
Acta Math., 196 (2006), 229–260
DOI: 10.1007/s11511-006-0005-5
c© 2006 by Institut Mittag-Leffler. All rights reserved

Classification of negatively pinched manifolds
with amenable fundamental groups

by

Igor Belegradek

Georgia Institute of Technology

Atlanta, GA, U.S.A.

Vitali Kapovitch

University of Maryland

College Park, MD, U.S.A.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

2. Sketch of the proof of (1)⇒ (3) . . . . . . . . . . . . . . . . . . . . . 232

3. Topological digression . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

4. Parallel transport through infinity and rotation homomorphism . 234

5. Passing to the limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6. Controlling injectivity radius . . . . . . . . . . . . . . . . . . . . . . . 238

7. Product structure at infinity . . . . . . . . . . . . . . . . . . . . . . . 243

8. Tubular neighborhood of an orbit . . . . . . . . . . . . . . . . . . . . 246

9. The normal bundle is flat . . . . . . . . . . . . . . . . . . . . . . . . . 247

9.1. The normal bundle in a stratum is flat . . . . . . . . . . . . . . 248

9.2. The normal bundle to a stratum is flat . . . . . . . . . . . . . . 249

10. Infranilmanifolds are horosphere quotients . . . . . . . . . . . . . . . 251

11. On geometrically finite manifolds . . . . . . . . . . . . . . . . . . . . 253

Appendix A. Lemmas on nilpotent groups . . . . . . . . . . . . . . . . . 254

Appendix B. Isometries are smooth . . . . . . . . . . . . . . . . . . . . . . 255

Appendix C. Local formula of Ballmann and Brüning . . . . . . . . . . 255

Appendix D. Concave functions and submetries on Alexandrov spaces 257

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

1. Introduction

In this paper we study manifolds of the form X/Γ, where X is a simply-connected
complete Riemannian manifold with sectional curvatures pinched (i.e. bounded) between
two negative constants, and Γ is a discrete torsion-free subgroup of the isometry group
of X . According to [10], if Γ is amenable, then either Γ stabilizes a biinfinite geodesic,
or else Γ fixes a unique point z at infinity. The case when Γ stabilizes a biinfinite
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geodesic is completely understood, namely the normal exponential map to the geodesic
is a Γ-equivariant diffeomorphism, hence X/Γ is a vector bundle over S1 ; there are only
two such bundles each admitting a complete hyperbolic metric.

If Γ fixes a unique point z at infinity (such groups are called parabolic), then Γ
stabilizes horospheres centered at z and permutes geodesics asymptotic to z , so that,
given a horosphere H , the manifold X/Γ is diffeomorphic to the product of H/Γ with R .
We refer to H/Γ as a horosphere quotient. In this case, a delicate result of B. Bowditch [6]
shows that Γ must be finitely generated, which, by Margulis’ lemma [3], implies that Γ
is virtually nilpotent.

The main result of this paper is a diffeomorphism classification of horosphere quo-
tients, namely we show that, up to a diffeomorphism, the classes of horosphere quotients
and (possibly noncompact) infranilmanifolds coincide.

By an infranilmanifold we mean the quotient of a simply-connected nilpotent Lie
group G by the action of a torsion-free discrete subgroup Γ of the semidirect product of
G with a compact subgroup of Aut(G).

Theorem 1.1. For a smooth manifold N the following are equivalent :
(1) N is a horosphere quotient ;
(2) N is diffeomorphic to an infranilmanifold ;
(3) N is the total space of a flat Euclidean vector bundle over a compact infranil-

manifold.

The implication (3)⇒ (2) is straightforward; (2)⇒ (1) is proved by constructing
an explicit warped product metric of pinched negative curvature. The proof of the
implication (1)⇒ (3) occupies most of the paper, and depends on the collapsing theory
of J. Cheeger, K. Fukaya and M. Gromov [14].

If N is compact (in which case the conditions (2) and (3) are identical), then the
implication (1)⇒ (2) follows from Gromov’s classification of almost flat manifolds, as
improved by E. Ruh, while the implication (2)⇒ (1) is new. If N is noncompact, then
Theorem 1.1 is nontrivial even when π1(N)∼=Z , although the proof does simplify in this
case. A direct algebraic proof of (2)⇒ (3) was given in [39, Theorem 6], but the case when
N is a nilmanifold was already treated in [25], where it is shown that any nilmanifold is
diffeomorphic to the product of a compact nilmanifold and a Euclidean space.

We postpone the discussion of the proof till §2, and just mention that the proof
also gives geometric information about horosphere quotients, e.g. we show that H/Γ is
diffeomorphic to a tubular neighborhood of some orbit of an N -structure on H/Γ.

By Chern–Weil theory, any flat Euclidean vector bundle has zero rational Euler and
Pontryagin classes. Moreover, by [38], any flat Euclidean bundle with virtually abelian
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holonomy is isomorphic to a bundle with finite structure group. Thus the vector bundle
in (3) becomes trivial in a finite cover, and has zero rational Euler and Pontryagin
classes, and in particular, any horosphere quotient is finitely covered by the product of
a compact nilmanifold and a Euclidean space.

Corollary 1.2. A smooth manifold M with amenable fundamental group admits
a complete metric of pinched negative curvature if and only if it is diffeomorphic to the
Möbius band, or to the product of a line and the total space of a flat Euclidean vector
bundle over a compact infranilmanifold.

The pinched negative curvature assumption in Corollary 1.2 cannot be relaxed to
−16sec60 or sec6−1, e.g. because these assumptions do not force the fundamental
group to be virtually nilpotent [6, §6]. More delicate examples come from the work of
M. Anderson [1], who proved that each vector bundle over a closed nonpositively curved
manifold (e.g. a torus) carries a complete Riemannian metric with −16sec60. Since
in each dimension there are only finitely many isomorphism classes of flat Euclidean
bundles over a given compact manifold, all but finitely many vector bundles over tori
admit no metrics of pinched negative curvature. Also −16sec(M)60 can be turned into
sec(M×R)6−1 for the warped product metric on M×R with warping function et [5],
hence Anderson’s examples carry metrics with sec6−1 after taking product with R .
Specifically, if E is the total space of a vector bundle over a torus with nontrivial rational
Pontryagin class, then M=E×R carries a complete metric of sec6−1 but not of pinched
negative curvature. Finally, Anderson also showed that every vector bundle over a closed
negatively curved manifold admits a complete Riemannian metric of pinched negative
curvature, hence amenability of the fundamental group is indispensable.

Because an infranilmanifold with virtually abelian fundamental group is flat, Theo-
rem 1.1 immediately implies the following result.

Corollary 1.3. Let M be a smooth manifold with virtually abelian fundamental
group. Then the following are equivalent :

(1) M admits a complete metric of sec≡−1;
(2) M admits a complete metric of pinched negative curvature.

In [7] Bowditch developed several equivalent definitions of geometrical finiteness for
pinched negatively curved manifolds, and conjectured the following result.

Corollary 1.4. Any geometrically finite pinched negatively curved manifold X/Γ
is diffeomorphic to the interior of a compact manifold with boundary.

We believe that the main results of this paper, including Corollary 1.4, should extend
to the orbifold case, i.e. when Γ is not assumed to be torsion free. However, working
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in the orbifold category creates various technical difficulties, both mathematical and
expository, and we do not attempt to treat the orbifold case in this paper.

Acknowledgements. It is a pleasure to thank Ilya Kapovich and Derek J. S. Robinson
for Lemma A.1, Hermann Karcher for pointing us to [8], Robion C. Kirby for Lemma 7.3,
Anton Petrunin for numerous helpful conversations and suggestions and particularly for
Lemma D.1, and Xiaochun Rong and Kenji Fukaya for helpful discussions on collaps-
ing. We are grateful to the referee for various editorial comments. This work was
partially supported by the NSF grants DMS-0352576 (Belegradek) and DMS-0204187
(Kapovitch).

2. Sketch of the proof of (1)⇒ (3)

The Busemann function corresponding to z gives rise to a C2 -Riemannian submersion
X/Γ!R whose fibers are horosphere quotients each equipped with the induced C1 -
Riemannian metric gt . By the Rauch comparison theorem, the second fundamental form
of a horosphere is bounded in terms of curvature bounds of X (cf. [8]). In particular, each
fiber has curvature uniformly bounded above and below in comparison sense. Let σ(t) be
a horizontal geodesic in X/Γ, i.e. a geodesic that projects isometrically to R . Because
of the exponential convergence of geodesics in X , the manifold X/Γ is “collapsing” in
the sense that the unit balls around σ(t)∈X/Γ form an exhaustion of X/Γ and have
small injectivity radius for large t . Similarly, each fiber of X/Γ!R also collapses, and
in fact X/Γ is noncollapsed in the direction transverse to the fibers.

There are essential difficulties in applying the collapsing theory of [14] to X/Γ. First,
we do not know whether (X/Γ, σ(t)) converges in pointed Gromov–Hausdorff topology
to a single limit space. By general theory, the family (X/Γ, σ(t)) is precompact and thus
has many converging subsequences. While different limits might be nonisometric, one of
the main steps of the proof is obtaining a uniform (i.e. independent of the subsequence)
lower bound on the “injectivity radius” of the limit spaces at the base point. This is done
by a comparison argument involving taking “almost square roots” of elements of Γ, and
using the flat connection of [6] discussed below. Another complication is that the N -
structure on (X/Γ, σ(t)) provided by [14] may well have zero-dimensional orbits outside
the unit ball around σ(t), in other words a large noncompact region of (X/Γ, σ(t)) may
be noncollapsed, which makes it hard to control topology of the region.

However, once the “injectivity radius” bound is established, critical points of distance
functions considerations yield the “product structure at infinity” for X/Γ, and also for
(H/Γ, gt) if t is large enough.
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Furthermore, one can show that H/Γ is diffeomorphic to the normal bundle of an
orbit Ot of the N -structure. The orbit corresponds to the point in a limit space given
to us by the convergence, and at which we get an “injectivity radius” bound. This
depends on a few results on Alexandrov spaces with curvature bounded below, with key
ingredients provided by [21] and [31].

By the collapsing theory, the structure group of the normal bundle to the orbit of
an N -structure is a finite extension of a torus group [14]. Of course, not every such a
bundle has a flat Euclidean structure.

