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1. I n t r o d u c t i o n  

Let (M, g) be an n-dimensional compact smooth Riemannian manifold (without bound- 

ary). For n=2,  we know from the uniformization theorem of Poinca% that  there exist 

metrics that are pointwise conformal to g and have constant Gauss curvature. For n~>3, 

the well-known Yamabe conjecture states that  there exist metrics which are pointwise 

conformal to g and have constant scalar curvature. The Yamabe conjecture is proved 

through the work of Yamabe [65], Trudinger [58], Aubin [2] and Schoen [53]. The Yamabe 

and related problems have attracted much attention in the last 30 years or so, see, e.g., 

[57], [3] and the references therein. Important methods and techniques in overcoming 

loss of compactness have been developed in such studies, which also play important roles 

in the research of other areas of mathematics. For n~>3, let ~=u4/(n-2)g, where u is 

some positive function on M. The scalar curvature RO of ~ can be calculated as 

Ro=u-(n+2)/(n-2)(Rgu 4 > - ~ )  Agu) ,  

where Rg and Ag denote respectively the scalar curvature and the Laplace-Beltrami 

operator of g. The Yamabe conjecture is therefore equivalent to the existence of a 

positive solution of 
-Lgu=/~u (n+2)/(~-2) on M, 

where 
n - 2  

Lg := Ag 4 ( n - l )  Rg 

is the conformal Laplacian of g, and R = 0  or _~=+2(n-1) .  The Yamabe problem can 

be divided into three cases--the positive case, the zero case and the negative case 

according to the sign of the first eigenvalue of -Lg .  Making a conformal change of 
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metrics {7=~4/(n-2)9, where ~ is a positive eigenfunction of - L a  associated with the 

first eigenvalue, we are led to the following three cases: Rg>O on M, Rg=0  on M and 

Rg<O on M. The positive case, i.e. Rg>0,  is the most difficult. 

Let 

( Ag 1 Ricg 
" -  n - 2  2 ( n - 1 )  ] 

denote the Schouten tensor of g, where Ric o denotes the Ricci tensor of 9. We use 

)~(Ao)=(A~(Ag), ..., s to denote the eigenvalues of Ag with respect to 9. Clearly 

f i  )~'(Ag) - 2 ( n -  1) g" 
i = 1  

Let 

and let 

V I : { ~ E R  n f i A ~ >  1 ) ,  
i----1 

r(v1) = {sz I >0, ZeVl} 

be the cone with vertex at the origin generated by Vx. 

The Yamabe problem in the positive case can be reformulated as follows: Assuming 

(A~) E F(V1), then there exists a Riemannian metric 0 which is pointwise conformal to 9 

and satisfies .~(Ao)cOV1 on M. 

In general, let V be an open convex subset of R n which is symmetric with respect to 

the coordinates, i.e. ()~1, .--, An)E V implies (Ail, ..., Ai, )C V for any permutation (il, ..., in) 

of (1, ...,n). We assume that  0r is in C 2'~ for some ~E(0,  1) in the sense that  OV 
can be represented as the graph of some C2,~-function near every point. For )~cOV, let 

u(A) denote the inner unit normal of OV. We further assume that  

u(A) EFn:={AERnlAi>O,I<<.i<~n), AeOV, (1) 

and 

>0,  ,eov. (2) 

Let 

r ( V )  := {s~ I ~cV,  0 < s < ~ }  (3) 

be the (open convex) cone with vertex at the origin generated by V. 

Our first theorem establishes the existence and compactness of solutions to a fully 

nonlinear version of the Yamabe problem on locally conformally fiat manifolds. A Rie- 

mannian manifold (M n, g) is called locally conformaUy fiat if near every point of M the 

metric can be represented in some local coordinates as 9---e ~(x) g-'~ td -~2 Z - ~ i = l ~  ~ ) " 
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THEOREM 1.1. For n>~3 and aE(0 ,1 ) ,  we assume that V is a symmetric open 

convex subset of R n, with 2Jr 4'~, satisfying (1) and (2). Let (Mn, g) be a com- 

pact, smooth, connected, locally conformally fiat Riemannian manifold of dimension n 

satisfying 

A(A~) e r(v)  on M n. 

Then there exists a positive function uEC4,a(M n) such that the conformal metric [?= 

u4/(n-2) 9 satisfies 

)~(Ao)EOV on M n. (4) 

Moreover, if ( M n, g) is not conformally diffeomorphic to the standard n-sphere, then all 

positive solutions of (4) satisfy 

Ilutlo~,~(M~,g)§ ~<C on M ~, 

where C is some positive constant depending only on (M~,g), V and c~. 

Remark 1.1. Presumably, the existence of a C2'~-solution of (4) should hold under 

the weaker smoothness hypothesis OVE C 2'~. We prove this under an additional hypoth- 

esis that  V is strictly convex, i.e. principal curvatures of OV are positive everywhere. See 

Appendix B. 

We make the following conjecture: 

Conjecture 1.1. Assume that  V is an open symmetric convex subset of R n, with 

2JT~OVEC ~176 satisfying (1) and (2). Let (M'~,g) be a compact smooth Riemannian 

manifold of dimension n ~> 3 satisfying 

,~(Ag) E F(V) on M n. 

Then there exists a smooth positive function u E C ~ (M n) such that  the conformal metric 

g=U4/(n-2)g satisfies 

.~(Ao) EOV on M n. (5) 

For V=V1, it is the Yamabe problem in the positive case. In general, the equation 

of u is a fully nonlinear elliptic equation of second order, and therefore the problem can 

be viewed as a fully nonlinear version of the Yamabe problem. 

The fully nonlinear version of the Yamabe problem has the following equivalent 

formulation. The equivalence of the two formulations is shown in Appendix B. 

Assume that  

F C R ~ is an open convex symmetric cone with vertex at the origin (6) 
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satisfying 

{ I n } C o c c i ' l : =  , ~ c R  n } - -~ ,x ,> 0  . (7/ 
i = 1  

Naturally, F being symmetric means that (~1, ~2, ..-, A n )  E F implies (,~11, ~i2, ..., A~,) E F 

for any permutation (il, i2, ..., in) of (1, 2, ..., n). 

For hE(0, 1), assume that 

f E C4'a(F)NC~ ") is concave and symmetric in Ai, (8) 

satisfying 

and 

floP=O, V f E F n  o n F  (9) 

lim f ( s A ) = o c ,  AEF. (10) 
S "--~ CO 

Conjecture 1.1 is equivalent to the following conjecture: 

Conjecture 1.1'. Assume that if ,  F) satisfies (6)-(10). Let (Mn, g) be a compact 

smooth Riemannian manifold of dimension n~>3, satisfying A(Ag)EF on M n. Then 

there exists a smooth positive function uEC~176 n) such that the conformal metric 

g=-u4/ (n- i) g satisfies 

f (A(Ao))=I ,  A(A~)EF, o n M  n. (11) 

Theorem 1.1 is equivalent to the following theorem: 

THEOREM 1.1'. For n>~3 and hE(0,1) ,  we assume that ( f ,F)  satisfies (6)-(10). 

Let ( M n, g) be a compact, smooth, connected, locally conformally fiat Riemannian mani- 

fold of dimension n satisfying A(Ag)EF on M n. Then there exists a positive function 

uEC4'a(M n) such that the conformal metric ~ = u  4/(n-2) satisfies (11). Moreover, if 

(Mn, g) is not conformally diffeomorphic to the standard n-sphere, all solutions of (11) 

satisfy 

Ilullc,,otMo, g)+lll/ullc4,~(M,',g) ~< C, (12) 

where C > 0  is some constant depending only on (M",g) ,  ( f ,F)  and a. 

Remark 1.2. C o- and Cl-bounds of u and 1/u do not depend on the concavity of f .  

This can be seen from the proof. 

For l<<.k<<.n, let 

~(~)= ~ ~1-.-~ 
l~il<...<ik~n 
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be the kth symmetric function and let Fk be the connected component of {AERnl 
ak(A)>0} containing the positive cone Fn. Then (f,  F)=(a~/k,  Fk) satisfies the hypoth- 

esis of Theorem 1.1', see [7]. 

Remark 1.3. For (f,r)=(al,rl), it is the Yamabe problem in the positive case 

on locally conformally flat manifolds, and the result is due to Schoen [53], [55]. For 

(f, F ) =  (a~/2, F2) in dimension n=4 ,  the result was proved without the locally conformally 
i/n flatness by Chang, Gursky and Yang [9]. For ( f , F ) = ( a n  ,F~), an existence result 

~, i 1/k was established by Viaelovsky [64] on a class of manifolds. For (f, L)=[cr k , Fk), the 

result was established in our earlier paper [35], while the existence part for kr189  was 

independently established by Guan and Wang in [24] using a different method. Guan, 

Viaclovsky and Wang [22] subsequently proved the algebraic fact that 1(Ag)CFk for 

k~>~nl implies the positivity of the Ricci tensor, and therefore (M,g) is conformally 

covered by S '~, and both the existence and compactness results in this case follow from 
1/k 

known results. For (f, F )=(a~  , Fk), k=3,  4, on 4-dimensional Riemannian manifolds, as 

well as for (f, F) , 1/k Fk), k=2, 3, on 3-dimensional Riemannian manifolds which are = [O" k , 
not simply-connected, the existence and compactness results were established by Gursky 

and Viaclovsky in [30]. 

