichlet problem, 

as well as establishing the biharmonic analogues of certain classical operator identities, 

e.g. (18.4). The regularity problem is described in w and the biharmonic single layer 

is shown to map onto all possible regularity data when n~>3 and p = 2  in Theorem 17.5. 

As known from the harmonic case, potential-theoretic arguments reduce the question of 

range to that  of uniqueness. Here is where the lack of decay of the biharmonic funda- 

mental solution in dimensions 2, 3 and 4 becomes of concern, with Remark 16.3 showing 

why n ~> 5 poses no difficulties. In the low dimensions we begin by using the Kelvin trans- 

form in order to identify biharmonic analogues to the classical equilibrium distribution 

from potential theory. See [19], [36], [46] and Remark 4.4 below. In the harmonic case 

this is the density in the single layer that  produces the constant solution. In the bihar- 

monic case, linear (affine) solutions. See Definitions 16.1 and 17.1. A classical theorem 

of Hadamard, on the biharmonic Green function, is produced here in Lipschitz domains 

(Remark 16.8). 

A good deal of effort is devoted to this kind of low-dimensional precision throughout 

the article. In polyhedral domains the harmonic Neumann problem is understood in the 

strong pointwise sense only in dimensions 3 and 4, dimension 3 being somewhat critical 

as far as estimates are concerned and dimension 4 somewhat interesting topologically 

[44], [45]. This is one motivating factor. Dimension 2 is examined in detail because it 
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is in classical plate problems that  biharmonic functions seem to have their one direct 

application to physics. 

The distinction between v = ( n - 1 )  -1 and v > ( n - 1 )  -1 in the various theorems is 

slight. It is interesting, however, that  below this endpoint, p = 2  counterexamples in Lip- 

schitz domains can be constructed. This is done in Lemmas 21.1 and 21.2. The example 

there also illuminates the meaning of Neumann data taken in the sense of distributions. 

An interesting relationship between the type of solvability here, the Lopatinskii-Shapiro 

conditions, and classical coercivity estimates, is also indicated in that  section, based on 

a reading of Agmon's article. 

The article ends somewhat where it began, with the second Neumann problem men- 

tioned above, solved for biharmonic functions and named subregularity for the Neumann 

problem. An example is given that  uses its boundary value operators in order to formulate 

the Neumann problem in Lipschitz domains for a sixth-order operator. 

2. S o m e  c o n v e n t i o n s  

Points of R n will generally be denoted by X, Y and Z, with components X = (X1, ..., Xn). 

Lebesgue measure in R n is written dX. Euclidean distance between sets of points will 

often be denoted by dist( . , .  ). Partial derivatives O/OXj will usually be written Dj, and 

the gradient operator V=(D] , . . . ,  Dn). If c~--((~1,..., an) is a differentiable vector field, 

its divergence will be denoted div (~=DI(~I§ where repeated indices 

generally indicate summation notation j = l ,  ..., n. Double summation notation will also 

be used as in 0(0) 
The Kronecker 5 is denoted by 5ij. The operator A = d i v  V denotes the Laplacian and A 2 

the bi-Laplacian. F X and B x are used for the fundamental solutions for the Laplacian 

and the bi-Laplacian, respectively, with pole at X (w and Wn is the surface area of 

the unit sphere sn - lCRn .  All second derivatives of u will be denoted by VVu,  which, 

more precisely, will stand for the Hessian matrix of u, especially in the Hilbert-Schmidt 

norm IVVul2=DiDjuDiDju.  The inner product V u . V v = D i u D i v  will be used, and 

directional derivatives a-~Tu or Tij .Vu=Ou/OT~j will not necessarily mean that  the vec- 

tor field is of unit length. However, N always denotes an outer unit normal vector to 

a bounded domain. Closure of ~ is indicated by ~, and ~c denotes its open comple- 

ment. Points on the boundary 0gt will generally be written P and Q (but sometimes X 

and Y). Function spaces on the boundary are with respect to surface measure ds. Gener- 

ally, f ,  g and F denote LP(c~t)-functions or wl 'p(0Q)-Sobolev functions, and A denotes 
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linear functionals from the dual space W-I,P'(Oft) (w Dual exponents are defined by 

p+p'=pp'. The notation ]]. ]]p always indicates an LP-norm on the boundary. C~ de- 

notes compactly supported infinitely differentiable functions of R n, while the 0-subscript 

in L~, t,p W~ , etc. indicates mean value zero. By linear functions is meant polynomials of 

degree one. Affine is used only when distinguishing certain equilibrium distributions. 

3. Lipschitz domains  

A bounded domain ~ of R n is a Lipschitz domain if for each QEOI] there is a rotation of 

the Euclidean coordinate system of R n = R  n-1 x R and a neighborhood Af of Q such that  

A f n 0 ~  equals the intersection of Af with the graph of a real-valued Lipschitz function 

defined on R ~-1 [6]. It follows that surface (Lebesgue) measure ds is well-defined as 

well as are normal vectors N a.e. (ds). See Denjoy, Rademacher and Stepanov's theo- 

rem [38, p. 250]. It is possible to quantify the Lipschitz geometry or Lipschitz nature or 

character of the domain by the (local) Lipschitz norms and the finite number of neighbor- 

hoods Af needed to cover 0gt (see, for example, [33, p. 21]). In particular, the Lipschitz 

character remains uniform over the domain approximation scheme below, first shown to 

exist by Neeas [29]. See [41, p. 581] and [33, p. 23] for a more precise statement. 

Let gt be a bounded Lipschitz domain with normal vector field N and surface mea- 

sure ds. 

Definition 3.1. A sequence of smooth (C ~) approximating domains ~'~jC~ (or 
~j  D ~) has the properties that  

(i) each Ogtj is homeomorphic to Oft, with QO)cO~j mapped to QEOfl only if Q(J) 

is contained in the nontangential approach region (see below) for Q; 

(ii) Euclidean distance between points under the homeomorphism vanishes uni- 
formly as j-+oc; 

(iii) the normal vectors N 0) converge, when mapped by the homeomorphisms, in 

every LP(O~), p< oc, and pointwise a.e. (ds) to N (and similarly for the naturally defined 

tangent vectors); 

(iv) the Jacobian determinants under the homeomorphisms are uniformly bounded, 

bounded away from zero, and converge in every LP(O~), p<oo, and pointwise a.e. (ds) 
to  I ;  

(v) there are C~176 fields a that  can be constructed to depend only on the 

Lipschitz geometry of Ft, and a constant C > 0  depending only on the Lipschitz geometry, 

such that  a.N O) >~C uniformly in j and points of Oflj. 
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Recall that  the nontangential approach region for each QEO~ is 

A(Q) = { X c a :  dist(X, Oft) > ~IX-QI},  

where 0</3< 1 is fixed small enough depending on the Lipschitz nature of ft. The regions 

are also defined for ~c. Given a (perhaps vector-valued) function F in ft the nontan- 
gential maximal function at Q is defined by N(F)(Q)=suPxeA(Q ) IF(X)I, QcOft. By 

nontangential limits, when they exist, are meant limx_~Q; XcA(Q)F(X), for Q c0f t .  

There is an c>0  depending only on the Lipschitz geometry of ft so that  existence 

and uniqueness for harmonic functions in the sense of nontangential limits are known, 

as referenced in the introduction, for the Dirichlet problem in the class N(u)ELP(Of~), 
2 - c  <p~< oc; and for the Neumann and regularity problems in the class N ( V u ) E  L p (Oft), 
l~<p<2+e.  Thus the interval 2 - c < p < 2 + s  (or p < 2 + c  or 2 - c < p ' ,  etc.) will be written 

frequently with the understanding that  the ~ depends only on the Lipschitz geometry 

of ft, either as shown here or as derived from these theorems on harmonic functions. 

4. R e p r e s e n t a t i o n  o f  d u a l  spaces  for 

S o b o l e v  spaces  o n  L ipsch i t z  b o u n d a r i e s  

Let ~ c R  n be a Lipschitz domain. The Sobolev spaces WI'P(O~) with weak first deriva- 

tives in LP(O~), l<~p<~oc, can he defined in a global fashion by saying that  fcwl'p(c3~) 
if and only if there exist functions gjkELP(Oft) so that  for all C E C ~ ( R n ) ,  

f o f ( N j D k - N k D j ) r  foa~gjkds , i<~j<k<~n, (4.1) 

and so that  compatibility conditions ((,~1) of which are independent) 

Nlgjk = Nkgjl--Njgkl, l <.j < k < l <~ n, 

are satisfied. Let f~ be a bounded domain and denote by 10ft] the surface measure of its 

boundary. Then WI'P(OFt) is a Banach space with norm 

Ilflll,p =/0ftll /cl-n)llfl lp+ Ilgjkllp, (4.2) 

where I[" lip will always denote the LV-norm on the boundary 0~  with respect to surface 

measure. Because the boundary is locally a graph, it can be seen that  this definition is 

the same as that  defined by flattening the boundary to R n-1 in order to lift the Sobolev 

spaces defined in Euclidean space to the boundary. See [45]. 
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When ft has connected boundary, the Sobolev spaces W~'P(Of~) of WI'P(Of~) - 

functions with mean value zero will also be considered. By the Poincar6 inequality the 

norm (4.2) on this space is equivalent to Ilfiil,p-i0ftl 1/(l-n) Iifllp by constants depending 

only on the Lipschitz geometry of ft. 

Define the vectors Tjk=(0 ,  ..., 0, --Nk, 0, ..., 0, Nj, 0, ..., 0), where only the j t h  and 

kth components can be nonzero, l<~j<k<~n. Put  Tkj=--Tjk, l<<.j<k<~n. The notat ion 

Tjj will stand for the zero vector. Denote the tangential derivatives in (4.1) by O/OTjk. 

The dual spaces W-l'P'(Oft) are defined to be the Banach spaces of bounded linear 

functionals A: WI'p(oft)-+R with norm ]lAll_l,p,=sup{(A, f ) :  ]]f l l l ,p=l}.  Let W o  l 'v'  

likewise indicate the functionals on W l w  (0~).  When A E W 0-1,p' it will always be under- 

stood that  A maps the constant function to zero. 

Definition 4.1. Let ft be a Lipschitz domain and ftj C f~ a sequence of smooth approx- 

imating domains (Definition 3.1). Let F be a continuous function in Q with nontangential 

limits f a.e. (ds) on Oft. Given a harmonic function h in f~, the normal derivative in the 

sense of distributions Oh/ON will be said to act on f in the sense of distributions by 

Oh = lim - ~  ds 

if the limit exists, where N denotes the outer unit normal on the boundary over which 

the integral is taken, and ds denotes surface measure on the boundary over which the 

integral is taken. 

The following proposition identifies in this way certain harmonic functions with 

functionals AEW-I ,p ' (0 f t ) .  For f E W  x'p, we will write (A, f )=fon  A f  ds with the under- 

standing that  in general the integral is defined only in the above sense of distributions. 

When Q is Lipschitz, the pairing of Sobolev spaces and their duals on the boundary 

has the following representation: 

PROPOSITION 4.2. Let f t c R  n, n~  2, be a bounded Lipschitz domain with connected 
boundary. Let 1 < p ~ < 2 + c  and p + p'= pp', where ~--~( f t )>0  is such that the p'- Neumann 

and regularity problems are uniquely solvable. Then: 
(i) Given AE Wol'P(O~) there exists a unique harmonic function h in gt with N(h)E 

LP(O~) and hEL~(Oft) such that h=Oh/ON in the sense of distributions, and so that 

given any f E wl'p'( oft ) and its P oisson extension P ( f ) , 

fo fo ~Oh Jof ~OP(f)ds (A, f)  = aAf  ds= a f ds= lah . (4.3) 
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Any such h supplies a linear functional AhEWol'P(Oft), and the map 

h, > Ah:L~(0a) > Wol'P(Oft) (4.4) 

is an isomorphism with bounds depending only on the Lipschitz geometry of ft. 

(ii) For n>~3, given AEW-I,P(0ft)  there exists a unique harmonic function h in ~c 

with N(h)ELP(Oft) so that A=Oh/ON in the sense of distributions, with (4.3) holding 

for all fEWl'P'(Oft), and P( f )  uniquely determined by P( f ) (X)=O(IXI  2-'~) at infinity. 

Any such h supplies a linear functional Ah, and the map 

h l > Ah: LP(Oft)  > w - l ' P ( ( ~ f t )  ( 4 .5 )  

is an isomorphism with bounds depending only on the Lipschitz geometry of ft. 

(iii) For n = 2  everything in statement (ii) holds with the exception that for h with 

constant boundary values on Oft the nontangential maximal function must be defined with 

truncated cones, i.e. there is a l-dimensional subspace of harmonic functions needed for 

the isomorphism which behave like log IXI at infinity. 

Proof. For (i), referring to Definition 4.1, Green's second identity in each ftj, to- 

gether with nontangential estimates and pointwise limits from [6], [22] and [41] for the 

Dirichlet and Dirichlet regularity problems justifying Lebesgue dominated convergence, 

shows that  any h as described satisfies the third equality in (4.3) and thus supplies a 

bounded linear functional. 

Given any A, the linear map OP(f)/ON~-+{A, f) ,  when fEW~'P'(OQ), is a map on 
/ 

L~ (0Q)-functions by solvability of the Dirichlet regularity problem [41], and is bounded 
t 

and defined on all of L g (Oft) by the solvability of the Neumann problem [21], [7]. Thus by 

duality of Lebesgue spaces and solvability of the Dirichlet problem [6], there is a unique h 

with boundary values in L~(Oft) that  represents this map and therefore the map f ~  {A, f )  

by (4.3). The LP-estimates for the cited harmonic boundary value problems depend only 

on the Lipschitz nature of ft, as then do the bounds in the isomorphism (4.4). 

For the case n = 2  in the exterior domain, a number of facts from pp. 592-598 of [41] 

are useful. Let k(g) denote the classical (harmonic) double-layer potential of a density 

g defined on the boundary. Let s(f)  denote the classical single layer, and let c denote 

a constant function. There is a unique nonnegative function f* depending on ft and 

satisfying IIf*l12=l such that  s(f*) is constant in ft and is O(log IXl) at infinity (f* is 

known as the equilibrium distribution [46], [19]). It can happen that  the constant value in 

ft is zero (for any domain depending on how the plane is scaled). The boundary values of 
! 

s(f*)+c then, for an appropriately chosen c, together with those of s(f)  for fEL~(Oft) 

span Wl'p'(oft). The single layer s(f) is o(Ix1-1) at infinity. The boundary values 
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of k(g), when taken form the exterior domain, always integrate against f* to yield zero, 

and k(1) is identically zero in the exterior domain. For gELP(Of~), the k(g) together 

with s(f*)+c span LP(O~). The space Wol'P(Of2) is spanned by the Ok(g)/ON, while 

Os(f*) _ f .  (4.6) 
ON 

so that  W-l'P(0f~) is spanned. In proving the third identity of (4.3), only the pairing 

of O(s(f*)+c)/ON with s(f*)+c lacks the needed decay at infinity. But no integration 

by parts is needed in this case. Thus (iii) follows in the same manner as did (i), and the 

proof of (ii) will be left to the interested reader. [] 

Remark 4.3. Taking h to be the constant function in (ii) and (iii) does not violate 

uniqueness because h will not satisfy (4.3). 

