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1. Introduction

Let M be a smooth manifold of dimension m. M may be non-compact, but we always
assume thatM is the interior of a compact manifold with boundary. Let V be a Euclidean
space. Let Emb(M,V ) be the space of smooth embeddings of M into V. For technical
reasons, rather than study Emb(M,V ) directly, we will focus on the space

Emb(M,V ) := hofiber(Emb(M,V )! Imm(M,V )),

where Imm(M,V ) denotes the space of immersions of M into V. Note that the definition
requires that we fix an embedding (or at minimum an immersion) α:M↪!V, to act as a
basepoint. Most of the time we will work with the suspension spectrum Σ∞Emb(M,V )+,
and our results are really about the rationalization of this spectrum,

Σ∞
Q Emb(M,V )+'HQ∧Emb(M,V )+.

In other words, our results are about the rational homology of Emb(M,V ).
Our framework is provided by the Goodwillie–Weiss calculus of functors. One of

the main features of calculus of functors is that with a functor it associates a tower of
fibrations, analogous to the Taylor series of a function. The functor Emb(M,V ) is a
functor of two variables, and accordingly one may do “Taylor expansion” in at least two
ways: in either the variable M or the variable V (or both). Since the two variables
of Emb(M,V ) are of rather different nature (for example, one is contravariant and the
other one is covariant), there are two versions of calculus needed for dealing with them—
embedding calculus (for the variable M) and orthogonal calculus (for the variable V ).

Embedding calculus [23], [11] is designed for studying contravariant isotopy functors
on manifolds, such as F (M)=Emb(M,V ). With such a functor F , embedding calculus
associates a tower of fibrations under F :

F (−)−! (T∞F (−)! ...!TkF (−)!Tk−1F (−)! ...!T1F (−)). (1)
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Here
TkF (U) := holim

{U ′∈Ok(M):U ′⊂U}
F (U ′),

where Ok(M) is the category of open subsets of M that are homeomorphic to the disjoint
union of at most k open balls.

T∞F is defined to be the homotopy inverse limit of TkF . When circumstances are
favorable, the natural map F (M)!T∞F (M) is a homotopy equivalence, and then one
says that the embedding tower converges. There is a deep and important convergence
result, due to Goodwillie and Klein (unpublished, see [9]), for the functor

F (M) =Emb(M,N),

where N is a fixed manifold. We will state it now, being an important fact in the
background, but we will not really use it in this paper.

Theorem 1.1. (Goodwillie–Klein, [9]) The Taylor tower (as defined above) of the
embedding functor Emb(M,N) (or Emb(M,N)) converges if dimN−dimM>3.

We will only need a much weaker convergence result, whose proof is accordingly
easier. The “weak convergence theorem” says that the above Taylor tower converges if
2 dimM+2<dimN and a proof can be found in the remark after Corollary 4.2.4 in [10].
The weak convergence result also holds for HQ∧Emb(M,N)+ by the main result of [24].

Let us have a closer look at the functor U 7!HQ∧Emb(U, V )+. If U is homeomorphic
to a disjoint union of finitely many open balls, say U∼=kU×Dm, then Emb(U, V ) is
homotopy equivalent to the configuration space C(kU , V ) of kU -tuples of distinct points
in V or, equivalently, the space of kU -tuples of disjoint balls inside the unit ball of V,
which we denote by B(kU , V ). Abusing notation slightly, we can write that

TkHQ∧Emb(M,V )+ := holim
U∈Ok(M)

HQ∧Emb(U, V )+' holim
U∈Ok(M)

HQ∧B(kU , V )+. (2)

The right-hand side in the above formula is not really well-defined, because B(kU , V ) is
not a functor on Ok(M), but it gives the right idea. The formula tells us that under
favorable circumstances (e.g., if 2 dimM+2<dimV ), the spectrum HQ∧Emb(M,V )+

can be written as a homotopy inverse limit of spectra of the form HQ∧B(kU , V )+. It is
obvious that the maps in the diagram are closely related to the structure map in the little
balls operad. Therefore, information about the rational homotopy type of the little balls
operad may yield information about the homotopy type of spaces of embeddings. The
key fact about the little balls operad that we want to use is the theorem of Kontsevich
[14, Theorem 2, §3.2], asserting that this operad is formal. Let B(�, V )={B(n, V )}n>0

be our notation for the operads of little balls inside the unit ball of V.
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Theorem 1.2. (Kontsevich, [14]) The little balls operad is formal over the reals. Ex-
plicitly , there is a chain of quasi-isomorphisms of operads of chain complexes connecting
the operads C∗(B(�, V ))⊗R and H∗(B(�, V );R).

The formality theorem was announced by Kontsevich in [14], and an outline of a
proof was given there. However, not all the steps of the proof are given in [14] in as much
detail as some readers might perhaps wish. Because of this, the second and third authors
decided to write another paper [16], whose primary purpose is to spell out the details of
the proof of the formality theorem, following Kontsevich’s outline. The paper [16] also
has a second purpose, which is to prove a slight strengthening of the formality theorem,
which we call “a relative version” of the formality theorem (Theorem 6.1 in this paper).
We will give a sketch of the proof of the relative version in §6. Using the relative version
of formality, together with some abstract homotopy theory, we deduce our first theorem
(see Theorem 7.2 for a precise statement).

Theorem 1.3. Suppose that the basepoint embedding α:M↪!V factors through a
vector subspace W⊂V such that dimV >2 dimW+1. Then the contravariant functor
from Õs

k(M) to chain complexes

U 7−!C∗(Emb(U, V ))⊗R

is formal. This means that there is a chain of weak equivalences, natural in U :

C∗(Emb(U, V ))⊗R'H∗(Emb(U, V );R).

Here, Õs
k(M) is a suitable variation of the category Ok(M) (where k can be ar-

bitrarily large). We will now give the rough idea of the proof. The category Õs
k(M)

is a subcategory of Õs
k(W ), so it is enough to prove that C∗(Emb(U, V ))⊗R is formal

as a functor on Õs
k(W ) (this is Theorem 7.2 in this paper). The category Õs

k(W ) is a
category of balls in W, and so it is related to the little balls operad B(�,W ). There-
fore, the category of (contravariant) functors from Õs

k(W ) to (real) chain complexes is
closely related to the category of (right) modules over the chains on little balls operad
C∗(B(�,W ))⊗R. The space Emb(U, V ), where U is the union of n balls, is equivalent
to the nth space in the V -balls operad, B(n, V ). We will show that the formality of the
functor C∗(Emb(U, V ))⊗R follows from the formality of the operad C∗(B(�, V ))⊗R as
a module over the operad C∗(B(�,W ))⊗R. The last formality statement follows from
the relative formality theorem.

Remark 1.4. In several places, our argument relies on the following simple observa-
tion: the formality of a discrete (i.e., unenriched) diagram of chain complexes is equivalent
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to the splitting up to homotopy of the diagram as a direct sum of diagrams concentrated
in a single homological degree (Proposition 3.3). This is convenient, because this kind of
splitting is a homotopy invariant property, that is preserved by various Quillen equiva-
lences between diagram categories that we need to consider, while the property of being
formal cannot, in general, be transferred across a Quillen equivalence. On the other
hand, for enriched diagrams, this observation is not true. We can see it in the example
of modules over operads (which are a special case of enriched functors). The homology
of the little balls operad is formal, but it does not split, as a module over itself, into a
direct sum of modules concentrated in a single homological dimension. However, if we
consider the operad H∗(B(�, V )) as a module over the operad H∗(B(�,W )), where W is
a proper subspace of V, then it does split as a direct sum, for the silly reason that in this
case the action of H∗(B(�,W )) factors through an action of H0(B(�,W )), and so it is
essentially a discrete action. This follows from the elementary fact that a proper linear
inclusion of vector spaces W ↪!V induces a null-homotopic map of spaces of little balls
B(n,W )!B(n, V ). Using this observation, together with the relative formality theorem,
we are able to conclude the highly non-obvious statement that if 2 dimW<dimV then
the operad C∗(B(�, V ))⊗R splits, as a module over C∗(B(�,W ))⊗R, into a direct sum
of modules that are homologically concentrated in a single dimension. This splitting is
then used to prove an analogous splitting (and therefore the formality) of the functor
C∗(Emb(U, V ))⊗R. It is for this reason that we have to assume that M lies in a proper
linear subspace of V, and to utilize a relative formality theorem.

A formality theorem similar to Theorem 1.3 was used in [15] for showing the collapse
(at E2) of a certain spectral sequence associated with the embedding tower for spaces
of knot embeddings. However, to obtain a collapsing result for a spectral sequence of
more general embedding spaces, we need, curiously enough, to turn to Weiss’ orthogonal
calculus (the standard reference is [22], and a brief overview can be found in §8). This is
a calculus of covariant functors from the category of vector spaces and linear isometric
inclusions to topological spaces (or spectra). With such a functor G, orthogonal calculus
associates a tower of fibrations of functors PnG(V ), where PnG is the nth Taylor poly-
nomial of G in the orthogonal sense. Let DnG(V ) denote the nth homogeneous layer in
the orthogonal Taylor tower, namely the fiber of the map PnG(V )!Pn−1G(V ).

The functor that we care about is, of course, G(V )=HQ∧Emb(M,V )+, where M
is fixed. We will use the notation PnHQ∧Emb(M,V )+ and DnHQ∧Emb(M,V )+ to
denote its Taylor approximations and homogeneous layers in the sense of orthogonal
calculus. It turns out that Theorem 1.3 implies that, under the same condition on the
codimension, the orthogonal tower of HQ∧Emb(M,V )+ splits as a product of its layers.
The following is our main theorem (Theorem 10.10 in this paper).
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Theorem 1.5. Under the assumptions of Theorem 1.3, there is a homotopy equiv-
alence, natural with respect to embeddings in the M-variable (note that we do not claim
that the splitting is natural in V )

PnHQ∧Emb(M,V )+'
n∏

i=0

DiHQ∧Emb(M,V )+.

The following corollary is just a reformulation of the theorem.

Corollary 1.6. Under the assumptions of Theorems 1.3 and 1.5, the spectral se-
quence for H∗(Emb(M,V );Q) that arises from the Taylor tower (in the sense of orthog-
onal calculus) of HQ∧Emb(M,V )+ collapses at E1.

Here is a sketch of the proof of Theorem 1.5. Embedding calculus tells us, roughly
speaking, that HQ∧Emb(M,V )+ can be written as a homotopy limit of a diagram
of spectra of the from HQ∧B(k, V )+. Since there is a Quillen equivalence between
the categories of rational spectra and rational chain complexes, we may pass to a dia-
gram of rational chain complexes of the form C∗(B(k, V ))⊗Q, whose homotopy limit is
C∗(Emb(M,V ))⊗Q. On the other hand, Theorem 1.3 tells us that this diagram of chain
complexes is formal when tensored with R. One concludes that C∗(Emb(M,V ))⊗R
splits as the product of inverse limits of layers in the Postnikov towers of C∗(B(k, V ))⊗R.
It turns out that in our case tensoring with R commutes with taking the homotopy
limit, and so it follows that there must be a similar splitting for C∗(Emb(M,V ))⊗Q and
therefore for HQ∧Emb(M,V )+. On the other hand, it turns out that for functors of the
form HQ∧B(k, V )+, the Postnikov tower coincides, up to regrading, with the orthogonal
tower, and therefore HQ∧Emb(M,V )+ splits as the product of inverse limits of layers
in the orthogonal tower of rationally stabilized configuration spaces. But, taking the nth
layer in the orthogonal tower is an operation that commutes (in our case) with homotopy
inverse limits (unlike the operation of taking the nth layer of the Postnikov tower), and
therefore HQ∧Emb(M,V )+ splits as the product of layers of its orthogonal tower.

Remark 1.7. In the case of knot embeddings, the spectral sequence associated with
the orthogonal tower seems to coincide with the famous spectral sequence constructed by
Vassiliev, since the latter also collapses, and the initial terms are isomorphic. We hope
to come back to this in future papers.