Remark 1.4. If we assume in addition that  f c C  k'~ for some k>4,  then, by Schauder 

theory, (12) can be strengthened as 

where O>O also depends on k. 

Since our C ~ and O~-estimates for solutions of (4) (or, equivalently, of (11)) do not 

make use of the convexity of V (or concavity of f) ,  we raise the following question: 

Question 1.1. Under the hypotheses of Theorem 1.1', but without the concavity 

assumption on f ,  does there exist a positive Lipsehitz function u on M ~ such that 

g=u4/(n-2)g satisfies (11) in the viscosity sense? 

Equation (11) is a fully nonlinear elliptic equation of u. Fully nonlinear elliptic 

equations involving f(A(D2u)) have been investigated in the classical and pioneering 

paper of Caffarelli, Nirenberg and Spruck [7]. Extensive studies and outstanding re- 

sults on such equations are given by Guan and Spruck [20], Trudinger [59], Trudinger 

and Wang [6O], and many others. Fully nonlinear equations involving f(A(V2gu+g)) 

on Riemannian manifolds are studied by Li [43], Urbas [61], and others. Fully nonlinear 

equations involving the Schouten tensor have been studied by Viaclovsky in [62] and [64], 

and by Chang, Gursky and Yang in the remarkable papers [9] and [8]. There have been 
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many papers, preprints, expository articles, and works in preparation, on the subject 

and related ones, see, e.g., [17], [26], [63], [27], [28], [23], [24], [5], [33], [35], [4], [22], [30], 

[29], [13], [34], [44], [45], [10], [25], [12], [31], [19] and [41]. The approach developed in 

our earlier work [35] and continued in the present paper makes use of and extends ideas 

from previous works on the Yamabe equation by Gidas, Ni and Nirenberg [18], Caffarelli, 

Gidas and Spruck [6], Schoen [54], [55], Li and Zhu [491, and Li and Zhang [46]. 

For g=u4/(n-2)g, w e  have (see, e.g., [62]) 

A i _  2 u_lV2u + 2n 2 u_21Vul2g+Ag ' 
n - 2  ~n--L--~ u - 2 V u |  ( n - 2 )  2 

where covariant derivatives on the right-hand side are with respect to g- 

Let gl=Ua/(n--2)gflat, where gflat denotes the Euclidean metric on R n. Then, by the 

above transformation formula, 

Ag 1 = u4/(n- 2) AUj dx i dx j, 

where 

2 u_(n+2) / (n_2)V2u_~_~u_2n/(n_2)Vu@V u 
AU := n - 2  

2 u_2,~/(,~_ m 1Vul2i ' 

and I is the identity n • n-matrix. In this case,/k(Ag 1)=A(Au), where A(A ~) denotes the 

eigenvalues of the symmetric n x n-matrix A u. 

Let ~p be a M6bius transformation in R n, i.e. a transformation generated by transla- 

tion, multiplication by nonzero constants, and the inversion x~-~x/Ixl 2. For any positive 

C2-function u, let ur := I J~ ](n--2)/2n (Uo~2), where Jr denotes the Jacobian of r A calcu- 

lation shows that A ~ and A~o~ differ only by an orthogonal conjugation, and therefore 

,~(A ~r ) = ~(A~)or (13) 

Let S ~x~ denote the set of real symmetric nxn-matr ices ,  O(n) denote the set of 

real orthogonal n x n-matrices, UC,S nxn be an open set satisfying 

0-1UO=U,  OEO(n), (14) 

and let F e C  I(U) satisfy 

F(O-1M O)= F (M) ,  MEU, OEO(n). (15) 
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By (13) and (15), 

F(AUr - F(AU)or 

We proved in [35] that any conformally invariant operator H( -, u, Vu, V2u), in the 
sense 

H( -, ur Vur V2ur -- H( . ,  u, Vu, V2u) o~), 

must be of the form F(AU). 

Our next theorem concerns a Harnack-type inequality for general conformally in- 
variant equations on locally conformally flat manifolds. Let nxn nxn $+ C$ denote the set 

of positive definite matrices. We will assume that U and F further satisfy 

U n { M + t N ]  0 < t < o c }  is convex, 

(F~j(M)) > O, 

where Fij(M):= (OF/OMij)(M), and, for some 5>0, 

F ( M ) r  M E U M { M c S  nxn IIMll:-- 

M E S  nxn, NES+ xn, (16) 

MEU, (17) 

~ ,,1/2 } 
EM, ) < 5  

i , j= l  

(18) 

THEOREM 1.2. For n>~3, let UCS nxn satisfy (14) and (16), and let FEC~(U) 

satisfy (15), (17) and (18). For R>0,  let uEC2(B3R) be a positive solution of 

F(A ~)=1, A~EU, in B3m (19) 

where B3R denotes the ball in a n of radius 3R and centered at the origin. Then 

(sup u) (inf u) <<. C(n) 5(2-'~)/2R 2-n, (20) 
BR B2R 

where C(n) is some constant depending only on n. 

Let 

Uk := {MeSn•  A(M) eFk} 

and 

Fk(M)=ak(A(M)) ,  MEUk. 

For (F, U)=(F1, U1) , (19) takes the form 

- A u =  �89 (n+2)/(n-2) in B3R. 
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Remark 1.5. The Harnack-type inequality (20) for (F, U)=(F1,  U1) was obtained 

by Schoen in [54]. For a class of nonlinearity including (F, U)=(F~/k, Uk), l<~k<~n, the 

Harnack-type inequality was established in our earlier work [35]. 

Remark 1.6. In Theorem 1.2, there is no concavity assumption on F,  and the con- 

stant C(n) is given explicitly in the proof. The Harnack-type inequalities in [54] and [35] 

are proved by contradiction arguments which do not yield such an explicit constant. 

Let g be a smooth Riemannian metric on B 3 c R  ~, n~>3, and let (f, F) satisfy our 

usual hypotheses. Consider 

Question 1.2. 

(f,  r ) ,  such that 

f ( A ( A u 4 / ( , ~ - 2 ) g ) ) = l  , ~(Au4/(.-~)g)er, in B3. (21) 

Are there some positive constants C and 6, depending on (B3, g) and 

( su p u ) ( i n fu )~<Ce  2-n, 0 < ~ < 6 ,  
B~ B2E 

holds for any positive solution of (21)? 

Remark 1.7. The answer to the above question is affirmative for the Yamabe equa- 

tion (i.e. (I, r ) = ( ~ l ,  r l ) )  in dimension n=3 ,  4, see Li and Zhang [481. 

We have avoided the use of Liouville-type theorems in the proofs of Theorems 1.1, 

1.1' and 1.2. However, in order to solve Conjecture 1.1 on general Riemannian manifolds, 

to answer Question 1.2, or to study many other issues using fully nonlinear elliptic 

equations involving the Schouten tensor, it is important to establish the corresponding 

Liouville-type theorems. 

For n~>3, consider 

- A u =  � 8 9  (n+2)/(n-2) on n n. (22) 

It was proved by Obata [51] and Gidas, Ni and Nirenberg [18] that any positive 

C2-solution of (22) satisfying fRnu 2'~/(~-2) <oc  must be of the form 

a ~(~-2)/2 
U(X) = (2n) (n-2)/4 ( 1 + a  2 Ix --:~12 ] ' 

where a > 0  and 5:ER n. The hypothesis fRn•2n/(n--2)(O0 w a s  removed by Caffarelli, 

Gidas and Spruck [6]; this is important for applications. The method in [18] is completely 

different from that of [51]. The method used in our proof of the Liouville-type theorems 

on general conformally invariant fully nonlinear equations (Theorem 1.3) is in the spirit 

of [18] rather than that of [51]. As in [6], the superharmonicity of the solution has played 
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an important role in our proof of Theorem 1.3, see Lemma 4.1. On the other hand, 

under some additional hypothesis on the solution near infinity, the superharmonicity of 

the solution is not needed, see Theorem 1.4 in [35]. 

Somewhat different proofs of the result of Caffarelli, Gidas and Spruck were given 

in [14], [49] and [46]. In particular, the proofs in [49] and [46] fully exploit the eonformal 

invariance of the problem and capture the solutions directly rather than going through 

the usual procedure of proving radial symmetry of solutions and then classifying radial 

solutions. A related result of Gidas and Spruck in [20] states that  there is no positive 

solution to the equation - A u = u  p in R n when l < p <  (n+2)/(n-2). 
For n~>3 and -oc<p<~(n+2)/(n-2), we consider the equation 

F(A~)=u ~-(n+2)/(~-2), A~EU, u > 0 ,  on R n. 

For (F, U)=(F1,  U1), equation (23) takes the form 

- A u = � 8 9  p, u > 0 ,  o n R  n. 

