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1. I n t r o d u c t i o n  

Exponential mixing is an important statistical property in dynamics. It is often difficult 

to prove this non-linear property for a non-uniformly hyperbolic system. See Benedicks- 

Young [4], [5] and the references therein for the case of real H~non maps. Here we will 

study a large class of polynomial automorphisms in C k. We note that exponential decay 

of correlations has been proved for polynomial-like maps and meromorphic maps in the 

case of large topological degree, which is the opposite of the invertible case (see [14], [8J 

and I9]). 
Given a polynomial automorphism f of C k, we will extend it to a birational map 

of pk. We say that f is a regular automoTThism in the sense of Sibony if the indeterminacy 

sets I• of f •  (i.e. the sets of points at infinity where the birational maps f •  are not 

defined) satisfy /+VII_=~.  We recall here some properties of regular automorphisms 

(see [2], [1] and [13] for dimension 2 and [20] for k~>2). Note that when k=2, the regular 

automorphisms are finite compositions of generalized H~non maps (see Friedland and 

Milnor [15]). As was shown in [15], these are the dynamically interesting polynomial 

automorphisms of C 2. 

The indeterminacy sets I• are contained in the hyperplane at infinity Lo~. When 

f is regular, there exists an integer s such that dimI+=k- l - s  and dimI_=s-1. We 

have f(L~\I+)=I and f-l(L~\I_)=I+. Moreover, I_ is attractive for f ,  and /+ is 

attractive for f -1 .  Let IC+ (resp. E_) denote the filled Julia set of f (resp. of f - l ) ,  i.e. 

the set of points zEC  k such that the orbit (f~(z))~cN (resp. (f- '~(Z))neN) is bounded 

in C k. Then K• are closed in C k and satisfy ~•177 The open set p k \ f : +  (resp. 

pk \ /~_ )  is the immediate basin of I_ for f (resp. I+ for f - l ) .  If d+ and d_ are the 

algebraic degrees of f and f - 1  respectively, then d s+--dk-s>l._ In particular, we have 

d+=d_ when k=2s. 
By T+, we denote the Green currents of bidegree (1, 1) associated to f•  (see 
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also w These are currents with total mass 1 which have continuous local potentials 

in p k \ I •  They satisfy the transformation formulas f*(T+)=d+T+ and f . (T_)=d_T_.  

In C k we have T• =ddCG • with G • (z):=lim~_~or d~_ n max{log Ilfn(z)II, 0}. Recall that  

d c := (i/27r) ( ~ -  c9) and dd c = (i/Tr) 00. Tile Green functions G • are continuous plurisub- 

harmonic and they give the rate of escape to infinity. 

Sibony constructed an invariant probability measure as the exterior product of pos- 

itive closed (1, 1)-currents: 

# = T~ ATk -s.  

The current T+ (resp. T k-s) is supported in the boundary of/~+ (resp. /~_); it is the 

Green current of bidegree (s, s) (resp. ( k - s ,  k - s ) )  associated to f (resp. to f - l ) .  The 

measure # is supported in the boundary of the compact set K:=K:+ A K_. 

It was recently proved in [ll] and [18] that # is mixing. This generalizes results 

of Bedford Smillie [2] and Sibony [20]. The proofs follow the same approach and use 

the property that  T+ and T k s are extremal currents. In this paper, we use another 

method to show that  # is mixing and that the speed of mixing is exponential when 

k=2s. Our strategy is to consider some natural regular automorphisms in C 2k or C 4k in 

order to reduce the problem to a linear one. We will obtain the desired estimates using 

the solution of the 0ch-equation given by a kernel due to Bost, Gillet and Soul~ [16], [6]. 

Let ~ and ~) be real-valued continuous functions on C k. Define the correlation of 

order n between ~ and �9 by 

Recall that  # is mixing if I~(qz, zP) tends to 0 as n tends to infinity for all p and ~. 

