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1. I n t r o d u c t i o n  

This paper has three basic purposes: 

(1) Developing a cohomology theory for modules with fiat connections over non- 

commutative algebras, and showing that it has some properties in common with sheaf 

theory. 

(2) Extending the Serre spectral sequence of a fibration in classical algebraic topol- 

ogy to the noncommutative domain. 

(3) Examining the differential structure of quantum homogeneous spaces, and show- 

ing that  many of them are 'fibrations' in a noncommutative sense. 

In [9] methods of studying algebras by means of their differential calculi were intro- 

duced. We will apply Connes' differential methods to fibrations in algebraic topology. 

In usual topology, sheaf cohomology and other methods allow cohomology with 

'twisted' coefficients, i.e. coefficients which vary from point to point in the space. In 

the absence (so far at least) of a full sheaf cohomology construction in noncommutative 

geometry, we construct de Rham cohomology with twisted coefficients for algebras with 

differential structure. The allowed coefficients are modules with flat connection. Though 

there is a considerable similarity between de Rharn cohomology with twisted coefficients 

in the noncommutative world and sheaf cohomology in the commutative world, it is quite 

possible that  yet more general constructions, or constructions with additional properties, 

corresponding to sheaf theory exist in the noncommutative world. In the spirit of some 

developments in operator algebra (for example, see [10]), we show that  bimodules can 

be used to replace algebra maps in constructing 'pullbacks' of the coefficient modules. 

In the special case of semi-free differential graded algebras this construction is shown to 

have an interesting interpretation in terms of corings. 
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In commutat ive algebraic topology, one of the most useful applications of twisted 

coefficients is to fibrations. For a locally trivial fibration, the Serre spectral sequence [14] 

starts  with the cohomology of the base space with coefficients in the cohomology of the 

fibre (in general a twisted bundle), and converges to the cohomology of the total  space. 

In producing a noncommutat ive analogue of this result, we not only have to find a proof 

which does not require local triviality, but also have to decide what a 'locally trivial '  

fibration should be in noncommutat ive differentiM geometry. Realistically we should 

define a fibration by the conditions which are required by the Serre spectral sequence. 

The seeming correspondence between sheaf theory and the cohomology we are considering 

leads us to suspect that  yet more general ~'Leray-type' spectral sequences exist. 

We then discuss products in the Serre spectral sequence, which requires another 

condition to be imposed on the fibration. The product structure is not only important  in 

its own right, but can frequently help in simplifying the calculation of spectral sequences. 

Finally, we s tudy fibrations given in terms of a coaction of a Hopf algebra on an 

algebra. As a nontrivial example of such a differential fibration we consider the quan- 

tum Hopf fibration t: A(S2q)~-+A(SLq(2)) with the 3-dimensional differential calculus on 

A(SLq(2)). As a further nontrivial class of examples of the fibrations discussed here, we 

look at the noncommutat ive  homogeneous space construction with bicovariant differential 

calculi. This takes the classical construction of a group quotiented by a subgroup, and 

replaces it by two Hopf algebras with a surjective Hopf algebra map  7r: X-+H. We begin 

with such a 7c which is differentiable with respect to bicovariant differential structures on 

X and H [24]. Note that  the bicovariant condition corresponds to the differentiability of 

the coproduct map, and it is reasonable to expect that  this is the analogue of classical 

Lie groups. As in the classical case, some of the definitions can be given in terms of the 

Hopf-Lie algebras and their induced vector fields [1], [2]. The first stage is to identify the 

differential calculus for the homogeneous space B = X  c~ (see Theorem 9.12) in a form 

suitable for calculation. Then it is shown that  the inclusion map B--+X is a fibration 

as defined earlier (see Theorem 10.5). For the development of noncommutat ive homoge- 

neous spaces the reader should refer to [11] and [16]. Again the quantum Hopf fibration 

~: A(S~)~-+A(SLq(2)) is an example of this situation, and we explicitly prove that  it is 

a differentiable fibration for one of two standard 4-dimensional bicovariant calculi on 

A(SLq(2)). 
All algebras are unital over a field k. The unadorned tensor product  between vector 

spaces is over k. A Hopf algebra is always assumed to have a bijective antipode (this is 

not the most general situation algebraically, but the most natural  from the point of view 

of noncommutat ive geometry). 
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2. Flat connect ions  and cohomology with  twisted coefficients 

The classical Serre spectral sequence uses cohomology with a nontrivial coefficient bundle. 

In this section we discuss flat connections on modules in noneommutative geometry, and 

how this can be used to define de Rham cohomology with nontrivial coefficient modules. 

By a differential calculus on a noncommutative algebra A we mean a differential 

graded algebra (d, 12*A) such that  f~~ The product in f~*A (for .>~1) is denoted 

by the wedge A (although f~*A is not graded anticommutative in general). The  density 

condition says that  fU+IAcA.dgY~A, but we will not require this till later. 

The cohomology of (d, f~*A) is denoted by H~a(A ) and referred to as a de Rham 
cohomology of A. Recall that  a connection in a left A-module E is a map V: E--+ ~21A | E 

satisfying the Leibniz rule, for all aEA, eEE, V(a.e)=da| 

2.1. The construct ion of the cohomology 

Definition 2.1. Given an algebra A with differential calculus (d, fFA), we define the cat- 

egory A ~ to consist of left A-modules E with connection V: E--+f~IA| A morphism 

r (E, V)--~(F, V) in the category is a left A-module map r E--+F which preserves the 

covariant derivative, i.e. Vo r = (id | r o V: E-+  f~ 1A | F.  

Definition 2.2. Given (E,V)CAg, define 

V[n]:~nA| E ~ f ~ n + l A @ A  E , 

co| > dw| 

Then the curvature is defined as R=V[1]V: E-+f~2A| and is a left A-module map. 

The covariant derivative is called fiat if the curvature is zero. We write A~- for the 

full subcategory of Ag consisting of left A-modules with flat connections. 

PROPOSITION 2.3. For all n>~O, V[n+lloV[~]=idAR: f~'~A|174 

Proof. By explicit calculation, 

V In+i] (V In] (w| = V In+i] (dw| (-1) %a AVe). 

Put  Ve=~i |  (summation implicit), and then 

vE, + l (vEnJ (wee)) = vr, + l (d | + 

= (-1)n+ldwAVe+(-1)~dxzA~| 

=aJA(d(i| 

=aaAR(e). [] 
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Definition 2.4. Given (E, V) EA~-, define H*(A; E, V) to be the cohomology of the 

complex 

E v) ~IA@AE v!~ ~2A@AE v [2]) . . . .  

Note that  H~ V)=FE={eCE: Ve=O}, the fiat sections of E. We will often write 

H*(A; E), where there is no danger of confusing the covariant derivative. 

PP.| 2.5. Given (E,V)eAJ~, the map 

A: ~nA@(~rA@AE) > ~n+rA@dE 

defined by 

A([@(w| = ((Aw)| 

gives a graded left Hda(A)-module structure on H*(A; E, V). 

Proof. First calculate 

V E*1 (U\ (w| = V Ed (({Aw)| 

= d({Aw) |  (--1)I~1+1~~ AwAre 

= d(A ( w e e ) +  (-1)I~I~AV[*] (w| 

This equation has the required immediate consequences: 

If d~=0 and V[*](w| then V[*](~A(w| 

If V[*](w| then d~A(w| is in the image of V [*]. 

If d~=0 then ~AV[*l(w| is in the image of V[*]. [] 

2.2. Mapping properties of the cohomology 

In classical topology, maps on the cohomology can be induced by maps which change 

coefficients over the same topological space. Our analogue of this is the following theorem: 

THEOREM 2.6. The eohomology H* in Definition 2.4 is a functor from A~ to graded 

left H~R(A)-modules , where the module structure is given in Proposition 2.5. 

Proof. Begin with a left A-module map Q: E--+F which preserves the covariant de- 

rivative, i.e. Vor174162 E--+~IA~AF. First show that  the map id| ~*A| 

ft*A@AF is a cochain map: 

V [*] (id|162174 = V [*] (w | 

= d~ |162 + (-1)I~1 wAVe(e) 

= 

= (id@r V[*] (w@e). 
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The functorial property is simply ( id |162174162174162162 and the left module prop- 

erty is just ~A(w|174162 [] 

In classical topology, continuous functions between topological spaces also induce 

maps on the cohomology. One part of this is the pull-back construction for coefficients. 

Given the reversal of arrows which often occurs in considering algebras rather than spaces, 

this becomes a 'push-forward' construction in noncommutative geometry. 

This would be an appropriate time to remind the reader that  for algebras A and B 

with differentiable structure, an algebra map 0: A--+B is called differentiable if it extends 

to a map 0.: f~*A--+Q*B of differential graded algebras. 

LEMMA 2.7. Given (E ,V)EAs  and a differentiable algebra map O:A~B,  define 

V :B |  >f~IB|174174 V(b|174 

Then O,(E,V)=(B|  V)EBg,  with right action of A on B given by b<a=bO(a). 

Pro@ To check that  V is well defined, we must show that, for all aEA, bEB and 

eEE, V(bO(a)|174 

V(bO(a)| = bO(a). (O,| )| 

= b-(0, | +db. O(a)| e+ b. dO(a) Ne 

= b. (O.|174 +db@ae 

= b. (0.| V(ae) +db@ae 

=~(b| 
That  V satisfies the Leibniz rule follows immediately from the definition (and the Leibniz 

rule for d). [] 

PROPOSITION 2.8. If  O: A ~  B is a differentiable algebra map and (E, V)EA~-, then 

0.(E, V)~8~-. 
Pro@ Following the notation of Lemma 2.7 and setting Ve=~i| (summation 

implied), 

~[1]V(b| = ~[i] (b. (0.| +dbQe) 

= ~[il (b. ~ |  +db| 

= d(b.{~)@e~+ddb| ~ AVei -dbAVe 

= dbA~i|174 

= b. (d~i | e i  - -  ~ i  AVe/) 

= b.V [i] Ve 

=0.  [] 
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THEOREM 2.9. For a differentiable algebra map O:A-+B, there is a functor 

0.: Ag-+ Bs which is defined on objects as in Lemma 2.7, and where a morphism 6: E-+ F 

is sent to the morphism id| B| E--+ B| F. Further this functor restricts to a func- 

tot from AlP to BY.  

Proof. First, given a morphism 6: E-+F in as  we need to show that  idN6: B@AE--+ 

B|  is a morphism in Bs Using the definition of V in Lemrna 2.7, 

V(b| = b. (O, |  

and as 6 is a morphism in Ag, 

9 (b@ O(e)) = b. (0, |  | 6) Ve + db| 6(e) 

= (id| (O, |  

= (id| V(b,~e). 