(23) 

for some ~ER n 
F(2b2a-2I)=l, 

( a ,~(,~-2)/2 

u(x)=_ \ 1+b2~_~12  ] , x E R  n. (24) 

Remark 1.8. For (F, U)=(F2/k, Uk), l<<.k<<.n, a solution of (23) is automatically 

superharmonic. 

Remark 1.9. The most difficult case is for p=(n+2)/(n-2).  When (F, U)=(F1, U1), 

the result in this case (the rest of this remark also refers to this case), as mentioned ear- 

lier, was established by Caffarelli, Gidas and Spruck [6], while under some additional 

hypothesis the result was proved by Obata [51] and Gidas, Ni and Nirenberg [18]. For 

(F, U)=(F~/k, Uk), and under some strong hypothesis on u near infinity, the result was 

proved by Viaclovsky [62], [63]. For (F, U)=(F~/2, Uz) in dimension n=4 ,  the result is 

due to Chang, Gursky and Yang [9]. For (F, U)=(F~/k, Uk), the result was established 

in our earlier paper [35]; for (F, U)=(F~/2, U2) in dimension n=5,  as well as for (F, U)= 

(F 1/2, U2) in dimension n~>6 under the additional hypothesis fRnu 2n/(~-2) <oc, the re- 

sult was independently established by Chang, Gursky and Yang [11, Chapter 3]. Under 

some fairly strong hypothesis (but weaker than that  used in [62] and [63]) on u near 

infinity, the result was proved in [35] without the superharmonicity assumption on u. 

THEOREM 1.3. For n>>.3, let UCS nxn satisfy (14) and (16), and let FECI(U) 
satisfy (15) and (17). Assume that ueC2(R n) is a superharmonic solution of (23) 

for some p, -oc<p<~(n+2)/(n-2). Then either u~cons tant  or p=(n+2)/(n-2)  and, 
and some positive constants a and b satisfying 2b2a-2IEU and 
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As mentioned earlier, Theorem 1.1' in the case (f,  F ) = ( a l ,  F1) is the Yamabe prob- 

lem in the positive case on locally conformally flat manifolds, and the result is due to 

Schoen [53], [55]. The proof in [55] has three main ingredients: The first is the exis- 

tence of the developing map due to Schoen and Yau [56], the second is the use of the 

method of moving planes, and the third is the Liouville-type theorem of Caffarelli, Gidas 

and Spruck [6]. A major difficulty in extending the result for ( f , F ) = ( a l , F 1 )  to fully 

nonlinear (f,  F) was the lack of a corresponding Liouville-type theorem. An important  

step was taken by Zhang and the second author in [46], which gives a proof of Schoen's 

Harnack-type inequality for the Yamabe equation without using the Liouville-type the- 

orem in [6]. Adapting this idea, we established in [35, Theorem 1.27] the Harnack-type 

inequality (20) for a class of nonlinearity including 

(F,U) (F ~/k Uk), l<~k<~n, ~ k  k ' 

under the circumstance that  the corresponding Liouville-type theorem was not available. 

This also made us recognize the possibility of proving Theorem 1.1 ~ without the corre- 

sponding Liouville-type theorem. Indeed, in [35] we have developed an approach, based 

on the method of moving spheres (i.e. the method of moving planes, together with the 

conformal invariance of the problem), to prove the existence and compactness results for 

the fully nonlinear version of the Yamabe problem on locally conformally flat manifolds 

under the circumstance that  the corresponding Liouville-type theorem was not available. 

Another major difficulty in proving Theorem 1.1' is the lack of C O- and Cl-estimates 

of solutions. We have developed a new approach in [35], again based on tile method of 

moving spheres, to obtain such estimates. We have also introduced in [35] a homotopy 

which connects the general fully nonlinear version of the Yamabe problem to the Yamabe 

problem, and used the degree for second-order fully nonlinear elliptic operators in [42] 

and the result in [55] for the Yamabe problem to prove the existence of solutions to the 

fully nonlinear ones. 

In [21], Guan, Lin and Wang have also presented a proof of Theorem 1.2, under 

an additional concavity hypothesis on F,  and of Theorem 1.1 t. We clarify these over- 

laps in this paragraph: These results follow immediately from our earlier work [35] and 

Lemma A.2 a quantitative version of a calculus lemma used repeatedly in [35]. Indeed, 

the only change one needs to make is to move the four lines below (4.3) on page 1446 

of [35] to be right after line 5 of the same page. After making this change, the gradient 

estimate stated on line 7 of the same page follows from Lemma A.2, and Theorem 1.2, 

under an additional concavity hypothesis on F,  and Theorem 1.1', as well as our new 

C o- and Cl-estimates, follow from the proofs of Theorem 1.25 and Theorem 1.27 in [35]. 

Theorem 1.2 and Theorem 1.Y, with an emphasis on our new C o- and Cl-estimates based 
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on the method of moving planes, were presented by the second author in his invited talk 

at ICM 2002 in Beijing. The proof in [21], following [35] (in particular, following the 

above-mentioned steps developed there), provides the ingredient beyond [35] which, as 

explained above, amounts to Lemma A.2. We present the proof of Theorem 1.1' and 

Theorem 1.1 in w and w respectively. The proof of Theorem 1.1', which appeared in 

slightly shorter form in [34] and in preprint form in [37], contains one slight simplifi- 

cation of the arguments in [35] which avoids the use of local C2-estimates (only global 

C%estimates are needed); the proof of Theorem 1.2, which also appeared in slightly 

shorter form in [34] and in [37], contains one more ingredient to remove the concavity 

assumption on F,  which also yields an explicit constant C(n) in (20). 

Due to Theorem 1.1' (or Theorem 1.1), Conjecture 1.1' (or Conjecture 1.1) mainly 

concerns the problem on Riemannian manifolds which are not locally conformally flat. 

In general, equation (11) does not have a variational formulation. A plausible approach 

is to establish a priori estimates (12) for all solutions of (11), and to use the homotopy 

in [35] to connect the problem to the Yamabe problem. For the Yamabe problem (i.e. 

(11) for ( f , r ) = ( a l , r t ) ) ,  such estimates were given by Li and Zhu [50] in dimension 

n=3;  the estimates in dimension n = 4  follow from a combination of the results of Li 

and Zhang [48] and Druet [15]; Li and Zhang have extended the estimate to dimension 

n~<7, as well as to dimension n~>8, but under an additional hypothesis that  the Weyl 

tensor of g is nowhere vanishing, see [47]. The Liouville-type theorem of Caffarelli, Gidas 

and Spruek has played an important role in the proof of this result. It is clear that  

Theorem 1.3 will also play an important role in proving Conjecture 1.1'. 

The main difficulty in proving Theorem 1.3 is to remove the possible isolated sin- 

gularity of u at infinity. By the eonformal invariance of the problem, we may assume 

that the isolated singularity is at 0 instead of at infinity. The following analytical issue 

is relevant: Let uEC~176 and rECk(B1) be positive solutions of 

and 

satisfying 

Is it true that  

F(A u)=l, AuEU, inBl\{O} 

F ( A ~ ) = I ,  A~'eU, in B1, 

u > v  in BI\{0}. 

lim inf (u(x)-v(x)) > 0? 
x--+0 

If the answer to the above question were "yes", then the proof of Theorem 1.4 in 

[35] would yield a proof of Theorem 1.3 for p=(n+2)/(n-2). So far, the answer to the 
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question is not known even for (F, U) - rp l / k  Uk), 2<~k<<.n. The answer to the question is 

"yes" for (F, U) = (F1, U1) due to some elementary properties of superharmonic functions 

in a punctured ball. As far as we know, the isolated singularity issue encountered in 

the application of the method of moving planes has always been handled by providing 

an affirmative answer to a local question like the above. Our proof of Theorem 1.3 

avoids this local question by exploiting global information of u, through a delicate use 

of Lemma 4.1. The proof of Theorem 1.3 also fully exploits the conformM invariance 

of the problem and captures the solutions directly rather than going through the usual 

procedure of proving radial symmetry of solutions and then classifying radial solutions. 

Two proofs of Theorem 1.3 appeared in preprint forms in [38] and [39]. We present in w 

the proof in [39]. The present paper is essentially the first part of [40]. 
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2. P r o o f  o f  T h e o r e m  1.1 a n d  T h e o r e m  1.1'  

In Appendix B, we deduce the equivalence of Theorem 1.1 and Theorem 1.1'. Therefore 

we only need to prove one of the two theorems. 

Proof of Theorem 1.1'. Without loss of generality, we further assume that  f is 

homogeneous of degree 1. Indeed, in Appendix B, we construct a new function f which 

is homogeneous of degree 1, and satisfies the same assumptions as f does and f - 1  (1)= 

f - l ( 1 ) .  