MAIN THEOREM. Let f and # be as above. Assume that k=2s. Then, # is expo- 

nentially mixing. More precisely, for all o. and ~, 0<(x ,~<2,  there exists a constant 

c>O depending on f ,  a and ~ such that 

II-(V, V')I ~< cd2 ~"3/s ]l~llc ~ Italic, 

for all n>~O and all real-valued functions p of class C ~ and ~ of class C ~ in C k. 

Of course, this result holds for polynomial automorphisms of positive entropy in C 2, 

in particular, for HSnon maps. We can apply it for real H~non maps of degree d which 

admit an invariant probability measure of entropy log d, in which case that  measure 

coincides with # (see [3]). 

In [1], Bedford, Lyubich and Smillie proved for complex H~non maps that  the equi- 

librium measure is Bernoulli. This is the strongest mixing in the sense of measures. 
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However, it does not imply the decay of correlations in our sense. Observe also that  

we cannot have II~(qa, r  II~l/~ since, when p is not constant g-almost 

everywhere, p of~ does not converge in L 1 (p) to f p d#. This last fact is a consequence 

of the fact that  the p-measure of the sets {z:pof'~(z)<c} and {z:~2of~(z)>c '} are in- 

dependent of n, because p is invariant. 

The precise outline of the paper is as follows. In w167 2 and 3, we give some proper- 

ties of the Green currents and the equilibrium measure. The method of ddC-resolution 

developed in [81, [9], I10] and [11] will be applied to establish the necessary estimates 

(Propositions 2.1 and 3.1). We then deduce in w the mixing and the speed of mixing. 

We first consider the case where a = ~ = 2 ,  and then we obtain the general case using the 

theory of interpolation between the Banach spaces C o and C 2. 

2. C o n v e r g e n c e  t o w a r d  t h e  G r e e n  c u r r e n t  

Let us recall some properties of currents on pk  that  will be used later on. A current of 
bidegree (p, q) is a differential (p, q)-form but the coefficients are distributions. A smooth 

form �9 of bidegree (q, q) is weakly positive if its restriction to every projective subspace 

of dimension q is a positive volume form. A current S of bidegree (p, p) is positive if 

(S, q5})0 for every weakly positive test ( k - p ,  k -p ) - fo rm  (P. In particular, it is of order 

zero. 

Let co denote the Fubini-Study form on p k  normalized so that  f c o k = l .  The mass of 

a positive closed (p,p)-current S is given by IISII =fSAco k-p. Since pk  is homogeneous, 

every positive closed current S on pk  can be regularized on every neighbourhood U of 

supp(S).  This allows us to construct smooth positive closed currents supported in U and 

strictly positive, i.e. ~>r on supp(S).  If T is a positive closed (1, 1)-current with local 

continuous potentials in a neighbourhood of U, then the positive closed current TmAS 
is well defined and depends continuously on S, see, e.g., [7] and [20]. More precisely, 

because of the cohomology of pk, if IITl]=c, we can write T=cco+ddCu, where u is a 

function continuous on U, and we have TA S := cco A S + dd r (uS). 
Now, consider a regular automorphism f on C k as in w We do not assume for the 

moment that  k=2s. Fix neighbourhoods Ui of ~2+ and V/of /~  such that  f-l(Ui)~Ui, 
UI~U2, f(V~)~Vi, VI| and U2AV2~C k. This is possible since I_ has as basin of 

attraction p k \ ~ + ,  and similarly for f - 1  and I+. Observe that  ~2+N/(:_ cUlnV1. 
Let ~t be a real ( k - s + 1 ,  k - s + l ) - c u r r e n t  with support in V1. Assume that there ex- 

ists a positive closed (k - s + 1, k - s + 1)-current 121 supported in V1 such that  - fY  ~< f~ ~< fY. 

Define the norm II•ll. of ~2 as 

[]f~ll. := min{[]fY[[ : fYas above}, 
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where II~t'll:=(f~', aa ~-1) is the mass of ~' .  