In §11 we write an explicit description of DnΣ∞Emb(M,V )+, in terms of certain
spaces of partitions (which can also be described as spaces of rooted trees) attached to M .
This section is an announcement; detailed proofs appear in [2]. We do note the following
consequence of our description of the layers: The homotopy groups of the layers depend
only on the stable homotopy type of M and similarly the rational homotopy groups of
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the layers depend only on the rational homology type of M (Corollary 11.3). Combining
this with Theorem 1.5, we obtain the following theorem (Theorem 11.6 in this paper).

Theorem 1.8. Under the assumptions of Theorem 1.5, the rational homology groups
of the space Emb(M,V ) are determined by the rational homology type of M . More pre-
cisely , suppose that M1, M2 and V satisfy the assumptions of Theorem 1.5, and suppose
that there is a zig-zag of maps, each inducing an isomorphism in rational homology ,
connecting M1 and M2. Then there is an isomorphism

H∗(Emb(M1, V );Q)∼=H∗(Emb(M2, V );Q).

In view of this result, one may wonder whether the rational homotopy groups,
or maybe even the rational homotopy type (rather than just rational homology) of
Emb(M,V ) could be an invariant of the rational homotopy type of M (in high enough
codimension). One could derive further hope from the fact that the little balls operad is
not only formal, but also coformal. We would like to propose the following conjecture.

Conjecture 1.9. Under the assumptions of Theorem 1.3, the rational homotopy
spectral sequence for π∗(Emb(M,V ))⊗Q that arises from the Taylor tower (in the sense
of orthogonal calculus) of Emb(M,V ) collapses at E1.

A statement essentially equivalent to this conjecture is proved in [3] in the special
case of spaces of long knots in dimension >4. In this case, the space of embeddings is
an H -space (in fact, a double loop space), and this gives one enough control over the
homotopy type of the space to force the desired conclusion.

A general point that we are trying to make with this paper is this: while embedding
calculus is important, and is in some ways easier to understand than orthogonal calculus,
the Taylor tower in the sense of orthogonal calculus is also interesting and is worthy of a
further study. We hope that §11 will convince the reader that the layers of the orthogonal
tower, while not exactly simple, are interesting, and it may be possible to do calculations
with them. We intend to come back to this in the future.

1.1. A section by section outline

In §2 we review background material and fix terminology on spaces, spectra and chain
complexes. In §3 we define the notion of formality of diagram chain complexes. The main
result of this section is the following simple but useful observation: the stable formality
of a diagram can be interpreted as the splitting of its Postnikov tower.

Our next goal is to exploit Kontsevich’s formality of the little balls operads and
deduce some formality results of diagrams of embedding spaces. In order to do that we
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first review, in §4, enriched categories, their modules and the associated homotopy theory.
In §5 we review classical operads and their modules and give an alternative viewpoint on
those in terms of enriched categories. This will be useful for the study of the homotopy
theory of modules over an operad. We then digress in §6 to prove a relative version of
Kontsevich’s formality of the little balls operads that we need for our applications. In §7
we deduce the formality of a certain diagram of real-valued chains on embedding spaces.

In §8 we digress again to give a review of embedding calculus and orthogonal calculus,
and record some generalities on how these two brands of calculus may interact. In §9
we use the formality of a diagram of chains on embedding spaces established in §7 to
show that the stages in the embedding tower of HQ∧Emb(M,V )+ split in a certain way,
but not as the product of the layers in the embedding tower. In §10 we reinterpret this
splitting once again, to prove our main theorem: Under a certain codimension hypothesis,
the orthogonal tower of HQ∧Emb(M,V )+ splits as the product of its layers. In §11 we
sketch a description of the layers in the orthogonal tower, and deduce that the rational
homology of the space of embeddings (modulo immersions) of a manifold into a high-
dimensional vector space is determined by the rational homology type of the manifold.

1.2. Acknowledgments

The second author thanks Enrico Vitale for help with enriched categories.

2. Spaces, spectra, and chain complexes

Let us introduce the basic categories that we will work with.
• Top will stand for the category of compactly generated spaces (we choose com-

pactly generated to make it a closed monoidal category, see §4). If X is a space, we
denote by X+ the based space obtained by adjoining a disjoint basepoint.

• Spectra will be the category of (−1)-connected spectra. We denote by HQ the
Eilenberg–MacLane spectrum such that π0(HQ)=Q. A rational spectrum is a module
spectrum over HQ. For a space X, Σ∞X+ stands for the suspension spectrum of X,
and HQ∧X+ denotes the stable rationalization of X. It is well known that there is a
rational equivalence HQ∧X+'Σ∞X+.

• V will denote the category of rational vector spaces (or Q-vector spaces), and
V∆op

the category of simplicial Q-vector spaces.
• ChQ and ChR will denote the category of non-negatively graded rational and real

chain complexes, respectively. We will sometimes use Ch to denote either one of these
two categories.
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Most of the above categories have a Quillen model structure, which means that one
can apply the techniques of homotopy theory to them. A good introduction to closed
model categories is [8], a good reference is [13]. There are slight variations in the literature
as to the precise definition of model structure. We use the definition given in [13]. In
particular, we assume the existence of functorial fibrant and cofibrant replacements. The
category for which we will use the model structure most heavily is the category of chain
complexes. Thus we remind the reader that the category of chain complexes over a field
has a model structure where weak equivalences are quasi-isomorphisms, fibrations are
chain maps that are surjective in positive degrees, and cofibrations are (since all modules
are projective) chain maps that are injective in all degrees [8, Theorem 7.2]. We will also
need the fact that the category of rational spectra is a Quillen model category and is
Quillen equivalent to the category ChQ. For a proof of this (in fact, of a more general
statement, involving the category of module spectra over a general Eilenberg–MacLane
commutative ring-spectrum) see, for example, [18].

We now define some basic functors between the various categories in which we want
to do homotopy theory.

2.0.1. Homology

We think of homology as a functor from chain complexes to chain complexes. Thus if C is
a chain complex, then H∗(C) is the chain complex whose chain groups are the homology
groups of C, and whose differentials are zero. Moreover, we define Hn(C) to be the chain
complex having the nth homology group of C in degree n and zero in all other degrees.
Thus, Hn is a functor from Ch to Ch as well. Notice that there are obvious isomorphisms
of functors

H∗∼=
∞⊕

n=0

Hn
∼=

∞∏
n=0

Hn .

2.0.2. The normalized chains functor

To get from spaces to chain complexes, we will use the normalized singular chains functor
C∗: Top!Ch, defined by

C∗(X) =N(Q[S
�
(X)]).

Here S
�
(X) is the simplicial set of singular simplices of X, Q[S

�
(X)] is the simplicial

Q-vector space generated by S
�
(X), and N:V∆op!Ch is the normalized chains functor

as defined for example in [21, Chapter 8].



162 g. arone, p. lambrechts and i. volić

2.1. Postnikov sections

We will need to use Postnikov towers in the categories of chain complexes, and spectra.
We now review the construction of Postnikov towers in the category of chain complexes.
For an integer n and a chain complex (C, d), let d(Cn+1) be the n-dimensional boundaries
in C. We define the n-th Postnikov section of C, denoted (Pon(C), d′), as follows:

(Pon(C))i =


Ci, if i6n,
d(Cn+1), if i=n+1,
0, if i>n+1.

The differential d′ is defined to be d in degrees 6n, and the obvious inclusion

d(Cn+1)
� � // Cn

in degree n+1. It is easy to see that Pon defines a functor from Ch to Ch. Moreover,
Hi(Pon(C))∼=Hi(C) for i6n and Hi(Pon(C))=0 for i>n.

For each n, there is a natural fibration (i.e., a degreewise surjection)

πn: Pon(C) // // Pon−1(C)

defined as follows: πn is the identity in all degrees except n+1 and n; in degree n+1 it is
the zero homomorphism; and in degree n it is the obvious surjective map d:Cn!d(Cn).
Since πn is a fibration, ker(πn) can serve as the model for its homotopy fiber. Clearly,
ker(πn) is a chain complex concentrated in dimensions n and n+1. The homology of the
kernel is concentrated in dimension n, and in this dimension it equals the homology of
the original complex C. A similar formula defines a natural map %n:C!Pon(C), and
we have πn%n=%n−1. Note that %n, like πn+1, is an isomorphism (on chain level) in
degrees 6n.

2.2. Diagrams

Let A be a small category and let E be a category. An A-diagram in E is just a functor
F :A!E . In this paper a diagram can be a functor which is either covariant or contravari-
ant. A morphism of A-diagrams is a natural transformation between two functors. Such
a morphism is called a weak equivalence if it is a weak equivalence objectwise, for a given
notion of weak equivalence in the category E . In practice, we will only consider diagrams
of spaces, chain complexes or spectra.
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2.3. Homotopy limits

We will make heavy use of homotopy limits of diagrams in Spectra and in Ch. Homotopy
limits of diagrams in a general model category are treated in [13, Chapter 19]. Generally,
when we take the homotopy limit of a diagram, we assume that all the objects in the
diagram are fibrant and cofibrant—this will ensure “correct” homotopical behavior in all
cases. Since most of our homotopy limits will be taken in the category of chain complexes
over Q or R, in which all objects are fibrant and cofibrant, this is a moot point in many
cases. The only other category in which we will take homotopy limits is the category of
rational spectra, in which case we generally assume that we have taken fibrant-cofibrant
replacement of all objects, whenever necessary.

It follows from the results in [13, §19.4] that if R and L are the right and left adjoint
in a Quillen equivalence, then both R and L commute with homotopy limits up to a
zig-zag of natural weak equivalences. In particular, this enables us to shuttle back and
forth between homotopy limits of diagrams of rational spectra and diagrams of rational
chain complexes.

3. Formality and homogeneous splitting of diagrams

The notion of formality was first introduced by Sullivan in the context of rational ho-
motopy theory [20], [7]. Roughly speaking a chain complex (possibly with additional
structure) is called formal if it is weakly equivalent to its homology. In this paper we will
only use the notion of formality of diagrams of chain complexes (over Q and over R).

Definition 3.1. Let A be a small category. An A-diagram of chain complexes

F :A−!Ch,

is formal if there is a chain of weak equivalences F'H∗ �F .

Formality of chain complexes has a convenient interpretation as the splitting of the
Postnikov tower.

Definition 3.2. Let A be a small category. We say that an A-diagram of chain
complexes, F :A!Ch, splits homogeneously if there exist A-diagrams {Fn}∞n=0 of chain
complexes such that F'

⊕∞
n=0 Fn and H∗(Fn)=Hn(Fn) (i.e., Fn is homologically con-

centrated in degree n).

Proposition 3.3. Let A be a small category. An A-diagram of chain complexes is
formal if and only if it splits homogeneously.
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Proof. Let F be an A-diagram of chain complexes.
In one direction, if F is formal then F'H∗(F ). Since H∗=

⊕∞
n=0 Hn, we get the

homogeneous splitting F'
⊕∞

n=0 Hn(F ).
In the other direction, suppose that F'

⊕∞
n=0 Fn with H∗(Fn)=Hn(Fn)=Hn(F ).

Recall the definition of Postnikov sections of chain complexes from §2. Then

ker(Pon(Fn)
πn // // Pon−1(Fn))

is concentrated in degrees n and n+1 and its homology is exactly Hn(F ). Thus we have
a chain of quasi-isomorphisms

Fn
'−−!Pon(Fn) ' −− ker(Pon(Fn)!Pon−1(Fn))

'−−!Hn(ker(Pon(Fn)!Pon−1(Fn)))∼=Hn(F ),

and so F'
⊕∞

n=0 Hn(F )=H∗(F ).

Remark 3.4. Note that above we have proved the following (elementary) statement:
Suppose that F and G are two A-diagrams of chain complexes such that both F and G
are homologically concentrated in degree n and such that there is an isomorphism of
diagrams Hn(F )∼=Hn(G). Then there is a chain of weak equivalences, F'G. Using
the Quillen equivalence between rational spectra and rational chain complexes, one can
prove the analogous statement for diagrams of rational Eilenberg–MacLane spectra: If
F and G are two A-diagrams of rational Eilenberg–MacLane spectra concentrated in
degree n, and if there is an isomorphism of diagrams πn(F )∼=πn(G), then there is a
chain of weak equivalences F'G. Actually this is true more generally, for any diagrams
of Eilenberg–MacLane spectra concentrated in one degree, but we will not need that fact.