We first establish (12). Let (M, ~) be the universal cover of (M n, g), with i: ~ r - ~ M  n 

being a covering map and ~=i*g. It is well known that  there exists a conformal immersion 

(I): (M,  g) ~ ( sn ,  g0), 

where go denotes the standard metric on S n. By A(Ag)cF and the assumption F c P 1 ,  

we have Rg>0. Hence by a deep theorem of Schoen and Yau in [56], (I) is injective. Let 
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CLAIM 2.1. We have that 

1 
~ <~ u<<. C and [VgU[~<C o h m  ~, 

where u~C2(M ~) is an arbitrary positive solution of (11) with ~=u4/(n-2)g and C > 0  

is some constant depending only on (M ~, 9) and (f, P). 

For convenience, we introduce 

U = { A r 2 1 5  A(A) e F}  

and 

F(A) = f(A(A)), AEU.  

We distinguish two cases: 

Case 1. D=S~;  

Case 2. f ~ S  n. 

In Case 1, (62--1)*[7=@/(n--2)gO on S n, where r/is a positive smooth function on S% 

Let gt=uoi. Since F(Arw(,~-2)~)=I on M, we have 

F(A[(gto~_l)rl14/(~_2)go) = 1 on S ~. 

By Corollary 1.6 in [35], ((*oq~-t)rl=alJ~ol('~-2)/2~ for some positive constant a and 

some conformal diffeom0rphism p: S n --+S n. Since F*go = I J~ 12/ngo, we have, by the above 

equation, that 

f (a -4/(~-2) ( n -  1) e) = f (a -4/(n-2) a( Ag o )) = 1, 

where e=(1, . . . ,  1). By (10) and the concavity of f ,  we know that Vf(A) .A>0 for any 

AcF. Thus f l o r = 0 ,  and (10) implies that a is a constant uniquely determined by (f, F). 

Fix a compact subset E of ~r such that i(E) = M  n. Since (M ~, g) is not conformally 

diffeomorphic to (S ~, go), rh (M ~) is nontrivial. Let 2 (1) EE  and 2 (2) EiEr be two distinct 

points satisfying ~(2 (1)) =~(2(a)) = max~/n u. Then 

Consequently, 

1 
distg o (~(2(1)), ~5(2(~))/> ~ .  

min{IJ~((b(2(1)))l, IJ~((b(2(2)))l} ~< C, 

from which we deduce that 

.< C. 
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It follows that  
m a x  u = ~(:~(1)) = ~(~(2)) ~< C. 
M- 

Moreover, we also know from the above and the formula of g that  

from which we deduce that 

IJ~l~C onS  ~, 

11 IJ~ I IIcmis~,~0/+ II 1/IJ~l IIcm(sn,~o) ~ C(m) 

and therefore 

Ilullcm(Mngl+lll/ullc,~(M~,g ) <~ C 

for some C depending only on (M, g), (f,  F) and m. The estimates in (12) are established 

in this case. 

In Case 2, by the result in [56], ~ = ~ ( 2 ~ )  is an open and dense subset of S n, 

and  (ffA-1)*g:714/(n-2)g 0 on ~ ,  where r / is a positive smooth function in f~ satisfying 

limz-+On rl(z)=ec.  Let u(x)=maxMnu for some x E M  n, and let i ( ~ ) = x  for some ~EE.  

By composing with a rotation of S n, we may assume without loss of generality that  

q~(5:)=S, the south pole of S n. Let P: Sn--+R" be the stereographic projection, and let 

v be the positive function on the open subset P(f~) of R n determined by 

( p - 1 ) *  (rl4/(n- 2) go ) .= V4/(n--2) gflat, 

where gflat denotes the Euclidean metric on R n. Then for some 6>0,  depending only on 

(M '~, g), we have 

B9e :=  { x e R n  I Ixl < 9e} c P(f~)  

On P(ft) ,  

and 

distflat ( P( O( E) ), OP( ft ) ) > 96. 

F(A ~)=1 and A(A ~)CF,  

where ~=  (~2o~-1op-1) v. 

By the property of 7/, we know that  

lim li(y) = o ~  ( 2 5 )  
P(fl)~y--efjCOP(f~) 

and, if the north pole of S n does not belong to ft, 

lim (Iyln-25(y)) = c~. (26) 
lyl-+o~ 
yEP(a) 
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For every x E R n satisfying dist~at (x, P(O(E)))< 2c, we can perform a moving sphere 

argument as in the corresponding part in [35] (for wj there) to show that, for 0<A<4r  

ly-xl>~)~ and yEP(f t ) ,  

)~n-2 
5[/ ex' (Y)'-IY-xln-2 \ lY-xl ] 

When proving the above, there is a minor difference between the cases NEft  and 

N~ft ,  where N is the north pole of S n. If Ng~f~ , then by (26), there is no worry about 

"touching at infinity" in the moving sphere procedure. If NEft ,  then oc is a regular 

point of ~t (i.e. Iz[2-n~t(z/[zl 2) can be extended as a positive C2-function near z=0) ,  and 

therefore by the strong maximum principle argument as in [35], if "touching at infinity" 

occurs, ~%x,~ would coincide with g in the unbounded connected component of P(f l )  

for some 0<A<4e ,  which violates (25) since ~%x,x is apparently bounded near any point 

of OP(f~). 
By Lemma A.2 in Appendix A, we deduce from (27) that 

IV(log u)(y)l ~< C(~), for y such that dist~at(y, P('~(E))) < ~. 

It follows, for some C depending only on (M n, g), that 

I V9 logu I ~< C o n  M n. 

Hence Claim 2.1 follows directly from the bounds 

1 
minMn u ~< C and i~ax u/> ~ for some universal constant C. (28) 

To establish (28), let u(2)=minM, u. At 2, by Vu(2)=0 ,  (V2u(2))~>0 and (9), we have 

1 = I(A(A~)) ~< f(u-4/(n-2)A(Ag)), 

which implies, by f l o r = 0  and fEC~  that u-4/('~-2)(2)>~C, i.e. u(hc)<~C. Similarly, 

by the properties of f (in particular (10)), we can establish maxMnU>jl/C. The C 2- 

estimate of u has been established in [35] (see also [64] for the estimates for (f, F ) =  

(a l/k, Fk)). The C2-estimate of 1/u follows in view of Claim 2.1. 

Thus when (M ~, g) is not conformally diffeomorphic to a standard sphere, we have 

proved that any positive solution of (11) satisfies, for some constant C depending only 

on (M ~, g) and (f, F), 

Ilullc~(Mn, g) + II 1/ulIc2(M'~,g) <<- C. 

Since f is concave in F, C 2,~- and higher-order derivative estimates follow from a 

theorem of Evans [16] and Krylov [32], and the Schauder estimate. 
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To establish the existence part of Theorem 1.1', we only need to treat the case 

that  (M n, g) is not conformally diffeomorphic to a standard sphere, since it is obvious 

otherwise. We use the following homotopy introduced in [35]. For 0~<t~<l, let 

be defined on 

ft(A) = f ( tA+(1- t )a l ( )~)e)  

Ft := {A �9 Rn[ tA+ (1- t )a l (A)  e �9 F}, 

dl = do. 

The equation (29) for t = 0  is the Yamabe equation. By the result of Schoen in [55] for the 

Yamabe problem, d o = - l .  Thus d l ~ 0  and equation (11) has a solution. Theorem 1.1' 

is established. [] 

In particular, 

where e=(1, 1, ..., 1). 

Consider, for 0~<t~< 1, 

ft()~(Ao))=l, ~(Ao)e r t ,  on M".  (29) 

Here and below t)=u4/(n-2)g. 
By the a priori estimates that  we have just established, there exists some constant 

C > 0  independent of tel0,  1] such that  for all solutions u of (29), 

IlU]IC4, ~' ( Mn, g)+ 111/uH c4,~ ( Mn, g) <~ C. (30) 

By (30) and the assumption flor=O, there exists 5>0 independent of tE [0, 1] such 

that  all solutions u of (29) satisfy 

dist(A(A~), OFt) >~ 25. 

Define, for 0~<t~<l, 

O~ = {U �9 C 4'a (M n) [ A(Ao) �9 F t ,  dist(A(A~), OFt) > 5, 

u > O, llUlIc4,~(Mn, g)+II1/Uilc4.~(Mng) < 2C}, 

where C is the constant in (30). By [42], 

dt :=deg(Ft - l ,Ot ,  O), 0~<t~<l, 

is well-defined, where Ft[u] :=ft()~(Ao))-1, and 

dt = do, 0~<t~<l. 
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3. P r o o f  of  T h e o r e m  1.2 

Proof of Theorem 1.2. Part  of the proof of this theorem is taken from [35], which we 

include here for the reader's convenience. We only need to prove the theorem for R = 5 =  1. 

Indeed, let 

F ( M )  := F(SM),  

Then 

:=5 -~U and ~(x) :=5(n-2)/4R(~-2)/2u(Rx).  