The composition rule is just ( id@0)o( id |174162162  The restriction to fiat connec- 

tions is shown in Proposition 2.8. [] 

2.3. Generalised mapping properties 

The mapping constructions can be generalised to bimodules rather than algebra maps, 

using the 'braiding' introduced by Madore [15]. 

Definition 2.10. A (B, A)-bimodule ME B.MA with additional structures 

(a) a left B-connection V: M ~ f P B |  

(b) a (B, A)-bimodule map ~: M|174  

is called a differentiable bimodule if it satisfies the condition V(m.a)=V(m)-a+gr(m|  

for all m E M and a E A. 

Example 2.11. If O:A--+B is a differentiable algebra map, take the bimodule 

BEB3,IA, with the usual left B-action, and right A-action given by b<a=bO(a). Also de- 

fine V: B--+f~lB| by Vb=db and &: B|174 by ~(b|  

b.O.(~). Now we check the condition 

V(b<aa) = V(bO(a) ) = d(bO(a) ) = dbO(a)+bO,(da) = V(b). a+(r(b| 

Hence B is a differentiable bimodule. 
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P R O P O S I T I O N  

Then the following defines a functor (M, V, ~).: AE--+BE: 

On objects ( E, V ) E A g, define ( M, V, (~ ), ( E, V)=(A/|  V), where 

V(m| = Vm|  (~| 

On morphisms r E ~ F , define ( M , V, ~) , r174162 M ~A E ~ M | F. 

Pro@ First we need to check that V is a well-defined function on M| 

V(m| = Vm|  (~|174 

= (Vm). a| (d |174 + (~ |174174 

By using the differentiable bimodule condition this becomes 

V(m| = V(m.a)|174174 = V(m.a| 

To check that V is a left-B-covariant derivative, as c~ is a left B-module map, 

V(b.m| = V(b.m) |  (~| m| 

= b.V(m)|174174 (~| (m| 

= b.V(m| +db|174 

Next we check the morphism condition: 

V(m|162 = Vm|162 (~|174 

= ? ~ o r  + ( ~ |  |  

= ( id |174174 

2.12. Suppose that (M,V,(r) is a differentiable (B,A)-bimodule. 

[] 

Definition 2.13. The differentiable (B, A)-bimodule (M, V, ~) is said to be fiat if 

induces a (B, A)-bimodule map h: M@A f~2A--+ ~2B @B ~I so that the following conditions 

are satisfied: 

(a) as a left B-connection on M, V is flat; 

(b) (idA,)(~| =~(id| M@A fllA| [~IA-+ f~2B| M. 

For the rest of this subsection we assume the density condition for f/1A. 

LEMMA 2.14. If the differentiable (B,A)-bimodule (lli, V,~) is fiat, then the fol- 

lowing map vanishes: 

[(d|  (idAV)] ~- ( idAh)(V|174 M| ~ fl2B| 
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Pro@ 

and bEB, 

First note that the displayed formula is well defined, as for all rnEM, rlEf~lB 

[(d@id) - (idAV)] (r/b| = [(d@id) - (idAV)] (rt| 

Since f~lA satisfies the density condition, to prove the vanishing of the displayed 

formula, we now only have to apply it to elements of the form rnNda, and use the 

differentiable bimodule condition on ~: 

[(d| - (id AV)] 6(m| -- [(d@ id) - (id AV)] (V (rn. a) - (Vrn)- a) 

= [(d@id) - (idAV)] V(rn.a) 
- [ ( d |  V(rn)-a 

+ (idAS) (Vm,|  

and 

[(idA~) (V| +~(idNd)] (rn@da) = (idA,)(VrnNda). 

This means that the displayed formula applied to rn@da gives R(m.a)-R(m).a,  where 

R is the curvature of the left 1?-connection on M, and this vanishes by Definition 2.13. [] 

PROPOSITION 2.15. If the differentiable (t?, A)-bimodule (M, V, 0) is fiat, then the 

functor (M, V, ~).: A$-+8s restricts to a functor from Air to BiT z. 

Pro@ We need to show that the following expression vanishes, where E is a left 

A-module with flat connection V, and eEE: 

V[qV(m| = ~[1] (Vrn@e+ (c~@id) (rn| 

= (d|174174 

- (idAV) (Vm@e+ (~| (m| 

= (d@id|174174 

- (id AV@id)(Vm@e+ (O@id)(m| 

- (ida ~@id) (id@id@V) (Vrn| + (d~Nid) (m| 

= (d@id@id)(Vrn| + (d@id@id)(~@id)(rnNVe) 

- ( id  AV@id)(Vrn@ e ) -  (id AV@id)(a |174 
-(idA~-|174174 
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As the left-B-covariant derivative ~J on M is flat, the first and third terms cancel, giving 

~[1] ~ (Ttt@ e) = (d|174 - (idAV| 

- (idA(r|174174174 

- (idA6-| (id@id| (&|174 (m| 

= (d@id | | - (id AV| id)(6-@id)(m | 

- (id A 6-| |  @Ve) 

- (id A 6-|174 |  

Using property (b) of Definition 2.13 this becomes 

V[llg(m@e) = (d|174174174174 

- (idA~ |174 |  | 

- (~ |174174174174 | 

= (d| |  | - (id AV| | 

- ( i d  A ~ |174174174  (~|174 (idAV) Ve) 

= (d| @id)(m@Ve) - (idAV| @id)(m| 

- (idA~ |174 |  | - (~ | | d@id)(m | 

where we have used the flatness of V on E in the last equality. Now Lemma 2.14 

completes the proof. [] 

2 .4 .  T h e  b i c a t e g o r y  o f  d i f f e r e n t i a b l e  b i m o d u l e s  

A possible way of understanding differentiable bimodules and induced functors between 

categories of connections is to construct a suitable bicategory. Recall that  a bicategory [3] 

consists of three layers of structures: 0-cells, 1-cells defined for any pair of 0-cells, and 

2-cells defined for each pair of 1-cells. There are two types of composition: the horizontal 

composition of i-cells which is unital and associative up to isomorphisms and the vertical 

composition of 2-cells which is strictly associative and unital. The following gathers all 

the data that  constitute a bicategory relevant to differential bimodules. 

Definition 2.16. The bicategory DiffBim of differentiabIe bimodules contains the fol- 

lowing data: 

(a) 0-cells are differential graded algebras (ft*A, d); we write A for the zero-degree 

subalgebra of ft*A. 
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(b) A 1-cell f~*A--+f~*B is given by a differentiable bimodule (M, VM, aM), i.e. M 

is a (B,A)-bimodule, VM: M-+f~IB| is a left B-connection and aM:M~Af~IA-+ 

f~IB| M is a generalised flip satisfying the conditions of Definition 2.10. 

(c) A 2-cell 
(M.V+~;.c, ~1 ) 

~Q*A > ~2*B 

f F A  > ~*B (X.V\'.~x) 

is given as a (B,A)-bimodule map O:M-+N that  commutes with covariant deriva- 

tives and generalised flip operators, i.e. such that V.~-o~5= (id| and aNo(O|  

(id| ~ 

The horizontal composition 

ft*A (M,V.~,.~M)> _Q*B (-\-.Vx.~x)) fF C  

is defined as a differentiable (C, A)-bimodule (N~u M, VNr aN| where 

VN| = VN|174174 and ~N| = (aN|174 

The vertical composition is the usual composition of mappings. The category of 1-cells 

ft*A-->ft*B with morphisms provided by 2-cells is denoted by DiffBim(~2*A, fFB).  

It is left to the reader to check that the data collected in Definition 2.16 indeed 

constitute a bicategory. Essentially this requires similar computations to those in the 

proof of Proposition 2.12. The bicategory Diffgim contains all (left) connections in the 

following way: 

LEMMA 2.17. View k as a trivial differential graded algebra with the differential 

given by the zero map. Then 

DiffBim(k. fFA) ~ Ag. 

Pro@ Since f~lk=0, every generalised flip cr nmst be a zero map, and thus an object 

in the category DiffBim(k, fFA) is a left A-module M with a left A-connection VM: M-+  

f~IA| As to the morphisms 0: M--+N in Diffl3im(k, fFA), the commutativity with 

flips is trivially satisfied (as flips are zero maps), and hence only the condition VNOr = 

(id| remains. This is equivalent to saying that g5 is a morphism in As [] 

In view of Lemma 2.17, the functor (3,LVM. aM).:  Ag--+Bs constructed in Prop- 

osition 2.12 has a very simple and natural bicategorical explanation. Given a con- 
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nection (E, VE)CAg-DiffBim(k, Q'A) and a differentiable bimodule (M, VM, aM)E 

DiffBim(f~*A, Q'B) one can construct a differentiable bimodule in DiffBim(k, f~*B)=Bg 
as the horizontal composition of 1-cells 

By the functoriality of the horizontal composition, this results in a functor Ag-~ug 
described in Proposition 2.12. 

In a similar way one constructs a bicategory FlatDiffBim of fiat differentiable bimod- 
ules with differential graded algebras (f~*A, d) such that [~IA satisfies the density con- 

dition as 0-cells, the i-cells are given as flat differentiable bimodules (M, VM, cr~.~, ~ / ) ,  

where a ~  and cr~ are flip operators of order one and two (cf. Definition 2.13), and the 

2-cells are (B, A)-bimodule maps commuting with VA.~, ~ z  and a~,~. The horizontal 

composition is given by 

VN| M = Vy |  (a~ | (id @V:~i), 

crN| B i  M = (a~v@id)o(id@cri~), i =  1, 2, 

and the vertical composition is the usual composition of mappings. One easily shows 

that  A~-=FlatDiffBim(k, f~*A) and then identifies the functor in Proposition 2.15 as the 

horizontal composition of 1-cells in FlatDiffBim. 

2.5. T h e  case of  semi- f ree  d i f fe ren t ia l  g r a d e d  a lgebras  

Recall that  ft*A is said to be semi-free if and only if ~ A  is isomorphic to the tensor 

algebra of the A-bimodule f~lA. As observed in [19] there is a bijective correspondence 

between semi-free differential graded algebras over A and A-corings with a group-like 

element (cf. [7, w The constructions in w 2.3 have very natural interpretations 

in terms of such corings and comodules. For more information on corings and comodules 

we refer to [7]. 

Starting with an A-coring C and a group-like element gEff, we define f t lA=kerze ,  

where ce: ~--~A is the counit of ~. The differential is then defined by d(a)=ga-ag, for 

all aCA, and, for all c~|162174 

d(clO... |  n) = 
7 l  

(-1)ic1  
i=1 



166 E.J. BEGGS AND T. BRZEZINrSKI 

where Ar174  is the coproduct in ~. The density condition for f~lA, i.e. the 

requirement that  any 1-form is a linear combination of ada', is equivalent to the require- 

ment that  the map A| a.~a'~aga',  be surjective (note the similarity with the 

definition of a space cover in [12]). 