Remark 3.5. Let F be a diagram with values in Ch. There is a tower of fibrations
converging to holimF whose nth stage is holim Pon F . We call it the lim-Postnikov tower.
Of course, this tower does not usually coincide with the Postnikov tower of holimF . Since
H∗∼=

∏∞
n=0 Hn, and homotopy limits commute with products, it follows immediately that

if F is a formal diagram then the lim-Postnikov tower of holimF splits as a product,
namely

holimF '
∞∏

n=0

holim Hn �F.

The proof of the following result is also straightforward.

Lemma 3.6. Let λ:A!A′ be a functor between small categories and let F be an
A′-diagram of chain complexes. If the A′-diagram F is formal , then so is the A-diagram
λ∗(F ):=F �λ.
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4. Enriched categories and their modules

We now briefly recall some definitions and facts about symmetric monoidal categories,
enriched categories, Quillen model structures, etc. The standard reference for symmetric
monoidal categories and enriched categories is [4, Chapter 6]. We will also need some
results of Schwede and Shipley on the homotopy theory of enriched categories developed
in [19], especially §6, from which we also borrow some of our notation and terminology.

4.1. Monoidal model categories and enriched categories

A closed symmetric monoidal category is a triple (C,⊗,1) such that ⊗ and 1 endow the
category C with a symmetric monoidal structure, and such that, for each object Y, the
endofunctor −⊗Y : C!C, X 7!X⊗Y admits a right adjoint denoted by

C(Y,−):Z 7−! C(Y, Z).

It is customary to think of C(Y, Z) as an “internal mapping object”. Throughout this
section, C stands for a closed symmetric monoidal category.

A monoidal model category is a closed symmetric monoidal category equipped with
a compatible Quillen model structure (see [19, Definition 3.1] for a precise definition).

The only examples of monoidal model categories that we will consider in this paper
are the following:

(1) The category (Top,×, ∗) of compactly generated topological spaces with cartesian
product;

(2) The category (Ch,⊗,K) of non-negatively graded chain complexes over K (where
K is Q or R), with tensor product.

The internal hom functor in the category Ch is defined as follows. Let Y∗ and Z∗ be
chain complexes. Then Ch(Y∗, Z∗) is the chain complex that in positive degrees p>0 is
defined by

Chp(Y∗, Z∗) =
∞∏

n=0

hom(Yn, Zn+p),

while in degree zero, we have

Ch0(Y∗, Z∗) = {chain homomorphisms from Y∗ to Z∗}.

The differential in Ch(Y∗, Z∗) is determined by the formula

D({fn}) = {dZfn−(−1)pfn−1dY }, for fn ∈hom(Yn, Zn+p).



166 g. arone, p. lambrechts and i. volić

4.2. Enriched categories

A category O enriched over C, or a C-category, consists of a class I (representing the ob-
jects of O), and, for any objects i, j, k∈I, a C -object O(i, j) (representing the morphisms
from i to j in O) and C -morphisms

O(i, j)⊗O(j, k)−!O(i, k) and 1−!O(i, i)

(representing the composition of morphisms in O and the identity morphism on i). These
structure morphisms are required to be associative and unital in the evident sense. Notice
that a closed symmetric monoidal cateory C is enriched over itself since C(Y, Z) is an
object of C. Following [19], we use the term CI-category to signify a category enriched
over C, whose set of objects is I.

Let O be a CI -category and R be a category enriched over C. A (covariant) functor
enriched over C, or C-functor from O to R,

M :O−!R,

consists of an R-object M(i) for every i∈I, and of morphisms in C,

M(i, j):O(i, j)−!R(M(i),M(j)),

for every i, j∈I, that are associative and unital. There is an analogous notion of a
contravariant C-functor.

A natural transformation enriched over C, Φ:M!M ′, between two C -functors

M,M ′:O−!R

consists of C -morphisms
Φi:1−!R(M(i),M ′(i))

for every object i of O, that satisfy the obvious commutativity conditions for a natural
transformation (see [4, Definition 6.2.4]). Notice that if R=C then a morphism

Φi:1−! C(M(i),M ′(i))

is the same as the adjoint morphism Φ(i):M(i)!M ′(i) in C.
For fixed C and I, we consider the collection of CI -categories as a category in its

own right. A morphism of CI -categories is an enriched functor which is the identity on
the set of objects.

Suppose now that C is a monoidal model category. In particular, C is equipped with
a notion of weak equivalence. Then we say that a morphism Ψ:O!R of CI -categories is
a weak equivalence if it is a weak equivalence pointwise, i.e., if the map O(i, j)!R(i, j)
is a weak equivalence in C for all i, j∈I.
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4.3. Homotopy theory of right modules over enriched categories

For a CI -category O, a (right) O-module is a contravariant C -functor from O to C.
Explicitly an O-module M consists of objects M(i) in C for i∈I and (since C is a closed
monoidal category and since it is enriched over itself) of C -morphisms

M(j)⊗O(i, j)−!M(i)

which are associative and unital. A morphism of O-modules, Φ:M!M ′, is an enriched
natural transformation, i.e., a collection of C -morphisms Φ(i):M(i)!M ′(i) satisfying
the usual naturality requirements. Such a morphism of O-module is a weak equivalence
if each Φ(i) is a weak equivalence in C. We denote by Mod -O the category of right
O-modules and natural transformations.

Let Ψ:O!R be a morphism of CI -categories. Clearly, Ψ induces a restriction of
scalars functor on module categories

Ψ∗:Mod -R−!Mod -O,

M 7−!M �Ψ.

As explained in [19, p. 323], the functor Ψ∗ has a left adjoint functor Ψ∗, also denoted

−⊗OR

(one can think of Ψ∗ as the left Kan extension). Schwede and Shipley [19, Theorem 6.1]
prove that under some technical hypotheses on C, the category Mod -O has a Quillen
model structure, and moreover, if Ψ is a weak equivalence of CI -categories, then the pair
(Ψ∗,Ψ∗) induces a Quillen equivalence of module categories.

We will need this result in the case C=Ch. In keeping with our notation, we use
ChI -categories to denote categories enriched over chain complexes, with object set I.
Note that the category of modules over a ChI -category admits coproducts (i.e. direct
sums).

Theorem 4.1. (Schwede–Shipley, [19])
(1) Let O be a ChI-category. Then Mod-O has a cofibrantly generated Quillen

model structure, with fibrations and weak equivalences defined objectwise.
(2) Let Ψ:O!R be a weak equivalence of ChI-categories. Then (Ψ∗,Ψ∗) induce a

Quillen equivalence of the associated module categories.

Proof. General conditions on C that guarantee the result are given in [19, Theo-
rem 6.1]. It is straightforward to check that the conditions are satisfied by the category
of chain complexes (the authors of [19] verify them for various categories of spectra, and
the verification for chain complexes is strictly easier).
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Let O and R be CI -categories and let M and N be right modules over O and R, re-
spectively. A morphism of pairs (O,M)!(R, N) consists of a morphism of CI -categories
Ψ:O!R and a morphism of O-modules Φ:M!Ψ∗(N). The corresponding category of
pairs (O,M) is called the CI-module category.

A morphism (Ψ,Φ) in a CI -module is called a weak equivalence if both Ψ and Φ are
weak equivalences. Two objects of a CI -module are called weakly equivalent if they are
linked by a chain of weak equivalences, pointing in either direction.

In our study of the formality of the little balls operad, we will consider certain
splittings of O-modules into direct sums. The following homotopy invariance property
of such a splitting will be important.

Proposition 4.2. Let (O,M) and (O′,M ′) be weakly equivalent ChI-modules.
If M is weakly equivalent as an O-module to a direct sum

⊕
nMn, then M ′ is weakly

equivalent as an O′-module to a direct sum
⊕

nM
′
n such that (O,Mn) is weakly equiva-

lent to (O′,M ′
n) for each n.

Proof. It is enough to prove that for a direct weak equivalence

(Ψ,Φ): (O,M) '−! (R, N),

M splits as a direct sum if and only if N splits in a compatible way.
In one direction, suppose that N'

⊕
nNn as R-modules. It is clear that the re-

striction of the scalars functor Ψ∗ preserves direct sums and weak equivalences (quasi-
isomorphisms). Therefore Ψ∗(N)'

⊕
n Ψ∗(Nn). Since by hypothesis M is weakly equiv-

alent to Ψ∗(N), we have the required splitting of M .
In the other direction suppose that the O-module M is weakly equivalent to

⊕
nMn.

We can assume that each Mn is cofibrant, hence so is
⊕

nMn. Moreover Ψ∗(N) is
fibrant because every O-module is. Therefore, since M is weakly equivalent to Ψ∗(N),
there exists a direct weak equivalence γ:

⊕
nMn

'−!Ψ∗(N). Since (Ψ∗,Ψ∗) is a Quillen
equivalence, the weak equivalence γ induces an adjoint weak equivalence

γ[: Ψ∗

(⊕
n

Mn

)
'−−!N.

As a left adjoint, Ψ∗ commutes with coproducts, therefore we get the splitting⊕
n

Ψ∗(Mn) '−−!N.

Moreover, we have a weak equivalence Mn
'−!Ψ∗Ψ∗(Mn), because it is the adjoint of the

identity map on Ψ∗(Mn), Mn is cofibrant, and (Ψ∗,Ψ∗) is a Quillen equivalence. Thus
this splitting of N is compatible with the given splitting of M .
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4.4. Lax monoidal functors, enriched categories, and their modules

Let C and D be two symmetric monoidal categories. A lax symmetric monoidal functor
F : C!D is a (non-enriched) functor, together with morphisms

1D −!F (1C) and F (X)⊗F (Y )−!F (X⊗Y ),

natural in X,Y ∈C, that satisfy the obvious unit, associativity, and symmetry relations.
In this paper, we will sometimes use “monoidal” to mean “lax symmetric monoidal”, as
this is the only notion of monoidality that we will consider.

Such a lax symmetric monoidal functor F induces a functor (which we will still
denote by F ) from CI -categories to DI -categories. Explicitly if O is a CI -category then
F (O) is the D-category whose set of objects is I and morphisms are

(F (O))(i, j) :=F (O(i, j)).

Moreover, F induces a functor from Mod -O to Mod -F (O). We will denote this functor
by F as well.

The main examples that we will consider are those from §2.0.1 and §2.0.2, and their
composites:

(1) Homology: H∗: (Ch,⊗,K)!(Ch,⊗,K);
(2) Normalized singular chains: C∗: (Top,×, ∗)!(Ch,⊗,K), X 7!C∗(X).

The fact that the normalized chains functor is lax monoidal, and equivalent to the un-
normalized chains functor, is explained in [19, §2]. As is customary, we often abbreviate
the composite H∗ �C∗ as H∗.

Recall that we also use the functor Hn: (Ch,⊗,K)!(Ch,⊗,K), where Hn(C, d) is
seen as a chain complex concentrated in degree n. The functor Hn is not monoidal for
n>0. However, H0 is monoidal.

Thus, if B is a small TopI -category then C∗(B) and H∗(B) are ChI -categories. Also
if B:B!Top is a B-module then C∗(B) is a C∗(B)-module and H∗(B) is an H∗(B)-
module. We also have the ChI -category H0(B).

4.5. Discretization of enriched categories

When we want to emphasize that a category is not enriched (or, equivalently, enriched
over Set), we will use the term discrete category. When we speak of an A-diagram we
always assume that A is a discrete category.