F (A  ~ ) = 1 ,  A~EU, inB3,  

and (F, U) satisfies the hypothesis of Theorem 1.2 with R = 5 = l .  Thus, once we have 

established the theorem in the case R = 5 = l ,  we have 

(sup u) (inf u) = 5  (2-n)/2 R ' -n  (sup ~)(inf ~2) ~< C(5 ('-n)/' R 2-n. 
BR B2R B1 B2 

Thus we assume in the following that R = 5 = l .  Let u(2)=maxN~u. As in the proof 

of Theorem 1.27 in [35], we can find 2EB1/2(2) such that 

U(:~) ) 2 (2-n) /2  sup u 

and 

where ~ =  } ( 1 - 1 ~ - ~ 1 ) <  �89 
If 

then 

~< 2n+8n4 

(sup u)( inf  u) ~< u(5:) 2 ~< (2@ (n-2)/2 ~< C(n), 
B1 B2 

and we are done. So we always assume that 

V > 2n+Sn4. 

Let P:=u(~;) 2/(n-2) ~>23, , and consider 

1( 
w(y) := ~ x~ u(~)2/(n-2) , 

Clearly 

minw/> 1 infu, 
OBr U(~ B2 

1 = w(0)/> 2 (2-n)/2 sup w. 
B~ 

lyl < r. 

(31) 

(32) 

(33) 



134 a .  LI AND Y.Y. LI 

By the conformal invariance of the equation satisfied by u, 

F(A w)=l ,  w>0,  onBr .  

Fix 

For all I xl <r ,  consider 

r = 2 n + 6 n  4 < 1 7 .  

w.,~,(y):= t . l~-x l )  ~t. x-+ ly-xl ~ ) 
By the conformal invariance of the equation, we have 

F(A~=,~)=I, w~,:~>O, onBr\B~(x) ,  0 < A < ~ 7 .  

As in [35], there exists 0<Ax<r such that we have 

w~,~(y)<.w(y), O<A<A~,yEBr \B~(x) ,  

and 

wz,~(y)<w(y), 0<A<Ax,  yEOBr. 

By the moving sphere argument as in [35], we only need to consider the following two 

c a s e s :  

Case 1. For some ]xi<r and some AE(0,r), wx,), touches w on OBr. 
Case 2. For all ]xi<r and all AE(0, r), we have 

w~,~(y)<~w(y), lY-xi>~A, yEBr .  

In Case 1, let AE(0, r) be the smallest number for which w~,~ touches w on OBr. 

By (32), we have, for some lY0i=F, 

1 
inf u ~< ~ n  w = wx,~ (Yo). 

,~,(~) m 

Recall (33), 

( )~ ~n-- 2 / )~ \ n-- 2 _ 
Wx'A (Bo ) ~ ~k ly~-O~X] ) sup w " 2(n-2)/2 t ~y~-~Xl ~ 2(n-2) /2 ( F@r )n 2" 

Therefore 
a(n-2)/2u(5:) inf u <~ 2('~-2)/2a('~-2)/2u(Sc) 2 \~-r-r] " 

B2 
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Since 4r<'y~< �89 and a~<�89 

fn--2 
a('*-z)/2u(yc) inf u <~ 2(n-2)/z a(n-2)/2u(yc) z -  

( �89 -2 

= 23(n-2)/2(y(n-2)/2rn-2 << 2n-2r n-2. 

We deduce from (31) and (34) that  

(sup u)( inf  u)~< 4'~-2r~-2 ~< C(n). 
B1 B2 

In Case 2, we have, by Lemma A.2 and (33), that 

IVw(y)l <~2(n-2)r- lw(y)  <. (n--2)2n/2r -1, lyl ~ r .  

Let e be the number such that 

~(v) := (~-Ivl~), lyl < r 

satisfies 

and, for some lg[<v/~, 

w~>~ on B F 

~(~)=~(~). 

Since l = w ( 0 ) ~ > r  and w(9)>0,  we have 0~<c<1. 

So 

By the estimates of IVw[ and the mean value theorem, 

[w(y)-11 = Iw(y)-w(O)l <~ ( n -  2) 2n/2r-U2, 

and therefore 

1 -  ( n - 2 )  2n/2r -U2 <~ w(~l) = ~(~l) <~ 1-r  

0 <~ r ~ (n-2)2~/2r-1/2.  

Clearly, 

2 
vw(~)=v~(~) ,  Iv~(~) l~<~ and D % ( ~ ) > D 2 ~ ( ~ ) = - 2 ( 1 - e ) ~ - l ~ .  

x/r 

It follows that 

AW (9) < A~ (9) ~< - -  
10n+4 
(~-2)2 

22~/ (n- 2) r -  l i .  

(34) 

Since F(AW(9))=I ,  we have, by (18) (recall that 5=1),  

10n+4 22~/(n_2)r_ 1 (.,-2)~ > 1, 

violating the choice of r. Thus we have shown that Case 2 can never occur. Theorem 1.2 

is established. [] 
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4. Proof of Theorem 1.3 

LEMMA 4.1. For n>>-2 and BICR n, let uCL~or {O}) be the solution of 

Au~<0 in BI\{0} 

in the distribution sense. Assume that there exist h E R  and p r  '~ such that 

u(x) >~max{a+p.x-~(x),a+q.x-r$(x)},  xeBl \{0} ,  

where 5(x)>~O satisfies lim~__+o(a(x)/Ixl)=O. Then 

Pro@ Let 

v(x) := a+p.z-a(x) 

lim inf u > a. 
r-+O Br 

and w(x) :=a+q.x -a (x ) ,  x cB1 .  

By subtracting a+p.x  from u, v and w, respectively, we can assume that a=0 and p=0. 

After a rotation and a dilation of the coordinates, we can also assume that Vw(0)=el. 

Let u~:=u(c.)/c, v~:=v(~.)/c and w~:=w(E.)/c. We have 

v~(x)=o(1) and w~(x)=xl+o(1),  

where o(1)-+0 uniformly on B1 as E--+0. For all ~>0, since u~>>-%, there exists ~0>0 

such that 

u~(x)~>-~ inB1, for alice<e0. 

By u~ >~w~, we have u~ ) co>0  on ft:=Bt/4 (�89 for some universal constant co indepen- 

dent of ~ and c. 

Let ~ be the solution of 

{ A~a= 0 in BI\~, 

~a=�89 onOf~, 

{a=_2~ on oqB1. 

Since {a__>{o in C~176 we have, for small a, 

where ~0 is the solution of 

(as) 

[A~~ inBl\~,  
0 1 ~ =~c0 on0f~, 

l, ~o= 0 on OqB1. 
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In the following, we fix some 5>0 such that  (35) holds. 

Let G be the solution of 

- A G = 5 o  in B1, 

G = 0 on OB1, 

O(x)+oc as x O, 

where 50 is the Dirac mass at 0. 

Let A > 1 be chosen later. For 0 < 5 < ~0, consider 

We have 

Near OBa, 

A 
on BA(B Ua). 

A ~ < O  in BI\(BaUf~). 

137 

- 1 1 ~ ~> - 5 + ~ A -  ~Co > 0 for large A, 

and near OB1, ~ >~-5+ 35>0. Hence 

in BI\(B ua). (36) 

For any fixed xEBI \{0} ,  for all 5, with 0<6<lx l ,  and all e > 0  small, sending 6--+0 in 

(36) leads to u~(x)~>~5(x). Therefore, for all c~<e0, 

1 lira inf u = lira inf u~ >~ ~ ( 0 )  > ~o (0 )  > 0. [] 
r--+O Br  r--+O B,. 

Lemma 4.1 is sufficient for our use. Such a result holds for more general linear 

elliptic operators of second order. For example, we have the following Iemma: 

LEMMA 4.2. For n~2  and B 1 c R  n, let ucC2(BI\{O}) satisfy 

Lu : =  aiJuij-l-biui4-cu ~ f in BI\{O}, 

where (aO)>0, aiJEC~(B1) for some a, 0 < a < l ,  and f,  bi, cEL~(B1).  Assume that 
there exist aCR and p r  n such that 

u(x) ~ max{a+p.x-5(x) ,  a+q.x-5(x)} ,  x C BI\{0},  

where 5>0 satisfies lim~-m 5(x)/[x[=O. Then 

lim inf u(x) > a. 
x - + 0  
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Proof. Let 

v(x) : =  a+p.x-~(x) and w(x):=a+q.x-a(x),  xEB1. 

By subtracting a+p.x from u, v and w, respectively, and replacing f(x) by 

f(x) - b ~ (x) vi (0) - c(x)Vv(O).x- c(x)v(O), 

we can assume that 

a=O, p = O  and Lu<.f  in Bl\{O}. 

Let QEGL(n) satisfy Q(aiJ(O))Qt=I~• Replacing u, v and w by 

u(Q-l.), 

and aiJ(x), bi(x), c(x) and f(x) by 

v(Q -1.) and w(Q -1.), 

Q(aii(Q-lx))Qt, Qt(bi(Q-lx)), c(Q-lx) and f (Q-lx) ,  

respectively, we can assume that (aiJ)(O)=In• 
Let u~:=u(E-)/e, v~:=v(s-)/~ and w~:=w(s.)/~. We have 

v~(x)--o(1) and w~(x)=Vw(O).x+o(1) on B1. 