Let E be a left A-module. As explained in [7, w connections 

V: E > f~IA~AE-- ker~.r 

are in bijective correspondence with left A-module sections of er174 g| i.e. left 

A-linear maps t)s: E--+g| such that ( ee~ id ) :oZ=id .  Furthermore, flat connections 

are in bijective correspondence with left g-coactions in E. This correspondence, explicitly 

given by 

oE(e)=g| for all e c E ,  

establishes an isomorphism between the categories of flat connections on A and left g- 

comodules. 

Let g be an A-coring with a group-like element ge, and D be a B-coring with 

a group-like element 99. Recall that  a morphism of corings consists of an algebra map 

00: A-+B and an A-bimodule map 01: g-+D that respects the coproducts and eounits (cf. 

[7, w for more details). Any morphism of corings (00,01) such that  01(gr is a 

differentiable algebra map. Incidentally, such a morphism of corings is termed a moTphism 

of space covers in [12]. Let V: E--+f~IA~AE be a connection, and t)E: E--+~| be 

the corresponding section of gr174 Then the section @B|174 of e~|  

corresponding to the induced connection in B gA E comes out as 

~B@A E ( b| ) = b01 (el_ 1]) | 

where t)E(e)=e[-1] | (summation implicitly understood). In view of the isomorphism 

AbC--~e3/I, the corresponding functor between the categories of flat connections described 

in Theorem 2.9 can be identified with the induction functor between categories of left 

comodules (cf. [7, w 

For differential graded algebras corresponding to an A-coring g with a group-like 

element 9e and a B-coring 9 with a group-like element gg, differentiable bimodules 

(M, V, or) are in bijective correspondence with pairs (M, ~), where M is a (B, A)-bi- 

module and ~: M|174  is a (B, A)-bimodule map rendering commutative the 

following diagram: 

i d ~  ~ i d  (2.1) 
AI 
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Furthermore, differentiable fiat bimodules (M, V, or) are in bijective correspondence with 

pairs (M, O) such that in addition to (2.1) also the diagram 

id| I l~X-| 

M@A~@A~ ~@B~@B M (2.2) 

is commutative. The correspondence is given by O'=(I)lfil|162 and 

�9 (m| =g~mE~(c)-V(~)cd~)+~(.~(~-g~d~)))  

for all rnEM and cEff. An interesting point to note here is that the map ~5 is well 

defined, i.e. factors through the coequaliser defining M| ~, thanks to the last condition 

in Definition 2.10 (the compatibility between the connection and a). 

A pair (M, ~P) satisfying conditions (2.1) and (2.2) constitutes a 1-cell in the left 

bicategory of corings kEM(Bim) defined in [5] as the bicategory of comonads in the 

bieategory Bim of rings and bimoduIes foliowing the general procedure in [21] and [13]. 

In view of the discussion in w and the present section, kEM(Bim) can be understood 

as a subbicategory of DiffEim. 

3. T h e  long exac t  s e q u e n c e  

Consider a short exact sequence O-+E-~F-+G-+O in AS, and suppose that  the modules 

fPA are fiat (i.e. tensoring with them preserves exactness). We assume these conditions 

for the remainder of the section. From this we form the following diagram, where the 

rows are exact, and the columns form cochain complexes (i.e. the vertical maps compose 

to give zero): 

;E ~ F  ~G ~0 

> fPA@AE id |162 Q1A| id| f~IA@A G > 0 

> fi2A| id|162 f~2A@A F id| f~2A@A G > 0 

IV r21 IV '2j IV I~j 
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What  follows is s tandard homological algebra, but not all readers may be familiar 

with it. Note that  for (e.g.) ~: F-+G we write v>-l(g) for gEG to mean a choice of 

f E E  for which t ) ( f ) =  9. It will turn out that  the maps eventually defined by using 

such potentially multivalued maps will turn out to be unique, and we have no wish to 

introduce the complication of topologised cochain complexes, and so have no need to 

worry about  the continuity of the resulting operations. It  is merely notation used to t ry 

to clarify the definitions and proofs. Again take FE={eEE:Ve=O}. 

PROPOSITION 3.1. The sequence O~FE-+FF--+FG is exact. 

Pro@ It is immediate that  O : F E - ~ F F  is one-to-one, and that  the composition 

FE--+FF--+FG is zero. To show that  FE--+FF--+FG is exact, take f~rF with ~ ( f ) = 0 .  

As E--+F--+G is exact, there is an eEE with o ( e ) : f .  By following the top left com- 

mutat ive  square in the diagram and using the fact that  i d l e :  ftZA$AE-+f~IA~AF is 

one-to-one, we see that  Ve=0 .  [] 

PROPOSITION 3.2. The (multivalued) map 

( id |  1: FG > ftZA@A E 

quotients to a well-defined connecting map FG--+ HZ(A; E). 

Proof. Begin with 9EFG, and take an f E F  with ~ ' ( f )=g .  By using the top right 

commutat ive square in the diagram, V f ~ k e r ( i d 3  ~': ftlA3AF--+f~ZA~AG). Then by the 

exactness of the rows, there is an x C ftZA 3.4 E with ( i d@0) (x )=Vf .  By exactness of the 

second row, to show that  e ' - + x ~ k e r  V [1] we only have to show that  V[ l l ( id |162  

i.e. tha t  V[I lVf- -0 ,  which is true. Then [x]CHI(A: E), but now we ask if it is unique. 

Suppose that  we have f ' E f  with ~ ( f ' ) = 9 ,  and x'Ef~IA@AE with (id| 

Then f ' - f = r  for some eEE,  and ( idgo) (x ' -x )=V( f ' - f )=Vr174162  

As id |  is one-to-one we deduce that  x ' - x = V e .  [] 

Remark 3.3. As this is not a text on homological algebra, we will now merely quote 

the result of continuing with the methods outlined: Given the conditions at the beginning 

of this section, there is a long exact sequence 

H~ E) ~ H~ F) > H~ G) --+ H~(A. E) 

H ~ (A, F) > HZ(A,G) -----+ H2(A,E) > .... 
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4. N o n c o m m u t a t i v e  f ibre  b u n d l e s  

We consider a possible meaning for a differentiable algebra map ~: B--+X to be a 'fibration' 

with 'base algebra' B and 'total algebra' X. From here we will require that  the differential 

calculi satisfy the density condition. 

Definition 4.1. Define the cochain complexes 

=o ='~ ~*~mBAft~X (n > 0), 
~,~X=~,f~'~B.X and - ~ X =  t,fyn+lBAgn_lX 

with differential d: _ ,~._- . , - -n  j(_~_~+l j(.. defined by d[a~],~=[dcJ]~, where a:e~,ft'~BAf~nX and 

[']m is the corresponding quotient map. 

The maps Ore: amB| defined by O,~(wQ[~]0)=[~,a:A~],~ are cochain 

maps if ftmB| is given the differential ( - 1 ) " i d Q d .  

Remark 4.2. To see that  the differential in Definition 4.1 is well defined, note that  

for all rn, nf>0, d maps c,f~'~BAft~X into c, fY'~BAf~+IX. This is because dfff~BC 
f~r~+IBcf~BAf~IB (note the use of the density condition here). 

~ n  There is a left B-module structure for - , , X  given by b.(=~(b)( .  As d(L(b).O)= 
~,(db)AO+~(b).dO, we see that  d : -~  -~+~ s,~X--+-~r~ X is a left B-module map, so the cohomol- 

ogy Hn('z*X) inherits a left B-module structure. 

In this degree of generality, this construction might be merely curious, but consider 

an example: 

Example 4.3. Let X=B| where F is an algebra with differential structure, and 

give X the tensor product differential structure. By definition, ~ (b ) :b |  and 

ft~X = (ft~174 f~F) | | (f~B|176 

so there is an isomorphism of cochain complexes B| given by b| It 

follows that  Hn(S~X) is just B| the fibre cohomology module. Also this module 

has a flat left B-connection V: B|174 given by V (b |  

db|174 The de Rham cohomology of B with coefficients in this module with flat con- 

nection is H~R(B)| which by the K/inneth theorem is just the cohomology of 

X=B| 

In topology fibrations can be built from open covers of the base space, and a trivial 

fibration over each open set. Our example has just dealt with what would be a non- 

commutative trivial fibration, so we might ask what a more general noncommutative 

fibration would look like. By analogy we might consider -_-~X to be the 'vertical' or 

'fibre' forms, and its cohomology to be the cohomology of the 'fibre' of the map. In 
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the topological case, this cohomology can form a nontrivial  bundle over the base space. 

We have seen tha t  for noncommuta t ive  de R h a m  cohomology it is reasonable to have 

coefficient bundles with flat connection,  and this is the route tha t  we will take for our 

version of a fibration. 

=* -+ =-~ X (as defined in Defini- PROPOSITION 4.4. Suppose that ~1:-QIB:~B-oX 
tion 4.1) is invertible. Then there is a left-B-covariant derivative 

v:  H ~ (--;X) - -~  e ~ B . .  H '~(--;x) 

defined by [w]~+(id@[. ] ) O 1 1  [d~d]l. 

Proof. If  [W]oEZ~=ker(d: =~ y ~ = , ~ + l v  - 0  . . . .  0 ~ ) ,  then d w E t . ~ I B A ~ X .  Thus  [dw]l~E~X 

is a eocycle, so (id|174 i.e. o~l[dw]lef~lB| n. 

Now suppose tha t  [w ' ]o=[w]0EZ ~. Then  J - ~ : r  so we get 

o i  -~ [~,_~,]~ ~ ~qlB ~B --~- 1x. 

As O -1 is a cochain map,  - ( id@d)O~-~[ , : ' -~ : ]~=(~-~[dw"-dW]l=O~- l [d~"]~-Ol - l [dw]~ .  

Thus  

071 [dW']l - - 0 1  ~ [dw'] ~ ff ~ B G B d ~ - I x ,  

so we get a well-defined map Z~--+f~IBGB H'~(=~X). 

