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1. Introduction

In his thesis [12] Ron Livné constructed an interesting family of lattices in PU(1, 2). To
do this, Livné used techniques from algebraic geometry; see also Hirzebruch [9, §3.2].
Livné’s lattices are contained in Mostow’s list [15] of monodromy groups of hypergeo-
metric functions; see Deligne and Mostow [3, Chapter 16]. An alternative construction
of these monodromy groups was given by Thurston [21] who described them as the mod-
ular group of certain Euclidean cone metrics on the sphere; see also Weber [22]. Livné’s
groups have many remarkable properties. For example, Kapovich has shown [11] that
certain (well-chosen) subgroups of Livné’s groups are finitely generated but infinitely
presented. Also, Livné’s groups give equality in the version of Jørgensen’s inequality for
groups with boundary elliptic elements; see [10, §5]. This indicates that the quotient
of complex hyperbolic 2-space by Livné’s groups are orbifolds of small volume; see [18],
where Sauter computes volumes of these orbifolds.

In this paper we use Thurston’s method to give a geometrical construction of Livné’s
lattices. Namely, we consider Euclidean cone metrics on the sphere with five cone points
and certain prescribed cone angles (§2). These cone angles correspond to Mostow’s ball
5-tuples. We may cut our sphere along a piecewise linear path running through the cone
points to obtain a Euclidean polygon with a certain set of side identifications. The key
observation of Thurston is that the Euclidean area of such a polygon (that is, the area of
the sphere with the cone metric) gives rise to a Hermitian form of signature (1, 2). Thus
such a polygon corresponds to a positive vector in C1,2. Also, any automorphism of the
cone metric (or the polygon) gives rise to a unitary matrix in U(1, 2). Each similarity
class of cone metrics corresponds to a positive point in P(C1,2), that is, a point in
complex hyperbolic space. Automorphisms of similarity classes correspond to complex
hyperbolic isometries in PU(1, 2). We construct two kinds of automorphism. The first
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arises from changing the piecewise linear cut to obtain different polygons corresponding
to the same cone metric. This is done by interchanging two cone points with the same
cone angle. Such an automorphism could be realised by performing a Dehn twist along
a simple closed curve through our two cone points and which does not separate the
other three cone points. The second automorphism is an example of one of Thurston’s
butterfly moves. As described in [21], the moduli space of cone metrics does not form a
complete subset of complex hyperbolic space. To get around this, Thurston uses formal
automorphisms, which he calls butterfly moves, to extend the moduli space to points
corresponding to non-simple polygons which are not fundamental polygons for a cone
metric. We consider the group generated by these automorphisms which, a priori, are
only subgroups of Livné’s groups.

We go on to consider how the automorphisms described above act on complex hyper-
bolic space. In particular, we construct a complex hyperbolic polyhedron D (§3) and use
Poincaré’s polyhedron theorem to show that our automorphisms generate a lattice with
fundamental domain D (§4). Poincaré’s theorem also gives a presentation for the groups,
and we show that this presentation is the same as that given by Livné in [12, Lemma 3,
p. 108]. Thus the groups are isomorphic, and so, by Mostow rigidity, they are conjugate.
As is well known, there are no totally geodesic real hypersurfaces in complex hyperbolic
space, and so, when constructing polyhedra, one has to make a choice of hypersurfaces
containing the sides. Our polyhedron D has eight sides, each of which is contained in a
bisector. Thus it is remarkably simple (compare [5], [7] and [20]).

In the final sections we give further links between Livné’s groups and other interest-
ing groups, namely the Eisenstein–Picard modular group [7], Mostow groups [13], [5] and
triangle groups [19], [17]. In particular, Livné groups have (non-faithful) triangle groups
as normal subgroups. These are either a lattice (compare [4]) or are geometrically infinite
(Corollary 7.4). Moreover, these triangle groups give a counterexample to a conjecture
of Schwartz [19] (see Proposition 7.5 in our paper). The corresponding quotient groups
are faithful triangle groups.

There are two major aspects of this paper that are new. First, Thurston’s construc-
tion of complex hyperbolic lattices has not previously been combined with Poincaré’s
polyhedron theorem in a completely explicit way, although this is what is going on be-
hind the scenes in Thurston’s work. It should be possible to extend the construction of
this paper to many, possibly to all, the groups on the Mostow–Thurston list. Secondly,
no fundamental domain for the Livné groups was known previously, and hence no explicit
analysis of the geometry of their action on complex hyperbolic space was possible. This
is important for two reasons. First, they are a particularly interesting family of lattices
and, secondly, they provide a family of lattices with fairly simple explicit fundamental
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polyhedra. Since there are very few examples of complex hyperbolic lattices known,
and even fewer that have been analysed geometrically, this will aid the formulation of
general results about complex hyperbolic lattices. Furthermore, calculations in complex
hyperbolic geometry have a tendency to become extremely complicated, which means
that explicit constructions are rather difficult to obtain. Thus it is quite remarkable that
the polyhedra we construct are so simple.

Part of the novelty of this paper is to provide new proofs of results that were known
previously. Therefore we keep our treatment as self-contained as possible. We choose to
give simple, explicit geometrical arguments wherever possible, and we are able to make
a good choice of coordinates in order to do so. However, sometimes we are forced to
resort to algebraic manipulation, and this somewhat obscures the geometry. We also try
to emphasise the connection with and the links between earlier results. There are further
links that we could have explored, for example from our description we can demonstrate
that all the Livné groups are arithmetic except the one with n=9 which is not arithmetic.
We shall give the details elsewhere and not discuss arithmeticity here.

Acknowledgement. While writing this paper I have had useful discussions with Mar-
tin Deraux, Elisha Falbel, Bill Goldman, Nikolay Gusevskii, Norbert Peyerimhoff and
Rich Schwartz. I would like to thank each of them for the different kinds of help they
have given me. I would also like to thank the referee for his/her many helpful and
insightful comments.

2. Cone metrics on the sphere

A cone singularity of a manifold is an isolated point where the total angle is different
from 2π. This angle is called the cone angle. A Euclidean cone metric on the sphere is
a metric that is locally isometric to the standard metric on R2 but with finitely many
cone singularities. For example, a cube is a Euclidean cone metric on the sphere with
eight cone singularities, each with cone angle 3π/2. A simple family of examples of
Euclidean cone metrics on the sphere is obtained by taking two copies of the same plane
Euclidean polygon and identifying them along their boundary. This is called the double
of the polygon. The cone angles are then twice the corresponding internal angles of the
polygon. We will be interested in what happens when we fix certain cone angles, but
allow the cone singularities to move around the sphere. For example, the double of a
square (a “pillow case”) and a regular tetrahedron both have four cone singularities, each
with cone angle π. By moving the cone singularities around, one may transform one of
these into the other.
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Figure 1. The doubled pentagon. Cutting along the heavy line gives the octagon in Figure 2.

2.1. A family of Euclidean cone metrics

In this section we take a Euclidean cone metric on the sphere with five cone points with
cone angles (2π−θ, π+θ, π+θ, π+θ, π−2θ), where θ=2π/n. By cutting the sphere open
along a path through the five cone points we obtain a Euclidean polygon Π. Conversely,
after gluing the sides of Π together, we can reconstruct our cone metric on the sphere.
We give an explicit parametrisation of such polygons by three complex numbers and
we show that, in terms of these parameters, the area of the polygon gives a Hermitian
form of signature (1, 2). Different ways of doing this are described in Thurston [21] and
Weber [22]. Our method is different from theirs.

For simplicity, we first consider the situation where the cone manifold is the double
of a Euclidean pentagon. We cut this pentagon open along four of its sides (see Figure 1).
The first point on our cut is the cone point 0 with angle π−2θ, then we go around the
boundary of the pentagon through the three cone points v3, v2 and v1 with cone angle
π+θ and finish at the cone point v0 with cone angle 2π−θ. Cutting the doubled pentagon
open in this way yields an octagon, which we call Π. This octagon has a reflection
symmetry. Using this symmetry to identify boundary points exactly reconstructs the
doubled pentagon with which we began.

We now show how to construct Π geometrically in terms of three real parameters
x1, x2 and x3 (see Figure 2, which should be compared to [21, Figure 2]). Let x1, x2

and x3 be positive real numbers. Let T1, T2 and T3 be three isosceles triangles. The
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Figure 2. The polygon Π with real parameters x1, x2, x3. Here φ= 1
2
(π−θ).

triangle T1 has base length 2x1 and apex angle θ; T2 has two sides of length x2 and apex
angle θ; and T3 has base length 2x3 and two internal angles θ. We form an octagon Π
by first removing from T3 a copy of T1 whose base is centred on the base of T3 and then
removing two copies of T2 whose apexes lie in the base corners of T3 (see Figure 2). The
octagon is simple (that is, the interiors of its edges are disjoint) provided T1 and T2 are
disjoint and their interiors are contained in the interior of T3. In other words, provided
x1+x2<x3 and x1<x3(1−cos θ)/cos θ=x3 tan θ tan(θ/2).

We now make this precise by adopting coordinates as follows. We place T3 in the
complex plane so that its apex is at the origin and its base is parallel to the real axis.
The vertices of the triangles are given in the following table (where T ′

2 is the second copy
of T2):

Triangle Vertices

T1 x1i cot(θ/2)−x3i tan θ x1−x3i tan θ −x1−x3i tan θ

T2 −x2(cos θ−i sin θ)+x3(1−i tan θ) x3(1−i tan θ) −x2+x3(1−i tan θ)
T ′

2 x2(cos θ+i sin θ)−x3(1+i tan θ) −x3(1+i tan θ) x2−x3(1+i tan θ)
T3 0 x3(1−i tan θ) −x3(1+i tan θ)
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The resulting octagon is preserved by reflection in the imaginary axis, and we label
its vertices so that this reflection interchanges vj and v−j . Moreover, gluing points of the
boundary of Π to their image under this reflection reconstructs the doubled pentagon we
started with. The vertices are given in the following table (see Figure 2):

v0 = x1i cot(θ/2)−x3i tan θ 0
v1 = x1−x3i tan θ v−1 =−x1−x3i tan θ

v2 =−x2+x3(1−i tan θ) v−2 = x2−x3(1+i tan θ)
v3 =−x2(cos θ−i sin θ)+x3(1−i tan θ) v−3 = x2(cos θ+i sin θ)−x3(1+i tan θ)

The area of Π may be obtained by subtracting the area of T1 and twice the area of
T2 from the area of T3 (compare [21, equation (1)]). The areas of the triangles are

Area(T1) =x1x1 cot(θ/2) =
sin θ

1−cos θ
x2

1,

Area(T2) =x2 cos(θ/2)x2 sin(θ/2) =
sin θ

2
x2

2,

Area(T3) =x3x3 tan θ =
sin θ

cos θ
x2

3.

Hence

Area(Π) = sin θ

( −1
1−cos θ

x2
1−x2

2+
1

cos θ
x2

3

)
.

We may now allow the variables xj to be complex and we write them as zj . We
still have triangles T1, T2 and T3, but now 2z1 and 2z3 are vectors along the bases of
T1 and T3 respectively, and z2 is a vector along a side of T2. Once again, we place the
centre of the base of T1 in the centre of the base of T3 and the apexes of T2 and T ′

2

at the base vertices of T3. However, when z1 and z2 are not real multiples of z3 then
the corresponding edges no longer line up. The vertices of the resulting octagon are the
corresponding vertices of the triangles and are still labelled vj , but in general there will
no longer be any edges contained in edges of T3 (see Figure 3). The vertices are now

v0 = z1i cot(θ/2)−z3i tan θ 0
v1 = z1−z3i tan θ v−1 =−z1−z3i tan θ

v2 =−z2+z3(1−i tan θ) v−2 = z2−z3(1+i tan θ)
v3 =−z2(cos θ−i sin θ)+z3(1−i tan θ) v−3 = z2(cos θ+i sin θ)−z3(1+i tan θ)

We can use cut and paste on this octagon (see Figure 3) to see that it has the same
area as the triangle T3 less the area of one copy of T1 and two copies of T2. Thus it has
area

Area(Π) = sin θ

( −1
1−cos θ

|z1|2−|z2|2+
1

cos θ
|z3|2

)
. (1)
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Figure 3. The polygon Π with complex parameters z1, z2 and z3. Again φ= 1
2
(π−θ).

The area gives a Hermitian form of signature (1, 2) on C3. This is the key observation
that leads to a complex hyperbolic structure on the moduli space of such polygons. This
is a special case of [21, Proposition 3.3] (see also [22, Lemma 4.3]).

There is a natural way to construct a particular Euclidean cone manifold from Π.
Consider the following edge-pairing maps of Π. These maps σj will be orientation-
preserving Euclidean isometries and so are completely determined on each edge by their
value on the vertices vj and vj+1. The maps are

σ1(0) = 0, σ1(v3) = v−3,

σ2(v3) = v−3, σ2(v2) = v−2,

σ3(v2) = v−2, σ3(v1) = v−1,

σ4(v1) = v−1, σ4(v0) = v0.

Let M be the Euclidean cone manifold given by identifying the edges of Π using the
maps σj . It is clear that M is homeomorphic to a sphere and has five cone points
corresponding to 0, v0, v±1, v±2, v±3 with cone angles π−2θ, 2π−θ, π+θ, π+θ, π+θ,
respectively. These are examples of the cone manifolds studied by Thurston in [21] and
the cone angles correspond to the ball 5-tuples studied by Mostow [15].
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Figure 4. The doubled pentagon from Figure 1 with the new cut associated to the move R1.

2.2. Moves on the cone structure

In the spirit of [21], we define various “moves” on such polygons. First, observe that
complex conjugating all three of z1, z2 and z3 is the same as reflecting the polygon Π in
the imaginary axis. (If z3 is real, this line passes through 0 and the midpoint of the base
of T3.) Thus complex conjugation is an automorphism.

Other automorphisms may be defined as follows. The cone manifold has five cone
points, one each with cone angle π−2θ and 2π−θ, corresponding to the vertex 0 and
the vertex v0, respectively, and three with cone angle π+θ, corresponding to identifying
v±1, v±2 and v±3, respectively. When we make our cut in the cone manifold there is no
canonical ordering of the three cone points with angle π+θ, and so our first moves on the
cone structure correspond to taking these cone points in a different order when making
the cut.

First, there is a move R1 fixing 0, v0 and v±1 and interchanging the vertices v±2 and
v±3. From the mapping class point of view, this is a Dehn twist about a simple closed
curve on the sphere that passes through these two cone points and does not separate the
others. When cutting open the cone manifold to form the polygon Π one must now cut
from 0 directly to v±2, then to v±3, and then on to v±1 and v0 as before (see Figure 4).
After having made this cut we can open the pentagon out to make the octagon, shown
in Figure 5.
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Figure 5. The move corresponding to R1 applied to the polygon from Figure 2.

We now show how to construct the new octagon from the old one by cut and paste.
First, the cut goes from 0 directly to v2. Hence the triangle 0, v2, v3 must be glued back
on along the edge 0, v−3 according to the side identification σ1. Likewise, the triangle
v−1, v−2, v−3 must be glued by σ−1

3 to the side v1, v2. This is illustrated in Figure 5.

Having found the new polygon we must find the new parameters w1, w2 and w3.
It is not hard to see that the large triangle T3 corresponding to z3 is unchanged, as is
the small central triangle T1 corresponding to z1. However, the triangles T2 and T ′

2 have
each been rotated anti-clockwise through an angle θ about their apex. Therefore the new
coordinates are z1, z2e

iθ and z3. The new variables are given in terms of the old by the
matrix

R1 =

⎡
⎢⎣

1 0 0
0 eiθ 0
0 0 1

⎤
⎥⎦. (2)

Observe that complex conjugation followed by R1 is an involution.

We now demonstrate an alternative way to find these new coordinates by analysing
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Figure 6. The doubled pentagon from Figure 1 with the new cut associated to the move R2.

the vertices. We write the new vertices as v′j . Then

w1i cot(θ/2)−w3i tan θ = v′0 = v0 = z1i cot(θ/2)−z3i tan θ,

w1−w3i tan θ = v′1 = v1 = z1−z3i tan θ,

−w2(cos θ−i sin θ)+w3(1−i tan θ) = v′3 = v2 =−z2+z3(1−i tan θ).

These equations may be solved to give

w1 = z1, w2 = eiθz2 and w3 = z3.

Secondly, there is a move R2 fixing 0, v0 and v±3 but interchanging v±1 and v±2.
Again this corresponds to a Dehn twist along a simple closed curve through v±1 and v±2

that does not separate the other cone points. This time we obtain the octagon Π by
cutting from 0 to v±3, then to v±1, v±2 and finally to v0 (see Figure 6).

The cut-and-paste procedure is similar to that giving R1. The slit now goes from 0 to
v3 and then directly to v1. Hence the triangle v1, v2, v3 must be glued by σ2 to v−2, v−3.
Likewise, the triangle v0, v−1, v−2 is glued using σ−1

4 to v0, v1. This is illustrated in
Figure 7. It can be seen that all three triangles have been changed and we must be
careful when finding w1, w2 and w3.
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Figure 7. The move corresponding to R2 applied to the polygon from Figure 2.