We may also assume that I~'w(O)l=l by a dilation. Hence, since u~>~v~ and u~>~we, for 

all 6>0, there exists ~o>0 such that for all ~<~0, 

u~(x)>>.-a onB1 and U e > C  0 on~'~:=B1/4(lVw(O)), 

where c0>O is some universal constant independent of 6 and e. Moreover, ue satisfies 

the equation 

L%~(x) := aiJ(ex)(u~)ij(x)+eb~(ex)(u~)~(m)+e%(ex)u~(x) <~ ef(ex) in B1. 

Let Q be the solution of 

{ L ~ a ( x ) = e f ( e x )  in BI \~ ,  

{a__ 1C0 - ~ on 0~,  

~ a = - 2 5  on OB1. 
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We have ~_+~o in CI(BI \~ ) ,  where ~o is the solution of 

{A,~~ inBl\~, 
~0 z 1 ~c0 on Off, 

~o = 0 on OB1. 

Hence we can initially pick some ~>0 such that  ~ (0 )>~~  

Let G be the solution of 

{ - L e G = d o  inB1,  

G = 0 on 0t71, 

G(x)- oo as x -+0 .  

We know that  G is asymptotically radial as c--+0. 

Let A > 1 be chosen later. For 0 < 5 < 1 ,  consider 

A 
r/E :=usq  minoB~GG-~5 on BI \ (BsUa) .  

We have 

On OBa, 

Ler/s ~ 0  in BI\(BsUf~). 

r/~/> - 5 + A -  �89 > 0, 

and on OB1, - ~ + 2 ~ = ~ > 0 .  Hence 

~k>0  inB l \ (BaUf l ) .  (37) 

For any fixed xEBI\{0},  for all 6 with 0<6<lxl ,  and all e~<c0, sending 6--+0 in (37) 

leads to u~(x)~>~(x). Therefore 

liminf u(x) = liminf ue(x) ~> r > 1~o 0 ( ) > 0 .  
x--+O x--+O 

[] 

Proof of Theorem 1.3 for p=(n+2)/(n-2). Since u is a positive superharmonic 

function, we have, by the maximum principle, that  

In particular, 

u(x) >>. min0Bl~U, Ixl/> 1. 
Ixl n - 2  

l i m i n f  Ixln-2u(x) > O. (38)  
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Let 

LEMMA 4.3. For any x E R  ~, there exists A0(x)>0 such that 

f ~-~ A f A 2 ( y - x )  
) .< ~(y), I~-xl >t ~, 0 < ~ < ~0(~). 

Proof. This follows from the proof of Lemma 2.1 in [46]. 

For any x E R  n, set 

A(x) := s,~p{, I u~,~(y) <, u(y) for lY-xl ~ ?, a~d 0 < X < , ) .  

Because of (38), 

[] 

c~ :• lim inf (Ixl"-2u(x)). (39) 

0 < ~ <~ ~ .  (40) 

If ~=c~ ,  then the moving sphere procedure will never stop, and therefore X(~)=cx~ for 

any x c R  ~. This follows from arguments in [46] and [35] (see also [36]), By the definition 

of A(x) and the fact that ,~(x)---~, we have 

ux,~(y) <, u(y), ly-xl  >IA>O. 

By a calculus lemma (see, e.g., Lemma 11.2 in I46]), u - c ons t a n t ,  und Theorem 1.3 for 

p=(n+2) / (n -2)  is proved in this case (i.e. ~--oo). So, from now on, we assume that 

0 < ~ < oo. (41) 

By the definition of A(x), 

ux,~(y)<<.u(y), I~-xl~>&, 0<~<X(x). 

Multiplying the above by lyl '~-2 and sending lyl--+oo, we have 

>/ ,X~-2u(z) ,  0 < ), < X(x). 

Sending ),-+X(x), we have (using (41)) 

cx~ > ~ >t X(x)n-2u(x), x E R '~. (42) 

Since the moving sphere procedure stops at X(x), we must have, by using the arguments 

in [46] and [35] (see also [36]), 

lim inf (u(y)-uz,x(x)(y))lyl ~-2  = 0, (43) 
I~t--*oo 
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i .e ,  

a=~(x)'~-2u(x), xcR'L (44) 

Let us switch to some more convenient notation. For a M6bius transformation r we use 

the notation 

uo := IJe, l('~-2)/2'~(uor 

where Jr denotes the Jaeobian of r 

For x E R  n, let 

r (y) := x 

We know that  u~(~)=u~,a(~). 

Let r 2, and let 

~ ( x ) 2 ( y - x )  
]y-xp 

w (x) := (ur162 = ur162 

For x E R  n, the only possible singularity for w (x) (on RntJ{oo}) is x/txl 2. In particular, 

y = o  is a regular point of w (~). A direct calculation yields 

w(x)(o)=~(x)n--2U(X), 

and therefore, by (44), 

w ( * ) ( 0 ) = a ,  x c R  n. 

Clearly, u~eC2(Rn\{0})  and A u r  in Rn\{0},  liminfy__+our and, for some 

5(x)>0, 

w(~)eC2(Bs(~)), x ~ R  n, 

ur ~>w (~) in B~(x)\{0}, x E R  ~. 

LEMMA 4.4. Vw(~)(0)=Vw(~ i.e. ~Tw(x)(o) is independent of xCR n. 

Proof. This follows from Lemma 4.1. Indeed, for any x, 2 c R  n, let 

v : = w  (~), w : = w  (~) and u : = u e .  

We know that  w(0)=v(0), u~)w  and u r  near the origin, and we also know that  

liminfy_~0 ur so, by Lemma 4.1, we must have Vv(0)=Vw(0),  i.e. Vw(X)(0)= 

Vw (~)(0). Lemma 4.4 is established. [] 
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For x E R  '~, 

~ ( ~ )  (y )  = _ _  
1 n--') 

ly/ l~--xJ lu/luP_xl ~ 

( 
ty / xl ly / tyf - lyJ xJ 

) \ 1-2x.y+ly121xl 2 1 - 2 x - y + l y 1 2 1 x l  2 ]" 
So, for lYl small, 

w r (y) = X(x) '~-2 (1 + ( n -  2)x. y) u(x+ X(x)2y) + O(lyl2), 

and, using (44), 

Vw(~)(0) = (n-2)X(x)n-2u(x)x+ X(x)~Vu(x) = (n--2)C~X+C~n/(n--2)U(X)n/(2--n)VU(X). 

By Lemma 4.4, V:=Vw(~)(0) is a constant vector in R n, so we have 

~ x ( l  (rt--2)olnl(n-2)u(x)-2/(n-2)--l (n-- 2)ctlxl2 + g ' x )  --0. 

Consequently, for some 5:ER n and dER,  

U(X)-21(n- 2) ~_ O~-2/(n-2) ]x_ 212 +dc~- 21(n-2). 

Since u>0 ,  we must have d>0.  Thus 

?t(X) ---- ~ Oz2/(n--2) ")'n--2)/2. 
\ d + l x - ~ l  2 

Let a=o!21(n-2)d -1 and b=d -112. Then u is of the form (24). Clearly Au(O)=2b2a-2I, 
so 2b2a-2IcU and F(2b2a-2I)=l. Theorem 1.3 in the case p=(n+2)l(n-2) is estab- 

lished. [] 

Proof of Theorem 1.3 for - oc <p < (n + 2) / ( n -  2). In this case, the equation satisfied 

by u is no longer conformally invariant, but it transforms to our advantage when making 

reflections with respect to spheres, i.e. the inequalities have the right direction so that  

the strong maximum principle and the Hopf lemma can still be applied. 

First, we still have (38) since this only requires the superharmonicity and the posi- 

tivity of u. Lemma 4.3 still holds since it only uses (38) and the Cl-regulari ty of u in R'L 

For x C R  ~, we still define X(x) in the same way. We also define (~ as in (39), and we still 

have (40). 

For x E R  ~ and ~>0,  the equation of ux,~ now takes the form 
/ ~ \(n--2)((n+2)/(n--2)--p) 

(4S)  

A~.~(y)EU, for all y # x .  
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LEMMA 4.5. If a=CC, then A(x)=oo for all zER  ~. 

Proof. Suppose on the contrary that  A(2)<oc for some 2 E R  n. 

generality, we may assume that  2=0,  and we use the notation 

:=A(0), ux:=u0,x and Bx:=Ba(0) .  

By the definition of A, 

By (45), 

u ~ < u  on R~\Bh,. 

F(A ~x) <~ uP~ -(n+2)(n-2), 

Recall that  u satisfies 

A ~x E U, on R"\By, .  

Without loss of 

(46) 

F(A ~) = u  p-(n+2)/(n-2), A~EU, on Rn\Bh,.  

By (46) and (47), 

F(A ux) - F ( A  ~) - (u~-(n+2)/(~-2)-u p-(n+2)/(~-2)) ~ O, 

A~xEU, AucU, on R ~ \ B x .  

Since a = o c ,  we have 

(47) 

(4s) 

d 
d--? >0, (51) 

where d/dr denotes the differentiation in the outer normal direction with respect to OBx. 
If u),(9)=u(9) for some 191 >A, then, using (48) as in the proof of Lemma 2.1 in [35], 

we know that  u ~ -  u satisfies 

L(u x-u)  <<. O, 

where L=-aij(x)Oij+bi(x)Oi+c(x) with (a i j )>0 continuous, and bi and c continuous. 