Remark 4.4. In any dimension for any domain of Proposition 4.2, there is a unique 

function f* with norm 1 such that  the single layer of f* is constant. This equilibrium 

distribution function is in (and in general no better than) LP'(Of~) for p ' < 2 + e  and is 

pointwise nonnegative. For hEL p as in (i) of the proposition one can define 

= h Ion hI*ds 

foo f* ds 

and show that  h and h have equivalent norms depending only on f* (and thus fl). 

Consequently h~+A~=Ah is an isomorphism. Biharmonic equilibrium distributions will 

be discussed in w In fact, by adapting the analysis there to the harmonic case one can 

see that  

f* is the Kelvin transform of the density of harmonic measure for the bounded domain 
obtained by reflecting ~c in the unit sphere. 

Remark 4.5. The statement in the proof, that  k(f) from the exterior integrates to 

zero against f*, is true in all dimensions. By the invertibility properties of the trace 

of the double-layer potential (see, for example, Corollary 4.4 (iv) of [41]) this property 

suffices for a harmonic function h to have a layer-potential representation in the exterior 

domain. This leads to the following proposition: 

If a harmonic function h=O(IXI l-n) at cx~, then h is represented by a double-layer 

potential. 

This follows because the decay and (4.6) show that  h must integrate to zero against 

f* by 

~o h ~ ds= fo ~ Oh ,. ~-~s(f  ) d s = 0  
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since s(f*) is constant on cgf~ and the Neumann data for h must integrate to zero on the 

boundary of expanding annular domains. 

Remark 4.6. Similarly, 

ira harmonic function h=O(IXI l-n) and N(h)ELP(OfI), then A=Oh/ONEWol'P(Of~). 

Remark 4.7. The Sobolev spaces wl'p'(oft) and WI'p'(of~) for 1<p '<2+~ are reflex- 

ive because they can be embedded as closed subspaces of a Banach space of RN-valued 

LP'-functions. See the functional-analytic argument, for example on p. 140 of [40]. The 

representation of linear functionals in Proposition 4.2 also leads to a direct argument. 

Remark 4.8. For Cl-domains, ~(f~)=oc by [12]. 

It is convenient not to have the pairing (4.3) tied to the Poisson extensions of the 

boundary Sobolev functions. 

LEMMA 4.9. Let f ~ c R  n be a bounded Lipschitz domain and let l<p~<2+s.  Let 

N" be an open neighborhood of the boundary in R n. Suppose that f is any  C l ( j ~ \ 0 ~ )  - 

function with the properties that f and its gradient have nontangential limits a.e. (ds) 

on the boundary, and have nontangential maximal functions in LP'(Ot2). As in Proposi- 

tion 4.2 let A=Ah be a linear functional from W -I'p and let flj denote approximating 

smooth domains. 

Then 
s/ :- lira  s,--lim f S Oh j-~oo j-~o~ Jo~3 - ~  dsj. (4.7) 

Proof. Using the interior estimate for harmonic functions that bounds IVhl o n  0 ~ j  

by N(h) dist-l(0ftj ,  0a), the fundamental theorem of calculus that bounds I P( f )  - f l  by 

N ( V ( P ( f ) - f ) )  dist(0ftj, Oft), and Dahlberg's solution of the harmonic Dirichlet prob- 

lem, we have 

fo Oh dsj ajl?: '(f)-f l  ~-~ ~< CIIN(V(P(f)-f))llp, Ilhllp < o c  (4.8) 

with C independent of j.  Moreover, the integrand on the left is pointwise bounded by 

the product of the two maximal functions. It follows by dominated convergence that if 

Vh is continuous at the boundary, the left-hand side vanishes in the limit. But such 

harmonic functions h form a dense class in LP(Oft). Consequently, 

Oh dsj <. limsup f I ]P(f)-fl Oh Oh l i m s u p f  I P ( f ) - f l  ~ ON ON dsj 
j--+a~ d Of~j j--+oo J O~j 

for general h by the vanishing, and can then be made arbitrarily small by (4.8). [] 
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5. B i h a r m o n i c  N e u m a n n  d a t a  

Let ft be a Lipschitz domain and let l~<p~<ec. Let GECI(ft) with N(G)ELP(Oft) and 

with nontangential limits g a.e. (ds). Let fcCl(ft) with the properties that  f and its 

gradient have nontangential limits a.e. (ds) on the boundary, and have nontangential 

maximal functions in LP'(Oft). Let fti be smooth approximating domains and let Tjk be 

any of the tangent vectors defined in w As in Definition 4.1 we say that  the distribution 
Og/OTjk acts on f in the sense of distributions by 

L O--~-g fds=. lira f OG f 
u' t  j k z-+ ~ J Oa~ ~ ds 

if the limit exists. Applying the divergence theorem in each f~i and dominated conver- 

gence yields 

L~ OTjkOg f ds = _ L g Of~ ds 

when f and G are in C2(fl). 

It follows, given this definition, that  if every fEWI'p'(Of~) has an extension as de- 

scribed, then Og/OTjkEw-l'P(Oft). In agreement with Proposition 4.2 this is true for 

p ' < 2 + e  (i.e. 2 - e < p )  by using harmonic solutions to the regularity problem. 

The biharvnonic Neumann data for solutions to A2u=0 in Lipschitz domains, gen- 

eralized to Euclidean spaces from the planar formulation, are then defined to be 

and 

02U 
M~,(u) = u A u + ( 1 - - u )  ~ - 5  C LP(Of~) (5.1) 

OAu . 1 0___0__ ( 02u 
K~(u) = - - 0 - ~ - + ( l - u )  ~ OTij \ ONOTij ) e w - l ' P ( O f t )  (5.2) 

for the exponents of integrability 2 - e < p < 2 + e  when N(VVu)CLP(Oft), and for the 

Poisson ratio ( l - n )  -1 ~<u< 1. 

Summation in (5.2) is over all i , j = l , . . . , n ,  and second derivatives are formed on 

the Hessian by, e.g., 02u/ON2=NkNiDkDlU. The factor �89 in (5.2) is an artifact of the 

double summation notation. The outside tangential derivatives in K,(u) are taken in the 

sense of distributions just described, the smooth approximation scheme of Definition 3.1 

allowing the second directional derivatives to be smooth inside ft. If ft itself is smooth, 

it can be given as {x: qb(x)<0} with V r  everywhere at the boundary. The Gauss 

divergence theorem and change of variables then show that  an integral like (summation 

notation) 
L OF OG 

a OTij OT~----~j ds 
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is invariant under rotations of the coordinate system. This and similar observations for 

the other types of derivatives suffice to show that  the Neumann boundary operators are 

formulated in a way that is intrinsic to the geometry of the boundary. 

The restrictions on p and u are, in part ,  based on the existence theorems proved in 

this article. As shown by example in Remark  21.3, existence of solutions in Lipschitz 

domains with data  in the above spaces must fail in general when the exponent p is larger 

than  the upper  limit shown for (5.1) and (5.2). This is in analogy to the harmonic 

Neumann problem and, like tha t  problem, is not the case in smoother  domains. See w 

The lower limit for p seemed natural  when considering the two terms of K~(u) separately. 

But in principle it should be possible to solve the Neumann problem for 

2 ( n - l )  
c < p < 2 + c  

n + l  

given the corresponding known results on the Dirichlet and regularity problems [31] 

and [32], and most  remarkably [37]. As proved in w the problem for p = 2  must  fail 

in general when u is not restricted as above. It  may, however, be possible to solve 

the Neumann problem for some p strictly below 2 depending on - 3 < u <  ( l - n )  -1, even 

though the problem for p =  2 is not solvable for these u. 

Taken by itself the second te rm of K~,(u) has norm bounded as 

02u 
--1,p i,j=l ~ P (5 .3 )  

when 1 < p / < 2 + c .  By Proposition 4.2 and Lemma 4.9, for this same range o f p  ~, if u is a 

solution in ft or if Au=O(IXI  1-'~) as in Remark  4.6, then 

o a K , ( u ) f  ds <<. CllVVul] p IIVTfllp,, (5.4) 

where C depends on p, the Lipschitz nature of f~ and on u. More generally, IIfHl,p' 

replaces the pt-norm in (5.4) and 

lIKe,(u) II-l,p < C IlVVu[I p. (5.5) 

6. A biharmonic Rellich identity 

Let ft C R n be a bounded Lipschitz domain. Let c~ denote a smooth vector field of a n 

tha t  is transverse to 0~2, i.e. there is a constant C--C(c~, 0 f t ) > 0  such that  

N . ~ C  a.e. on 0~.  (6.1) 
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Given a number O>~-l/n, define the differential operators 

Lij = DiDj +05ij/k (6.2) 

for i, j = 1, ..., n, where 5 denotes the Kronecker 5. 
Let A2u----0 in f~ with N(VVu)EL2(Of~). Then u is a solution to the biharmonic 

regularity problem [43], [31], and has, together with its derivatives of first and second 

orders, well-defined nontangential limits a.e. on the Lipschitz boundary. Therefore with 

limiting arguments and summation convention, the Gauss divergence theorem in smooth 

approximating domains yields the first equality, while computation of derivatives yields 

the second in 

f Lij (a.Vu) (u) dZ Lij 

= fonDj(ctVu) [ ~ + ( 2 0 + n O 2 ) N j A u l  ds 

(1 +20+nO 2) ~V(c~  .Vu). VAu dX (6.3) 

= fn(Lij(ctk)DkuLij(u)+2[Di~kDjDku+O~ijVc~k.VDkU] Lij(u)) dX 

+.~c~.V(Lij  (u)) nij (u) dX. 

The last integral of (6.3) is equal to 

- foaN'c~Lij(u)Lij(u) l /n 1 ds - -~ div c~ Lij (u) Lij (u) dX. (6.4) 
2 

For the last integral preceding the second equality of (6.3), Lemma 4.9 implies that, in 

the sense of distributions, 

f a V ( ~ . V u ) . V A u  dX f OAu = -vl~a ~'vu--~-~ ds. (6.5) 

The Poisson ratio in the range ( 1 - n ) - l ~ < u < l  is related to 0 by 

20+nO 2 1 
0>7 - - .  (6.6) 

-- l + 20 + nO ~ ' n 
Then (6.3), (6.4) and (6.5) yield 

1-~2 ~aN'~189 

- 2[Dic~k DjDku+O(~ijVc~k'VDku] Lij(u) 

-Li j (~k)DkuLij(u))dX- fonC~.Vu~-~ds (6.7) 

+ f o a ( ( l _ u ) V ( c ~ . V u )  OVu .NAu) . ~-~-  + u V ( ~ . V u )  ds. 
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For the solid integral, (1 -u )O=n- l (u - l+v / (1 -u ) ( l+(n -1 )u ) ) .  
Let v=c~.Vu in (6.7). Then the first integrand of the last integral separates into 

normal and tangential parts as 

Djv Ni Di Dju : Djv Nk Ni ( Nk DiDju-  Nj DiDku) + Djv Nj NiNk Di Dk U 

02u Ov 02u 02u Ov 02u 
=NkDjV oNoTk~j ~ ON ON ~ - NjDkV oNoTk~j ~ ON ON 2' 

i.e. 

where the identities 

OVu 1 Ov 02u Ov 02u 
Vv. 0 ~  - 2 OTkj ONOTkj ~- ON ON 2' (6.8) 

0 0 1 Ov 0 
-NjDkv-~k j  =NkOjV oTkj - 20Tkj OTkj 

have been used. 

In the sense of distributions the Rellich formula (6.7) becomes 

1 - u JofN" 2 c~ i i j  (u) Lij (u) ds 

0 
= / Eij(c~, u,u)Lij(u) d X -  foaC~VuK,(u) ds+ fon ~-~(ct'Vu)Mv(u) ds, 

(6.9) 

where the solid integral is precisely that  of (6.7). The Rellich formula (6.9) holds for ft 

replaced with ~c when a is compactly supported. 

The boundary integrals on the right-hand side of (6.9) are bounded as 

Aao~.VuK~,(u) ds ~ [IK~(u)[I-1,2, C[[Vulll,2 

fo 0 (a.Vu)M~(u)ds <<. CIIVulI1,2HM,(u)I[2 

(6.10) 

by K~ (u) E W -  1,z (Of2) (Proposition 4.2 and (5.3)) and the Sehwarz inequality. 

7. A pr ior i  e s t i m a t e s  for  t h e  N e u m a n n  p r o b l e m  

It will be assumed in the proofs of the following lemmas and theorems that  10QI is of 

unit size. First, two ]emmas for the case u - - ( 1 -  n ) - l :  
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LEMMA 7.1. When O=n -1 (i.e. v = ( 1 - n ) - l ) ,  

i , j = l  i , j = l  
ir 

Proof. The diagonal term from the left is 

~-~ Lii(u)2 = - l  (Au)2 + ~ (D2i u) 2 
i = 1  i = 1  

= ~ [(D~u) 2 - (Au/n) 2] 
i = l  

= ~ (D2u+Au/n)(D2u-Au/n) 
i=1 

_- _1 ~ (D~u+Au/n)(D~u-D~u) 
n 

i , j = l  

= 1 ~ (D~u+Au/n)(D]u-D~u). 
n 

i , j = l  

Averaging the last two expressions gives the result. 

LEMMA 7.2. There is a constant C=C(n) so that for any j and k, 

[] 

i Oeu 2 
ONOTjk <" C(]VVuJ2-n-l(Au)2)" 

Proof. Using summation convention in i, 

02u 

ONOTjk 
- -  - Ni(NjDk-NkDj)Diu 

= NjNk(D~u-D~u)+Nj E NiDiDku-Nk E NiDiDju, 
~r ir 

and the inequality follows from the last lemma. [] 

Next follows a coercive estimate on the boundary. 

LEMMA 7.3. Let ~ C R  n be a bounded Lipschitz domain with connected boundary. 
(i) Let A2u=0 in ~ with N(VVu)cL2(O~t) and fon Auds=O. Let ( 1 - n ) - l ~ v < l  

and let Lij be defined as in (6.2) and (6.6). Then there exist constants C1 and C2 
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independent of u, with C1 depending on the Lipschitz nature of ft and the smooth vector 

field ~, and C2 depending on the Lipschitz nature of f~, so that 

f~ ]VVu[ 2 ds ~< c1 f o N . ~  ds + C2 IIg~(u)ll 2_ Lij(u)  L~j(u) 1,2" 

(ii) The same statement holds without the hypothesis of mean value zero when u is 

a solution in the exterior domain. 

In both (i) and (ii), when u > ( 1 - n )  -1, C2 may be taken to be zero and the hypothesis 

of mean value zero in (i) dropped, in which case C1 diverges as u S ( l - n )  -1. 

Pro@ For u in f~ and any l~<i~<n, 

D ~ u : I ( A u + E ( D ~ u - D ~ u ) )  
n J#~ 

By Lemma 7.1 therefore, it suffices to estimate the square norm of Au. By Proposi- 

tion 4.2, the triangle inequality and (5.3), this is bounded by the W-l '2-norm of K , ( u )  

plus the norm of the second derivatives estimated by Lemma 7.2. 

Parts (ii) and (iii) of Proposition 4.2, (5.3) and the same argument, all apply to the 

exterior case. [] 

Remark 7.4. For the biharmonic function u=[XI 2, M , ( u ) = 2 ( y ( n - 1 ) + l )  and 

K~(u)=0 on any 0t2. 

The forms Li j (u)Li j (u)  dominate ]VVu[ 2 pointwise as long as u>  ( l - n )  -1. 