The flatness of the normal bundle to the orbit is proved using a remarkable flat
connection discovered by B. Bowditch [6], and later in a different disguise by W. Ball-
mann and J. Brüning [2], who were apparently unaware of [6]. It follows from [6] or [2]
that each pinched negatively curved manifold X/Γ, where Γ fixes a unique point z at
infinity, admits a natural flat C0 -connection that is compatible with the metric and has
nonzero torsion, and such that on short loops it is close to the Levi–Civita connection.
Furthermore, the parallel transport of the connection preserves the fibration of X/Γ by
horosphere quotients. Hence each horosphere quotient has flat tangent bundle.

In fact, we prove a finer result that the normal bundle to Ot is also flat, for suit-
able large t . (Purely topological considerations are useless here since there exist vector
bundles without flat Euclidean structure whose total spaces have flat Euclidean tangent
bundles, for example this happens for any nontrivial orientable R2 -bundle over the 2-
torus that has even Euler number.) It turns out that Ot sits with flat normal bundle
in a totally geodesic stratum of the N -structure, so it suffices to show that the normal
bundle to the stratum is flat, when restricted to Ot . Now, since the above flat connection
is close to the Levi–Civita connection, the normal bundle is “almost flat”, and it can be
made flat by averaging via center of mass. This completes the proof.

Throughout the proof we use the collapsing theory developed in [14]. This paper is
based on the earlier extensive work of Fukaya, and Cheeger–Gromov, and many argu-
ments in [14] are merely sketched. We suggest reading [17] for a snapshot of the state of
affairs before [14], and [34], [33], [16] for a current point of view.

3. Topological digression

The result of Bowditch [6] that horosphere quotients have finitely generated fundamental
groups actually implies that any horosphere quotient is homotopy equivalent to a compact
infranilmanifold (because any torsion-free finitely generated virtually nilpotent group is
the fundamental group of a compact infranilmanifold [15], and because for aspherical
manifolds any π1 -isomorphism is induced by a homotopy equivalence).
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To help appreciate the difference between this statement and Theorem 1.1, we discuss
several types of examples that are allowed by Bowditch’s result, and are ruled out by
Theorem 1.1. The simplest example is a vector bundle over an infranilmanifold with
nonzero rational Euler or Pontryagin class: such a manifold cannot be the total space of
a flat Euclidean bundle, as is easy to see using the fact that the tangent bundle to any
infranilmanifold is flat.

Another example is the product of a closed infranilmanifold and a contractible man-
ifold of dimension >2 that is not simply-connected at infinity. Finally, even more so-
phisticated examples come from the fact that below metastable range (starting at which
any homotopy equivalence is homotopic to a smooth embedding, by Haefliger’s embed-
ding theorem) there are many smooth manifolds that are thickenings of say a torus,
yet are not vector bundles over the torus. It would be interesting to see whether the
“weird” topological constructions of this paragraph can be realized geometrically, even
as nonpositively curved manifolds.

4. Parallel transport through infinity and rotation homomorphism

Let X be a simply-connected complete pinched negatively curved n -manifold normalized
so that −a26sec(X)6−1. One of the key properties of X used in this section is that
any two geodesic rays in X that are asymptotic to the same point at infinity converge
exponentially, i.e. for any asymptotic rays γ1(t) and γ2(t), with γ1(0) and γ2(0) lying on
the same horosphere, the function d(γ1(t), γ2(t)) is monotonically decreasing as t!∞ ,
and

e−atc1(a, d(γ1(0), γ2(0)))6 d(γ1(t), γ2(t))6 e−tc2(a, d(γ1(0), γ2(0))),

where ci(a, d) is linear in d for small d . This is proved by triangle comparison with
spaces of constant negative curvature.

Bowditch introduced a connection on X that we now describe (see [6, §3] for details).
Fix a point z at infinity of X . Let wi!z as i!∞ . For any x, y∈X , consider the parallel
transport map from x to wi followed by the parallel transport from wi to y along the
shortest geodesics. This defines an isometry between the tangent spaces at x and y .
By [6, Lemma 3.1], this map converges to a well-defined limit isometry P∞xy :TxM!TyM

as i!∞ . We refer to P∞xy as the parallel transport through infinity from x to y .
We denote the Levi–Civita parallel transport from x to y along the shortest geodesic

by Pxy ; clearly, if x and y lie on a geodesic ray that ends at z , then P∞xy =Pxy . A key
feature of P∞ is that it approximates the Levi–Civita parallel transport on short geodesic
segments (see [6, Lemma 3.2]; more details can be found in [11, §6]). This is because any
geodesic triangle in X spans a “ruled” surface of area at most the area of the comparison
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triangle in the hyperbolic plane of sec=−1. By exponential convergence of geodesics, the
area of the comparison triangle is bounded above by a constant times the shortest side
of the triangle. As the holonomy around the circumference of the triangle is bounded by
the integral of the curvature over its interior, we conclude that |Pxy−P∞xy |6q(a) d(xy),
where q(a) is a constant depending only on a .

Given x∈X , fix an isometry Rn!TxX and translate it around X using P∞ .
This defines a P∞ -invariant trivialization of the tangent bundle to X . Let Isoz(X)
be the group of isometries of X that fixes z . For any point y∈X look at the map
Isoz(X)!O(n) given by γ 7!P∞γ(y)y �dγ . It turns out that this map is a homomorphism
independent of y . We call it the rotation homomorphism. Starting with a different base
point x∈X or a different isometry Rn!TxX has the effect of replacing the rotation
homomorphism by its conjugate.

Now, if Γ is a discrete torsion-free subgroup of Isoz(X), then, since the rotation
homomorphism is independent of y , P∞ gives rise to a flat connection on X/Γ with
holonomy given by the rotation homomorphism. By the above discussion of P∞ , this
is a C0 -flat connection that is compatible with the metric and close to the Levi–Civita
connection on short loops. Of course, this connection has torsion.

Remark 4.1. The above discussion is easily seen to be valid if X is a simply-
connected complete C1 -Riemannian manifold of pinched negative curvature in the com-
parison sense. This is because any such C1 -metric can be approximated uniformly in
C1 -topology by smooth Riemannian metrics of pinched negative curvature [28], perhaps
with slightly larger pinching. Then the distance functions and Levi–Civita connections
converge uniformly in C0 -topology, and we recover all the statements above.

Remark 4.2. The connection of Bowditch, that was described above, was reinvented
later in a different disguise by Ballmann and Brüning [2, §3]. The connection in [2] is
defined by an explicit local formula in terms of the curvature tensor and the Levi–Civita
connection of X . Actually, [2] only discusses the case of compact horosphere quotients;
however, all the arguments there are local, hence they apply to any horosphere quotient.
The only feature which is special for compact horosphere quotients is that in that case
the connection has finite holonomy group [2], as follows from estimates in [11]. For
noncompact horosphere quotients, the holonomy need not be finite as seen by looking at
a glide rotation with irrational angle in R3 , thought of as a horosphere in the hyperbolic
4-space. We never have to use [2] in this paper; however, for completeness, we discuss
their construction in Appendix C, where we also show that the connections of [6] and [2]
coincide.
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5. Passing to the limit

Let X be a simply-connected complete pinched negatively curved n -manifold normalized
so that −a26sec(X)6−1, let c(t) be a biinfinite geodesic in X , and let Γ be a closed
subgroup of Iso(X) that fixes the point c(∞) at infinity. We refer to the gradient flow bt

of a Busemann function for c(t) as Busemann flow. Following Bowditch, we sometimes
use the notation x+t:=bt(x).

Since X has bounded curvature and infinite injectivity radius, the family (X, c(t),Γ)
has a subsequence (X, c(ti),Γ) that converges to (X∞, p,G) in the equivariant pointed
C1,α -topology [32, Chapter 10]. Here X∞ is a smooth manifold with C1,α -Riemannian
metric that has infinite injectivity radius and the same curvature bounds as X in the
comparison sense, and G is a closed subgroup of Iso(X∞). Note that Iso(X∞) is a Lie
group that acts on X by C3 -diffeomorphisms (this last fact is probably known but for
a lack of reference we give a simple proof in Appendix B).

Furthermore, geodesic rays in X that start at uniformly bounded distance from c(ti)
converge to rays in X∞ . In particular, the rays c(t+ti) starting at c(ti) converge to a ray
c∞(t) in X∞ that starts at p , and the corresponding Busemann functions also converge.
Since the Busemann functions on X are C2 [19], they converge to a C1 Busemann
function on X∞ . Thus the horosphere passing through p is a C1 -submanifold of X∞ ,
and is the limit of horospheres passing through c(ti). The Busemann flow is C1 on X ,
and C0 on X∞ . Since the horospheres in X and X∞ have the same dimension, the
sequence of horospheres passing through c(ti) does not collapse, and, more generally, each
horosphere centered at c∞(∞) is the limit of a noncollapsing sequence of horospheres
in X .

It is easy to see that the group G fixes c∞(∞), i.e. any γ∈G takes c∞ to a ray
asymptotic to c∞ . Furthermore, G leaves the horospheres corresponding to c∞(∞)
invariant.

Thus, one can define the rotation homomorphism φ∞:G!O(n) corresponding to
the point c∞(∞). The point only determines φ∞ up to conjugacy, so we also need
to fix an isometry L: Rn!TpX∞ . Similarly, a choice of an isometry Li:Rn!Tc(ti)X

specifies the rotation homomorphism φi: Γ!O(n) corresponding to the point c(∞). We
can assume that φi=φ0 for each i , by choosing Li equal to L0 followed by the parallel
transport P∞c(t0),c(ti)

=Pc(t0),c(ti) . Henceforth we denote φ0 by φ . Also it is convenient
to choose L as follows.

Lemma 5.1. After passing to a subsequence of (X, c(ti),Γ) , there exists L such
that if γi!γ , then φ(γi)!φ∞(γ) .

Proof. Since (X, c(ti),Γ)!(X∞, p,G) in pointed equivariant C1,α -topology, we can
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find the corresponding C1,α approximations fi:B(c(ti), 1)!B(p, 1). We may assume
that dfi:Tc(ti)X!TpX∞ is an isometry for all i . By compactness of O(n), dfi�Li

subconverge to an isometry L: Rn!TpX , so, by modifying fi slightly, we can assume
that dfi�Li=L . This L is then used to define φ∞ , and it remains to show that if γi!γ ,
then φ(γi)!φ∞(γ). For the rest of the proof we suppress Li and L .