Let C be a closed symmetric monoidal category. Consider the forgetful functor

φ: C −!Set,

C 7−!homC(1, C).
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It is immediate from the definitions that φ is a monoidal functor. Therefore, it induces a
functor from categories enriched over C to discrete categories. We will call this induced
functor the discretization functor. Let O be a category enriched over C. The discretiza-
tion of O will be denoted Oδ. It has the same objects as O, and its sets of morphisms
are given by the discretization of morphisms in O. For example, Top can be either the
Top-enriched category or the associated discrete category. For Ch, the set of morphisms
between two chain complexes X∗ and Y∗ in the discretization of Ch is the set of cycles
of degree 0 in the chain complex Ch(X∗, Y∗), i.e. the set of chain maps. It is easy to see
that if C is a closed symmetric monoidal category, then the discretization of C is the same
as C, considered as a discrete category. We will not use special notation to distinguish
between C and its underlying discrete category.

Let M :O!R be a C -functor between two C -categories. The underlying discrete
functor is the functor M δ:Oδ!Rδ induced in the obvious way from M . More precisely,
if i is an object of O then M δ(i)=M(i). If j is another object and f∈Oδ(i, j), that is
f :1!O(i, j), then M δ(f)∈Rδ(M δ(i),M δ(j)) is defined as the composite

1
f−−!O(i, j)

M(i,j)−−−−−!R(M(i),M(j)).

Similarly if Φ:M!M ′ is an enriched natural transformation between enriched functors,
we have an induced discrete natural transformation Φδ:M δ!(M ′)δ. In particular, an
O-module M induces an Oδ-diagram M δ in C and a morphism of O-modules induces a
morphism of Oδ-diagrams.

Let F : C!D be a lax symmetric monoidal functor, let O be a CI -category, and let
M :O!C be an O-module. As explained before, we have an induced DI -category F (O),
and an F (O)-module F (M). We may compare Oδ and F (O)δ by means of a functor

F δ
O:Oδ −!F (O)δ

which is the identity on objects and if f :1C!O(i, j) is a morphism in Oδ, then F δ
O(f)

is the composite 1D!F (1C)
F (f)−−−!F (O(i, j)).

It is straightforward to verify the following two properties of discretization.

Lemma 4.3. Let F : C!D be a lax symmetric monoidal functor , let O be a CI -
category and let M be an O-module. The following diagram of discrete functors com-
mutes

Oδ

F δ
O

��

Mδ
// C

F

��

F (O)δ
F (M)δ

// D.
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Lemma 4.4. Let C be a monoidal model category and let O be a CI-category. If
Φ:M '−!M ′ is a weak equivalence of O-modules then Φδ:M δ '−!(M ′)δ is a weak equiv-
alence of Oδ-diagrams.

5. Operads and associated enriched categories

We will first recall the notions of operads, right modules over operads, and weak equiva-
lences of operads. We will then describe the enriched category associated with an operad.
Finally, we will treat the central example of the little balls operad. The enriched category
viewpoint will help us to deduce (in §7) the formality of certain topological functors from
the formality of the little balls operad.

5.1. Operads and right modules

Among the many references for operads, a recent one that covers them from a viewpoint
similar to ours is Ching’s paper [5]. However, there is one important difference between
our setting and Ching’s: He only considers operads without the zero-th term, while we
consider operads with one. Briefly, an operad in a symmetric monoidal category (C,⊗,1),
or a C-operad, is a symmetric sequence O(�)={O(n)}∞n=0 of objects of C, equipped with
structure maps

O(n)⊗O(m1)⊗...⊗O(mn)−!O(m1+...+mn) and 1−!O(1),

satisfying certain associativity, unit, and symmetry axioms. There is an obvious notion
of a morphism of operads.

When C is a monoidal model category, we say that a morphism f :O(�)!R(�)
of C -operads is a weak equivalence if f(n) is a weak equivalence in C for each natural
number n. If f :O(�)!R(�) and f ′:O′(�)!R′(�) are morphisms of operads, a morphism
of arrows from f to f ′ is a pair (o:O(�)!O′(�), r:R(�)!R′(�)) of morphisms of operads
such that the obvious square diagrams commute. Such a pair (o, r) is called a weak
equivalence if both o and r are weak equivalences.

A right module over a C -operad O(�) is a symmetric sequence M(�)={M(n)}∞n=0 of
objects of C, equipped with structure morphisms

M(n)⊗O(m1)⊗...⊗O(mn)−!M(m1+...+mn)

satisfying certain obvious associativity, unit, and symmetry axioms (see [5] for details).
Notice that a morphism of operads f :O(�)!R(�) endows R(�) with the structure of a
right O(�)-module.
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5.2. Enriched category associated with an operad

Fix a closed symmetric monoidal category C that admits finite coproducts. Recall from
§4.2 that a CN-category is a category enriched over C whose set of objects is N. The
CN-category associated with the C-operad O(�) is the category O defined by

O(m,n) =
∐

α:m−!n

O(α−1(1))⊗...⊗O(α−1(n)),

where the coproduct is taken over set maps

α:m := {1, ...,m}−!n := {1, ..., n}

and O(α−1(j))=O(mj), where mj is the cardinality of α−1(j). Composition of mor-
phisms is prescribed by operad structure maps in O(�). In particular, O(m, 1)=O(m).

Let O(�) be a C -operad and let O be the associated CN-category. A right module
(in the sense of operads) M(�) over O(�) gives rise to a right O-module (in the sense
of §4)

M(−):O−! C,

n 7−!M(n),

where M(−) is defined on morphisms by the C -morphisms

M(m,n):O(m,n)−! C(M(n),M(m))

obtained by adjunction from the structure maps

M(n)⊗O(m,n) =
∐

α:m−!n

M(n)⊗O(α−1(1))⊗...⊗O(α−1(n))−!M(m).

If f :O(�)!R(�) is a morphism of operads, then we have an associated right O-module
R(−):O!C.

It is obvious that if O(�) and O′(�) are weakly equivalent, objectwise cofibrant,
operads over a monoidal model category C then the associated CN-categories O and O′

are weakly equivalent. Also, if f :O(�)!R(�) and f ′:O′(�)!R′(�) are weakly equivalent
morphisms of operads, then the pair (O, R(−)) is weakly equivalent, in the category of
CN-modules, to the pair (O′, R′(−)).

Let F : C!D be a lax symmetric monoidal functor, and suppose that O(�) is an
operad in C. Let O be the CN-category associated with O(�). Then F (O(�)) is an
operad in D, and F (O) is a DN-category. It is easy to see that there is a natural
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morphism from the DN-category associated with the D-operad F (O(�)) to F (O). This
morphism is not an isomorphism, unless F is strictly monoidal and also takes coproducts
to coproducts, but in all cases that we consider, it will be a weak equivalence. Similarly, if
f :O(�)!R(�) is a morphism of operads in C and if R(−) is the rightO-module associated
with the O(�)-module R(�), then F (R(−)) has a natural structure of an F (O)-module,
extending the structure of an F (O(�))-module possessed by F (R(�)).

5.3. The standard little balls operad

The most important operad for our purposes is what we will call the standard balls
operad. Let V be a Euclidean space. By a standard ball in V we mean a subset of V,
that is obtained from the open unit ball by dilation and translation. The operad of
standard balls will be denoted by B(�, V ). It is the well-known operad in (Top,×, ∗),
consisting of the topological spaces

B(n, V ) = {n-tuples of disjoint standard balls inside the unit ball of V }

with the structure maps given by composition of inclusions after suitable dilations and
translations.

The TopN-category associated with the standard balls operad B(�, V ) will be de-
noted by B(V ). An object of B(V ) is a non-negative integer n which can be thought of
as an abstract (i.e., not embedded) disjoint union of n copies of the unit ball in V. The
space of morphisms B(V )(m,n) is the space of embeddings of m unit balls into n unit
balls, which on each ball are obtained by dilations and translations.

Let j:W ↪!V be a linear isometric inclusion of Euclidean spaces. Such a map induces
a morphism of operads

j: B(�,W )−!B(�, V ),

where a ball centered at w∈W is sent to the ball of the same radius centered at j(w).
Hence B(�, V ) is a right module over B(�,W ), and we get a right B(W )-module

B(−, V ):B(W )−!Top,

n 7−!B(n, V ).

We can apply lax monoidal functors to the above setting. For example, C∗(B(�,W ))
and H∗(B(�,W )) are operads in (Ch,⊗,K). Hence we get ChN-categories C∗(B(W ))
and H∗(B(W )), a right C∗(B(W ))-module C∗(B(−, V )), and a right H∗(B(W ))-module
H∗(B(−, V )).

We will also consider the discrete categories B(W )δ and C∗(B(W ))δ obtained by the
discretization process from B(W ) and C∗(B(W )), respectively. Note that

C∗(B(W ))δ =K[B(W )δ].
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6. Formality and splitting of the little balls operad

In this section, all chain complexes and homology groups are taken with coefficients in R.
A deep theorem of Kontsevich (Theorem 1.2 of the introduction and Theorem 2 of [14])
asserts that the standard balls operad is formal over the reals. We will need a slight
strengthening of this result. Throughout this section, let j:W ↪!V be, as usual, a linear
isometric inclusion of Euclidean spaces. Recall the little balls operad and the associated
enriched categories and modules as in §5.3. Here is the version of Kontsevich’s theorem
we need.

Theorem 6.1. (Relative formality) If dimV >2 dimW then the morphism of chain
operads

C∗(j): C∗(B(�,W ))⊗R−!C∗(B(�, V ))⊗R

is weakly equivalent to the morphism

H∗(j): H∗(B(�,W );R)−!H∗(B(�, V );R).

Sketch of the proof. A detailed proof will appear in [16]. Here we give a sketch
based on the proof of absolute formality given in [14, Theorem 2], and we follow that
paper’s notation. Denote by FMd(n) the Fulton–MacPherson compactification of the
configuration space of n points in Rd. This defines an operad FMd(�) which is homotopy
equivalent to the little balls operad B(�,Rd). Kontsevich constructs a quasi-isomorphism

Ψ:SemiAlgChain∗(FMd(n)) '−−!Graphsd(n)⊗̂R,

where SemiAlgChain∗ is a chain complex of semi-algebraic chains naturally quasi-isomor-
phic to singular chains and Graphsd(n)⊗̂R is the chain complex dual, over R, to the
chain complex of admissible graphs as defined in [14, Definitions 13 and 15]. For a
semi-algebraic chain ξ on FMd(n), the map Ψ is defined by

Ψ(ξ)(Γ)= 〈ωΓ, ξ〉, for any admissible graph Γ,

where ωΓ is the associated differential form defined in [14, Definition 14].
Let j∗: FMdim W (n)!FMdim V (n) be the map induced by the inclusion of Euclidean

spaces j. Notice that Hi(j∗)=0 for i>0. Define ε:Graphsdim W (n)!Graphsdim V (n) to
be the dual of the map that sends graphs with at least one edge to zero, and the graph
without edges to itself. We need to show that the following diagram commutes:

SemiAlgChain∗(FMdim W (n))

j∗

��

' // Graphsdim W (n)⊗̂R
' //

ε

��

H∗(FMdim W (n))

H(j∗)

��

SemiAlgChain∗(FMdim V (n)) ' // Graphsdim V (n)⊗̂R
' // H∗(FMdim V (n)).
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The commutativity of the right-hand square is clear. For the left-hand square it suffices
to check that for any admissible graph of positive degree Γ and for any non-zero semi-
algebraic chain ξ∈SemiAlgChain∗(FMdim W (n)) we have 〈ωΓ, j∗(ξ)〉=0.

The first n vertices 1, ..., n of Γ are called external and the other are called inter-
nal. If every external vertex of Γ is connected to an edge, then, using the fact that
internal vertices are at least trivalent, we obtain that the form ωΓ on FMdim V (n) is of
degree > 1

2n(dimV −1). Since dimV >2 dimW, we get that deg(ωΓ)>dim FMdim W (n).
Therefore deg(ωΓ)>deg(j∗(ξ)) and 〈ωΓ, j∗(ξ)〉=0.

If Γ has an isolated external vertex, then 〈ωΓ, j∗(ξ)〉=〈ωΓ, j∗(ξ′)〉, where ξ′ is a chain
in SemiAlgChain∗(FMdim W (m)) with m<n and the proof proceeds by induction.

We remark once again that the formality theorem is for chain complexes over R, not
over Q. We do not know if the little balls operad is formal over the rational numbers,
but we do think it is an interesting question. We note that a general result about descent
of formality from R to Q was proved in [12], for operads without a term in degree zero.
The proof does not seem to be easily adaptable to operads with a zero term.

