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0. Introduction

We prove in this paper a series of rigidity results for amalgamated free product (hereafter
abbreviated AFP) II1 factors M=M1∗BM2, which can be viewed as von Neumann alge-
bra versions of the “subgroup theorems” and “isomorphism theorems” for AFP groups
in Bass–Serre theory. Our main “subalgebra theorem” shows that, under rather general
conditions, any von Neumann subalgebra Q⊂M with the relative property (T) in the
sense of [P5] (also called a rigid inclusion), can be conjugated by an inner automorphism
of M into either M1 or M2. We derive several “isomorphism theorems” in the case
the amalgamation is over the scalars, B=C, over a common Cartan subalgebra, B=A,
or over a regular hyperfinite subfactor, B=R. The typical such statement shows that
if θ:M'N t is an isomorphism from an AFP factor M=M1∗BM2∗B ...∗BMm onto the
amplification by some t>0 of an AFP factor N=N1∗CN2∗C ...∗CNn, 16m,n6∞, with
each Mi and each Nj containing a “large” subalgebra with the relative property (T), then
m=n and θ(B⊂Mi) is unitarily conjugate to (C⊂Ni)t, for all i, after some permutation
of indices.

When applied to the case B=R, these results allow us to obtain the first explicit
calculations of outer automorphism groups of II1 factors, and answer in the affirma-
tive a problem posed by A. Connes in 1973, on whether there exist II1 factors M with
no outer automorphism, i.e. with Out(M)def= Aut(M)/Int(M)={1}. More precisely, we
show that if a group Γ is the free product of two infinite property (T) groups [K] with no
non-trivial characters, for example Γ=SL(n0,Z)∗SL(n1,Z), n0, n1>3, then there exist
actions of Γ on the hyperfinite II1 factor R such that the corresponding crossed product
factors M=RoΓ have both trivial fundamental group, F(M)={1}, and trivial outer au-
tomorphism group, Out(M)={1}. In fact, the general result shows that for any separable
compact abelian group K there exist factors M with F(M)={1} and Out(M)=K.

In turn, when applied to the case of amalgamated free products over a common
Cartan subalgebra, our “isomorphism theorem” provides a Bass–Serre type result for
orbit equivalence (OE) of actions of free product groups

Γ =Γ1∗...∗Γn and Λ = Λ1∗...∗Λm

on the probability space. Thus, we show that if each Γi and each Λj has an infinite
normal subgroup with the relative property (T) of Kazhdan–Margulis (for instance, if Γi

and Λj are Kazhdan groups for all i and j), and if (σ,Γ) and (θ,Λ) are free, probability
measure preserving (m.p.) actions with σ|Γi and θ|Λj ergodic for all i and j, then σ∼OE

θ implies that m=n and σ|Γi∼OEθ|Λi , for all i, after a permutation of the indices i.
Note that the opposite implication holds true for arbitrary groups Γi and Λj , as shown
by D. Gaboriau in [G2]. In fact, we derive the componentwise OE of actions under
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the weaker assumption that the group measure space factors associated with (σ,Γ) and
(θ,Λ) are stably isomorphic, i.e. when σ and θ are von Neumann equivalent (vNE).
We use this vNE Bass–Serre rigidity and [Fu1], [Fu2], [Ge1], [Ge2], [MoS], [P6] and [P8]
to give examples of group measure space factors M from free ergodic m.p. actions σ
of free product groups Γ=Γ1∗Γ2∗... such that F(M)={1} and Out(M)=H1(σ,Γ), with
explicit calculation of the abelian group H1(σ,Γ).

Finally, when applied to the case B=C, our results become von Neumann algebra
analogues of Kurosh’s classical theorems for free products of groups, similar to Ozawa’s
recent results of this type in [O], but covering a different class of factors than [O] and
allowing amplifications. For instance, we show that if Ni, 26i6n, and Mj , 26j6m,
are property (T) II1 factors in the sense of Connes–Jones (e.g. if Ni and Mj are group
factors associated with Kazhdan groups, [CJ]) then

M1∗M2∗...∗Mm
θ' (N1∗N2∗...∗Nn)t

implies that m=n and that θ(Mi) is inner conjugate to N t
i for all i, after some permu-

tation of indices. In fact, in its most general form our result only requires Mi and Nj to
be weakly rigid (w-rigid), i.e. to have diffuse-regular subalgebras with the relative prop-
erty (T). Taking M=N and Mj =P sj , with {sj}j =S being a multiplicative subgroup
of R∗

+ and P being a w-rigid II1 factor with trivial fundamental group (for instance,
the group factor L(G) associated with G=Z2oSL(2,Z), cf. [P5]) and using a result of
Dykema–Radulescu [DyR], we get F(M)=S for M=∗s∈SP

s. This provides a completely
new class of factors with arbitrary given S⊂R∗

+ as fundamental group from the ones in
[P8]. Indeed, the examples constructed in [P8] are group measure space factors, while
the free group factors ∗s∈SP

s have no Cartan subalgebras, by results of Voiculescu [V2]
(see [Sh] and Remark 6.6 in this paper).

The key technical result behind all these applications is the above mentioned “sub-
algebra theorem”, of Bass–Serre type. We state it in details below, together with other
main results in the paper, and also explain some of the ideas behind the proofs. An
inclusion of finite von Neumann algebras B⊂P will be called homogeneous if there ex-
ists {yj}j⊂P with EB(y∗i yj)=δij , for all i and j, and

∑
i yiB dense in P . This technical

assumption is satisfied by all inclusions coming from (cocycle) crossed products and (gen-
eralized) group measure constructions, or Cartan inclusions. It is also satisfied when P

is an arbitrary finite von Neumann algebra and B=C. Following [P5], a von Neumann
subalgebra Q⊂P has the relative property (T) (or Q⊂P is a rigid inclusion) if any “de-
formation” of idP by completely positive subunital subtracial maps, φn!idP , is uniform
on the unit ball of Q (see also [PeP]).
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Theorem 0.1. Let (Mi, τi), i=1, 2, be finite factors with a common von Neumann
subalgebra B⊂Mi, such that τ1|B=τ2|B and such that B⊂Mi are homogeneous, i=1, 2.
Let Q⊂M=M1∗BM2 be a diffuse von Neumann subalgebra with the relative property (T)
such that no corner qQq of Q can be embedded into B. Then there exists a unique
partition of 1 with projections q′1 and q′2 in the commutant of Q in M such that
ui(Qq′i)u

∗
i ⊂Mi, i=1, 2, for some unitary elements u1 and u2 in M . Moreover , if the

normalizer of Q in M generates a factor N , then there exists a unique i∈{1, 2} such
that uQu∗⊂Mi for some u∈U(M), which also satisfies uNu∗⊂Mi.

The proof of this result takes §§2–5 of the paper. It uses “deformation/rigidity” and
“intertwining” techniques from [P5], [P7] and [P8]. Thus, we embed M=M1∗BM2 into
the larger algebra M̃=M ∗B (B
⊗L(F2)), whose aboundance of deformations is used to
show that “rigid parts” of M have to concentrate on certain subspaces with “bounded
word-length”. This initial information is then used as a starting point in a word-reduction
argument to obtain a Hilbert bimodule intertwining Q into one of the Mi’s. The homo-
geneity condition is needed in order to measure the “size” of letters in the Mi’s. To
get a unitary element conjugating Q into Mi from this, we prove in §1 a series of re-
sults on the relative commutants and normalizers of subalgebras in AFP factors, using
[P8, I, Theorem 2.1 and Corollary 2.3].

If we take B=C in Theorem 0.1 and use the fact that finite von Neumann algebras
with the Haagerup property ([H], [Ch]) have no diffuse subalgebras with the relative
property (T), then we get an analogue of Kurosh’s isomorphism theorem for free products
of groups.

Theorem 0.2. Let (M0, τM0) and (N0, τN0) be finite von Neumann algebras with
Haagerup’s compact approximation property. Let Mi, 16i6m, and Nj , 16j6n, be
w-rigid II1 factors, where m,n>1 are some cardinals (finite or infinite). If θ is an
isomorphism of M=∗m

i=0Mi onto N t, where N=∗n
j=0Nj and t>0, then m=n and , after

some permutation of indices, θ(Mi) and N t
i are unitarily conjugate in N t, for all i>1.

Ozawa’s pioneering result of this type in [O] concerns free products of group factors
Mi=L(Γi) and Ni=L(Λi) with each Γi and Λi being a product of two or more infinite
conjugacy class (ICC) groups, either word hyperbolic (at least one of them) or amenable,
typical examples being the groups Fni×S∞, not covered by Theorem 0.2 above. In turn,
our typical Mi and Ni are factors from property (T) (more generally w-rigid) groups.

Letting Mi=Ni for all i and m<∞ in Theorem 0.2, it follows that if F(Mi)={1} for
some 16i6m (for example if Mi=L(Z2oFk), with 26k<∞, cf. [P5]), then F(M)={1}.
Moreover, taking m=∞ in Theorem 0.2 and using the “compression formula” for free
products of infinitely many II1 factors (∗iMi)t'∗iM

t
i in [DyR], we can include specific
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numbers into the fundamental group. Thus we get the following result.

Corollary 0.3. (1) Let m∈N and let M1, ...,Mm be w-rigid II1 factors. Let
(M0, τM0) be a finite von Neuman algebra with Haagerup’s compact approximation prop-
erty. If one of the factors Mi, 16i6m, has trivial fundamental group then so does

M =M0∗M1∗...∗Mm.

(2) If S⊂R∗
+ is an arbitrary infinite (possibly uncountable) subgroup and P is a

w-rigid II1 factor with trivial fundamental group (e.g. P=L(Z2oSL(2,Z))), then the II1
factor ∗s∈SP

s has fundamental group equal to S.

Since a group measure space factor M=L∞(X,µ)oσ (Γ1∗Γ2) associated with a free
ergodic m.p. action (σ,Γ1∗Γ2) on a probability space (X,µ) can alternatively be viewed
as an AFP factor M=M1∗AM2, where A=L∞(X,µ) and Mi=Aoσ|Γi

Γi, Theorem 0.1
allows us to obtain Bass–Serre type vNE and OE rigidity results for actions of free
products of groups, as follows.

Theorem 0.4. (vNE Bass–Serre rigidity) Let Γ0 and Λ0 be groups with the Haagerup
property and let Γi, 16i6n6∞, and Λj , 16j6m6∞, be ICC groups having normal
non-virtually abelian subgroups with the relative property (T). Assume that either Γ0

is infinite or n>2. Let σ (resp. θ) be a free ergodic m.p. action of Γ=Γ0∗Γ1∗...
(resp. Λ=Λ0∗Λ1∗... ) on the probability space (X,µ) (resp. (Y, ν)) such that σi=σ|Γi

(resp. θi=θ|Λi) is ergodic for all i>1. Denote by M=L∞(X,µ)oσΓ, N=L∞(Y, ν)oθΛ,
Mi=L∞(X,µ)oσi Γi⊂M and Nj =L∞(Y, ν)oθj Λj⊂N the corresponding group measure
space factors. If α:M'N t is an isomorphism, for some t>0, then m=n and there is a
permutation π of indices i>1 and unitary elements ui∈N t such that , for all i>1,

Ad(ui)(α(Mi))=N t
π(i) and Ad(ui)(α(L∞(X,µ)))= (L∞(Y, ν))t.

In particular , Rσ'Rt
θ and Rσi'Rt

θπ(i)
for all i>1.

In particular, taking the isomorphism α between the group measure space factors
in Theorem 0.4 to come from an orbit equivalence of the actions, one gets the following
result.

Corollary 0.5. (OE Bass–Serre rigidity) Let Γi, 16i6n6∞, Λj , 16j6m6∞,
σ and θ be as in Theorem 0.4. If Rσ,Γ'Rt

θ,Λ, then n=m and there exists a permuta-
tion π of the set of indices i>1 such that Rσi,Γi'Rt

θπ(i),Λπ(i)
for all i>1.

Like in [P8, II], the terminology “vNE rigidity” is used here in a broad sense, in
the same spirit the terminology “OE rigidity” is being used in orbit equivalence ergodic
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theory ([Fu1], [MoS], [S], [Z]). It can designate results which from an isomorphism of
group measure space factors derives orbit equivalence of the actions involved (“vNE/OE
rigidity”, like [P5, Theorem 6.2]), or even conjugacy of the actions (“vNE strong rigidity”,
e.g. [P8, II, Theorem 7.1]). Theorem 0.4 brings out a new type of vNE rigidity, which
we have labeled “Bass–Serre” because of its analogy to group theory results. It is a
“vNE/OE”-type result but stronger, as it derives not only the orbit equivalence of the
“main actions” (σ,Γ) and (θ,Λ), but also the componentwise orbit equivalence of their
restrictions (σi,Γi) and (θi,Λi).

The “vNE Bass–Serre rigidity” can be used in combination with OE rigidity results in
orbit equivalence ergodic theory to get more insight on the group measure space factors
involved. Thus, taking Γ0=Λ0={1} and 26n,m<∞ in Theorem 0.4, by Gaboriau’s
results in [G1] it follows that the `2-Betti numbers of Γi and Λi must satisfy

β
(2)
k (Γi) =

β
(2)
k (Λi)
t

,

for all 16i6n=m, and

n∑
i=1

β
(2)
1 (Γi)+(n−1) =

1
t

( n∑
i=1

β
(2)
1 (Λi)+(n−1)

)
,

forcing t=1. Also, if we take Γ=Γ0∗Γ1∗... and σ as in Theorem 0.4, and add the con-
ditions Out(Rσ1)={1} and (σ1,Γ1) not OE to (σi,Γi), for all i 6=1, then Out(Rσ)={1}
and Out(M)=H1(σ,Γ). Examples of actions (σ1,Γ1) with the associated orbit equiva-
lence relation Rσ1,Γ1 having trivial outer automorphism group are constructed in [Ge2],
[Fu2] and [MoS], and we construct some more, using the Monod–Shalom rigidity the-
orem [MoS]. The group H1(σ,Γ) can in turn be calculated by using [P6], thus getting
explicit computations of Out(M) for the group measure space factors M . The fact that
one can choose the action (σ,Γ) to be free yet have restrictions σ|Γi

isomorphic to spe-
cific Γi-actions, for all i, is a consequence of [Tö], but we include a proof for the reader’s
convenience (see §7.3 and §A.1).