Since ux-u<.O near ~?, we have, by the strong maximum principle, uh,=u near 9. 

For the same reason, ux(y)-u(y ) for any lyl~>X, violating (49). Estimate (50) has been 

and 

liminf (Mn-2(u-u~,)(y)) > 0. (49) 

The inequality in (48) goes in the right direction. Thus, with (49), the arguments for 

p= ( n + 2 ) / ( n - 2 )  work essentially in the same way here, and we obtain a contradiction 

by continuing the moving sphere procedure a ]ittle bit further. This deserves some 

explanations. Because of (49), and using arguments in [35] (see also [36]), we only need 

to show that 

uX(Y) <u(Y), lYl >A, (50) 
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checked. Estimate (51) can be established in a similar way by using the Hopf lemma (see 

the proof of Lemma 2.1 in [35]). Thus Lemma 4.5 is established. [] 

By Lemma 4.5 and the usual arguments, we know that  if a = o c ,  u must be a constant, 

and Theorem 1.3 for - oc<p<(n+2) / (n -2 )  is also proved in this case. 

From now on, we always assume (41). As before, we obtain (42). Since the in- 

equality in (46) goes in the right direction, the arguments for p=(n+2) / (n -2 )  (see 

also the arguments in the proof of Lemma 4.5) essentially apply, and we still have (43) 

and (44). Applying the rest of the arguments for p=(n+2) / (n-2) ,  we have that  u is of 

the form (24) with some positive constants a and b. However, we know that,  for u of the 

form (24), AU=2b2a-2I and F(A~)=cons tan t .  This violates (23) since u p-(n+2)/(n-2) 

is not a constant when p<(n+2) / (n-2) .  Theorem 1.3 for -oc<p<(n+2) / (n -2 )  is 

established. [] 

Appendix A 

LEMMA A.1. Let a > 0  be a positive number and o~ be a real number. 

hECl[-4a, 4a] satisfies, for ITl<2a, Isl<~4a, 0 < A < a  and A<ls-TI, 
~ 

Then 

Assume that 

(52) 

]TI <2, [sl ~<4, O < A < l ,  Is- l, 

ITI <2,  0 < A < I ,  A < x < 2 .  

which, by setting X=S--T, implies that 

Ih'(s)l<~ah(S), Is[<~a. 

Proof. By considering h(as), we only need to prove the lemma for a = l .  If c~=0, it 

is easy to see that  h is identically equal to a constant on [-1,  1]. So we always assume 

that  (~#0. We only need to show that  

-h'(s).< l~h(s),  Isl < 1, (53) 

since the estimate for h'(s) can be obtained by applying the above h(-s) .  
Now for ITI<2, let h~(s):=h(T+s). Then (52) is equivalent to 
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Letting y=,~2x/Ixl2=A2/x above, we have 

y~/2h~-(y)<~x~/2h~-(x), 0 < y < x < l .  

Thus 

i.e. 

d (x~12h~.(x)) = �89 ' 0 < x < 1, o<~ 

1 # ~h~-(x)+xh~(x) >1 o, 

Letting x--+l above, we have 

i.e. 

0 < x < l .  

�89 ~> -h~(1) ,  

145 

where 

i.e. 

u~,~(y) :-_ t,~lfl ~_ ly-xl ~ ) 
Then there exists C ( n ) > 0  such that 

n - 2  
IVu(x)i <<. ~-a u(x), Ixi < a. 

Proof. For xEBa and e E R  n, lel--1, let h(s):=u(x+se) .  Then, by the hypothesis 

on u, h satisfies the hypothesis of Lemma A. 1. Thus we have 

Ih'(0)l ~< ~a2 h(0), 

n - 2  
IVu(x).el < -~-a u(x). 

Lemma A.2 follows from the above. [] 

�89 ~>-h ' (w+l) ,  I71 <2.  

Estimate (53) follows from the above. [] 

LEMMA A.2. Let a > 0  be a constant, and let B s a C R  n be the ball of radius 8a and 

centered at the origin, n >~ 3. Assume that u E C 1 (Bsa) is a nonnegative function satisfying 

Ux,:~(y)<~ u(y), xEB4a, yEgsa ,  0 < A < 2 a ,  A < l y - x l ,  
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Appendix B 

We first show that we may assume without loss of generality that the f in Theorem 1.Y 
is in addition homogeneous of degree 1. We achieve this by constructing the f which is 

homogeneous of degree 1 satisfying ] - 1 ( 1 ) = f - 1  (1) and the hypotheses of Theorem 1.V. 

By the cone structure of F, the ray (sA I s>0} belongs to F for every AcF. By the 

concavity of f,  we deduce from (10) that 

>0, (54) 
i=1  

Since f(0)=0,  f satisfies (10) and (54), and fEC4'~(F), the equation 

 er, (55) 

defines, using the implicit function theorem, a positive function :EC4'~(F).  It is easy to 

see from the definition of ~ that ~(sA)=s-19(A) for all AEF and 0<s<oc .  Set 

f i = l  on F. 

By the homogeneity of : ,  ] is homogeneous of degree 1. We will show that f has the 
desired properties. Clearly, ] is symmetric, (10) is satisfied and ] -1  (1)=f -1  (1). 

To prove that ~TfEF~, applying O/OAi to (55), we have 

n 

0 = f~,(#)~(A)+ W,~(A) ~ f,j(#)pj, 
j = l  

where p=~(A)A. Since f ~ ( p ) > 0  and ~ j n  1 fu~(#)ttj >0, we have ::~(A)<0, i.e. 

] ~ > 0  onF ,  l<~i<~n. 

Next we prove the concavity of ]. For A, ~EF, we have, by the concavity of f,  that 

f (  ~(A)~(X) [tA+(1-t)X]) 

(1-t)qo(A) ~" 'A')r 
t : ( A ) + ( 1 - t ) : ( ~ )  

= 1 = f ( : ( t A +  (1-t)A) [tA+ (1- t )  A]). 
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By (54), f is strictly increasing along any ray in F starting from the origin. Therefore 

we deduce from the above that 

~> ~ ( t h +  ( 1 - t )  A), 
tc, o ( A ) + ( 1 - t ) ~ ( h )  

i.e. 

t / ( h ) + ( 1 -  t) i(A) ~< f ( t A +  ( 1 - t )  X). 

We have showed that f is a concave function in F. 

To check that ] e C ~  ') and ] = 0  on OF, we only need to show that 

lim](A)=O, X�9 
A--+A 
AEF 

We show the above by a contradiction argument. Suppose the contrary. Then for some 

AEc3F there exists a sequence h icF,  hi-+X, such that limi--,or f(A~)>0. It follows that 

(h i) --+ a for some a �9 [0, oc). By the continuity of f on F, we have 1 = f (~ (h i) h i) --+ f (ai) .  

Since f = 0  on OF, we have a > 0  and AcF, a contradiction. We have proved that f has 

the desired properties. 

Let V be an open symmetric convex subset of R n with O V # ~ .  PROPOSITION B. 1. 

Assume that 

and 

.(h) �9 r~, ~ �9 ay, (56) 

,(h).h>O, hcav, (57) 

where ~(h) denotes the unit inner normal of a supporting plane of V at h. Then F(V) 

as defined in (3) is an open symmetric convex cone with vertex at the origin. Moreover, 

rn c r (v )  c rl  (58) 

and 

r(y) = {sh  I h �9 a v ,  s > o) .  

Remark B.1. No regularity assumption on OV is needed. 

To prove Proposition B.1, we need the following lemma: 

LEMMA B.1. Let V be as in Proposition B.1. 

(i) I f  AcV ,  then {shls>ll}cV; 
(ii) 0 ~ / ;  

(iii) I f  AEOV, then { s h [ - o o < s < l } N V = ~  and { s h [ s > X } c V .  

(50) 
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Proof. If (i) does not hold, then there exists some AEV and 4>1 such that 4AEOV. 
By the convexity of V, we have 

(~- 4~). ~(4~)/> 0. 

From this we deduce, by 4> 1, that  4A-u(4,\)40, contradicting (57). (i) is established. 

If 0EV, then 0~aV by (57). Hence 0EV. Since V is open, an open neighborhood 

of 0 belongs to V, and therefore, by (i), V = R  n, contradicting the fact that  a V ~ O .  

(ii) is established. 

Let )~EOV. For - o c < s < l ,  we have, by (57), that u()Q.(s)~-A)=(s-1)u(A).~<O. 
Since u(A) is an inner normal, s&~V. Thus we have proved the first statement in (iii). 