The easiest way to find the new coordinates is to analyse the vertices:

w1i cot(θ/2)−w3i tan θ = v′0 = v0 = z1i cot(θ/2)−z3i tan θ,

−w2+w3(1−i tan θ) = v′2 = v1 = z1−z3i tan θ,

−w2(cos θ−i sin θ)+w3(1−i tan θ) = v′3 = v3 =−z2(cos θ−i sin θ)+z3(1−i tan θ).

Solving for w1, w2 and w3 we find that

(1−cos θ+i sin θ)w1 = (i sin θ)z1−(1−cos θ)z2+(1−cos θ)z3,

(1−cos θ+i sin θ)w2 =−z1−(cos θ−i sin θ)z2+z3,

(1−cos θ+i sin θ)w3 =−(cos θ)z1−(cos θ)z2+(1+i sin θ)z3.

The new variables are given in terms of the old by the matrix

R2 =
1

1−cos θ+i sin θ

⎡
⎢⎣

i sin θ −1+cos θ 1−cos θ

−1 −e−iθ 1
− cos θ − cos θ 1+i sin θ

⎤
⎥⎦ . (3)

Note that det(R2)=eiθ and that complex conjugation followed by R2 is an involution.
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We remark that R1 and R2 each correspond to interchanging a pair of cone points,
and so the corresponding mapping class on the five times punctured sphere is a Dehn
twist along a curve through these two points. This leads us to expect that R1 and R2

should satisfy the braid relation R1R2R1=R2R1R2, and in Theorem 5.1 (iii) we verify
that this is indeed the case.

We show in the next section that, after projectivising, the points (z1, z2, z3)∈C3

corresponding to simple polygons form a non-complete region inside complex hyperbolic
space; compare Thurston [21]. In order to extend this region to the whole of complex
hyperbolic space we must consider triples (z1, z2, z3) that do not correspond to sim-
ple polygons, but which formally share many properties with those that do. Following
Thurston, we allow the boundary of Π to intersect itself and keep track of a signed area.
It turns out that we only need to consider one more move on the cone structure, de-
noted I1, and following Thurston we call it a butterfly move (see [21, Figure 5] for an
explanation of the name). Specifically, the automorphism I1 is constructed by rotating
the triangle T1 through angle π. This is equivalent to sending z1 to −z1 while keeping
z2 and z3 the same. That is, I1 is given by applying the matrix

I1 =

⎡
⎢⎣
−1 0 0
0 1 0
0 0 1

⎤
⎥⎦ . (4)

Observe that I1 is an involution, as is complex conjugation followed by I1. Moreover,
I1 commutes with R1. This may be seen either by considering the matrices or by the
geometrical action on the polygons.

As indicated in Figure 8, making z1 real and negative forces the triangle T1 to point
downwards and makes the boundary of Π intersect itself. When traversing the boundary
of Π we must now go around ∂T1 with the opposite orientation from that which we use
on ∂T3. Hence the area of T1 is now negative. Therefore the area of the new polygon is
still given by (1).

All three of these moves preserve the (signed) area of Π. In other words, from (1) the
matrices are unitary with respect to the Hermitian form given by 〈z,w〉=w∗Hz, where
w∗ is the Hermitian conjugate of w and H is given by

H =− sin θ

⎡
⎢⎣

1/(1−cos θ) 0 0
0 1 0
0 0 −1/cos θ

⎤
⎥⎦ . (5)

We are going to consider the group of unitary matrices Γ generated by these three
moves, namely

Γ = 〈R1, R2, I1〉,
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Figure 8. The butterfly move corresponding to I1 applied to the polygon from Figure 2.

where θ=2π/n for n=5, 6, 7, 8, 9, 10, 12, 18. For these values of n we will show that the
group Γ is discrete and isomorphic to one of the Livné groups. When n=4 the group
is elementary, and for all other values of n�5 not on this list the cone angles violate
Mostow’s criterion. Hence these groups are not discrete. In fact, for all such n the group
Γ may be shown to be non-discrete using Jørgensen’s inequality; see [10]. We will give the
details elsewhere. Also observe that, since complex conjugation followed by any of R1, R2

and I1 is an involution, Γ is an index-2 subgroup of a group containing antiholomorphic
automorphisms.

Finally, we remark that by examining the cone angles, we see that Γ is in the list of
94 groups constructed by Mostow [15, pp. 584–586] and Thurston [21, pp. 548–549]. For
reference we give the corresponding numbers in their respective lists:

n 5 6 7 8 9 10 12 18

Mostow 58 49 76 53 80 57 62 79
Thurston 52 40 76 45 80 49 57 79
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3. The polyhedron D

In this section we show how that collection of cone metrics on the sphere, or equivalently
polygons Π, may be parametrised by a subset of complex hyperbolic space. It will
immediately follow that the automorphisms act as complex hyperbolic isometries. It is
really the geometry of the action of these isometries that will be of most interest to us.
We construct a polyhedron D in complex hyperbolic space whose sides are contained
in bisectors and whose vertices correspond to certain degenerate cone metrics obtained
either from the collision of three cone points or from the collision of two pairs of cone
points. Once we have constructed D we will cease to be interested in the cone metrics
but, rather, will concentrate on the complex hyperbolic geometry of the polyhedron.
Specifically, we will analyse how the sides of D intersect. Some of the more routine
calculations involved in this are relegated to the appendices. There is a difference between
the three cases n=5, n=6 and n�7. In this section we concentrate on the case n�7 and
in §6 we discuss the other two cases.

3.1. Complex hyperbolic space

From now on we concentrate on those points z1, z2 and z3 for which the area of Π is
positive. Since the area (1) is given in terms of the Hermitian form H from (5), the area
of Π being positive is equivalent to

− sin θ
[
z̄1 z̄2 z̄3

]
⎡
⎢⎣

1/(1−cos θ) 0 0
0 1 0
0 0 −1/cos θ

⎤
⎥⎦

⎡
⎢⎣

z1

z2

z3

⎤
⎥⎦ = z∗Hz= 〈z, z〉> 0.

Multiplying each zj by a non-zero complex number µ preserves the polygon up to sim-
ilarity and scales the area by |µ|2>0. Thus it is natural to consider similarity classes
of polygons by applying the canonical projection from C3 to CP2. Since the area is
positive we must have z3 �=0 and we may take a section by restricting to the affine plane
where z3=1.

Thus, in what follows we consider complex hyperbolic space to be those points in
CP2 for which the Hermitian form H given by (5) is positive. That is,

H2
C =

⎧⎪⎨
⎪⎩z=

⎡
⎢⎣

z1

z2

1

⎤
⎥⎦ : 〈z, z〉= z∗Hz=

−|z1|2 sin θ

1−cos θ
−|z2|2 sin θ+

sin θ

cos θ
> 0

⎫⎪⎬
⎪⎭ . (6)

We have already seen that the moves on the cone structure I1, R1, R2 and their products
correspond to unitary matrices with respect to the Hermitian form H. These act projec-
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tively on H2
C, and so lie in PU(1, 2), the holomorphic isometry group of H2

C. Likewise
complex conjugation is an antiholomorphic isometry of H2

C.
It will be convenient to introduce a second set of coordinates on H2

C. Just as for
the groups considered in [7] and [20], there is a particular element of the group, which
we call P , that will play an important role in our construction (it is also called P in [7]
and is called K in [20]). In particular, P is a side pairing of our fundamental domain D,
and images of D under powers of P form a cylinder or a torus with a repeating pattern
of faces. Algebraically, this corresponds to the fact that I1 and its conjugates by powers
of P generate a triangle group; see §7 and, in particular, compare Lemma 7.1 with [20,
Lemma 3.1]. Our second set of coordinates will be the preimage of the first under P . To
this end we define P =R1R2, and we write it as a matrix:

P =
1

1−cos θ+i sin θ

⎡
⎢⎣

i sin θ −(1−cos θ) 1−cos θ

−eiθ −1 eiθ

− cos θ − cos θ 1+i sin θ

⎤
⎥⎦ . (7)

We will want to keep track of coordinates, which we denote by w, given by

w =

⎡
⎢⎣

w1

w2

1

⎤
⎥⎦ = [P−1(z)] =

1
1−cos θ−i sin θ

⎡
⎢⎣
−i sin θ −(1−cos θ)e−iθ 1−cos θ

−1 −1 1
− cos θ −(cos θ)e−iθ 1−i sin θ

⎤
⎥⎦

⎡
⎢⎣

z1

z2

1

⎤
⎥⎦ .

(8)
In other words

w1 =
−z1i sin θ−z2e

−iθ(1−cos θ)+(1−cos θ)
−z1 cos θ−z2e−iθcos θ+1−i sin θ

, (9)

w2 =
−z1−z2+1

−z1 cos θ−z2e−iθcos θ+1−i sin θ
. (10)

Likewise

z=

⎡
⎢⎣

z1

z2

1

⎤
⎥⎦ = [P (w)] =

1
1−cos θ+i sin θ

⎡
⎢⎣

i sin θ −(1−cos θ) 1−cos θ

−eiθ −1 eiθ

− cos θ − cos θ 1+i sin θ

⎤
⎥⎦

⎡
⎢⎣

w1

w2

1

⎤
⎥⎦ .

Hence

z1 =
w1i sin θ−w2(1−cos θ)+(1−cos θ)
−w1 cos θ−w2 cos θ+1+i sin θ

, (11)

z2 =
−w1e

iθ−w2+eiθ

−w1 cos θ−w2 cos θ+1+i sin θ
. (12)
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The reason for keeping track of two sets of coordinates is that it gives a simple description
of the polyhedron D in terms of the arguments of z1, z2, w1 and w2; see (17) below.

3.2. The vertices of D

We identify some distinguished points of H2
C which will be the vertices of our polyhedron.

Writing w=P−1(z) as in (8), it will be useful to have our points in w-coordinates as
well as z-coordinates. In all cases these distinguished cone structures are obtained by
letting some of the cone points approach each other until in the limit they coalesce, and
hence result in a new cone point. The complementary angle of this new cone point (that
is, 2π minus the cone angle) is the sum of the complementary angles of the cone points
that have coalesced. See Thurston’s discussion in [21, §3], in particular [21, Figure 11],
for a more detailed discussion of this process. From the point of view of the octagon Π
discussed in §2, this process is the same as either expanding or contracting the triangles
T1 and T2 until some of the vertices become the same point. If such vertices are adjacent
then the edge between them has degenerated to a point.

In [21, Proposition 3.5] Thurston discusses what happens when two cone points
collide. He shows that this occurs along a stratum S of codimension 1 and gives a
formula for γ(S), the cone angle around this stratum. In our setting, the moduli space is
an orbifold, and so in each case 2π/γ(S) is an integer. The stabiliser of the stratum S is
then a subgroup of Γ of order 2π/γ(S). Suppose that the two cone points have cone angles
φ1 and φ2. Then [21, Proposition 3.5] shows that if φ1 �=φ2 then γ(S)=φ1+φ2−2π and
if φ1=φ2 then γ(S)=φ1−π. We now indicate the strata associated to various collisions
of pairs of cone points and give the appropriate subgroups of Γ:

Cone points Stratum S γ(S) Subgroup

v0, v±1 z1 = 0 π = (2π−θ)+(π+θ)−2π 〈I1〉
v0, v±3 w1 = 0 π = (2π−θ)+(π+θ)−2π 〈PI1P

−1〉
v±2, v±3 z2 = 0 θ = (π+θ)−π 〈R1〉
v±1, v±2 w2 = 0 θ = (π+θ)−π 〈R2〉

0, v0 z1 = (1−cos θ)/cos θ π−3θ = (π−2θ)+(2π−θ)−2π 〈P 3〉

We can check that in each case the generator of the group in the last column is a
complex reflection of order 2π/γ(S). This indicates, but does not prove, that our group
is indeed the same as Thurston’s group.
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z1 z2

z3 z4 z5

z6 z7 z8

Figure 9. Polygons corresponding to vertices of D.

We now discuss the cone structures that will be the vertices of our polyhedron. The
point z1 will be fixed by R1 and I1. It is the origin in the z-coordinates. Since z1 and
z2 are both zero, the triangles T1 and T2 discussed in §2 have both degenerated to a
point. Thus the octagon Π has degenerated to become simply the triangle T3. In terms
of the cone manifolds, z1=0 corresponds to the cone points corresponding to v0 and v±1

coalescing to give a new cone point with cone angle π; and z2=0 corresponds to the
cone points corresponding to v±2 and v±3 coalescing to give a new cone point with cone
angle 2θ. The polygon Π corresponding to z1 is given in the top row of Figure 9. The
corresponding point where w1=w2=0, which is fixed by R2, is denoted z2. This is the
origin in the w-coordinates. Here the cone points v0 and v±3 coalesce, as do v±1 and v±2.
Hence the base of T2 has become one of the sides of T1.
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There are three points z3, z4 and z5 with z1=(1−cos θ)/cos θ. This condition corre-
sponds to T1 and T3 having their bases parallel (recall that we have taken z3=1, and in
this case z1 is real) and the apex of T1 at 0, which is also the apex of T3. This configura-
tion only works in the cases where n�7. The cone points corresponding to 0 and v0 have
coalesced to give a new cone point with cone angle π−3θ. For z3 we have z2=0, and
so, as above, v±2 and v±3 have coalesced to give a new cone point with cone angle 2θ.
This is shown on the left of the middle row of Figure 9. For z4 we have z2 real and
z1+z2=1. This means that the cone points v±1 and v±2 have coalesced to give a new
cone point with cone angle 2θ. As shown in the middle of the middle row of Figure 9,
the corresponding polygon can be obtained from Figure 2 by first allowing T1 to be as
large as possible, but with its interior still inside T3, and then allowing T2 and T ′

2 to be
as large as possible, but with their interiors inside T3 but outside T1. The vertex z5 is
the image of z4 under R1. This means that the cone points v±1 and v±3 have coalesced
to give a new cone point with cone angle 2θ. As shown on the right of the middle row of
Figure 9, this is the limit of Figure 5 as T1, T2 and T ′

2 each become as large as possible.

In this section we are only interested in the cases where n�7, but for completeness
we now indicate what happens when n=5 and n=6; see §6 for more details. When n=5
or n=6 the three vertices z3, z4 and z5 are replaced with a single vertex where z1=1 and
z2=0 (and so also w1=1 and w2=0). When n=6 the angles π−2θ and θ are the same.
In this case, when z1 is real, the sides (v0, v1) and (0, v3) are parallel. Thus as v0 tends to
0 we must also have v1, v2, v3 coalescing, and v−1, v−2, v−3 as well. Hence the polygon
degenerates to a figure with zero area. This limiting configuration corresponds to a point
on the boundary of complex hyperbolic space, which is a cusp of the lattice. When n=5,
the configuration with z1=1 and z2=0 corresponds to a point in the interior of complex
hyperbolic space and involves the cone points corresponding to v±1, v±2 and v±3 all
coalescing to give a new cone point with cone angle 3θ−π=π/5.

Finally, we will discuss the vertices z6, z7 and z8. First, z6 has z1 purely imaginary.
This means that the base of T1 is orthogonal to the base of T3. Furthermore the apex of
T1 is one of the base vertices of T3, and also, as z2=0, the triangle T2 has degenerated
to a point. In this configuration the cone points corresponding to v0, v±2 and v±3 have
all coalesced to give a new cone point with cone angle θ. Next for z7 the cone points
corresponding to v0, v±1 and v±2 have coalesced to give a new cone point with cone
angle θ. As shown in the middle of the bottom row of Figure 9, this is the limit of the
polygon from Figure 2 as T1 shrinks to a point and T2 and T ′

2 become as large as possible,
but with disjoint interiors. Finally, z8 is the image of z7 under R1. Here the cone points
v0, v±1 and v±3 have all coalesced, again giving a new cone point with cone angle θ. This
polygon is again the limit of that shown in Figure 5.
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We summarise the above discussion with the following table relating the points zj

and the cone points that have coalesced:

Point Cone points Angle Cone points Angle

z1 v0, v±1 π v±2, v±3 2θ

z2 v0, v±3 π v±1, v±2 2θ

z3 0, v0 π−3θ v±2, v±3 2θ

z4 0, v0 π−3θ v±1, v±2 2θ

z5 0, v0 π−3θ v±1, v±3 2θ

z6 v0, v±2, v±3 θ

z7 v0, v±1, v±2 θ

z8 v0, v±1, v±3 θ

In [21, Proposition 3.6] Thurston shows that j cone points with cone angles φ1, ..., φj

collide in a stratum S of codimension j−1. The resulting cone angle of the moduli
space is γ(S)=φ1+...+φj−2π(j−1). Furthermore the order of the stabiliser of S is
N(2π/γ(S))j−1, where N is the order of the subgroup of the symmetric group preserving
the angles. By combining this information we can also find the stabiliser of each vertex
and compute the corresponding cone angles. We again see that our group is consistent
with Thurston. For example, the vertex z7 is stabilised by the group 〈I1, R2〉. We claim
that it will follow from results of §7 that this group has order 2n2. We now sketch a
proof of this claim. Cyclically permuting the indices in (36) we see that R2I1R

−1
2 =I3

and R2I3R
−1
2 =I3I1I3 (where I3 is as defined in §7). Thus 〈I1, I3〉 is a normal subgroup

of 〈I1, R2〉 with quotient group 〈R2〉. Since 〈I1, I3〉 is dihedral group of order 2n (see
Proposition 7.3) and 〈R2〉 is cyclic of order n, we immediately see that 〈I1, R2〉 has
order 2n2 as claimed. The fact that these orbifold singularities have the same order
as Thurston’s is a strong indication that these groups are indeed isomorphic to Livné’s
lattices. In Theorem 5.1 we show that the two groups have the same presentation, and
hence, by Mostow rigidity, that they are conjugate.