Theorem 0.1 is in fact used to obtain another (genuine) “vNE/OE rigidity” result
in this paper, for free ergodic m.p. actions (σ,Γ) with Γ being a free product of infinite
groups, Γ=Γ0∗Γ1, and σ satisfying the relative property (T) of [P5, Definition 5.10],
i.e. such that L∞(X,µ)⊂L∞(X,µ)oσΓ is a rigid inclusion. This way we recover the
uniqueness of the HT Cartan subalgebra (as defined in [P5, §6.1]) in the group-factors
L(Z2oFn) and their amplifications, one of the main results in [P5].

Similarly, we obtain rigidity results for crossed product factors M=Roσ (Γ0∗Γ1)
corresponding to actions (σ,Γ0∗Γ1) on the hyperfinite II1 factor R, by regarding M as
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an AFP factor M=(RoΓ0)∗R(RoΓ1). In fact, in this case we can control even better
the groups of symmetries F(M) and Out(M), with complete calculations. To state this
result, let fTR denote the class of actions (σ,Γ0∗Γ1) of free product groups Γ0∗Γ1 on the
hyperfinite factor R, satisfying the properties: (a) Γ0 is free and indecomposable; (b) Γ1

is w-rigid (which is true, e.g., if Γ1 is an infinite Kazhdan group); (c) R⊂RoσΓ0 is a rigid
inclusion; (d) σ|Γ1 is a non-commutative Bernoulli Γ1-action, i.e. R can be represented in
the form R=�

⊗
g∈Γ1

(Mn×n(C), tr)g, n>2, with σ|Γ1 acting on it by left Bernoulli shifts;
(e) σ|Γ1 is freely independent with respect to the normalizer N0 of σ(Γ0) in Out(R).

To show that such actions exist, we first prove that for any two countable sets of
automorphisms S1 and S2 of R, there exist θ∈Aut(R) such that S1 and θS2θ

−1 are
“freely independent” (see §8.2 and §A.2). Combining this with results from [Bu], [Ch],
[Fe], [NPSa], [P5] and [Va], we deduce that for many arithmetic groups Γ0 (in particular
for Γ0=SL(n,Z), for all n>2) and any w-rigid group Γ1, there exist actions (σ,Γ0∗Γ1)
on R in the class fTR. Using Theorem 0.1, properties (a)–(e) above and [P7], we get the
following results.

Theorem 0.6. For any Γ0=SL(n0,Z), n0>2, and any w-rigid group Γ1 there exist
actions σ of Γ0∗Γ1 on R in the class fTR. If (σ,Γ0∗Γ1) is an fTR action and we let
M=Roσ (Γ0∗Γ1), then F(M)={1} and Out(M)=Char(Γ0)×Char(Γ1).

Theorem 0.7. Given any compact abelian group K, there exist separable II1 fac-
tors M with F(M)={1} and Out(M)=K. For instance, if (σ,Γ0∗Γ1) is an fTR action
and M=Roσ (Γ0∗Γ1) is the associated crossed product factor , with Γ0=SL(n,Z) and
Γ1=SL(m,Z)×K̂ for some n,m>3, then F(M)={1} and Out(M)=K. Moreover , de-
noting by M∞=M
⊗B(`2N) the associated II∞ factor , we have Out(M∞)=K.

The study of outer automorphisms of type-II von Neumann factors was at the core
of Connes decomposition theory for factors of type III and his classification of amenable
factors, in the early 70s [C1], [C3]. Two subsequent seminal papers [C2], [C4] gave
the first indications that the outer symmetry groups Out(M) and F(M) can reflect
rigidity properties of non-amenable factors. In particular, it was shown in [C4] that
F(M) and Out(M) are countable for group factors associated with ICC groups with the
property (T). The recent rigidity results in [P5], [P8] and [P9] provide explicit calculations
of F(M) for large families of group measure space factors M , and reduce the calculation
of Out(M) to the computation of the commutants of the corresponding group actions.
However, such commutants are difficult to compute, being left as an open problem even
in the case of Bernoulli actions (see [P8, II]). The calculation of Out(M) that we obtain
in this paper for crossed product factors arising from actions of free products of w-rigid
groups on the probability space and on the hyperfinite factor thus give the first such
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explicit computations.
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1. Conjugating subalgebras in AFP factors

1.1. AFP algebras

Let (M1, τ1) and (M2, τ2) be finite von Neumann algebras with a common von Neu-
mann subalgebra B⊂Mi, i=1, 2, such that τ1|B=τ2|B . We denote by (M1∗BM2, τ1∗τ2)
the finite von Neumann algebra free product with amalgamation (AFP) of (M1, τ1;B)
and (M2, τ2;B), as defined in [V1] and [P2, pp. 384–385]. Thus, M1∗BM2 has a dense
∗-subalgebra

B⊕
⊕
n>1

⊕
ij∈{1,2}

i1 6=i2 6=i3 6=... 6=in

sp(Mi1	B)(Mi2	B) ... (Min	B) (1.1)

with the trace τ=τ1∗τ2 defined on reduced words by τ(x)=τ1(x)=τ2(x) for x∈B, and
τ(x)=0 for x=xi1xi2 ... xin , with xik

∈Mik
	B, ik∈{1, 2}, i1 6=i2 6=i3 6=... 6=in. Thus, the

vector subspaces B and sp(Mi1	B)(Mi2	B) ... (Min	B)⊂M in the above sum are all
mutually orthogonal with respect to the scalar product given by the trace τ . Also, their
closure in L2(M, τ) gives mutually orthogonal Hilbert B-bimodules,

L2((Mi1	B)(Mi2	B) ... (Min	B))'H0
i1⊗BH0

i2⊗B ...⊗BH0
in
,

summing up to L2(M, τ), where H0
i =L2(Mi)	L2(B).

1.2. Controlling intertwiners and relative commutants

In this subsection we prove a very useful “dichotomy-type” result for subalgebras Q of
AFP factors M=M1∗BM2. It shows that if Q sits in one of the factors, say M1, then
it can either be conjugated into the “core” B of the AFP algebra M , or else all its
normalizers lie in M1, and even all “intertwining” Hilbert Q-M1 bimodules H⊂L2(M)
with dim(HM1)<∞ must be entirely contained in L2(M1)! Also, in this second case, any
bimodule intertwining Q into the other factor, M2, vanishes.
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The first results of this type was obtained in [P1], in the case of “plain” free product
factors, M=M1∗M2. The next theorem provides a sharp generalization of these results.
The proof uses the basic “intertwining criteria” [P8, I, Theorem 2.1 and Corollary 2.3],
following arguments similar to [P8, I, Theorem 3.1].

Theorem 1.1. Let (M1, τ1) and (M2, τ2) be finite von Neumann algebras and B be a
common von Neumann subalgebra such that τ1|B=τ2|B. Let M=M1∗BM2, 0 6=q∈P(M1)
and let Q⊂qM1q be a von Neumann subalgebra. Assume that no corner of Q can be
embedded into B inside M1, i.e. Q′∩q〈M1, B〉q contains no non-zero finite projections.
If 0 6=ξ∈L2(qM) satisfies

Qξ⊂L2

( n∑
i=1

ξiMk

)
for some k∈{1, 2} and some ξ1, ..., ξn∈L2(M), then k=1 and ξ∈L2(M1). In particular ,
Q′∩qMq⊂M1, the normalizer NqMq(Q) of Q in qMq is contained in qM1q, and if
x∈M satisfies Qx⊂xM2 then x=0.

Proof. Let p denote the orthogonal projection of L2(M) onto the Hilbert subspace

QξMk
‖·‖2 ⊂L2(M).

Note that p∈Q′∩q〈M, eMk
〉q and 0 6=Tr(p)<∞, where Tr=Tr〈M,eMk

〉 denotes the canon-
ical trace on 〈M, eMk

〉. To prove that k=1 and ξ∈Mk it is sufficient to show that p6eMk
,

or equivalently that (1−eMk
)p(1−eMk

)=0. Indeed, because then QξMk⊂L2(Mk), so in
particular ξ∈L2(Mk) and uξ∈L2(Mk) for all u∈U(Q). But since no corner of Q can
be embedded into B inside M1, by [P8, I, Corollary 2.3], it follows that for any ε>0
there exists u∈U(Q) such that ‖EB(u)‖26ε. Thus, if k=2, then ξ, uξ∈L2(M2) so that
uξ=EM2(uξ)=EB(u)ξ, and by the Cauchy–Schwarz inequality we have

‖ξ‖1 = ‖uξ‖1 = ‖EB(u)ξ‖1 6 ‖EB(u)‖2‖ξ‖2 6 ε‖ξ‖2.

Since ε>0 was arbitrary, this shows that ξ=0. Thus, the only possibility is that k=1,
i.e. ξ∈L2(M1).

By taking spectral projections, to show that (1−eMk
)p(1−eMk

)=0 it is in fact
sufficient to show that if f∈Q′∩〈M, eMk

〉 is a projection such that 0 6=Tr(f)<∞ and
f61−eMk

, then f=0. To this end, we will show that ‖f‖2,Tr is arbitrarily small.

Thus, let η0=1, η1, ..., ηn, ...⊂M be an orthonormal basis of M over Mk, i.e.

EMk
(η∗i ηj) = δijpj ∈P(Mk)
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and ‖η‖<∞, for all i and j. If we let fn=
∑n

i=1 ηieMk
η∗i then, as f has finite trace and

f61−eMk
=

∑∞
i=1 ηieMk

η∗i , there exists n∈N such that ‖fnf−f‖2,Tr<ε‖f‖2,Tr. Thus,
if u∈U(Q), then

Tr(fnufnu
∗) >Tr(ffnfufnu

∗)−|Tr(ffn(1−f)ufnu
∗)|−|Tr((1−f)fnufnu

∗)|. (1.2)

Using that fnf is ε-close to f in the norm ‖ · ‖2,Tr and that f commutes with u∈Q,
we deduce that

Tr(ffnfufnu
∗) =Tr(fnfufnfu

∗) > (1−2ε−ε2)‖f‖22,Tr. (1.3)

Similarly, we have

|Tr(ffn(1−f)ufnu
∗)|+|Tr((1−f)fnfufnu

∗)|6 2ε(1+ε)‖f‖22,Tr. (1.4)

Combining (1.2)–(1.4), we get

Tr(fnufnu
∗) > (1−4ε−3ε2)‖f‖22,Tr for all u∈U(Q). (1.5)

On the other hand,

Tr(fnufnu
∗) =Tr

( n∑
i,j=1

ηieMk
η∗i uηjeMk

η∗ju
∗
)

=
n∑

i,j=1

‖EMk
(ηiuη

∗
j )‖22. (1.6)

Thus, in order to prove that ‖f‖2,Tr is small, it is sufficient to prove that for all
η0, ..., ηn∈M	Mk and for all ε>0, there exists u∈U(Q) such that

‖EMk
(ηiuη

∗
j )‖2 6 ε for all 0 6 i, j6n.

Furthermore, by Theorem 1.1 and Kaplansky’s density theorem, it is enough to prove
this in the case where the ηi’s are reduced words of the form ηi=δixi such that one of
the following holds true: (a) δi is a reduced word that ends with a letter in M2	B and
xi is either equal to 1 or contained in M1	B; (b) k=2, δi=1 and xi∈M1	B. Since
xiux

∗
j∈M1, if we set y=xiux

∗
j−EB(xiux

∗
j )∈M1	B, then in both cases (a) and (b) the

reduced word δiyδ∗j is perpendicular to Mk. Indeed, in case (a), δiyδ∗j lies in

... (Mk′	B)(Mk	B)(Mk′	B) ...,

where {k, k′}={1, 2}, and thus it has length at least 3, so δiyδ∗j⊥Mk by (1.1). In case (b),
δiyδ

∗
j ∈M1	B, so it is perpendicular to M2=Mk. Using δiyδ∗j⊥Mk, we then get

EMk
(ηiuη

∗
j ) =EMk

(ηiyη
∗
j )+EMk

(δiEB(xiux
∗
j )δ

∗
j ) =EMk

(δiEB(xiux
∗
j )δ

∗
j ),
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implying that

‖EMk
(ηiuη

∗
j )‖2 = ‖EMk

(δiEB(xiux
∗
j )δ

∗
j )‖2 6 ‖δi‖ ‖δj‖ ‖EB(xiux

∗
j )‖2.

But by the hypothesis and [P8, I, Corollary 2.3], for any ε>0 we can find u∈U(Q) such
that

‖EB(xiux
∗
j )‖2 6

ε

‖δi‖ ‖δj‖
.