Since dγi!dγ , it is enough to show that parallel transports through infinity from
c(ti) to γi(c(ti)) converge to the parallel transport through infinity from p to γ(p).

For x∈X and c(t) that lie on the same horosphere, and for any s>t , denote by
Px,s,c(t):Tc(t)M!TxM the parallel transport along the piecewise geodesic path x , x+s ,
c(t)+s , c(t). Here c(t)+s=c(t+s) and x+s also lie on the same horosphere. Now
|P∞xc(t)−Px,s,c(t)| can be estimated as

|P∞x+s,c(t)+s−Px+s,c(t)+s|6 q(a)d(x+s, c(t)+s) 6 q(a)e−sc2(a, d(x, c(t))).

By Remark 4.1, the same estimate holds for X∞ and c∞ .
Fix ε>0 and pick R>0 such that d(c(ti), γi(c(ti)))6R for all i . Take a large

enough s so that q(a)c2(a,R)e−s<ε . Since B(c(ti), R+s) converges to B(p, R+s) in
C1,α -topology, and γi!γ , we conclude that Pγi(c(ti)),s,c(ti)!Pγ(p),s,p in C0 -topology,
or more formally,

|dfi�Pγi(c(ti)),s,c(ti)�dγi−Pγ(p),s,p�dγ|<ε

for large i , where fi is the C1,α -approximation. By the estimate in the previous para-
graph, |Pγi(c(ti)),s,c(ti)−P∞γi(c(ti))c(ti)

|<ε and |Pγ(p),s,p−P∞γ(p),p|<ε , so the triangle in-
equality implies that

|dfi�P
∞
γi(c(ti))c(ti)

�dγi−P∞γ(p),p�dγ|< 3ε

for large i . Hence, |φ(γi)−φ∞(γ)|<3ε for all large i , and, since ε>0 is arbitrary, it
follows that φ(γi)!φ∞(γ) as i!∞ .

Proposition 5.2. Let K=kerφ∞ and let Gp be the isotropy subgroup of p in G .
Then

(1) φ(Γ)=φ∞(Gp)=φ∞(G);
(2) K acts freely on X , in particular K∩Gp={id} ;

(3) the short exact sequence 1!K!G
φ∞−−−!φ∞(G)!1 splits with the splitting given

by φ∞(G)'Gp ↪!G . In particular, G is a semidirect product of K and Gp .

Proof. (1) For each γ∈Γ we have d(γ(c(ti)), c(ti))!0 as i!∞ , so the constant
sequence γ converges to some g∈Gp . Lemma 5.1 yields φ(γ)!φ∞(g), which means
φ(γ)=φ∞(g). Thus, φ(Γ)⊂φ∞(Gp). Now, Gp is compact, so φ∞(Gp) is closed, and
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therefore φ(Γ)⊂φ∞(Gp). Since φ∞(Gp)⊂φ∞(G), it remains to show that φ∞(G)⊂φ(Γ).
Given γ∈G , we find γi∈Γ with γi!γ . By Lemma 5.1, φ∞(γ) is the limit of φ(γi)∈φ(Γ),
so φ∞(g)∈φ(Γ).

(2) If k∈K fixes a point x , then 1=φ∞(k)=P∞k(x)x�dk=P∞xx �dk=dk . Since k is
an isometry, k=id.

(3) This is a formal consequence of (1) and (2).

Remark 5.3. Since G is the semidirect product of K and Gp , any γ∈G can be
uniquely written as kg with k∈K and g∈Gp . We refer to k and g , respectively, as the
translational part and the rotational part of γ .

Remark 5.4. If Γ is discrete, then by Margulis’ lemma any finitely generated sub-
group of Γ has a nilpotent subgroup whose index i and the degree of nilpotency d are
bounded above by a constant depending only on n . (Of course, by [6], Γ itself is finitely
generated, as is any subgroup of Γ, but we do not need this harder fact here.) The same
then holds for G . Indeed, take finitely many elements gl of G and approximate them by
γj,l∈Γ, so they generate a finitely generated subgroup of Γ. Then γi

j,l approximate gi
l ,

and, by above, gi
l lie in a nilpotent subgroup of Γ. Hence a d -fold iterated commutator

in the gi
j,l ’s is trivial for all j , and then so is the corresponding commutator in the gi

l ’s.
Hence G is nilpotent by [35, Lemma VIII.8.17].

6. Controlling injectivity radius

We continue working with the notation of §5, except now we also assume that Γ is
discrete. The family (X, c(t),Γ) may have many converging subsequences with limits of
the form (X∞, p,G). We denote by K(p) the K -orbit of p , where K is the kernel of the
rotation homomorphism G!O(n). The goal of this section is to find a common lower
bound, on the normal injectivity radii of the K(p)’s.

Proposition 6.1. There exists a constant f(a) such that, for each x∈K(p) , the
norm of the second fundamental form IIx of K(p) at x is bounded above by f(a) .

Proof. Since K acts by isometries, |IIx|=|IIp| for any x∈K(p), so we can assume
x=p . Let X, Y ∈TpK(p) be unit tangent vectors. Extend Y to a left-invariant vector
field on K(p), and let α(t)=exp(tX)(p) be the orbit of p under the one-parameter
subgroup generated by X . Since IIp(X, Y ) is the normal component of ∇XY (p), it
suffices to show that |∇XY |6f(a). Let Pα

p,α(t) be the parallel transport from p to α(t)
along α . By §4, we have |Pp,α(t)−P∞p,α(t)|6q(a)d(p, α(t))62q(a)t for all small t .

A similar argument shows that |Pp,α(t)−Pα
p,α(t)|62q(a)t for all small t . Indeed, look

at the “ruled” surface obtained by joining p to the points of α near p . If we approximate
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α by a piecewise geodesic curve pα(t1) ... α(tk), where α(tk)=q is some fixed point near
p , then the area of the surface can be computed as the limit as k!∞ of the sum of the
areas of geodesic triangles pα(ti)α(ti+1). The area of each triangle is bounded above
by d(α(ti)α(ti+1)), so the area of the ruled surface is bounded above by the length of α

from p to q , which is at most 2t , for small t .

Therefore, |P∞p,α(t)−Pα
p,α(t)|64q(a)t=f(a)t by the triangle inequality, so

|P∞p,α(t)Y −Pα
p,α(t)Y |6 f(a)t.

On the other hand, P∞p,α(t)Y =Y (p) because Y is left-invariant, and since elements of
K have trivial rotational parts. Thus, |Pα

p,α(t)Y −Y (p)|6f(a)t , which by definition of
covariant derivative implies that |∇XY (p)|6f(a).

Corollary 6.2. (i) There exists r(a)>0 such that, if C is the connected com-
ponent of K(p)∩Br(a)(p) that contains p , and if x∈Br(a)(p) is the endpoint of the
geodesic segment [x, p] that is perpendicular to C at p , then d(x, c)>d(x, p) for any
c∈C\{p} .

(ii) If there exists s<r(a) such that K(p)∩Bs(p) is connected, then the normal
injectivity radius of K(p) is >s/3 .

Proof. (i) The metric on X∞ can be approximated in C1 -topology by smooth
metrics with almost the same two-sided negative curvature bounds and infinite injectivity
radius [28]. Also C1 -closeness of metrics implies C0 -closeness of Levi–Civita connections,
and hence almost the same bounds on the second fundamental forms of C . Now, for the
smooth metrics as above the assertion of (i) is well-known, and, after choosing a slightly
smaller r(a), it passes to the limits, so we also get it for X∞ .

(ii) Consider two arbitrary geodesic segments of equal length 6s/3 that start at
K(p), are normal to K(p) and have the same endpoint. Since K acts isometrically
on X∞ and transitively on K(p), we can assume that one of the segments starts at p .
By the triangle inequality, the other segment starts at a point of C , so by part (i) the
segments have to coincide.

Remark 6.3. The proof that K(p)∩Bs(p) is connected, for some s<r(a) indepen-
dent of the converging subsequence (X, c(ti),Γ), occupies the rest of this section, and
this is the only place in the paper where we use Bowditch’s theorem [6] that Γ is finitely
generated. Other key ingredients are the existence of approximate square roots in finitely
generated nilpotent groups (see Appendix A), and the following comparison lemma that
relates the displacement of an element of Γ to the displacement of its square root.
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Figure 1.

Lemma 6.4. Let U be the neighborhood of 1∈O(n) that consists of all A∈O(n) sat-
isfying |Av−v|<1 for any unit vector v∈Rn . Then there exists a function f : (0,∞)!
(0,∞) such that f(r)!0 as r!0 and d(g(x), x)6f(d(g2(x), x)) , for any x∈X and
any g∈Γ with φ(g)∈U .

Proof. Define f(r) to be the supremum of d(g(x), x) over all x∈X and g∈Γ with
φ(g)∈U satisfying r=d(x, g2(x)).

To see that f(r)<∞ , take arbitrary x∈X and g∈Γ with r=d(x, g2(x)), and let
R=d(x, g(x)). Look at the geodesic triangle in X with vertices x , g(x) and g2(x) (see
Figure 1). Arguing by contradiction, assume that by choosing g and x one can make
R arbitrarily large while keeping r fixed. The geodesic triangle then becomes very long
and thin. Let m be the midpoint of the geodesic segment [x, g(x)] , so that g(m) is the
midpoint of the geodesic segment [g(x), g2(x)] . By exponential convergence of geodesics
and comparison with the hyperbolic plane of sec=−1, we get d(m, g(m))6C(r)e−R/2 ,
which is small since R is large. So P∞g(m)m is close to Pg(m)m , which in turn is close to
Pg(x)m�Pg(m)g(x) , since the geodesic triangle with vertices m , g(m) and g(x) has small
area. Thus, φ(g) is close to Pg(x)m�Pg(m)g(x)�dg . Let v be the unit vector tangent to
[x, g(x)] at m and pointing towards x . Then dg(v) is tangent to [g(x), g2(x)] at g(m)
and is pointing towards g(x). Since the geodesic triangle with vertices x , g(x) and g2(x)
has small angle at g(x), the map Pg(x)m�Pg(m)g(x) takes dg(v) to a vector that is close
to −v . This gives a contradiction since |φ(g)(v)−v|61.