To finish showing tha t  V is well defined, we show tha t  dE~X maps to  zero, which 

we see as V[d~]=( id |  

Finally we need to show the left connect ion condition: 

V[c(b) .w] = (id| [. ])@~1 [t(db)Aw+t(b).d~] = t(b) A[w] +b.V[w].  [] 

PROPOSITION 4.5. Suppose that O, , :~ '~BT~B--~X-+- - -~X (as defined in Defini- 

tion 4.1) is invertible for r e = l ,  2. Then the curvature of the connection on H'~(E~X) 

described in Proposition 4.4 is zero. 

c. o X --+--o ' X ) ,  and write Proof. Take [co]oCZ~=kel'(d: - '* - -n4-1  

e ~  1 [d~]l = ~ ~ ~ [.do ~ ~ B e B  z ~. 
i 

Likewise write 0 1  ~ [dT/~] ~ = ~-~j Xij @ [P i j ]0  E ~QIB~B Z n. Now write the composi t ion V [~] V 

as  

i i j 
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Inserting the definition of (9 -1, we get [dw] l=~i  [L.(iArli]l and [dr]i]l:~j [t,xijA#ij]l. 
This means that  

dw - ~ t ,  ~i A'tli C t ,  f~2BA 9 ~- 1X. 

i 

so we write 

i k 

where TkEf~2B and AkE~2~-IX. Applying d to this, we get 

( t*dTkAAk§  = ~ (t*~iAdrh-t,d{iArh). 
k i 

Then we obtain E k  [L,~-k AdAk]2 : E { , j  [~, (({AX{j) Ap/j]2 - E i  [~, (d~i) Ar]i]2. Thus the two 
.-n- 1 map to elements ~krk@[d,~k]O a n d  ~ i , j ( i A X i j @ [ # i j ] o - ~ i  (]~i~[?){]o of f~2B@B--  0 

the same thing under O2, so by our assmnption they must be equal. Now as [dAk]0 is a 

coboundary, the curvature must vanish. [3 

5. Spectral sequences 

The reader should refer to [14] for the details of the homological algebra used to construct 

the spectral sequence. We will merely quote the results. 

Remark  5.1. Start with a differential graded module C a (for n~>0) and d: C ~ - + C  ~+1 

with d2=0. Suppose that  C has a filtration F ' ~ C c C =  (~>~o C~ for m>~0 so that  

(1) d F ' ~ C C F ' ~ C  for all m~>0 (i.e. the filtration is preserved by d); 

(2) F m + I C c F ' ~ C  for all m~>0 (i.e. the filtration is decreasing); 

(3) F ~  and F ' ~ C ~ = F ' ~ C ~ C ~ : - { O }  for all m > n  (a boundedness condition). 

Then there is a spectral sequence (E~'*, d,.) for r~> 1 with d< of bidegree (r, l - r )  and 

E ['q = H p+q ( F ; C / F  ;+1 C) = ker(d: F P c P + q / F  p+I C p+q -+ FPCP+q+I/Fp+I C p+q+l) 
ira(d: FPCP+q-1/  FP+ I CP+q-1 --+ FPCP+q / FP+ I CP+q ) " 

In more detail, we define 

z ~ ' q  = F ;  C € rl d -  l ( F ' +  T cP+q+ l ) , 

B~ 'q = FP C p+q N d( F P -  " C ~+q- 1). 

EPr'q = ZI ) ,q / (~  p+lq  I ~_BP'q 
--r I<~r-- 1 r--l]" 

The differential 
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is the map  induced on quotienting d: Z~ q--+Z~ + ' 'q -~+l .  

The spectral sequence converges to H*(C. d) in the sense that  

FPHP+q(c., d) 
E~q ~- FP+~HP-q(C, d)' 

where FPH * (C, d) is the image of the map H* (FPC, d)-+H* (C, d) induced by the inclu- 

sion FPC--+C. 

Now take the case of a differentiable algebra map ~: B--+X. We can give the following 

example of a spectral sequence: 

Remark 5.2. Define the filtration F"fY~+mX=~,fY~BAg'~X of f~*X. This obeys 

conditions (1) and (2) of Remark 5.1 as 

t .  f~+ IBA [2 ~X C t, O_ mBA L, .Q IBA fY~X C t, ~BA f2 ~+ IX. 

We have boundedness as L,t2~ and by convention, 9 " X = 0  for n < 0 .  Note 

that  
FP~P+qX 

F p +  l f~p--qX = :-.q x ,  

and we obtain a spectral sequence with E~'q~Hq('z;X) which converges to H(]R(X ) in 

the sense described in Remark 5.1. The differential dl'Hq(~*X)-~Hq(~*+lX ) is the �9 ~ p  ~ p  

map given by applying d to cocycles in --~X, taking care over the domains! 

Definition 5.3. The differentiable algebra map ~: B - + X  is called a differential fibra- 
tion if O,~: f~'~BQB~-;X-+=;~X (as given in Definition 4.1) is invertible for all re>j0. 

THEOREM 5.4. Suppose that L:B--+X is a differential fibration. Then there is a 

spectral sequence eonvergin 9 to H~a ( X ) with 

q - - *  Ef H'(m H (:oX), V). 

Pro@ We note that  O,~,: ~PB@BHq('m~X)--+Hq(~-pX) is an isomorphism, and that  

it commutes with the differential in the spectral sequence if we use the flat connection 

cochain complex on t2PB| H q (T=~X). [] 

6. The  mult ip l icat ive  s tructure  

Even if one is not a priori interested in a multiplicative structure on the cohomology 

theories, in algebraic topology a knowledge of the multiplicative structure can help to find 

the differentials in the spectral sequence. In this section we suppose that  the differentiable 
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algqbra map c: B-+X is a differential fibration, that  each ftmB is flat as a right B-module,  

and that  the following condition holds: 

Definition 6.1. The map c: B ~ X  will be said to satisfy the differential braiding 
condition if ~nXAt.~mBc~.~mT~Af~nX for all n, m>>.O. 

Remark 6.2. Note that  the condition in Definition 6.1 means that  the wedge multi- 

plication preserves the filtration in the construction of the spectral sequence, as 

(t. fYBA f~dX) A (t, f~kBA f~ZX) C ~. fYBA t. Q~BA f~JxA f~IX C ~, ~i+kBA ~J +Ix, 

so there is a multiplicative structure on the spectral sequence. However, we have gone to 

considerable trouble to show that  the E2-page of the spectral sequence can be expressed in 

terms of a cohomology bundle with connection, so we shall look at what this multiplieative 

structure means in these terms. 

PROPOSITION 6.3. Define a map 5:E~X@Bf~B-+~B|  by ~([~]o| 

w~@[~]0 (summation implicit), where [t,co~ A~]m---(--1)nm [~ At.w]m. For the cochain 

s t r u c t u r e  o n  ~o~ 

&((kerd)|174 and &((imd)~:Bf~mB)cQmB| 

so there is a well-defined map or: H~(Z~X)|174 

Proof. First suppose that  [~]o ~ker d c  E~X. We write &([~]o | =co~ | [~]o, where 

t.co~A[~ ~ (--1)nm~At.co mod f,Qrn+xBsB~n-lx. 

On applying d, 

~ . d ~ i A ~ +  (_ m , , ' ' 1) ~.coiAd~i ~ (-1)"'md~AL.co+(-1)nm+r~At.dw 

rood t.Qm+IB| f~nX. 

As d(Et.f~lB| this shows that  [t.co[Ad([]m=0, and therefore the fibration con- 

dition gives co[| [d~]0=0. The result follows by flatness. 
Now take [~]0EE~ 1X, and then find 

~.w~Ar/~ = r/A~.co rood t.f~m+lB| B f~n-2x. 

Applying d gives 

. & ; A ~ ; + ( - 1 ) m t . w ~ A d , 7 ~  ~d,?/\ .co-(-1) '~,TA.dco rood . ~ m + l B |  "~ iX, 

which reduces to 

(-1)mt.co'~Ad~?~ ~ drlAt,co mod t,Qm+lB| [] 
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PROPOSITION 6.4. If the differential braiding condition holds, then there exists a 

well-defined map A:-~" -~ . . . .  --oX@moX-~=o X defined by [~]oA[tl]o=[~Ar/]o, and this gives a 
well-defined map A: H"(=;X)~H~(=_~)X)-+ Hr+~(E;X). 

Proof. To show that the map [~]o| [rl]0~+ [~A~l]0 is well defined we need to show that  

both t . f~1BAfF-xXAf~X and fYXA~.~BA(_).~-xX are contained in ~.ft~BAfY+~-~X. 

The first inclusion is automatic, and the second follows from the differential braiding 

condition. The rest is left to the reader. [] 

PROPOSITION 6.5. For all xE H'~(=_;X) and a,'~f2"B, 

(A|174 ~ dec)= [dgid+(-1)m(idAV)]a(x| 

Pro@ For all wEf~"~B and (efY~X, we have defined &((|174 where 

( - -1 )n"{At ,~  ' = t,co'~A{i§ 

for some r and ~iC~Q"-1X. Taking d of this gives 

(--1) nm d~ At.w + ( -  1) ..... +n c A t.  d,.~, _ t. d~'i A~i + (--1) TM t.wi Ad~i 

+ t.doi Ark + ( -1 )  m+l ~.Oi Ad~li. 
(6.1) 

Now we suppose that  [~]oCker(d: = n g  =~+ig  -0 ~- -+-o  ~ ). and then we also have [d~i],~=O. This 

means that  all the terms of (6.1) are in t~.Qm+IBAfY~X, and using the quotient map 

[" ],~+1 we obtain 

( -1 )  ~m [d {A t .w ]~+ l  + ( -1 )  .... +" [~CAt*dw]"+l (6.2) 

= [~.d~ n, td~+l  + ( 1 )  " [,.~'~ n ~(,] m-,, + (--1) ' '+~ [t*0~ A@dm+~. 

Now write V~= .~i@ [(i]0 E~IB@-~  ~ and V~i :~'ik ~ [(ik]0. Substituting this in (6.2) gives 

(--1) nm [t,,@/A</At,co]m+l = [ t .dcoi  A ~ i ] m + l  q-(_])m [t,~iAt,b'ikAr 

§ (-1)r~"+n [( At.d,~,'].,+l + (-1)m+ l [t.Oi A drh]m+l. 
(6.3) 

On passing to the cohomology the last term in (6.3) vanishes, giving the result. [] 

PROPOSITION 6.6. For x . y r  V(xAy)=VxAy+(crAid)(x|  

Proof. Suppose that x and y are given by [~]0EE~X and [71]oE--~)X, respectively. 

Set Vx=wi| and Vy=oi@[rh] for [~i]0r and [rk]oE--~X. Then 

d(~AT/) = d[Ar]§ ( -  1)r [Ad~l - -  t . w i  A(i At/+ (--1)r~At,r  [] 
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PROPOSITION 6.7. For all xEH*(5~X) and a~. o ~  B. 

(idAcO(~(x|174 = g(x~(~'Ao)).  