The table below gives both the z- and w-coordinates of the eight vertices z1, ..., z8.
This enables us to transform our geometrical problem concerning cone structures into an
algebraic problem about the action of a certain matrix group. From now on, we shall
not consider cone metrics any more, but will concentrate on the action of this matrix
group on complex hyperbolic space. We analyse this with a combination of geometry
(bisectors) and linear algebra.



20 j. r. parker

z1 z2 w1 w2

z1 0 0 1−e−iθ/(1−i sin θ) 1/(1−i sin θ)

z2 1−eiθ/(1+i sin θ) eiθ/(1+i sin θ) 0 0

z3 (1−cos θ)/cos θ 0 (1−cos θ)/cos θ eiθ(2 cos θ−1)/cos θ

z4 (1−cos θ)/cos θ (2 cos θ−1)/cos θ (1−cos θ)/cos θ 0

z5 (1−cos θ)/cos θ eiθ(2 cos θ−1)/cos θ (1−cos θ)/cos θ (2 cos θ−1)/cos θ

z6 −i(1−cos θ)/sin θ 0 0 eiθ

z7 0 1 i(1−cos θ)/sin θ 0

z8 0 eiθ 0 1

Before we finish this section we show that the collection of vertices described above
is symmetrical with respect to an involution. The polyhedron D will also have this
symmetry which will simplify matters later on. Consider the antiholomorphic isometry
ι given by ι(z)=R1R2R1(z̄). In other words,

ι

⎡
⎢⎣

z1

z2

1

⎤
⎥⎦ =

1
1−cos θ+i sin θ

⎡
⎢⎣

i sin θ −eiθ(1−cos θ) 1−cos θ

−eiθ −eiθ eiθ

− cos θ −eiθcos θ 1+i sin θ

⎤
⎥⎦

⎡
⎢⎣

z̄1

z̄2

1

⎤
⎥⎦∼

⎡
⎢⎣

w1

w2e
iθ

1

⎤
⎥⎦ . (13)

(Here ∼ denotes projective equality.) The following lemma is easy to verify using (13)
and the table above.

Lemma 3.1. The isometry ι has order 2 and acts on the zj by

ι(z1) = z2, ι(z3) = z4, ι(z5) = z5, ι(z6) = z7 and ι(z8) = z8.

3.3. The polyhedron D

The faces of the polyhedron D will be contained in bisectors. We now give a brief
summary of the properties of bisectors that we will need; see [8] or [13] for more details.
A bisector is the locus of points in complex hyperbolic space equidistant from a given,
pair of points in complex hyperbolic space, say zj and zk. Using the standard formula
for the distance function (see Goldman [8, (3.4)], for example) we see that z∈D if and
only if

〈z, zj〉〈zj , z〉
〈z, z〉〈zj , zj〉 = cosh2

(
�(z, zj)

2

)
= cosh2

(
�(z, zk)

2

)
=

〈z, zk〉〈zk, z〉
〈z, z〉〈zk, zk〉 .

If zj and zk have the same norm, that is, 〈zj , zj〉=〈zk, zk〉, then this is equivalent to

B = {z∈H2
C : |〈z, zj〉|= |〈z, zk〉|}. (14)
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In Lemma 4.6 we will use this characterisation of bisectors. In fact, this definition of a
bisector only depends on 〈zj , zj〉=〈zk, zk〉 and not on whether this quantity is positive,
negative or zero. That is, the points zj and zk may be on the boundary of complex
hyperbolic space or outside; see Lemma 4.4.

The points zj and zk lie in a unique complex line L, called the complex spine of the
bisector B. There is a geodesic γ in L that is equidistant from our pair of points with
respect to the natural Poincaré metric on L. This geodesic is called the spine. This still
makes sense when zj and zk lie on the boundary of H2

C or lie outside: For any anti-
holomorphic involution interchanging zj and zk we may define the spine as the locus of
points in L fixed by this involution. It is easy to check that this definition of the spine is
independent of the chosen antiholomorphic involution. Bisectors are not totally geodesic
(there are no totally geodesic real hypersurfaces in complex hyperbolic space), but are
foliated by totally geodesic subspaces in two different ways. First there are the slices;
see [13]. Let ΠL denote orthogonal projection onto L, then the bisector is the preimage
of γ under ΠL. Each fibre of this map, that is, each complex line that is the preimage
of a point of γ, is a slice of our bisector. Secondly, there are the meridians; see [8]. Each
meridian is a Lagrangian plane that contains the spine γ, and is the fixed point set of
one of the antiholomorphic involutions that swaps zj and zk. Every Lagrangian plane
containing γ is a meridian and the bisector is the union of all its meridians.

We now define the bisectors containing the sides of our polyhedron D. The spine of
each bisector will be the geodesic passing through a pair of the points defined in §3.2. By
inspection this leads to a definition in terms of the argument of one of z1, z2, w1 or w2.
In Lemmas 4.4 and 4.6 we will also characterise the bisectors using (14), that is, as the
locus of points equidistant from a given pair of points. We now define the eight bisectors
in question. Their label reflects the pair of vertices in the spine.

Bisector Definition Points on spine Other points

B13 Im(z1) = 0 z1, z3 z4, z5, z7, z8

B24 Im(w1) = 0 z2, z4 z3, z5, z6, z8

B16 Re(z1) = 0 z1, z6 z7, z8

B27 Re(w1) = 0 z2, z7 z6, z8

B17 Im(z2) = 0 z1, z7 z3, z4, z6

B26 Im(w2e
−iθ) = 0 z2, z6 z3, z4, z7

B18 Im(z2e
−iθ) = 0 z1, z8 z3, z5, z6

B28 Im(w2) = 0 z2, z8 z4, z5, z7

(15)

The following lemma follows immediately from this table and Lemma 3.1.
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Lemma 3.2. Let ι be the involution defined by (13). Then

ι(B13) =B24, ι(B16) =B27, ι(B17) =B26 and ι(B18) =B28.

The spines of B13, B16, B17 and B18 all pass through the point z1, which is the
origin in the z-coordinates. Observe that I1 maps each of the bisectors B1j to itself.
Similarly, R1 preserves B13 and B16, and sends B17 to B18. The four bisectors B13, B16,
B17 and B18 bound a wedge W1. Writing z as in (6), this wedge is given by

W1 = {z : arg(z1)∈ (−π/2, 0) and arg(z2)∈ (0, θ)}. (16)

Lemma 3.3. The wedge W1 is homeomorphic to a half-space in R4, and this homeo-
morphism extends to a homeomorphism from ∂W1 to R3.

Proof. In order to see this, first apply the conformal homeomorphism Φ: (z1, z2) �!
(z2

1 , z
n/2
2 ). Using θ=2π/n, we see that Φ(W1) is the product of two half-planes:

Φ(W1) = {(x1+iy1, x2+iy2) : y1 < 0 and y2 > 0}

The boundary of this set comprises those points where y1=0 or y2=0 (or both).
Secondly, apply the following homeomorphism from Φ(W1) to a half-space in R4:

Ψ: (x1+iy1, x2+iy2) �−! (x1, x2, y1+y2, y1y2).

The restriction of Ψ to Φ(∂W1) is

Ψ: (x1+iy1, x2+iy2) �−!
{

(x1, x2, y1, 0), if y2 = 0,
(x1, x2, y2, 0), if y1 = 0.

The image of the boundary ΨΦ(∂W1) is clearly the whole of R3 as claimed.

Similarly, the spines of B24, B26, B27 and B28 all pass through z2, the origin in the
w-coordinates; see (8). Moreover, R2 preserves B24 and B27, and sends B28 to B26. The
four bisectors bound a wedge W2=P (W1), where P is given by (7). Writing w as in (8)
this wedge is given by

W2 = {w : arg(w1)∈ (0, π/2) and arg(w2)∈ (0, θ)}.

Since P is a homeomorphism, using Lemma 3.3 we immediately see that W2 is homeo-
morphic to a half-space in R4, and this homeomorphism extends to a homeomorphism
from ∂W2 to R3.
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Figure 10. The sides in each wedge W1 and W2.

We define the polyhedron D to be the intersection of the wedges W1 and W2 (com-
pare [5]):

D = W1∩W2 =

{
z= P (w) :

arg(z1)∈ (−π/2, 0), arg(z2)∈ (0, θ),
arg(w1)∈ (0, π/2), arg(w2)∈ (0, θ)

}
. (17)

We define the sides S1j and S2j of D to be the intersection of D with the bisector
B1j and B2j , respectively. Below we give each side in terms of z and w, in particular
the arguments of their entries:

Side arg(z1) arg(z2) arg(w1) arg(w2)

S13 −π/2 [0, θ] [0, π/2] [0, θ]
S24 [−π/2, 0] [0, θ] π/2 [0, θ]
S16 0 [0, θ] [0, π/2] [0, θ]
S27 [−π/2, 0] [0, θ] 0 [0, θ]
S17 [−π/2, 0] 0 [0, π/2] [0, θ]
S26 [−π/2, 0] [0, θ] [0, π/2] θ

S18 [−π/2, 0] θ [0, π/2] [0, θ]
S28 [−π/2, 0] [0, θ] [0, π/2] 0

(18)

The vertices of each side are precisely the points listed in the table of bisectors (15). In
Figure 10 the sides containing z1 and those containing z2 are shown. These collections
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of sides form open subsets of ∂W1 and ∂W2, respectively. Below we show that each
2-dimensional face of each side is homeomorphic to a disc. Gluing these discs together,
we can see that the outer boundary of the collection of sides containing z1 (and z2,
respectively) is homeomorphic to a sphere. There is an obvious contraction of this sphere
down to z1 or z2, and so we see, using Lemma 3.3, that the collection of sides containing
z1 and those containing z2 are each homeomorphic to a 3-ball. Gluing the boundaries
together gives a 3-sphere, which is ∂D.

We now consider the 1-skeleton of D. This consists of arcs joining pairs of vertices
of D, called edges. Let γjk=γkj denote the edge of D with the vertices zj and zk as
endpoints. We claim that each γjk is a geodesic arc. The reason for this is because
each pair of vertices is in the common intersection of either a slice of one bisector and
a meridian of another or in the intersection of meridians of two bisectors. We now list
each edge, the pair of bisectors and the slices (S) or meridians (M):

Edge Bisectors Coordinates Bisectors Coordinates

γ13 B13∩B17 M Im(z1) = Im(z2) = 0 B13∩B18 M Im(z1) = Im(z2e
−iθ) = 0

γ16 B16∩B17 M Re(z1) = Im(z2) = 0 B16∩B18 M Re(z1) = Im(z2e
−iθ) = 0

γ17 B17∩B13 M Im(z1) = Im(z2) = 0 B17∩B16 M Re(z1) = Im(z2) = 0

γ18 B18∩B13 M Im(z1) = Im(z2e
−iθ) = 0 B18∩B16 M Re(z1) = Im(z2e

−iθ) = 0

γ24 B24∩B26 M Im(w1) = Im(w2e
−iθ) = 0 B24∩B28 M Im(w1) = Im(w2) = 0

γ27 B27∩B26 M Re(w1) = Im(w2e
−iθ) = 0 B27∩B28 M Re(w1) = Im(w2) = 0

γ26 B26∩B24 M Im(w1) = Im(w2e
−iθ) = 0 B26∩B27 M Re(w1) = Im(w2e

−iθ) = 0

γ28 B28∩B24 M Im(w1) = Im(w2) = 0 B28∩B27 M Re(w1) = Im(w2) = 0

γ34 B13∩B17 M Im(z1) = Im(z2) = 0 B24∩B26 M Im(w1) = Im(w2e
−iθ) = 0

γ45 B13∩B24 S z1 = w1 = (1−cos θ)/cos θ B24∩B28 M Im(w1) = Im(w2) = 0

γ53 B13∩B24 S z1 = w1 = (1−cos θ)/cos θ B13∩B18 M Im(z1) = Im(z2e
−iθ) = 0

γ36 B17∩B18 S z2 = 0 B24∩B26 M Im(w2) = Im(w2e
−iθ) = 0

γ47 B26∩B28 S w2 = 0 B13∩B17 M Im(z1) = Im(z2) = 0

γ58 B13∩B18 M Im(z1) = Im(z2e
−iθ) = 0 B24∩B28 M Im(w1) = Im(w2) = 0

γ67 B16∩B17 M Re(z1) = Im(z2) = 0 B26∩B27 M Re(w1) = Im(w2e
−iθ) = 0

γ78 B13∩B16 S z1 = 0 B27∩B28 M Re(w1) = Im(w2) = 0

γ86 B24∩B27 S w1 = 0 B16∩B18 M Re(z1) = Im(z2e
−iθ) = 0

The combinatorics of these edges can be seen in Figure 10. Namely, there are nine edges
not involving z1 or z2 arranged in a graph that is the boundary of a triangular prism.
The other eight edges are obtained by joining four of the vertices of the prism to z1 and
four to z2.
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The following lemma follows immediately from Lemma 3.1 and the fact that the
edges are geodesic arcs.

Lemma 3.4. Let ι be the involution defined by (13). Then

ι(γ13) = γ24, ι(γ16) = γ27, ι(γ17) = γ26, ι(γ18) = γ28, ι(γ34) = γ34,

ι(γ45) = γ35, ι(γ36) = γ47, ι(γ58) = γ58, ι(γ67) = γ67, ι(γ78) = γ68.

3.4. The faces of D

We have now defined the 0-, 1- and 3-dimensional cells in the boundary of D. It remains
to consider the 2-dimensional cells. In this section we discuss all the 2-dimensional
intersections among pairs of sides of D. We call these 2-dimensional cells the faces of D

and we denote them by Fijk or Fijkl, where i, j, k and l are the indices of the vertices of
the face. First we need to examine how pairs of bisectors intersect. It is clear that for each
choice of distinct j, k∈{3, 6, 7, 8} the bisectors B1j and B1k either have a common slice
or a common meridian. Likewise for B2j and B2k for j, k∈{4, 6, 7, 8}. In Appendix A we
give the general form for points in the intersection of pairs of bisectors B1j and B2k. Here
we will find exactly which pairs of bisectors give faces of D. In Appendix B we will show
that the remaining intersections among pairs of sides intersect D only in its 1-skeleton,
that is, along the edges. As a consequence of our analysis, we prove the following result,
which is the major goal of this section:

Proposition 3.5. The interior of each face F of D is homeomorphic to an open
ball in R2, and the boundary of F is made up of edges on the list above.

By construction, complex hyperbolic space, as defined by (6), is a bounded subset
of C2. We now give explicit bounds for the coordinates (6) or (8).

Lemma 3.6. If z is in H2
C as given in (6), and w is written in terms of z by (8),

then
|z1|< sin θ

cos θ
, |z2|< 1

cos θ
, |w1|< sin θ

cos θ
and |w2|< 1

cos θ
.

Furthermore, when n�7 we also have

|z1|< 1 and |w1|< 1.

Proof. We have
|z1|2

1−cos θ
+|z2|2− 1

cos θ
< 0.

Thus

|z1|2 <
1−cos θ

cos θ
<

sin2 θ

cos2 θ
and |z2|2 <

1
cos θ

<
1

cos2 θ
.
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Also, when n�7,

|z1|2 <
1−cos θ

cos θ
< 1− 2 cos θ−1

cos θ
< 1.

Similarly for w1 and w2.

First we discuss faces of D contained in S1j∩S1k or S2j∩S2k. These are all contained
in complex lines or Lagrangian planes. For example, the face F178=S13∩S16 with vertices
z1, z7 and z8 is contained in the complex line z1=0; or F1347=S13∩S17 with vertices z1,
z3, z4 and z7 is contained in the Lagrangian plane with Im(z1)=Im(z2)=0. These faces
are each plane hyperbolic polygons (either triangles or quadrilaterals) whose boundary
comprises the geodesic arcs joining the vertices. As these geodesic arcs only intersect in
their endpoints, each face is obviously homeomorphic to a disc.

Similarly, for n�7, there is the face F345=S13∩S24 contained in the complex line
where z1=(1−cos θ)/cos θ. With its natural (Poincaré) hyperbolic metric, this face is
the geodesic triangle with vertices z3, z4 and z5 and internal angles (θ, θ, θ).