A similar argument yields f(r)!0 as r!0. Namely, if one can make d(g2(x), x)
arbitrarily small while keeping d(g(x), x) bounded below, then the geodesic triangle with
vertices x , g(x) and g2(x) becomes thin, and we get a contradiction exactly as above.
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Proposition 6.5. Let r(a) be the constant of Corollary 6.2. Then there exists a
positive s6r(a) , depending only on X , c and Γ , such that for any converging sequence
(X, c(ti),Γ)!(X∞, p,G) , the normal injectivity radius of K(p) is >s .

Proof. By Corollary 6.2, it suffices to find a universal s such that Ks :=K(p)∩Bs(p)
is connected. Let Ks

0 be the component of Ks containing p .
By [6] Γ is finitely generated, hence, by Margulis’ lemma [3], Γ contains a normal

nilpotent subgroup Γ̃ of index i6i(a, n). Therefore H=φ(Γ) is virtually nilpotent.
Hence, its identity component H0 is abelian, since compact connected nilpotent Lie
groups are abelian. Then φ−1(H0) is a subgroup of finite index in Γ. Let

Γ′= Γ̃∩φ−1(H0).

Clearly, [Γ:Γ′]=k=k(φ) is also finite.
We first give a proof for the case Γ=Γ′ . Arguing by contradiction, suppose that

for any s>0 there exists a sequence (X, c(ti),Γ)!(X∞, p,G) and a point γ(p)∈Ks\Ks
0

with d(p, γ(p))<s . By possibly making d(p, γ(p)) smaller, we can choose γ(p) so that
d(p, γ(p)) is the distance from p to Ks\Ks

0 . By the first variation formula, the geodesic
segment [p, γ(p)] is perpendicular to Ks

0 . The next goal is to construct the square root
of γ with no rotational part and displacement bounded by f(d(p, γ(p))), where f is the
function of Lemma 6.4.

Take γi∈Γ converging to γ . Since Γ is finitely generated, we can apply Lemma A.1
to find an (independent of i) finite set F⊂Γ such that each γi can be written as γi=g2

i fi

with fi∈F . We can further write each gi as the product gi=xiri , where xi has a small
rotational part and ri is close to a rotation, namely we let ri be an element of Γ that
is close to φ(gi) and let xi=gir

−1
i . Thus γi=(xiri)2fi and

γi =xirixirifi =x2
i [x

−1
i ri]r2

i fi.

Applying Lemma A.2 to x2
i [x

−1
i ri] we see that γi can be written as (xihi)2f ′ir

2
i fi with

hi∈[Γ,Γ] and f ′i∈F ′ . Since φ(Γ) is abelian, we have φ(hi)=1 and hence φ(xihi)=φ(xi)
is small. Since F and F ′ are independent of i , each element of F and of F ′ is close to
a rotation for large i . So f ′ir

2
i fi is close to a rotation and since both φ(γi) and φ(xihi)

are small, f ′ir
2
i fi subconverges to the identity. Thus, (xihi)2 subconverges to γ , and we

might as well assume that γi=(xihi)2 in the beginning. By Lemma 6.4,

d(c(ti), xihi(c(ti)))6 f(d(c(ti), (xihi)2(c(ti)))),

where the right-hand side converges to f(d(p, γ(p))). Hence xihi subconverges to w∈K

such that w2=γ and d(p, w(p))6f(d(p, γ(p))).
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Since w has no rotational part, P∞pw(p)=dwp . By assumption, s can be taken
arbitrarily small, so we can assume that f(d(p, γ(p))) is small, in particular w(p)∈Ks .
So Ppw(p) is close to dwp . Hence, if v is the unit vector tangent to [p, w(p)] at p

and pointing towards w(p), then Ppw(p)(v) is close to dwp(v). Therefore, w(p) is close
to the midpoint of [p, w2(p)]=[p, γ(p)] . Since [p, γ(p)] is perpendicular to Ks

0 and
d(p, γ(p))<r(a), it is clear that w(p) /∈Ks

0 . This contradicts the minimality of d(p, γ(p))
and completes the proof in the case Γ=Γ′ .

We now turn to the general case. Let G′ be the subset of G that consists of limits
of elements of Γ′ under the convergence (X, c(ti),Γ)!(X∞, p,G). It is straightforward
to check that G′ is a closed subgroup of G of index 6k . Thus the limit of any con-
verging subsequence of (X, c(ti),Γ′) has to be equal to (X∞, p,G′), therefore, in fact,
(X, c(ti),Γ′) converges to (X∞, p,G′). Since the rotation homomorphism of G restricts
to the rotation homomorphism of G′ , the translational part K ′ of G′ is G′∩K . In par-
ticular, |K :K ′|6k , hence the identity components of K and K ′ coincide. Using the first
part of the proof, we fix s such that K ′(p)∩Bs(p) is connected. Thus K ′(p)∩Bs(p)=Ks

0 .
Now let γ(p)∈Ks\Ks

0 be such that d(p, γ(p)) is the distance from p to Ks\Ks
0 .

Then the geodesic segment [p, γ(p)] is perpendicular to Ks
0 by the first variation formula.

Arguing by contradiction, suppose that d(p, γ(p)) can be arbitrarily small. Then, by the
triangle inequality, γj(p) is close to p for j=1, ..., k . Also, γk∈K ′ , so in fact γk(p)∈Ks

0

because K ′(p)∩Bs(p)=Ks
0 .

On the other hand, since the γj ’s have no rotational part, the argument used above
to prove that w(p) is close to the midpoint of [p, w2(p)] shows that the points γj(p)
almost lie on a geodesic segment [p, γk(p)] . Then the segments [p, γk(p)] and [p, γ(p)]
have almost the same direction, so [p, γk(p)] is almost perpendicular to Ks

0 . Hence by
Corollary 6.2, if d(p, γ(p)) is small enough, then γk(p) /∈Ks

0 , which is a contradiction.

Remark 6.6. Although it is not needed for the proof of Theorem 1.1, note that all
possible limits of (X/Γ, σ(ti)) have the same dimension independent of the sequence
ti!∞ . Consider all possible limits with fixed dim(K), and look at the space X∞/K .
It has a lower bound on the injectivity radius for points near the projection p̄ of p , and
hence vol(B(p̄, 1))>c>0 in all such spaces, where c is independent of the converging
sequence. By Proposition 5.2, the isotropy group Gp is the same for all possible limits
and, moreover, the Gp -actions on TpX∞ are all equivalent. Also, by Lemma A.3, the
identity component Gid

p of Gp commutes with the identity component of K , hence Gid
p

fixes pointwise the component of K(p) containing p . Thus the Gid
p -actions on Tp̄X∞/K

are all equivalent. This implies that a unit ball in X∞/G has volume >c′>0 with c′

only depending on dim(K). Hence all limits of the same dimension form a closed subset
among all limits; therefore, the space of all limits is the union of these closed sets. On
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the other hand, the space of all limits is connected by Lemma 6.7 below, thus all the
limits have the same dimension.

Lemma 6.7. If γ: [0,∞)!Z is a continuous precompact curve in a metric space Z,
then the space Lim(γ) of all possible subsequential limits limti!∞ γ(ti) is connected.

Proof. If Lim(γ) is not connected, then we can write it as a disjoint union of closed
(and hence compact) sets Lim(γ)=AtB . Then Uε(A)∩Uε(B)=∅ for some ε>0, where
Uε(S) denotes the ε -neighborhood of S . Let γ(ti)!a∈A and γ(t′i)!b∈B . Arguing
by contradiction, we see that the curve γ|[ti,t′i]

lies in Uε(Lim(γ))=Uε(A)∪Uε(B) for
all large i . Clearly, γ(ti)∈Uε(A) and γ(t′i)∈Uε(B) for all large i , which contradicts
Uε(A)∩Uε(B)=∅ .

7. Product structure at infinity

In the next two sections we apply the critical point theory for distance functions to show
the following result.

Theorem 7.1. For each large t , the horosphere quotient Ht/Γ is diffeomorphic to
the normal bundle of an orbit of an N -structure on Ht/Γ .

Proof. Let σ(t) be the projection of c(t) to X/Γ. Given a converging sequence
(X, c(ti),Γ)!(X∞, p,G), the sequence of pointed Riemannian manifolds (X/Γ, σ(ti))
converges in pointed Gromov–Hausdorff topology to a pointed Alexandrov space (Y, q):=
(X∞/G, q) with curvature bounded below by −a2 .

The identity component Kid of K is normal in K , hence its p -orbit Kid(p) is
invariant under the action of Gp . Let r�s be a positive constant to be determined
later, where s comes from Proposition 6.5. The 3r -tubular neighborhood of Kid(p)
is also Gp -invariant, so the ball B3r(q) is isometric to the G -quotient of this tubular
neighborhood. By Proposition 6.5, any x∈B3r(q) can be joined to q by a unique shortest
geodesic segment [q, x]⊂B3r(q).

Recall that in general a distance function d( · , q) on an Alexandrov space is called
regular at the point x if there exists a segment emanating from x that forms an angle
>π/2 with any shortest segment joining x to q .

In our case, the function d( · , q) is regular at any x∈B3r(q)\{q} .
Let w(a)>1 be a constant depending only on a that will be specified later. By

angle comparison, the function d( · , σ(t)) on

Ar(σ(t))= {x∈Bs(σ(t)) : d(x, σ(t))∈ [r/w(a), w(a)r]}
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is regular provided the Gromov–Hausdorff distance between Bs(q) and Bs(σ(t)) is
�r/w(a). Because the family {Bs(σ(t))} is precompact in the Gromov–Hausdorff topol-
ogy, Proposition 6.5 implies that the function d( · , q) is regular on Ar(σ(t)) for all t>t0

with sufficiently large t0 .
We denote by Ht the horosphere centered at c(∞) that contains c(t). Since the

second fundamental form of Ht is bounded in terms of a , any short segment joining
nearby points of Ht/Γ is almost tangent to Ht/Γ. Hence, by taking r sufficiently
small, we can assume that for all t>t0 and all x∈Ar(σ(t)) there exists a unit vector
λ∈Tx(Ht/Γ) that forms an angle αλ,[x,σ(t)]∈

[
2
3π, π

]
with any shortest segment [x, σ(t)] .