175 

Pro@ Set x=[(]0. We will use explicit summations in this proof. V~% obtain 

(idA.) (g([~]o |174 = ~ (idAg)(,~ @ [[~ ]o ~ o) : ~ w~ A6~/j | [[~ ]o, 
i i.j 

where 

i 

From this we obtain 

Z " A " A@ij) ~j]l~l+l~l 
i , j  

= (_1)1~11,d [[At.Ce]l~ I and ~ [L.o~jA[;~j]Io i = (_1)1~1 lel [[~At.O]lel. 
J 

= (-1)I 1 Iota 

i 

= (_ ])l(l(lr A t .  0]1.~1+101 �9 
[] 

The reader will recall that  in the construction of the spectral sequence the vector 

spaces f~nB| appear. This is not such a simple thing as a tensor product 

differential complex, as the derivative involves a connection which does not map H* (=';X) 

to itself. It is therefore not surprising that  the product structure has to be rather more 

complicated than the graded tensor product. In fact. we have already given all the 

ingredients required for the product, it only remains to state them in a more coherent 

manner: 

Definition 6.8. Take ( E ~ , V ) ~ A ~  for all m~>0, and suppose that  each E "~ is an 

A-bimodule. Give eEE "~ the grade lel=m. A product structure on this family consists 

of 

(1) A-bimodule maps a: E'~| 

(2) a product A: E'~| ~'~+'~' which satisfy the following conditions, for all 

e, fEE*  and ~, rig ft*A: 

(a) the product (~| I~i~A~(eSr/)Af on 9.*A| is associative; 

(b) ( idAa)(Ve|174174 (idAV)](7(e~{); 

(c) V ( e A f ) = V e A f  +(crAid)(e| 

(d) (idA~r)(cr(e|174174 
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PROPOSITION 6.9. In Definition 6.8 the derivative V[*] is a graded derivation over 

Proof. Begin with 

(-1)  I~J I~,1 V[*] (({@e)A (r/| = (dS: id+ ( -  1)!~i+l,,I (idAV))(~ Aa(e@r/)A f)  

= d{Acr(e ~ T])A f +  (-- 1) I~l {A (d@id)a(e | f 

+ ( -  1)l~l-lq ~A (id AV) ~r (e | AI 

+ (--1)!~l+lq {A (idA~Aid)(a(e@ r/)@V f). 

Using property (b) of Definition 6.8. this becomes 

(-1) Id Ivl V[*] (({@e)a (r /@f))=d~Ac(egrl)Af+(-1)l~l~a(idac~)(Ve|  

+ (-1)IVl ~Aa(e |  (6.4) 

+ ( -  1)I~:+i~,i {A (id nanid)(a(e |174 f). 

Next we calculate 

(_l)lel Iq vl*l({@e)a(rl~f)= (_l)ie! I~i (d~e+(_l ) l { l~AVe)a(r l |  

which is the same as the first two terms of (6.4). Next 

(-1)l~l Iq+l~l+l< ( { @e) A V[*] (rl| f ) 

= (-1)!< Iq+Jd+i<({<~e)A(drl@f+(-1)l'71~lAVf) 

= (-1)!~:~/\c(e~drl)/\f+(-1)l~l+lq{A(aAid)(e| 

so to prove the result we only need to verify 

(idA~Aid) (c~(e |  = (aAid)(e ~r/AVf), 

which is given by property (d) of Definition 6.8. [] 

the given product structure on ~*A~E*, i.e. 

V [*] (({| A (r/| = V [*] ({~e)A (rl~;f)+ (-1) Ir ({@e)AV [*] (rl| 

Thus there is an induced product structure on the cohomology, 

A:H'~(A,E~ V)| Em' V ) -----+ H'~+'~'(A,E"~+'~' V). 



THE SERRE SPECTRAL SEQUENCE OF A NONCOMMUTATIVE FIBRATION 177 

7. C o a c t i o n s  o f  H o p f  algebras 

In classical topology, fibrations arise whenever there is a continuous (compact) group ac- 

tion on a (compact) Hausdorff space (e.g. a free action gives rise to a principal fibration). 

A base of the fibration is then identified with the quotient of the total space by this 

action. In noncommutative geometry this corresponds to a coaction of a Hopf algebra 

on an algebra. This is the case that  we consider in this section and, indeed in all the 

remaining sections. 

7.1. Differential calculi on Hopf  algebras 

For more details on this subject, the reader should see [24]. Suppose that  a Hopf alge- 

bra H with coproduct AH, counit gH and the invertible antipode S has a differential cal- 

culus f~*H. We write the coproduct in H as AH(h)=h(~)~h(2) ,  A~z (h)=h(1)|174 

etc., and the left H-coaction on ft*H as {~-~[-I1:3'~[0J (summation understood). If there 

is no danger of confusion we will simply write A and c for AH and E H (this convention 

applies to all other Hopf algebras as well). In this section we shall not assume that the 

coproduct is differentiable (this would give a bicovariant calculus), but  only that the left 

H-coaction A: Q*H--+H| is defined. L'~H denotes the space of left-invariant n-forms 

on H,  that  is, 

The Hop~Lie  algebra b of H is defined to be 

O= {a:ftlH--+ k: a(rlh)=c~(rl)c(h) for all ,r]~f~lH and hE H}. 

Note that  defining ~ as a vector space only requires a ~classical point', that  is, an algebra 

:nap :: H--+k. 

LEMMA 7.1. If, for a left-invariant ~?cfPH, a(r~)=0 for all aEO, then r]=0. 

Proof. For any k-linear map T: L1H-+k, define C~T: 9.1H--+k by 

aT ({) = T({[ol S--1 (~[ - 1]))- 

Then for hEH, 

a T(~h)  = T(~[0 ] h(2 ) S -1 ( / / (1 ) )  S - 1  (~[_1])) = O:T(~)s 

so aTE[}. For a left-invariant r /C~IH, choose T so that T(rl):/:O , and then aT(r/)-~0. [] 
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7.2. Differentiable right coactions 

Suppose that  the algebra X has a differentiable right coaction 0 (written on elements 

as 0(x)=x[0] | EX•H, summat ion  understood) by the Hopf algebra H which makes 

it into a eornodule algebra. This means that  o: X--+X| is a eoaction and a differ- 

entiable algebra map, so we obtain a map of differential graded algebras (under the 

A-multiplication) 

~.: f~x > 9Y(X~H) = (9 fYX| ~-~H. 
0~<r~<n 

Write H.,~,~_~ tbr the corresponding projection from 9 "  (X@H) to f~mX| Note 

that  the maps IIm0~), define the right coactions of H on lYnX. These are also denoted 

by ~. The subalgebra B c X  is defined to be the coinvariants for the right H-eoaction, i.e. 

B=xc~ o(b)=b| We now define the calculus on B by f~IB=B.dBcDIX 
and f ~ B = A  ~ f~lB G QnX. It  is immediate that  fF'B C (f~X) ~~ the H-invariant  n-forms 

on X. However, we can be rather more restrictive: 

Definition 7.2. Define 

J-[nx - N ker(Hm . . . . . .  @.:f~nX---}f~rnx| 
n>m)O 

The elements of ~ X  are called horizontal n-forms. 

Remark 7.3. It  is immediate that  .QnBc~'~X. and we might conjecture that  in 'nice' 

cases we should have fF~B= (Q<'X)C~ The reader should note that  in the case of 

a bicovariant calculus on H,  the differential algebra 9*H is itself a graded Hopf algebra 

(see [4]), and then the conjecture is that  9.*B is the invariant part  of fFX under the right 

f~*H-coaction. 

Remark 7.4. As in the classical case. it is possible to define horizontal 1-forms with 

reference to the Hopf-Lie algebra. Remember  from [1] that  the vector fields on X are the 

right X-module  maps from 91X to X. Every a e b  gives a vector field ~ on X defined 

by ~(~) = (id| a)  H0,1 o, (~) for every ~ C-q 1X. 

PROPOSITION 7.5. "H1X ~aeO ker(& D1X-+X). 

Pro@ First the reader should recall the definition of the cotensor product U[~HV of 

a right H-comodule U and a left H-comodule V [17]. This is the subset of U| consisting 

of all u| (summation implicit) where ~[0] gull] ~ v=u| | EU|174 Note that  

we can restrict the codomain to get H0.~ o, :D1X-~ X[BH f~lH. Now there is a one-to-one 

correspondence between XDH~IH and X@LIH given by XDH~--~X[0l| and 

Y| []H~lY[1]. T h i s  combines with Lemma 7.1 to prove the result. [] 
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7.3. W h e n  the algebra coacted on is a Hopf  algebra 

A special case of interest, corresponding to homogeneous spaces, is when the algebra 

X is itself a Hopf algebra. Suppose that the Hopf algebra X has a differentiable right 

coaction co of the Hopf algebra H which makes it into a comodule algebra. We shall also 

assume that  0 commutes with the coproduct A x  of X. i.e. 

( id |  = (Ax | 6: X - -~  X ~ X @ H .  

This is the case if and only if the map vr:X--+H defined by ~r(x)=(ex| is a 

bialgebra map, and then O(x) = (id| A x  (x). Let B : = X  c~ H. 

LEMMA 7.6. A x B C X |  

Pro@ By the definition of coinvariants, for all bEB,  ~(b)=b| so 

(Ax  | = b(1) | | 1H = b(1)| [] 

Lemma 7.6 means that the Hopf algebra X left coacts on B. Thus B can be viewed 

as a noncommutative generalisation of a homogeneous space of X [18]. 

8. The noncommutat ive  Hopf  fibration with  a nonbicovariant calculus 

In this section we give an explicit example of a noncommutative differentiable fibration. It 

is well known that  the underlying algebra inclusion is a quantum principal bundle [6]. Our 

aim, however, is to show that  it is a differentiable fibration in the sense of Definition 5.3, 

8.1. Example: The quantum Hopf  fibration 

This is an example of the type of coaction discussed in w Consider the complex Hopf 

algebra X = A ( S L q ( 2 ) )  generated by {a,/3, % 5} with the relations 

ct/3 = q/3a, ct'y = qTa, /37 = ?3, /35 = q53, 76 = qS"/, 
(8.1) 

aS=Sa+(q- -q -1 ) /30  ' and a S - q 2 " ) ' = l ,  

where q is a complex number which is not a root of unity. On this level of algebraic 

generality, there is no need to make further restrictions on q, althougtl geometrically most 

interesting is the case 0 < q 4 1 ,  whereby X can be made into a ,-algebra and extended 

to a C*-algebra of functions on the quantum group SUq(2) (cf. [23]). The coproduct is 

given by 
A a  = a |174  A/3 = a |163 

(8.2) 
A T = 7 | 1 7 4  A 5 = ~ |  
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and counit and antipode by 

~(~) =~(~):1, ~:(:3) : ~(7) : o ,  

s (~) :d ,  s (~) :~ ,  s(9):-q-~,Z, s ( 7 ) : - q T .  

We will take H to be the group algebra of Z, which we take as generated by z and z -1 

with A z • 1 7 7 1 7 4  S ( z •  7:1 and r177 The Hopf algebra map 7r:X--+H is 

given by 

~(~)=z,  ~(~)=z -~ and ~(,~)=~(7)=0. 

The right H-coaction ~ on X is then given by 

s LO(~3)~-/~@Z - I ,  O(2,)="f@Z and 0 ( 6 ) = 6 |  -1. 