To deduce the formality of certain diagrams more directly related to spaces of em-
beddings, we first reformulate relative formality in terms of homogeneous splittings in
the spirit of Proposition 3.3. With this in mind, we introduce the following enrichment
of Definition 3.2.

Definition 6.2. LetO be a ChI -category. We say that anO-moduleM :O!Ch splits
homogeneously if there exists a sequence {Mn}∞n=0 ofO-modules such thatM'

⊕∞
n=0Mn

and H∗(Mn)=Hn(Mn).

Our first example (a trivial one) of such a homogeneous splitting of modules is given
by the following lemma.

Lemma 6.3. If dimV >dimW then the H∗(B(W ))-module H∗(B(−, V )) splits ho-
mogenously.

Proof. Notice that H0(B(W )) is also a ChN-category. Since our chain complexes are
non-negatively graded and with a zero differential, we have an obvious inclusion functor

i: H0(B(W )) � � // H∗(B(W ))

and a projection functor
Φ: H∗(B(W ))−!H0(B(W ))

between ChN-categories, where Φ�i is the identity. Therefore, an H∗(B(W ))-module
admits a structure of an H0(B(W ))-module via i. Since H0(B(W )) is a category of chain
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complexes concentrated in degree 0 and H∗(B(−, V )) has no differentials, it is clear that
we have a splitting of H0(B(W ))-modules

H∗(B(−, V ))∼=
∞⊕

n=0

Hn(B(−, V )). (3)

Moreover, since dimW<dimV the morphisms

H∗(B(n,W ))−!H∗(B(n, V ))

are zero in positive degrees. Hence the H∗(B(W ))-module structure on H∗(B(−, V ))
factors through the above-mentioned H0(B(W ))-module structure via Φ. Therefore, the
splitting (3) is a splitting of H∗(B(W ))-modules.

Using Lemma 6.3 and the relative formality theorem, we obtain the following highly
non-trivial splitting.

Lemma 6.4. If dimV >2 dimW then the C∗(B(W ))-module C∗(B(−, V )) splits ho-
mogenously.

Proof. We deduce from Theorem 6.1 that the ChN-module categories

(C∗(B(W )),C∗(B(−, V ))) and (H∗(B(W )),H∗(B(−, V )))

are equivalent. By Lemma 6.3, the latter splits homogeneously, hence, by Proposition 4.2,
the same is true of the former.

Recall from §4.5 that the enriched category B(W ) has an underlying discrete category
B(W )δ and that the B(W )-module B(−, V ) induces a B(W )δ-diagram B(−, V )δ.

Proposition 6.5. If dimV >2 dimW then the B(W )δ-diagram

C∗(B(−, V ))δ:B(W )δ −!ChR

is formal.

Proof. By Lemma 4.3, the following diagram of discrete functors commutes:

B(W )δ

(C∗)
δ
B(W )

��

B(−,V )δ

// Top

C∗

��

C∗(B(W ))δ
C∗(B(V,−))δ

// ChR,
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where the discretization C∗(B(W ))δ is nothing else than the linearization of B(W )δ, that
is the category whose morphisms are formal R-linear combinations of morphism in B(W )
and the objects are the same as in B(W ). We want to prove that the B(W )δ-diagram
C∗(B(−, V )δ) is formal. By the commutativity of the square above and Lemma 3.6, it is
enough to prove that the C∗(B(W ))δ-diagram C∗(B(V,−))δ is formal. By Lemma 6.4, the
C∗(B(W ))-module C∗(B(−, V )) splits homogeneously. By Lemma 4.4, we deduce that
the C∗(B(W ))δ-diagram C∗(B(−, V ))δ splits homogeneously, which implies, by Proposi-
tion 3.3, the formality of that diagram.

7. Formality of a certain diagram arising from embedding calculus

In this section, all chain complexes are still taken over the real numbers. As before, fix a
linear isometric inclusion of Euclidean vector spaces j:W ↪!V. Let O(W ) be the poset of
open subsets of W. As explained in the introduction, we have two contravariant functors

Emb(−, V ), Imm(−, V ):O(W )−!Top .

Moreover, the fixed embedding j:W ↪!V can serve as a basepoint, so we can consider
the homotopy fiber of the inclusion Emb(−, V )!Imm(−, V ), which we denote by

Emb(−, V ):O(W )−!Top .

Our goal in this section is to compare a certain variation of this functor with the
functor

B(−, V )δ:B(W )δ −!Top

and to deduce, in Theorem 7.2, the stable formality of certain diagrams of embedding
spaces. In order to do this we first introduce a subcategory Os(W ) of O(W ) and a
category Õs(W ) which will serve as a turning table between Os(W ) and B(W )δ.

To describe Os(W ), recall that a standard ball in W is an open ball in the metric
space W, i.e. it is obtained in a unique way by a dilation and translation of the unit
ball in W. The category Os(W ) is the full subcategory of O(W ) whose objects are finite
unions of disjoint standard balls.

The category Õs(W ) is a kind of covering of Os(W ). Recall that the object m∈N
of B(W ) can be thought of as an abstract disjoint union of m copies of the unit ball of W.
An object of Õs(W ) is then an embedding φ:m↪!W such that the restriction of φ to
each unit ball amounts to a dilation and translation. In other words, an object (φ,m)
of Õs(W ) is the same as an ordered m-tuple of disjoint standard balls in W. The union
of these m standard balls is an object of Os(W ) that we denote by φ(m), as the image
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of the embedding φ. By definition, there is a morphism in Õs(W ) between two objects
(φ,m) and (ψ, n) if and only if φ(n)⊂ψ(m), and such a morphism is unique.

We define functors
B(W )δ λ −−Õs(W ) π−−!Os(W ).

Here π is defined on objects by π(φ,m)=φ(m) and is defined on morphisms by sending
a morphism α: (φ1,m1)!(φ2,m) to the inclusion φ1(m1)↪!φ2(m2), and this functor is
easily seen to be an equivalence of categories. The functor λ is defined on objects by
λ(φ,m)=m, and is defined on morphisms using the fact that any two standard balls
in W can be canonically identified by a unique transformation that is a combination of
dilation and translation.

We would like to compare the following two composed functors

Emb(π(−), V )): Õs(W ) π−−!Os(W )
Emb(−,V )−−−−−−−−!Top,

B(λ(−), V )δ: Õs(W ) λ−−!B(W )δ B(−,V )δ

−−−−−−−!Top .

Proposition 7.1. The Õs(W )-diagrams B(λ(−), V )δ and Emb(π(−), V ) are weakly
equivalent.

Proof. Define subspaces

AffEmb(φ(n), V )⊂Emb(φ(n), V ) and AffImm(φ(n), V )⊂ Imm(φ(n), V )

to be the spaces of embeddings and immersions, respectively, that are affine on each ball.
It is well known that the above inclusion maps are homotopy equivalences. We may
define AffEmb(φ(n), V ) to be the homotopy fiber of the map

AffEmb(φ(n), V )−!AffImm(φ(n), V ).

Thus there is a natural homotopy equivalence

AffEmb(φ(n), V ) '−−!Emb(φ(n), V ).

Define Ĩnj(W,V ) as the space of injective linear maps from W to V, quotiented out by the
multiplicative group of positive reals, i.e. defined up to dilation. Then there is a natural
homotopy equivalence

AffImm(φ(n), V ) ' −− Ĩnj(W,V )n

obtained by differentiating the immersion at each component of φ(n). Now consider the
map

AffEmb(φ(n), V )−! Ĩnj(W,V )n.
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We denote the homotopy fiber of this map by F (n, φ), and we obtain a natural equivalence

AffEmb(φ(n), V ) '−−!F (n, φ).

Finally since the composite map

B(n, V ) � � // AffEmb(φ(n), V ) // Ĩnj(W,V )n

is the constant map into the basepoint, there is a natural map B(n, V )!F (n, φ). It
is easy to see that the map is an equivalence. To summarize, we have constructed the
following chain of natural weak equivalences

Emb(φ(n), V ) ' −−AffEmb(φ(n), V ) '−−!F (n, φ) ' −−B(n, V ).

We are ready to prove the main result of this section.

Theorem 7.2. If dimV >2 dimW then the Õs(W )-diagram C∗(Emb(π(−), V )) is
stably formal.

Proof. By Proposition 6.5 and Lemma 3.6, the diagram C∗(B(λ(−), V ))δ is stably
formal. Proposition 7.1 implies the theorem.

8. More generalities on calculus of functors

In this section we digress to review in a little more detail the basics of embedding and
orthogonal calculus. We will also record some general observations about bifunctors to
which both brands of calculus apply. The standard references are [23] and [22].

8.1. Embedding calculus

Let M be a smooth manifold (for convenience, we assume that M is the interior of a
compact manifold with boundary). Let O(M) be the poset of open subsets of M and
let Ok(M) be the subposet consisting of open subsets homeomorphic to a union of at
most k open balls. Embedding calculus is concerned with the study of contravariant
isotopy functors from F to a Quillen model category (Weiss only considers functors into
the category of spaces, and, implicitly, spectra, but much of the theory works just as
well in the more general setting of model categories). Following [23, p. 5], we say that
a contravariant functor is good if it converts isotopy equivalences to weak equivalences
and filtered unions to homotopy limits. Polynomial functors are defined in terms of cer-
tain cubical diagrams, similarly to the way they are defined in Goodwillie’s homotopy
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calculus. Recall that a cubical diagram of spaces is called strongly co-cartesian if each
of its 2-dimensional faces is a homotopy pushout square. A contravariant functor F
on O(M) is polynomial of degree k if it takes strongly co-cartesian (k+1)-dimensional
cubical diagrams of opens subsets of M to homotopy cartesian cubical diagrams (homo-
topy cartesian cubical diagram is synonymous with homotopy pullback cubical diagram).
Good functors can be approximated by the stages of the tower defined by

TkF (U) = holim
{U ′∈Ok(M):U ′⊂U}

F (U ′).

It turns out that TkF is polynomial of degree k, and moreover there is a natural
map F!TkF which in some sense is the best possible approximation of F by a poly-
nomial functor of degree k. More precisely, the map F!TkF can be characterized as
the essentially unique map from F to a polynomial functor of degree k that induces a
weak equivalence when evaluated on an object of Ok(M). In the terminology of [23],
TkF is the kth Taylor polynomial of F . F is said to be homogeneous of degree k if it is
polynomial of degree k and Tk−1F is equivalent to the trivial functor. For each k, there
is a natural map TkF!Tk−1F , compatible with the maps F!TkF and F!Tk−1F . Its
homotopy fiber is a homogeneous functor of degree k, and it is called the k-th layer of the
tower. It plays the role of the kth term in the Taylor series of a function. For functors
with values in pointed spaces, there is a useful general formula for the kth layer in terms
of spaces of sections of a certain bundle p:E!

(
M
k

)
over the space

(
M
k

)
of unordered k-

tuples of distinct points in M . The fiber of p at a point m={m1, ...,mk} is F̂ (m), which
is defined to be the total fiber of the k-dimensional cube S 7!F (N(S)), where S ranges
over subsets of m and N(S) stands for a “small tubular neighborhood” of S in M , i.e.,
a disjoint union of open balls in M . The fibration p has a preferred section. See [23],
especially §8 and §9, for more details and a proof of the following proposition.

Proposition 8.1. (Weiss) The homotopy fiber of the map TkF!Tk−1F is equiva-
lent to the space of sections of the fibration p above, which agree with the preferred section
in a neighborhood of the fat diagonal in Mk.

We denote this space of restricted sections by

Γc

((
M

k

)
, F̂ (k)

)
.

Even though TkF is defined as the homotopy limit of an infinite category, for most
moral and practical purposes it behaves as if it was the homotopy limit of a very small
category (i.e., a category whose simplicial nerve has finitely many non-degenerate sim-
plices). This is so because of the following proposition.
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Proposition 8.2. There is a very small subcategory C of Ok(M) such that restric-
tion from Ok(M) to C induces an equivalence on homotopy limits of all good functors.