Keeping the above notation, the main result of this section is the following proposi- 

tion: 

PROPOSITION 2.1. Let R be a positive closed (s,s)-current of mass 1 supported 

in U1 and smooth on C k. Let �9 be a real-valued ( k - s , k - s ) - f o r m  of class C 2 with 

compact support in Vl n C  k. Assume that d d C ~ 0  in (72. Then, there exist constants 

c>0  independent of R and ~, and cR>0 independent of �9 such that 

and 

( d + ~ ( f ~ ) * ( R ) -  T+, ~,> ~ cd+ '~ IlddCq)ll. 

](d:~ ' ( f~)*(R)-T~,  c~}l ~ eRd+ n ]]ddr 

- - 8 ~  n * 8 for every n>O. In particular, d+ ( f  ) (R)--+T ~_ as n--+oc. 

The current (f~)*(R) is well defined since f - n  is holomorphic in U~. We have, 

because of the functional equation satisfied by T_, 

-~,  ,~.  ~ 7~ * R  T ~ (d+ ( f  ) ( R ) - T ~ , ~ ) = d + ~ ( ( f  ) ( - +), }=d+*'~(R-T+,( fn) .~} .  (1) 

Since the currents R and T 2 have the same mass 1, they are cohomologous. On pk, R-T.~ 

is ddC-exact. Hence, the last term in (1) does not change if we subtract a ddC-closed form 

from ( f~) .~ .  We will apply the following lemma to ddr  

LEMMA 2.2. Let ~ be a real-valued continuous form of bidegree ( k - s + l , k - s +  l) 

supported in V1 such that 9 ~ 0  on U2 and ]IQ]],~I. Assume that ~ is dd%exact. Then 

there exist c>0  independent of ~ and a real-valued continuous ( k - s ,  k - s ) -form �9 such 

that d d r  II~ll~c, (P<~O on U~ and q ~ ) - c ~  'k-~ on Pk\V2. 

Proof. By Hodge theory [17], we have 

H k ' k ( P k •  E HP'P(Pk'C)|  
p + p ~  k 

Hence, if A is the diagonal of pk • p k  there exists a smooth real-valued (k, k)-form a(x, y) 

on pk •  cohomologous to [A], with d ~ a = d v a = 0 .  Since pk •  is homogeneous, 

following [6, Proposition 6.2.3] (see also [16], [10] and [11]), one can construct a negative 

( k - l , k - 1 ) - f o r m  K(x , y )  on p k •  smooth outside A, such that d d ~ K = [ A ] - a  and 

I K ( x , y ) l ~ - l o g  Ix-y[ Ix-yl  2-2k near 5 .  Here Ix-yl  denotes the distance between x 

and y. 

Define 

�9 '(x) := / ~:(x, y) A~(.y). 
/ i  

ay 
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From the bound of the singularities of K,  one can easily check that ~ '  is continuous and 

llq2'll~<c ', ~'~<c'co k-* on U~, ~ ' ) - c ' c o  k-* on Pk\V2, where c '>0  is independent of ~. 

Define ~ : = ~ ' - c ' c o  k-s. We obtain II~H~<2c', ~ < 0  on U1 and ~>~-2c'w ~-~ on Pk\V2. 
We only have to verify that  ddCv~'=~. 

Since Q is ddC-exact and d~a=dvc~=0 , we have 

ddC~'(x) := fu (ddc)xK(x'y)Aft(y)= fv ddCK(x'y)Af~(Y) 

Hence, ddC~ =ddC~ ' = f~. [] 