The invariant part of X ,  B = x ~ ~  is generated as an algebra by {aj3, a6,76} 

and is known as (an algebra of functions on) the standard quantum 2-sphere [18]. 

8.2. T h e  3D nonb icova r i an t  ca lculus  on A ( S L q ( 2 ) )  

This left-eovariant differential calculus on X = A ( S L q ( 2 ) )  was introduced by Woronowicz 

in [23] and is generated by three left-invariant 1-forms {w ~ w 1, w2}. The differentials of 

the generators are given by 

da = a w  1 --q,3w 2, d,3 = o~w ~ -q213w 1, 
(8.3) 

d7 = 7c~ "1 - q&o 2, d6 = "yw ~ - q26w 1 . 

We have the commutation relations 

w0o~ = q -  10~w0: 

wlc t  = q -20~wl  ' 

W2OL ~ q - l c tw2  ' 

w~ = q/3w ~ 

w13 = q23wl , 

,w2/3 = q f w  2, 

(8.4) 

and similarly for replacing c~ with 7 and ~ with 6. For the higher forms we have exterior 

derivatives 

d w ~ 1 7 6  1, dwX=qw~ 2, dw2 ~ q 2 ( q 2 + l ) w l A w  2, (8.5) 

and wedge multiplication 

w0Aw 0 = cglAcd 1 = co2Aw 2 = 0, 

co2Aw ~ = --q2w~ ' wZAw ~ = --q4w~ w2Aw I = - q 4 w l A w 2 .  
(8.6) 
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8.3.  T h e  d i f f e r e n t i a b l e  c o a c t i o n  

We need the map rr given in w to extend to a map rr, of differential graded algebras. 

Such an extension of rc exists, provided there is a suitable differential structure on H,  

which can be constructed as follows. From (8.3) we obtain dz=zrr.(wl), 0=zlr ,(w~ 

O=-qz-lrc.(w 2) and d(z-1)=-q2z-17c.(col). This can be summarised by 

r r . (w~ 7r.(wl)=z-l .dz and z.dz=q2dz.z.  (8.7) 

(To see this, note that  from z . z - l = l  we use the derivation property for d to get 

d(z -1)=-z- l .dz . z -1 . )  It is easily checked that  the map re. defined in this fashion 

satisfies all the relations and that  the constructed differential calculus on H is bicovari- 

ant, However, the cost of differentiability of re. is that  the commutative algebra H is 

given a noncommutative differential structure! 

To find ~. we look at (8.3), and use g.(da)=d(g(a)), etc., to give 

g . ( w ~ 1 7 6 1 7 4  -2, p . (wZ)=lQz- l .dz+wl |  and 0 . (w2)=w2Qz 2. (8.8) 

To check that  this gives a well-defined map on f~lX, one needs to check that it is con- 

sistent with the relations in (8.4)--this is left to the reader. Then to define g, on the 

higher forms by using the wedge product, we only have to check the relations in (8.5) 

and (8.6), which is easily done by a straightforward calculation. 

To find the horizontal 1-forms we apply I10,1 to (8.8) to get 

IIo,xO.(wl)=l| and II0 ,1g.(w~ 

It follows that  the horizontal 1-forms are precisely those of the form aw~ ~ for a, bEX. 
We can also calculate the right H-coaction by applying II1.0 to (8.8) to get 

II1,00.(021) = w l |  II1,0g.(w ~ = w ~ 1 7 4  -2 and IIl,oO.(w~)=w2| 2. 

Then the invariant horizontal 1-forms are precisely those of the form aw~ 2, where 

Q(a)=a| 2 and g(b)=b| -2. 

8.4.  T h e  c o r r e s p o n d i n g  c a l c u l u s  o n  B-~.,4(S2q) 

We can calculate 
d(oz,2) = a2W 0 _q2f12~,2 

qd(/35) = a'~w ~ - q235w2. 

d(75) = 'yz~~ 

(8.9) 



182 E.J .  BEGGS AND T. BRZEZIIqSKI 

From this we get 

5d( a3) - q - 1 3 d (  37 ) = aco ~ 

qdd( 3";,,') - q-  ~ 3d(h ~) = ~iw ~ 

By left mult iplying these last equat ions by a and 7, we see tha t  a2w ~ c~Tw ~ and 72w ~ 

are all in B-dB.  From (8.9) we deduce that  32cc 2, 3aw 2 and 52c02 are also all in B.dB.  

Given a monomial  a in the generators  {c,, 3, % ($} with Q(a)=a| 2, we can reorder 

it as either a = x a  2, a = z a  7 or a=x72, where z E B .  Thus  we have aaa~ Likewise 

for a monomial  b with o(b)=b@z -2 we have bcc9EB.dB. From this and the discussion 

in w we conclude tha t  f t lB  is precisely the horizontal  invariant I - forms on X. 

Now we shall consider the 2-forms. Since 6. is a graded algebra map,  we immediately 

obta in  

0.(w~176 and ~o.(wlAzol)=~l~z2l-a.dz+colAajl@z21-2: l = 0 , 2 .  

Hence the horizontal  2-forms are multiples of co0Aco 2. Then  the invariant horizontal  

2-forms are B.co~ 2. To see tha t  f F B  is all of this, we use the relation 

a252_ (q+q- 1) ah,35+q27282 = 1. 

By using c~2co~176 and similar calculations, we see tha t  co~ 2 is con- 

tained in f~IBAf~IB. 

All 3-forms are multiples of w~ 2, but  none of these (except zero) are horizon- 

tal, so we conclude tha t  f t3B=0 .  

8.5.  A n  e a s y  e x a m p l e  o f  a spec tra l  s e q u e n c e  

We will use the nota t ion  (... } to denote the right X - m o d u l e  generated by the listed 

elements. Then  as right X-modules ,  B : 3 B X ~ X ,  f~lB~BX~(w~ and f t2B|  
~ n  (CO0AC02}. We can calculate the - , ~ X  as shown in the  following table: 

~Tn X 

m = O  

m = 2  

m > 2  

n = 0  n = l  

X (W '1 } 

0 0 

n > l  

0 

0 

0 

0 
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It follows that  

(as defined in Definition 4.1) is an isomorphism, and that the quantum Hopf fibration 

~: A(S~)~-~.A(SLq(2)) is a differential fibration for this differential structure. 

Now we shall calculate the E2-page of the spectral sequence in this case. The first 

thing to do is to look at H*(E~X).  Recall that  we consider only the generic case, where 

q is not a root of unity. Note that the coaction O makes X into a Z-graded algebra with 

the grading d e g a = d e g T = l  , d e g ~ = d e g ~ = - i  and deg l=0 .  

LEMMA 8.1. For arty homogeneous x CX, the differential 

d: Z~ = X - -+ = fi X/ ~ 

gives 

dx = [deg x: q-2]Xa31, 

where  a q-2-integer. 

Proof. This is most easily proved by checking the formula on the generators of X, 

and then showing that  if the formula holds for homogeneous a, bEX then it also holds 

for x=ab. This uses the Leibniz rule and (8.4). [] 

PROPOSITION 8.2. As left B-modules, H~ HI(~;X)=B.co I and, for 

n> l, H ~ ( Z ; X ) = 0 .  

Pro@ This comes from Lemma 8.1 and - -~X=0 for n > l .  [] 

Remark 8.3. We now have to find the left B-connection V described in Proposi- 

tion 4.4. As each H ~ ( E ; X )  is a finitely generated B-module, it is enough to find V on 

the generators. Choose generators 1B and a~ 1 in H~ and H I(--~X), respectively; 

an explicit calculation then implies that V1B =0 and Va~l=0. Now we can calculate the 

V-cohomology of the H~(-- ;X)-module,  which is given by the cochain complex 

H~(~;X)  ~ f~IB| -----+ f~2B~BH'~(E;X ) > .... 

Using the generators, we identify this with the usual de Rham complex 

B - ~  f t lB ~ f~2B ~ .... 

and so we get E~'~-H~R(B) for r=0 ,  1, and E~ ' r~0  for other values o f r .  This gives the 

E2-page of the Serre spectral sequence (we display only potentially nonzero terms): 
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1 

0 

H~ H~R(B ) H~R(B ) H~t(B) 

H%(m H~(B)H?~(m H?,R(B) 
P 

0 1 2 3 p 

The only possibly nonzero differentials on this page are d2: (0 ,1) .+(2 ,0)  and 

d2: (1, 1)-+(3,0).  All further pages have all differentials zero, just from considering the 

indices. From this we see that  H~R(B)~--H4R(X), but H 4 a ( X ) = 0  as f P X = 0 ,  and so 

H~R(B)=0.  Using this, we get H~R(B)~--H~a(X). Also we obtain H~176 ) 
and the more complicated cases 

HIR(x) ~ H~R(B)Oker(d2: H~ .+ H~R(B) ), 

To get any further, we would have to use additional information about  either B or X. 

However, this is one of the pr imary reasons why the Serre spectral sequence is useful, it 

turns information about  one space into information about  the other space. 

9. A c o n s t r u c t i o n  for  b i c o v a r i a n t  ca lcu l i  

In this section we consider Hopf algebras X and H with bicovariant differential calculi. 

We assume that  there exists a differentiable surjective Hopf algebra map 7r: X-+H. The 

right H-coact ion on X is given by ~)=(id@Tr)A: X.+X|  (cf. w Since the calculus 

on X is bicovariant, the coproduct A in X is a differentiable map, and hence also the 

coaction p is differentiable (as a composition of differentiable maps}. 

9.1. L e f t - i n v a r i a n t  f o r m s  a n d  c o a c t i o n s  

We first s tudy the covariance properties of the spaces of horizontal n-forms (see Defini- 

tion 7.2). 

PROPOSITION 9.1. ~ X  is preserved by the right H-coaction, i.e. 

o~(~x) c n~XaH. 

Proof. Start  with any r /6~nX.  To check that  @(~])6~'LnXOH we need to show that  

(H . . . . .  ~ , |  for all n>m>>.O. Inserting the definition of the right coaction, 
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we need to show that  (H~ . . . .  o. |  for all n>m>~O. This, using more 

projections to forms, is the same as H~,n . . . .  0(L).| 6.(7])-----0 (here we have extended 

the projection H to three factors in the obvious manner). By the coaetion property this is 

II,~,n_~,o(id| However, as 7]C~-/~X we know that O.(7])EfF~X| giving 

(id | A . )  0, (7]) E f~'~X| H |  H,  and applying the projection gives zero. [] 

PROPOSITION 9.2. The space of horizontal n-forms ~'~X is preserved by the left 

X-coaction, i.e. H0,~ A. ( ~ X )  C X|  

Proof. For 7]EHnX and all 0 4 r n < n  we need to show that  

(id|174 (id| A.)IIo,~ A.7] 

vanishes. By coassociativity, this is the same as 

Ho,m,n-,~ (A. | (id| A.  71. 