The a priori estimate that  bounds second-order derivatives of solutions by their 

Neumann data (5.1) and (5.2) can now be shown. It will be convenient to have a notation 

for the norm on the space of data. 

Definition 7.5. A norm on (A, f ) c W - I , p ( o ~ ) •  is defined by 

IIIA, flllp = Ilnll-l,p+llfllp. 

THEOREM 7.6. Let Q c R  n be a bounded Lipschitz domain with connected boundary, 

and take 1 / (1 -n )~<u<l .  

(i) I f  A2u=0 in ~ with N ( V V u ) E L 2 ( O ~ )  and fan Auds=O,  there exists a constant 

C=C (O~ ,  u) such that 

9foalVVu]2 ds <~ C ]]lK,(u), M , ( u )  ll] 2, (7.1) 

where the Neumann data on the right-hand side are defined in (5.1) and (5.2). 
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then 

(ii) If A2u=O in ~c with N(VVu)EL2(OI2) and decay, as [X[--+oe, 

{ o(Lxl for  n > 2, 

IVu(X)l= O([Xl_l) for n = 2 ,  
(7.2) 

~on ]VVu[2 ds • C[][K,(u), M,(u)[[]22 

(7.3) 

(iii) C diverges as u~l. By Remark 4.4 the mean-value hypothesis can be replaced 
with 

f f*Au ds = O. 

Without any mean-value hypothesis, C in (7.1) diverges as u $ 1 / ( 1 - n ) .  

Proof. When u is defined in ~, adding a linear function to u changes neither side 

of (7.1). Therefore it may also be assumed that  u and the gradient of u have mean value 

zero on the boundary, justifying any use of the Poincar6 inequality there. 

Using the hypothesis of mean value zero, Lemma 7.3 reduces the proof to estimating 

the integrals on the right-hand side of the Rellich formula (6.9). The boundary integrals 

of (6.9), by inequalities (6.10) together with the Poincar6 inequality, are bounded above 

by the square root of the right-hand side of (7.1) times the square root of the left-hand 

side of (7.1). The Schwarz inequality applied to the solid integrals yields a bound 

C ( ~ ,VVu,2 + ,Vu,2 dX)U2 ( /~ Lij(u) Lij(u) dX) 1/2. (7.4) 

The left integral of (7.4) can be put on the boundary by estimates for the biharmonic 

Dirichlet problem [9] and the Poincar6 inequality applied again. The integral inside the 

right-hand root is equal to 

- -  1 0 4  

by the same calculation used in (6.3) (Green's first identity, see (10.2) below). Again 

duality as in (6.10) and the Poincar6 inequality yield products of the norms appearing 

on the left- and right-hand sides of (7.1), which suffices. 

When u is defined in the exterior domain one may take the vector field a to be 

supported near the boundary. The solid integrals of (6.9) admit a bound like (7.4) but 
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over a compact subregion of ~c near the boundary. By the existence of pointwise limits 

for biharmonic solutions in the class N(VVu)C L2(0~) and the fundamental theorem of 

calculus, the IVul2-term in the left integral corresponding to that of (7.4) can be bounded 

by 

s163 (7.6) 
The decay hypothesis (7.2) on Vu implies by "interior" estimates ([23, p. 155]) that 

{CIX[ 1-'~ for n >  2, (7.7) 
IVW(X)l< ClXl_= for n=2, 

so that integration by part8 in the solid integral of (7.6) bounds (7.6) by 

~c(Au)2dX+llVul[ ~+IIVw[I ~ C(llVull~ IIVWlI~). ~< + 

The last inequality follows, for example, by the fact that the harmonic function Au 

with decay from (7.7) and nontangential maximal function in L 2 admits an invertible 

layer-potential representation. See Remark 4.5. 

The right-hand integral of (7.4) taken over the exterior domain yields (7.5) again. 

This is justified because the fundamental theorem of calculus, over rays from X to a 

compact neighborhood of fi, and hypothesis (7.2) show that u ( X )  is O(log IXl) at infinity, 

while [23] shows that three derivatives of u decays like IXI -n. Consequently the left-hand 

side of (7.1) can be bounded by the fourth root of the right-hand side times the 3-power 

of the square norms of u, Vu and VVu on the boundary. Introducing the mean values 

of u and its gradient, applying the Poincar@ inequality and using Young's inequalities 
yield (7.3). [] 

The next theorem is the companion of the last. It was first proved in the case of 

bounded star-like domains in [43]. Here it will be derived from the Rellich formula (6.9). 

THEOREM 7.7. Let ~ c R  n be a bounded Lipschitz domain with connected bound- 

ary. 

(i) / f  A2u=O in ~ with N(VVu)EL2(0~),  then there exists a constant C depending 

only on the Lipschitz nature of ~ such that 

fonlVVul 2 ds ~ C ~of lVTVul2 ds. 

(ii) /f  AZu=0 in tic with N(VVu)EL2(Of~)  and decay as in (7.2), then 

f0fl~7~U' 2d8~C(~f ]~T~u]  2ds-}-]0~] 2/(1-n) f 0 J u d 8  2). 
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Proof. Let ~ = 0 = 0  in (6.9). See (6.4), (6.6), (5.1) and (5.2). The integrand on the 

left-hand side of (6.9) can be written as 

a w  o w  

Each of the differences of squares can be written as sums of squares of tangential deriva- 

tives. The integrand of the last integral of (6.9) can be written 

) 0 u Oa 02u 
N.c~ ~ + Ni(c~j-c~.gNj)DiDju+-~-~.Vu ON 2. (7.9) 

Here c~j -a .NNj  are the components of a tangent vector. Solving (6.9) for the square of 

the second normals, 

Oa - (Ni(c~j-ct.NNj)DiDju+ ~-~.Vu) 02u ~ ON 2 ] ds (7.10) 

- f Eij(o~, u, O)DiDjudX, 

or, for u defined in the exterior, the solid integral is taken over a compact subset of 

depending on c~. 

The foregoing continues to hold if u is replaced by u plus any linear function, in 

which case the inequality to be proved in (i) is unchanged. By this device it may be 

assumed that  the Poincar@ inequality holds for u and its gradient on the boundary. 

For (i), the solid integral in (7.10) (see (6.7)) is bounded by 

/a'VVul2 dX + fon[Vu' 2 ds. 

This last solid integral may be replaced by (7.5) with u=0.  By applying the duality (5.4) 

and the Schwarz and Poincar6 inequalities to (7.10), (i) follows. 

The decay hypothesis in (ii) shows, as in the preceding theorem, that  u grows no 

faster than log ]XI at infinity and that  (5.4) holds. The decay is enough in order to t reat  

the solid integral as in (i), but without the addition of a linear function. Consequently, 

duality and the Schwarz and Poinear~ inequalities yield (ii). [] 
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8. Pointwise  limits of  potentials  at the boundary 

Let B X = B X ( y ) = B ( X - Y )  denote the fundamental solution for A 2 with pole at X E R  n, 

and similarly let F X denote the fundamental solution for Laplace's equation. More pre- 

cisely, 

{ [ 2 ( n - 4 ) ( n - 2 ) w ~ ] - l l X - Y [  4-n, n > 4 ,  n = 3 ,  

B X ( y )  --- [-4w4]-1 log I X - Y I ,  n = 4 ,  (8.1) 

[-8 ]-llX-Yl (1-1og Ix-YI), n=2, 

where wn is the surface measure of the unit sphere S n-1 of R n. Then A B X = F  X. Define 

the potential 

S0A(X) = joaABXds, Rn\0 , (8.2) 

in the sense of distributions for any AcW-I 'p '(0Ft) ,  l < p < 2 + e ,  and ~2 a bounded Lip- 

schitz domain. 

Given A C W o 1,p (OFt), Proposition 4.2 associates A with a harmonic function defined 

inside ~ and with another defined in the exterior domain. The LP-Dirichlet boundary 

values of the two harmonic functions differ, but are related by the classical double-layer 

potential according to the next lemma. This fact will be used more than once in analyzing 

the boundary values of biharmonic potentials like (8.2), and it clarifies Remark 4.4 above. 

Denote by int and ext nontangential limits on the boundary taken from ~t and ~c, 

respectively. 

LEMMA 8.1. Let ~2 and the notation Oh/ON=Ah be as in Proposition 4.2. Let 
l<p~<2+e .  Then the map 

g, >Ah:LP(0~2) > W o l ' P ( 0 ~ )  

is a well-defined isomorphism with bounds depending only on the Lipschitz geometry of ~, 

when h is the classical double-layer potential 

h(Y) = fo 0 - ~  FYg ds, Ye Rn\0Ft. (8.3) 

In particular, Ah=Ohint/ON and Ah=Ohext/ON from Proposition 4.2 are identical when 

h is as in (8.3). 

Proof. By the invertibility of layer potentials on Lipschitz boundaries [41], [7], the 

harmonic functions (8.3) span the codimension-1 subspace of LP(0~)-functions mentioned 

in Remark 4.4 (the h there) that  is isomorphic to Wol'P(O~). Only the equality across 

the boundary needs to be examined. 
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For YERn\OI2 and each i and j ,  define the potentials 

(Y) = LaN~DyFYg ds. hij 

Summing on i, Djh=Dihij, and summing on j, Djhij =0,  i.e. in the sense of distributions, 

Oh _ Ohij _ 10(hij-hji)  
ON OTji 2 OTij 

by the interchange of indices as used in (6.8). 

In (4.3) make the substitution u(Y)=fo n rrfds, Y c R  ~, the classical single-layer 

potential of fEL p', for f E W  I'p', and compute Ahu using either cOhint/ON o r  Ohext//ON 
in the sense of distributions. That  is, by using either interior or exterior approximating 

boundaries 0~  and transferring the tangential derivatives to u by the divergence theorem, 

05 2 fi(hij hji) 2 Jo~ Jo~ cOTij FYf ds ds(Y). 

The limits and continuity across the boundary for these potentials with tangential deriva- 

tives on Lipschitz boundaries is known [41], and proves the lemma. [] 

Remark 8.2. The above proof shows that  in the sense of distributions on 0f~, 

0 L 0 FQgds- 1 0 i O-~i ' 
ONQ n ~ 20Ti? p.v. J on j FQg ds 

The operator is symmetric and continuous across the boundary. 

Remark 8.3. The classical single-layer potential applied to the operator of Re- 

mark 8.2 becomes, on the boundary, the product of the classical double-layer potential 

from the exterior times the classical double-layer potential from the interior (and vice 

versa). By [41] and [3] this is an invertible operator from L~(O~) to the LP(O~)-functions, 
2 - ~  < p < 2 +e,  that  integrate to zero against the harmonic equilibrium distribution of Re- 

mark 4.4. The operator and operator inverse bounds are also shown by these references 

to depend only on the Lipschitz geometry of the domain. Thus the map 

g, ~ p . v . L n ~ F P ( Q ) [ p . v . L n  0 Q ds] ~T~i F g ds( Q ) 

is an isomorphism on these codimension-1 subspaces of L p. By [7] this is true for 

2 - ~ < p < e c .  
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LEMMA 8.4. In either ~t or ~t c the potential S0A of (8.2) with AcW-I'P(O~), 
l<p~<2§ satisfies that 

(i) N(VVSoA) enP(0gt); 

(ii) VVSoA(X) has nontangential limits a.e. (ds) on the boundary; 
(iii) the nontangential limits of (ii) taken from ~ agree a.e. (ds) with those taken 

from ~a. 
Further, if A=Ah for a harmonic function h given by (8.3) with gcLP(O~), then 

the potential and its derivatives have the representations 

l f  O_.~_BX (iv) SoA(X)=~ JoaOTij [p.v. Jo~f p-~FYgds]o ~j j ds(Y); 

o p v  Ygds] 

for all XERn\O~ and a.e. (ds) XEO~ when the outside integral of (v) is also taken in 
the principle value sense. In (iv) and (v), summation convention l <~i,j ~n is implied. 

Proof. The lemma follows from the singular integral results of Coifman, McIntosh 

and Meyer [5] once (iv) is established. (See also [41] and [11] for continuity across the 
boundary.) By representing Oh~ON in terms of the hij as in the proof of Lemma 8.1, 
and applying Lemma 4.9 over approximating boundaries 0~, 

lio~fo Oh x 1~o OBX SoA(X) = 5-~-~B ds = ~ ~P'V" (hij-hj~) ~ ds, (8.4) 

which is (iv). [] 

By virtue of Lemma 8.4, Proposition 4.2 and the invertibility of the classical layer 
potentials [41], [7], bounded operators on 0~ may be defined: 

Definition 8.5. (i) AA~ W-I,P--+L p, A~+M~SoA; 
(ii) /(:o: W-I,p...+W-I,p 

A, 
1 ( 0  ext 0 in t~  1 - u  0 (02SoA ~, 

in the sense of distributions, with spaces defined on the boundary 0n  and l<p~<2+s .  

Recall that N always denotes the outer unit normal to ~. The next lemma says that 
the known jump property across the boundary for the adjoint to the classical double-layer 
potential continues to hold when it operates on the W-l'P(Ogt)-spaces. 
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LEMMA 8.6. Let 

o 0 rVgds, YcR~\Ofl,  

be the double-layer potential (8.3) for any gGLP(Of~), 2 - e < p < c c ,  and let A=Ah be as 
in Lemma 8.1. Then in the sense of distributions, 

0ext 0int 
0--~- A S o A -  ~3--/~ AS0 A = A. (8.5) 

Proof. Let u be the classical single-layer potential of fEL p' as in the proof of 

Lemma 8.1. Applying the left-hand side of (8.5) to u, by the classical formula 

0ext tt 0int it 

ON ON - f 

and (v) of Lemma 8.4, yields 

l fo f (X)p.v .~o~O~jFx(y)[p.V. fon 0 Y ds]ds(Y)ds(X g (8.6) 

By the same calculations used in (8.4), the right-hand side applied to u yields 

l fo fO 0 0 fonPY(X)f(X) fl p'v' f l ~ F Y g d s p ' v "  ~ ds(X)ds(Y). (8.7) 

The Fubini theorem is justified in this setting, which establishes the equality of (8.6) 

and (8.7). [] 

A computation yields 

D D D n ' X  . . . . .  1/SijXk~-SikXj~-SJ kXi nXiXj Xk 
i j kD~ ) : [Z0-Jn] ~ ~ iXp+ 2 / (8.8) 

for l<~i,j, k<.n and n~>2, with Kronecker 5-notation. It follows by [5] that  

(8.9) 

for a.e. PEOn, with the plus and minus sign occurring when X approaches nontangen- 

tially from l) and from the exterior of ft, respectively. This may be seen by carrying 

out Miranda's computation for the odd homogeneous kernels (8.8) found, for example, 

in line 29 on p. 54 of [11] (n(P) is the inner normal there). 
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Define the potential 

Slf(X)=~f~-~--~BXf ds,, xEtn\(~a,  (8.10) 

for any fcLP(O~), l < p < o o ,  and ft a bounded Lipschitz domain. 

By (8.9), the Neumann data for (8.10) is 

int ~ ~ ~ O D j D k B P f d  s M~ (Slf)(P)= f ( P ) + u p . v .  O.PPfds+(1-u) p.v. gPNP 
f l  OJY f l  

(8.11) 
and 

M~ • (S1 f ) ( P )  = -f(P) + M int (St f ) (P ) ,  PE cggl, (8.12) 

from the interior and the exterior, respectively. And in the sense of distributions on Oft, 

0 /~ 0 FPfds+l-u 0 ( 02 L ~O-~BPfds~ (8.13) K,(S,f)(P)= ~ u ~  20T,-- 7 P'V" ONOTij ~01, / 

when 2 - e < p < c ~ .  Continuity across the boundary in (8.13) follows for the first term on 

the right by Lemma 8.1, while the principle value integral in parentheses is continuous 

across by (8.9). 