For the second statement in (iii), let )~EOV. We know from the first statement of (iii) 

that  {s)~is>l}MOV=O. So either {s)~is>l}CV or {s)~is>l}MY=O. Noticing that  

the first case is what we want to prove, we can assume the second case. Then, in view of 

the first statement of (iii), the line {s& I sER} has no intersection with V. It follows from 

[52, Theorem 11.2] that  there is a supporting plane of V containing the line {sAl sER},  

and therefore u(A)-A=0, where u(A) denotes the unit inner normal of the supporting 

plane, contradicting (57). (iii) is established. [] 

Proof of Proposition B.1. It is easy to see that  F(V) is an open symmetric convex 

cone with vertex at the origin. Now we prove that  F(V)CF1. 

For any A=(A~, ..., An)EF(V), let 

At---)~= (AI,... ,An), 

,~2 = ()~2, "" ,  "~n, "~1), 

Since F(V) is symmetric, &iEF(V), l<.i<~n. By the convexity of F(V), 

1 ~ / V -  oh(A) eEF(V) ,  
n n 

i=1 

where e=(1,  ..., 1) and a1(~)--~i~=1 Ai. 

Let 

4:=inf{s>OIs~EV }. 

By (ii) in Lemma B.1, 4>0 and 4AEOV. Let u(4~) be the unit inner normal of a sup- 

porting plane of V at ~ .  We have, by (57), 

0<.(4~).(~)= ~a1(-(4~))~1(~). 
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By (56), O-l(/](sX))>0 , and thus a l ( X ) > 0 ,  i.e. r ( v ) c r ~ .  

Next we prove that F~cF(V)  by a contradiction argument. Suppose that there 

exists #EF~\F(V).  Take any XEF(V)cF~. Consider the 2-dimensional plane P gen- 

erated by # and ~. We know that F(V)MP lies on one side of the line 0F1MP. So 

{svlseR}nr(V)=~, and therefore r ( v ) n P  stays on one side of {s#I s E R  } in P, i.e. 

0 
Fix some t%EFnMP such that 

t, l -#)  

Then the l i n e / : = { s p l s ~ a }  has no intersection with PAP.  Now moving l parallelly 

towards FdNP, then a first touching of the moving line and V ~ P  must occur. Let [ 

denote the first touching line, and let ~E/M(VNP). Clearly ~EOV and [MV=~. So 

there exists a supporting plane of V at A which contains [. Let u(~) denote the unit 

inner normal of the supporting plane. Then u(~).#5=0, a contradiction to ~EFn and 

v(~)EFn by (56). Thus P,~cF(V), and (58) is established. 
Let 

F(V) := {s~ I A �9 0Y, s > 0}. 

Next we show that r(v)=~(y). For AEV, consider the ray {sXis>0 }. Since 0~V, we 
know that 

$ := inf{s i sXEV} >0. 

By the openness of V and the definition of ~, ~xE(gv. So AEF(V). We have showed that 

F(V)cF(V) .  On the other hand, by (ii) and Off) of Lemma B.1, F(V)cF(V). We have 

established (59), and so Proposition B.1. [] 

In the following, we deduce the equivalence of Theorem 1.1 and Theorem 1.V. 

Theorem 1.1 ~Theorem 1.1'. Let Y : = { a e r  If(a)>1}.  By (9) and (10), r ( y ) = r .  

By the concavity and symmetry of f ,  V is open, symmetric and convex. Clearly OV= 
{ ~ E F I f ( ~ ) = l } ~  is C 4,~ and Vf  is an inner normal to OV. Therefore ~'fEF~ im- 

plies (1). Above we have proved the concavity of f ,  and (10) forces Vf(A).A>0. Re- 

stricted onto OV, we have (2). Hence Theorem 1.Y follows from Theorem 1.1. 

Theorem 1 . Y ~  Theorem 1.1. We only need to construct a pair (f, F) satisfying all 

the assumptions in Theorem 1.1' and {Alf(A)=l}=OV. Let r:=r(v) as defined in (3). 

By Proposition S.1, (6) and (7) hold for F. Let f(sA):=s for s ) 0  and AE(gv. By (59), 
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F={sAIAEOV, s>0}. So f is well-defined, symmetric and C 4,a o n  r .  It is easy to see 

from the definition that  f is homogeneous of degree 1, and therefore (10) follows directly. 

To prove that  f is concave, take any two points aA and b# in F, where A, #EOV and 

a, b>0. For any 0~<t~<l, since A, ttEOV and V is convex, we have 

ta A (1- t )b  
A : = t a + ( 1 - t ) b  + ta+(1-t)b #E~/" 

Recalling the definition of f ,  we have A/f (A) E OV. However, by (i) and (iii) in Lemma B. 1, 

we know that  sAEV for any s > l .  Therefore 1/f(A)~<l, i.e. f ( A ) ) l .  From this we deduce 

that  f is concave, since 

(ta+(1-t)b)f(  ta A+ (1 - t )b  f(taA+(1-t)b#) 
ta+(1-t)b ta+(1-t)b #) 

= (ta+(1-t)b)f(A) 

>~ta+(1-t)b 

= tf(aA)+ (1 - t ) f (b#) .  

Now the only assumption left to check is that  f can be continuously extended to OF 

and vanishes on OF. To see this, take any sequence i o~ {A }i=1 in F with Ai-+AEOF. We need 

to show that  l im i_~  f(Ai)=0.  Suppose the contrary. Then there exists a subsequence 

of {A~}~I, still denoted by {A~}~=I, such that  f(A~)~>5 for some constant 6>0. By the 

definition of f ,  Ai/f(Ai)EOV. On the other hand, Ai-+A and f(Ai)~>6>0 implies that  

{Ai/f(Ai)}~= 1 stays in a bounded set of R n. Hence A~/f(Ai)--+p for some p E R  ~. Noticing 

that  OV is closed, #EOV. By (59), {s#I s > 0 } c F .  Recalling that  O~OV and A~-+A, we 

have that  f(A i) is uniformly bounded. Without loss of generality, we can assume that  

f(Ai)-+c0>0. It follows that  

A i 
0r  r,  

a contradiction. Theorem 1.1 follows from Theorem 1.1 t. 

In the rest of this section, we address Remark 1.1. We assume that  OVEC 2'a, but 

that  the principle curvatures of OV are positive. Let P1 := 0F1. After a rotation of the axis 

system, OV can be represented as the graph of a C2'~-function q~ defined on P1--R ~-1 

and satisfying 
(V2q~) > 0 on  R n -1 .  (60) 

The cone F~ in the new axis system is still an open convex cone, denoted by Fn. The 

assumptions (56) and (57) are translated into 

( -Vq~(y ' ) , I )EF~ and (-Vr162 y ' E R  n-1. (61) 
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In the following, all the functions are defined on R ~-1 if not specified. For R > 0  

and c>0, consider 

: =  QR6 +(1-Q )6, 
where q~ is a smooth mollifier of q~ and OR is a radially symmetric cut-off function having 

value 1 in BR and 0 outside B2R. Let V~ be the set above the graph of r For any 
g~2,c~ R>0,  r R is identically equal to q; outside B2R, and r in ~loc as c--+0. So, for 

some small s = s ( R ) > 0 ,  (56) and (57) hold for CE Noticing that  OV~ coincides with 0V R" 

when ]y '])2R, we can assume, for the same small ~, that  Back to F(V), 

V and V:~ define f and f~  as homogeneous functions of degree 1 in F(Vi~ ) = r ( V )  taking 

value 1 on OV and OVa, respectively. The function f~  satisfies all the assumptions of f 

assumed in Theorem 1.Y. Now take a sequence R~-+oc and take c i>0  such that  (60) 

and (61) hold for 0 ~ .  Let f ~  be the corresponding function on F(V). We know that  

f ~  satisfies all the assumptions of f in Theorem 1.1 ~, that  it is smooth in any compact 
2,o~ subset of F and that  f~'-+f in 6'{o c (F). 

Consider the equation 

f~(A(d~4/(n-2)g))--1, ;~(Au4/(~ ~)g)eF, on M '~. (62) 

Applying Theorem 1.1' to ( f ~ ,  F), for any solution u~ of the equation (62), we have that  

Ilu IIC=, CM ,g) +II1/u IIc=, (M ,g) <<. c (63) 

for some constant C independent o f / - - t h i s  is clear from the proof of Theorem 1.V. This 

implies that  )~(Au~/c~_~)g ) stays in a compact subset of F independent of i. Hence for 

i large enough, f ~  is C 4,~ in this compact subset, and we have, by (63) and Schauder 

theory, that 

I[UilIC4,a(Mn, g) < Ci, 

where Ci is some constant that  may depend on i. 

Following the degree arguments at the end of the proof of Theorem 1. Y and replacing 

O; by 

O~ := {ueCa'~(M ~, g) l ]]uIlC2,,(M.,g)+]I1/u]]C2,~(Mn, g ) <~ 2C, 

[[U[]C4,,~(Mng) < 2el, ,~( Au4/(n-~)g ) E F } ,  

we can find a solution ui of (62). Since ui is uniformly bounded in C2,~(M n, g), after 

passing to a subsequence, u~ converges in C2(M n, g) to some function u in C2'~(M '~, g). 

Sending i--+oc in (62), we have 

f(/~(Au4/(n-2)g) )--= 1, A(A~/(~-2)~)CF, on M ~. 
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