These faces are given in the following table:

Face Vertices Sides Coordinates

F178 z1, z7, z8 S13, S16 z1 = 0
F268 z2, z6, z8 S24, S27 w1 = 0
F136 z1, z3, z6 S17, S18 z2 = 0
F247 z2, z4, z7 S26, S28 w2 = 0
F345 z3, z4, z5 S13, S24 z1 = w1 = (1−cos θ)/cos θ

F1347 z1, z3, z4, z7 S13, S17 Im(z1) = Im(z2) = 0
F2436 z2, z4, z3, z6 S24, S26 Im(w1) = Im(w2e

−iθ) = 0
F1358 z1, z3, z5, z8 S13, S18 Im(z1) = Im(z2e

−iθ) = 0
F2458 z2, z4, z5, z8 S24, S28 Im(w1) = Im(w2) = 0
F167 z1, z6, z7 S16, S17 Re(z1) = Im(z2) = 0
F276 z2, z7, z6 S27, S26 Re(w1) = Im(w2e

−iθ) = 0
F168 z1, z6, z8 S16, S18 Re(z1) = Im(z2e

−iθ) = 0
F278 z2, z7, z8 S27, S28 Re(w1) = Im(w2) = 0

We now discuss the other faces one by one.

Proposition 3.7. The point z lies in S13∩S28 if and only if z1=x and w2=u,
where 0�u�1−x and 0�x�(1−cos θ)/cos θ. Furthermore, if z∈S13∩S28 then

Re(w1) � 1−cos θ

cos θ
.
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Proof. Using table (18) we see, by definition, that we have z∈S13∩S28 if and only
if arg(z1)=0, arg(z2)∈[0, θ], arg(w1)∈[0, π/2] and arg(w2)=0. Thus we can write z1=x

and w2=u, where x�0 and u�0. From Lemma 3.6 we also have u<1/cos θ. We can use
Proposition A.6 to write z2 and w1 in terms of x and u:

z2 = eiθ 1−x−u+xu cos θ+ui sin θ

cos θ−u cos θ+i sin θ
,

w1 =
1−cos θ−x−u(1−cos θ)+xu cos θ−xi sin θ

−i sin θ−x cos θ
.

In order to guarantee that z∈S13∩S28 we must find conditions on x and u so that
arg(z2)∈[0, θ] and arg(w1)∈[0, π/2], or equivalently so that Im(z2)�0, Im(z2e

−iθ)�0,
Re(w1)�0 and Im(w1)�0.

First we have

Im(z2) =
u sin θ((1−cos θ)(1+u cos θ)+x cos θ(1−u cos θ))

(1−u)2 cos2 θ+sin2 θ
,

Re(w1) =
x((1−cos θ)(1+u cos θ)+x cos θ(1−u cos θ))

x2 cos2 θ+sin2 θ
.

Since x�0, u�0 and 1−u cos θ>0 we have

(1−cos θ)(1+u cos θ)+x cos θ(1−u cos θ) > 0.

This implies Im(z2)�0 and Re(w1)�0, and so these two conditions require no extra
hypotheses on x and u.

Secondly,

Im(z2e
−iθ) =

− sin θ(1−x−u)(1−u cos θ)
(1−u)2 cos2 θ+sin2 θ

.

Thus Im(z2e
−iθ)�0 if and only if 1−x−u�0 (we have again used 1−u cos θ>0). Likewise

Im(w1) =
sin θ(1−x−u)(1−cos θ−x cos θ)

x2 cos2 θ+sin2 θ
.

Therefore when Im(z2e
−iθ)�0 we also have Im(w1)�0 if and only if x�(1−cos θ)/cos θ.

This gives the first part of the result.
Finally, we must show that Re(w1)−(1−cos θ)/cos θ�0. We have

Re(w1)− 1−cos θ

cos θ
=

−(1−cos θ−x cos θ)(sin2 θ+x(1−u) cos2 θ)
cos θ(x2 cos2 θ+sin2 θ)

.

Since sin2 θ+x(1−u) cos2 θ>0 we see that x�(1−cos θ)/cos θ implies that Re(w1)�
(1−cos θ)/cos θ.
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Corollary 3.8. The intersection of S13 and S28 is a face F4587 homeomorphic to
a disc. The boundary of F4587 is γ45∪γ58∪γ78∪γ47.

Proof. It is clear that the region in the (x, u)-plane, where 0�x�(1−cos θ)/cos θ<1
and 0�u�1−x is a quadrilateral. From Proposition 3.7 there is a homeomorphism from
this quadrilateral to S13∩S28.

This homeomorphism extends to the boundary. We now show that its image is
the union of the four edges claimed. When x=0 we have z1=0 and Re(w1)=0. Thus
z∈B16∩B27, and so it is in γ78. When u=0 we have Im(z2)=0 and w2=0. Thus z∈
B17∩B26 and so is in γ47. When x=(1−cos θ)/cos θ we have w1=0. Thus z∈B24 and
so is in γ45. Finally, when x+u=1 we have Im(z2e

−iθ)=Im(w1)=0. Hence z∈B18∩B24

and so is in γ58.

Applying ι gives the following consequence:

Corollary 3.9. The intersection of S18 and S24 is a face F3586 homeomorphic to
a disc. The boundary of F3586 is γ35∪γ58∪γ86∪γ36.

Next, we have the following result:

Proposition 3.10. The point z lies in S16∩S27 if and only if z1=iy and w1=iv,
where y�0, v�0 and

(1−cos θ)2+y sin θ(1−cos θ)−v sin θ(1−cos θ)+yv cos2 θ � 0.

Proof. This proof is similar to that of Proposition 3.7. If z∈S16∩S27 then, using
table (18), we must have arg(z1)=−π/2, arg(z2)∈[0, θ], arg(w1)=π/2 and arg(w2)∈[0, θ].
Thus we can write z1=iy and w1=iv, where y�0 and v�0. From Lemma 3.6 we may
also suppose y>− sin θ/cos θ and v<sin θ/cos θ. Now we use Proposition A.4 to write z2

and w2 in terms of y and v:

z2 = eiθ 1−cos θ+y sin θ−v sin θ−yv cos θ−iv

1−cos θ−iv cos θ
,

w2 =
1−cos θ+y sin θ−v sin θ−yv cos θ−iy

1−cos θ−iy cos θ
.

In order for z∈S16∩S27, we must find conditions on y and v equivalent to Im(z2)�0,
Im(z2e

−iθ)�0, Im(w2)�0 and Im(w2e
−iθ)�0.

First we have

Im(z2e
iθ) =

−v(1−cos θ)2+yv cos θ(sin θ−v cos θ)−v2 cos θ sin θ

(1−cos θ)2+v2 cos2 θ
,

Im(w2) =
−y(1−cos θ)2−yv cos θ(sin θ+y cos θ)+y2 cos θ sin θ

(1−cos θ)2+y2 cos2 θ
.
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Using sin θ−v cos θ>0 and sin θ+y cos θ>0, it is easy to see that if y�0 and v�0 then
Im(z2e

−iθ)�0 and Im(w2)�0. Thus these two conditions require no extra hypotheses on
y and v.

Secondly we have

Im(z2) =
(sin θ−v cos θ)((1−cos θ)2+y sin θ(1−cos θ)−v sin θ(1−cos θ)+yv cos2 θ)

(1−cos θ)2+v2 cos2 θ
,

Im(w2e
−iθ)

=
−(sin θ+y cos θ)((1−cos θ)2+y sin θ(1−cos θ)−v sin θ(1−cos θ)+yv cos2 θ)

(1−cos θ)2+y2 cos2 θ
.

Therefore both Im(z2)�0 and Im(w2e
−iθ)�0 if and only if

(1−cos θ)2+y sin θ(1−cos θ)−v sin θ(1−cos θ)+yv cos2 θ � 0.

(We have used sin θ−v cos θ>0 and sin θ+y cos θ>0 again.) This gives the result.

Corollary 3.11. The intersection of S16 and S27 is a face F678 homeomorphic to
a disc. The boundary of F678 is γ67∪γ78∪γ86.

Proof. This is similar to the proof of Corollary 3.8, but is slightly more tricky as we
do not have a nice simple shape like a Euclidean quadrilateral.

The curve (1−cos θ)2+y sin θ(1−cos θ)−v sin θ(1−cos θ)+yv cos2 θ=0 in the (y, v)-
plane cuts the y-axis exactly once at y=−(1−cos θ)/sin θ<0 and cuts the v-axis exactly
once at v=(1−cos θ)/sin θ>0. Thus, this curve, the y-axis and the v-axis bound a
triangular region contained in the quadrant where y�0 and v�0. Proposition 3.10 gives
a homeomorphism from this triangular region to S16∩S27.

This homeomorphism extends to the boundary and we now show that the boundary
is the union of the three edges claimed. If

(1−cos θ)2+y sin θ(1−cos θ)−v sin θ(1−cos θ)+yv cos2 θ = 0

then we have Im(z2)=Im(w2e
−iθ), and so z∈B17∩B26. Thus, by inspection from our

table of edges, we have z∈γ67.
When y=0 we have z1=0 and Im(w2)=0. Hence z∈B13∩B28, and so, again by

inspection of the table of edges, we have z∈γ78. Finally, when v=0 we have w1=0 and
Im(z2e

−iθ)=0. Thus z∈B24∩B18, and so it lies in γ86.

Finally, we obtain the following result:
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Proposition 3.12. The point z lies in S17∩S26 if and only if z2=x and w2=ueiθ,
where x�0, u�0,

1−x−u+xu cos2 θ � 0,

2 cos θ−1−x cos θ−u cos θ+xu cos2 θ � 0.

Furthermore, if z∈S17∩S26 then Re(z1)�(1−cos θ)/cos θ and Re(w1)�(1−cos θ)/cos θ.

Proof. This again is similar to the proof of Proposition 3.7. Write z2=x and
w2=ueiθ, where 0�x<1/cos θ and 0�u<1/cos θ. Then from Proposition A.13, we have

z1 =
1−x−ueiθ+xu cos θ+iueiθsin θ

1−ueiθcos θ
,

w1 =
1−u−xe−iθ+xu cos θ−ixe−iθsin θ

1−xe−iθcos θ
.

We must show that arg(z1)∈[−π/2, 0] and arg(w1)∈[0, π/2], or equivalently that
Re(z1)�0, Im(z1)�0, Re(w1)�0 and Im(w1)�0. First,

Re(z1) =
(1−u cos θ)(1−x−u+xu cos2 θ)

(1−u)2 cos2 θ+sin2 θ
,

Re(w1) =
(1−x cos θ)(1−x−u+xu cos2 θ)

(1−x)2 cos2 θ+sin2 θ
.

Thus Re(z1)�0 and Re(w1)�0 if and only if 1−x−u+xu cos2 θ�0.
Secondly,

Im(z1) =
u sin θ(2 cos θ−1−x cos θ−u cos θ+xu cos2 θ)

(1−u)2 cos2 θ+sin2 θ
,

Im(w1) =
−x sin θ(2 cos θ−1−x cos θ−u cos θ+xu cos2 θ)

(1−x)2 cos2 θ+sin2 θ
.

Thus Im(z1)�0 and Im(w1)�0 if and only if 2 cos θ−1−x cos θ−u cos θ+xu cos2 θ�0.
This proves the first part of the result. For the second, observe that

Re(z1)− 1−cos θ

cos θ
=

(1−u cos2 θ)(2 cos θ−1−x cos θ−u cos θ+xu cos2 θ)
cos θ((1−u)2 cos2 θ+sin2 θ)

,

Re(w1)− 1−cos θ

cos θ
=

(1−x cos2 θ)(2 cos θ−1−x cos θ−u cos θ+xu cos2 θ)
cos θ((1−x)2 cos2 θ+sin2 θ)

.

Therefore if 2 cos θ−1−x cos θ−u cos θ+xu cos2 θ�0 we have Re(z1)�(1−cos θ)/cos θ

and Re(w1)�(1−cos θ)/cos θ.
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Corollary 3.13. The intersection of S17 and S26 is a face F3476 homeomorphic
to a disc. The boundary of F3476 is γ34∪γ47∪γ67∪γ36.

Proof. This proof is similar to the proof of Corollary 3.11. We leave the details to the
reader. The curve 1−x−u+xu cos2 θ=0 intersects the x-axis at x=1 and the u-axis at
u=1. Likewise, the curve 2 cos θ−1−x cos θ−u cos θ+xu cos θ=0 intersects the x-axis at
x=(2 cos θ−1)/cos θ∈(0, 1) and the u-axis at u=(2 cos θ−1)/cos θ. We claim that these
two curves do not intersect. Rearranging, we see that the curves are

u =
1−x

1−x cos2 θ
and u =

2 cos θ−1−x cos θ

cos θ−x cos2 θ
.

Equating these two expressions gives 0=(1−cos θ)((1−x)2 cos2 θ+sin2 θ). This is a con-
tradiction. (The reader may check the cases where x=1/cos2 θ and x=1/cos θ.) Thus it
is straightforward to check that these two curves and the two axes bound a quadrilateral.
Proposition 3.12 gives a homeomorphism to S17∩S26 that extends to the boundary. As
before, we can check that the boundary is the union of the four geodesics claimed.

The following result is another consequence of the results from this section. It will be
used when we are verifying that the images of D under Γ tessellate H2

C; see Lemma 4.14
below, for example.

Proposition 3.14. If z∈D then

Re(z1) � 1−cos θ

cos θ
and Re(w1) � 1−cos θ

cos θ
.

Proof. First consider the faces contained in complex lines or Lagrangian planes.
These subspaces are totally geodesic, and so, by convexity, we only need to check that
the vertices all satisfy this condition. That is clear by inspection. Next consider the other
faces we have constructed. From Propositions 3.7, 3.10 and 3.12 we see that the faces
F4587, F3586, F678 and F3476 all satisfy this condition. In Appendix B we shall show that
all other bisector intersections only contribute to the 1-skeleton of D. Thus the whole
of ∂D satisfies the conditions. By continuity we see that the interior points also satisfy
these conditions, and we are done.

We remark that there is a subtle point here. Consider the geodesic where z1=w1=x

and e−iθz2=w2=1−x for x∈R. All points in H2
C on this geodesic for which x�0 have

arg(z1)=arg(w1)=arg(w2)=0 and arg(z2)=θ. Hence if we had used closed intervals
when defining D in (17) we would have included all of this (semi-infinite) geodesic arc.
However, Proposition 3.14 shows that only those points with x�(1−cos θ)/cos θ lie in D.
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4. Discreteness of Γ

Our goal is to use Poincaré’s polyhedron theorem to show that the group Γ generated
by R1, R2 and I1 is discrete and to find a presentation. The discreteness of Γ could be
shown by applying [21, Theorem 0.2]. However, this would not give us a presentation
and only yields limited information about the geometry of the action of Γ on complex
hyperbolic space. We will prove the following result:

Theorem 4.1. Suppose that the ordered pair (n, d) is in the list

(5,−10), (6,∞), (7, 14), (8, 8), (9, 6), (10, 5), (12, 4), (18, 3),

that is, d=2n/(n−6). Then writing θ=2π/n, the group Γ generated by the side pairings
of D is a discrete subgroup of PU(1, 2) with fundamental domain D and presentation

Γ =
〈

J, P,R1, R2 :
J3 = P 3d = Rn

1 = Rn
2 = (P−1J)2 = I,

R2 = PR1P
−1 = JR1J

−1, P = R1R2

〉
. (19)

We prove this theorem using Poincaré’s polyhedron theorem. First we discuss this
theorem and then we prove Theorem 4.1 for the cases where n�7. In §6 we will discuss
the two remaining cases of n=5 and n=6.

4.1. Poincaré’s polyhedron theorem

In order to show that Γ is discrete with fundamental polyhedron D we need to use
Poincaré’s polyhedron theorem. We will follow the formulation given by Mostow in [13];
see also [5] or [7]. In the case of constant curvature, Epstein and Petronio [6] give a very
careful treatment of Poincaré’s theorem.

A combinatorial polyhedron is a cellular space homeomorphic to a compact polytope,
in particular, each of its codimension-2 cells, called a face, is contained in exactly two
codimension-1 cells, called sides. A polyhedron D is the realisation of a combinatorial
polyhedron as a cell complex in a manifold X. We use the convention that D is open.
A polyhedron is smooth if its cells are smooth. In our case X will be complex hyperbolic
space, and the sides of the polyhedron D will all be contained in bisectors and D will be
smooth.

A Poincaré polyhedron is a smooth polyhedron D in X with sides Sj and side-pairing
maps Tj∈Isom(X) satisfying:

(S.1) For each side Sj of D there is a side Sk of D and a side-pairing map Tj so
that Tj(Sj)=Sk.

(S.2) If Tj(Sj)=Sk then Tk=T−1
j . In particular, if j=k then T 2

j is the identity.
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(S.3) T−1
j (D)∩D=∅.

(S.4) T−1
j (D)∩D=Sj .

(S.5) The polyhedron D has only finitely many sides and each side has only finitely
many faces.

(S.6) There exists a number δ>0 so that each pair of disjoint sides is a distance at
least δ apart.

The relation coming from (S.2) is called a reflection relation.
In addition to the side-pairing conditions (S.1)–(S.6) there are some face conditions.