By virtue of (8.11), (8.12) and (8.13), bounded operators on 0f~ may be defined: 

Definition 8.7. (i) M~: LP-+LP: f~-+Mint(slf)- 2"1=1~ Mexttsv I, 1j}'e'+ l~f; 
(ii) /C~: LP--+ W-I'P: f~+ K~( Slf) 

in the sense of distributions, with spaces defined on the boundary Oft and 2 - c < p < o o .  

9. L a y e r - p o t e n t i a l  so lu t ions  a n d  t h e  in tegra l  e q u a t i o n s  o f  second  k ind  

For any A E W -  1, p and f E L p, 2 - C < p < 2 + E, define a solut ion to t he biharmonic equat ion 

in Rn\o~ by 

u(X) = S o A ( X ) - S l f ( X ) ,  (9.1) 

with the potentials (8.2) and (8.10). 

Let Z denote the identity operator. Using the notation of Definitions 8.5 and 8.7, it 

follows by Lemma 8.4 (iii), (8.11) and (8.12) that  

Mint(u) 0 1 1 

M~Xt(u)=MOA+ i z j ~ l  (5  - v ) f .  

(9.2) 

(9.3) 
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By Lemma 8.6 and (8.13), 

g i n t  ( u )  = ( _  1 0 1 ~ Z + K : . ) A - ~ f ,  (9.4) 

K ext (u) 1 0 1 : ( ~ Z + / ~ )  A-/C~f. (9.5) 

Thus solving the boundary value problem (1.1) and (1.2) is reduced to solving the 

system of integral equations of the second kind 

T ~ ( A , f ) = T 1  .M ~ -fi/l~ f0 

in the space W-I'P(O~)xLP(O~), 2 - ~ < p < 2 + c .  Here the minus sign corresponds to 

the interior problem, and the plus sign to the exterior. 

Remark 9.1. When f* is the equilibrium distribution from classical potential theory, 

T+(f*,O) does not have mean value zero (cf. the proof of Proposition 4.2 and Defini- 

tion 8.5 (ii)), and therefore supplies a linear functional not in the Wo I'p. 

Because in general the square matrix of boundary operators is noncompact for Lip- 

schitz boundaries, the invertibility method of [41] will be used. This will be begun in 

the next section and completed in w 

10. The  semi-Fredholm p r o p e r t y  of  the  b o u n d a r y  o p e r a t o r  

Let Q be a bounded Lipschitz domain in R n. It will be helpful to have a notation for 

certain closed subspaces of Wol'P(OQ) x LP(0Q) of codimension n and n+  1, respectively. 

Definition 10.1. In the sense of distributions, for l<p<oc ,  let 

X p =XP(O~)= {(A, f) EWol'P(O~)x LP(0~): f o A Q j - f N j  ds(Q)=O, j= 1, ...,n} 

and 

~(P = { (A' f) E XP : ~o~AIQle-2N'Qf ds(Q) =O}" 

Remark 10.2. XP(Of~)Ospan{ ( Ni, -Qi ) :  i= l, ..., n}=Wo1'P( Ol2) x LP(Of~). 

Remark 10.3. If one takes A--Oh~ON in the condition that defines X p, then it follows 

that fo~(h-f)Nj ds=O. Thus taking u as in (9.1) with X exterior to f~ implies that 

u ( X ) =  OB~ ( h - f ) d s -  f FXhdY 
fo~ o1~ J~ (10.1) 

Jo[ ~ NQ( DjBX(Q) - DjBx(O) )(h(Q)- f(Q) ) ds(Q) - ~ FXh dY. 
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Consequently, u is O(IX[ 2-n) for n>2  and O(log IxI) for n=2 at infinity. The decay 

hypothesis (7.2) for n=2  is met. 

The integration-by-parts formula (Green's first identity) for solutions u, 

Ov 
(1-v) f Lij(v)Lij(u)dX = fo~( -~M~(u) -vK~(u) )  ds (10.2) 

for v linear when ~,~>(1-n) -1 and for v=lXI 2 when , = ( l - n )  -1, yields the following 

lemma: 

LEMMA 10.4. The interior boundary operator T~ of (9.6) maps W-I'P(Oft) zLP(Of~) 
into X p when ~ > ( 1 - n )  -1 and into XP when v = ( 1 - n )  -1, for l<p<c~ .  

LEMMA 10.5. The boundary operators of (9.6) 

(i) T~-: XP--+X p when , > ( i - n ) - 1 ;  

(ii) TT:XP--+~(P when ~ = ( 1 - n ) - l ;  

(iii) T+: W-I'B•215 p 

are injective for 2 - c < p < 2 + ~ .  

Proof. First consider u from (9.1) to be a solution to (1.1) and (1.2) in ft with 

vanishing right-hand side. Consequently, letting v=u in Green's first identity (10.2), 

the vanishing of the right-hand side of the identity shows that u is linear in fl when 

, is as in (i), and, by Lemma 7.1, equals a+b.X+clZl 2 when ~ is as in (ii). (The 

identity remains valid for p<2 bounded from below by a Sobolev exponent.) It follows, 

by continuity across the boundary, that from either domain (u, On~ON), when restricted 

to the boundary, is equal to (a+b.Q+clQI 2, b.N+2cQ.N), with c=O in the former case. 

The assumed vanishing of T~- (A, f )  and the jumps (9.6) yield 

T+(A, f )  = (A, f )  = (Kext (u), M e x t  ( u ) ) .  (10.3) 

When n~>3, (9.1) will be O(IXl 3-n) at infinity for any (A, f)CWol'P• p by (8.1) 

and Proposition 4.2, which allows extra decay to be obtained in (8.2) by writing SoA(X) = 

fA(BX(Q)-Bx(O)) ds(Q). When n=2, the assumption that (A, f ) e X  p permits 

(10.4) 

which is O(log IXI) at infinity. In every dimension then, there is sufficient decay to 

justify Green's first identity (with u=v again) in the exterior domain. By definition 

of the function subspaces, Definition 10.1, and the above conclusions on the boundary 

values of u and its derivatives, it again follows that the right-hand side of (10.2) vanishes. 
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For (i), u must be linear in the exterior domain, in which case its Neumann data 

(10.3) must vanish. Thus T2 is injective. By Remark 7.4 the same is true for case (ii). 

For (iii), the vanishing of T+(A, f )  implies that T2(A, f ) = ( - A , - f ) ,  so that  by 

Lemma 10.4 the decay required in the exterior is obtained, and similar arguments estab- 

lish the result. [] 

Remark 10.6. In the above proof it might seem possible that  a int + b  int. Q + c  int IQI 2= 

aeXt+b  ext' Q +cext  IQI2 for all Q E 0f~, with different interior and exterior constants, when 

the boundary is a sphere. But the potentials also have the normal derivative continuous 

across the boundary. Applying the divergence theorem to the equal normals shows that  

the interior and exterior constants are the same. 

The proof of the next lemma is as in [41]. Here some of the details for the biharmonic 

case are set down. 

LEMMA 10.7. Let f ~ c R  n be a bounded Lipschitz domain with connected boundary. 
Then each of the boundary operators of Lemma 10.5 has closed range when p=2  and 
n>~2. 

Proof. For (i) of Lemma 10.5 it suffices to show closed range from a subspace of 

finite codimension. Therefore let (A, f ) E X  2 also satisfy fon ff*ds=O, where f* is as in 

Remark 4.4. Let u be as in (9.1). 

By (9.6), 

IliA, f[[[2 ~< IlIT~ (A, f)lll2 + lilT2 (A, f)Ill2. 

By (9.3) and (9.5), 

IIIT~ + (A, f)lll 2 = Ill K 7  t (u),  M~ xt (u)III 2. 

From the definitions of the Neumann data (5.1) and (5.2) along with (5.5), 

IIIK2Xt(u), MZ • (u)1112 < C IlVeXWull2. 

By (ii) of Theorem 7.7, 

( J;:u ) 
the required decay for n = 2  following from Remark 10.3. By (iii) of Lemma 8.4 and (8.9), 

VTVU is continuous across the boundary at a.e. (ds) point. Consequently, using the 

assumption on f and parts (i) and (iii) of Theorem 7.6, it has been shown that  

HI A, fll'2<~ C (UITj(A,f)IlI2+IOf~I 1/('-n) f o J U  ds ) for all (A, f )  E X 2, f o n f f * d s = 0 '  
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with C depending only on the Lipschitz nature of f~. 

Closed range for T 7 now follows by functional analytic arguments. The other cases 

are treated similarly. [] 

The operators (9.6) have finite kernels and closed range. Showing that  the ranges 

are dense in the spaces of Lemma 10.5 requires knowing this on smooth approximating 

domains. 

11.  Inve r t i b i l i t y  on s m o o t h  b o u n d a r i e s  

When 0ft is smooth, the 2 x 2-matrix of boundary operators of (9.6) will contain compact 

operators as well as operators that  are not compact. However, the operators Ty  can be 

proved to be of the form invertible + compact because ~<1. This will now be done. 

In trying to identify the compact operators in the smooth case, four types of principle- 

value operators are encountered. With the notation 

0 3 0 3 
OAOBOC U(X)=- AiBjCk OXiOXjOXk U(X) 

(summation notation) and P, QEOft, they have kernels of the form 

(i) ~N FP(Q)' the classical double-layer-potential kernel; 

03 
(ii) -~-N-S BP(Q); 

03 
(iii) OTij OTkz oN BP(Q)' where Tij =Tkl is permitted; 

03 
(iv) aN2OTk t BP(Q). 

Here the normal and tangential vectors depend on Q, but they may be replaced with 

corresponding vectors that  depend on P because the resulting kernels differ from the 

above kernels by kernels that  give rise to compact operators, since the boundary is 

smooth. 

Again, by the smoothness of the boundary, it is enough to take the boundary to be 

(locally) the hyperplane Xn=0,  in order to understand which of the above kernels give 

rise to compact operators. By (8.8) on the hyperplane with X ~ 0  (i.e. Q~P) the first 

three are identically zero, giving rise to compact operators in the general setting. The 

fourth gives rise to bounded operators of Riesz transform type. Indeed by (8.8) on the 

hyperplane, the fourth is 

[2~n]_ 1NkX1 --N1Xk 1 
ixl  - aak  r(x) ,  
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Thus in general, 

03 1 0 Fp(Q)+compac  t kernels. (11.1) 
ON2OTm B P ( Q ) -  2 OTk------ll 

(All of this continues to hold on Cl-boundaries. See [12], [42] or Corollary 2.2.14 of [24] 

for examples.) 

By Definition 8.7, (8.11) and the compactness of kernels (i) and (ii), 

fl/[lu: L p L p is compact. 

LEMMA 11.1. With h and g as in (8.3) and Of~ smooth, let A=Oh/ON.  Then the 

map g~+ A ~+ ~ ( l + u ) g + M ~  A : LP ( O~ ) -+ LP ( O~ ) is compact. 

Proof. By (i) of Definition 8.5, the definition of i e u m a n n  data (5.1) and (v) of 

Lemma 8.4, 

A/I~ = p.v. 2 Jfo~ 0 p 

(11.2) 
l - u  02 f 0 P 

+p.v. ~ -  ONPONP Jo~ 
+(+ 

which by (11.1) differs only by compact operators from 

l + u  

~ ~ +1 p.v. -~ i j  F g ds(Q). 
OT~3 

By (ii) of Lemma 8.4 one may take PEFt, apply Remark 8.2 and use Green's formula in 

the exterior domain (or by (iii) of Lemma 8.4 the roles of interior and exterior domains 

may be reversed) to see that  this last integral is the limit, as P approaches the boundary, 

of 

l+u fo~o~FPheXtds '2  

The trace of the integral is the trace of the classical double-layer potential from the 

interior acting on the trace of the classical double layer from the exterior acting on g. 

From the well-known jump relations for these potentials the trace of the integral is then 
1 [] a compact operator on g plus -~g .  

Because the product of a bounded linear operator with a compact operator is com- 

pact and the first map of Lemma 11.1 is bounded and invertible by Proposition 4.2 and 

Lemma 8.4, it follows when A and 9 are related as in the lemma that  

1 ( l + u ) g + M O A :  W-l,p___+ L p is compact. A, >~ 
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The principle-value integral in formula (8.13) is also of type (iv) and may have its 

kernel replaced by (11.1). Since the tangential derivative in the sense of distributions is 

bounded from L p to W -I 'p and Remark 8.2 can be applied as above, a calculation and 

(ii) of Definition 8.7 show that 

l+v2 ON ~O~FfO P ds+]C~f(P):  L p > W -I 'p  is compact. f ,  ) 

LEMMA 11.2. With h and g as in (8.3) and O~ smooth, let A=Oh/ON.  Then the 

map 
//C~ext 0int "~ 

g, > +-5- /  )  SoA: LP(Oa) --+ LP(Oa) 

is compact, as then are 

/+ 0ext c~int x 
g, > 

/ 0ext 0int x 
A, > 

Proof. Denote by 
( 0  ext 0int~ 

~= \ ~  + b-~/zxs0A, 

by Lemma 8.4 and Proposition 4.2 a linear functional on W I'p'. Let then 

as in (8.3) for a unique nP-function ~. Take fenP'(Oi2). By (v) (and (ii) and (iii)) of 

Lemma 8.4 and then Remark 8.2, 

0 f o a r Y f d s ( X  ) d s ( Y )  
fon fAS~ 2 J on J oa ij OTij 

ds( X ) 

The inside integral is the classical single-layer potential. By Proposition 4.2 the sum 

of exterior and interior normal derivatives may be removed from .~ and the single layer 

differentiated. By smoothness of the boundary, the well-known jump relations for deriva- 

tives of the single-layer potential and the continuity across the boundary of ASoA ((iii) of 

Lemma 8.4), the result is a compact operator (the dual operator to the principle-value 

part of the trace of the classical double-layer potential; see kernel (i) listed above) acting 
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on f E L  p' integrated against the LP-function ASoA. By Schauder's theorem on the dual 

operators of compact operators then, the first map in the statement of the lemma is 

identical to the map that takes g to the image of a known compact operator of L p acting 

on the function ASoA. The first map is therefore compact. 

Proposition 4.2 and Lemma 8.6 consequently show that the second map is compact, 

as is then the third. [] 

By Definition 8.5 (ii) and Lemma 11.2, /CO is the sum of a compact operator plus 

a product of bounded operators (as used previously, O/OTo:LP-+W -I'p and A~-~g: 

W-i'P--+L p) with, by Lemma 8.4(v), a compact operator of type (iii) listed above. 

Consequently, 

1C~ W -l 'p > W -I'p is compact. 

Using the above four observations on compact boundary operators, the operators 

T~ of Lemma 10.5 from (9.6) are seen to differ by compact operators from the operator 

on Wot 'p •  p that maps 

( S~N i+~: '~ (A,f>, > q:~A 1+l: 0 2  ON Ffds, T~f-~--g), (11.3) 

where 

0 O~ Fg ds 

as in (8.3). By the previously observed invertibility of this latter representation for A 

(Lemma 8.1), the invertibility of (11.3) is equivalent to the invertibility of 

1 l + u _  1 l + u  "~ (g,f)' > :F~g- T~f- --7--:' -g-")' 
which is invertible for vT1 (and -3). 