Proof of Proposition 2.1. We can assume that  IlddCq)[I.=l. The constants c and ci 
below are independent of ~5 and R. Define f~:=ddCdp. Then there exists a positive closed 

current [2' of mass 1 supported in V1 such that  -fY~<f~<gt'. Define ft~:=ddC(f'~).gP= 
/ . _ _  l / ,  / (fn),Ft and Ftn.--(f ) , ~ .  These currents have supports in ~:1 since fn(V1)eV1. We 

also have - o '  .<o .<o' and ~ ) 0  on [72 since f-'~(U2)cU2 A simple calculation on ~ n - ~ . ~ n  - ~ n  

cohomology gives Ilffnll=d(+S-l>ll~'ll=d(+S 1>. Lemma 2.2 implies the existence of ~n 

cohomologous to ( f ~ ) , ~  such that ~,~<0 on U1, ~P~>-cd(+~-*)'~co k-~ on Pk\V2 and 
. ( s - - 1 ) n  IIVnH~ca+ . In particular, ~n~<O on supp(R). Therefore, we deduce from (1) that 

{d+Sn( f~)*( R) -  T+, ~ } = d+~'~ {R- T~+, ~ , )  ~< -d:S'~ {T+, ~ ) .  (2) 

We have to bound -(T+, ~ ) .  Since T+ has local continuous potentials in P k \ L ,  

we can write T+=w+ddCu with u~<0 and u continuous on p k \ / + .  One has 

I(T:, % ) ]  = I (~AT:  -~ +ddC(uT:- l ) ,  ~n)l 

~< [(T+ -1, coA~)l  + I(uT~ -~, ddCO~) I (3) 
' (uT: ,f~n). 

Since ~ "  has support in r71 where u is bounded, the second term on the last line of (3) is 
s - 1  t dominated by c, {T+ , ~,~). The integral (T+ '-1, ~ ' )  is computed replacing each element 

, by the associated cohomology class; it is equal to IIFY II- Hence, ~-~ 3(~-~)n 

For the first term on the last line of (3), we write T_~-~=coAT~-2+ddr 
(Z$ , wA k~ n)l ~c2dl s-1)n. Using expansions as in (3) and an induction argument, we get I s-1 

At the last step of the induction, we use the inequality ]1~ I] ~<cd(~-l)n- Hence, the first 

part of Proposition 2.1 follows. 

For the second part, it is sufficient to prove that  I(R, ~}1  <-c'R d(~-~)n with c~ inde- 

pendent of ep. This follows directly from the smoothness of R on C k and the properties 
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that  II nll   + -l(s-1)n and -cd(S-1)nw~ ~ .  ~0  on the neighbourhood UI\V2 of the sin- 

gularities of R. 

Now, we show that  d-j~(f'~)*(R)-~T: on C k. Consider a real-valued smooth test 

( k - s ,  k - s ) - f o r m  �9 with compact support in C k. We want to prove that 

(d-~n(f'*)*( T~)- Ts, ~) ---+0. 

In order to apply the second part of the proposition, we show that  it is possible to suppose 

that  ddC(I)>~0 in U2. 

Observe that  pk \ I+  is a union of compact algebraic sets of dimension s since dim I+ = 

k - l - s .  Hence, we can construct a positive closed ( k - s , k - s ) - f o r m  0 with compact 
m * S _ _  8 m  8 support in p k \ i +  which is strictly positive on supp(O). Since ( f )  (T+)-d+ T~ and 

{d:~(f '~)*(R)-T+, a~) = {d+ ~('~-m) ( fn- '~)*(R)-T~,  d+~"(fm).~}, 

replacing 4) and ~ by d+"~(fm).rP and ( f~) .@,  m large enough, one can assume that  

supp (O) c V1. 

Consider a smooth function X with compact support in C k which is strictly plurisub- 

harmonic on a neighbourhood of U2AV2. Write oP=(42+Ax@)-AxO with A > 0  large 

enough, so that ddr and ddr are positive on [/2. Hence, it is sufficient 

to consider the case where ddr  on U2. The second part of the proposition implies 

that  {d-~r~(f~)*(R)-T+, ~}--~0. [] 

3. C o n v e r g e n c e  t o w a r d  t h e  G r e e n  m e a s u r e  

In this section, we consider the "diagonal" mapping F(z, w):= ( f (z) ,  f - 1  (w)). The main 

result here is Proposition 3.1, which will be obtained by applying Proposition 2.1 to F.  