Proof. It is not difficult to show, using handlebody decomposition and induction
(the argument is essentially contained in the proof of Theorem 5.1 of [23]), that one
can find a finite collection {U1, ..., UN} of open subsets of M such that all their possible
intersections are objects of Ok(M) and

Mk =
N⋃

i=1

Uk
i .

This is equivalent to saying that the sets Ui cover M in what Weiss calls the Grothendieck
topology Jk. By [23, Theorem 5.2], polynomial functors of degree k are homotopy sheaves
with respect to Jk. In practice, this means the following. Let C be the subposet of
Ok(M) given by the sets Ui and all their possible intersections (clearly, C is a very small
category). Let G be a polynomial functor of degree k. Then the following canonical map
is a homotopy equivalence:

G(M)−!holim
U∈C

G(U).

We conclude that for a good functor F , there is the following zig-zag of weak equiv-
alences:

holim
U∈C

F (U) '−−!holim
U∈C

TkF (U) ' −−TkF (M).

Here the left map is a weak equivalence because the map F!TkF is a weak equivalence
on objects of Ok(M), and all objects of C are objects of Ok(M). The right map is an
equivalence because TkF is a polynomial functor of degree k, in view of the discussion
above.

The important consequence of the proposition is that TkF commutes, up to a zig-zag
of weak equivalences, with filtered homotopy colimits of functors. In the same spirit, we
have the following proposition.

Proposition 8.3. Let F :Ok(M)!ChQ be a good functor into rational chain com-
plexes. Then the natural map

(TkF (M))⊗R−!Tk(F⊗R)(M)

is a weak equivalence.

Proof. Tensoring with R obviously commutes up to homotopy with very small ho-
motopy limits, and so the claim follows from Proposition 8.2.
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8.2. Orthogonal calculus

The basic reference for orthogonal calculus is [22]. Let J be the topological category of
Euclidean spaces and linear isometric inclusions. Orthogonal calculus is concerned with
the study of continuous functors from J to a model category enriched over Top∗. We will
only consider functors into Top∗, Spectra and closely related categories. Like embedding
calculus, orthogonal calculus comes equipped with a notion of a polynomial functor, and
with a construction that associates with a functor G a tower of approximating functors
PnG such that PnG is, in a suitable sense, the best possible approximation of G by a
polynomial functor of degree n. Pn is defined as a certain filtered homotopy colimit of
compact homotopy limits. For each n, there is a natural map PnG!Pn−1G and its fiber
(again called the n-th layer) is denoted by DnG. DnG is a homogeneous functor, in the
sense that it is polynomial of degree n and Pn−1DnG'∗. The following characterization
of homogeneous functors is proved in [22].

Theorem 8.4. (Weiss) Every homogeneous functor of degree n from vector spaces
to spectra is equivalent to a functor of the form

(Cn∧SnV )hO(n),

where Cn is a spectrum with an action of the orthogonal group O(n), SnV is the one-point
compactification of the vector space Rn⊗V, and the subscript hO(n) denotes homotopy
orbits.

It follows, in particular, that given a (spectrum-valued) functor G to which orthogo-
nal calculus applies, DnG has the form described in the theorem, with some spectrum Cn.
The spectrum Cn is called the n-th derivative of G. There is a useful description of the
derivatives of G as stabilizations of certain types of iterated cross-effects of G.

Let G1 and G2 be two functors to which orthogonal calculus applies. Let α:G1!G2

be a natural transformation. Very much in the spirit of Goodwillie’s homotopy calculus,
we say that G1 and G2 agree to n-th order via α if the map α(V ):G1(V )!G2(V ) is
((n+1) dimV +c)-connected, where c is a possibly negative constant, independent of V.
Using the description of derivatives in terms of cross-effects, it is easy to prove the
following proposition.

Proposition 8.5. Suppose that G1 and G2 agree to n-th order via a natural trans-
formation α:G1!G2. Then α induces an equivalence on the first n derivatives, and
therefore an equivalence on n-th Taylor polynomials

Pnα:PnG1
'−−!PnG2.
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8.3. Bifunctors

In this paper we consider bifunctors

E:O(M)op×J −!Top/Spectra

such that the adjoint contravariant functor O(M)!Funct(J ,Top/Spectra) is good (in
the evident sense) and the adjoint functor J!Funct(O(M)op,Top/Spectra) is continu-
ous. We may apply both embedding calculus and orthogonal calculus to such a bifunctor.
Thus, by PnE(M,V ) we mean the functor obtained from E by considering it as a func-
tor of V, (with M being a “parameter”) and taking the nth Taylor polynomial in the
orthogonal sense. Similarly, TkE(M,V ) is the functor obtained by taking the kth Taylor
polynomial in the sense of embedding calculus.

We will need a result about the interchangeability of order of applying the differential
operators Pn and Tk. The operator Tk is constructed using a homotopy limit, while Pn is
constructed using a homotopy limit (over a compact topological category) and a filtered
homotopy colimit. It follows that there is a natural transformation

PnTkE(M,V )−!TkPnE(M,V )

and a similar natural transformation, where Pn is replaced by Dn.

Lemma 8.6. Let E be a bifunctor as above. For all n and k the natural map

PnTkE(M,V ) '−−!TkPnE(M,V )

is an equivalence. There is a similar equivalence where Pn is replaced by Dn.

Proof. By Proposition 8.2, Tk can be presented as a very small homotopy limit.
Therefore, it commutes up to homotopy with homotopy limits and filtered homotopy
colimits. Pn is constructed using homotopy limits and filtered homotopy colimits. There-
fore, Tk and Pn commute.

9. Formality and the embedding tower

In this section we assume that α:M↪!W is an inclusion of an open subset into a Euclidean
space W. From our point of view, there is no loss of generality in this assumption,
because if M is an embedded manifold in W, we can replace M with an open tubular
neighborhood, without changing the homotopy type of Emb(M,V ). As usual, we fix an
isometric inclusion j:W ↪!V of Euclidean vector spaces.
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Recall that we defined the functor

Emb(−, V ):O(M)−!Top .

The stable rationalization HQ∧Emb(−, V )+ of Emb(−, V ) admits a Taylor tower (in
this section, Taylor towers are taken in the sense of embedding calculus). Our goal is to
give, in Theorem 9.2, a splitting of the kth stage of this tower. The splitting is not as a
product of the layers in the embedding towers. Rather, we will see in the next section
that the splitting is as a product of the layers in the orthogonal tower.

Recall the poset Os(W ) of finite unions of standard balls in W from §7. Let Os(M)
be the full subcategory of Os(W ) consisting of the objects which are subsets of M . For
a natural number k, we define Os

k(M) as the full subcategory of Os(M) consisting of
disjoint unions of at most k standard balls in M .

Proposition 9.1. Let M be an open submanifold of a vector space W and let
F :O(M)!Top be a good functor. The restriction map

TkF (M) := holim
U∈Ok(M)

F (U)−! holim
U∈Os

k(M)
F (U),

induced by the inclusion of categories Os
k(M)!Ok(M), is a homotopy equivalence.

Proof. Define T s
kF (M):= holim

U∈Os
k(M)

F (U). There are projection maps

T s
kF (M)−!T s

k−1F (M)

induced by the inclusion of categories Os
k−1(M)!Os

k(M), and the map TkF!T s
kF ex-

tends to a map of towers. One can adapt the methods of [23] to analyze the functors
T s

kF . In particular, it is not hard to show, using the same methods as in [23], that our
map induces a homotopy equivalence from the homotopy fibers of the map TkF!Tk−1F

to the homotopy fibers of the map T s
kF!T s

k−1F , for all k. Our assertion follows by
induction on k.

Recall the category Õs(W ) defined in §7. Let Õs(M) be the full subcategory of
Õs(W ) consisting of objects (φ,m) such that φ(m) is a subset of M . Define also Õs

k(M)
to be the full subcategory of Õs(W ) consisting of objects (φ,m) such that m is at most k.

Recall the functor π: Õs(W )!Os(W ), (φ,m) 7!φ(m), defined in §7. It is clear that
this functor restricts to a functor π: Õs

k(M)!Os
k(M). Moreover it is an equivalence

of categories, therefore pullbacks along π induce weak equivalences between homotopy
limits.

We can now prove the main result of this section. Recall from §7 the functor

B(λ(−), V ): Õs(W )−!Top,

which by abuse of notation we denote by (φ,m) 7!B(m,V ).
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Theorem 9.2. Let W⊂V be an inclusion of Euclidean vector spaces, let M be an
open submanifold of W, and let k be a natural number. If dimV >2 dimW then there
is an equivalence of spectra

TkHQ∧Emb(M,V )+'
∞∏

i=0

Tk‖Hi(Emb(M,V ))‖

'
∞∏

i=0

holim
(φ,m)∈Õs

k(M)
‖Hi(Emb(π(φ,m), V )))‖,

where ‖Hi(X)‖ is the Eilenberg–MacLane spectrum that has the i-th rational homology
of X in degree i.

Proof. By Proposition 9.1 and since π is an equivalence of categories, we have

TkHQ∧Emb(M,V )+' holim
(φ,m)∈Õs

k(M)
HQ∧Emb(π(φ,m), V ))+.

By Proposition 7.1, the functors Emb(π(φ,m), V ) and B(λ(φ,m), V )=B(m,V ) are weakly
equivalent, as functors on Õs

k(W ). It follows that their restrictions to Õs
k(M) are weakly

equivalent, and so

TkHQ∧Emb(M,V )+' holim
(φ,m)∈Õs

k(M)
HQ∧B(m,V )+.

Using the Quillen equivalence between rational spectra and rational chain complexes, and
the fact that homotopy limits are preserved by Quillen equivalences, we conclude that
there is a weak equivalence (or more precisely a zig-zag of weak equivalences) in ChQ:

TkC∗(Emb(M,V ))' holim
(φ,m)∈Õs

k(M)
C∗(B(m,V )).

On the other hand, by Proposition 6.5 and Lemma 3.6, the functor m 7!C∗(B(m,V ))⊗R
from Õs

k(M) to ChR is formal. By Remark 3.5, we get that

holim
(φ,m)∈Õs

k(M)
C∗(Emb(π(φ,m), V ))⊗R'

∞∏
i=0

holim
(φ,m)∈Õs

k(M)
Hi(B(m,V );R).

Recall that B(m,V ) is equivalent to the space of configurations of m points in V and it
only has homology in dimensions at most (m−1)(dimV −1). Since m6k, the product
on the right-hand side of the above formula is in fact finite (more precisely, it is non-
zero only for i=0,dimV −1, 2(dimV −1), ..., (k−1)(dimV −1)). Therefore, we may think
of the product as a direct sum, and so tensoring with R commutes with product in the
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displayed formulas below. By Proposition 8.3, we know that tensoring with R commutes,
in our case, with holim, and so we obtain the weak equivalence

TkC∗(Emb(M,V ))⊗R'
( ∞∏

i=0

holim
(φ,m)∈Õs

k(M)
Hi(B(m,V );Q)

)
⊗R.

It is well known (and is easy to prove using calculus of functors) that spaces such
as Emb(M,V ) are homologically of finite type, therefore all chain complexes involved
are homologically of finite type. Two rational chain complexes of homologically finite
type which are quasi-isomorphic after tensoring with R are, necessarily, quasi-isomorphic
over Q. Therefore, we have a weak equivalence in ChQ:

TkC∗(Emb(M,V ))'
∞∏

i=0

holim
(φ,m)∈Õs

k(M)
Hi(B(m,V );Q).

The desired result follows by using, once again, Proposition 7.1 and the equivalence
between ChQ and rational spectra.