Note that, under the conditions of Theorem 1.1, not only the normalizer NqMq(Q) of
Q in qMq is contained in M1, but also the normalizer of the von Neumann algebra gener-
ated by NqMq(Q), and so on. In fact, even the unitary elements u∈qMq, with the prop-
erty that uQu∗∩qM1q is not embeddable into B, are contained in M1. More generally,
if Q⊂qM1q is a von Neumann subalgebra such that Q′∩q〈M1, B〉q contains no non-zero
finite projections, and if we denote by N1=N(Q,M1;B) the von Neumann subalgebra
of qMq generated by unitary elements u∈qMq such that (uQu∗∩M1)′∩q〈M1, B〉q con-
tains no non-zero finite projections, then N1⊂M1. If we then repeat this operation,
taking N2=N(N1,M1;B) to be the von Neumann algebra generated by all unitary ele-
ments u∈qMq such that uN1u

∗∩q〈M1, B〉q contains no non-zero finite projections, then
N2⊂M1. We can of course continue this procedure inductively until it “stops”, i.e. un-
til we reach an Ni such that N(Ni,M1;B)=Ni. More, formally, consider the following
definition.

Definition 1.2. Given q∈P(B) and Q⊂qMq, we consider by (transfinite) induction
the strictly increasing family of von Neumann algebras Q=N0⊂N1⊂...⊂Nj⊂...⊂Ni,
indexed by the first i ordinals, such that:

(a) for each j<i, Nj+1=N(Nj ,M1;B) and Nj 6=Nj+1;
(b) N(Ni,M1;B)=Ni;
(c) if j6i has no “predecessor”, then Nj =

⋃
n<j Nn.

We then let Ñ(Q,M1;B)=Ni and call it the weak quasi-normalizer (wq-normalizer) of
Q in qMq relative to (M1;B). Note that in fact both the definitions of N(Q,M1;B) and
Ñ(Q,M1;B) make sense for any finite von Neumann algebra (M, τ) and von Neumann
subalgebras B,M1⊂M and Q⊂qMq, with q∈P(M1).

This definition is analogous to the definition of wq-normalizer of a subgroup H⊂G
used in [P5], [P6], [P8]. It is easy to see that Ñ(Q,M1;B) is the smallest von Neumann
subalgebra P of qMq such that (uPu∗∩qM1q)′∩q〈M, eB〉q contains non-zero finite pro-
jections for all u∈qMq\P . Theorem 1.1 thus implies the following result.
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Corollary 1.3. Let (M1, τ1), (M2, τ2), q∈B⊂Mi, i=1, 2, and M=M1∗BM2 be
as in Theorem 1.1. Let Q⊂qM1q be a von Neumann subalgebra such that no corner
of Q can be embedded into B inside M1, i.e. Q′∩q〈M1, B〉q contains no non-zero finite
projections. Then Ñ(Q,M1;B)⊂M1.

We will make repeated use of the following application of Theorem 1.1, which shows
that if one of the algebras Mi involved in an amalgamated free product M=M1∗BM2

contains a regular subalgebra Q, then Q must necessarily be contained in B, modulo
inner conjugacy.

Corollary 1.4. Let (M1, τ1), (M2, τ2) and B⊂Mi, i=1, 2, be as in Theorem 1.1,
and let M=M1∗BM2. Let Q⊂qM1q be a von Neumann subalgebra, for some q∈P(B)
with qBq 6=qM2q. Assume that Q is regular in qMq. Then one can embed a corner of Q
into B inside M1, i.e. Q′∩q〈M1, eB〉q contains non-zero finite-trace projections.

Proof. If Q′∩q〈M1, eB〉q contains no non-zero finite-trace projection then, by Theo-
rem 1.1, the normalizer NM (Q) of Q in qMq is contained in M1. Since NM (Q)′′=qMq,
this implies that qMq=qM1q, thus qM2q=qBq, a contradiction.

1.3. Locating subalgebras by means of normalizers

In this and the next subsections we prove that if a subalgebra of M=M1∗BM2 is nor-
malized by “many” unitary elements in M1, then it must necessarily be contained in M1.
This technical result will in fact not be needed until §7, where it plays a key role in the
proof of the Bass–Serre type Theorem 7.7. The proof uses the intertwining criteria in
[P8] and a careful asymptotic analysis of elements written in the AFP expansion (1.1).
We first prove the result assuming that the subalgebra we want to “locate” is unitarily
conjugate to a subalgebra of B. This assumption will be shown to be redundant in §1.4,
in the case when B=A is Cartan in M .

Proposition 1.5. Let Λ1 and Λ2 be discrete groups and σ: Λ!Aut(B, τ) be an
action of Λ=Λ1∗Λ2 on the finite von Neumann algebra (B, τ). Let

M =BoσΛ =M1∗BM2,

where Mi=Boσ|Λi
Λi, i=1, 2. Let q∈P(B), B0⊂qBq be a von Neumann subalgebra,

u∈U(qMq) and set N={v∈U(qM1q):v(uqB0qu
∗)v∗=uqB0qu

∗}. Assume that no corner
of N ′′ can be embedded into B inside M1. Then uqB0qu

∗⊂M1.

Proof. Assume that there exists b0∈qB0q, ‖b0‖61, such that

d0 =ub0u
∗−EM1(ub0u

∗)
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satisfies c=‖d0‖2>0. To get a contradiction, we first show that all of the unit ball of
uqBqu∗ can be embedded into a set of the form

∑
g∈F (B)1ug with F⊂Λ finite and (B)1

denoting the unit ball of B. We need the following lemma.

Lemma 1.6. Let (B, τ) be a finite von Neumann algebra, σ: Λ!Aut(B, τ) be an
action, M=BoσG be the corresponding crossed product finite von Neumann algebra and
{ug}g⊂M be the canonical unitary elements. For any finite set in the unit ball of M ,
S0⊂(M)1 and any ε>0, there exists F⊂Λ finite such that x(B)1y∗⊂ε

∑
g∈F (B)1ug for

all x, y∈S0.

Proof. By Kaplansky’s density theorem, there exists a finite set F0⊂Λ and elements
{bxg∈B :x∈S0 and g∈F0}, such that x0=

∑
g∈F0

bxgug satisfies ‖x0‖61 and ‖x−x0‖26 1
2ε

for all x∈S0. If we put F=F0F
−1
0 , then we clearly have x0By

∗
0⊂

∑
g∈F Bug for all

x, y∈S0. On the other hand, if b∈B satisfies ‖b‖61 and we let x0by
∗
0 =

∑
g∈F bgug then

bg=EB((x0by
∗
0)u∗g) and thus ‖bg‖6‖(x0by

∗
0)u∗g‖61. This implies that ‖xby∗−x0by

∗
0‖26ε

and thus xby∗∈ε

∑
g∈F (B)1ug.

By Lemma 1.6, it follows that there exists F⊂Λ finite such that

uq(B)1qu∗⊂ε/2

∑
g∈F

(B)1ug,

where ε= 1
4c

2. Let N=N ′′⊂qM1q.
For any v∈N⊂qM1q we then have

v(ub0u∗)v∗ ∈ε/2

∑
g∈F

(B)1ug

as well. Since
v(ub0u∗)v∗ = vd0v

∗+v(EM1(ub0u
∗))v∗,

with vd0v
∗⊥M1 and v(EM1(ub0u

∗))v∗∈M1, by Pythagoras’ theorem it follows that we
have vd0v

∗∈ε/2

∑
g∈F0

(B)1ug, where F0=F \Λ1. Now let d1∈
∑

g∈F0
(B)1ug be such that

‖d0−d1‖26 1
2ε. We have thus shown that

there exists F0⊂Λ\Λ1 finite and d1 ∈
∑

g∈F0
(B)1ug with ‖d1‖6 |F0|

and ‖d1‖2 > c− 1
8c

2> 0, such that vd1v
∗ ∈ε

∑
g∈F0

(B)1ug for all v ∈N ,
where ε= 1

4c
2.

(1.7)

Now note that by the condition satisfied by the algebra N ′′=N , from [P8, I, Corol-
lary 2.3] it follows that

for all K ⊂Λ1 finite and δ > 0, there exists v ∈N such that if ξ denotes the
projection of v onto the Hilbert space

⊕
h∈Λ1\K L2(B)uh, then ‖v−ξ‖2 6 δ. (1.8)

At this point, we need the following lemma.
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Lemma 1.7. Let (B, τ), (σ,Λ), M and {ug}g be as in Lemma 1.6, and Λ=Λ1∗Λ2.
Let F0⊂Λ\Λ1 be a finite set. Then, there exists K=K(F0)⊂Λ1 finite such that any
ξ∈L2(BoΛ1) supported by Λ1\K satisfies ξ

(∑
g∈F0

Bug

)
M1⊥

∑
g∈F0

Bug.

Proof. Note that each irreducible alternating word g∈F0 has at least one letter
from Λ2. LetK0 denote the set of elements in Λ1 that can appear as first letter in a word g
in F0 (including the trivial letter e) and set K=K0K

−1
0 . Then, (Λ1\K)K0∩K0=∅. Now

note that if ξ∈L2(BoΛ1) is supported by Λ1\K then any element η in ξ
(∑

g∈F Bug

)
is

supported on elements g∈G that begin with a letter in (Λ1\K)K0⊂Λ1\K0. Moreover,
this is still the case for elements of the form ηx, for x∈M1. In turn, any g in the support
of an element in

∑
g∈F0

Bug begins with a letter in K0. Thus, the two vector spaces
ξ
(∑

g∈F0
Bug

)
M1 and

∑
g∈F0

Bug are supported on disjoint subsets of Λ1∗Λ2 and are
thus perpendicular.

We now continue the proof of Proposition 1.5. LetK=K(F0) be given by Lemma 1.7,
for the finite set F0⊂Λ\Λ1 from (1.7). Let δ=ε/|F0| and choose ξ∈L2(BoΛ1) supported
on Λ1\K, as given by (1.8). Then

‖ξd1v
∗−vd1v

∗‖2 6 ‖ξ−v‖2‖d1‖6 δ|F0|6 ε,

which, together with (1.7), implies that ξd1v
∗∈2ε

∑
g∈F0

Bug. But, by Lemma 1.7, we
have ξd1v

∗⊥
∑

g∈F0
Bug. Thus, ‖ξd1v

∗‖262ε. On the other hand,

‖ξd1v
∗‖2 = ‖ξd1‖2 > ‖d1‖2−‖ξ−v‖2‖d1‖> c− 1

8c
2−ε> 2ε,

a contradiction which ends the proof of Proposition 1.5.

1.4. A Cartan conjugacy result

We now prove that if the “core” B of an AFP algebra M=M1∗BM2 is maximal abelian
and regular (and thus Cartan) in M , then any other Cartan subalgebra A0⊂M which
is normalized by “many” unitary elements in M1 is unitarily conjugate to B=A. Note
that it strenghtens both Corollary 1.4 and Proposition 1.5, in the case where the core
B=A is abelian and Cartan in M .

Theorem 1.8. Let Λ1 and Λ2 be infinite discrete groups and σ: Λ!Aut(A, τ) be a
free ergodic action of Λ=Λ1∗Λ2 on a diffuse abelian von Neumann algebra (A, τ). Let
M=AoσΛ=M1∗AM2, where Mi=Aoσ|Λi

Λi, i=1, 2. Let q∈P(A) and A0⊂qMq be a
Cartan subalgebra such that no corner of (NqMq(A0)∩qM1q)′′ can be embedded into A

inside M1. Then A0⊂qM1q and there exists u∈U(qM1q) such that uA0u
∗=Aq.
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Lemma 1.9. Let Λ1 and Λ2 be discrete groups and let σ: Λ=Λ1∗Λ2!Aut(B, τ) be
a trace-preserving action on a finite von Neumann algebra (B, τ). Let M=BoσΛ=
M1∗BM2, where M1=Boσ|Λ1

Λ1⊂M . Let q∈P(B) and assume that A0⊂qMq is a
diffuse abelian von Neumann subalgebra such that no corner of A0 can be embedded into
qM1q inside M . Then for any ε>0 there exist F⊂Λ\Λ1 finite and x1, x2∈

∑
g∈F Bug

such that any u∈NqMq(A0) satisfies

‖ux1u
∗x2−x2ux1u

∗‖2 6 ε and
√
τ(q)−ε6 ‖ux1u

∗x2‖2 6
√
τ(q)+ε.

Proof. By the assumption on A0, it follows from [P8, I, Corollary 2.3] that there
exists a1∈U(A0) such that ‖EM1(a1)‖2< 1

4ε. Thus, we can find F1⊂Λ\Λ1 finite and
x1∈

∑
g∈F1

Bug such that ‖a1−x1‖26 1
4ε. Repeating the above argument, we can now

find a2∈U(A0), a finite set F with F1⊂F⊂Λ\Λ1 and x2∈
∑

g∈F Bug such that

‖a2−x2‖2 6
ε

4‖x1‖
.

Using these inequalities, we get for u∈NqMq(A0) (in fact for all u∈M with ‖u‖61),

‖ux1u
∗x2−ua1u

∗a2‖2 6 ‖ux1u
∗(x2−a2)‖2+‖u(x1−a1)u∗a2‖2

6 ‖x1‖‖x2−a2‖2+‖x1−a1‖2 6
‖x1‖ε
4‖x1‖

+
ε

4
=
ε

2
.

Similarly, it follows that ‖x2ux1u
∗−a2ua1u

∗‖26 1
2ε for all u∈(M)1. Finally, if u∈

NqMq(A0) then ua1u
∗a2=a2ua1u

∗ (because A0 is abelian) and ‖ua1u
∗a2‖2=

√
τ(q).

Thus, by combining this with the above inequalities, we get the desired estimates.

Lemma 1.10. With the same notation and assumptions as in Lemma 1.9 above,
let F⊂Λ\Λ1 be a finite set and let x1, x2∈

∑
g∈F Bug. Then, for all ε>0, there exists

K=K(F, ε)⊂Λ1 finite and δ=δ(F, ε)>0 such that if u∈(M1)1 satisfies ‖EB(uu∗g)‖26δ

for all g∈K, then it must also satisfy ux1u
∗x2⊥εx2ux1u

∗.