PROPOSITION 3.1. Let f be as above with k=2s. Let ~a be a C2-function on pk 

which is plurisubharmonic on U2AV2. Let R (resp. S) be a positive closed (s, s)-current 

of mass 1 with support in Ut (resp. in V1) and smooth on C k. Then, there exist constants 

c>0  independent of 4, R and S, and cR.5>O independent of 4, such that 

{d+2~n(f')*(R)A(f~). ( S ) - # ,  p) <~ cd+ n H41lc 2 

and 
I(d~ -u~n(fn)*(R) A ( f ' ) .  ( S ) - p ,  ~}l ~ cR,sd~ n ll411c2 

for every n)O. In particular, d+2~(fn)*(R)A(fn).(S)--+# as n-+oc. 

We will use z, w and (z, w) for the canonical coordinates of complex spaces C k and 

Ck• C k. Consider also the canonical inclusions of C k and Ckx  C k in pk and p2k. We 
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write [z:t], [w: t] or [z: w: t] for the homogeneous coordinates of projective spaces. The 

hyperplanes at infinity are defined by t=0.  If g: C k-+Ck is a polynomial antomorphism, 

we write gh (resp. g~ -1) for the homogeneous part of maximal degree of 9 (resp. of g - i ) .  

They are self-maps of C k, not invertible in general. In the sequel, we always assume that  

k=2s. 

LEMMA 3.2. Let F be the automorphism of Ckx C k defined by 

F(z, w):= ( f  (z), f - l  (w) ). 

Then F is regular. The indeterminacy sets I~ of F • are defined by 

I F : - - { [ z : w : 0 1 : f ~ l ( z ) = 0 , f f f l ( w ) = 0 ) .  

Let A : = { ( z , w ) : z = w }  be the diagonal in C k x C  k. Then the sets I~ do not intersect A, 
and F(/X) n { t = 0 )  Cl_ y. 

Proof. Since k=2s,  we have d+=d_ and F~l(z ,w)=(f~Z(z) , f~ l (w)) .  It follows 

that 

IF={[Z:w:O]: / 7 : l ( Z ,  W ) = 0 }  ~ -{ [Z :W:0]  : fhil(z)=f~hl(w)=O}. 

We also have 

:= o]: (z) =0} 

and, since f is regular, 

{zECk:  fh(z) = f h l ( z ) = 0 )  = {0). 

This implies that  IF+NI F_ = ~ .  Hence, F is regular. We also have 

I ~ A =  {[z:z:0]:  fh(z) = f f l ( z )  =0) =2J. [] 

LEMMA 3.3. With the notation of Lemma 3.2, the Green current of bidegree (2s, 2s) 

of F is equal to T~| 

Pro@ Let R and S be as in Proposition 3.1. Replacing R and S by djSf*(R) and 

d2Sf.(S), we get supp(R)N{t=O}C[+ and supp(S)N{t=O}CI_. 
Consider the current R|  in Ck• C k and in p2k. Lemma 3.2 implies that  

supp(R| N{t = 0} C I f .  

Since dimI+F=2s-1 ,  the trivial extension of R|  to p2k (which we also denote by 

R|  is a positive closed current [19], [21]. One can check that  the mass of R|  is 

equal to 1. Proposition 2.l applied to F implies that  d$2~(F'~)*(R| converge to the 

Green current of bidegree (2s, 2s) of F.  On the other hand, we have 

d+2~'~(F'~)*(R| = df2~'~(f~)*(R)| -+ T+eT ~_ 

in C k x C k. Hence, T~| s is the Green current of bidegree (2s, 2s) of F.  [] 
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Proof of Proposition 3.1. We can assume that  ~ has compact support in C k and 

that  II~llc2 =1. As in Lemma 3.3, we can assume that  the current R| in p2k satisfies 

supp(R| {t=0} cx+ v 
Define ~(z, w) :=~(z) .  Since T+ are invariant and have continuous potentials away 

from I• we can write 

(d72~(f~)*(R)A(fn).(S)-#, ~} = (d+2~(f~)*(R)|174 ~[A]). 