By the first variation formula, the derivative of d( · , q) in the direction of λ equals the
minimum of − cos αλ,[x,σ(t)] , over all shortest segments [x, σ(t)] , and by above it lies in[
1
2 , 1

]
.

The distance function on X/Γ need not be smooth, and for what follows it is con-
venient to replace d( · , σ(t)) by its average over a small ball Bδ(σ(t)) as follows. Given
δ�r , define f :X/Γ!R by

f(x) =
1

volBδ(σ(t))

∫
Bδ(σ(t))

d(x, y) dy,

where x∈Ht/Γ (i.e. t=b(x)). Now, f is a C1 1-Lipschitz function with

|f(x)−d(x, σ(t))|6 δ

for any x∈Ar(σ(t)). Observe that, for any η∈Tx(X/Γ),

dfx(η) =
1

volBδ(σ(t))

∫
Bδ(σ(t))

(− cos αη,[x,y]) dy. (7.2)

Also note that, since δ�r and sec(X/Γ)>−a2 , for all large t , if x∈Ar(σ(t)) and
y∈Bδ(σ(t)), then there is a point z such that d(z, x)≈d(x, y) and d(z, y)≈2d(x, y).
Therefore, the angle corresponding to x in the comparison triangle in the space of
sec≡−a2 is almost π . By Toponogov comparison, the angle at x in any geodesic triangle
4xyz is almost π . By (7.2), this implies that if η is a direction of any shortest segment
connecting x to z , then dfx(η)∈

[
1
2 , 1

]
provided δ is small enough.

By gluing λ ’s via a partition of unity, we obtain a C1 unit vector field Λ that is
tangent to Ht/Γ and defined for all t>t0 and x∈Ar(σ(t)), and such that dfx(Λ)∈

[
1
4 , 1

]
if δ is sufficiently small. Then, Sr={x∈X/Γ:f(x)=r} is a properly embedded C1 -
hypersurface in X/Γ that is transverse to Λ. Also, the compact submanifold St(t):=
Sr∩Ht/Γ is δ -close to the metric r -sphere in Ht/Γ centered at σ(t). Furthermore,
A(r, t):=Ar(σ(t))∩Ht/Γ is C1 -diffeomorphic to the product Sr(t)×[r/w(a), w(a)r] .
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Here we are only interested in the part of X/Γ with t>t0 . There, the Busemann
function X/Γ!R restricts to a C1 -submersion Sr![t0,∞), because otherwise at some
point the tangent spaces of Sr and Ht/Γ coincide by dimension reasons, so that Sr

cannot be transverse to Λ∈T (Ht/Γ). By construction, the submersion is proper, hence
it is a C1 -fiber bundle, which is C1 -trivial by the covering homotopy theorem. The
trivialization defines a C1 -isotopy F :Sr(t0)×[t0,∞)!X/Γ such that Sr(t0)×{t} is
mapped onto Sr(t).

We push this isotopy along the Busemann flow back into Ht0/Γ by setting

G(t, x) = bt0−t(F (x, t))

for any t>t0 and x∈Sr(t0), to get the C1 -isotopy G:Sr(t0)×[t0,∞)!Ht0/Γ.

The Busemann flow induces a C1 -diffeomorphism Ht/Γ!Ht0/Γ, so around each
submanifold bt0−t(Sr(t)) there is a “tubular neighborhood” bt0−t(A(r, t)).

By the exponential convergence of geodesics, one can choose w(a) in the definition of
Ar(σ(t)) so that, for any t>t0 , there exists t′>t+1 such that bt0−t′(Sr(t′)) is contained
in bt0−t(A(r, t)) and is disjoint from bt0−t(Sr(t)). By the following elementary lemma,
the region between bt0−t(Sr(t)) and bt0−t′(Sr(t′)) is C1 -diffeomorphic to Sr(t)×[0, 1].

Lemma 7.3. Let M be a closed smooth manifold and Ft:M!M×R be a C1 -
isotopy with F0(M)=M×{0} . If F0(M) and Fs(M) are disjoint for some s , then the
region between F0(M) and Fs(M) is diffeomorphic to M×[0, 1] .

Proof. By the isotopy extension theorem [12, p. 293], we can extend the isotopy Ft

to an ambient C1 -isotopy which is the identity outside a compact subset of M×R .
Assume, without loss of generality, that s<0, and then take n>0 so large that the
isotopy is the identity on M×{n} . Then, by restricting the ambient isotopy to the
region between M×{n} and M×{0} , we get a diffeomorphism of the region between
M×{n} and M×{0} onto the region between M×{n} and Fs(M). The former region is
the product, so is the latter. But the latter region is diffeomorphic to the region between
M×{0} and Fs(M), because the region between M×{n} and M×{0} is M×[0, 1].

By gluing a countable number of such diffeomorphisms together we conclude that,
for all sufficiently large t ,

(Ht/Γ)\U(r, t) is C1 -diffeomorphic to [t,∞)×Sr(t), (7.4)

where U(r, t)={x∈Ht/Γ:f(x)<r} .
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8. Tubular neighborhood of an orbit

It remains to understand the topology of U(r, t), and we do so for large enough t and
small enough r . The proof involves the collapsing theory developed in [14] and the
geometry of Alexandrov spaces (for which we refer to [9] and Appendix D).

Let us look at a converging sequence (Hti/Γ, σ(ti))!(H, q). First, we replace the
metric on Hti/Γ with an invariant Riemannian metric which is εi close to Hti/Γ in
C1 -topology and is A(εi)-regular [37], [14], [28], where εi!0 as i!∞ . Also, the spaces
Hti/Γ with the new metrics have uniform curvature bound |sec|6C ′ [37] that depends
only on the original curvature bound of Hti/Γ. The collapsing theory [14] yields, for
each i , the following commutative diagram given by the invariant metric hi on Hti/Γ:

FBi

��

ηi // Yi

��

Bi
�ηi // Xi .

Here Bi is the ball B(σ(ti), 1) in the metric hi , and FBi is the frame bundle of Bi . The
vertical arrows are quotient maps under isometric O(n)-actions and ηi is a Riemannian
submersion given by the N-structure on FBi . Clearly the induced map �ηi is a subme-
try (see Appendix D for background on submetries). By Lemma D.3, the Toponogov
comparison with curv>−C ′ holds for any triangle with vertices in B

(
�ηi(σ(ti)), 1

4

)
for

all large i .

Since we will only be interested in the geometry of Xi inside the 1
8 -neighborhood

of �ηi(σ(ti)), we will treat the Xi ’s as Alexandrov spaces.

Note that Xi
G–H−−−!�X=B(q, 1) and dim Xi=dim �X for all large i . We claim that

there exists an R>0 and a sequence qi∈Xi converging to q such that d( · , qi) has no
critical points in B(qi, R) for all large i . Consider two cases depending on whether q

lies on the boundary of the Alexandrov space �X .

Case 1. Suppose q /∈∂�X . Since �X has curv>−C ′ in comparison sense, by [21],
there exists a strictly concave function u on a B(q, R), for some R�1, such that it has
a maximum at q , and the superlevel sets are compact. By possibly making R smaller,
we can assume that R<d(q, ∂�X). This function is constructed by taking averages and
minima of distance functions. Therefore, it naturally lifts to a function ui on Xi such
that ui converges uniformly to u . By [21, Lemma 4.2], the lifts ui are strictly concave on
B(�ηi(σ(ti)), R/2) for all large i . Let qi be the point of maximum of ui . By uniqueness
of the maximum, qi!q as i!∞ . By Lemma D.1, d( · , qi) has no critical points in
B(qi, R/3) for all large i .
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Case 2. Suppose now that q∈∂�X . Denote by D�X and DXi the doubles of �X and
Xi along the boundary and let ι be the canonical involution. By [30], the doubles are also
Alexandrov spaces with curv>−C ′ . It is clear that DXi

G–H−−−!D�X . By construction,
we can choose u and ui to be ι -invariant. As before, let qi be the point of maximum
of ui . Since ui(qi)=ui(ι(qi)), by uniqueness of maxima of strictly concave functions, we
see that qi must lie on ∂Xi . Again by Lemma D.1, d( · , qi) has no critical points in
B(qi, R/3) in DXi for all large i , and hence the same is true for d( · , qi) in B(qi, R/3).

This immediately implies that the distance function d( · , Oi) to the orbit Oi over qi

has no critical points in the R/3-neighborhood UR/3(Oi) of Oi for all large i . Indeed, let
x∈UR/3(Oi)\Oi and let γ(t) be a geodesic starting at �ηi(x) such that d

dtd(γ( · ), qi)′|t=0>

0. Since �ηi: (H(ti)/Γ, hi)!Xi is a submetry, there exists a horizontal lift γ̃ of γ starting
at x . Then d(γ̃(t), Oi)=d(γ(t), qi), and hence d(γ̃(t), Oi)′|t=0=d(γ(t), qi)′|t=0>0.

Therefore Ur(Oi) is diffeomorphic to the total space of the normal bundle to Oi in
Hti/Γ for any r6R/3. Since Oi is Hausdorff close to σ(ti), the same is true for U(r, ti).

Combining this with (7.4), we conclude that Hti/Γ is diffeomorphic to the total
space of the normal bundle to Oi in Hti/Γ for all sufficiently large i . Finally, since
the above proof works for any sequence ti!∞ , arguing by contradiction we conclude
that Ht/Γ is diffeomorphic to the normal bundle of an orbit of an N -structure for all
sufficiently large t . This completes the proof of Theorem 7.1.

Remark 8.1. The reader may be wondering why we work with the Alexandrov spaces
Xi instead of the Riemannian manifolds Yi . This is because the curvature of Yi may
tend to ±∞ as i!∞ , which makes it hard to control the geometry of the Yi ’s. If instead
of εi!0, we take εi equal to a small positive constant ε , then |sec(Yi)|6C(ε); but then
it may happen that the injectivity radius of the Gromov–Hausdorff limit of the Yi ’s is
�ε , so we cannot translate the lower bound on the injectivity radius from Yi to Hti/Γ.