Proof. Since F⊂Λ\Λ1 is finite, by the free decomposition Λ=Λ1∗Λ2, one readily
deduces that there exists K=K−1⊂Λ1 finite such that (Λ1\K)F (Λ1\K)F has empty
intersection with F (Λ1\K)F (Λ1\K). Next, let u∈(M1)1 and set u′=

∑
g∈K EB(uu∗g)ug

and u′′=u−u′. Then u′′ is supported on Λ1\K and we have the decomposition

ux1u
∗x2 =u′′x1(u′′)∗x2+u′x1u

∗x2+ux1(u′)∗x2−u′x1(u′)∗x2.

Let x1,2=u′′x1(u′′)∗x2. Then, x1,2 is supported on (Λ1\K)F (Λ1\K)F and we have
the following estimate:

‖ux1u
∗x2−x1,2‖2 6 (2‖u‖+‖u′‖)‖x1‖ ‖x2‖ ‖u′‖2 6 (2+|K|)‖x1‖ ‖x2‖ ‖u′‖2.
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Similarly, if we set x2,1=x2u
′′x1(u′′)∗, then x2,1 is supported on F (Λ1\K)F (Λ1\K)

and ‖x2ux1u
∗−x2,1‖26(2+|K|)‖x1‖ ‖x2‖ ‖u′‖2.

Next, we show that K and δ=ε(12|K|(‖x1‖ ‖x2‖+1))−3/2 satisfy the conclusion. To
this end, let u∈(M1)1 be such that ‖EB(uu∗g)‖26δ for all g∈K. Then

‖u′‖2 =
( ∑

g∈K

‖EB(uu∗g)‖22
)1/2

6
ε

|K|(12(‖x1‖ ‖x2‖+1))3/2
,

hence

‖ux1u
∗x2−x1,2‖2 6

ε

4(‖x1‖ ‖x2‖+1)
and ‖x2ux1u

∗−x2,1‖2 6
ε

4(‖x1‖ ‖x2‖+1)
.

Also, we have

‖x1,2‖2 6 ‖x1,2−ux1u
∗x2‖2+‖ux1u

∗x2‖2 6
ε

4(‖x1‖ ‖x2‖+1)
+‖x1‖ ‖x2‖6 ‖x1‖ ‖x2‖+1.

But, by the way we have chosenK, x1,2 and x2,1 have disjoint supports. Hence x1,2⊥x2,1.
Thus

|〈ux1u
∗x2, x2ux1u

∗〉|6 |〈ux1u
∗x2−x1,2, x2ux1u

∗〉|+|〈x1,2, x2ux1u
∗−x2,1〉|

6 ‖ux1u
∗x2−x1,2‖2‖x2ux1u

∗‖2+‖x1,2‖2‖x2ux1u
∗−x2,1‖2

6
ε‖x1‖ ‖x2‖

4(‖x1‖ ‖x2‖+1)
+
ε(‖x1‖ ‖x2‖+1)
4(‖x1‖ ‖x2‖+1)

<ε.

Proposition 1.11. With the same notation and assumptions as in Lemmas 1.9
and 1.10, let q∈P(B) and let A0⊂qMq be a diffuse abelian von Neumann subalgebra.
Assume that no corner of (NqMq(A0)∩qM1q)′′⊂qMq can be embedded into B inside M1.
Then a corner of A0 can be embedded into qM1q inside qMq.

Proof. Assume that no corner of A0 embeds into M1. Apply first Lemma 1.9 for
ε= 1

4τ(q)
1/2 to deduce that there exists F⊂Λ\Λ1 finite and x1, x2∈M supported on F

such that if u∈NqMq(A0) then

‖ux1u
∗x2−x2ux1u

∗‖2 6 1
4τ(q)

1/2 and 3
4τ(q)

1/2 6 ‖ux1u
∗x2‖2 6 5

4τ(q)
1/2.

It then follows that |〈ux1u
∗x2, x2ux1u

∗〉|> 1
4τ(q) for all u∈NqMq(A).

By Lemma 1.10, there exist K⊂Λ1 finite and δ>0 such that if u∈(M1)1 satisfies
‖EB(uu∗g)‖26δ for all g∈K, then ux1u

∗x2⊥τ(q)/4x2ux1u
∗. But this implies that we

cannot find u∈N=NqMq(A0)∩qM1q such that ‖EB(uu∗g)‖26δ for all g∈K. By [P8, I,
Corollary 2.3], this contradicts the fact that no corner ofN ′′ embeds intoB insideM1.
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The next result provides a useful “transitivity” property for the subordination rela-
tion considered in Corollary 1.4.

Lemma 1.12. Let M be a finite von Neumann algebra, B0 and M1 be von Neumann
subalgebras of M and Q be a von Neumann subalgebra of M1. Assume that there exist
projections q0∈B0 and q1∈M1, a unital isomorphism of q0B0q0 into q1M1q1 and a par-
tial isometry v∈M such that v∗v∈(q0B0q0)′∩q0Mq0, vv∗∈ψ(q0B0q0)′∩q1Mq1 and vb=
ψ(b)v for all b∈q0B0q0. Denote by q′ the support projection of EM1(vv

∗)∈ψ(q0B0q0)′∩
q1M1q1 and let B1=ψ(q0B0q0)q′. If a corner of B1=ψ(q0B0q0)q′ can be embedded into
Q inside M1, then a corner of B0 can be embedded into Q inside M .

Proof. Indeed, if p1∈P(B1), v1∈M1p1 is a non-zero partial isometry and

ψ1: p1B1p1−!Q

is a (not necessarily unital) isomorphism such that v1b=ψ1(b)v1 for all b∈p1B1p1, then
v1v 6=0 and v1vb=ψ1(ψ(b))v1v for all b∈q0B0q0.

Proof of Theorem 1.8. By Proposition 1.11 and [P8, I, Theorem 2.1], there exist
projections q0∈A0⊂qMq and q1∈qM1q, a unital isomorphism of A0q0 into q1M1q1 and
a partial isometry v∈M such that v∗v=q0, vv∗∈ψ(A0q0)′∩q1Mq1 and va=ψ(a)v for
all a∈A0q0. Let q′ be the support projection of EM1(vv

∗) and note that if we set
A1=ψ(A0q0)⊂q1M1q1, then q′∈A′1∩q1M1q1. By replacing, if necessary, ψ by q′ψ( ·)q′

and shrinking q0∈A0 accordingly, we may assume that q1=q′.
Now, if a corner of A1 can be embedded into A inside M1, then, by Lemma 1.12, a

corner of A0 can embedded into A insideM , so, by [P5, §A.1], the two Cartan subalgebras
A0, Aq⊂qMq are unitarily conjugate. If in turn no corner of A1 can be embedded into
A inside M1 then, by Theorem 1.1, we have vv∗∈A′1∩q1Mq1⊂q1M1q1, implying that
vA0v

∗⊂q1M1q1. By spatiality, vA0v
∗ is Cartan in q1Mq1, which, by Corollary 1.4,

implies that a corner of vA0v
∗ can be embedded into A inside M1. By [P5, §A.1],

this implies that A0 and Aq are unitarily conjugate in qMq. On the other hand, by
Proposition 1.5, we have A0⊂qM1q. But then Theorem 1.1 applies to show that A0 and
Aq are conjugate in qM1q as well.

2. Deformation of AFP factors

Throughout this section, (M1, τ1) and (M2, τ2) will be finite von Neumann algebras with
B⊂Mi being a common von Neumann subalgebra such that τ1|B=τ2|B , as in §1. We
describe, in this section, several useful ways to deform the identity map on the AFP
algebra M=M1∗BM2 by subunital subtracial completely positive (c.p.) maps which
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arise naturally from the amalgamated free product structure of M . By a deformation of
idM we mean here a sequence φn of subunital subtracial c.p. maps on M such that

lim
n!∞

‖φn(x)−x‖2 =0 for all x∈M .

2.1. Amalgamated free product of c.p. maps

We first recall the definition of amalgamated product of c.p. maps from [Bo], and establish
some basic properties.

Lemma 2.1. Let φi:Mi!Mi be subunital subtracial c.p. maps with φ1(b)=φ2(b),
for all b∈B, and τ �φi=λτ , i=1, 2, with 0<λ61. Then, φ1∗Bφ2:M1∗BM2!M1∗BM2

is a well-defined subunital subtracial c.p. map. Moreover , the map (φ1, φ2) 7!φ1∗Bφ2 is
continuous with respect to the topologies given by pointwise ‖ · ‖2-convergence.

Proof. Since τ �φi=λτ , i=1, 2, we have that τ �(φ1∗algB φ2)=λτ , and hence, by [Bo],
it extends uniquely to a c.p. map φ1∗Bφ2 on M1∗BM2, which is then subtracial.

To show that this correspondence is continuous, suppose that ε>0 and x1, ..., xn∈
M1∗BM2. As M1∗algB M2 is dense in M1∗BM2, let x′1, ..., x

′
n∈M1∗algB M2 be such that

‖xj−x′j‖2 6 1
3ε for all j6n.

Hence there exist m, l∈N and 1∈Fi⊂Mi finite such that each x′j is the sum of at most m
products of lenght at most l from F1∪F2. Let N=maxx∈F1∪F2 ‖x‖. Then, if φ′i:Mi!Mi

are subunital subtracial c.p. maps with ‖φ′i(x)−φi(x)‖2<ε/(3mlN l) for all x∈Fi, i=1, 2,
then repeated use of the triangle inequality together with the fact that subunital c.p.
maps are contractions in the uniform norm shows that

‖φ′1∗Bφ
′
2(xj)−φ1∗Bφ2(xj)‖2<ε for all j6n.

Remark 2.2. In general, the free product of two subunital subtracial c.p. maps need
not be subtracial. In fact, given any c.p. map φ1 which is unital and subtracial, but
not tracial, the c.p. map φ=φ1∗id is not subtracial. Even more so, the Radon–Nikodym
derivative dτ �φ/dτ of any such free product c.p. map φ is unbounded. To see this, let
x∈M1 be such that τ(x)=0, but τ �φ1(x) 6=0, let v∈M2 be a partial isometry with τ(v)=0
and set p=vv∗. Then, we have

τ �φ((vxv∗)∗(vxv∗))= |τ �φ1(x)|2τ(p)+‖v(φ1(x)−τ �φ1(x))v∗‖22
= |τ �φ1(x)|2τ(p)+τ(p)2‖φ1(x)−τ �φ1(x)‖22.
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Thus, if we choose v such that τ(p)!0, then

τ �φ((vxv∗)∗(vxv∗))
τ((vxv∗)∗(vxv∗))

!∞.

We note that in [Bo] it was assumed that a free product of subtracial c.p. maps is
subtracial in order to show that the Haagerup property is preserved by free products.
But although the above argument shows that this fact does not hold true unless the c.p.
maps are actually tracial, the result on the Haagerup property is still valid, since, by
[Jol, Proposition 2.2], one can take the c.p. maps given by the Haagerup property to be
unital and tracial.

2.2. Deformation by automorphisms

Let αi∈Aut(Mi, τMi), i=1, 2, be such that α1(b)=α2(b) for all b∈B. Then, since auto-
morphisms are unital c.p. maps, we have that α=α1∗Bα2 is a unital tracial c.p. map.
Moreover, α restricted to the dense subalgebra M1∗algB M2 is an automorphism, and so,
by continuity, we have that α is an automorphism.

Hence, if αt
i∈Aut(Mi), t∈R, is a one-parameter group of automorphisms of Mi

which is pointwise ‖ · ‖2-continuous and satisfies αt
i|B=idB , for i=1, 2, then αt gives a

deformation of the identity of M by automorphisms. In particular, we have the following
result.

Lemma 2.3. Let vj∈U(B′∩Mj), j=1, 2. Then, there is a pointwise ‖ · ‖2-continuous
one-parameter group of automorphisms {αt}t∈R⊂Aut(M) such that

α1 =Ad(v1)∗BAd(v2).

Proof. Let hj =h∗j∈B′∩Mj be such that exp(πihj)=vj . Here and in the proof of
Lemma 2.4 below, but not anywhere else in the paper, i stands for

√
−1. Define

αt
j =Ad(exp(πtihj)), t∈R, j=1, 2,

and the above observation applies.

For the next lemma, we let M̃=M ∗B (B
⊗L(F2)). Note that, if we let L(F2)=
L(Z∗Z)=L(Z)∗L(Z) and M̃j =Mj∗B (B
⊗L(Z)), j=1, 2, then M̃=M̃1∗BM̃2. Also, if
u1∈L(Z∗1)⊂L(F2) and u2∈L(1∗Z)⊂L(F2) are the canonical generating unitary ele-
ments, then uj∈B′∩M̃j , j=1, 2. We will use the algebra M̃ as framework for the main
deformation of M , Lemma 2.4 below. The action of M on the (1.1)-decomposition of the
AFP algebra M̃=M̃1∗BM̃2 can be viewed as the analogue of the action of an amalga-
mated free product group Λ1∗H Λ2 on the Bass–Serre tree with vertices Λ1/H∪Λ2/H.
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In turn, the “graded deformation” below is inspired by the graded deformations of
crossed product algebras involving Bernoulli actions in [P7] and [P8].

Lemma 2.4. There exists a pointwise ‖ · ‖2-continuous one-parameter group of au-
tomorphisms {θt}t∈R and a period-2 automorphism β of M̃ such that

(a) θ0=id and θ1=Ad(u1)∗BAd(u2);
(b) βθtβ=θ−t for all t∈R;
(c) M⊂M̃β.

Proof. Let Aj be the von Neumann subalgebra generated by uj , and let hj∈Aj be
self-adjoint elements with spectrum in [−π, π] such that uj =exp(πihj). Set

ut
j =exp(πithj), j=1, 2, t∈R.