THEOREM 11.3. Let 12cR ~ be a bounded domain with smooth connected boundary. 

Then the boundary operators of Lemma 10.5 are invertible for l<p<cc .  

Proof. T + equals the invertible operator (11.3) (which may be extended one more 

dimension by Remark 9.1) plus a compact operator defined on w - i ' P x L  p for every p. 

By the Riesz-Schauder theory and Lemma 10.5, invertibility follows for p--2. The dual 

operator (T+) ' on wi'p'M L p' is then invertible for p=2. By Schauder's theorem it is of 

the form invertible+compact for every p. By the inclusion LP(Oft)cL2(Oft) for p>2 

and similarly for the Sobolev and dual Sobolev spaces, the operators T + and (T~+) ' are 

injective and thus invertible for p>~2 and p'>~2, respectively. Thus T, + is invertible for 

all p. 
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The operator T2 is the sum of an invertible operator plus a compact operator, each 

defined on W0-1'P x L p for all p. By the Riesz-Schauder theory, the dimension of its kernel 

is equal to the dimension of its cokernel. By Lemma 10.5 (i) and inclusion, T~ is injective 

on X p for p~>2. Thus its kernel is no larger than n (Remark 10.2). By Lemma 10.4 its 

cokernel is not smaller than n. Thus T~- is invertible on X p for p~>2, and its kernel is in 

W o l ' P x L  p for all p<oc .  Any nonzero member r of this kernel is uniquely a sum of a 

nonzero element of the complementary subspace of Remark 10.2 plus another element in 

any X p, so that  ~ cannot be a member of X p for any p > l .  Thus W o l ' P x L  p is also the 

direct sum of X p and the kernel for every p. Define the compact projection T '~  to be the 

identity on the kernel and the zero operator on X p for all p. Then T 7 + P ~  is invertible 

on W o l ' p x  L p for p~>2, and now, arguing as in the first paragraph, is invertible for all p. 

Because T 7 vanishes on the kernel and maps into X p while P ~  vanishes on the latter, 

it follows that  T~- is invertible on X p. [] 

12. I n v e r t i b i l i t y  o f  b i h a r m o n i c  l aye r  p o t e n t i a l s  o n  L ipsch i t z  b o u n d a r i e s  

On Lipschitz boundaries the operators of Lemma 10.5 are injective and have closed range 

when p = 2  by Lemma 10.7. They have dense range in the spaces of Lemma 10.5, and so 

are onto those spaces, by application of Theorem ll .3.  This follows because Theorem 11.3 

and the standard approximation of Lipschitz domains by smooth domains make possible 

a method of continuity. See [41], [25], [24] and others. A perturbation from p = 2  to an 

interval around 2 follows from a Hilbert space argument of A. P. Calderdn [3], which uses 

the fact that,  by interpolation, the operator norms of the Calderd~Zygmund singular 

integrals studied in w which have norms depending only on the Lipschitz geometry 

of ~, vary continuously in p. An operator from (9.6) need only be adjusted so as to be 

an invertible composition of CalderdmZygmund singular integrals on (or on appropriate 

subspaces of) L~x L 2. This can be done by composing on the left with the classical 

single-layer potential and the identity operator, mapping W - I ' p •  p to L P x L  p, and 

composing on the right with the operator of Remark 8.2 and the identity, mapping 

L P x L  p to W - I ' P x L  p. The invertibility of the latter map for p follows from known 

classical layer-potential results and Proposition 4.2. The invertibility of the former is 

discussed in Remark 8.3. That  the composition of these two operators with T~ results 

in a composition of bounded singular integrals on LP-spaces follows by using the lemmas 

and calculations of w The following theorem has, therefore, been proved: 

THEOREM 12.1. Let f t c R  n, n ~ 2 ,  be a bounded Lipschitz domain with connected 

boundary, and let T~(A, f ) =  (A0, f0) be the system of boundary integral equations of the 
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second kind (9.6). Then the system is uniquely solvable in the spaces X p and XP of 

Definition 10.1 and W-I 'P(O~)  • LP(Of~); specifically, the boundary operators 

(i) T ; : X P - + X  p when p>(1--n)-l; 
(ii) T~: XP--+XP when , = ( i - n ) - 1 ;  

(iii) T+: W-I ,P•215  p 

are invertible for 2 - c < p < 2 + ~ .  

13. S o l u t i o n  o f  t h e  in ter ior  N e u m a n n  p r o b l e m  

Definition 13.1. Let (A0, f0) E W - I ' P ( 0 ~ )  • LP(O~) and ( l - n )  -1 ~ <  1. Then the L p- 

Neumann problem is said to be solved for data (A0, f0) by a solution u to the biharmonic 

equation (1.1) if 

(i) N ( V V u ) e L P ( O ~ ) ;  

(ii) K , ( u ) = A o  in the sense of distributions; 

(iii) M , ( u ) = f o  in the sense of nontangential convergence a.e. (ds), 

where the operators of (ii) and (iii) are defined in (5.2) and (5.1). 

THEOREM 13.2. Let ~ c R  n, n>~2, be a bounded Lipschitz domain with connected 

boundary, and let 2 - ~ < p < 2 + c .  Then there exist solutions defined in ~ to the L p- 

Neumann problem, unique up to the addition of linear functions for any data (A0, f0) 

taken in the subspaces X p when ~ > ( 1 - n )  -1, or unique up to the addition of the quan- 

tity a + b . X + c ] X ]  2 for data taken in XP when v = ( 1 - n )  -1. Furthermore there is a 

constant C depending on the Lipschitz nature of ~, as well as p and v, so that 

1[ N(VVu)lip ~< C IIIAo, fo II1~ 

when u is a solution with data (A0, f0). 

Proof. Existence is by Theorem 12.1. Uniqueness follows by Green's first identity 

as in the proof of Lemma 10.5. 

The solution u is therefore given as in (9.1) with ( A , f ) E X  p. By Lemma 10.4 

and (9.6) it follows that T,+(A, f ) c X  p also. 

By [5], Lemma 8.4 and the isomorphism of Proposition 4.2, ]]N(VVu)][p<~C[[[A, f]]]p 

with C depending on the Lipschitz nature of ~. Letting p = 2  and following the proof of 

Lemma 10.7 one arrives at 

]]N(VVu)][2 ~< C ILIA, f][]2 ~< C(]][Ao, fo[]]2 + ]]v~XtVu[12). 

Referring to the proof of part (ii) of Theorem 7.7, that  the exterior Neumann data  is 

in X p, now allows for the addition of any linear function to the solution. This is because 
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by Remark 10.3, second- and third-order derivatives decay rapidly enough at infinity 

to be integrated in formula (10.2) against the added linear terms, and therefore the 

boundary integrals on expanding spheres will vanish when (10.2) is used in the exterior 

domain. Consequently, by the Poincar~ inequality, the estimate in (ii) of Theorem 7.7 is 

improved to that  of (i), which can be followed by (i) (and (iii)) of Theorem 7.6. Thus 

(given u) C depends only on the Lipschitz geometry of ~. 

Applying Calderdn's corollary [3] as in w the estimate 

III A, f III < c Ill Ao, fo III (13.1) 

can be extended to a small interval of p's depending on the Lipschitz geometry of ~, 

which finishes the proof. [] 

Estimate (13.1) is IIIA, IIII2<~CIIIT~(A,I)III2. The proof shows that  the constant de- 

pends on the constants from the Rellich identity of w and therefore are explicitly tied 

to the Lipschitz geometry of ~t. Given this starting point, Calder6n's argument, as men- 

tioned in w then preserves the connection to the Lipschitz geometry of the domain for 

the cases 2 - s K p < 2 + s .  The exterior operators are treated similarly. Consequently we 

have the following result: 

COROLLARY 13.3. The invertible operators of Theorem 12.1 are isomorphisms with 
constants depending only on the Lipschitz geometry of ~. 

Note. Isomorphism will always mean that  a map between vector spaces is onto in 

addition to being injective. 

14. L a y e r - p o t e n t i a l  so lu t ions  for t h e  Di r ich le t  p r o b l e m  

Given (F, g) E W I'p'(O~) • LP'(O~) and (1 - n ) -  1 ~ ~ < 1, define the biharmonic function 

v(X) =/o Kv(BX)F+M,(BX)gds,  XeR~\Ot2. (14.1) 

By [5], N(Vu)~L p', and by w in particular Definitions 8.5 and 8.7, (8.9), (8.13) 

and Remark 8.2, v has nontangential biharmonic Dirichlet boundary values a.e. (ds), 

( v , - ~ N ) = •  _(Aj1),)=(T~)'(F,g),  (14.2) 

where the plus sign corresponds to boundary values taken from the interior, while the 

minus sign corresponds to boundary values from the exterior, and the square matrix is 

the operator transpose of that  in (9.6). 
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It was proved in [9] that the biharmonic Dirichlet problem was uniquely solvable in 

the class N(Vu)EL p' in bounded Lipschitz domains of R ~ for any data from the spaces 

WI'P'• p' when 2 - ~ < p ' < 2 + c .  By (14.2) and (iii) of Theorem 12.1 it follows that 

solutions to the biharmonic Dirichlet problem [9] are uniquely representable by the po- 

tentials (14.1) when 2 - c < p ' < 2 + r  and ( 1 - n ) - l ~ < ~ < l .  

15. Solution of  the exterior Ne uma nn  problem 

Definition 15.1. Let ~ c R  2 be a bounded Lipschitz domain with connected boundary, 
( Fij  ij and let ( l - n )  -1 ~t~<l .  Denote by , _ .  , g . ,  the unique solutions to the three (interior) 

integral equations of (14.2), + , ij (T~ ) (F~ , g~a ) = (_ Qi Q j, NiQj + Nj Qi), Q E 012 and 1 ~< i ~< 

j ~<2. Define solutions to the exterior Dirichlet problem 

vij(X) = fo (K , (BX)F iJ+M, (BX)g2 )  ds, X e R 2 \ f i .  

Define the 3-dimensional space of solutions in the exterior 

Z~ = span{viJ(X)+ XiXj  : 1 <~ i <<.j <<. 2}. 

Let N( .  ) denote the nontangential maximal function with respect to uniformly 

truncated nontangential approach regions. 

THEOREM 15.2. Let ~ c R  2 be a bounded Lipschitz domain with connected boundary. 
Let A2u=0 in R2\ f t  with N(~gVu)EL:(O~) and u(X)----o(IX[ 3) at infinity. Suppose 

that for some z~, (1-n) - l~<z~<l ,  u has vanishing Neumann data on 0~. Then, up to 

linear functions, uEZ ,  and is thus O(IXI2). 

Proof. Given a point X ~ not in ~, let AR=AR(X~  I X - X ~  For any 

XCAR, Green's representation formula (see (10.2)) yields 

- ~ -  M. (u)) ds. u ( X ) = f O A R ( K ' ( B X ) u - M ' ( B X ) ~ N ) d S - J ' O A R ( B X K ~ ( u )  OBX 

Taking two derivatives, using the hypothesis on the Neumann data and evaluating at X ~ 

D~Dju(X~ K~,(DiDjBX~ )-0-~ ds 
f~ 

= f (Ku(DiDjBX~ D j B X ~  ds (15.1) 
JIQ--X~ 

, ~ _ x o l = r e (  x~ OD~DjB X~ ) - DiDjB K~(u) ON M,(u) ds. 
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In the last integral, 8~D~ Dj BX~ 2N~ Nj - 5~j (1 - 2 log R). But K~ (u) integrated against 

a constant on the boundary of any bounded domain is always zero (let v equal a constant 

in (10.2)). Therefore the log R-term in the second to last integrand vanishes, and the four 

integrands on the circle are of the form R-~o(R ~) for a = 0 ,  1, 2, 3. The representation 

(15.1) may be done with respect to any other fixed point X 1 taken from the exterior, 

and the two compared when the radii are equal. After changing variables the difference 

of the right-hand sides can be written over the circle {Q: ]QI=R} with integrands as in 

(15.1) but  with B ~ replacing B X~ and u(Q+X~ ~) replacing u. Consequently 

the integrands will be of order R-~o(R c~-l). Letting R go to infinity, one concludes that  

the left-hand side of (15.1) is constant over all X ~ in the exterior domain. 

Thus 

u ( X ) +  K,(BX)u-M~(BX)-~ ds=a+b.X-coXiX  j (15.2) 

in the exterior. The quantity u - a - b . X  may be replaced with u in (15.2) without 

changing the integral term because, when X is taken in the exterior, (10.2) shows that  

the integral term vanishes on linear functions. Consequently one may take a and b to 

be zero. Letting X approach Q in the boundary, in (15.2) and for the normal derivative 

of both sides in (15.2), and comparing with (14.1) and (14.2), it follows that  

(T+ )' (u, - ~-~ ) = c~j(-Q~Qj, N~Q j + NjQ~). 

Thus, up to linear functions, u is in the subspace of Definition 15.1. [] 

Example 15.3. For general AcW-I,P(Of~) the potential SoA(X) grows in the plane 

like [XI 2 log IX[, so one is led to consider uniqueness for solutions in the class of Theo- 

rem 15.2. That  the conclusion is the best one can expect can be readily seen by consider- 

ing solutions to the Neumann problem outside the unit disc. For example, let v=log  IX I. 

Then 

M~,(v) = (1 - , ) IQI -4 ( IQI  2-  2(N. Q)2), 

Kv(v) = ( 1 - . )  ~ T  (IQ[-a(N'Q)(T'Q))' 

so that  on the unit circle M ~ ( v ) = . - 1  while K . ( v ) = 0 .  Combining this with Remark 7.4 

it follows that  outside the unit disc the solutions 

u = ( 1 - . ) l X l : + 2 ( l + . ) l o g l X l ,  - 1 ~ < . < 1 ,  

have zero Neumann data. 

Let O(R ~) denote asymptotic behavior as R-+oo. 
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THEOREM 15.4. Let ~ c R  n, n ~ 2 ,  be a bounded Lipschitz domain with connected 

boundary, and let 2 - c < p < 2 + E .  Then there exist solutions defined in R n \ ~  to the L p- 

Neumann problem for any data (A0, f0) E W-I 'P(O~)  • LP(O~) with the solutions unique 

(i) in the class O(R 4-'~) when n~>5; 

(ii) up to constants, in the class O(logR) when n=4;  

(iii) up to linear functions, in the class O(R)  when n=3; 

(iv) up to the functions in Z~ plus linear functions, in the class O(R  2 log R) when 

n=2 .  

Furthermore there is a constant C depending on the Lipschitz nature of ~, as well 

as p and ~, so that 

[IN(VVu) lip <~ C [[IAo, f0 ]lip 

when u is a solution with data (A0, f0) and n ) 3 .  

Proof. Existence is by Theorem 12.1, and the dependence of C on the Lipschitz 

geometry is as in the proof of Theorem 13.2. 

Uniqueness in each case varies from the proof of Theorem 15.2 in minor ways. For 

example, when n--3, taking only the first derivatives of u in Green's representation 

formula suffices to obtain (15.2) with the cij equal to zero. Thus u is linear plus O(R-1), 

which is enough to conclude that  

IQI=R\ 

vanishes as R goes to infinity. This then allows one to conclude from Green's first identity 

in the exterior that  u is in fact linear. [] 

Remark 15.5. When the data  is taken in the space Wol'P(Of~) x LP(Of~), uniqueness 

is obtained 

(i) in the class O(R 3-n) when n~>4; 

(ii) up to constants, in the class O(1) when n=3;  

(iii) up to linear functions, in the class O(R log R) when n=2.  