10. Formality and the splitting of the orthogonal tower

In this section we show that Theorem 9.2, which is about the splitting of a certain
lim-Postnikov tower, can be reinterpreted as the splitting of the orthogonal tower of
HQ∧Emb(M,V )+. Thus in this section we mainly focus on the functoriality of

HQ∧Emb(M,V )+

in V and, accordingly, terms like “Taylor polynomials”, “derivatives”, etc. are always
used in the context of orthogonal calculus.(1)

As we have seen, embedding calculus tells us, roughly speaking, that

Σ∞Emb(M,V )+

can be written as a homotopy inverse limit of spectra of the form Σ∞C(k, V )+, where
C(k, V ):=Emb({1, ..., k}, V ) is the space of configurations of k points in V. A good place
to start is therefore to understand the orthogonal Taylor tower of V 7!Σ∞C(k, V )+. The
only thing that we will need in this section is the following simple fact (we will only use
a rationalized version of it, but it is true integrally).

(1) We are committing a slight abuse of notation here, because the definition of Emb(M, V ) depends

on choosing a fixed embedding M↪!W, and therefore Emb(M, V ) is only defined for vector spaces

containing W. One way around this problem would be to work with the functor V 7!Emb(M, W⊕V ).
To avoid introducing ever messier notation, we chose to ignore this issue, as it does not affect our
arguments in the slightest.
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Proposition 10.1. The functor V 7!Σ∞C(k, V )+ is polynomial of degree k−1. For
06i6k−1, the i-th layer in the orthogonal tower of this functor ,(2) DiΣ∞C(k, V )+, is
equivalent to a wedge of spheres of dimension i(dimV −1).

This proposition is an immediate consequence of Proposition 10.3 below, and its
rational version is restated more precisely as Corollary 10.5.

We now digress to do a detailed calculation of the derivatives of Σ∞C(k, V )+. First,
we need some definitions.

Definition 10.2. Let S be a finite set. A partition Λ of S is an equivalence relation
on S. Let P (S) be the poset of all partitions of S, ordered by refinement (the finer the
bigger). We say that a partition Λ is irreducible if each component of Λ has at least two
elements.

The poset P (S) has both an initial and a final object. Therefore, its geometric
realization, which we denote by |P (S)|, is a contractible simplicial complex. One standard
way to construct a non-trivial homotopy type out of P (S) is to consider the subposet
P0(S), obtained from P (S) by removing both the initial and the final object. We are
going to construct a variation of |P0(S)| as follows. First, consider the following sub-
complex of |P (S)|, which we denote by ∂|P (S)|. ∂|P (S)| is built of those simplices of the
nerve of P (S) that do not contain the morphism from the initial object to the final object
as a 1-dimensional face. It is an easy exercise to show that ∂|P (S)| is homeomorphic
to the unreduced suspension of |P0(S)|. Let TS be the quotient space |P (S)|/∂|P (S)|.
Since |P (S)| is contractible, it follows that TS is equivalent to the suspension of ∂|P (S)|,
and therefore to the double suspension of |P0(S)|.

If S={1, ..., n}, we denote P (S) by P (n) and TS by Tn. There is a well-known
equivalence (see, e.g., [17, Theorem 4.109], where the analogous statement is proved for
|P0(S)|, which in [17] is called the Folkman complex of the braid arrangement):

Tn'
∨

(n−1)!

Sn−1.

Now let Λ be a partition of S={1, ..., n}, and let P (Λ) be the poset of all refinements
of Λ. Again, P (Λ) is a poset with both an initial and a final object. Define ∂|P (Λ)| in
the same way as before, and let

TΛ = |P (Λ)|/∂|P (Λ)|.

It is not hard to see that if Λ is a partition with components (λ1, ..., λj), then there is an
isomorphism of posets

P (Λ)∼=P (λ1)×...×P (λj)

(2) Note that we are not speaking of the derivative of this functor.
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and therefore a homeomorphism

TΛ
∼=Tλ1∧...∧Tλj .

In particular, TΛ is equivalent to a wedge of spheres of dimension n−j. We call this
number the excess of Λ and denote it by e(Λ).

Proposition 10.3. For i>0, the i-th layer of Σ∞C(k, V )+ is equivalent to

DiΣ∞C(k, V )+'
∨

{Λ∈P (k):e(Λ)=i}

Map∗(TΛ,Σ∞SiV ),

where the wedge sum is over the set of partitions of k of excess i.

Proof. Denote the fat diagonal of kV by

∆kV := {(v1, ..., vk)∈ kV : vi = vj for some i 6= j}.

The smashed-fat-diagonal of SkV is

∆kSV :=
{
x1∧...∧xk ∈

∧k
i=1 S

V =SkV :xi =xj for some i 6= j
}
.

Thus
C(k, V ) = kV \∆kV =((kV )∪{∞})\((∆kV )∪{∞}) =SkV \∆kSV .

Recall that for a subpolyhedron in a sphere, j:K↪!Sn, Spanier–Whitehead duality
gives a weak equivalence of spectra

Σ∞(Sn\K)+'Map∗(S
n/K,Σ∞Sn)

which is natural with respect to inclusions L⊂K and commutes with suspensions. In our
case, Spanier–Whitehead duality gives an equivalence

Σ∞C(k, V )+'Map∗(S
kV/∆kSV ,Σ∞SkV )

which is natural with respect to linear isometric injections. The right-hand side is equiv-
alent to the homotopy fiber of the map

Map∗(S
kV ,Σ∞SkV )−!Map∗(∆

kSV ,Σ∞SkV ).

Since Map∗(SkV ,Σ∞SkV )'Σ∞S0 is a constant functor, it has no layers of degree greater
than zero. Therefore, for i>0,

DiΣ∞C(k, V )+'Ω(Di Map∗(∆
kSV ,Σ∞SkV )).
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It is not hard to see (see [1, Lemma 2.2] for a proof) that ∆kSV can be “filtered” by
excess. More precisely, there is a sequence of spaces

∗=∆k
0S

V −!∆k
1S

V −!∆k
2S

V −! ...−!∆k
k−1S

V =∆kSV

such that the homotopy cofiber of the map ∆k
i−1S

V!∆k
i S

V is equivalent to∨
{Λ∈P (k):e(Λ)=i}

KΛ∧S(k−i)V ,

where KΛ is a de-suspension of TΛ. It follows that Map∗(∆kSV ,Σ∞SkV ) can be decom-
posed into a finite tower of fibrations

Map∗(∆
kSV ,Σ∞SkV ) =Xk−1−!Xk−2−! ...−!X1,

where the homotopy fiber of the map Xi!Xi−1 is equivalent to∏
{Λ∈P (k):e(Λ)=i}

Map∗(KΛ,Σ∞SiV ).

Since this is obviously a homogeneous functor of degree i, it follows that Xi is the ith
Taylor polynomial of Map∗(∆kSV ,Σ∞SkV ). The proposition follows.

Remark 10.4. Proposition 10.3 is closely related to the homology calculations done
by Cohen and Taylor in [6].

Rationalizing, we obtain the following corollary.

Corollary 10.5. Each layer in the orthogonal tower of the functor

V 7−!HQ∧C(k, V )+

is an Eilenberg–Maclane spectrum. More precisely,

Di(HQ∧C(k, V )+)'
{
‖Hi(dim V−1)(C(k, V ))‖, if i6 k−1,
∗, otherwise,

where
‖Hi(dim V−1)(C(k, V ))‖

is the Eilenberg–MacLane spectrum that has the i(dimV −1)-th rational homology of
C(k, V ) in degree i(dimV −1).

Therefore, this orthogonal tower coincides, up to indexing , with the Postnikov tower ,
i.e.

Pn(HQ∧C(k, V )+)'Pod(n)(HQ∧C(k, V )+),

where d(n) is any number satisfying n(dimV −1)6d(n)<(n+1)(dimV −1).
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Proof. The computation of the layers is an immediate application of the previous
proposition. Set X=HQ∧C(k, V )+ and consider the following commutative square:

X //

��

Pod(X)

��

Pn(X) // Pod Pn(X).

A study of the homotopy groups of the layers shows that the bottom and the right maps
are weak equivalences when d is the prescribed range.

Let ̂Σ∞C(k, V )+ be the total homotopy fiber of the k-dimensional cubical diagram
which sends a subset S⊂{1, ..., k} to Σ∞C(S, V )+ (where C(S, V )=Emb(S, V )), and
where the maps are the obvious restriction maps. ̂Σ∞C(k, V )+ is a functor of V, and
so we may ask about the homogeneous layers of this functor. We have the following
variation of Proposition 10.3.

Proposition 10.6. Let P irr(k) be the set of irreducible partitions of k (i.e., parti-
tions without singletons). For i>0, the i-th layer of ̂Σ∞C(k, V )+ is equivalent to

Di
̂Σ∞C(k, V )+'

∨
{Λ∈P irr(k):e(Λ)=i}

Map∗(TΛ,Σ∞SiV ),

where the wedge sum is over the set of irreducible partitions of k of excess i.

Proof. It is clear by inspection that

D0
̂Σ∞C(k, V )+'∗

so we may assume that i>0. Proposition 10.3 can be rephrased as saying that for i>0,
the ith layer of Σ∞C(S, V )+ is equivalent to∏

{Λ∈P (S):e(Λ)=i}

Map∗(TΛ,Σ∞SiV ),

where the product is over the set of partitions of S of excess i. Let S1 ↪!S2 be an inclusion,
and consider the corresponding projection of configuration spaces C(S2, V )−!C(S1, V ).
It is not hard to show, by inspecting the proof of Proposition 10.3, that the corresponding
map of ith layers

DiΣ∞C(S2, V )+−!DiΣ∞C(S1, V )+

corresponds to the projection∏
{Λ∈P (S2):e(Λ)=i}

Map∗(TΛ,Σ∞SiV )−!
∏

{Λ∈P (S1):e(Λ)=i}

Map∗(TΛ,Σ∞SiV )

associated with the obvious inclusion of posets P (S1)↪!P (S2). The proposition follows
by elementary combinatorics.
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Corollary 10.7. Suppose that k=2l−1 or k=2l. Then

Di
̂Σ∞C(k, V )+'∗ for i< l.

Proof. According to the preceding proposition, Di
̂Σ∞C(k, V )+ is a wedge sum in-

dexed by irreducible partitions of k of excess i. It is clear from the definition of excess
that the lowest possible excess of an irreducible partition of k is attained by the irre-
ducible partition of k with the maximal number of components. It is easy to see that
the irreducible partitions of k with the maximal number of components are partitions of
type

2 - ... - 2︸ ︷︷ ︸
l−2

- 3

if k=2l−1, and partitions of type

2 - ... - 2︸ ︷︷ ︸
l

if k=2l. In both of these cases, the excess of the partition is l. It follows that the wedge
sum in the statement of Proposition 10.6 is empty for i<l, and so the left-hand side is
contractible in this case.

Corollary 10.8. Suppose that k=2l−1 or k=2l. Then ̂Σ∞C(k, V )+ is

(l(dimV −1)−1)-connected.

Proof. By the preceding corollary, the smallest i for which Di
̂Σ∞C(k, V )+ is non-

trivial is l. By Proposition 10.6, this layer is equivalent to a (stable) wedge of spheres of
dimension l(dimV −1), and so it is (l(dimV −1)−1)-connected. Clearly, higher layers are
more highly connected. Since the Taylor tower of Σ∞C(k, V )+ converges, the statement
follows.

We will also need the following proposition.

Proposition 10.9. For every n there exists a large enough k such that the natural
map

PnHQ∧Emb(M,V )+
'−−! holim

U∈Ok(M)
PnHQ∧Emb(U, V )+

is an equivalence. The same holds if Pn is replaced by Dn.

Proof. We will only prove the Pn version. The target of the map is

TkPnHQ∧Emb(M,V )+.
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Applying Lemma 8.6 to the functor E(M,V )=HQ∧Emb(M,V )+, it is enough to prove
that for a large enough k the map

PnHQ∧Emb(M,V )+−!PnTkHQ∧Emb(M,V )+

is an equivalence. Consider again the formula for the kth layer in the embedding tower

Γc

((
M

k

)
, ̂HQ∧C(k, V )+

)
.

It follows from Corollary 10.8 that the spectrum ̂HQ∧C(k, V )+ is roughly 1
2k dimV -

connected. Thus, HQ∧Emb(M,V )+ and TkHQ∧Emb(M,V )+ agree to order roughly 1
2k

(in the sense defined in §8). Hence, by Proposition 8.5, the map

HQ∧Emb(M,V )+−!TkHQ∧Emb(M,V )+

induces an equivalence on Pn, for roughly n6 1
2k.