Then, θt=Ad(ut
1)∗BAd(ut

2)∈Aut(M̃), for all t∈R, defines a pointwise ‖ · ‖2-continuous
one-parameter group of automorphisms which satisfies (a).

Let β be the unique automorphism of M̃ satisfying β|M =idM and β(uj)=u∗j , j=1, 2.
Then β is clearly a period-2 automorphism and it satisfies (c) by definition. Also, for
x∈M=M1∗BM2, we have

βθtβ(x) =βθt(x) =β(Ad(exp(πith1))∗Ad(exp(πith2)))(x)

= (Ad(exp(−πith1))∗Ad(exp(−πith2)))(x) = θ−t(x)

for all x∈M . Similarly, for u1 and u2 we have

βθtβ(uj) =βθt(u∗j ) =β(u∗j ) =uj = θ−t(uj).

Since u1, u2 and M generate M̃ as a von Neumann algebra, it follows that

βθtβ= θ−t for all t.

2.3. Deformation by free products of multiples of the identity

Recall that if H0
i =L2(Mi)	L2(B) then we may decompose L2(M1∗BM2) in the usual

way as

L2(M1∗BM2) =L2(B)⊕
⊕
n>1

⊕
ij∈{1,2}

i1 6=i2 6=i3 6=... 6=in

H0
i1⊗BH0

i2⊗B ...⊗BH0
in
.

For each L∈N we let ÊL be the projection onto the subspace⊕
n>L

⊕
ij∈{1,2}

i1 6=i2 6=i3 6=... 6=in

H0
i1⊗BH0

i2⊗B ...⊗BH0
in
.

Let {cn}n>1⊂[0, 1) be such that cn%1. Then, by Lemma 2.1, we have the following
result (see also [Pe]).
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Lemma 2.5. The c.p. maps φn=(cnid)∗B (cnid) give a deformation of the identity
of M . Moreover , φn commutes with ÊL as operators on L2(M) and

‖φn�ÊL(x)‖2 6 cLn‖x‖2 for all n,L∈N and x∈M .

Proof. This is trivial by the definitions.

2.4. Deformation by subalgebras

For each i∈{1, 2}, let N j
i ⊂Mi be an increasing sequence of von Neumann subalgebras

such that B⊂N1
i and ⋃

j>1

N j
i =Mi.

Let Ej
i :Mi!Mi be the conditional expectation onto N j

i . Then Ej =Ej
1∗BE

j
2 gives a se-

quence of conditional expectations of M onto N j
1 ∗BN

j
2 , which, by Lemma 2.1, converges

to the identity pointwise, i.e. ⋃
j>1

N j
1 ∗BN

j
2 =M.

A particular case of such a deformation, which works whenever B′∩Mi is diffuse, is
given byN j

i =pj
iMip

j
i⊕B(1−pj

i ), with pj
i∈P(B′∩Mi) satisfying pj

i%1Mi , i=1, 2. Indeed,
this clearly implies that

⋃
j>1

(pj
1M1p

j
1⊕B(1−pj

1))∗B (pj
2M2p

j
2⊕B(1−pj

2))=M.

3. Deformation/rigidity arguments

In this section we investigate the effect that the deformations considered in §2 have
on the relatively rigid subalgebras of M1∗BM2. To this end, first recall from [P5, §4]
that if Q⊂M is a von Neumann subalgebra of the finite von Neumann algebra (M, τ),
then Q⊂M is called a rigid inclusion (or Q is a relatively rigid subalgebra of M) if any
deformation of idM by subunital subtracial c.p. maps {φn}n>1 tends uniformly to idQ

on the unit ball of Q, i.e. limn!∞ sup{‖φn(y)−y‖2 :y∈Q and ‖y‖61}=0. This property
does not in fact depend on the choice of the trace τ on M and can be given several
other equivalent characterizations (see [P5] and [PeP]). The following result provides
yet another characterization of relative rigidity, by showing that it is enough to consider
deformations by unital tracial c.p. maps.
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Theorem 3.1. Let N be a finite von Neumann algebra with countable decomposable
center , and Q be a von Neumann subalgebra. Then, the following are equivalent :

(i) the inclusion Q⊂N is rigid ;
(ii) there exists a normal faithful tracial state τ on N such that for all ε>0 there

exist F=F (ε)⊂N finite and δ=δ(ε)>0 such that if φ:N!N is a normal c.p. map with
τ �φ=τ , φ(1)=1 and ‖φ(x)−x‖26δ for all x∈F , then

‖φ(b)−b‖2 6 ε for all b∈Q with ‖b‖6 1;

(iii) condition (ii) is satisfied for any normal faithful tracial state τ on N .

Proof. (i)⇒(iii) and (iii)⇒(ii) are both trivial and so it is enough to show (ii)⇒(i).
That is, assuming that (ii) holds, we must show that the following condition holds:

for all ε> 0, there exist F ′ =F ′(ε)⊂N finite and δ′ = δ′(ε)> 0 such that if
φ:N!N is a normal c.p. map with τ �φ6 τ , φ(1)6 1 and ‖φ(x)−x‖2 6 δ′

for all x∈F ′, then ‖φ(b)−b‖2 6 ε for all b∈Q with ‖b‖6 1.
(3.1)

By [PeP, Lemma 3], we may also assume that φ is symmetric in the above condition,
i.e. τ(φ(x)y)=τ(xφ(y)) for all x, y∈N . Let F=F

(
1
2ε

)
, and δ=δ

(
1
2ε

)
be given from (ii).

Let F ′=F∪{1} and δ′=minx∈F

{
1
2δ, δ/(8‖x‖

2+1), 1
8ε

2
}
, suppose that φ:N!N is a nor-

mal symmetric c.p. map with τ �φ6τ , φ(1)61 and ‖φ(x)−x‖26δ′ for all x∈F ′. Let
a=φ(1)=dτ �φ/dτ and define φ′ by φ′(x)=φ(x)+(1−a)1/2x(1−a)1/2. Then, φ′ is a nor-
mal c.p. map with φ′(1)=1. Moreover, as φ is symmetric, so is φ′ and hence τ �φ′=τ .

Also, it follows that for each x∈F we have

‖φ′(x)−x‖2 6 ‖φ(x)−x‖2+‖(1−a)1/2x(1−a)1/2‖2

6 ‖φ(x)−x‖2+‖(1−a)x(1−a)‖1/2
2 ‖x‖1/2

6 ‖φ(x)−x‖2+‖1−a‖2‖x‖

6 δ.

Hence, by (ii), we have ‖φ′(b)−b‖26 1
2ε for all b∈Q with ‖b‖61. Thus

‖φ(b)−b‖2 6 ‖φ′(b)−b‖2+‖(1−a)1/2x(1−a)1/2‖2

6 ‖φ′(b)−b‖2+‖1−a‖2 6 ε

for all b∈Q with ‖b‖61.

Corollary 3.2. Let (M1, τ1) and (M2, τ2) be finite von Neumann algebras and let
Q⊂M1 be a von Neumann subalgebra such that the inclusion Q⊂M1∗M2 is rigid. Then,
the inclusion Q⊂M1 is rigid.
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Proof. Let ε>0 be given. Since Q⊂M1∗M2 is rigid, we can find F=F (ε)⊂M finite
and δ=δ(ε)>0 satisfying condition (ii) of Theorem 3.1. By Lemma 2.1, there exists
F ′⊂M1 finite and δ′>0 such that if φ:M1!M1 is a normal unital tracial c.p. map such
that ‖φ(x)−x‖26δ′ for all x∈F ′, then ‖φ∗idM2(x)−x‖26δ for all x∈F . Hence, by our
choice of F and δ, we have that ‖φ(b)−b‖2=‖φ∗idM2(b)−b‖26ε for all b∈Q with ‖b‖61.
Thus, by Theorem 3.1, it follows that Q⊂M1 is a rigid inclusion.

We will now use the deformation in Lemma 2.4 to exploit the relative rigidity of
subalgebras Q⊂M1∗BM2⊂M̃1∗BM̃2. This “deformation/rigidity” argument is inspired
by [P7, Lemmas 4.3–4.8] and [P8, I, §4].

Proposition 3.3. Let (M1, τ1) and (M2, τ2) be finite von Neumann algebras with
a common von Neumann subalgebra B⊂Mi, i=1, 2, such that τ1|B=τ2|B. Let M=
M1∗BM2, M̃i=Mi∗B (B
⊗L(Z)), i=1, 2, and M̃=M̃1∗BM̃2=M ∗B (B
⊗L(F2)), as in
Lemma 2.4. Let θ=Ad(u1)∗Ad(u2)∈Aut(M̃), where u1, u2∈L(F2) are the canonical
generators of L(F2), as in Lemma 2.4. Let Q⊂M be a von Neumann subalgebra such
that Q⊂M̃ is a rigid inclusion and assume that no corner of Q can be embedded into B

inside M , i.e. Q′∩〈M,B〉 contains no non-zero finite projections. Then, there exists a
non-zero partial isometry v∈M̃ such that vy=θ(y)v for all y∈Q.

Proof. SinceQ⊂M̃ is rigid, there exist F⊂M̃ finite and δ>0 such that if φ:M̃!M̃ is
a subunital subtracial c.p. map with ‖φ(x)−x‖26δ for all x∈F , then ‖φ(u)−u‖26 1

2 for
all u∈U(Q). Using the continuity of t 7!θt, we can find n>1 such that ‖θ1/2n(x)−x‖6δ
for all x∈F , which implies ‖θ1/2n(u)−u‖6 1

2 for all u∈U(Q).
Now, let a be the unique element of minimal ‖ · ‖2-norm in

K =cow{θ1/2n(u)u∗ :u∈U(Q)}.

From ‖θ1/2n(u)u∗−1‖26 1
2 for all u∈U(Q), we get that ‖a−1‖26 1

2 , so a 6=0. Since
θ1/2n(u)Ku∗=K and ‖θ1/2n(u)au∗‖2=‖a‖2 for all u∈U(Q), we deduce, using the unique-
ness of a, that au=θ1/2n(u)a for all u∈U(Q) . Using standard arguments, we can replace
a by the partial isometry in its polar decomposition, thus getting a non-zero partial
isometry v∈M such that vu=θ1/2n(u)v for all u∈U(Q).

In what follows we show by induction that for any k>0 there exists a non-zero
partial isometry vk∈M̃ such that

vku= θ1/2n−k(u)vk for all u∈U(Q), (3.2)

which for k=n gives the conclusion. Since we have already constructed v0, we only need
to construct vk+1, given vk. Note first that if vk satisfies (3.2) then v∗kvk∈Q′∩M̃ and
vkv

∗
k∈θ1/2n−k(Q)′∩M̃.
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By applying the automorphism β to the equality (3.2) and using the properties of β,
we get

β(vk)u=β(vk)β(u) =β(θ1/2n−k(u))β(vk)

= θ−1/2n−k(β(u))β(vk) = θ−1/2n−k(u)β(vk) for all u∈U(Q).
(3.3)

By replacing u by u∗ and taking conjugates in (3.3), we obtain

uβ(v∗k) =β(v∗k)θ−1/2n−k(u) for all u∈U(Q),

which combined with (3.1) gives

vkβ(v∗k)θ−1/2n−k(u) = vkuβ(v∗k) = θ1/2n−k(u)vkβ(v∗k) for all u∈U(Q). (3.4)

By applying θ1/2n−k to (3.4), we further get, for u∈U(Q), the identity

θ1/2n−k(vkβ(v∗k))u= θ1/2n−k−1(u)θ1/2n−k(vkβ(v∗k)). (3.5)

Since no corner of Q can be embedded into B inside M , we can apply Theorem 1.1 to
conclude that Q′∩M̃⊂M . Thus, since v∗kvk∈Q′∩M̃ and M⊂M̃

β
, we get β(v∗kvk)=v∗kvk,

implying that vkβ(v∗k) is a partial isometry with the same left support as vk. Thus,
by (3.5), w=θ1/2n−k(vkβ(v∗k)) is a non-zero partial isometry satisfying wu=θ1/2n−k−1(u)w
for all u∈U(Q), and the inductive step follows.

Proposition 3.4. As in §2.3, denote by ÊL the orthogonal projection of L2(M)
onto the Hilbert space spanned by reduced words of length >L. If Q⊂M1∗BM2 is a rigid
inclusion, then for any ε>0, there exists L∈N such that ‖ÊL(x)‖2<ε for all x∈Q with
‖x‖61.

Proof. Let φn:M!M be as in Lemma 2.5, for some cn%1, then, by Lemma 2.1,
we have limn!∞ ‖φn(x)−x‖2=0 for all x∈M . Thus, since Q⊂M is rigid, there exists
l∈N such that ‖φl(x)−x‖2< 1

2ε for all x∈Q with ‖x‖61. Let L∈N be such that cLl <
1
2ε.

Then

‖ÊL(x)‖2 6 ‖ÊL(x−φl(x))‖2+‖φl�ÊL(x)‖2 6 ‖x−φl(x)‖2+cLl ‖x‖2<ε

for all x∈Q with ‖x‖61.
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4. Existence of intertwining bimodules

In the previous section we saw that a relatively rigid subalgebra Q of a finite AFP von
Neumann algebra M=M1∗BM2 can be “located” by certain c.p. deformations of idM .
In this section we will use this information to prove that L2(M) must contain non-trivial
Hilbert bimodules intertwining Q into either M1 or M2. The rather long and technical
proof will proceed by contradiction, assuming that Q cannot be intertwined in neither
M1 nor M2, inside M . We first show that this implies that Q cannot be intertwined in
neither M1 nor M2 inside M̃=(M1∗BM2)∗B (B
⊗L(F2)) either. By Proposition 3.4 and
[P8, I, Corollary 2.3], this shows that Q must contain “at infinity” elements with uni-
formly bounded free length and at least two “very large letters” in M1, M2 or L(F2).
This will be shown to contradict Proposition 3.3.