16. The biharmonic equil ibrium distribution for n/>3 

Let f ~ c R  n be a bounded Lipschitz domain with connected boundary and suppose that  

contains the origin. Denote by ~ the bounded domain that  is obtained by reflecting 

~c in the unit sphere under the transformation X , - ~ X / I X I  2. 
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A biharmonic Green function with nontangential L2-estimates on all second deriva- 

tives near the boundary can be constructed for ~ in the standard way (see [32, pp. 388 

389] and [33, pp. 23, 33 and 35]): Given XE~,  let wX(y) be the unique solution to the bi- 

harmonic Dirichlet problem with data on 0~, WX(Q)=BX(Q) and owx/oN= OBX/ON 
a.e. ds(Q). The solution of the biharmonic regularity problem for the Dirichlet prob- 

lem [43] implies that N(VVWX)cLP(O~) for p<2+e .  Defining 

G(X, Y) = B(X-Y ) -Wx(y )  (16.1) 

one obtains the biharmonic Poisson integral representation for solutions in terms of 

Dirichlet data from WI'P'x L p', 

A computation shows that M, (GX)=AG x and (in the sense of distributions) K , (GX)=  

OAaX/ON. 
If X is fixed in the exterior domain to ~, BX(y) is a solution in ~. Using the 

Poisson representation at the origin, 

/o( 0, B(X) : ~ gXx~v(a~ )) ds, xeRn\ f i .  ( 1 6 . 2 )  

Define/~=K,(G ~ and f=M,(G~ Then (A, f)eW-l'PxL p, p<2+e .  The biharmonic 

Kelvin transform takes solutions u(X) to solutions v(X)= IXla-nu(X/IXI 2) at reflected 

points. Kelvin transforming (16.2) yields 

[2(n_4)(n_2)w~]_X = foaBX(Q)~(~_~12 ) ds(Q) IQIn+ 2 

fo (1@12) IQI n+2ds(Q) (16.3) + (n -4 )  aBX(Q)/ NQ.Q 

+ foa ~ ON f([--~--~[2) ds(Q)lQI '~ 
for nr  4 and every XE~. 

When n=4  the logarithmic fundamental solution and the fact that 

fo~A dS = fofiK~(GX ) ds = l 

for X C ~  cause (16.2) to transform to 

1/ofi((loglP[)K~(G~176 
4w4 

(16.4) 
OBX(Q____~) - Q 
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for all XEf~. The constant in (16.3) is invariant under scaling. However, as with the 

logarithmic potential for Laplace's equation in the plane, the constant value in (16.4) is 

not. See Remark 16.4 below. 

Definition 16.1. For n~>3 let f t c R  ~ be a bounded Lipschitz domain with connected 

boundary. Suppose that  ~t contains the origin. The biharmonic equilibrium distribution 

for ~t is defined to be (A*, f*)EW-I'P(O~)xLP(O~), p < 2 + e ,  where 

and 

Here /~ and f are the Poisson kernels of (16.2) for the bounded domain that  is the 

reflection of R '~ \~  in the unit sphere centered at the origin. 

Remark 16.2. With the bounded domains f~ and ~ related by reflection as above and 

X=Y/IYI 2, XCf~, Q=P/IPI 2, QEOf~, the identities below are useful when computing 

with the Kelvin transform. Recall that  N always denotes the outer unit normal to a 

bounded domain. 

(i) IF-Y[= [Q-XI" 
IQI Ixf ' 

(ii) NQ=2P P N P  NP; 

OF(P~ IP[ 2) ~ 2 OF(Q) 
(iii) ~ =--  ~r ONQ ; 

(iv) ds(P)= ds(Q) 
" 

Remark 16.3. Let W~ YES, be the solution from the construction of the Green 

function for ~ above. Put  u(X)=IXI4-~W~ X=Y/IY] 2. Then on 0Yt, u is 

equal to the constant on the left-hand side of (16.3) when n ~2 ,  4. Also, 

Dju(X) = ( 4 - n ) X : - ] X I - 2 u ( X ) +  ]X[4-nD~W~ -2X~X3 IX] -~) IX[ -2 , 

SO 

Vu(X)  = (4-n) Yu(X)+VW~ n - 2 - 2 Y ( Y - V W ~  [y[,~-4. 

Since VW~ ~-n for PCO~, it follows that  Vu vanishes 

on Oft for n#2, 4. 
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When n>~5, u is a solution in the exterior domain to ft that  decays rapidly enough 

at infinity so that Green's representation formula and the vanishing of the gradient yield 

u(X) = - foaK~(BX)uds + s -~-M~(u)) ds, XeR~\~.  

But as in the proof of Theorem 15.2, the first term vanishes because u is constant. The 

last integral and its gradient in X are continuous across the boundary. By uniqueness for 

the Dirichlet problem then, the integral representation is identically equal to the constant 

of (16.3) for XE~.  It should follow by (16.3) that (K~(u),M~(u)) is the equilibrium 

distribution (A*, f*) when n>~5. 

This is a question of uniqueness for the potential solutions u=SoA-Slf  that  can be 

answered in the standard way. If such a u is identically zero in Ft, then T 7 (A, f )  = (0, 0). 

The Dirichlet data also vanishes and is continuous across the boundary. Assuming n1>5, 

Green's first identity (10.2), the vanishing Dirichlet data and the decay of u at infinity 

show that u vanishes in all of R n. Then ~ + ( A , f ) = ( 0 , 0 ) ,  and by (9.6), (A, f )  = (0, 0). 

This argument remains valid for an interval of p<2  bounded from below by a Sobolev 

exponent. 

In particular, the equilibrium distribution is independent of the choice of origin. 

Remark 16.4. Let t ~ = { Y :  t-lYcft} and let ftt denote the interior of the comple- 

ment of its reflection (i.e. ftt = t - l f~) .  Denote by At and ft the Poisson kernels of (16.2) 

corresponding to the domains t~ .  Then At(P)=tl-n?t(t-lP) and ft(P)=t2-~f(t-lP). 
Writing (16.4) for the domains f~t and computing the constant value on the left by a 

change of variables yield 

1 l ~  1 fo  ((I~176 Olog,P,  ) 4w--~4 ~ 5 ON P M~(G~ ds(P) 

= foa~(BX(Q)At(~-~]2) OBX(Q) ft(~-~2),Q,2) ds(Q) 
+ 0 ~  [QI 6"  

A* Letting ( t, ft*) denote the equilibrium distribution of Definition 16.1 for the domains fit, 

it follows that 

given a bounded Lipschitz domain f t C R  a with connected boundary, the potential solutions 
SoA~(X)-Slf;(X) for each at are constant for XEftt, and the constant is nonzero for 
every value of t > 0  with the exception of one value. 

Definition 16.5. The biharmonic single-layer potential of (A, f )  is defined to be the 

solution (9.1) and is denoted by 

S(A, f)(X) = S o A ( X ) - S ~ f ( X ) .  
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THEOREM 16.6. Let n>>.3 and let 12cR n be a bounded Lipschitz domain with con- 

nected boundary. Then the equilibrium distribution (A*, f*) of Definition 16.1 is the basis 

for the unique l-dimensional subspace of W-I'P(Of~) x LP(Of~), p < 2 + e ,  upon which the 

biharrnonic single-layer potential becomes the constant solution in ~. 

Moreover, S(A*, f*)(X)  for XEf~ takes the constant value of (16.3) when n7~4, and 

the constant value of (16.4) when n=4 .  Further, 

oA*ds  r 0 (16.5) 

and IliA*, f*lllp~ClO~l 1/p-2/(n-i), where C depends only on p and the Lipschitz geometry 

of ~ for n>~3. 

Proof. By translation it may be assumed that  ~t contains the origin. Let (A*, f*) be 

as in Definition 16.1. 

Suppose first that  there exists (A, f ) E W o l ' P x  Lp so that u = S o A - S l f  is a con- 

stant solution. The assumption on A provides the additional decay to conclude, as in 

Remark 16.3, that  (A, f )  vanishes identically. It follows that  fo~A*ds~O, at least in the 

case n~4 .  When n=4,  the vanishing of (A*, f*) implies the vanishing of (A, f ) ,  which 

contradicts (16.2). Thus the same conclusion holds for n=4 .  If now u = S o A - S l f  is a 

constant solution with fon Ads r  it follows that  (A, f )  is a constant multiple of (A*, f*) 

in either case. 

Now the translation invariance of both sides of (16.3) and uniqueness show that  the 

definition of (A*, f*) is independent of the choice of origin when n~4 .  The left-hand side 

of (16.4) is also independent of the choice of origin in ~. This can be seen by considering 

a domain ~ for which the integral (see Remark 16.4) on the left of (16.4) vanishes. If 

(A**, f**) represents the equilibrium distribution for a translation of ~, the translation 

invariance of the right-hand side of (16.4) shows that  S(A**, f**) vanishes, and uniqueness 

then shows that  (A**, f**) and (A*, f*) are scalar multiples. The formula in Remark 16.4 

shows that  scaling both domains by the same amount results in the same constant value 

(log t) for the single-layer potentials of each distribution. By translation invariance of the 

single-layer potentials and the 1-dimensional subspace uniqueness again, it follows that  

the scalar multiple was 1. Thus the equilibrium distribution and "the constant value" 

are well-defined. 

The norm of the equilibrium distribution is bounded by the norm of the Poisson 

kernel (/~, f ) ,  which depends on the Lipsehitz geometry of ~ by the solvability of the 

Dirichlet regularity problem [43], [31], [33]. [] 

COROLLARY 16.7. For a bounded Lipschitz domain f t c R  '~, n~2 ,  4, with connected 

boundary and XEf~, the solution W X from the construction of the biharmonic Green 

function (16.1) has the property that wX(x)TLO. 
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Proof. Using Definition 16.1 and changing variables by reflection in (16.5) yields 

foaA*dS= fos(,p,4-nK,(Go)(p) O'P' 4-noqN P M,( G~ P) / ds( P) r 

Up to a constant multiple this is W~ when n#2 ,4 .  The roles of ~ and ~ may be 

switched, and the origin replaced by X. [] 

Remark 16.8. In R 4 the ball of radius v ~ fails to have the property of the corollary, 

since for it, W~ -11212. The corollary holds for n=2 ,  as shown below, and 

as known in the classical case from a result of Hadamard. See [36, p. 140]. 

17. T h e  r e g u l a r i t y  p r o b l e m  a nd  t h e  b i h a r m o n i c  s ingle- layer  p o t e n t i a l  

The densities (A, f ) ,  that are mapped by the single-layer potential S(A, f )  of Defini- 

tion 16.5 to linear functions in a bounded Lipschitz domain ft, can likewise be identified. 

Let 

O@j 0 M~(GZ) z=0' Aj= K,(G z) and f J=oz- j j  j=l,. . . ,n, (17.1) 
Z = 0  

where the Green function is as in (16.2). Then the analogue of (16.2) is 

-DjB(X)= Bx[xj ]j ds, XeR~\~.  
5 ON 

Defining A~ and f ]  with respect to Aj and ]j exactly as in Definition 16.1, the analogue 

of (16.3) and (16.4) is 

[2(n-2)w,~]-Ixj=S(A~,f])(X), Xea ,  j = l , . . . , n ,  n~>3. (17.2) 

As in Theorem 16.6, [[IA~, f ]  [lip depends on p and the Lipschitz geometry of ft. 

Definition 17.1. The linear equilibrium distributions (A~, fj*) are defined by (17.2). 

It will be convenient to refer to all of the equilibrium distributions that have been de- 

fined as the affine equilibrium distributions, and to sometimes write (A~, f~) for (A*, f*). 

Remark 17.2. The set of affine equilibrium distributions from Definitions 16.1 and 

17.1 is a linearly independent set by (17.2) and (16.3) or (16.4), n~>3. Because the 

operator T~- vanishes on this set and is injective on the subspace X p, it follows that 

XP(0~) |  *, f*), (A*, f*) :  i = 1, ..., n} = W-I'P(O~) x LP(O~). 
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Any biharmonic function u with N ( V V u ) G L  p will take nontangential boundary 

values (u, Vu) in a space WA~(OI2) consisting of arrays of Sobolev functions known 

as Whitney arrays [43], [33, p. 25]. For example, any of the solutions above to the 

interior or exterior Neumann problem will do this. A member of WAP(O~) is written 

9~={f0, f l ,  ..., fn}cWl 'P(O~) .  An array ] is in WA~(OI2) if and only if for all l < i < j • n  

the compatibility conditions 

0 
- - f o ( Q ) = N i f j ( Q ) - N j f ~ ( Q ) ,  QEO~, (17.3) 
OTij 

hold. The compatibility conditions show that  an array ] is the zero array if and only if 

f0 and (summation notation) Nifi both vanish. Thus WA~ may be identified with the 

subspace 

{(F, g): there exists F G WA~ such that  F 0 - - F  and -N~F~ = g} (17.4) 

of WI'P• p. Since (u, Vu) satisfies (17.3) one can write i~=(u, Vu) on Oft and identify 

it in (17.4) with the Dirichtet data  (u , -Ou/ON).  

WAP(O~) is a Banach space under the norm 

11]l12,p = 10f~l 2/(1-n) Ilfollp+lOal 1/<'-~) II f~llp + }--~'~ IlVzf,  llp. 
i = 1  i = 1  

The regularity problem, given data  in WA p, is to find a unique solution u in the 

class N ( V V u ) E L  p so that the data  is assumed by ~2. The problem was formulated and 

solved in [43] and more generally in [33]. Every solution to the regularity problem is also 

a solution to a Neumann problem. 

Remark 17.3. The subspace (17.4) may be described independently as the set of 

(F, g) E W  I'p • L p such that  N~OF/OT~j - N j g E W  I'p for j = l ,  ..., n. It can be shown that  

Fo=F and Fj=NiOF/OTi j -N jg  form an array /0 by using extensions of Wl'p(oft)  - 

functions and smooth approximating domains to justify the integrations by parts. 

That  the "angle", of the images under the single-layer potential of the subspace X p 

and its complementary subspace of equilibrium distributions (see Remark 17.2), will be 

controlled by the Lipschitz geometry of the domain is the purpose of the following lemma: 

LEMMA 17.4. Let To and T1 be bounded linear operators on a Banach space LP= 

X O X  c, and suppose that there is a constant C so that 

f * c X  ~ ~ [If*ll<. CllTof*ll, 

f * E X  c ~ Tlf*----0, 

f c x  ~ llfll <<. CIITIIII. 
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Then there is a constant C' depending only on C and IIToll so that 

IIf* + f ll <<- C' ( HTo(I* + I)  II + IITI (I* + I)  II ). 

Proof. Let A > I  and suppose that II/*11 ~AIIfll. Then 

llf*-+- fH ~ (I+A)lLfll < (I + A)CIITIfll = (I + A)CIITI (f* + f)ll. 

Otherwise IIf* II >A  Ilfll, which implies that ( A -  1)IIf[I ~< IIf*+fll and 

IIf*+ fll <<- ( l+d-1)I I f* l l  ~< (l + A-1)CllTof*ll 

, I + A  -1 . §  
<<- ( I+A-1)CIITo(I  +I)II+--~zT-CIIToH NI fll. 