Let S1 be a side (codimension-1 cell) of D and F be a face (codimension-2 cell) in the
boundary of S1. Let T1 be the side-pairing map associated to S1 and consider T1(F ).
By hypothesis each face is contained in the boundary of exactly two sides. Thus T1(F )
is contained in the boundary of T1(S1) and another side, which we call S2. Let T2 be
the side-pairing map associated to S2 and consider T2 T1(F ). Continuing in this way we
obtain a sequence of faces, a sequence of sides Sj and a sequence of side-pairing maps Tj .
As the polyhedron has finitely many sides and faces, these sequences must be periodic.
Let k be the smallest integer so that all three sequences are periodic with period k. We
have Tk ... T2 T1(F )=F and we denote Tk ... T2 T1 by T . Then T is called the cycle
transformation at the face F .

Given a cycle transformation T =Tk ... T2 T1 and a positive integer m, define trans-
formations U0, ..., Umk−1 by

U0 = 1, U1 = T1, ... Uk−1 = Tk−1 ... T2 T1,

Uk = T, Uk+1 = T1 T, ... U2k−1 = Tk−1 ... T2 T1 T,
... ... ...

Umk−k = Tm−1, Umk−k+1 = T1 Tm−1, ... Umk−1 = Tk−1 ... T2 T1 Tm−1.

Then we have the following face conditions:
(F.1) Every face is a submanifold of X homeomorphic to a codimension-2 ball.
(F.2) For each face F with cycle transformation T there is an integer l so that the

restriction of T l to F is the identity.
(F.3) For each face F with cycle transformation T there is an integer m so that

T lm=(T l)m is the identity on the whole space X. Furthermore, the polyhedra U−1
j (D)

for d=0, ...,mlk−1 are disjoint, and their closures U−1
j (D) cover a neighbourhood of the

interior of F , that is, D and its images tessellate a neighbourhood of F .
The relations T lm=1 from (F.3) are called the cycle relations.
We may now state Poincaré’s polyhedron theorem:

Theorem 4.2. Let D be a Poincaré polyhedron with side-pairing transformations
Tj∈Σ satisfying side-pairing conditions (S.1)–(S.6) and face conditions (F.1)–(F.3).
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Then the group Γ generated by the side-pairing transformations is a discrete subgroup
of Isom(X) and D is a fundamental domain. A presentation is given by

Γ = 〈Σ | reflection relations, cycle relations〉.

4.2. The side-pairing maps

Let J be the move on the cone structure defined by J=PI1=R1R2I1. That is,

J =
1

1−cos θ+i sin θ

⎡
⎢⎣
−i sin θ −(1−cos θ) 1−cos θ

eiθ −1 eiθ

cos θ − cos θ 1+i sin θ

⎤
⎥⎦ . (20)

Observe that tr (J)=0, and so (as an element of PU(1, 2)) J has order 3. In fact one
may easily check that det(J)=−e2iθ, and so J3=−e6iθI.

Let J , P , R1 and R2 be given by (20), (7), (2) and (3), respectively. In this section we
show that the maps J , P , R1 and R2 pair the sides of D, and they satisfy the conditions
of Poincaré’s theorem. These maps pair the sides of D as follows (see Figure 11):

P : S13 −!S24, J : S16 −!S27, R1: S17 −!S18, R2: S28 −!S26,

P−1: S24 −!S13, J−1: S27 −!S16, R−1
1 : S18 −!S17, R−1

2 : S26 −!S28.

Observe that the side pairings are consistent with the antiholomorphic involution ι which
maps D to itself. Specifically, one may easily check that Jι=ιJ−1, Pι=ιP−1, R1ι=ιR−1

2

and R2ι=ιR−1
1 . Each of the sides S1j contains the vertex z1 in its 0-skeleton, and this

vertex lies on the intersection of three faces. In each case, two of these faces are contained
in meridians and the third in a slice of the bisector. This means that one of the edges
incident to z1 is contained in the spine of S1j for each j=3, 6, 7, 8. Applying ι, we see
that one of the edges incident to z2 is contained in the spine of S2j for each j=4, 6, 7, 8.
In both cases, this edge has been indicated in Figure 11 with a bold line.

Then Theorem 4.1 will follow immediately once we show that Γ satisfies the hy-
potheses of Poincaré’s theorem and that the relations in (19) are each cycle relations
associated to a face cycle of D. These relations will follow from Propositions 4.5, 4.7,
4.8, 4.9, 4.10, 4.11, 4.12 and 4.13. We give the proof in detail for n=7, 8, 9, 10, 12, 18,
and we will discuss the cases of n=5 and n=6 in §6.

It is clear that the side-pairing maps satisfy conditions (S.1) and (S.2) and that D

satisfies (S.5). As each pair of sides intersect we see that condition (S.6) is vacuous. Also
the face condition (F.1) follows from Corollary 3.5.

We now verify conditions (S.3) and (S.4) for each side.
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Figure 11. The sides of the polyhedron and side pairings. The bold lines denote the spines of
the bisectors.
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Lemma 4.3. If T is one of J , P , R1 and R2, then T−1(D)∩D=T (D)∩D=∅. Also

P−1(D)∩D = S13, J−1(D)∩D = S16, R−1
1 (D)∩D = S17, R−1

2 (D)∩D = S28,

P (D)∩D = S24, J(D)∩D = S27, R1(D)∩D = S18, R2(D)∩D = S26.

Proof. Consider the side S13. If z∈D then Im(z1)�0 with equality only only when
z∈S13. Likewise, if z=P (w)∈D then Im(w1)�0 with equality only when z∈S24. Hence
if P (z)∈D, or equivalently z∈P−1(D), then Im(z1)�0 with equality if and only if
z∈S13=P−1(S24). Thus (S.3) and (S.4) hold for this side and applying P also for S24.

The other parts follow similarly.

In the following sections we find the cycle transformation T of each face F . We will
also give the integers l and m from conditions (F.2) and (F.3). In each case, T l will
either be the identity, or else F will be contained in a complex line L and the T l will be a
complex reflection of order m that fixes L. This will verify condition (F.2) of Poincaré’s
theorem. We will also verify that the images of D tessellate around the faces formed by
intersecting pairs of sides, that is, conditions (F.3) are satisfied. As we go through this,
we will generate a list of cycle relations. This will verify the presentation (19).

We conclude this section by describing our method of proving the tessellation con-
ditions. We show that the (open) polyhedron D is disjoint from its image under the
relevant side pairings and that the interior of each face has a neighbourhood covered by
images of D. Recall that D is defined as the intersection of eight half-spaces defined by
bisectors. Each face is contained in two bisectors, and so D is contained in the intersec-
tion of the corresponding two half-spaces. Each image of D under suitable side-pairing
maps is contained in the intersection of two half-spaces that are the image of one of the
original pairs under this map. We must first show that each of these intersections is
disjoint. Secondly, we choose a neighbourhood U of the interior of the face that is small
enough so that it does not meet any of the bisectors defining D except the two we are
interested in. We then consider the closures of the half-space intersections considered
above and show that they cover U . It will be easier for us to use linear algebra to codify
this picture, but we will always keep the underlying geometry in mind.

4.3. Tessellation around generic faces

In this section we consider the faces of D that are neither contained in a complex line
nor in a Lagrangian plane. For each bisector B containing such a face of D we find
points zj and zk so that B is equidistant from zj and zk. We may express this geometric
statement using the Hermitian form via equation (14). The open and closed half-spaces
defined by this bisector may be described by replacing the equality of (14) with an
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inequality (Lemmas 4.4 and 4.6). Since the generators of Γ preserve the Hermitian form,
we can use this method to also describe the half-spaces defining the images of D.

Let z0 be the polar vector to the complex line L345 through z3, z4 and z5:

z0 =

⎡
⎢⎣

1
0
1

⎤
⎥⎦ . (21)

Lemma 4.4. Let z0 be given by (21). Then
(i) |〈z, z0〉|<|〈z, J−1(z0)〉| if and only if Re(z1)>0;
(ii) |〈z, z0〉|<|〈z, J(z0)〉| if and only if Re(w1)>0.

Proof. Note that P (z0)=z0. Using J=PI1 we see that I1(z0)=I1P
−1(z0)=J−1(z0).

In other words,

J−1(z0) =

⎡
⎢⎣
−1
0
1

⎤
⎥⎦ .

Thus |〈z, z0〉|<|〈z, I1(z0)〉| if and only if∣∣∣∣ z1

1−cos θ
− 1

cos θ

∣∣∣∣ <

∣∣∣∣− z1

1−cos θ
− 1

cos θ

∣∣∣∣ .

This is true if and only if Re(z1)>0, proving (i). Part (ii) then follows by applying ι.

Geometrically, this lemma says that B16 is the locus of points equidistant from the
complex lines L345 and J(L345). Similarly B27 is the locus of points equidistant from
L345 and J−1(L345).

Proposition 4.5. The polyhedron D and its images under J and J−1 tessellate
around the face F678=S16∩S27. Moreover, the cycle transformation corresponding to
this face is J and l=3, m=1. This gives the cycle relation J3=I.

Proof. By definition (17), if z∈D then Re(z1)>0 and Re(w1)>0. Hence, using
Lemma 4.4 we see that

D⊂{z∈H2
C : |〈z, z0〉|< |〈z, J(z0)〉| and |〈z, z0〉|< |〈z, J−1(z0)〉|}.

If z∈J±1(D) then J∓1(z)∈D. Hence

|〈J∓1(z), z0〉|< |〈J∓1(z), J(z0)〉| and |〈J∓1(z), z0〉|< |〈J∓1(z), J−1(z0)〉|.

Applying J±1 to each point and using J3=1, we obtain

J±1(D)⊂{z∈H2
C : |〈z, J±1(z0)〉|< |〈z, z0〉| and |〈z, J±1(z0)〉|< |〈z, J∓1(z0)〉|}.
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We immediately see that D, J(D) and J−1(D) are disjoint.
We know (Proposition 3.10) that the face F678 comprises points where Re(z1)=

Re(w1)=0. Thus it is mapped to itself by J and J−1. Let U be a neighbourhood of the
interior of this face. By shrinking U if necessary, assume that for all points of U we have

arg(z1)∈ (−π, 0), arg(z2)∈ (0, θ), arg(w1)∈ (−π, 0) and arg(w2)∈ (0, θ).

Then a point of U is in D if and only if both Re(z1)�0 and Re(w1)�0; or, equivalently,
both |〈z, z0〉|�|〈z, J−1(z0)〉| and |〈z, z0〉|�|〈z, J(z0)〉|. From this it is easy to see that
D, J(D) and J−1(D) cover U .

Lemma 4.6. Let z6, z7 and z8 be as given in §3.2. Then
(i) |〈z, z6〉|<|〈z, P−1(z7)〉| if and only if Im(z1)<0;
(ii) |〈z, z8〉|<|〈z, R−1

1 (z7)〉| if and only if Im(z2)>0;
(iii) |〈z, z7〉|<|〈z, R1(z8)〉| if and only if Im(z2e

−iθ)<0;
(iv) |〈z, z7〉|<|〈z, P (z6)〉| if and only if Im(w1)>0;
(v) |〈z, z8〉|<|〈z, R2(z6)〉| if and only if Im(w2e

−iθ)<0;
(vi) |〈z, z6〉|<|〈z, R−1

2 (z8)〉| if and only if Im(w2)>0.

Proof. This is similar to the proof of Lemma 4.4. We will only give the proof for (i).
All other parts are similar. Parts (iv), (v) and (vi) follow by applying ι to (i), (ii) and
(iii).

We have

z6 =

⎡
⎢⎣
−i(1−cos θ)/sin θ

0
1

⎤
⎥⎦ and P−1(z7) =

⎡
⎢⎣

i(1−cos θ)/sin θ

0
1

⎤
⎥⎦ .

Hence |〈z, z6〉|<|〈z, P−1(z7)〉| if and only if

∣∣∣∣ z1i

sin θ
− 1

cos θ

∣∣∣∣ <

∣∣∣∣− z1i

sin θ
− 1

cos θ

∣∣∣∣ .

This is true if and only if Im(z1)<0, giving (i).

Using the description in §3.3, this lemma gives the bisectors B13, B17, B18, B27, B26

and B28, respectively, as the locus of points equidistant from a pair of points in H2
C.

Proposition 4.7. The polyhedron D and its images under R−1
1 and R2 tessellate

around the face S3476=S17∩S26. Moreover, the corresponding cycle transformation is
R2P

−1R1 and l=m=1. This gives the cycle relation R2P
−1R1=1.
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Proof. Observe that if z∈D then z satisfies all six conditions of Lemma 4.6. Using
Lemma 4.6 (ii) and (v) we obtain

D⊂{z∈H2
C : |〈z, z8〉|< |〈z, R−1

1 (z7)〉| and |〈z, z8〉|< |〈z, R2(z6)〉|}. (22)

We now characterise R−1
1 (D). First observe that z∈R−1

1 (D) if and only if R1(z)∈D.
Thus R1(z) satisfies the conditions of (17). From Lemma 4.6 (iii) and (iv) we obtain

|〈R1(z), z7〉|< |〈R1(z), R1(z8)〉| and |〈R1(z), z7〉|< |〈R1(z), R1R2(z6)〉|,

where we have written P =R1R2. Thus

R−1
1 (D)⊂{z∈H2

C : |〈z, R−1
1 (z7)〉|< |〈z, z8〉| and |〈z, R−1

1 (z7)〉|< |〈z, R2(z6)〉|}. (23)

Similarly, applying R2 to Lemma 4.6 (vi) and (i) we obtain

R2(D)⊂{z∈H2
C : |〈z, R2(z6)〉|< |〈z, z8〉| and |〈z, R2(z6)〉|< |〈z, R−1

1 (z7)〉|}. (24)

Comparing equations (22), (23) and (24) we see that D, R−1
1 (D) and R2(D) are all

disjoint. The second part of the result is proved in a similar manner to the second part
of Proposition 4.5. The cycle transformation follows by observing that

S17∩S26
R1−−!S24∩S18

P−1

−−−!S28∩S13
R2−−!S17∩S26.

By applying R−1
2 =P−1R1 and R1, respectively, to Proposition 4.7 we see that D and

its images under R−1
2 and P−1 tessellate around the face F4587=S12∩S28, and that D

and its images under R1 and P tessellate around the face F3586=S18∩S24. Alternatively,
one could follow a direct argument analogous to that given above. In both cases the
cycle relation is a cyclic permutation of R2P

−1R1=I.

4.4. Tessellation around faces in totally geodesic planes

In this section we show that D and appropriate images tessellate around those faces of
D containing either the vertex z1 or the vertex z2. Each of these faces is contained in
a complex line or a Lagrangian plane. We focus on the faces containing z1. Then the
result for those faces containing z2 will follow by applying ι.

We could have used the method of the previous section and described the half-
spaces containing D in terms of the Hermitian form, as in (14). However, the bisectors
in question are given solely in terms of the arguments of z1 and z2. Hence the half-
spaces they determine are also given in terms of the arguments. In fact, the intersection
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of all four of these half-spaces is the wedge W1 which we defined solely in terms of
arguments (16). Thus to show that one of the half-space intersections is disjoint from
the images of another we have to show that either the argument of z1 or the argument
of z2 (or both) is different.

Recall from (17) that if z∈D then arg(z1)∈(−π/2, 0) and arg(z2)∈(0, θ). Moreover,
if z=P (w)∈D then arg(w1)∈(0, π/2) and arg(w2)∈(0, θ). Therefore, when z∈P−1(D),
we have arg(z1)∈(0, π/2) and again arg(z2)∈(0, θ). Similarly, I1 sends z1 to −z1 and
fixes z2. Hence, if z∈I1(D) then arg(z1)∈(π/2, π) and if z∈I1P

−1(D) then arg(z1)∈
(−π,−π/2). In both cases the argument of z2 remains unchanged.

Likewise R1 maps z1 to itself and maps z2 to eiθz2. So if z∈R1(D) we have arg(z1)∈
(−π/2, 0) and arg z2∈(θ, 2θ). Using similar arguments, it is easy to show that if z is in
one of the following images of D then the arguments of z1 and z2 lie in the following
intervals (compare this with Figure 12):

Images of D arg(z1) arg(z2)

D (−π/2, 0) (0, θ)
P−1(D) (0, π/2) (0, θ)

I1(D) (π/2, π) (0, θ)
I1P

−1(D) (−π,−π/2) (0, θ)
R1(D) (−π/2, 0) (θ, 2θ)

R1P
−1(D) (0, π/2) (θ, 2θ)

R1I1(D) (π/2, π) (θ, 2θ)
R1I1P

−1(D) (−π,−π/2) (θ, 2θ)
R−1

1 (D) (−π/2, 0) (−θ, 0)
R−1

1 P−1(D) (0, π/2) (−θ, 0)
R−1

1 I1(D) (π/2, π) (−θ, 0)
R−1

1 I1P
−1(D) (−π,−π/2) (−θ, 0)

Proposition 4.8. The polyhedron D and its images under R−1
1 , P−1 and R−1

1 P−1

tessellate around the face F1347=S13∩S17. Moreover, the corresponding cycle transfor-
mation is P−1R−1

2 PR1 and l=m=1. This gives the cycle relation P−1R−1
2 PR1=1.

Proof. If z∈F1347 then arg(z1)=arg(z2)=0 and so Im(z1)=Im(z2)=0. From the
table, we can use the arguments of z1 and z2 to read off the sign of their imaginary parts.
Thus, if z∈D then Im(z1)<0 and Im(z2)>0; if z∈P−1(D) then Im(z1)>0 and Im(z2)>0;
if z∈R−1

1 D then Im(z1)<0 and Im(z2)<0 and if z∈R−1
1 P−1(D) then Im(z1)<0 and

Im(z2)<0. Thus D, P−1(D), R−1
1 (D) and R−1

1 P−1(D) are all disjoint. Furthermore,
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0
z1

I1(D) P−1(D)

I1P
−1(D) D

0 z2

θ
θ

θ

R1(D)

D

R−1
1 (D)

Figure 12. The z1- and z2-planes close to 0 showing how their arguments vary in images of D.

arguing as in Proposition 4.5, D, P−1(D), R−1
1 (D) and R−1

1 P−1(D) cover a suitably
chosen neighbourhood of the interior of F1347.

The cycle transformation follows by observing that

S17∩S13
R1−−!S13∩S18

P−!S26∩S24
R−1

2−−−!S24∩S28
P−1

−−−!S17∩S13.