To “measure” the letters in Mi, we will need these algebras to have nice orthonormal
bases over B, in the following sense.

Definition 4.1. Let (M, τ) be a separable finite von Neumann algebra andB⊂M be a
von Neumann subalgebra. A sequence of elements {ηn}n>0⊂M satisfying the conditions
η0=1, EB(η∗i ηj)=δij for all i and j, and

∑∞
n=0 ηnB dense in L2(M, τ), is called a bounded

homogeneous orthonormal basis (BHOB) of M over B. An inclusion B⊂M having a
BHOB is said to be homogeneous.

Lemma 4.2. Let (M, τ) be a separable finite von Neumann algebra and B⊂M be a
von Neumann subalgebra. Assume that one of the following conditions holds true:

(a) B=C 1;
(b) B=A⊂M is Cartan (i.e. B is maximal abelian and regular in M) and M is of

type II1;
(c) B=N⊂M is an irreducible inclusion of II1 factors and B is regular in M .
Then B⊂M is homogeneous, moreover in both cases (b) and (c), M has a BHOB

made of unitary elements in NM (B).

Proof. Case (a) is clear by the Gram–Schmidt algorithm. Case (c) is trivial once we
notice that such N⊂M is a crossed product inclusion N⊂M=Noσ,vG for some cocycle
action σ of a discrete countable group G on N , with 2-cocycle v. Indeed, in this case the
canonical unitary elements {ug}g⊂M implementing the action σ provide a BHOB of M
over N .

To prove case (b), we first show that given any n>1 and any v0=1, v1, ..., vn−1∈
NM (A), with EA(v∗i vj)=0 for 06i, j<n, i 6=j, and v′n∈GNM (A), with (v′n)∗v′n 6=1, there
exists a non-zero v∈GNM (A) such that v∗v′n=0, v′nv

∗=0 and EA(v∗vj)=0 for all 16j6

n−1. Indeed, first note that, by [D], there exists u∈NM (A) such that v′n=u(1−p), where
p=1−(v′n)∗v′n∈P(A). Since Ap⊂pMp is Cartan with pMp of type II1, it follows that
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there exists w∈NpMp(Ap) such that w /∈
∑n−1

i=0 pu
∗viAp (or else, it would follow that pMp

would be finite-dimensional over Ap, and thus of type I, implying that M has a type-I
direct summand, a contradiction). Then wi=pu∗vip∈GN (Ap), 06i6n−1, satisfy

0 6=w−
n−1∑
i=0

wiEA(w∗iw)∈GN (A)

by [D]. But then v=u
(
w−

∑n−1
i=0 wiEA(w∗iw)

)
clearly satisfies all required conditions.

Now, to finish the proof of (b), let {un}n>0⊂NM (A) be a sequence of unitary ele-
ments normalizing A, dense inNM (A) in the ‖ · ‖2-norm, with u0=1 and with each un ap-
pearing with infinite multiplicity. It is sufficient to construct a sequence {vn}n>0⊂NM (A)
such that for all m>0 we have

EA(v∗i vj) = δij for all 0 6 i, j6m and um ∈
m∑

i=0

viA. (4.1)

Assume that we have constructed v0=1, v1, ..., vn−1 satisfying (4.1) for m=n−1, for some
n>1. Let v′′n=un−

∑n−1
i=0 viEA(v∗i un)∈GNM (A). Let v′n∈GNM (A) be maximal with the

properties v′n(v′′n)∗v′′n=v′′n and v′n⊥
∑n−1

i=0 viA. By applying the first part of the proof to
v0, v1, ..., vn−1, v

′
n and using the maximality, it follows that v′n is a unitary element. But

then vn=v′n clearly satisfies (4.1).

Theorem 4.3. Let (M1, τ1) and (M2, τ2) be finite von Neumann algebras and B⊂
Mi, i=1, 2, be a common von Neumann subalgebra such that τ1|B=τ2|B. Suppose that
the inclusions B⊂M1 and B⊂M2 are homogeneous. Let Q be a von Neumann subalgebra
of M=M1∗BM2 such that the inclusion Q⊂M is rigid. Then, for either i=1 or i=2,
there exists a non-zero projection f in Q′∩〈M, eMi〉 of finite trace Tr=Tr〈M,eMi

〉.

Proof. By taking spectral projections, it is sufficient to show that there exists
j∈{1, 2} and a∈Q′∩〈M, eMi

〉, with 06a61 and 0 6=Tr(a)<∞. Assume, by contradic-
tion, that there are no such elements in Q′∩〈M, eMi〉, i=1, 2. If we identify Q with
the diagonal subalgebra {x⊕x:x∈Q} in M⊕M , then this is equivalent to saying that Q
cannot be intertwined into M1⊕M2 inside M⊕M . By [P8, I, Corollary 2.3], this implies
the following.

Fact 1. For all ε>0 and for all y1, ..., yn∈M , there exists w∈U(Q) such that

‖EMi
(yjwy

∗
k)‖2<ε for i∈{1, 2} and j, k∈{1, ... n}.
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For the next part of the proof, we need to introduce some notation. Thus, for
i∈{1, 2}, let {ξj

i }j>0⊂Mi be a BHOB ofMi overB. Also take {ξj
3}j>0={ug}g∈F2⊂L(F2)

such that ξ03 =ue=1. Then using the notation M̃=M ∗B (B⊗L(F2)) as in Proposition 3.3
a simple exercise shows that

β= {1}∪{ξj1
i1
... ξjn

in
:n∈N, ik ∈{1, 2, 3}, jk > 1 and i1 6= i2 6= i3 6= ... 6= in}

is a BHOB of M̃ over B.
For each n0∈N, let

Sn0 = {1}∪{ξj1
i1
... ξjn

in
:n6n0, ik ∈{1, 2}, 1 6 jk 6n0 and i1 6= i2 6= i3 6= ... 6= in},

S̃n0 = {1}∪{ξj1
i1
... ξjn

in
:n6n0, ik ∈{1, 2, 3}, 1 6 jk 6n0 and i1 6= i2 6= i3 6= ... 6= in}.

Also, for i∈{1, 2}, let S̃R,i
n0

(resp. S̃L,i
n0

) be the subset of S̃n0 consisting of 1 and the
vectors in S̃n0 such that in 6=i (resp. i1 6=i). Note that, if ζ, ζ ′∈S̃R,i

n0
and x∈Mi is such

that EB(x)=0, then ‖ζ ′xζ∗‖2=‖x‖2. Also if ζ∈S̃n0 and b∈B then ‖ζb‖2=‖b‖2.
We now strengthen Fact 1 so that the elements y1, ..., yn may be taken in M̃ .

Fact 2. For all ε>0 and all y1, ..., yn∈M̃ , there exists w∈U(Q) such that

‖EMi
(y∗jwyk)‖2<ε for i∈{1, 2} and j, k∈{1, ... n}.

As our basis for M̃ is made up of bounded vectors, by first approximating the yk’s on
the right of w and then approximating the yj ’s on the left of w, we may assume that all
of the yj ’s are basis elements, and then use the triangle inequality to deduce the general
case. Also, as EMi is B-bimodular, it is enough to suppose that the yj ’s all lie in β.
Thus, we only need to show that for all ε>0 and for all n0∈N, there exists w∈U(Q)
such that ‖EMi(ζ

∗wζ ′)‖2<ε for all ζ, ζ ′∈S̃n0 .
To prove this, we first use Fact 1 to deduce that there exists w∈U(Q) such that

‖EMi(ζ
∗
0wζ

′
0)‖2<ε for all ζ0, ζ ′0∈Sn0 . Then, if ζ, ζ ′∈S̃n0 , we may find ζ1, ζ

′
1∈S̃L,1

n0
∩S̃L,2

n0

and ζ0, ζ ′0∈Sn0 such that ζ=ζ0ζ1 and ζ ′=ζ ′0ζ
′
1. If ζ1=ζ ′1=1, then from the above we have

that ‖EMi(ζ
∗wζ ′)‖2=‖EMi(ζ

∗
0wζ

′
0)‖2<ε. Otherwise, we have

‖EMi(ζ
∗wζ ′)‖2 6 ‖EM (ζ∗wζ ′)‖2 6 ‖ζ∗1EB(ζ∗0wζ

′
0)ζ

′
1‖2 6 ‖EM1(ζ

∗
0wζ

′
0)‖2<ε.

This proves Fact 2.
We continue by showing that there are elements of U(Q) (“at infinity”) which are

almost orthogonal to the subspaces having at most one “large letter” from M1∪M2.
Specifically, let Hn0 =sp(S̃n0M1S̃

∗
n0
∪S̃n0M2S̃

∗
n0

)⊂L2(M̃).
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Let ζ1, ζ ′1∈S̃R,i
n0

and ζ2, ζ
′
2∈S̃R,j

n0
. Then, for all b1, b2∈B and for all K,L>n0, we

have that EB((ζ ′1ξ
K
i b1ζ

∗
1 )∗(ζ ′2ξ

L
j b2ζ

∗
2 ))=δζ′1ζ′2

EB((ξK
i b1ζ

∗
1 )∗(ξL

j b2ζ
∗
2 )), and we also have

that EB((ξL
j b2ζ

∗
2 )(ξK

i b1ζ
∗
1 )∗)=δζ1ζ2EB((ξL

j b2)(ξ
K
i b1)

∗). Hence,

〈ζ ′1ξK
i b1ζ

∗
1 , ζ

′
2ξ

L
j b2ζ

∗
2 〉= τ �EB((ζ ′1ξ

K
i b1ζ

∗
1 )∗(ζ ′2ξ

L
j b2ζ

∗
2 ))

= δζ′1ζ′2
τ �EB((ξK

i b1ζ
∗
1 )∗(ξL

j b2ζ
∗
2 ))

= δζ′1ζ′2
δζ1ζ2δij〈ξK

i b1, ξ
L
j b2〉.

Also, if ζ∈S̃n0 and b∈B, then 〈ζ ′1ξK
i b1ζ

∗
1 , ζb〉=τ �EB((ζb)∗ζ ′1ξ

K
i b1ζ

∗
1 )=0.

Hence, we have the following direct sum of orthogonal subspaces of Hn0 :

H′
n0

=
⊕

ζ∈S̃n0

Hζ⊕
⊕

i∈{1,2}
ζ,ζ′∈S̃R,i

n0

Hi,ζ′,ζ ,

where Hζ =ζB and Hi,ζ′,ζ =sp ζ ′{ξK
i }K>n0Bζ

∗.
Since {ξj

3}j>0={ug}g∈F2 , we may find m0>2n0 such that

{ξj
3}

n0
j=1{ξ

j
3}∗16j6n0

⊂{ξj
3}

m0
j=1.

We will show that Hn0⊂H′
m0

.
Let K0 be the Hilbert space generated by all vectors of the form η′bη∗, where b∈B,

η=ξj1
i1
... ξjn

in
, η′=ξl1

k1
... ξlm

km
, in 6=km, n+m6m0, and jp, lp6m0 for all p. If ζ, ζ ′∈S̃n0 ,

and x∈Mi	B, then we may find ζ1, ζ
′
1∈S̃R,i

n0
and ζ0, ζ

′
0∈S̃n0∩Mi such that ζ=ζ1ζ0,

and ζ ′=ζ ′1ζ
′
0. We have that if P is the projection onto the subspace sp{ξj

i }
m0
j=1B then

ζ ′1(ζ
′
0xζ

∗
0−P (ζ ′0xζ

∗
0 )−EB(ζ ′0xζ

∗
0 ))ζ∗1∈H′

m0
, ζ ′1P (ζ ′0xζ

∗
0 )ζ∗1∈K0, and

ζ ′1EB(ζ ′0xζ
∗
0 )ζ∗0 ∈ S̃n0BS̃

∗
n0
.

If ζ, ζ ′∈S̃n0 and b∈B then, if ζ and ζ ′ do not end with a letter in the same algebra,
we have that ζ ′bζ∗∈K0. Also, if both ζ and ζ ′ end with something in {ξj

3}j>0, then, as
L(F2) commutes with B and since {ξj

3}
n0
j=1{ξ

j
3}∗16j6n0

⊂{ξj
3}

m0
j=1, we may rewrite ζ ′bζ∗

to see that it is in K0, otherwise as above we may find ζ1, ζ
′
1∈S̃R,i

n0
and ζ0, ζ

′
0∈S̃n0∩Mi

such that ζ=ζ1ζ0 and ζ ′=ζ ′1ζ
′
0, and then decompose ζ ′bζ∗ into parts in H′

m0
, K0 and

something in S̃n0BS̃n0 with shorter words. Hence, by induction, to show that Hn0⊂H′
m0

it is enough to show that K0⊂H′
m0

.
Let η and η′ be as above, and take b∈B. If n=0, i.e. η=1, then η′bη∗=η′b∈Hm0 .

Also, if in=3, then, since L(F2) commutes with B and (ξjn

in
)∗∈{ξj

3}
m0
j=1, we can rewrite

η′bη∗ so that η and η′ are still in S̃m0 but such that the length of η is shorter. If
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in=i∈{1, 2} then, since EB((bξjn

in
)∗)=0, as above we may replace (bξjn

in
)∗ by P ((bξjn

in
)∗)

and (bξjn

in
)∗−P ((bξjn

in
)∗), and in so doing rewrite η′bη∗ as a sum of things where the word

on the right has shorter length plus something in H′
m0

. Thus, by induction, we have
shown that K0⊂H′

m0
and so Hn0⊂H′

m0
.