Now (id |174 so applying the projection gives zero, as n - m > 0 .  [] 

9.2.  T h e  1- fo rms  on  t h e  base  B 

To identify the differential forms on the base B, we require that  rr: X - + H  satisfies an 

additional condition, and this is best phrased in terms of the space 

/C = ker(rr.: LIX --+ LIH). (9.1) 

Note that  K] is simply the space of horizontal left-invariant 1-forms on X. 

Definition 9.3. We say that  rr: X--+H satisfies Conditiorz K if 1CcdB.X. 

Note that  checking that  rc satisfies Condition K is easier than it might seem, as often 

the left-invariant I-forms on X form a finite-dimensional space (see the explicit example 

in w 

PROPOSITION 9.4. If re: X--+ H satisfies Condition K, then H I X = d B . X .  

Proof. Take any 7]ETglX. By Proposition 9.2 on the left X-coaction, 

7][_1] @/1101[_1] @ 7][0][0 ] E X@X@~t{1X. 

Remember, for any 1-form ~, that  ~[o1 "S-I((I-1J) is left-invariant. It follows that  

7][_1] @/][0][0] 'S--1(7][0][_1]) C X|  
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SO 

7] : 7][0]{0 ] . S  -1  (7][0![_ 1]) ~'][_1] r d B . X .  

The other inclusion is immediate. [] 

Definition 9.5. ([22]) A normalised left integral for H is a map f:H--+k with 

( i d |  and f 1H=1. 

A Hopf algebra H has a normalised left integral if and only if it is cosemisimple. 

One easily checks that  if f is a normalised left integral for H,  then, for any right H- 

comodule Y with eoaction p: Y-+Y|  the map ( id |  Y - + Y  is a projection onto 

the coinvariant subspace yco H : :  {y E Y :  o (y )  = y <~ 1}. 

PROPOSITION 9.6. Suppose that H has a normalised left integral, and that 7r: X-+ H 

satisfies Condition K. Then ~ 1B = dB. B = (7-{ 1X)r176 H. 

Proof. Apply the left integral to the result of Proposition 9.4. [] 

9.3.  B i covar ian t  ca lcul i  o n  H o p f  a lgebras  us ing  le f t - invar iant  1 - forms  

In the case where the coproduct is differentiable, there is a construction of the calcu- 

lus on a Hopf algebra X in terms of the left-invariant 1-forms LIX which is due to 

VC'oronowicz [24]. 

There is an isomorphism of X-modules and -comodules (the module/comodule struc- 

tures indicated by the dots) 

�9 f~lX: --~ (LIX) 'C'X:~ 
(9.2) 

E I )~[0] s - - l ( ( [  1] (2) )~[- -1] (1) ,  

with the inverse given by the product map. It is also a left X-module map, but with the 

left action on L I x |  given by x>(~y)=x(2)>q@xo)y ,  and x>71=x(2)71S-1(x(1)) for 

~leLIX and x, yEX.  

The relation between the left X-action on LIX and the right X-coaction Px: L1X --+ 

L I X |  is summarised in the equation Qx (x>r/)=x(2)>T/[0] | S -1 (x0)).  This fits 

the left action/right coaction version of a Yetter-Drinfeld module (cf. [8, w By 

the standard results on Yetter Drinfeld modules there is a braiding a :LIX|  

L~XGLIX defined by ~(( |  ~/[0] | with inverse a -1 (~| >~/| 

We define the wedge product on L1X as a quotient 

L1XAL1X = L1X@ L1X 
k e r ( a - i d ~ i d :  L1X~LXX -+ L1X| ' 
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and extend this to higher wedge products. We choose to do this extension by quotienting 

pairwise in each adjacent factor in (L~X) | rather than using Woronowicz's antisym- 

metriser, and in general this might give a different choice of higher differential calculi. 

There is (as a matter of definition of the higher forms) an isomorphism 

fin X --+ (L1X)A~| (9.3) 

with wedge product defined by (~| A (r/| = (A (x(2) ~l) | x0) Y. 

9.4. Ident i fy ing  the  h igher-d imensional  calculus on the  base a lgebra  

PROPOSITION 9.7. Using the isomorphism (9.2), 7-/1X corresponds to t : |  

Proof. Begin with a horizontal 1-form ~C?~IX, and apply the isomorphism (9.2) to 

get ([0]S-1(([_1](2))| We need to show that 7c,(~[0])zc(S-1(([_11(2)))| 
As (ET-/1X we know that ([-1] | (([0])=0, and the required result follows from this. 

For the other direction, take ~]|174 Then applying the left X-coaction to ~?x 

gives xo) | and applying id| to this gives X(1) @71". (~]) 7l"(:1::(2 )) =0. [] 

PROPOSITION 9.8. The usual right H-coaction on L1X restricts to one on K.. Also 

the usual left X-action on L1X restricts to one on K~. 

Proof. For the coaetion, for ~ K ;  we need to show that IIx,0(id|174 To 

do this we need to show the vanishing of IIx,0(zc.| (using the 

fact that 7r is a eoalgebra map). 

For the action, we have 

= : o -1 : o. [] 

COROLLARY 9.9. If :r:X--+H satisfies Condition K, and H has a normalised left 

integral, then, using the isomorphism (9.2), 91B corresponds to (K:| c~ 

LEMMA 9.10. If H has a normalised left integral f ,  then for all a, cEH, 

f(aS(c(1)/)= 
Proof. For all a, bcH  the left integral property gives 

a(1)| d f (a(3)b(2))= a(1)~ 1H /(a(2)b). 
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Applying S -1 to the last factor gives 

a(1)| = a(1) |  

Now multiply the second factor on the right by the first to get 

Finally, putting b=S(c) gives the result. [] 

LEMMA 9.11. If H has a normalised left integral, then there is a projection 

p:LzX-4L1X with image 1C which preserves the right H-coaction (i.e. p is right H- 

colinear, i.e. 0P = (p•id) 0). 

Proof. Take any linear projection P0: L 1X-+LzX with image /(7, and define (using 

square brackets for the H-coaction) 

p(~) = po (~iol) ~ol f (p0 (~[ol) [11 s(4111)). 

First we show that  p is a projection to/C. Since the image ofpo is/C, and K; is coacted on 

by H, it is obvious from the formula that  the image of p is contained in ~.  Now suppose 

that  ~EK, and then 

P(~) ~" 4[0][0] /(~[0][1] S(411])) = ~[0] /(~[1](1)S(~[1](2))) : ~[0] ~'(~[1]) = 4" 

Finally we need to show the H-colinearity of p: 

P(4) [01 @P(4)[1] ~- PO (~[0])[0] [0] @Po (~[0])[0] [1] / (Po (410])[1] S (~[1])) 

= po  (4[o]) Eo3 |  ( Eoj)[ 3 f(po s (411])), 

P(~[O] ) @ 4[ 1] = PO (4[0] [0] ) [oJ @ ~[1 ] / ( P O  (4[o I [o])[ 1] S(~[O] [1])) 

~-- P0 (4[0])[0] @ ~[2] / (P0 (410])[1] S(~[1]))" 

Now Lemma 9.10 gives the equality of these expressions. [] 
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THEOREM 9.12. If 7r:X-+H satisfies Condition K, and H has a normalised left 

integral, then, using the isomorphism (9.3), f~'~B=(~A~| c~ (with the tensor coac- 

tion). 

Proof. We shall prove this by induction on n, starting at f~IB=(1C|162176 which 

has been done in Corollary 9.9. Now assume the statement for n. 

To show that  ~-~nW1sC (~A(n+l)@x)c~ we use ~n+IBc~'~BA~IB, the formula for 

the wedge product given in w and Proposition 9.8. 

To show that  (/C A(n+l) |  r176 HC ~ ' + I B ,  take (~A~) |  E (~A(~+I) | H (summa- 

tion indices omitted for clarity), with ~EK: and ~]E/~ A~. Then 

(~A/7)| = (p(~[0])| A(~[1](2)D (TI| (9.4) 

where we use square brackets for the right X-coaction on L1X and p: LtX--+LIX is the 

projection given in Lemma 9.11. In (9.4) the first factor in the wedge product is in K:| 

and the second is in/~A~| We use the colinearity of p to rewrite (9.4) as 

( AT)| = (9.5) 

and now it is evident that  the first factor is in (K: |176 It is not obvious that  

the second factor is H-invariant. However, we can integrate both sides of the equation 

over H,  and this averages the second factor to be H-invariant, without changing the 

left-hand side. [] 

10, H o m o g e n e o u s  spaces  as f ibrat ions  

In this section we still consider Hopf algebras X and H with bicovariant differential cal- 

culi. We assume that  there exists a differentiable surjective Hopf algebra map 7r: X--+H. 

The differentiable right H-coaction on X is given by o = (id | 7~) A: X--+ X|  H.  

10.1 .  C h e c k i n g  t h e  d e f i n i t i o n  o f  f ibrat ion  

LEMMA 10.1. Suppose that H has a normalised left integral. For any right H-comodule 

and right X-module V such that the right action <: V| is an H-comodute map 

(with the tensor product eoaction), the action <: vc~174 V is a bijective correspon- 

dence. 

Proof. Call the coaction p: V--~V| Take a linear map r H--+X so that  7ror 

id: H--+H. Now define an inverse map ~-: V-+vc~  for <: vc~174 by 

( ( id |  ~) (a[o ] < S(~b(a[1])(1)))| ~'(a[1])(2)- 
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The purpose of the operation ( id@f)Q is to ensure that  the result lies in vc~174 
rather than just V| The reader may verify that  these two maps are inverse by 

direct calculation. The reader familiar with the Hopf-Galois theory may recognise this 

result as a consequence of [20, Theorem I]. [] 

COROLLARY 10.2. If rr:X--+H satisfies Condition K, then, under the isomor- 

phism (9.3), DmB.X corresponds to IcAm@x. 

Proof. Put  V=/CAm| in Lemma 10.1, and use Theorem 9.12. [] 

COROLLARY 10.3. For integer n>>.l, we have that ~ m B A ~ X  corresponds to 

(ICAmA(L1X)An)@X, and then 

~ 0  _ _  --m X -- ~mB. X = KTAm| 

~ B A ~ X  K:A'~A (LiX) A~ ~ n  
~ m X =  ~m+IBAf2n_IX ]CA(m+I)A(L1X)A@_] ) QX, n/> 1. 

Proof. Note that  ~mBADnX=DmB'XADnX and use Corollary 10.2. [] 

LEMMA 10.4. For integers m>~O and n>.l, there is an isomorphism 

ICAmA(L1X)An 1 An ~ ~-Am ~ ( L  X )  

/CA(m+I)A(L1X)A(n_I) = ,~ ~ K : A ~ - ] )  

induced by the map 

[~1 |174174174 ~-~ ( ~ I A . . . A ~ ) |  [~l|174 

for xielC and (i E L1X, and where [. ] denotes equivalence class. 