By applying R1, PR1 and R−1
2 PR1=P to Proposition 4.8 we see that D and its

images tessellate around the faces F1358, F2436 and F2458, respectively. In each case the
cycle relation is a cyclic permutation of P−1R−1

2 PR1=I.
Arguing similarly we have the following results:

Proposition 4.9. The polyhedron D and its images under R−1
1 , I1P

−1=J−1 and
R−1

1 I1P
−1 tessellate around the face F167=S16∩S17. Moreover, the corresponding cycle

transformation is J−1R−1
2 JR1 and l=m=1. This gives the cycle relation J−1R−1

2 JR1=1.

Proposition 4.10. The polyhedron D and its images under P−1, I1 and I1P
−1 tes-

sellate around the face F178=S13∩S16. Moreover, the corresponding cycle transformation
is P−1J and l=1, m=2. This gives the cycle relation (P−1J)2=1.

As above, we can use these results to show that D and its images tessellate around
F168, F267, F278 and F268. The cycle transformations are cyclic permutations of relations
we have already obtained.

Now consider F136=S17∩S18. This comprises points of ∂D for which z2=0. Hence
this face is fixed by R1. Since R1 just multiplies z2 by eiθ=e2πi/n, the following result is
easy to prove.

Proposition 4.11. The polyhedron D and its images under powers of R1 tessellate
around the face F136=S17∩S18. Moreover, the corresponding cycle transformation is R1

and l=1, m=n. This gives the cycle relation Rn
1 =1.

Applying ι we obtain the following consequence:
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Proposition 4.12. The polyhedron D and its images under powers of R2 tessellate
around the face F247=S26∩S28. Moreover, the corresponding cycle transformation is R2

and l=1, m=n. This gives the cycle relation Rn
2 =1.

4.5. Tessellation around the face F345=S13∩S24

When n�7 there is the face F345 contained in the complex line L345 given by z1=
(1−cos θ)/cos θ and containing z3, z4 and z5. The map P cyclically permutes these three
points and so maps L345 to itself. Moreover, P 3 fixes each of these three points and so
fixes L345 pointwise. A short computation shows that P 3 rotates a normal vector to L345

through an angle −e−3iθ. We write −e−3iθ=eiψ. When θ=2π/n for n=7, 8, 9, 10, 12, 18
then ψ=2π/d, where d=2n/(n−6) is an integer. Note that (1−cos θ+i sin θ)e−iθ=
eiψ/22 sin(θ/2).

When n�7 is not on our list the group Γ does not satisfy the Mostow–Thurston
conditions ([14, Theorem 2.2] or [21, Theorem 0.2]) and so is not discrete. A more
geometrical way of seeing this is to observe that, in this case, P 3 is still a boundary elliptic
map but the angle of rotation, which is (n−6)π/n, is not 2π/d for any integer d. This
means that D intersects its image under some non-trivial power of P . Non-discreteness
follows in a similar manner to the non-discreteness of triangle groups in the hyperbolic
plane whose internal angles are not submultiples of π; see [16] for a way of making this
statement precise. Alternatively, one may use Jørgensen’s inequality [10] to show that
for such n the group Γ is not discrete.

From now on we assume that n is on our list, and so d=2n/(n−6) is an integer. In
this section our goal is to prove the following proposition:

Proposition 4.13. Suppose that n=7, 8, 9, 10, 12, 18 and d=2n/(n−6). The poly-
hedron D and its images under powers of P tessellate around the face F345=S13∩S24.
Moreover, the corresponding cycle transformation is P and l=3, m=d. This gives the
cycle relation P 3d=1.

It would be very tricky to prove this proposition if we were to use the coordinates
z and w we have used before. Instead, we adopt new coordinates that reflect the action
of P . We could have made this change of coordinates via a matrix in PU(2, 1), as we did
in (8), but it turns out to be easier to work directly with new basis vectors. We write z
in terms of a new basis for C2,1 as follows:⎡

⎢⎣
z1

z2

1

⎤
⎥⎦ =

1−cos θ−z1 cos θ

2 cos θ−1

⎡
⎢⎣
−1
0
−1

⎤
⎥⎦+z2

⎡
⎢⎣

0
1
0

⎤
⎥⎦+

1−z1

2 cos θ−1

⎡
⎢⎣

1−cos θ

0
cos θ

⎤
⎥⎦ . (25)
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The first vector is the polar vector of L345; see (21). The last two vectors span the
complex linear subspace of C2,1 that projects to L345. Consider the coefficients of these
three vectors. We define projective coordinates by dividing the first two coordinates by
the last one. To check that this is well defined in H2

C, observe that from Lemma 3.6
we have |z1|<1 and so 1−z1 �=0. Hence with respect to this new basis, the projective
coordinates of z are

ξ1 =
1−cos θ−z1 cos θ

1−z1
and ξ2 =

z2(2 cos θ−1)
1−z1

. (26)

This is completely analogous to the definitions of z1 and z2 except with our new basis
rather than the standard basis. It will be useful to express ξ1 in terms of w1 and w2.
For completeness we also give ξ2. We can either use (11) and (12) to substitute for z1

and z2, or else we can resolve P (w) in terms of our basis:

ξ1 = eiψ/22 sin(θ/2)
1−cos θ−w1 cos θ

1−w1−w2e−iθ(2 cos θ−1)
, (27)

ξ2 =
(1−w1−w2e

−iθ)(2 cos θ−1)
1−w1−w2e−iθ(2 cos θ−1)

. (28)

The coordinate ξ1 is a complex coordinate on a complex line orthogonal to L345, and ξ2

is a complex coordinate on L345. There is a complex line orthogonal to L345 through
each point of L345. The coordinate ξ1 parametrises a line intersecting L345 in z3. Thus
these coordinates are well adapted to the geometry of the action of P . We remark that
P 3 sends (ξ1, ξ2) to (ξ1e

iψ, ξ2).
Similarly we may write w=P−1(z) in terms of the new basis:

P−1

⎡
⎢⎣

z1

z2

1

⎤
⎥⎦=

1−cos θ−z1 cos θ

2 cos θ−1

⎡
⎢⎣
−1
0
−1

⎤
⎥⎦+

1−z1−z2

1−cos θ−i sin θ

⎡
⎢⎣

0
1
0

⎤
⎥⎦

+
(1−z1)e−iθ−z2(2 cos θ−1)e−iθ

(2 cos θ−1)(1−cos θ−i sin θ)

⎡
⎢⎣

1−cos θ

0
cos θ

⎤
⎥⎦.

Thus the projective coordinates of w=P−1(z) in terms of z1 and z2 are

η1 = e−iψ/22 sin(θ/2)
1−cos θ−z1 cos θ

1−z1−z2(2 cos θ−1)
, (29)

η2 = eiθ (1−z1−z2)(2 cos θ−1)
1−z1−z2(2 cos θ−1)

. (30)
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In terms of w1 and w2 these coordinates are

η1 =
1−cos θ−w1 cos θ

1−w1
and η2 =

w2(2 cos θ−1)
1−w1

. (31)

Again η2 is a complex coordinate on L345, and the coordinate η1 is a complex coordinate
on a complex line orthogonal to L345, but which intersects L345 in a different point, this
time a point through P−1(z3)=z5. Furthermore, P 3 sends (η1, η2) to (η1e

iψ, η2).
Finally we want to write P (z) in the same way. Its projective coordinates are

ζ1 = eiψ/22 sin(θ/2)
1−cos θ−z1 cos θ

1−z1−z2(2 cos θ−1)e−iθ
, (32)

ζ2 =
(1−z1−z2e

−iθ)(2 cos θ−1)
1−z1−z2(2 cos θ−1)e−iθ

. (33)

In terms of w1 and w2 these coordinates are:

ζ1 = eiψ/22 sin(θ/2)
1−cos θ−w1 cos θ

1−w1−w2(2 cos θ−1)
, (34)

ζ2 = eiθ (1−w1−w2)(2 cos θ−1)
1−z1−z2(2 cos θ−1)

. (35)

These are complex coordinates on a complex line through z4 orthogonal to L345 and on
L345, respectively. Also, P 3 sends (ζ1, ζ2) to (ζ1e

iψ, ζ2).
We can write the vertices zj for j=3, 4, 5, 6, 7, 8 in terms of the new coordinates as

follows:

ξ1 ξ2 η1 η2 ζ1 ζ2

z3 0 0 0 eiθ(2 cos θ−1) 0 2 cos θ−1

z4 0 2 cos θ−1 0 0 0 eiθ(2 cos θ−1)

z5 0 eiθ(2 cos θ−1) 0 2 cos θ−1 0 0

z6 eiψ/2 sin(θ/2) 0 1−cos θ eiθ(2 cos θ−1) eiψ(1−cos θ) 2 cos θ−1

z7 1−cos θ 2 cos θ−1 e−iψ/2 sin(θ/2) 0 1−cos θ eiθ(2 cos θ−1)

z8 1−cos θ eiθ(2 cos θ−1) 1−cos θ 2 cos θ−1 eiψ/2 sin(θ/2) 0

Our proof of Proposition 4.13 will depend on studying the arguments of ξ1, η1 and
ζ1 for points in D and in its images under powers of P . As P 3 acts on each of these three
variables by multiplying them by eiψ, we see that in each case a fundamental domain for
the action of 〈P 3〉 comprises a sector where arg(ξ1), arg(η1) or arg(ζ1) lies in a segment
of length ψ. We begin by investigating the ranges of these three arguments for points
lying in D.
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Lemma 4.14. If z∈D then arg(ξ1)∈(0, ψ/2), arg(η1)∈(−ψ/2, 0) and arg(ζ1)∈(0, ψ).

Proof. From (26) we have

|1−z1|2 Im(ξ1) = |1−z1|2 Im
(

1−cos θ−z1 cos θ

1−z1

)

= Im((1−cos θ−z1 cos θ)(1−z̄1))

=−(2 cos θ−1) Im(z1).

Since Im(z1)<0 for points of D, this is positive, and so Im(ξ1)>0.
From (27) we have

|1−w1−w2e
−iθ(2 cos θ−1)|2

2 sin(θ/2)
Im(ξ1e

−iψ/2)

= Im((1−cos θ−w1 cos θ)(1−w1−w2e
iθ(2 cos θ−1)))

= (2 cos θ−1)(− Im(w1)(1−Re(w2e
−iθ) cos θ)

+Im(w2e
−iθ)(1−cos θ−Re(w1) cos θ)).

For points of D we have Im(w1)>0 and Im(w2e
−iθ)<0, and also Re(w2e

−iθ)�|w2|<
1/cos θ and Re(w1)�(1−cos θ)/cos θ. Therefore Im(ξ1e

−iψ/2)<0 as claimed.
This gives the first part. The second part follows by applying ι. For the last part,

from (26) and (32) we have

|1−z1|2
(2 cos θ−1)2 sin(θ/2)

Im
(

ξ1e
iψ/2

ζ1

)
= Im(−z2e

−iθ(1−z̄1))

=− Im(z1) Re(z2e
−iθ)−Im(z2e

−iθ)(1−Re(z1)).

Since on D we have Re(z1)�|z1|<1, Im(z1)<0, Re(z2e
iθ)>0 and Im(z2e

−iθ)<0, this
expression is positive. Thus arg(ξ1/ζ1)>−ψ/2. Now

arg(ζ1) = arg(ξ1)−arg(ξ1/ζ1) <ψ/2+ψ/2 =ψ.

Likewise from (31) and (34) we have

|1−w1|2
(2 cos θ−1)2 sin(θ/2)

Im
(

η1e
iψ/2

ζ1

)
= Im(−w2(1−w1))

=− Im(w1) Re(w2)−Im(w2)(1−Re(w1)).

Since on D we have Re(w1)<1, Im(w1)>0, Re(w2)>0 and Im(w2)>0, this expression is
negative. Thus arg(η1/ζ1)<−ψ/2. Now

arg(ζ1) = arg(η1)−arg(η1/ζ1) >−ψ/2+ψ/2 = 0.
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We now do the same thing for points lying in P (D) or P−1(D).

Lemma 4.15. If z∈P (D) then arg(ξ1)∈(0, ψ), arg(η1)∈(0, ψ/2), arg(ζ1)∈(ψ/2, ψ).
If z∈P−1(D) then arg(ξ1)∈(−ψ/2, 0), arg(η1)∈(−ψ, 0) and arg(ζ1)∈(0, ψ/2).

Proof. If z∈P (D) then P−1(z)∈D. Thus the result follows along the same lines
as the proof of Lemma 4.14 but with η1 instead of ξ1, ξ1 instead of ζ1 and, since
P−1(P−1(z))=P−3(P (z)), ζ1e

−iψ instead of η1. This proves the first part.
If z∈P−1(D) then P (z)∈D. The result follows similarly.

Applying P 3 increases the argument of each of ξ1, η1 and ζ1 by ψ. Hence, using
the previous two lemmas, we can find the range for the arguments of ξ1, ζ1 and η1 when
z∈P j(D) for j=−1, ..., 3d−2 as follows (in each case k=0, ..., d−1):

j arg(ξ1) arg(η1) arg(ζ1)

3k
(
kψ,

(
k+ 1

2

)
ψ

) ((
k− 1

2

)
ψ, kψ

)
(kψ, (k+1)ψ)

3k+1 (kψ, (k+1)ψ)
(
kψ,

(
k+ 1

2

)
ψ

) ((
k+ 1

2

)
ψ, (k+1)ψ

)
3k−1

((
k− 1

2

)
ψ, kψ

)
((k−1)ψ, kψ)

(
kψ,

(
k+ 1

2

)
ψ

)

Proposition 4.16. The images of D under distinct powers of P are disjoint.

Proof. Suppose that we are given points in the images of D under distinct powers of
P (mod 3d). By inspection from the table above we see that the arguments of at least
one of ξ1, η1 or ζ1 lie in disjoint intervals. Hence the points are distinct.

It remains to show that the images of D under powers of P cover a neighbourhood
of the interior of F345. Let U be a neighbourhood of the interior of F345 and, by shrinking
U if necessary, assume that on U we have

arg(z1)∈ (−π/2, π/2), arg(z2)∈ (0, θ), arg(w1)∈ (−π/2, π/2) and arg(w2)∈ (0, θ).

Proposition 4.17. Let U be as above. Then the images of D under powers of P

cover U .

Proof. A point z of U is in D if and only if both Im(z1)�0 and Im(w1)�0. This is
equivalent to arg(ξ1)�0 and arg(η1)�0. Likewise, such a point of U is in P (D) if and
only if arg(ξ1)�ψ and arg(η1)�0; and in P−1(D) if and only if arg(ξ1)�0 and arg(ζ1)�0.
For all these points arg(ζ1)∈[0, ψ].

Suppose that z∈U has arg(ζ1)∈[0, ψ]. If arg(ξ1)�0 then z∈P−1(D), if arg(η1)�0
then z∈P (D), and if both arg(ξ1)�0 and arg(η1)�0 then z∈D. Hence D, P−1(D) and
P (D) cover the part of U comprising points with arg(ζ1)∈[0, ψ].
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Applying powers of P 3 we see that for k=0, ..., d−1 then P 3k(D), P 3k−1(D) and
P 3k+1(D) cover the part of U comprising points with arg(ζ1)∈[kψ, (k+1)ψ]. This com-
pletes the result.

This completes the proof of Proposition 4.13 and hence also the proof of Theorem 4.1.

5. Other presentations

In this section we show that the geometrical presentation (19) is equivalent to three other
presentations that reveal more symmetry. The first presentation will enable us to show
that Γ has a (non-faithful) triangle group as a normal subgroup. It is essentially given
by Livné in [12, Lemma 3, p. 108]; see also [11]. The other two are related to Mostow’s
groups [13]; see also [7].

Theorem 5.1. The group Γ given by (19) has presentations:
(i) 〈I1, P, Q : I2

1 =P 3d=(PI1)3=(P−1Q)n=1, P 3=Q2, P−1QI1=I1P
−1Q〉;

(ii) 〈J,R1 : J3=Rn
1 =(JR−1

1 J)4=(R1JR1)3d=1, R1(JR−1
1 J)2=(JR−1

1 J)2R1〉;

(iii)
〈

R1, R2, R3 :
Rn

j =(RjRk)3d=1, RjRkRj =RkRjRk : j, k=1, 2, 3,

(R1R2R3)4=1, (R1R2R3)−2R1R2=(R2R3R1)−2R2R3

〉
.