Remark 8.2. By Theorem 7.1, each orbit Oqi as above is homotopy equivalent to
X/Γ. Thus all the Oqi’s are homotopy equivalent, hence they are all affinely diffeomor-
phic (see e.g. [39, Theorem 2]).

9. The normal bundle is flat

Theorem 9.1. For each large t , the horosphere quotient Ht/Γ admits an N -
structure that has an orbit Ot such that the normal bundle to Ot is a flat Euclidean
vector bundle with total space diffeomorphic to Ht/Γ .
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Arguing by contradiction, it suffices to prove the theorem for any sequence ti!
∞ such that Hti/Γ converges in pointed Gromov–Hausdorff topology. We fix such a
sequence and assume for the rest of the proof that t belongs to the sequence.

We denote by gt the C1 -Riemannian metric on the horosphere quotient Ht/Γ in-
duced by the ambient metric (M, g). Fix a small positive ε>0 to be determined later;
this constant will only depend on (M, g). By Theorem 7.1, [14] and [28], for all large
t there exists an N -structure on Ht/Γ with an orbit Ot such that the normal bundle
to Ot is diffeomorphic to Ht/Γ. Also all orbits of the N -structure have diameter <ε

with respect to an invariant metric ht that is ε -close to gt in uniform C1 -topology, i.e.
|gt−ht|<ε and |∇gt−∇ht |<ε . It remains to show that for all large t , the normal bundle
to Ot in Ht/Γ is flat Euclidean. The proof breaks into two independent parts.

In §9.1 we find a stratum Ft of the N -structure on Ht/Γ such that Ft is an ht -
totally-geodesic closed submanifold that contains Ot with flat normal bundle. This uses
only general properties of N -structures.

In §9.2 we show that the restriction to Ot of the normal bundle of Ft in Ht/Γ is
flat, for all large t . This uses the flat connection of §4 and the fact that Ot!Ht/Γ is a
homotopy equivalence.

9.1. The normal bundle in a stratum is flat

Throughout §9.1 we suppress the index t , writing O in place of Ot , etc. Let V be the
tubular neighborhood of O that is sufficiently small so that all orbits in V have dimension
>dim(O). Let Õ and Ṽ be their universal covers. According to [14, pp. 364–365],
the group Iso(Ṽ ) contains a connected (but not necessarily simply-connected) nilpotent
subgroup N that stabilizes Õ , acts transitively on Õ , and also Λ=N∩π1(V ) is a finite
index subgroup of π1(V ) and is a lattice in N . The following lemma is implicit in [14].

Lemma 9.2. The subgroup H of Iso(Ṽ ) generated by N and π1(V ) is closed, N

is the identity component in H , and the index of N in H is finite.

Proof. Λ is a cocompact discrete subgroup of N and also of its closure �N in Iso(Ṽ ).
Since dim(N) and dim(�N) are both equal to the cohomological dimension of Λ, we get
N=�N . Now let Λ0 be a maximal finite index normal subgroup of π1(Ṽ ) that is contained
in Λ. If γ∈π1(V ), then N∩γNγ−1 contains Λ0 as a cocompact discrete subgroup, thus,
as before, dim(N) and dim(N∩γNγ−1) are both equal to the cohomological dimension
of Λ0 , so N=N∩γNγ−1 , and N is normalized by π1(V ). Thus N is normal in H ,
and Λ=Λ0 . Since N is connected, it remains to show that |H :N | is finite. Since N

and π1(V ) generate H , the finite subgroup π1(V )/Λ of H/N generates H/N , hence
π1(V )/Λ=H/N .
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Let I be the intersection of the isotropy subgroups of H of the points of Õ . Since
Õ is H-invariant, I is normal in H . The fixed point set of I is a totally geodesic
submanifold F̃ of Ṽ . The H-action on F̃ descends to an H/I -action on F̃ . Since
π1(V ) is torsion free and discrete, π1(V )∩I is trivial, and we identify π1(V ) with its
image in H/I . Denote the projection of F̃ into V by F .

Lemma 9.3. The normal bundle to O in F is flat.

Proof. The group N acts transitively on Õ , so all isotropy subgroups for the N -
action on Õ are conjugate. Since they are also compact, they lie in the center of N [20];
in particular, all the isotropy subgroups are equal, and hence each of them is equal to
I∩N . In particular, N/(I∩N) acts freely and transitively on Õ . Since Õ is simply-
connected, so is N/(I∩N). Thus, I∩N is the maximal compact subgroup of N ; hence,
by Lemma A.3, I∩N is a torus, which we denote by T . The torus is the identity
component of the compact group I , because |I :I∩N |6|H :N |<∞ . Since N/T acts
freely and transitively on Õ , we can choose a trivialization of ν , the normal bundle of
F in Ṽ that is invariant under the left translations by N/T . Namely, let e∈Õ be the
point corresponding to 1∈N/T under the diffeomorphism N/T∼=Õ . Fix an isomorphism
φ: νe!{e}×Rk , and then extend it to the N/T -left-invariant isomorphism ν∼=Õ×Rk .
Now, take γ∈π1(V ) and x∈Õ . Using the above trivialization we define the rotational
part of γ as the automorphism of {e}×Rk given by

φ�dLγ(x)−1 �dγ�dLx�φ
−1,

where dLx is the differential of the left translation by x∈N/T . Since O is an infranilman-
ifold, π1(V ) acts on Õ by affine transformations, that is if y∈Õ , then γ(y)=nγ ·Aγ(y),
where nγ∈N/T and Aγ is a Lie group automorphism of N/T . Hence, for z∈Õ , we get

(Lγ(x)−1 �γ�Lx)(z) = γ(x)−1 ·γ(xz) =Aγ(x)−1 ·n−1
γ ·nγ ·Aγ(xz) =Aγ(z) =Ln−1

γ
�γ(z),

where the third equality holds as A is an automorphism and N/T =Õ . This establishes
the above equality only on Õ , not on F̃ , but both sides of the equality make sense as
elements of H/I , and since F̃ is the fixed point set of I , any two elements of H/I that
coincide on Õ must coincide on F̃ . Now the right-hand side is independent of x , which
implies that the rotational part of γ is independent of x . This means that the bundle
(Õ×Rk)/π1(V ) is a flat O(k)-bundle, and hence so is the normal bundle of F in V .

9.2. The normal bundle to a stratum is flat

Let Ft be the stratum from §9.1.
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Lemma 9.4. For all large t , the restriction to Ot of the normal bundle to Ft in
Ht/Γ is flat.

Proof. Let νt be the restriction to Ot of the normal bundle to Ft in Ht/Γ. By an
obvious contradiction argument, it suffices to show that any subsequence of {ti}i has a
subsequence for which the νt ’s are flat; thus passing to subsequences during the proof
causes no loss of generality. Since kt=dim(νt) can take only finitely many values, we
pass to a subsequence for which kt is constant; we then denote kt by k . We look at the
Grassmanian Gk(TM) of k -planes in TM with the metric induced by g . Of course, for
k -planes tangent to Ht/Γ the metric is also induced by gt . We fix a point ot∈Ot and
denote by Gk

t the fiber of Gk(TM) over ot . Let lt be the fiber of νt over ot .
The fibers of Gk(TM) are (noncanonically) pairwise isometric via the Levi–Civita

parallel transport of (M, g). Let %�diam(Gk
t ) be such that the center of mass of [22]

is defined in any 4% -ball of Gk
t . For large enough t , the ball B(lt, 4%)⊂Gk

t contains no
k -plane tangent to Ft because %�diam(Gk

t ), whereas lt and TFt are ht -orthogonal,
and ht and gt are ε -close, so that the distance between lt and any k -plane in TFt is
within ε of diam(Gk

t ).
Denote by ∇∞ the connection from §4 associated with the parallel transport P∞ .

Also denote by ∇t the Levi–Civita connection of ht , and let Pt be its parallel transport.
The second fundamental form of Ht is uniformly bounded, hence P∞ and Pt are close
over any short loop in Ht/Γ.

Since ∇∞ is flat and compatible with the metric g , it defines the holonomy homo-
morphism φt: Γ!Iso(TotM). Let Rt be the closure of φt(Γ) in Iso(TotM). Since Rt

is compact, there exists a finite subset St⊂Γ so that for each rt∈Rt there exists s∈St

such that rt(lt) and φt(s)(lt) are % -close in Gk
t . The direction orthogonal to Ht/Γ is

∇∞ -parallel, so the Rt -action preserves the subspace THt/Γ⊂TM . Also P∞ defines
an isometry between the Gk

t ’s that is φt -equivariant and Rt -equivariant. Thus St can
be chosen independently of t , and we denote St by S .

If t is sufficiently large, then, for every s∈S , the k -planes φt(s)(lt) and lt are
% -close in Gk

t . Indeed, by the exponential convergence of geodesics, if t is large, then s

can be represented by a short loop based at ot . Since the inclusion Ot ↪!Ht/Γ induces a
homotopy equivalence, the loop can be assumed to lie on Ot⊂Ft . Since Ft is ht -totally
geodesic and lt is orthogonal to Ft and has complementary dimension, lt is fixed by Pt

along any loop in Ft based at ot . Hence the same is almost true for P∞ , provided the
loop is short enough, which proves the claim since S is finite.

Thus, by the triangle inequality in Gk
t , the k -planes rt(lt) and lt are 2% -close for

all rt∈Rt . Now let l̄t be the center of mass of all rt(lt)’s with rt∈Rt . Clearly, l̄t is
2% -close to lt , hence l̄k is transverse to TFt . Since P∞ preserves THt/Γ, each rt(lt),
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and hence l̄t , is tangent to Ht/Γ. Now we translate l̄t around Ot using P∞ along
paths of length 6diam(Ot)<ε . Since l̄t is Rt -invariant and ∇∞ is flat, this gives a
well-defined k -dimensional flat C0 subbundle ν̄t of the restriction of THt/Γ to Ot⊂Ft .

Note that Pt takes any k -plane tangent to Ft to a k -plane tangent to Ft , since Ft

is totally geodesic. On the other hand, l̄t is a uniform distance away from any k -plane in
TFt , so its Pt -image remains far away from any k -plane in TFt . Since on short paths
Pt is close to P∞ , we conclude that ν̄t is transverse to TFt for large t . Thus ν̄t is
C0 -isomorphic to νt , so that νt carries a C0 -flat connection.