Proof. First we must show that  the map given in Lemma 10.4 is well defined, and 

to do this we must use the braiding ~ in the definition of wedge product. The space on 

the left-hand side is defined to be the quotient of/C|174 | by a subspace spanned 

by elements of the form x l |174174174174  where at least one of the following 

statements is true: 

(a) (,clC; 
(b) for some l<~i<~m-1, a(xi@x~+l)=x~@*q+l;  

(c) ~(~r~|174 
(d) for some l < . i ~ n - 1 ,  o({,@{i+l)={{@{i+l. 

We need to show that  all these elements are mapped to zero. In cases (a) and (d) we 

have [{1| In case (b) we have x1A...AXm=0. In case (c), 

er(xm@~l) = 4110] | )~'xm E LIX| 
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since the left X-action restricts to K;. It then follows that  we are in case (a). 

The inverse map is 

and showing that  this is well defined is rather easier than for the forward map. [] 

THEOREM 10.5. Suppose that X and H are Hopf algebras with bicovariant dif- 

ferential structure, and that 7c: X-+ H is a surjective differentiable Hopf algebra map. 

Additionally suppose that 

(1) 7r:X--+ H satisfies Condition K (see Definition 9.3); 

(2) H has a normalised left integral. 

Then the inclusion B = X C ~  is a differentiable fibration (see Definition 5.3), where 

o=(id| X - + X |  Here B has the differential structure given by Theorem 9.12. 

. m ~* "~* Proof. From Definition 5.3 we need to show that  the map (~,~. f~ B|  

defined by ~| is invertible for all m~>0. 

We begin by using the fact that  f~mB|174174 Since we have 

~mB=(~Am|176 Lemma 10.1 gives ~rnB|174174 From w 

the right X-action on K, Am| is just multiplication on the second factor, so 

f~mB| B ~ X  '~ ~Am|174 x E~X ~ ~Am| 

and the result follows from Corollary 10.3 and Lemma 10.4. [] 

10.2. Identifying the  fibre of  the  f ibration 

Assume the conditions of Theorem 10.5. 

LEMMA 10.6. LIXAK.CKAL1X. 

Proof. From Corollary 10.2, X. dB C X.  dB. X = X .  (K~ |  = (K~| =dB.X .  Apply- 

ing d to this gives d X A d B C d B A d X .  From this we conclude that  d X A d B . X C d B A d X . X ,  

so from Condition K, dXAICCdBAdX.X.  Multiplying again by X, 

X . d X A K  C X . d B A d X . X  c d B A X . d X . X ,  

so f~IXAK, CdBAf~IX. From Proposition 9.7, dBCK,.X,  so f~IXAECK;Af~IX. Then 

LIXAK, C~: AffiX. Note that  L1XAK, is left-invariant with respect to the left X-eoaetion, 
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and consider ~Ar/cc~ Then, by invariance of [A77 and {, 

~A77 = S((~A77)[_ 1] )(~A77)[o] 

= s(77[_ ~I) (~ A 77Io] ) 

= S(r][-1] ) (3) ~A S -  1 (S(~/[- 11) (2)) S(r / [ -  1]) (1) r/[o] 

= s ( 7 7 i _ l l o ) ) ~ s  - 1  (s(77i- ~](2))) A s(77i-~](3))~i0] 

= S(77[_ 11(1)) >~A S(77[_ 1](2)) 77[o ] 

= S(77[- 1] ) t> ~ A S (r][0][- 1] ) 77[0] [0]. 

As the left X-act ion restricts to KT, this is in IC| 

PROPOSITION 10.7. 

[] 

The map rrr (L1X)| | induces an invertible map 

#: (L1X) f~ ~ (L1H) A'~. 
K~A (L1X)/(  ~-1 ) 

The domain of # is the quotient of (L1X) | by a subspace spanned by ele- Proof. 
ments of the form ~1|174 where at least one of the following s ta tements  is true: 

(a) ~le tC 
(b) For some l <. i< .n -1 ,  O ' ( ~ i @ ~ i + l ) = ( i @ ( i + l  �9 

The codomain of # is the quotient of (L1H) | by a subspace spanned by elements of the 

form rh|174 where the following statement  is true: 

(c) For some l<~i<~n-1, ~(77i| 

Case (a) maps to zero under re, ~ by definition of tO. Case (b) maps to ease (c) as rr is a 

Hopf algebra map. Thus # is well defined. 

Given the hypothesis, it is automatic  that  # is onto. 

To show that  # is one-to-one, it is sufficient to show that  the subspace quotienting 

(L1X) | in the domain contains all elements of the form {1 | where the following 

s ta tement  is true: 

(d) For some l<<.i<<.n, (iEIC. 

This follows from repeated application of Lemma 10.6. [] 

11. Example:  The  n o n c o m m u t a t i v e  H o p f  

f ibration wi th  a bicovariant calculus 

In this section we return to the algebras X,  H and B discussed in w but now we 

consider a (minimal) bicovariant differential calculus on .A(SLq(2)). In view of the results 

of w167 9 and 10 our task will be to construct a suitable calculus on H so that  the map 

rr: X--+H is differentiable and then to check that  rr satisfies Condition K in Definition 9.3. 
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11.1, A 4D b i c o v a r i a n t  ca lcu lus  on  .A . (SLq(2) )  

This differential calculus on X = . A ( S L q ( 2 ) )  was introduced by Woronowicz in [24] and is 

generated by four left-invariant 1-forms {w z, 0,21 0,+, 0,-}. The differentials of the gener- 

ators are given by 

d a -  q _ q - 1  _ q - 2  q-1 
a 0 , 1  --  q - 2 3 w +  + - -  a W  2, 

q + l  q + l  

q - 2  
d /3 = - ~  q 13 0 ,1-  q - 2 a 0, - q~-~ 3 0, 2 , 

d7 = q _ q - 1  _ q - 2  q-X (11.1) 
q + l  ~0,1-  q-250,+ + q - ~  ~0,2' 

q-2 50, 2. 
q + l  

q d h =  - ~ ( S w l - q - 2 7 w  - - -  

We have the commutation relations 

~2 a = qaw 2 - (q-q-1) /3w++q(q-q-1)20(0 ,1~ 

0, -a  = Ct0,- -- (q2 -- 1)/30,1, 

0,23 = q -  130,2 _ ( q _ q -  1 ) OL0,-, 

0,- 3= 3 0,-, 

0,+3 = 30,+ - (q2 _ 1) a0,1, 
0,11~ = q/3w 1 , 

and these relations with the replacements a~->7 and/%->5. 

(11.2) 

11.2. T h e  d i f f e r e n t i a b i l i t y  o f  rr: X--+ H 

We use the Hopf algebra map 1r from ~8.1, and assume that  the map 7r: X--+H is differ- 

entiable, i.e. that  it extends to a map zr, of differential graded algebras. Applying 7r, to 

the expression for d/3 in (11.1) gives zTr,(0,-)=0, and since z is invertible we deduce that  

zr, (w-)=0.  Likewise the expression for d7 in (11.1) gives 7r, (0,+)= 0. Now the sixth equa- 

tion in (11.2) gives (q2_l)zTr,(0,1)=0, so if q r  we get 7c,(0,1)=0. Then the equations 

for da and d6 in (11.1) give 

-1 q-2 
d z =  q z T r . ( J )  and - z - l . d z . z  - 1 -  z - l i t . (0 ,2) .  

q + l  q + l  

From this we get 

7r.(0, 2 ) = q ( q + l ) z - l . d z  and d z . z  - l = q - l z - l . d z .  

Just as in the case of the 3D calculus, we must have a noncommutative calculus for the 

commutative algebra H. Note that ]C, the left-invariant forms which are in the kernel 

of 7r., has basis {0,1 0,+, 0,-}. 
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11.3. Verifying Condition K 

PROPOSITION 11.1. All of a~-, aJ + and aJ 1 are in dB.X. 

Proof. Begin by calculating 

d/3(2)- S -  1 (/3(1)) = d3.5- qdS.;3 
q-2 

- q+lq 3~15-q-2c~-~-q~f ~25 
q2 q-1 

q+ l  5wl/3+q-1"/W-/3+ q+ l  5W2/3 

q-2 
= --q-2aSw-- /3(q-15w2--(q--q-1).,/w- ) 

q+ l  

+q-17/3w-+ ~ l  d(q-1/3w2--(q--q-1)aw- ) 

=--q-2(a~--q73)w- q-2(q 2-1)  ((~a_q-1/3@w- 
q+ l  

= --q-lw- ' 

and also 

d'y(2)'S -1 ('7(1)) = dT" a-q-Ida'7 
= q-1 q_q-l_q-2 ~ '~ l a - -q  -2~a;+a _ _  

q + l  + q+ l  "Twza 

_q-1 q_q-1 _q-2 -~1 
q+ l  o~wl")'+ q-3/3w+7-- 0~w27 

= -q-2~a~++~17(qa~2-(q-q-1)/3a~++q(q-q-1)2a~l ) 

q-2 
+ q-3/3"/a"+ -- ~ a (q7~'2 --(q--q-1)Sw++q(q--q-1)2",/w I ) 

= --q-25aw+-- ~ 1  (q--q-X)~/3w+ 

q-2 
+q-a/37w+ + q ~ -  (q--q-I) a5w+ 

= --q-2w+- t q-3(q 2-1)  a;+ 
q+ l  

= _q-3~+. 
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Now we have 

d(oLfl) (2)" S-1((~ (1)) • dot (2)' S - 1  (0r g(fl) - q-10~(2)cd-S-1 (ot(1)) 

=Tw 3 - -q - law-6  

= --q-l(aS--qT/3) w- 

= - - q - l w -  ' 

d(')'~3) (2) �9 S -  1(('~/~) (1)) = d'~(2) �9 S -  1(-y(1) ) g(fl) - q -  1"~(2) w - S -  1 (3'(1)) 

= q - 2 a w - 7 - q - l ~ / w - a  

= q - 2 a  (~fW- _ (q2 _ 1)6wl) _ q -  12/(a w-  _ (q2 _ 1)]gwl) 

= q - l ( q 2 - 1 ) 7 ~ w t - q - 2 ( q 2  1)adw I 

= (q 1 

= (q -2 - -1 )wl ,  

d ( (~ )  (2)' S -  1 ((~'~) (1)) ~ dd(~). S -  1 (5(1)) e (7) - q-35(2) w+S- 1 (5(1)) 

=q-a~w+7-q-aSw+a 

= -q -a(Sa-q-1 /37)  w* 

= --q-3w+" 

This  proves the  claim since, for all bEB, A b E X |  [] 
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