Let Pn0 be the orthogonal projection of L2(M̃) onto Hn0 .

Fact 3. For all ε>0 and for all y1, ..., yn∈M̃ , there exists w∈U(Q) such that
‖Pn0(y

∗
jwyk)‖22<ε for all j and k.

Let m0 be as above. Then, by Fact 2, there exists w∈U(Q) such that

‖EMj (ζ
∗y∗kw

∗yjζ
′)‖22< 1

3ε|S̃m0 |2

for all j, k6n and for all ζ, ζ ′∈S̃m0 .
Thus, for all ζ∈S̃m0 and all b∈B, we have

|〈ζb, y∗jwyk〉|2 = |τ(EB(y∗kw
∗yjζ)b)|2 6 ‖EM1(y

∗
kw

∗yjζ)‖22 ‖b‖22< 1
3ε|S̃m0 |2‖ζb‖22,

and so

‖PHζ
(y∗jwyk)‖22< 1

3ε|S̃m0 |2.

Also, for i∈{1, 2}, all ζ, ζ ′∈S̃R,i
m0

and all ξ∈sp{ξK
i }K>m0B, we have

|〈ζ ′ξζ∗, y∗jwyk〉|2 = |τ(EMi(ζ
∗y∗kw

∗yjζ
′)ξ)|2 6 ‖EMi(ζ

∗y∗kw
∗yjζ

′)‖22 ‖ξ‖22
< 1

3ε|S̃m0 |2‖ζ ′ξζ∗‖22,

and so

‖PHi,ζ′,ζ (y∗jwyk)‖22< 1
3ε|S̃m0 |2.

Therefore

‖Pn0(y
∗
jwyk)‖22 6 ‖PH′

m0
(y∗jwyk)‖22

=
∑

ζ∈S̃m0

‖PHζ
(y∗jwyk)‖22+

2∑
i=1

∑
ζ′∈S̃R,i

m0

∑
ζ∈S̃L,i

m0

‖PHi,ζ′,ζ (y∗jwyk)‖22<ε

for each j, k6n. Thus, we have proved Fact 3.
Next we note that if Q′∩〈M, eB〉 contains a non-zero finite-trace projection, then

so does Q′∩〈M, eM1〉 and so, by our assumption, we are in the position of applying
Proposition 3.3.
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Hence, there exists a non-zero partial isometry v∈M̃ such that vy=θ(y)v for all
y∈Q. Let ε>0 and take n1 large enough so that there exists v∗0∈sp S̃n1B satisfying
‖v−v0‖2< 1

6ε. Using the notation in Proposition 3.4, let L∈N be such that

‖ÊL(x)‖2< 1
12ε‖v0‖

2 for all x∈Q with ‖x‖6 1,

also let n0=n1+3L and let m0 be as above so that Hn0⊂H′
m0

. Then, as our basis is
bounded, we have that v0 is bounded so, by Fact 3, there exists w∈U(Q) such that
‖Pm0(v0w)‖2< 1

4ε‖v0‖. Take w0∈M such that ÊL(w0)=0 and ‖w−w0‖2< 1
6ε‖v0‖

2.
Let K⊂L2(M̃) be the right Hilbert B-module generated by 1 and all the vectors

ξj1
i1
... ξjn

in
∈β such that if ik0 =3 for some k06n, then jk6n1 for all k<k0. Note that

KM⊂K and so, since w0∈M and v0∈K, we have that v0w0∈K.
Let ζ, ζ ′∈S̃R,i

m0
, K>m0, and b∈B, then since K>n1 we have that

PK(ζ ′ξK
i bζ) =

{
ζ ′ξK

i bζ, if ζ ∈M and ζ ′ ∈K,
0, otherwise.

Hence, PK(Hn0)⊂PK(H′
m0

)⊂H′
m0
⊂Hm0 .

Let us write v∗0 and w0 in β as

v∗0 =
∑
ξv∈β

ξvbξv and w0 =
∑

ξw∈β

ξwbξw .

Take ξv, ξw∈β such that bξv
6=0 and bξw

6=0, where ξv=ξj1
i1
... ξjn

in
and ξw=ξl1

k1
... ξlm

km
. Thus,

θ(ξwbξw)(ξvbξv )∗ =(uk1ξ
l1
k1
u∗k1

... ukmξ
lm
km
u∗km

bξw)(b∗ξv
(ξjn

in
)∗ ... (ξj1

i1
)∗).

Let us assume that n>3m by adding on 1’s at the end of this word, if necessary. If ks6n0,
for all 16s<m, then, since v∗0∈sp S̃n1B and m<L, by decomposing u∗km

bξwb
∗
ξv

(ξjn

in
)∗ as

its expectation onto B plus something with terms in B⊗L(F2) and zero expectation
onto B, we write θ(ξwbξw)(ξvbξv )∗ as something inHn0 plus something in K⊥. Otherwise,
if ks>n0 for some s<m, then, by decomposing

ukm(ξlm
km

(u∗km
bξwb

∗
ξv

(ξjn

in
)∗)(ξjn−1

in−1
)∗)(ξjn−2

in−2
)∗

just as above into its expectation onto B plus something with terms in B⊗L(F2) and
zero expectation onto B, we write θ(ξwbξw)(ξvbξv )∗ as something with shorter words plus
something in K⊥. Hence, by induction, we have shown that θ(ξwbξw)(ξvbξv )∗∈Hn0 +K⊥,
and hence also θ(w0)v0∈Hn0 +K⊥.
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As PK(Hn0)⊂Hm0 we have that PK(θ(w0)v0)⊂Hm0 . Thus

|〈v0w0, θ(w0)v0〉|= |〈v0w0, PK(θ(w0)v0)〉|

= |〈Pm0(v0w0), PK(θ(w0)v0)〉|

6 ‖Pm0(v0w0)‖2(‖w0−w‖2‖v0‖+‖v0‖2)

6 (‖Pm0(v0w)‖2+‖v0‖ ‖w0−w‖2)(‖w0−w‖2‖v0‖+‖v0‖2)

<
(

1
4ε‖v0‖+

1
6ε‖v0‖

)(
1
6ε‖v0‖+‖v0‖

)
< 1

4ε.

Hence we have shown that

‖v‖22 = ‖vw‖22 = 〈vw, θ(w)v〉6 2‖v−v0‖2+|〈v0w, θ(w)v0〉|

6 2‖v−v0‖2+2‖v0‖2‖w−w0‖2+|〈v0w0, θ(w0)v0〉|< 1
3ε+

1
3ε+

1
4ε< ε,

which contradicts the assumption that v is non-zero.

5. Rigid subalgebras in AFP factors: general Bass–Serre type results

We have shown in Theorem 4.3 that if Q is a relatively rigid von Neumann subalge-
bra of an AFP algebra M=M1∗BM2, then there exists a non-trivial Hilbert bimodule
H⊂L2(M) intertwining Q into one of the Mi’s. We now deduce that a corner of Q can be
conjugated by a unitary element into that same Mi. When M1 and M2 are factors, one
can in fact uniquely partition 1 with projections q1, q2∈Q′∩M such that Qqi is unitarily
conjugate into Mi, i=1, 2. This general Bass–Serre type result will be used in the next
sections to derive more specific statements in the cases B=C, B=A, abelian Cartan,
and B=R, the hyperfinite II1 factor.

Theorem 5.1. Let (Mi, τi), i=0, 1, 2, be finite von Neumann algebras with a com-
mon von Neumann subalgebra B⊂Mi, i=0, 1, 2, such that τ0|B=τ1|B=τ2|B , and such
that the inclusions B⊂Mj are homogeneous. Let M=M0∗BM1∗BM2. Let Q⊂M be
a relatively rigid diffuse von Neumann subalgebra. Assume that no corner of Q can be
embedded into M0 inside M .

(1) There exist i∈{1, 2}, projections q∈Q and q′′∈Q′∩M with qq′′ 6=0, and a uni-
tary element u∈U(M) such that uqQqq′′u∗⊂Mi.

(2) If M1 and M2 are factors, then there exists a unique pair of projections q1, q2∈
Q′∩M such that q1+q2=1 and ui(Qqi)u∗i ⊂Mi for some unitary elements ui∈U(M),
i=1, 2. Moreover , these projections lie in the center of Q′∩M .
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Proof. (1) By Theorem 4.3 and [P8, I, Theorem 2.1], there exist i∈{0, 1, 2}, non-zero
projections q∈P(Q) and p∈P(Mi), an isomorphism ψ of qQq into pMip, and a non-zero
partial isometry v∈M such that vv∗∈(qQq)′∩qMq, v∗v∈ψ(qQq)′∩pMp and xv=vψ(x)
for all x∈qQq. By hypothesis, i cannot be equal to 0, and thus i∈{1, 2}. Note that, by
shrinking q if necessary, we may assume that xv=0 for x∈qQq implies x=0. Also, if we
denote by q′ the support projection of EM1(v

∗v), then, by replacing if necessary ψ by
q′ψ( ·)q′, it follows that we may assume that q′=p.

Now note that if a corner of ψ(qQq) can be embedded into pBp inside pMip, then,
by Lemma 1.12, a corner of Q can be embedded into B (and thus into M0⊃B as well)
inside M , contradicting the hypothesis. Thus, no corner of ψ(qQq)⊂pMip can be embed-
ded into B inside Mi, so we can apply Theorem 1.1 to conclude that Q′

0∩pMp⊂pMip.
Hence, v∗v∈Q′

0∩pMp⊂Mi. Taking q′′=vv∗ and a unitary element u∈M such that
uqq′′=v, the statement follows.

(2) Let z=z(q) denote the central support of q in Q and note that zq′′ is then the
central support of qq′′ in Qq′′. By the factoriality of Mi, i=1, 2, it follows that there
exists a unitary element u∈U(M) such that Qq′′z⊂uMiu

∗. (Indeed, this is because
whenever Q0⊂N is an inclusion of finite von Neumann algebras, q0∈P(Q0) and N0⊂N
is a subfactor with qQ0q⊂N0, then there exists u∈U(N) such that Q0z(q)⊂uN0u

∗.)
Thus, the projection p′0=q′′z∈Q′∩M together with the unitary element u satisfy the
condition uQp′0u

∗⊂Mi.
Let F be the set of all families of mutually orthogonal projections

{p′i}i∈I ⊂P(Q′∩M),

with the property that for all i∈I there exists j(i)∈{1, 2} (unique by Theorem 1.1) and
vi∈U(M) such that viQp

′
iv
∗
i ⊂Mj(i). The set F is clearly inductively ordered with respect

to the order given by inclusion. Let {p′i}i∈I be a maximal element. Let

q′1 =
∑

j(i)=1

p′i, q′2 =
∑

j(i)=2

p′i

and set q′=1−q′1−q′2.
Assume that q′ 6=0. Since Q is diffuse, there exists q∈P(Q) such that τ(q′q)=1/n for

some integer n>1. Let Q̃⊂M be a von Neumann algebra isomorphic to Mn×n(qQqq′)
with qQqq′ equal to the upper-left corner qq′Q̃qq′ and qq′ having central trace 1/n in Q̃.
By [P5, §4], Q̃⊂M is a rigid inclusion. Thus, we can apply the first part of the proof to
get i∈{1, 2}, 0 6=q̃ ′∈Q̃′∩M and a unitary element w∈M such that wQ̃q̃ ′w∗⊂Mi. Since
qq′ has scalar central trace in Q̃, it follows that the projection

p= qq′q̃ ′ ∈ (qQq)′∩qMq= q(Q′∩M)q
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is non-zero. Thus p=qq′′ for some projection q′′∈Q′∩M with q′′6q′. Since p6q̃ ′, we
also have w(qQqq′′)w∗⊂Mi, implying that if we let p′=z(q)q′′ (where z(q) is the central
support of q in Q) then p′∈Q′∩M , p′6q′ and there exists a unitary element u in M such
that u(Qp′)u∗⊂Mi. But then {p′i}i∈I∪{p′} lies in F , thus contradicting the maximality
of {p′i}i∈I .

We have thus shown that q′1+q′2=1. On the other hand, by the factoriality of the
Mk’s, k=1, 2, for each fixed k we can choose the unitary elements {vi :j(i)=k} which
satisfy vi(Qp′i)v

∗
i ⊂Mk so that vip

′
iv
∗
i be mutually orthogonal projections in Mk. Taking

uk∈U(M) to be a unitary element extending
∑

j(i)=k vi, it follows that uk(Qq′k)u∗k⊂Mk,
k=1, 2.

This proves the existence part of fact (2). But the uniqueness part is then clear,
since if p′1, p

′
2 is another pair of projections in Q′∩M satisfying p′1+p′2=1, vi(Qp′i)v

∗
i ⊂Mi

for some vi∈U(M), i=1, 2, and we assume x=p′1q
′
2 6=0, then the partial isometry w in

the polar decomposition of x lies in Q′∩M , and if we denote p=ww∗ then v1(Qp)v∗1⊂M1

while u2w
∗(Qp)wu∗2⊂M2, contradicting Theorem 1.1.

To finish the proof of (2), we need to show that q′1 and q′2 are in the center of
Q′∩M . Since q′1+q′2=1, this amounts to showing that their central supports in Q′∩M
are disjoint.

Assume by contradiction that there exist non-zero projections q′′i 6q′i, q
′′
i ∈Q′∩M

with u′q′′1 (u′)∗=q′′2 for some u′∈U(Q′∩M). But then uk(Qq′′k )u∗k⊂Mk, k=1, 2, are diffuse
and are conjugate by the unitary element u2u

′u∗1, contradicting Theorem 1.1 again.