In fact, νt also carries a smooth flat connection. Indeed, in the universal cover Õt ,
the C0 -flat connection defines a Γ-equivariant C0 -isomorphism of the pullback of νt to
Õt onto Õt×Rk , where Γ acts as the covering group on the Õt -factor and via a holonomy
homomorphism on the Rk -factor. This is a smooth action, so the quotient (Õt×Rk)/Γ
is a smooth flat vector bundle that is C0 -isomorphic to νt . But any C0 -isomorphic
bundles are smoothly isomorphic because the continuous homotopy of classifying maps
can be approximated by a smooth homotopy.

10. Infranilmanifolds are horosphere quotients

Z. Shen constructed in [36] a pinched negatively curved warped product metric on the
product of an arbitrary infranilmanifold and (0,∞) so that the metric is complete near
the ∞ -end, but is incomplete at the 0-end. Here we modify Shen’s construction to pro-
duce a complete pinched negatively curved metric on the product of any infranilmanifold
with R .

Let G be a simply-connected nilpotent Lie group acting on itself by left translations,
and let K be a compact subgroup of Aut(G), so that the semidirect product GoK acts
on G by affine transformations. Taking product with the trivial GoK -action on R , we
get a GoK -action on G×R for which we prove the following result.

Theorem 10.1. G×R admits a complete GoK -invariant Riemannian metric of
pinched negative curvature. In particular, if N is an infranilmanifold, then N×R
carries a complete metric of pinched negative curvature.

Proof. The Lie algebra L(G) can be written as

L(G) =L0⊃L1⊃ ...⊃Lk ⊃Lk+1 =0,

where Li+1=[L0, Li] . Note that [Li, Lj ]⊂Li+j+1 . Indeed, assume i6j and argue by
induction on i . The case i=0 is obvious, and the induction step follows from the Jacobi
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identity and the induction hypothesis, because [Li, Lj ]=[[L0, Li−1], Lj ] lies in

span([[Li−1, Lj ], L0], [[L0, Lj ], Li−1])⊂ span([Li+j , L0], [Lj+1, Li−1])= Li+j+1.

The group K preserves each Li , so we can choose a K -invariant inner product 〈 · , · 〉0
on L . Let

Fi = {X ∈Li: 〈X, Y 〉0 =0 for Y ∈Li+i}.

Then L=F0⊕...⊕Fk . Define a new K -invariant inner product 〈 · , · 〉r on L by 〈X, Y 〉r=
hi(r)2〈X, Y 〉0 for X, Y ∈Fi , and 〈X, Y 〉r=0 if X∈Fi and Y ∈Fj , for i 6=j , where the hi’s
are some positive functions defined below. This defines a GoK -invariant Riemannian
metric gr on G .

Let αi=i+1 with i=0, ..., k and a=k+1. Now define the warping function hi to be
a positive, smooth, strictly convex, decreasing function that is equal to e−αir if r>1, and
is equal to e−ar if r6−1; such a function exists since a>ai for each i . Thus h′i<0<h′′i ,
and the functions h′i/hi and h′′i /hi are uniformly bounded away from 0 and ∞ .

Define the warped product metric on G×R by g=s2gr+dr2 , where s>0 is a con-
stant; clearly g is a complete GoK -invariant metric. A straightforward tedious compu-
tation (mostly done e.g. in [4]) yields, for g -orthonormal vector fields Ys∈Fs , that

〈Rg(Yi, Yj)Yj , Yi〉g =
1
s2
〈Rgr

(Yi, Yj)Yj , Yi〉gr
−

h′ih
′
j

hihj
,

〈Rg(Yi, Yj)Yl, Ym〉g=
1
s2
〈Rgr (Yi, Yj)Yl, Ym〉gr , if {i, j} 6= {l, m},〈

Rg

(
Yi,

∂
∂r

)
∂
∂r , Yi

〉
g
=−h′′i

hi
,〈

Rg

(
Yi,

∂
∂r

)
∂
∂r , Yj

〉
g
=0, if i 6= j,〈

Rg

(
∂
∂r , Yi

)
Yj , Yl

〉
g
=

(
h′j
2hj

+
h′l
2hl

)
(〈[Yj , Yi], Yl〉g+〈[Yi, Yl], Yj〉g+〈[Yj , Yl], Yi〉g).

Since [Li, Lj ]⊂Li+j+1 , we have, for Z=
∑k

i=0 Zi and W =
∑k

j=0 Wj with Zi,Wi∈
Fi , that

|[Z,W ]|gr 6
∑
i,j

|[Zi,Wj ]|gr 6
∑
i,j

∑
s>i+j

hs|[Zi,Wj ]|g0 .

The above choice of the ai ’s implies that if r>1, then
∑

s>i+j hs6khihj . Also,

|[Zi,Wj ]|g0 6C|Zi|g0 |Wj |g0 ,

where C only depends on the structure constants of L , so that we conclude

|[Z,W ]|gr 6Ck|Zi|g0 |Wj |g0

∑
i,j

hihj 6Ck(k+1)|Z|gr |W |gr .



negatively pinched manifolds with amenable fundamental groups 253

It follows that if r>1, then the norm of the curvature tensor of gr is bounded in
terms of C and k [13, Proposition 3.18]. The same conclusions trivially hold for
r6−1, because then gr is the rescaling of g0 by a constant e−ar>1, and also for
r∈[−1, 1] by compactness, since gr is left-invariant and depends continuously of r . Hence
〈Rg(Yi, Yj)Yl, Ym〉g!0 as s!∞ .

Also,
〈
Rg

(
∂
∂r , Yi

)
Yj , Yl

〉
g
!0 as s!∞ , since

|〈[Yj , Yi], Yl〉g|= s2|〈[Yj , Yi], Yl〉gr |6 s2C(k+1)|Yj |gr |Yi|gr |Yl|gr 6
C(k+1)

s
,

where the last inequality holds since s|Y |gr =1 for any g -unit vector Y . It follows that,
as s!∞ , Rg uniformly converges to a tensor 	R whose nonzero components are

	R(Yi, Yj , Yj , Yi) =−
h′ih

′
j

hihj
and 	R

(
Yi,

∂
∂r , ∂

∂r , Yi

)
=−h′′i

hi
.

Thus g has pinched negative curvature for all large s .

Corollary 10.2. Let E be the total space of a flat Euclidean vector bundle over
an infranilmanifold I . Then E is infranil, in particular E×R admits a complete Rie-
mannian metric of pinched negative curvature.

Proof. Fix a flat Euclidean Rk -bundle over the infranilmanifold I , and write I as
G0/Γ, where G0 is a simply-connected nilpotent Lie group and Γ is a discrete cocompact
group of affine transformations of G0 that acts freely. Look at the nilpotent group
G=G0×Rk , and let Γ act on the Rk -factor via the holonomy of the flat bundle Γ∼=
π1(I)!O(k). Then the infranilmanifold G/Γ is diffeomorphic to the total space of the
flat bundle we started with. By Theorem 10.1, G/Γ×R carries a complete metric of
pinched negative curvature.

11. On geometrically finite manifolds

Proof of Corollary 1.4. Let X/Γ be a geometrically finite pinched negatively curved
manifold, let Ω be the domain of discontinuity and Λ be the limit set for the Γ-action
at infinity. Let Cε be the ε -neighborhood of the convex hull of L . Then Cε/Γ is
a codimension zero C1 submanifold of X/Γ that is homeomorphic to (X∪Ω)/Γ by
pushing along geodesic rays orthogonal to ∂Cε/Γ. This homeomorphism restricts to a
diffeomorphism on the interiors X/Γ!Int(Ce)/Γ.

By the discussion in [7, pp. 263–264], for each end of (X∪Ω)/Γ there is a parabolic
subgroup Γz6Γ stabilizing a point z∈∂∞X such that the end has a neighborhood



254 i. belegradek and v. kapovitch

homeomorphic to a neighborhood of the unique end of (X∪∂∞X\{z})/Γz . Again, this
homeomorphism restricts to a diffeomorphism on the interiors.

By pushing along trajectories of the Busemann flow, (X∪∂∞X\{z})/Γz is homeo-
morphic to the Γz -quotient of a closed horoball Hz centered at z . Note that Hz/Γz is a
C2 submanifold of X/Γz , and Hz/Γz is C1 -diffeomorphic to the product of [0,∞) and
a horosphere quotient, which, by Theorem 1.1, is diffeomorphic to the interior of a com-
pact manifold Lz . So Hz/Γz is diffeomorphic to the interior of Lz×[0, 1], in which we
smooth corners. Compactifying each z -end of Cε/Γ with Lz×[0, 1], we get a compact
C1 manifold whose interior is diffeomorphic to X/Γ.

Appendix A. Lemmas on nilpotent groups

Lemma A.1. Given a finitely generated nilpotent group Γ and a positive integer n ,
there exists a finite subset F⊂Γ such that for any g∈Γ there are f∈F and x∈Γ with
gf=xn .

Proof. We argue by induction on the nilpotency degree of Γ. If Γ is abelian, then
the nth powers of elements of Γ form a finite index subgroup, and we can take F as the
set of coset representatives of this subgroup. In general, if Z denotes the center of Γ,
then by induction the result is true for Γ/Z for the finite subset {aZ :a∈F1} of G/Z ,
where F1 is some finite subset of Γ. Thus, an arbitrary g∈Γ satisfies gf1=xnz for
some f1∈F1 , x∈Γ and z∈Z . Again, since Z is abelian, the set Zn of nth powers is a
finite index subgroup of Z . Let F2 be a set of coset representatives of Zn in Z so that
z=ynf2 for some y∈Z and f2∈F2 . Then gf1=xnynf2=(xy)nf2 , so gf1f

−1
2 =(xy)n ,

and the assertion holds for Γ with F =F1F
−1
2 .

Lemma A.2. Let Γ be a finitely generated nilpotent group. Then, there exists a
finite set F⊂Γ such that for any x∈Γ and g∈[Γ,Γ] there are h∈[Γ,Γ] and f∈F with
x2g=(xh)2f .