Using a regularization of [A], one may find a smooth current 6) of mass 1 supported in 

a small neighbourhood W of 2x, with WAI+F=~ (see Lemma 3.2), such that  

l<d+2sn (fn)*(R) | (fn). (S)-T:| ~[A]} 

-(d22~(f'~)*(R)~(fn).(S)-T+| ~O)] ~< d :  ~. 

The current O depends on n. 

We have to estimate 

(d: 2~'~ (f~)*(R)| (f'~). (5;) -T~_| ~0). 

Fix an integer m > 0 large enough. Write 

(d+2S~(f~)*(R)|174 ~0} 
= {d+2S~(F'~)*(R|174 ~0) 
= (d+ 2s(n-m) (Fn-m)*(R| -TS,| d+2~m(vm). (~0)) 

=: <d+ 2s('~-2m) (F,~-2m)*(T) -T+| ~), 

where T:=d+2~'~(F")*(R| and ~ :=d+2~m(Fm). (~O) .  

Hence, T has support in a small neighbourhood b/of  the filled Julia set/C+F=/C+ x/C_ 

of F,  and �9 is a smooth form with support in a small neighbourhood ]2 of/cF=K;_ x ~+ .  

Moreover, since m is large and ~ is plurisubharmonic on U2AV2, we have ddC~>~0 in 

a neighbourhood L/'=DL/ of ~+F. Putt ing ~(z,w):=w(z), we have - ~ < d d C ~ < ~  since 

[1~11c2=1. It follows that  

-d:2Sm(Fm). ('~AO) ~< ddCO <~ dC2~m(Fm). (~Ae) .  

The positive closed current d;2Sm(Fm).(~AO) has mass 1 since ~ is cohomologous 

to [A]. The choice of W, L/, F, b/~ and m does not depend on ~ and n. Lemma 3.3 and 

Proposition 2.1 applied to F,  T and �9 imply that  

(d+2s(n- 2m) ( Fn- 2m)*(T)- T+ | 'I,) <~ c'd+ n 
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and 

](d22~(~-2m)(F'~-2m)*(T)-T:| ~)1 ~< cwd+ ~. 

The desired inequalities of the proposition follow. Since every smooth test function 

on pk  can be written as a difference of smooth functions plurisubharmonic on U2nV2, 
these inequalities imply that  d+ 2s~ ( f~ ). (R) A ( f~ ) .  (S) -+ it. [] 

COROLLARY 3.4. The Green measure of F is equal to #9#. 

Proof. Let R and S be as in Proposition 3.1 and such that  supp(R| F 
and supp(S| Proposition 3.1 applied to F implies that  the Green mea- 

sure of F is equal to 

lim d+4S~(Fn)*(R|174 
n - ~ O O  

= lim d+4~n[(f~)*(R)|174 

= lira - - 2 s n  n * n [d+ ( f )  (R)A(f) . (S)] |  

=#| [] 

4. Speed of mixing 

In this section, we give the proof of the main theorem. We first consider the case of 

smooth observables. Assume that  a = / 3 = 2  and that ~ and y) are C2-observables. Fix 

a bounded domain D in C k containing K: :=~+N~_.  Observe that  ~ and ~b can be 

written as differences of smooth functions strictly plurisubharmonic on a neighbourhood 

of D. Hence, we can assume that  ddC~>w and ddCtb~w on D, and that  I[~]1c2 ~ M  and 

I1r ~ M  for some fixed constant M > 0 .  The constants c, A and c' below do not depend 

on ~ and ~b. 