We are now ready to state and prove our main theorem.

Theorem 10.10. Under the assumptions of Theorem 9.2, the orthogonal tower of
the functor HQ∧Emb(M,V )+ splits. In other words, there is an equivalence

PnHQ∧Emb(M,V )+'
n∏

i=0

DiHQ∧Emb(M,V )+.

Proof. By Lemma 8.6 and Proposition 10.9, and using the model for

TkHQ∧Emb(M,V )+

given in Theorem 9.2, it is enough to show that

Pn

(
holim

(m,φ)∈Õs
k(M)

HQ∧B(m,V )+

)
'

n∏
i=0

holim
(m,φ)∈Õs

k(M)
Di(HQ∧B(m,V )+).

By Corollary 10.5, the Taylor tower of HQ∧B(m,V )+ coincides, up to regrading, with the
Postnikov tower. By the proof of Theorem 9.2, the homotopy limit holimHQ∧B(m,V )+

splits as a product of the homotopy limits of the layers in the Postnikov towers. Since
diagrams of layers in the Postnikov towers and diagrams of layers in the orthogonal towers
are diagrams of Eilenberg–MacLane spectra that are equivalent on homotopy groups, they
are equivalent diagrams (as per Remark 3.4). It follows that holimHQ∧B(n, V )+ splits
as a product of the homotopy limits of the layers in the orthogonal towers.

It is easy to see that the splitting is natural with respect to inclusions of submanifolds
of M , but notice that we do not claim that the splitting is natural in V.
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11. The layers of the orthogonal tower

In this section we explicitly describe the layers (in the sense of orthogonal calculus) of
the Taylor tower of HQ∧Emb(M,V ) as the twisted cohomology of certain spaces of
partitions attached to M . We will try to give a “plausibility argument” for our formulas,
but a detailed proof will appear in [2].

We encountered partition posets in §10. Here, however, we need to consider a
different category of partitions. If Λ is a partition of S, we call S the support of Λ.
When we need to emphasize that S is the support of Λ, we use the notation S(Λ). Also,
we denote by c(Λ) the set of components of Λ. Then Λ can be represented by a surjection
S(Λ) // // c(Λ) . Let CΛ be the mapping cylinder of this surjection. Then S(Λ)⊂CΛ. In
the previous section we defined the excess of Λ to be e(Λ):=|S(Λ)|−|c(Λ)|. It is easy to
see that

e(Λ) = rank(H1(CΛ, S(Λ)).

Let Λ1 and Λ2 be partitions of S1 and S2, respectively. A “pre-morphism” α: Λ1!Λ2

is defined to be a surjection (which we denote with the same letter) α:S1
// // S2 such

that Λ2 is the equivalence relation generated by α(Λ1). It is easy to see that such
a pre-morphism induces a map of pairs (CΛ1 , S(Λ1))!(CΛ2 , S(Λ2)), and therefore a
homomorphism

α∗: H1(CΛ1 , S(Λ1))−!H1(CΛ2 , S(Λ2)).

We say that α is a morphism if α∗ is an isomorphism. In particular, there can only be a
morphism between partitions of equal excess. Roughly speaking, morphisms are allowed
to fuse components together, but are not allowed to bring together two elements in the
same component.

For k>1, let Ek be the category of irreducible partitions (recall that Λ is irreducible
if none of the components of Λ is a singleton) of excess k, with morphisms as defined
above. Notice that if Λ is irreducible of excess k then the size of the support of Λ must
be between k+1 and 2k.

Next we define two functors on Ek—one covariant and one contravariant. Recall
from the previous section that P (Λ) is the poset of refinements of Λ. A morphism Λ!Λ′

induces a map of posets P (Λ)!P (Λ′). It is not difficult to check that this map takes
boundary into boundary, and therefore it induces a map TΛ!TΛ′ . This construction
gives rise to a functor Ek!Top, given on objects by

Λ 7−!TΛ.
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In fact, to conform with the classification of homogeneous functors in orthogonal
calculus, we would like to induce up TΛ to make a space with an action of the orthogonal
group O(k). Let

T̃Λ := Iso(Rk,H1(T (Λ), S(Λ);R))+∧TΛ,

where Iso(V,W ) is the space of linear isomorphisms from V to W (thus Iso(V,W ) is
abstractly homeomorphic to the general linear group if V and W are isomorphic, and
is empty otherwise). In this way we get a covariant functor from Ek to spaces with an
action of O(k). When we want to emphasize the functoriality of this construction, we
denote this functor by T̃(−).

We now construct another functor on Ek, this time a contravariant one. To begin
with, there is an obvious contravariant functor, defined on objects by

Λ 7−!MS(Λ).

Let f :S(Λ)!M be an element of MS(Λ). The image of f is a finite subset of M , and
f(Λ) is a partition of f(S(Λ)). Clearly, f defines a pre-morphism Λ 7!f(Λ). We say
that f is a good element of MS(Λ) if the pre-morphism Λ 7!f(Λ) is in fact a morphism.
Otherwise, we say that f is a bad element of MS(Λ).

Example 11.1. Let Λ be the partition (1, 2)(3, 4). Let f be a map f : {1, 2, 3, 4}!M .
If f is injective, then f is good. If f(2)=f(3), but otherwise f is injective, then f is good.
If f(1)=f(2), then f is bad. In general, if f is not injective on some component of Λ,
then f is bad, but the converse is not true. In our example, if f(1)=f(3) and f(2)=f(4)
then f is bad, even though it may be injective on each component.

Let ∆Λ(M) be the subspace of MS(Λ) consisting of all the bad elements. For ex-
ample, if Λ is the partition with one component, then ∆Λ(M) is the usual fat diagonal.
It is not hard to see that the contravariant functor Λ 7!MS(Λ) passes to a contravariant
functor from Ek to spaces given on objects by

Λ 7−!MS(Λ)/∆Λ(M).

Let M [Λ] :=MS(Λ)/∆Λ(M). This is a contravariant functor on Ek. Again, when we want
to emphasize that this is a functor, we denote this construction by M [−].

Given a covariant functor and a contravariant functor on Ek, we may consider the
“tensor product” (also known as coend, which in our case is equivalent to the homotopy
coend)

T̃(−)⊗Ek
M [−],

which is a space with an action of O(k).
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Theorem 11.2. The i-th layer of the orthogonal calculus tower of Σ∞Emb(M,V )+

is equivalent to

Map∗(T̃(−)⊗EiM
[−],Σ∞SV i)O(i).

Idea of proof. Embedding calculus suggests that it is almost enough to prove the
theorem in the case of M homeomorphic to a finite disjoint union of balls. In this case
Emb(M,V ) is equivalent to the configuration space C(k, V ). It is not hard to show that
then the formula in the statement of the current theorem is equivalent to the formula
given by Proposition 10.3. The current theorem restates the formula of Proposition 10.3
in a way that is well defined and natural for all manifolds M .

It follows that the kth layer of HQ∧Emb(M,V )+ is given by the same formula as
in the theorem, with Σ∞ replaced by HQ∧.

Corollary 11.3. Suppose that M1 and M2 are related by a zig-zag of map inducing
an isomorphism in homology. Then, for each n, the n-th layers of the orthogonal towers
of the two functors

V 7−!Σ∞Emb(Mi, V )+, i=1, 2,

are homotopy equivalent. Similarly , if the maps in the aforementioned zig-zag induce
isomorphisms in rational homology then the layers of the orthogonal towers of

V 7−!HQ∧Emb(Mi, V )+

are equivalent.

Proof. It is not hard to show that T̃(−)⊗Ek
M [−] is equivalent to a finite CW complex

with a free action (in the pointed sense) of O(k). Since the action is free, the fixed points
construction in the formula for the layers in the orthogonal tower can be replaced by
the homotopy fixed points construction. Thus, the kth layer in the orthogonal tower of
Σ∞Emb(M,V )+ is equivalent to

Map∗(T̃(−)⊗Ek
M [−],Σ∞SV k)h O(k).

It is easy to see that this is a functor that takes homology equivalences in M to homotopy
equivalences. For the rational case, notice that Map∗(T̃(−)⊗Ek

M [−],HQ∧SV k)h O(k) is
a functor of M that takes rational homology equivalences to homotopy equivalences.

Some remarks are perhaps in order.
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Remark 11.4. It may be helpful to note that the space T̃(−)⊗Ek
M [−] can be filtered

by the size of support of Λ (that is, by the number of points in M involved). This leads
to a decomposition of the kth layer in the orthogonal tower of Σ∞Emb(M,V ) as a finite
tower of fibrations, with k terms, indexed k+16i62k, corresponding to the number of
points in M . This is the embedding tower of the kth layer of the orthogonal tower.
For example, the second layer of the orthogonal tower fits into the following diagram,
where ∆2,2M is the singular set of the action of Σ2 oΣ2 on M4, the left row is a fibration
sequence, and the square is a homotopy pullback:

Map∗((M4/∆4M)∧T2∧T2,Σ∞S2V )Σ2oΣ2

��

D2Σ∞Emb(M,V ) //

��

Map∗((M4/∆2,2M)∧T∧2
2 ,Σ∞S2V )Σ2oΣ2

��

Map∗((M3/∆3M)∧T3,Σ∞S2V )Σ3 // Map∗((M3/∆3M)∧T∧2
2 ,Σ∞S2V )Σ2 .

Remark 11.5. To relate this to something “classical”, note that the top layer of the
embedding tower of the kth layer of the orthogonal tower is

Map∗((M
2k/∆2kM)∧T∧k

2 ,Σ∞SkV )Σ2oΣk .

This is the space of “chord diagrams” on M , familiar from knot theory. In fact, in the
case of M being a circle (or an interval, in which case one considers embeddings fixed
near the boundary), it is known from [15] that the Vassiliev homology spectral sequence,
which also converges to the space of knots, collapses at E1. Thus the orthogonal tower
spectral sequence for HQ∧Emb(M,V ) must coincide with Vassiliev’s. It is not hard to
verify directly that the two E1 terms are isomorphic (up to regrading).

Finally, we deduce the rational homology invariance of Emb(M,V ) from our main
theorem and Corollary 11.3.

Theorem 11.6. Let M and M ′ be two manifolds such that there is a zig-zag of
maps, each inducing an isomorphism in rational homology , connecting M and M ′. If

dimV > 2 max{ED(M),ED(M ′)},

then Emb(M,V ) and Emb(M ′, V ) have the same rational homology groups.
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[8] Dwyer, W.G. & Spaliński, J., Homotopy theories and model categories, in Handbook of
Algebraic Topology, pp. 73–126. North-Holland, Amsterdam, 1995.

[9] Goodwillie, T.G. & Klein, J. R., Excision statements for spaces of embeddings. In
preparation.

[10] Goodwillie, T.G., Klein, J. R. & Weiss, M. S., Spaces of smooth embeddings, dis-
junction and surgery, in Surveys on Surgery Theory , Vol. 2, Ann. of Math. Stud., 149,
pp. 221–284. Princeton University Press, Princeton, NJ, 2001.

[11] Goodwillie, T.G. & Weiss, M., Embeddings from the point of view of immersion theory.
II. Geom. Topol., 3 (1999), 103–118.

[12] Guillén Santos, F., Navarro, V., Pascual, P. & Roig, A., Moduli spaces and formal
operads. Duke Math. J., 129 (2005), 291–335.

[13] Hirschhorn, P. S., Model Categories and Their Localizations. Mathematical Surveys and
Monographs, 99. Amer. Math. Soc., Providence, RI, 2003.

[14] Kontsevich, M., Operads and motives in deformation quantization. Lett. Math. Phys.,
48 (1999), 35–72.

[15] Lambrechts, P., Turchin, V. & Volić, I., The rational homology of spaces of long
knots in codimension >2. Preprint. arXiv:math/0703649.
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Gregory Arone
Department of Mathematics
University of Virginia
Charlottesville, VA 22903
U.S.A.
zga2m@virginia.edu

Pascal Lambrechts
Institut Mathématique
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