Proof. As usual, we write Γ1=Γ and Γi+1=[Γ,Γi] , so that the nilpotency degree k

of Γ is the largest integer for which Γk is nontrivial. Since [Γ,Γk] is trivial, Γk lies in
the center of Γ. We argue by induction on k . The case k=1, i.e. when Γ is abelian, is
obvious for F ={1} . If Γ is of nilpotency degree k>1, then by induction the statement
is true in Γ/Γk . Let F1⊂Γ be the set of coset representatives of the corresponding
finite set for Γ/Γk , so that given x∈Γ, there exist z∈Γk , g, h∈[Γ,Γ] and f1∈F1 with
x2g=(xh)2f1z . By Lemma A.1 applied to Γk , we get z=y2f2 for some y∈Γk and
f2∈F2 , where F2 is a finite subset of Γk . Then x2g=(xh)2f1z=(xyh)2f1f2 , and since
yh∈[Γ,Γ] the proof is complete.
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Lemma A.3. Let C be a maximal compact subgroup of a connected nilpotent Lie
group N . Then C is equal to the unique maximal compact subgroup of the center of N ,
in particular C is a torus.

Proof. Any maximal compact subgroup C of N lies in the center Z of N [20].
Hence C is also maximal compact in Z . A maximal compact subgroup is homotopy
equivalent to the ambient group, hence, since N is connected, so are Z and C . Now Z

is connected abelian, hence Z is isomorphic to the product of a real vector space and a
torus, so C equals to the torus.

Appendix B. Isometries are smooth

Proposition B.1. Let X be a smooth manifold equipped with a complete C0 -
Riemannian metric of curvature bounded above and below in the comparison sense. Then
the isometry group acts on X by C3 -diffeomorphisms.

Proof. The isometry group of any complete locally compact metric space is locally
compact [23]. By [26, Chapter 5], any locally compact subgroup of Diffeor(X) with
r>0 is a Lie group and the action is Cr . Thus, it suffices to show that each individual
isometry is C3 . The construction of harmonic coordinates in [27] starts with the C0 -
distance coordinates (d(x, a1), ..., d(x, an)) at x∈X , where the geodesic segments [x, ai]
are pairwise orthogonal, and then solves the Dirichlet problem in a small ball around x

with values on the boundary sphere given by d(x, ai). The solutions are the so-called
harmonic coordinates. Their transition functions are C3,α (and the metric tensor in this
coordinates is C1,α even though we do not need this fact here). This construction is
clearly invariant under isometries, so any isometry has the same smoothness in harmonic
coordinates as the identity map, namely C3,α .

Appendix C. Local formula of Ballmann and Brüning

Let X be a simply-connected manifold of pinched negative curvature. Fix a point at
infinity of X , and let T be the unit vector field tangent to the Busemann flow bt(x)
towards that point. For a curve α(s) in X , let α(0)=x and α′(0)=u . Look at the
1-parameter family of geodesic rays α(s, t)=bt(α(s)) and the corresponding family of
Jacobi fields J. Let v, w∈TxX and let X(t, s) and Y (t, s) be vector fields along a(s, t)
such that X(0, 0)=v , Y (0, 0)=w and ∇T X=∇T Y =0. Then one defines a tensor field
	S by

〈S̄(u, v), w〉=−
∫ ∞

0

〈R(T, J)X, Y 〉(t, 0) dt.
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Ballmann and Brüning [2] define a new connection 
∇ by 
∇=∇−S̄ , and show that 
∇ is
a C0 -flat connection that is compatible with the metric, and that satisfies 
∇T =0 and

|
∇XY −∇XY |6C(a)|X||Y | for any X and Y . (C.1)

Since 
∇ is flat, for any x, y∈M we have a well-defined parallel transport with
respect to 
∇ from x to y which we denote by P


∇
xy .

Lemma C.2. For any x, y∈M , parallel transport through infinity P∞xy coincides
with P


∇
xy .

Proof. First, suppose that x and y lie in the same horosphere Ht0 . Consider the
quadrangle xbt(x)bt(y)y . By flatness, P


∇
xy is equal to the 
∇ parallel transport along three

other sides of this quadrangle P

∇
bt(y)y �P


∇
bt(x)bt(y)�P


∇
xbt(x) . Also, if α is a trajectory of the

Busemann flow, then J=T so that 	S=0, therefore parallel transports along Busemann
trajectories coincide with Levi–Civita parallel transports. Thus

P

∇
xy =Pbt(y)y �P


∇
bt(x)bt(y)�Pxbt(x).

Since d(bt(x)bt(y))!0 as t!∞ , by (C.1) we have that P

∇
bt(x)bt(y) becomes arbi-

trarily close to Pbt(x)bt(y) for large t , and therefore

P

∇
xy = lim

t!∞
Pbt(y)y �Pbt(x)bt(y)�Pxbt(x). (C.3)

Similarly, by construction, P∞ commutes with the Busemann flow, and hence

P∞xy =Pbt(y)y �P
∞
bt(x)bt(y)�Pxbt(x).

As before, P∞bt(x)bt(y) comes arbitrarily close to Pbt(x)bt(y) for large t , and therefore

P

∇
xy = lim

t!∞
Pbt(y)y �Pbt(x)bt(y)�Pxbt(x). (C.4)

Comparing (C.3) and (C.4), we conclude that P∞xy =P

∇
xy for any x and y in the same

horosphere.

Finally, since 
∇ and ∇∞ are flat, and their parallel transports coincide with the
Levi–Civita parallel transport along trajectories of the Busemann flow, we have P∞xy =P


∇
xy

for any x and y .
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Appendix D. Concave functions and submetries on Alexandrov spaces

The proof of the following lemma is due to A. Petrunin.

Lemma D.1. Let X be an Alexandrov space of curv>k with ∂X=∅ . Let f :X!R
be a Lipschitz function with a local maximum at q . Suppose that f is strictly concave
on an open set U containing q . Then d( · , q) has no critical points on U\{q} .

Proof. Let x∈U \{q} . By [31], ∇f(x) is defined to be equal to v∈TxX if df(v)=
|v|2 , and df(u)/|u| attains a positive maximum at v . Since x is not a point of maximum
of f , ∇f(x) 6=0 and |∇f(z)|>c>0 for all z near x . Consider the gradient flow for f

as defined in [31]. Consider a gradient line γ(t) passing through x so that γ(0)=x .
By [31], the curve γ(t) is locally Lipschitz.

We claim that γ(t) can be extended to be a gradient line defined on (−ε,∞) for
some ε>0. Indeed, suppose this is not true. By [31, Lemma 3.2.1 (a)], the gradient
flow of any concave function is 1-Lipschitz, so it defines a deformation retraction of any
superlevel set {x:f(x)>c} (shortly, {f>c}) contained in U onto q , and hence {f>c}
is contractible (for a different proof see also [21, Lemma 5.2]). Take c=f(x) and let
ε>0 be small enough so that {f>c−ε} is contained in U . Since γ cannot be extended
backwards beyond zero, the gradient flow gives a deformation retraction of {f>c−ε}\{x}
onto q . To see that this is impossible, we prove that Hn−1({f>c−ε}\{x},Z2)∼=Z2 .

Indeed, since {f>c−ε} is contractible, from the long exact cohomology sequence of
a pair we see that

Hn−1({f > c−ε}\{x},Z2)∼=Hn({f > c−ε}, {f > c−ε}\{x},Z2).

By [29], for some very small δ>0, the ball B(x, δ) is contractible and is contained
in {f>c−ε} , and d( · , x) has no critical points in B(x, 2δ)\{x} . Therefore, by excision,

Hn({f > c−ε}, {f > c−ε}\{x},Z2)∼=Hn(B(x, δ), B(x, δ)\{x},Z2),

which is isomorphic to Hn−1(S(x, δ),Z2)∼=Z2 , where the last equality holds since, by [29],
S(x, δ) is homotopy equivalent to the Alexandrov space ΣxX with ∂ΣxX=∅ , and since
any Alexandrov space without boundary has top-dimensional Z2 -cohomology isomorphic
to Z2 [18].

Let v be any left tangent vector of γ at 0. Here, following [31], we say that v∈TxX

is a left tangent vector if

v = lim
i!∞

1
|ti|

exp−1
x γ(ti)

for some sequence ti!0− . (One should think of v as −∇f(x).) By above, f(γ(t))−ct is
nondecreasing for small t . Therefore v 6=0. We claim that ∠uv>π/2 for any direction u
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of a shortest geodesic from x to y with f(y)>f(x). Indeed, by [31, Lemma 3.2.1 (a)], the
gradient flow of any concave function is 1-Lipschitz. Consider a cutoff concave function
f̂(·)=min{f(·), f(y)} . Clearly the forward gradient flow of f̂ fixes y and coincides with
the gradient flow of f near x . Since the gradient flow of f̂ is 1-Lipschitz, d(y, γ(t)) is
nonincreasing near t=0. By the first variation formula, this implies that ∠uv>π/2. In
particular, this is true for y=q . Since any shortest geodesic from x to q points strictly
inside the convex set {f>f(x)} , this inequality is in fact strict, i.e. ∠uv>π/2.

Definition D.2. A map f :X!Y between two metric spaces is called a submetry if
for any x∈X and any r>0 one has f(Br(x))=Br(f(x)).

We need some properties of submetries collected below.

Lemma D.3. Let X be an Alexandrov space of curv>k and f :X!Y be a submetry.
Then,

(a) Y is an Alexandrov space of curv>k [9].
(b) For any x∈X and y∈Y we have d(x, f−1(y))=d(f(x), y) .
(c) For any x∈X and any shortest geodesic γ: [0, 1]!Y with γ(0)=f(x) there

exists a shortest geodesic γ̃: [0, 1]!Y with γ̃(0)=x such that f(γ̃(t))=γ(t) . The geodesic
γ̃ is called a horizontal lift of γ . Moreover, if γ(t) can be extended to a shortest geodesic
γ: [−ε, 1]!Y then the horizontal lift is unique.
Moreover, the statement (a) is true locally in the following sense: if B(p, 1)⊂U⊂X ,
g:U!Y is a submetry and diam(g−1(y))< 1

10 for any y∈Y , then for any triangle with
vertices in B

(
g(p), 1

4

)
the Toponogov comparison with curv>k holds.

The proofs of (b) and (c) are elementary and left to the reader (see [24] for details).
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