Now A is chosen to hide the last term. [] 

THEOREM 17.5. For n>~3 let f t c R  n be a bounded Lipschitz domain with connected 

boundary, and let S denote the biharmonic single-layer potential of Definition 16.5. I f  

n~4 ,  the map 

(S, VS): W-1'2 (0ft) • L2 (0t2) > WA2(Ot2), 

( a , f ) ,  >:~(A,f) 

is an isomorphism with constants depending only on the Lipschitz geometry of ft. 

When n=4 the constants also depend on a scaling factor, with the isomorphism fail- 

ing for the exceptional domains of Remark 16.4. The isomorphism holds, with constants 

depending only on the Lipschitz geometry of ft, when S maps from Wo1'2• L 2 to the 

codimension- 1 subspace of WA~-functions F satisfying fan (A'F0 - I*Nj Fj ) ds = O, where 

(A*, f*) is the equilibrium distribution for ft. 

Proof. As in the proof of Lemma 10.7, a suitable bound 

tllA, fill2 <~ C( II v~xt v s (  A, f)112 -q-II vint VS( A, f)ll2) 

follows from (9.6). If (A, f ) E X  2, then, as in the proof of Theorem 13.2, (ii) of Theo- 

rem 7.7 improves so that HIA, flII2<~CIIVTVS(A, f)l12. When n r  any affine equilibrium 

distribution satisfies, by its construction, IliA*, f'1112 ~<CIIS(A*, f*)112,2- By Lemma 17.4 
(and [5]) the bounds for the isomorphism are proved. 

That  the single-layer map is injective follows from Theorem 16.6 and its proof. 

Given data />, the unique solution u to the biharmonic regularity problem with 

data i/" is supplied by Theorem 2 of [33]. By Lemma 10.4 and Theorem 12.1 there is a 
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(A, f ) e X  2 so that  Tj (A,  f)----(Kint(u), Mint(u)), and consequently S(A, f )  and u differ 

by a linear function. The affine equilibrium distributions constructed above show that  

the map is onto. 

Modifications establish the case n--4. [] 

Remark 17.6. By construction, the operator (S,-OS/ON) maps the affine equilib- 

rium distributions onto span{ (1, 0), (Qi, - N  i) : i =  1, ..., n}, the vectors which integrate to 

zero against X p (Definition 10.1). Thus if (A, f )EX p and if (A~, f*) is any equilibrium 

distribution, an application of the Fubini theorem (in the sense of distributions) shows 

that  

0 S(A*,f*)f) ds=O. 0 f) f . )dS=fo~(S(A., f . )A__o_~ f o u ( S ( A , f ) A * - ~ S (  A, 

Defining 

YP(O~)={~'EWAP:fo(FoA~-NiF~f~)ds=O , j = 0 , . . . ,n}  

and identifying it with its subspace of (17.4), Theorem 17.5 and Remark 17.2 show 

that  (S, -OS/ON): W -1,2 • L 2 -+WA 2 splits into isomorphisms mapping X 2 onto y 2  and 

mapping span{ (A*, f* ), (A*, f/* ): i = 1, ..., n} onto span{ (1, 0), (Qi, -Ni): i = 1, ..., n}. 

18. R e g u l a r i t y  a n d  t h e  b i h a r m o n i c  double-layer potential 

Definition 18.1. Given u and (F, g)E W I'p x L p, the bihaTvnonie double-layer potential is 

defined by (14.1) and is written 

O.(F, g)(X) = jfo (K~(BX)F+M.(BX)g) ds. 

By Green's representation formula any solution u to the interior Neumann problem 

can be written in terms of its Dirichlet and Neumann data 

u(X)----D, u,-~--~ (X)-S(K.(u),M.(u))(X),  Xea .  (18.1) 

In addition to the Dirichlet data  of the double-layer potential being bounded on W I'p x L p, 
the trace of the double layer also maps WA~ to WA~, l<p<oc, by the lemmas of [8. 

Or solvability of the regularity problem [43] and (18.1) conveniently give the result for 

2 - r 1 6 2  

Any solution to the exterior Neumann problem can be written 

Ou M u(X)§ / . (u) ) (X) ,  XERn\~,  (18.2) 
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where r(X) is a constant, linear function etc., according to the cases (ii) (iv) of The- 

orem 15.4. This is seen by applying the arguments of the proof of Theorem 15.2. If, 

however, u=S(A,  f )  then r(X) vanishes. For then by (9.6), (K~,Xt(u)-A, MeXt(u)-f) = 
int int (K.  (u), M~ (u)). So, combining the single-layer terms from the left and right of (18.2), 

the identity 

OS(A,f) )(X)=,~(f(int(S(A,f)),Mint(S(A,f)))(X) ' (18.3) D~, S(A, f), ON -'--~ 

for X in the exterior, is just  Green's first identity in ft. Computing the Dirichlet data 

from the exterior yields, by (14.2) and (9.6), the operator identity 

: (18.4) 

See, for acting on (A, f) .  (This is in exact analogy to the classical harmonic case. 

example, the top of [41, p. 590].) The right-hand side is, by Theorem 12.1 (and Corol- 

lary 13.3), an isomorphism of X p followed by (S,-OS/ON), which is, by Theorem 17.5, an 

isomorphism from X 2 onto the subspace y 2  of Remark 17.6. Consequently the Lipschitz 

dependence for the bounds of these isomorphisms, when v > ( 1 - n )  -1, shows that 

(T~)': y 2  > y 2  

is an isomorphism with constants depending only on the Lipschitz geometry of ft. 
The same analysis starting with (18.1) yields 

( o ) (  (T2) ' S , - ~ S  = S T 2 , - - ~ S  , 

and 

(T+)': WA~ ---+ WA~ 

is an isomorphism with constants depending only on the L@schitz geometry of Ft. 
There is no exceptional case when n = 4  because (T+) ' maps the linear functions onto 

the linear functions (Green's identity), and is also an isomorphism of y 2  with the norm 

[IVTVD.(F0,-N~Fi)II2 equivalent to 11/~112,2 there (by the operator identity). Since VTV 

vanishes on the linear functions, Lemma 17.4 applies as in the proof of Theorem 17.5. 

19. P o t e n t i a l s  for th e  r e g u l a r i t y  p r o b l e m  2--  e < p < 2 + 

Let u and v be biharmonic functions in 12. Fixing any derivative Dz and using the identity 

(O/ON) Dl = (O/OTiz)Di + N I A  one obtains the integration-by-parts formula 

0 
~o~ ( ~--~ DlAv u -  o~ DI Vv" ~u) ds = ~o~ ( D~Djv ~ Dju-  o-~ Av Dlu) ds. 
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Introducing another derivative further yields 

0 
f o a ( J ~ D k D t A v u - ~ - ~ D k D i V v . V u )  ds 

(19.1) 
co D 

Let v=0.  With X in the exterior in (18.3) and taking two derivatives of the left-hand 

side in X, formula (19.1) shows that 

coS x co x co o0(  r 
coXkcoX1 J a ~ \  u i/ ik / 

Letting v--Do(S, -coS/coN) and S=S(A,  f ) ,  (5.5) and (19.2) show that 

I[IK~Xt (v), M~Xt(v)[llp < C [[VVvll p <. C [IVTVS[I p (19.3) 

for 2 - e < p < o o .  On the other hand, the right-hand side of (18.3) shows that T~To(A, f ) - -  

(K~Xt(v), M~Xt(v)), i.e. by Theorem 12.1 and (19.3), 

Ill(A, f)Illp ~< C [llTo +T O (h, f)lllp ~< c ItVTVS(A, f)l l ,  (19.4) 

for all (A, f ) E X  p, 2 - E < p < 2 + e ,  with the constants depending only on p and the Lip- 

schitz geometry of ~. 

When n~3  the statements of Theorem 17.5 extend to 2 - r  THEOREM 19.1. 

2+r i.e. 
(S, VS): w-l'P(Of~) • LP(Of~) ~ WAP(Of~) 

is an isomorphism with bounds depending only on p and the Lipschitz geometry of fL 

Proof. Estimate (19.4), the corresponding p-bounds for the affine equilibrium dis- 

tributions (as in the proof of Theorem 17.5) and Lemma 17.4 yield 

[1[ (A, f)I[Ip ~< C II S(A, f)l[2,p 

for all (A, f) .  The map is therefore injective. This estimate, the surjectivity for p : 2  and 

a limiting argument show that it is onto. [] 

Remark 19.2. A duality argument as in [41] is also possible. This would use solv- 

ability of the biharmonic Dirichlet problem and the area integral estimates of [30] or [8]. 

As a consequence the single layer can be shown to be invertible for 1 < p <  2+~ when n--3 

because of [31], and for 2 ( n - 1 ) / ( n + l ) - c < p < 2 + ~  when n~>4 by the recent result of 

Z. Shen [37]. 

The identity (18.3) and its interior analogue show the following result: 
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COROLLARY 1 9 . 3 .  

and, when u > ( 1 - n )  -1, 

For 2 - s < p < 2 + s  and n>.3, 

(T +)': WA p ~ WA~ 

( T ~ ) ' :  Y P  -----+ Y P  

ave isomorphisms with bounds depending only on p and the Lipschitz geometw of ~. 

20. Equilibrium and regularity in the plane 

An analysis of the single- and double-layer potentials, their relation to equilibrium dis- 

tributions, and their application to the regularity problem, can also be done in the plane. 

The logarithmic fundamental solution and the low dimension bring out more of the tech- 

nical problems already seen in dimensions 3 and 4. A few comments will be made. 

Defining (A~, f~)=(A*, f*), when n = 2  as in Definition 16.1 with respect to (/ko, f0) = 

(/~, f )  in (16.2), does not produce the equilibrium distribution. It turns out that  when 
* * p defined in this way, (A0, fd )EX , so that  if S(A~, f~) were any linear function in f~, then 

the argument of Lemma 10.5 would imply that  (A;, f~) was identically zero. Instead con- 

sider all the densities (A* f*~ * * i, Ji J, i=0,  1, 2, (Definition 16.1) together with a fourth (Azx, f~)  

that  is defined by the formulas of Definition 16.1 with respect to Poisson kernels in the 

same way as (17.1), but with the Laplacian in Z replacing the first-order derivatives. 

In fact, let a = a ( D z )  denote a differential operator in Z. Then the densities and the 

derivatives of Poisson kernels can be indexed by their associated a. Calculating with the 

Kelvin transform leads to 

= f o b ( I p [ 2 s  ds(P)  = a(Dz)IZI21z=0 

and similarly 

* N Q * 

One concludes that  

A* E Wol'P(0f~), i = 0 ,  1,2, 

/o AA ds = 4 
gt 
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(A;, ]3) e x~, 

fo (QjA* -N?f;)  ds(Q) = (~ij, 
fl 

�9 Q �9 foa(Qj A~-N' j  f ; )  ds(Q) = O. 

l ~ i , j ~ 2 ,  

In particular, the other three densities are not in X p. The single-layer potentials are 

similarly calculated as 

fo (BXA. 0 x . \  a\ ~ - - ~ B  f~) ds 

1 
- 87r fo5 [(IPl21xl2-2p'x+t)l~ IPI]X~ ds(P) 

1 fO 0 -~[(IPl2lxl2-2P'x+l)l~ 
1 2 ~a(Dz)  [(IZl IXl2-2Z.X+l)(1-1og IZlXl-XlXl-ll)] Iz=o. 

As argued above, if the quadratic term on the right for S(A~, f~) were to vanish, 

then so would (A~, ]~), which is not possible by Definition 16.1. Since 

fos(I PI2 /~  (P) - 2NP.PL(P) ) ds(P) = O, 

one consequence of the nonvanishing of the quadratic term is that  W~ for n=2 ,  

extending Corollary 16.7. 

The other use for the nonvanishing of the quadratic term is that  (A;, ]~) can be used 

in linear combination with the other densities to remove any of the other quadratic terms, 

resulting in a space of three affine equilibrium distributions complementing the space X p 

in W -1,p x L p for (most) planar domains. As in Remark 16.4, exceptional domains occur 

by scaling because of the logarithmic fundamental solution. With the conventions there 

and letting m denote the order of the differential operator a, the various Poisson kernels 

scale as 

A~t(P)=t-l-mA~(t-lp) and ]~t(P)=t-mf~(t-lP). 
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The corresponding single-layer potentials for the domains f~t with XGY4 satisfy 

- 87r ~ [(t21PI21XI2-2tP'x+l)(l~176 

1s 0 + ~  ~-N--~[(t21Pl21Xl~-2tP.X+l)(logIPl+logt)]Lds(P) 

tm Ixl2-2z.x + l)(l-log Iztxl-xlx1-1 I)] 1z=o. 
87r 

Because the functions IXI 2, X1, X2 and 1 are biharmonic, the integrals without the 

log IPI-term (with the logt-term) are explicitly computable. Taking c~ equal to D~ 
�89 1D and 1 2 ~A, and replacing tX with X, the result on the right is four linear 

combinations of the functions ]XI 2, X], )/'2 and 1. Because (A~t, f~t) E X p while the others 

are not and S(A~t , f~t) does not vanish, the coefficient matrix is singular precisely when 

these linear combinations fail to span the linear (affine) functions that  complement X p. 

This in turn corresponds to log t being an eigenvalue of the matrix for t =  1. There can 

be at most four scalings in which the single layer fails to be injective. However, an 

investigation of the disc example only turns up one. 

With this said, versions of Theorems 17.5 and 19.1 hold for n=2.  Bounds depending 

only on the Lipschitz geometry prevail there when S is restricted to X p, and also in 

general for the extension of Corollary 19.3 to n=2. 

21. On  t h e  r a n g e  for t h e  Po i s son  ra t io  u 

When u = l  the boundary operators for the biharmonic Neumann problem are related 

by the Dirichlet-to-Neumann map for harmonic functions. They cannot map onto any 

subspace of W-I'P• p that  has finite codimension. They fail to satisfy the classical 

Lopatinskii-Shapiro conditions for a regular boundary value problem. This condition 

is also not met for u = - 3 .  A consequence was the noninvertibility of (11.3) for this 

value of u. Another consequence comes by considering solutions u=yh§ in the upper 

half-plane, where h and H are harmonic functions with sufficient decay. Then at y=0,  

M-3 (u) =2hy +4H~y and K-3  (u) = - 2 h y y  -4Hyyy, the Dirichlet-to-Neumann map again. 

S. Agmon [1] showed, in the plane, that  the quadratic forms associated with the 

bi-Laplacian and the boundary operators (5.1) and (5.2), when u = l  and u = - 3 ,  cannot 

be coercive over C 2 (~), i.e. the inequality 

s +~,(Au)2)dX >~cs ,VVu,2 dX-cogf u2 dX (21.1) 
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does not hold over all uEC2(~) for any positive constants c and co when u takes these 

two values. 

Denote the form on the left of (21.1) (the form of (10.2), (6.2) and (6.6)) by Q. ,  for 

all real u. By pointwise comparison of the integrands with those for - 3  and 1, Agmon 

also showed that  Q.,  for u > l  and for u < - 3 ,  fails to satisfy the coercive estimate. In 

the same spirit the (pointwise) inequalities - Q .  ~ l u 5 Q-3 when u ~ l  and -Q~<<.-uQ1 
when v ~ - 3  show that  - Q .  is not coercive outside the open interval ( -3 ,  1). 