We remark that in the presentation (iii) above we have the braid relation R1R2R1=
R2R1R2, which we predicted by realising R1 and R2 as Dehn twists on the sphere with
five cone points.

Lemma 5.2. Writing I1=P−1J and Q=PR1, the presentation of Theorem 5.1 (i)
follows from Theorem 4.1.

Proof. We write I1=P−1J and Q=PR1, and then we must show that each relation
in the presentation of Theorem 5.1 (i) follows from those in Theorem 4.1. First

I2
1 = (P−1J)2 = 1, P 3d = 1, (PI1)3 = J3 = 1 and (P−1Q)n = Rn

1 = 1

all follow immediately from the substitutions. Next using PR1=R2P and R1R2=P we
have

Q2 = PR1PR1 = PR1R2P = P 3.

Finally, using R1P
−1=P−1R2 and R2J=JR1 we have

P−1QI1 = R1P
−1J = P−1R2J = P−1JR1 = I1P

−1Q.

Lemma 5.3. Writing J=PI1 and R1=P−1Q, the presentation of Theorem 5.1 (ii)
follows from Theorem 5.1 (i).
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Proof. Substituting J=PI1 and R1=P−1Q means that the relations J3=(PI1)3=
1 and Rn

1 =(P−1Q)n=1 follow immediately. Next, using PI1PI1=I1P
−1, I1Q

−1PI1=
Q−1P and PQ−2P 2=1, we find that

(JR−1
1 J)2 = PI1Q

−1PPI1PI1Q
−1PPI1

= PI1Q
−1PI1P

−1Q−1P 2I1

= PQ−1PP−1Q−1P 2I1

= PQ−2P 2I1

= I1.

Therefore (JR−1
1 J)4=I2

1 =1 and

R1(JR−1
1 R1)2 = P−1QI1 = I1P

−1Q= (JR−1
1 J)2R1.

Finally, using I1P
−1Q=P−1QI1, P−1Q2=P 2, PI1=I1P

−1I1P
−1 and P−3d=1 we get

(R1JR1)3d = (P−1QPI1P
−1Q)3d

= (P−1QPP−1QI1)3d

= (P−1Q2I1)3d

= (P 2I1)3d

= (PI1P
−1I1P

−1)3d

= PI1P
−3dI1P

−1

= 1.

Lemma 5.4. Writing R2=JR1J
−1 and R3=J−1R1J , the presentation of Theo-

rem 5.1 (iii) follows from Theorem 5.1 (ii).

Proof. Since R2=JR1J
−1, R3=J−1R1J and Rn

1 =1, we immediately get Rn
2 =

JRn
1 J−1=1 and Rn

3 =J−1Rn
1 J=1. Observe that using J−1=J2 and (JR−1

1 J)4=1

(R1R2R3)−2R1R2 = R−1
3 R−1

2 R−1
1 R−1

3

= J−1R−1
1 JJR−1

1 J−1R−1
1 J−1R−1

1 J

= J(JR−1
1 J)4

= J.

Thus we may cyclically permute the indices to obtain

J = (R1R2R3)−2R1R2 = (R2R3R1)−2R2R3 = (R3R1R2)−2R3R1.
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Using J=J−2 and (JR−1
1 J)4=1 we have

(R3R1R2)4 = (J−1R1JR1JR1J
−1)4 = (JR−1

1 J)12 = 1.

Next, using J=J−2 and (JR−1
1 J)−2=(JR−1

1 J)2 we have

R2R3 = JR1J
−2R1J = J−1(JR−1

1 J)−2J−1 = J−1(JR−1
1 J)2J−1 = (R1JR1)−1.

Thus (R2R3)3d=1, and cyclically permuting the indices, we have (R1R2)3d=(R3R1)3d=1
as well. Finally, using J=J−2 and (JR−1

1 J)−2R1=R1(JR−1
1 J)−2 we have

R2R3R2 = (JR1J
−1)(J−1R1J)(JR1J

−1)

= J−1(JR−1
1 J)−2R1J

−1

= J−1R1(JR−1
1 J)−2J−1

= (J−1R1J)(JR1J
−1)(J−1R1J)

= R3R2R3.

Again we cyclically permute the indices to obtain R1R2R1=R2R1R2 and R3R1R3=
R1R3R1.

Lemma 5.5. Writing J=R−1
1 R−1

3 R−1
2 R−1

1 and P =R1R3, the presentation of The-
orem 4.1 follows from Theorem 5.1 (iii).

Proof. Substituting for J and P we immediately see that

Rn
1 = Rn

2 = 1, P = R1R2 and P 3d = (R1R2)3d = 1.

Using J=R−1
1 R−1

3 R−1
2 R−1

1 =R−1
3 R−1

2 R−1
1 R−1

3 and (R3R1R2)4=1 we have

(P−1J)2 = (R−1
2 R−1

1 R−1
3 R−1

2 R−1
1 R−1

3 )2 = (R3R1R2)−4 = 1.

Next, using J=R−1
1 R−1

3 R−1
2 R−1

1 and J−1=R2R3R1R2 we have

JR1J
−1 = R−1

1 R−1
3 R−1

2 R−1
1 R1R2R3R1R2 = R2.

Using R1R2R1=R2R1R2 we have

PR1P
−1 = R1R2R1R

−1
2 R−1

1 = R2.

Finally, J=R−1
1 R−1

3 R−1
2 R−1

1 =R−1
2 R−1

1 R−1
3 R−2

2 =R−1
3 R−1

2 R−1
1 R−1

3 and (R1R2R3)4=1
give

J3 = (R−1
3 R−1

2 R−1
1 R−1

3 )(R−1
2 R−1

1 R−1
3 R−2

2 )(R−1
1 R−1

3 R−1
2 R−1

1 ) = (R1R2R3)4 = 1.
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The following corollary generalises [7, Corollary 5.13]. It shows that Γ has a very
similar presentation to the Mostow groups ([13], [5]) with, in Mostow’s notation, �=2,
σ=n, t=(n+2)/2n and µ=−1. Indeed, in the next section we will show that when n=5
the group Γ actually appears on Mostow’s list.

Corollary 5.6. Suppose R1, R2 and R3 satisfy the relations of Theorem 5.1 (iii).
Let s=n if n is not divisible by 3, and s=n/3 if n is divisible by 3. Then (R3R2R1)2s=1.

Proof. Using just the braid relations we see that R2(R3R2R1)2=(R3R2R1)2R2.
Thus we have

(R3R2R1)2s = R3s
2 (R3R2R1)2s

= (R3
2R3R2R1R3R2R1)s

= (R2R3R2R3R1R3R1R2R1)s

= (R−1
1 R−1

3 (R3R1R2R3)R2R3R1(R3R1R2R3)R−1
3 R1)s

= R−1
1 (R−1

3 (R1R2R3R1)R2R3R1(R2R3R1R2)R−1
3 )sR1

= R−1
1 R−3s

3 R1

= 1.

The only relations we have used are the braid relations, R3s
2 =R3s

3 =1, (R1R2R3)4=1 and

R1R2R3R1 = R2R3R1R2 = R3R1R2R3.

6. The cases n=5 and n=6

In this section we explain how to modify the construction given in the previous sections
to the case where n=5 and n=6. In fact, in these cases the construction is easier and we
leave the details as an exercise for the reader. Moreover, we show that both these groups
are (up to conjugacy) the same as other groups with a known fundamental polyhedron
and presentation. Thus, in the cases of n=5 and n=6, an explicit construction of a
fundamental domain is not as interesting as the case n�7. In both cases we could
deduce discreteness from the criteria of Mostow [14] and Thurston [21].

6.1. The case n=6: the Eisenstein–Picard modular group

In this case cos θ= 1
2 and so it is easy to see that z3, z4 and z5 are all the same point.

This point is z0 given by (21), that is, it has coordinates z1=w1=1 and z2=w2=0. As
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the Hermitian form H has now become

H =−
√

3

⎡
⎢⎣

1 0 0
0 1

2 0
0 0 −1

⎤
⎥⎦,

we see that z3=z4=z5 is on the ideal boundary of H2
C. This point is a vertex of D and

is fixed by the map P , which is now parabolic. In fact, z0 is a cusp of Γ.
Consider the Cayley transform

C =

⎡
⎢⎣

1
2 0 1

2

0 1
2 (−1−i

√
3 ) 0

1
2 0 − 1

2

⎤
⎥⎦.

Then (−2/
√

3 )C∗HC is the Hermitian form used in [7], and C−1PC, C−1R1C and
−C−1I1C are the generators P , QP−1 and R for the Eisenstein–Picard modular group
PU(2, 1;Z[(−1+i

√
3 )/2]) given there. This proves the following result:

Proposition 6.1. When n=6 the Livné group Γ is conjugate to the Eisenstein–
Picard modular group.

Discreteness of Γ follows immediately from this result. We now give a sketch of how
to modify the arguments of Section 4 to construct a fundamental polyhedron. First,
we could modify our version of Poincaré’s theorem to include the possibility of ideal
vertices (by introducing consistent horospheres; see [6]). By doing this we could mimic
the construction of §4 to show that Γ is discrete and has a presentation (19) but without
the relation P 3d=1 (since the face F345 has now degenerated to an ideal vertex, there
is no cycle relation). Omitting this relation corresponds to the fact that d is infinite
when n=6. Using (the modified version of) Poincaré’s theorem, we can show that Γ has
the presentation given in Theorem 5.1 (ii) with n=6 and d=∞. This is the same as the
presentation of the Eisenstein–Picard modular group given in [7, Theorem 5.11]. Thus
our construction gives a new fundamental domain for PU(2, 1;Z[(−1+i

√
3 )/2]). It has

more sides than that given in [7], but has the advantage that all sides are contained in
bisectors.

6.2. The case n=5: a Mostow group

When n=5 the face F345=S13∩S24 collapses to a vertex inside H2
C. Thus when n=5

all eight faces are solid tetrahedra. As indicated in §3.2 the new vertex corresponds
to z0 given by (21), that is, z1=w1=1 and z2=w2=0. In particular, we again do not
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obtain a cycle transformation for S13∩S24 from Poincaré’s theorem. This means that the
presentation coming from Poincaré’s theorem does not contain the relation P 30=1, as
predicted above. We now show that, in fact, this relation follows from the other relations,
and so may be omitted from the presentation:

Lemma 6.2. If R5
1=R5

2=1 and R1R2R1=R2R1R2 then (R1R2)30=1.

Proof. First observe that use of R5
1=1 and the braid relation R1R2R1=R2R1R2

gives

(R−2
1 )R2(R2

1) =R3
1R2R

2
1R2R

−1
2

= R2
1R2R1R2R1R2R

−1
2

= R1R2R1R2R1R2R1R
−1
2

= (R1R2)3(R1R
−1
2 ).

The braid relation also yields (R1R2)3(R1R
−1
2 )=(R1R

−1
2 )(R1R2)3 and (R1R2)3=

(R2R1)3. Therefore

(R1R2)30 = (R1R2)15(R1R
−1
2 )5(R2R

−1
1 )5(R2R1)15

= ((R1R2)3(R1R
−1
2 ))5((R2R1)3(R2R

−1
1 ))5

= (R−2
1 R2R

2
1)

5(R−2
2 R1R

2
2)

5

= R−2
1 R5

2R
2
1R

−2
2 R5

1R
2
2

= 1.

We now show that Γ is one of the groups constructed by Mostow in [13]. This is a
special case of the theorem in [14, §4]. Deraux, Falbel and Paupert [5] have constructed
a simple fundamental domain for each of Mostow’s groups (and hence for Γ). Their
domain is a polyhedron with ten sides, not all of which are contained in bisectors. Using
Mostow’s notation (see [13, Table 2, p. 248]) we have:

Proposition 6.3. When n=5 the Livné group Γ is conjugate to the Mostow group
with p=5, �=2, σ=5, t= 7

10 , r=2, s=5 and µ=−1.

Proof. Putting these parameter values into [13, Theorem 20.1] the group in question
satisfies the relations

R′ = {R5
j = 1, RjRkRj = RkRjRk, (R1R2R3)4 = 1, (R3R2R1)10 = 1 : j, k = 1, 2, 3},

R′′ = {(R1R2R3)−2R1R2 = (R2R3R1)−2R2R3}.
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The presentation in Theorem 5.1 (iii) has all these relations except (R3R2R1)10=1, which
follows from the others by Corollary 5.6. In addition the presentation in Theorem 5.1 (iii)
includes the relation (RjRk)30=1, which follows from the others by Lemma 6.2.

Thus the two groups have the same presentation. Since this means that they are
isomorphic, by Mostow rigidity, they must be conjugate.

We could give a Cayley transform conjugating our R1, R2 and R3 to those given by
Mostow in [13, p. 214] (or in [5]). Livné also gives matrices for the case n=5. We could
similarly find a Cayley transform conjugating I1, Q=R1R2R1 and R1 to the matrices
A, y and z given in [12, Theorem 10, p. 111]. We leave both these calculations for the
reader.

7. The triangle groups

Define I2=JI1J
−1, I3=J−1I1J and consider the group ∆ generated by I1, I2 and I3. To

this end, we consider the presentation Theorem 5.1 (i). Thus, using P =JI1, we have

I2I3I1 = (JI1J
−1)(J−1I1J)I1 = (JI1)3 = P 3

(compare [20, Lemma 3.1 (3)]). Moreover, we also have the following relations, which are
(R4) in [12, p. 108]:

Lemma 7.1. We have

PI1P
−1 = I2, P I2P

−1 = I2I3I2, P I3P
−1 = I2I1I2,

QI1Q
−1 = I2, QI2Q

−1 = I2I3I1I3I2, QI3Q
−1 = I2I3I2.

Proof. Using P =JI1 and JIkJ−1=Ik+1 for k=1, 2, 3 (mod 3), we have

PIkP−1 = JI1IkI1J
−1 = (JI1J

−1)(JIkJ−1)(JI1J
−1) = I2Ik+1I2.

In particular, when k=1 we have PI1P
−1=I3

2 =I2.
Using P−1QI1=I1P

−1Q we have

QI1Q
−1 = P (P−1QI1Q

−1P )P−1 = PI1P
−1 = I2.

Next, using Q2=P 3=I2I3I1, we have

QI2Q
−1 = Q2(Q−1I2Q)Q−2 = (I2I3I1)I1(I1I3I2) = I2I3I1I3I2.
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Finally, using Q2=I2I3I1, QI1=I2Q and Q−1I2I3I1I3I2Q=I2 gives

QI3Q
−1 = Q−1Q2I3QQ−2

= Q−1I2I3I1I3QI1I3I2

= Q−1I2I3I1I3I2QI3I2

= I2I3I2.

The relations PIjP
−1 should be compared to [20, Lemma 3.1]. We obtain the

following immediate consequence of Lemma 7.1:

Corollary 7.2. The group ∆=〈I1, I2, I3〉 is a normal subgroup of Γ with quotient
group Υ=Γ/∆ given by

Υ = 〈P,Q : P 3 = Q2 = (P−1Q)n = 1〉.
Proof. It is clear that ∆ is a normal subgroup of Γ. Also P 3=Q2=I2I3I1∈∆. Setting

I1=1 in the presentation of Theorem 5.1 (i) immediately gives the presentation for Υ
given above.

The following proposition follows from Lemma 7.1. Alternatively, it could be proved
from the presentations of Theorem 5.1.

Proposition 7.3. The maps I1I2, I2I3 and I3I1 are each elliptic of order n.

Proof. We claim that

Rj
1I2R

−j
1 = (I2I3)jI2 and Rj

1I3R
−j
1 = (I2I3)j−1I2. (36)

It is clear that these identities are true when j=0. Using R1=P−1Q, we have

R1I2R
−1
1 = P−1QI2Q

−1P

= P−1I2I3I1I3I2P

= (P−1I2I3I2P )(P−1I2I1I2P )(P−1I2I3I2P )

= I2I3I2,

R1I3R
−1
1 = P−1QI3Q

−1P = P−1I2I3I2P = I2.

In particular, R1I2I3R
−1
1 =I2I3.

Therefore, by induction we have

Rj+1
1 I2R

−j−1
1 = R1(I2I3)jI2R

−1
1 = (I2I3)jI2I3I2 = (I2I3)j+1I2,

Rj+1
1 I3R

−j−1
1 = R1(I2I3)j−1I2R

−1
1 = (I2I3)j−1I2I3I2 = (I2I3)jI2.