It is sufficient to prove the theorem for n even. Since 

(p, (~; of2,~)r = (/z, (~;of'~)(r o f -~) )  

we have to prove that  

1(/~, (~of~) (~bof -~) ) -  (p, ~)(P, ~b)l ~ cd: ~. (4) 

Observe, since # is invariant, that  the left-hand side of (4) does not change if we add a 

constant to ~ and/or  r Consequently, it suffices to show that  there is a constant A such 

that  

(#, (~of~+A)(r (/~, ~ + A ) ( # ,  ~,+A} ~< cd+ n (5) 
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and 

(#, (~of'~-A)(-~pof-'~+ A))-  (p, c;-A)(p, - r  A) <~ cd: n. (6) 

We choose A > 0  las'ge enough so that  r162 and r  

(qo(z)-A)(-r are plurisubharmonic on D x D. This allows us to apply Propo- 

sition 3.1 to the automorphism F and to the test functions r and r We will check (5). 

The estimate (6) can be proved in the same way. 

Fix a sufficiently large integer m. Define TI:=T~| ~ and T2:=d;2Sm(Fm).[A]. 
Since F*(:I~)=d2+ST1, and T~: have continuous potentials in C k, we get the identities 

(#, (~of~+A)(r = (T.~ AT_ ~, (pof~+A)(r 

= (TIA[A], r n) 

= (dg 4s'~+2~'r (F  2,~-m)* (Tl)A [A], r oF" ) 

= <d< -4~'~+~'~ (Fn-m)  * (T1) A (F~) .  [A], r 

: :  (d+4Sn+4Sm(Fn-m)*(T1)i(Fn-m).T2, r 

By Lemma 3.2, T2 has support in a small neighbouhood 12 of K :  F. 

Using a regularization of currents, we may find smooth currents T~ and T~ of mass 1 

with support in small neighbourhoods /// of t :  F and ]2 of E F, respectively, so that  

<d+ 4sn+4sm (FT~-'~)*(T1) A (F'~-m),T2, O} 

_ (d~4~'~+4Sm(F~-m)*(T~)A(F'~-r~).T~, r <. d+ ~. 

The currents T~ and T~ depend on n. The choice of m, /4 and ]2 depends only on D 

and f with LtAF~DxD. 
Since (#, ~+A}(#, •+A}= (# |  0}, we only have to check that  

(d+4sn+4sm(Fn-m).(T~)A( F . . . .  ) . T ~ - # |  r ~< c'd+ n. 

This inequality follows directly from Corollary 3.4 and Proposition 3.1 applied to F 

and r This concludes the proof of the theorem in the case of C2-observables. 

We complete the proof of the main theorem by passing to test functions of H61der 

class. For this we use a special case of an argument obtained in collaboration with Nessim 

Sibony, see also Dolgopyat [12, p. 358]. Fix a test function ~ of class C 2. Observe that  

the correlations In ( . ,  ~) define continuous linear forms on the space C o of continuous 

functions and that  we have 

IIn< , c ll ll  II ilc  for ~ continuous, 
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where c>0  is a constant independent of n. 

On the other hand, we have proved that  

I !n(~,~) l  <~cdSV=[l~llc=llr for ~ of class C 2. 

The theory of interpolation between the Banach spaces C o and C 2 [22, p. 201] implies 

that  

I_/n(~,~)l ~c'd+nC~/4llc2llc~ll@llc2 for ~ of class C a, 

with # >  0 independent of n. 

Now fix a function 9 of class C a. Applying the same argument to I~(~ , .  ), we have 

I! --na3/8 IIn(~,~)l~C d+ [I~IICc~II~DllCZ for ~' of class C z. 

This completes the proof. [] 

Remark 4.1. In order to have II~(~, ~)]<d -~/2, it suffices that  r and r are plurisub- 

harmonic on D • D. This holds in particular for ~ = - l o g ( - ~  I) and r 1 6 2  with 

~/ and 9 / strictly negative and strictly plurisubharmonic on a neighbourhood of D. In- 

deed, one checks easily that  iO~AO~<~iOOy) and iO~'AOw/<~iO0~, and one can bound 

0~Ac59 by iO~AO~+iOCAO~ using the Cauchy-Schwarz inequality. Such functions 

and r can be nowhere continuous. 
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