It is a boundary version of the coercive estimate, viz. Lemma 7.3, that  permits us 

to deduce a priori estimates for the inhomogeneous Neumann problem from the Rellich 

identity (6.9). The pointwise nonnegativity of the forms Q.  from the interval [ ( l - n )  -1, 1) 

is used in that  lemma. The lack of strict positivity in the left endpoint case leads to the 

same results as the others from this interval, except on a 1-dimensional subspace of data. 

Thus it differs from the right endpoint case. 

In the plane this leaves the interval ( - 3 , - 1 )  to be discussed. Like the other cases 

outside the interval [ ( l - n )  -1, 1] pointwise nonnegativity fails. However, Agmon showed 

that  the classical coercive estimate (21.1) does hold for this interval. It will now be shown 

that  our results must nevertheless fail for - 3  < u < - 1  in Lipschitz domains. 

In the complex plane with 0<0<Tr, let ~t(0)={z: [argz[<0 and 0<[z[< l}  and let 

A(0)={z:  [argzI=O}MO~(O). Given real numbers/~, 7 and q define the (complex) bi- 

harmonic functions 

iPq(Z) =3zqWT~z q-l, [argz[ <7r. 

LEMMA 21.1. Fix r E ( - 3 , - 1 ) .  Then 
(i) there exists OoC (�89 7r) and a nontrivial pair of coefficients (/~, 3/) such that 

satisfies 

u(z) =Im ~3/2(z) 

M.(u) = 0 = K . ( u )  on A(0o) pointwise; 

(ii) in the sense of distributions, K.(u) equals the linear functional 

AoEW-I'P(Of~(Oo)), p < 2 ,  

which acts on any FcWI'P'(Of~(Oo)) by 

( A o , F ) = - ~ -  3~cos~ 0 -Tcos  00 (F(e-i~176176 

+ f e~  ( 9(l-~'___~)13sin ~O+ ( i+~_~)~sin10)F(eie)dO; 
g-Oo \ 8 

moreover, (K.(u), M.(u))cXP(O~(Oo)), p<2; 

(21.2) 

(21.3) 
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(iii) there exists e>0,  a strictly decreasing function q=q(O) and nontrivial pairs 

(fl, 3`)=(fl(O), 3`(O) ) such that 

uq(z) =Im q(z) 

satisfies (21.2) for each Oe(9o-e, 9o+e). 

1 of the outer unit Proof. Take the unit tangent vector T to be a rotation by ~7~ 

normal vector N, and let z=re ie. Then, for example, on the half of A(9) with negative 

argument one has 

and finally 

0 1 0  0 0 
ON r 00' OT Or' 

02 0 ( 1 0 )  0 2 0 2 0 2 1 0  ( 1 0 ~  2 
O T O N -  Or -~  ' OT 2 - Or 2' ON 2 - r Or + \ r  0 0 ]  ' 

and 

Mv(rPq) = rq-2 (1 -q)[(1 -v)flqeiq~ +3`((1 - u)q-4)e  i(q-2)~ ] 

Ku(42q) = - irq-a(1-q)(2-q)[(1-u)f lqeiq~ +3`((1-u)(q-2)q-4)ei(q-2)~ 

Setting the imaginary parts equal to zero yields 

0 = fl(1 - u ) q  sin qO+ 3`((1 - u ) q - 4 )  s in(q-2)0 

and 

O= fl(1-u)qcosqO+ 3`( ( 1 - u ) ( q -  2)+4) cos(q- 2)O. 

The same equations are obtained for the other half of A(0). Viewing these as two 

linear equations in fl and 3', nontrivial solutions are obtained when the determinant 

(1-u)qD(q,  O)=0, where 

D(q, 0) = (3+v) s in (2q-2)0+ ( 1 - u ) ( q - 1 )  sin 20. (21.4) 

D (3,0) vanishes when 
3+u 

cos 0 -- u -  1" (21.5) 

This proves (i). 

Let 00E (�89 be the solution to (21.5). On r = l  and -0o<0<00 ,  the pointwise 
3 value for Ku(u) when q=~ is the parenthetic integrand of (21.3). In addition, 

( 3 1) 
O 2 1 3fl cos ~ O- 7 cos ~ 0 
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there. However, 

OT ON - Or -~ on r = 1, 

so that  there is a sign change at both corners 0=4-00 for the part of the Neumann data in- 

volving these derivatives. The third derivative must, therefore, be understood in the sense 

of distributions. (OAu/ON is pointwise bounded, however.) Take FEWi'P'(O~(Oo)) sup- 

ported outside a ball containing the origin. Let 0~<~ ~< 1 be a smooth function supported 

in e-balls about the two corners, equal to 1 at the corners, and satisfying : IIV--:]]~ ~<C 

independent of e>0. Then the pointwise behaviors and one application of the divergence 

theorem yield 

lim f 7)(F)K~(u)dsj=-(1-V) fO 0 02 j-+oo ,goaj fl(0o) OT (=-~F ) ~ u ds (21.6) 

L - 0 d s + f  (1-E~)FK~(u)ds. 
+ n ( 0 o ) = ~ F ~ A u  JOn(Oo)\A(Oo) 

Integration by parts over each piece of the boundary in the first integral, the absolute 

continuity of F,  and letting e vanish, yields the first term of (21.3). The second integral 

vanishes in e and the third yields the rest of (21.3). For FEW:'P'(Of~(Oo)) supported 

in A(0o), let the ~ be as above for :-balls about the origin. Denote by F~ the aver- 

age (2:)-lflQI<F(Q) ds(Q) for each e-ball. By K.(u)eWo:'"(aaj) and the pointwise 

vanishing on A(00), 

lim LafP(F)g,(u)dsj = lim LnjE~P(F-F~)K,(u)dsj <.II~(F-F~)Iil,p,, 
j --+ ~ j ---+ cxD 

where the inequality depends on N ( V V u ) E L  p, which holds for p<2  only. By the Poinca% 

inequality this is bounded by 

0 "' ' , : / "  

with C independent of :. This establishes (21.3). A computation yields 

3+5UTs in10  o n r = l .  M.(u) = 3(1}- ~) ~sin ~ 0 +  

This, together with (21.3) and choosing ~ =  -~ (l +2 cos 0o) sin 5001 and -),=sin 7003 as a 

solution to the two linear equations in/7 and % can be used to show that  (K.(u) ,  M,(u)) 
meets the algebraic condition to be in X p (Definition 10.1) for p<2.  
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To prove (iii), implicit differentiation of D(q, O)=0 at (3,00) and substituting cos 00 

for ( 3 + y ) ( u - 1 )  show that  

q ' ( O o )  - 

The implicit function theorem yields (iii). 

- �89 tan 2 00 

0 0  - t a n  0 0  ' 

[] 

By (21.3) the linear functional A0 from (ii) of the lemma is in W-I'P(O~(Oo)) for 

all p~<oc. Thus given a y E ( - 3 , - 1 )  the solution u3/2 from (i) of the lemma forTnally has 
Neumann data  in XP(O~(Oo)) for any p, but  because N(VVu3/2)EnP(O~(Oo)) for p < 2  

only, u3/2 cannot be a biharmonic solution of Definition 13.1 for this data  when p ~> 2. If it 

were true that  the Neumann problem of Definition 13.1 were solvable for any data  in X 2 

when u E ( - 3 , - 1 ) ,  then the solution u that  takes the same data  as u3/2 would satisfy 

N(VVu)  EL p for p~<2. Thus uniqueness would fail for p<2.  But under the assumption 

of X2-solvability uniqueness for p <2  can be proved, thus contradicting X2-solvability: 

LEMMA 21.2. Let f ~ c R  ~ be a bounded Lipschitz domain, and choose u to be any 
real number. Assume that  the biharmonic Neumann problem of Definition 13.1 for u can 

be solved for all data in X2(0f~). Let 2(n-1)/(n+l)<,p and let u be a solution in 12 
with vanishing ~-Neumann data. 

Then N(VVu)EL p implies that u is a linear function. 

Proof. The vanishing of the data  and Green's representation formula still give 

X X O n  
u ( X ) : f o ~ ( K u ( B  )u-M~(B ) - ~ ) d s ,  XEfL (21.7) 

By translation it may be assumed that  foa QJ ds=O for all j .  Fix X. Because the double- 

layer potential is the identity on linear functions, the Neumann values of the fundamental 

solution satisfy 

(K,(BX)(Q) -]cgfl1-1- [f~I-1NQ.X, M,(BX)(Q)) E X2 (0a) .  

Let v be a solution in f~ for this data. Then the right-hand side of (21.7) can be rewritten 

in terms of v, u and the newly introduced linear terms. Green's second identity for two 

solutions then shows that  

:/o: 1/o u(X)  = ~0 ~ d s + ~  Vu(Y)dY.X.  

The two assumptions on the nontangential maximal functions justify the use of the 

divergence theorem by way of domain approximations, existence of pointwise limits, 

Lebesgue dominated convergence and the Sobolev embedding theorem when p<2.  [] 
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Given any u E ( - 3 , - 1 )  a bounded Lipschitz domain can be constructed with a 

countable number of corners of angle 200 in such a way that  a singular solution from 

Lemma 21.1 exists for each such corner and in the domain. Any finite linear combination 

of such solutions provides da ta  for which there can be no solution by the same argument 

as above. The X2-Neumann problem for u cannot in general be Fredholm, therefore. 

Par t  (iii) of Lemma 21.1 shows that  the same can be said for the XP-problem for p 

near 2. 

However, letting 0=lr  in (21.4) and setting D=O yields q=3 as a solution again, 

indicating that  the decreasing function in (ii) of Lemma 21.1 obtains a minimum value 

for 0>00 below which there are no singular solutions. It  is an open problem whether or 

not the XP-problem can be solved for an interval o fp ' s  strictly below 2 when the problem 

for p = 2  is not solvable. 

Remark 21.3. The (I)q also give counterexamples to the solvability for p > 2  of the 

Neumann problem when n = 2  and - l ~ < u < l .  We have 

0 D(3,7r) = _27r(3+u). D(3,Tr) = 0 and ~qq 

Thus q(O) can be implicitly defined with q(Tr)= 3, and then q'Qr)=-(l+u)/(3+u)Tr<O 
when - l < u .  When u = - l ,  q'(~r)=q"(Tr)=0 and q'"(Tr)=-3/27r,  which implies q ' (0 )<0  

for 0 < 7r in a neighborhood of 7r. Thus in both  cases there are singular solutions Uq, for 

each q > 3  in a neighborhood of 3 defined in corresponding domains ~(0),  0<Tr. This 

means that  given any P0 > 2 close enough to 2 there is a Lipschitz domain with singular 

solution u such that  N(VVu)EL p for all P<P0, but N(VVu)~L p~ Now the argument  

is the same as that  given between Lemmas 21.1 and 21.2 with P0 playing the role of 2, 

except that  X2-uniqueness obviates the need for another  Lemma 21.2. 

Remark 21.4. The use of reentrant corners to produce singular solutions is not nec- 

essary. By considering the real part  of the (I)q, examples in convex domains are produced. 

The plus sign between the two terms of (21.4) changes to a minus, so that  (21.5) changes 

sign. 

Remark 21.5. Singular solutions for p = 2  when u~<-3 can also be derived from 

the (I)q. But none for u~>l, it seems. 

22. Subregularity for the Neumann problem 
t 

Let 2-e<p<2+e and denote the dual space to the Whitney array space WAP(OQ) 
by WAP_2(OQ). Let v be a solution to the biharmonic Dirichlet problem with da ta  
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(v,-Or~ON) EW I'p x L p. Then formally the Neumann data for v becomes a linear func- 

tional L acting on arrays ]EWAP'(O~) by 

(L, ]) = fo (K,(v)fo-M,(v)Njfj)  ds. (22.1) 

Denote by 92( f )  the solution to the biharmonic regularity problem with data f .  Inter- 

preted in the sense of distributions, L becomes a bounded linear functional by 

and 

(L, .}) ~< IIW, llp IlIK~ (92(])), M~(92 (.f))lllp, ~ C IlWllp IIvv92(/)lip' ~ cIIVvllp IIfll~,p', 

where the last inequality is by solvability of the biharmonic regularity problem. Thus L 

satisfies IILII ~<CIIWllp. 
Given any L E WAP_2 (Of~), finding a biharmonic v in the class N(Vv)E L p such that 

(22.1) holds for all ]EWA~'(Of~), and obtaining the opposite inequality, can be thought 

of as solving the (biharmonic) problem of subregularity for the Neumann problem. 
Hence, suppose that LEWAP_2(O~) is given. If ]EWA~'(O~) then 92( ] )  has Neu- 

mann data in W-I'p'x L p' by solvability of the regularity problem. Conversely, given data 

(A, g )EW-I 'P ' x  L p' there is a unique V V 9 2 ( f ) ,  by solvability of the Neumann problem, 

so that  92( ] )  has Neumann data (A,g) and 

Consequently, the map 

Ilvv92(s ~ c IliA, glllp,. (22.2) 

V: W -  1,F• L F > R,  

(A,g), > (L , ] )  

is a bounded linear functional by (L, jr}~<llLII [[]I]2,p,~<CI[LII [llA, g][Ip,. Since WI'p• p 
is reflexive (Remark 4.7), V is represented by a unique solution v to the biharmonic 

Dirichlet problem so that  in the sense of distributions 

A Ov (V, ( A, g) ) = fo~ (v - - ~  g) ds = (L, f ). 

The last equality then holds for all )~ by the solvability of the regularity problem. It is a 

consequence of the Hahn-Banach theorem ([47, p. 108]) and (22.2) that 

[IVvl[ ~< sup{(L, f>: IliA, g[[Ip' = 1} ~< c IIL[[ 11]112,# ~< C ILL[[. 
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Thus the solution of the fourth boundary value problem, subregularity for the Neu- 

mann problem, follows from the solvability of the other three and from functional-analytic 

arguments. 

This subregularity result is the analogue of Proposition 4.2, and so should bring us 

to the Neumann problem for sixth-order elliptic operators. As a concluding example con- 

sider the equation A3u:0  and the Dirichlet form Q(w, u)=fo ~ DiDjDkwD~DjDkudX 
that would correspond to ~=0. Dirichlet data for solutions is prescribed in the space 

WAP'xL p' ([33]). Suppose that N(VVw)eL p' and the ordered pair (~b, O2w/Og2)e 
I ! 

WA p • p, where ~b=(w, Vw). Suppose also that N(V~Vu)EL p, so that Au is a so- 

lution to the biharmonic Dirichlet problem in the class N(VAu)EL p. The divergence 

theorem in smooth approximating domains using Green's identity (10.2) and a couple of 

applications of (6.8) yields 

Q(w,u)= a K~176 ds-2do~ OTij ON--OTij Dku ds 

1 f D 0 ( 03 ) ~o 02w 03Uds" 
- 2  Joa kw oT-~ij NkON:OTij u ds+ aON2 ON-- 3 

The first integral is the pairing (22.1). The second and third are pairings of tangential 

W-l'P-distributions with components of ~b. 

As described in w the Dirichlet data is equivalently described as 

w, Ow 02w 
ON' 

on the boundary of a Lipschitz domain. Further decomposing the gradient of w into 

normal and tangential components yields a triple of Neumann data for the triharmonic 

equation, 

K0 (Z u) + 

1 t0 ~ [  ~ k 03 
Mo(Au) +-~ Nk -O-~ij(O/--~OTij'" DkU)+ IN~ k 0 N ON 20Tij u) , (EE) 

03u 
ON 3 (ND) 

in W -2'p • L p. 
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