This proves (36). Putting j=n in (36) and using Rn
1 =1 we have I2=Rn

1 I2R
−n
1 =(I2I3)nI2.

Thus (I2I3)n=1. Conjugating by J we find that (I1I2)n=(I3I1)n=1.
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An immediate consequence of Proposition 7.3 is that, since I2
j =(IjIk)n=1, the group

∆=〈I1, I2, I3〉 is a representation of an (n, n, n) reflection triangle group; see [17] or [19],
for example. As explained in [17, Proposition 1] (see also [2]) there is a family of such
representations depending on one real parameter. In fact, since QI3I1Q

−1=I2I3I2I1 we
see that (IjIkIjIl)n=1, and so, using the language of [19], ∆ is a representation of type
�n(Γ(n, n, n)), compare [19, Theorem 4.7], for example. In order to see the geometry
of the triangle group ∆, observe that I1 fixes the complex line with z1=0. This is the
complex line spanned by z7 and z8 (and containing z1); see Figure 11. Then I2 fixes
the image of this complex line under J , that is, the complex line spanned by z6 and z8

(and containing z2). This complex line is given by w1=0. Finally, I3 fixes the complex
line spanned by z6 and z7. Thus these three complex lines may be thought of as the
complexification of the boundary of F678=S16∩S27.

The following corollary follows immediately from the fact that Υ is finite when n=5
and infinite when n�6. It should be viewed in the context of representations of reflection
triangle groups considered in [19]. We use Bowditch’s criteria for geometrical finiteness in
variable negative curvature [1], in particular F5, which says that a group is geometrically
finite if and only if there is a bound on the orders of finite subgroups and the volume of
the compact core of the quotient manifold is finite.

Corollary 7.4. (i) When n=5 the group ∆=�5(Γ(5, 5, 5)) is a lattice.
(ii) When n=6, 7, 8, 9, 10, 12, 18 the group ∆=�n(Γ(n, n, n)) is a finitely generated,

geometrically infinite, discrete subgroup of PU(1, 2).

Proof. The group ∆ is a subgroup of the discrete group Γ and so is itself discrete.
When n=5 we see that ∆ is a subgroup of Γ of index 60 (the order of Υ in this

case). Thus ∆ is also a lattice.
Since Υ is an infinite group when n=6, 7, 8, 9, 10, 12, 18, we see that in these cases

∆ has infinite index in Γ. Moreover, since ∆ is normal in Γ they have the same limit set,
which is the whole of ∂H2

C, since Γ is a lattice. A fundamental domain for ∆ is the union
of all Υ-images of the polyhedron D, and so has infinite volume. Since the limit set is
the whole of ∂H2

C, this means that the convex hull of the limit set is all of H2
C. Hence

the convex core of H2
C/∆ is just H2

C/∆, which has infinite volume. Using Bowditch’s
condition F5 we see that ∆ is geometrically infinite.

In fact, Corollary 7.4 (ii) appears in Kapovich [11] using an identical proof. Also,
Corollary 7.4 (i) should be compared to a recent result of Deraux [4], who considers
�5(Γ(4, 4, 4)), that is, the representation of the (4, 4, 4) reflection triangle group for which
IjIkIjIl has order 5. Deraux shows that this group is also a lattice.

Following Schwartz, a reflection triangle group is said to be of type A if there are



56 j. r. parker

some parameter values where IjIkIjIl is elliptic and IjIkIl is non-elliptic, and of type B
if there are some parameter values where IjIkIl is elliptic and IjIkIjIl is non-elliptic.
A short calculation from Pratoussevitch’s formulae [17] shows that the (n, n, n) triangle
group is of type A when n�10 and type B when n�11. Schwartz has conjectured
[19, Conjecture 5.3] that the only infinite, discrete representations of triangle groups
of type B are faithful. When n=12 or n=18 our groups ∆ give counterexamples to
this conjecture (and n=18 also seems to contradict Schwartz’ computer experiments
mentioned in [20, §1.2]):

Proposition 7.5. When n=12 or n=18 the group ∆ is a discrete, non-faithful
triangle group of type B.

Appendix A: Bisector intersections

In this section we find the intersection of each pair of bisectors of the form B1j and B2k.

Proposition A.1. Suppose that z∈B13∩B24. Then, writing z1=x and w1=u, we
either have

x= u =
1−cos θ

cos θ
and w2 = eiθ 2 cos θ−1−z2 cos θ

cos θ(1−z2 cos θ)

or else

z2 = eiθ 1−cos θ−u+xu cos θ−(x−u)i sin θ

1−cos θ−u cos θ
,

w2 =
1−cos θ−x+xu cos θ−(x−u)i sin θ

1−cos θ−x cos θ
.

Proof. Substituting z1=x and w1=u in (9) gives

u =
−xi sin θ−z2e

−iθ(1−cos θ)+1−cos θ

−x cos θ−z2e−iθcos θ+1−i sin θ
.

It is easy to see that if x=(1−cos θ)/cos θ then u=(1−cos θ)/cos θ independent of z2. In
this case we obtain w2 from (10). Otherwise, solving for z2 gives

z2 = eiθ 1−cos θ−u+xu cos θ−(x−u)i sin θ

1−cos θ−u cos θ
.

Similarly, substituting z1=x and w1=u in (11) and solving for w2 gives

w2 =
1−cos θ−x+xu cos θ−(x−u)i sin θ

1−cos θ−x cos θ
.

A similar argument yields the following result:
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Proposition A.2. Suppose that z∈B13∩B27. Then, writing z1=x and w1=iv, we
have

z2 = eiθ 1−cos θ−v sin θ−iv−xi sin θ+xvi cos θ

1−cos θ−iv cos θ
,

w2 =
1−cos θ−x−v sin θ−xi sin θ+xvi cos θ

1−cos θ−x cos θ
.

Applying ι to Proposition A.2 gives the following consequences:

Proposition A.3. Suppose that z∈B16∩B24. Then, writing z1=iy and w1=u, we
have

z2 = eiθ 1−cos θ−u+y sin θ+iu sin θ+iyu cos θ

1−cos θ−u cos θ
,

w2 =
1−cos θ+y sin θ−yi+ui sin θ+uyi cos θ

1−cos θ−iy cos θ
.

Proposition A.4. Suppose that z∈B16∩B27. Then, writing z1=iy and w1=iv,
we have

z2 = eiθ 1−cos θ+y sin θ−v sin θ−yv cos θ−iv

1−cos θ−iv cos θ
,

w2 =
1−cos θ+y sin θ−v sin θ−yv cos θ−iy

1−cos θ−iy cos θ
.

Performing similar arguments but using (10) gives the following results:

Proposition A.5. Suppose that z∈B13∩B26. Then, writing z1=x and w2=ueiθ,
we have

z2 = eiθ cos θ−x cos θ−u+xu cos θ−i sin θ(1−x−u)
1−u cos θ

,

w1 =
1−cos θ−x−ueiθ(1−cos θ)+uxeiθcos θ−xi sin θ

−i sin θ−x cos θ
.

Proposition A.6. Suppose that z∈B13∩B28. Then, writing z1=x and w2=u, we
have

z2 = eiθ 1−x−u+xu cos θ+ui sin θ

cos θ−u cos θ+i sin θ
,

w1 =
1−cos θ−x−u(1−cos θ)+xu cos θ−xi sin θ

−i sin θ−x cos θ
.
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Proposition A.7. Suppose that z∈B16∩B26. Then, writing z1=iy and w2=ueiθ,
we have

z2 = eiθ cos θ−y sin θ−u−i sin θ−iy cos θ+iu sin θ+iyu cos θ

1−u cos θ
,

w1 =
1−cos θ+y sin θ−ueiθ(1−cos θ)−iy+iyueiθcos θ

−i sin θ−iy cos θ
.

Proposition A.8. Suppose that z∈B16∩B28. Then, writing z1=iy and w2=u, we
have

z2 = eiθ 1−u−iy+iu sin θ+iyu cos θ

cos θ−u cos θ+i sin θ
,

w1 =
1−cos θ+y sin θ−u(1−cos θ)−iy+iyu cos θ

−i sin θ−iy cos θ
.

Applying ι to the previous four propositions gives the following consequences:

Proposition A.9. Suppose that z∈B17∩B24. Then, writing z2=x and w1=u, we
have

z1 =
1−cos θ−xe−iθ(1−cos θ)−u+xue−iθcos θ+ui sin θ

i sin θ−u cos θ
,

w2 =
cos θ−x−u cos θ+xu cos θ+i sin θ(1−x−u)

1−x cos θ
.

Proposition A.10. Suppose that z∈B18∩B24. Then, writing z2=xeiθ and w1=u,
we have

z1 =
1−cos θ−x(1−cos θ)−u+xu cos θ+ui sin θ

i sin θ−u cos θ
,

w2 =
1−x−u+xu cos θ−xi sin θ

cos θ−x cos θ−i sin θ
.

Proposition A.11. Suppose that z∈B17∩B27. Then, writing z2=x and w1=iv,
we have

z1 =
1−cos θ−xe−iθ(1−cos θ)−v sin θ−iv−ixve−iθ cos θ

i sin θ−iv cos θ
,

w2 =
eiθ−x−ix sin θ−iveiθ+ixv cos θ

1−x cos θ
.

Proposition A.12. Suppose that z∈B18∩B27. Then, writing z2=xeiθ and w1=iv,
we have

z1 =
1−cos θ−x(1−cos θ)−v sin θ−iv+ixv cos θ

i sin θ−iv cos θ
,

w2 =
1−x−ix sin θ−iv+ixv cos θ

cos θ−x cos θ−i sin θ
.
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Likewise, we obtain the following results:

Proposition A.13. Suppose that z∈B17∩B26. Then, writing z2=x and w2=ueiθ,
we have

z1 =
1−x−ueiθ+xu cos θ+iueiθsin θ

1−ueiθcos θ
,

w1 =
1−u−xe−iθ+xu cos θ−ixe−iθsin θ

1−xe−iθcos θ
.

Proposition A.14. Suppose that z∈B17∩B28. Then, writing z2=x and w2=u, we
have

z1 =
1−x−u+xue−iθcos θ+iu sin θ

1−u cos θ
,

w1 =
eiθ−u−x+xu cos θ−ix sin θ

eiθ−x cos θ
.

Proposition A.15. Suppose that z∈B18∩B26. Then, writing z2=xeiθ and w2=
ueiθ, we have

z1 =
e−iθ−x−u+xu cos θ+iu sin θ

cos θ−u cos θ−i sin θ
,

w1 =
1−x−u+xueiθcos θ−xi sin θ

1−x cos θ
.

Proposition A.16. Suppose that z∈B18∩B28. Then, writing z2=xeiθ and w2=u,
we have

z1 =
1−xeiθ−u+xu cos θ+ui sin θ

1−u cos θ
,

w1 =
1−x−ue−iθ+xu cos θ−ix sin θ

1−x cos θ
.

Appendix B: Low-dimensional intersection of sides

In this section we show that the intersection of each pair of sides not considered in §3.4
is 1-dimensional; indeed, we show that it comprises arcs of the 1-skeleton of D. More
precisely, we show that each of these intersections is one or two edges of D. Each edge
of D is the intersection of at least three bisectors and is a geodesic segment between a
pair of vertices. This section may be omitted by readers who are willing to believe that
we enumerated all the faces of D in §3.4.
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Proposition B.1. If z∈S13∩S24 and z1 �=(1−cos θ)/cos θ then z∈γ58.

Proof. As in Proposition A.1 set z1=x and w1=u where 0�x, u<1. Using the
expressions from Proposition A.1 we have

0 � Im(z2) =
sin θ(1−u)(1−cos θ−x cos θ)

1−cos θ−u cos θ
,

0 � Im(w2e
−iθ) =

− sin θ(1−x)(1−cos θ−u cos θ)
1−cos θ−x cos θ

.

Since x<1 and u<1, we see that 1−cos θ−x cos θ and 1−cos θ−u cos θ have the same
sign. Also

0 � Im(z2e
−iθ) =

−(x−u) sin θ

1−cos θ−u cos θ
,

0 � Im(w2) =
−(x−u) sin θ

1−cos θ−x cos θ
.

Therefore x=u and Im(z2e
−iθ)=Im(w2)=0. Hence z∈B18∩B28 as well. Using our table

of edges we see that z lies in the geodesic containing γ58.

Proposition B.2. If z∈S13∩S26 then z∈γ34∪γ47.

Proof. Put z1=x and w2=ueiθ, where 0�x<1 and 0�u<1/cos θ. Using the expres-
sions of Proposition A.5 we see that

0 � Im(w1) =
sin θ(1−cos θ−x cos θ)(1−x)(1−u cos θ)

sin2 θ+x2 cos2 θ
.

Thus x�(1−cos θ)/cos θ. Also

0 � Im(z2) =
−u sin θ(1−cos θ−x cos θ)

1−u cos θ
.

Since 1−u cos θ>0 we either have u=0 or else x=(1−cos θ)/cos θ.
If u=0 we have z∈B17∩B28 as well. Since 0�x�(1−cos θ)/cos θ, then from our

table of edges we see that z∈γ47.
If x=(1−cos θ)/cos θ then we have z∈B17∩B24. Moreover,

z2 =
2 cos θ−1−u

cos θ−u cos2 θ

and so u�2 cos θ−1. Hence z∈γ34.

Applying ι we immediately have the following consequence:
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Proposition B.3. If z∈S17∩S24 then z∈γ34∪γ36.

Similarly, we obtain the following result:

Proposition B.4. If z∈S16∩S24 then z∈γ68.

Proof. As in Proposition A.3, set z1=iy and w1=u, where − sin θ/cos θ<y�0 and
u�0. Using Lemma 3.6 we have

1
cos θ

> Re(z2e
iθ) =

1
cos θ

− (1−cos θ)2−y sin θ cos θ

cos θ(1−cos θ−u cos θ)
.

Since (1−cos θ)2−y sin θ cos θ>0 we must have 1−cos θ−u cos θ>0. Because z is in D

we have

0 � Im(z2e
−iθ) =

u(sin θ+y cos θ)
1−cos θ−u cos θ

and since y>− sin θ/cos θ we see that u=0.
Substituting u=0 into the expression from Proposition A.3 we have

z2 =
eiθ(1−cos θ−y sin θ)

1−cos θ
and w2 =

1−cos θ+y sin θ−iy

1−cos θ−iy cos θ
.

Thus
0 � Re(z2e

−iθ) =
1−cos θ+y sin θ

1−cos θ
.

Hence −(1−cos θ)/sin θ�y�0. When y=−(1−cos θ)/sin θ this point is z6, and when
y=0 it is z8. The result follows.

Applying ι, we have the following consequences:

Proposition B.5. If z∈S13∩S27 then z∈γ78.

Proposition B.6. If z∈S16∩S28 then z∈γ78.

Proof. As in Proposition A.8 set z1=iy and w2=u where − sin θ/cos θ<y�0 and
0�u�1/cos θ. Then

0 � Re(w1) =
y(1−u cos θ)
sin θ+y cos θ

.

Since 1−u cos θ and sin θ+y cos θ are both positive, we must have y=0.
Substituting y=0 into the expressions for z2 and w1 from Proposition A.8 gives

z2 =
eiθ(1−u+iu sin θ)

cos θ−u cos θ+i sin θ
and w1 =

i(1−cos θ)(1−u)
sin θ

.

Since Im(w1)�0, we have u�1. When u=0 this point is z7, and when u=1 it is z8.

Applying ι gives the following results:
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Proposition B.7. If z∈S18∩S27 then z∈γ68.

Proposition B.8. If z∈S16∩S26 then z∈γ67.

Proof. As in Proposition A.7 write z1=iy and w2=ueiθ where − sin θ/cos θ<y�0
and 0�u<1/cos θ. Then

0 � Im(z2) =
−u(1−cos θ) sin θ−y(1−u cos2 θ)

1−u cos θ
,

0 � Re(w1) =
u(1−cos θ) sin θ+y(1−u cos2 θ)

sin θ+y cos θ
.

Since 1−u cos θ>0 and sin θ+y cos θ>0 we must have

y =
−u(1−cos θ) sin θ

1−u cos2 θ
.

Hence Im(z2)=Re(z1)=0 so z∈B17∩B19 as well. Thus the intersection is certainly con-
tained in the geodesic containing γ67.

Substituting in the expression from Proposition A.7 we have

w1 =
i(1−cos θ)(1−u)

sin θ
.

Since Im(w1)�0 we have u�1. When u=0 the point is z7, and when u=1 it is z6.

Applying ι gives the following consequences:

Proposition B.9. If z∈S17∩S27 then z∈γ67.

Proposition B.10. If z∈S17∩S28 the z∈γ47.

Proof. We write z2=x and w2=u, where 0�x, u<1/cos θ. Then using the expression
from Proposition A.14 we have

0 � Im(z1) =
u sin θ(1−x cos θ)

1−u cos θ
.

Since 1−x cos θ>0 and 1−u cos θ>0 we must have u=0. Thus z∈B13∩B26 as well.
Moreover, putting u=0 gives z1=1−x, and so x�1. Hence z∈γ47 as claimed.

Applying ι gives the following consequence:

Proposition B.11. If z∈S18∩S26 then z∈γ36.

Finally, we obtain the following result:

Proposition B.12. If z∈S18∩S28 then z∈γ58.
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Proof. We write z2=xeiθ and w2=u, where 0�x, u<1/cos θ. Using the formulae
from Proposition A.16 we have

0 � Im(z1) =
−(x−u) sin θ

1−u cos θ
,

0 � Im(w1) =
−(x−u) sin θ

1−x cos θ
.

Since 1−x cos θ>0 and 1−u cos θ>0 we must have u=x. Thus z∈B13∩B24. This gives
z1=w1=1−x, and so the result follows from Proposition A.1.
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