Theorem 5.2. Let I be a set of indices with 0∈I and (Mi, τi), i∈I, be a family of
finite von Neumann algebras with a common von Neumann subalgebra B⊂Mi, such that
τ0|B=τi|B for all i. Assume that Mi are factors for i 6=0, and that the inclusions B⊂Mi

are homogeneous for all i∈I. Denote by M=∗B,i∈IMi the free product with amalgama-
tion over B of the algebras Mi, i∈I. Let t>0 and Q⊂M t be a relatively rigid diffuse von
Neumann subalgebra such that no corner of Q can be embedded into M0 inside M and
such that the normalizer of Q in M t generates a factor N . Then there exists a unique
i∈I\{0} and a unitary element u∈M t such that uQu∗⊂M t

i . Moreover , such u satisfies
uNu∗⊂M t

i , and in fact uÑu∗⊂M t
i , where Ñ=Ñ(N,M t

1;B) is as in Definition 1.2.

Proof. Note first that the fact that Q⊂M t is rigid implies that Q is countably
generated (see, e.g., [PeP]). Thus, there exists a countable subset S30 of indices i∈I such
that Q⊂(∗B,i∈SMi)t. By Corollary 3.2, Q⊂(∗B,i∈SMi)t is rigid and, by Theorem 1.1, all
of N is contained in (∗B,i∈SMi)t. This shows that it is sufficient to prove the statement
in the case when Mi, i>0, is a sequence of algebras.
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Moreover, since Q⊂M t is rigid and since the factors M̃(K, t)=M0∗B (∗B,k∈KMk)t,
with K being a finite subset of {1, 2, ... }, tend to M t, it follows by [P5] that there exists
a non-zero projection q′∈Q′∩M t, a unitary element v∈M t and a finite set K⊂{1, 2, ... }
such that v(Qq′)v∗⊂M̃(K, t). But q′∈N and, by [P8, I, Lemma 3.5], Qq′ is quasi-regular
in q′Nq′, so, by Theorem 1.1, we have v(q′Nq′)v∗⊂M̃(K, t). Since N is a factor, v can
be modified so that vNv∗⊂M̃(K, t). In particular vQv∗⊂M̃(K, t).

Since Q is diffuse, there exists q∈P(Q) such that τ(q)6t−1. Thus, we may assume
that v(qQq)v∗⊂M̃K

def=M0∗B (∗B,k∈KMk), and notice that, by [P5, Proposition 4.7], the
unital inclusion v(qQq)v∗⊂pM̃Kp is rigid, where p=vqv∗. Since K is finite, Theorem 5.1
applies to get i∈K, 0 6=q′i∈(vqQqv∗)′∩pM̃Kp and a unitary element w∈M̃K such that
w(vqQqv∗q′i)w

∗⊂Mi. Moreover, since τ(q)6t−1, we can view w(vqQqv∗q′i)w
∗ as a (possi-

bly non-unital) subalgebra of M t
i . Since q′i∈(vqQqv∗)′∩pMp, it follows that q′i∈vqNqv∗

(recall that N is generated by the normalizer of Q in M). By [P8, I, Lemma 3.5] and
Theorem 1.1 again, it follows that w(q′ivqNqvq

′
i)w

∗⊂Mi, implying that wq′ivq can be
extended to a unitary element u∈M t such that uNu∗⊂M t

i . Thus uQu∗⊂M t
i . Also,

by Theorem 1.1, i is unique with this property, while, by Corollary 1.3, it follows that
uÑu∗⊂M t

i .

6. Amalgamation over C: free product factors with prescribed F(M)

We first apply Theorem 5.1 to plain free product factors, where the result becomes an
analogue of the classical Kurosh theorem for groups. The first Kurosh-type results in
operator algebra framework were obtained by N. Ozawa in [O]. He proved that if N is a
non-prime non-hyperfinite II1 subfactor of a free product M=M1∗M2 of semiexact finite
factors M1 and M2, then N can be unitarily conjugated into either M1 or M2 (this is an
analogue of the “Kurosh subgroup theorem”). As a consequence, he showed that if two
free products ∗iMi and ∗jNj of non-hyperfinite non-prime semiexact factors Ni and Mj

are isomorphic, then the “length” of the two free products must be the same and each
Ni is unitarily conjugate to Mi, after some permutation of indices (this is an analogue
of the “Kurosh isomorphism theorem”).

In turn, our results cover different classes of algebras. Thus, our analogue of the
“Kurosh subgroup theorem” allows M1 and M2 to be arbitrary finite von Neumann
algebras, but only gives information about relatively rigid subalgebras Q of M1∗M2.
Our corresponding “isomorphism theorem”, which in fact we obtain for amplifications of
free products, will require the factors Ni and Mj to be either w-rigid, i.e. to have diffuse
regular relatively rigid subalgebras, or to be group measure space factors associated with
actions of w-rigid ICC groups. In particular, it holds for II1 factors Ni and Mj with the
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property (T) (in the sense of [CJ]), and more generally for tensor products of property (T)
II1 factors with arbitrary finite factors. Moreover, since the factors N=L(Z2oFn) in
[P5] are w-rigid and have trivial fundamental group (see Corollary 7.18 for a different
proof), this will allow us to obtain large classes of factors with trivial fundamental group,
different from the ones in [P5] and [P8]. More generally, using also [DyR], we construct
a completely new class of factors with prescribed fundamental group which, unlike the
ones in [P5] and [P8], have no Cartan subalgebras (by [V2], cf. Remark 6.6 below).

Theorem 6.1. Let (Mi, τi), i=0, 1, 2, be finite von Neumann algebras and let M=
M0∗M1∗M2. Assume that no direct summand of (M0, τ0) has relatively rigid diffuse
von Neumann subalgebras (which, e.g., holds if M0=C, or more generally if M0 has
the Haagerup property). Let Q⊂M be a relatively rigid diffuse von Neumann subalgebra
of M .

(1) There exist i∈{1, 2}, q∈P(Q), q′∈P(Q′∩M) and u∈U(M) such that qq′ 6=0
and uqQqq′u∗⊂Mi.

(2) If , in addition, M1 and M2 are factors, then there exists a unique pair of projec-
tions q′1, q

′
2∈Q′∩M such that q′1+q′2=1 and ui(Qq′i)u

∗
i ⊂Mi for some unitary elements

ui∈U(M), i=1, 2. Moreover , q′1, q
′
2∈Z(Q′∩M).

(3) If instead of M1 and M2 we consider a whole family of finite factors Mi, i>1,
we take a rigid inclusion Q⊂M t=(M0∗M1∗M2∗... )t, for some t>0, and we assume that
the normalizer of Q in M t generates a factor N , then there exists a unique i>1 and a
unitary element u∈M t such that uQu∗⊂M t

i . Moreover , such a u satisfies uNu∗⊂M t
i ,

and in fact uÑu∗⊂M t
i , where Ñ=Ñ(N,M t

i ;C) is as in Definition 1.2.

Proof. As in the proof of Theorem 5.2, note that Q is relatively rigid implies that Q
is countably generated. Thus, there exist countably generated von Neumann subalgebras
M0

i ⊂Mi, i=0, 1, 2, such that Q⊂M0
0 ∗M0

1 ∗M0
2 . Hence, to prove (1), it is clearly sufficient

to prove it in the case where the Mi’s are countably generated, i=0, 1, 2. But then
each C⊂Mi is homogeneous by Lemma 4.2. Let us show that no corner of Q can be
embedded into M0 inside M . Assume that this is not true. By [P8, I, Theorem 2.1], it
follows that there exist non-zero projections q∈Q and p∈M0, a unital isomorphism ψ

of qQq into pM0p and a non-zero partial isometry v∈M such that vv∗∈(qQq)′∩qMq,
v∗v∈ψ(qQq)′∩pMp and xv=vψ(x) for all x∈qQq. Let q′′=vv∗∈Q′∩M .

Since ψ(qQq)⊂pM0p is a diffuse von Neumann subalgebra, by Theorem 1.1, it follows
that ψ(qQq)′∩pMp⊂pM0p. Thus v∗v∈pM0p. This shows that v∗qQqv⊂pM0p, which
in turn implies that qQqq′′⊂wM0w

∗ for some unitary element w∈M extending v. Since
Q⊂M is rigid, by [P5, Proposition 4.7], qQqq′′⊂qq′′Mqq′′ is also rigid, which trivially
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implies that qQqq′′⊕(1−qq′′)C⊂M is rigid. But then it follows that

w∗(qQqq′′⊕(1−qq′′)C)w⊂M0

is rigid by Corollary 3.2. By taking a suitable amplification of w∗(qQqq′′)w in M0 and
using again [P5, Proposition 4.7], this implies that a direct summand of M0 contains a
relatively rigid diffuse von Neumann subalgebra, a contradiction.

Altogether, this shows that the conditions required in Theorem 5.1 are satisfied, so
part (1) of the statement follows as a particular case of that theorem.

For part (2), simply notice that if M1 and M2 are factors, then the countably
generated von Neumann subalgebras M0

0 , M0
1 , M0

2 with the property Q⊂M0
0 ∗M0

1 ∗M0
2

can be chosen so that M0
1 and M0

2 are factors as well, so Theorem 5.1 (2) applies.
Part (3) follows then from part (2) and Theorem 5.2.

Definition 6.2. A finite von Neumann algebra (M, τ) is weakly rigid (w-rigid) if
it contains a regular relatively rigid diffuse von Neumann subalgebra, i.e. a subalgebra
Q⊂M such that NM (Q)′′=M and Q⊂M is a rigid inclusion (or Q is a relatively rigid
subalgebra of M [P5]). Note that if G is a w-rigid group as defined in [P3], [P5], [P6]
and [P8], i.e. G contains an infinite normal subgroup with the relative property (T) of
Kazhdan–Margulis ([M]; see also [dHV]), then L(G) is w-rigid. Also, if M is w-rigid and
P is an arbitrary finite von Neumann algebra, then M
⊗P is w-rigid.

Theorem 6.3. Let (M0, τM0) and (N0, τN0) be finite von Neumann algebras which
have no relatively rigid diffuse subalgebras (which, e.g., is true if M0 and N0 have
Haagerup’s compact approximation property). Let M1, ...,Mm and N1, ..., Nn be II1 fac-
tors, where n,m>1 are some cardinals (finite or infinite) and assume that each Mi and
each Nj is w-rigid. If θ is an isomorphism of M=∗m

i=0Mi onto N t, where N=∗n
j=0Nj

and t>0, then m=n and , after some permutation of indices, θ(Mi) and N t
i are unitarily

conjugate in N t for all i>1.

Proof. For each 16i6m letQi⊂Mi be a regular relatively rigid diffuse von Neumann
subalgebra. SinceMi are factors and Qi⊂Mi are regular inclusions, it follows that for any
s>0 the factor Ms

i contains a regular diffuse relatively rigid subalgebra. To see this, note
that NMi(Qi) acts ergodically on the center of Qi, so Z(Qi) is either diffuse or atomic.
In both cases we can find projections q′∈Z(Qi) and q∈Qiq

′ such that the central trace
of q in Qi is a scalar mutiple of q′ and τ(q)=s/k, for some k>t. By [P8, I, Lemma 3.5],
it follows that the inclusion qQiq⊂qMiq is regular and, by [P5, Proposition 4.7], it is
rigid as well. But then Mk×k(qQiq)⊂Mk×k(qMiq)=Ms

i is regular and rigid ([P5]).
Moreover, note that any diffuse von Neumann subalgebra Bi⊂Ms

i satisfies

B′
i∩Ms⊂Ms

i .
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To see this, note first that by taking direct sums of k copies of Bi embedded diagonally
into Mk×k(Ms

i )=Mks
i , with k sufficiently large, we may assume that s>1. Then take

p∈P(Bi) with τ(p)=1/s and note that if we assume by contradiction that

B′
i∩Ms 6=B′

i∩Ms
i ,

then (pBip)′∩pMsp 6=(pBip)′∩pMs
i p. But (pMs

i p⊂pMp)'(Mi⊂M) and M splits off
Mi as a free product. Thus, by Theorem 1.1, the relative commutant in pMsp=M of
the diffuse subalgebra pBip⊂pMs

i p=Mi must be contained in pMs
i p, contradicting the

assumption.
Taking now s=1/t, it follows that M1/t

i has a diffuse regular relatively rigid subal-
gebra, implying that Pi=θ1/t(M1/t

i ) has such a subalgebra Bi as well. In particular, the
inclusion Bi⊂N is rigid. In addition, B′

i∩N⊂Pi. Since the inclusion Bi⊂N is rigid and
regular, by Theorem 6.1 (3), there exists a unique j(i)∈{1, 2, ..., n} and a unitary ui∈N
such that Bi⊂uiNj(i)u

∗
i and Pi⊂uiNj(i)u

∗
i . Thus, there exists a unique j(i) such that

for some unitary element vi∈N t we have θ(Mi)=P t
i ⊂viN

t
j(i)v

∗
i .

Similarly, by applying the above to θ−1, we get for each 16j6n a unique 16k(j)6m
and a unitary element in wj∈M such that θ−1(N t

j )⊂wjMk(j)w
∗
j . Altogether, for each

16i6m we get

Mi = θ−1(θ(Mi))⊂ θ−1(viN
t
j(i)v

∗
i )⊂uiMk(j(i))u

∗
i , (6.1)

where ui=wj(i)θ
−1(vi). By Theorem 1.1, it follows that k(j(i))=i, i.e. k�j=id. Similarly,

j�k=id. Thus m=n, j and k are onto isomorphisms and the inclusions (6.1) are in fact
equalities.

In the next statement, for a finite permutation π∈Sm and 16i6m we denote by
m(π, i) the cardinality of the set {πk(i):k>1}.

Corollary 6.4. Let m∈N and let M1, ...,Mm be w-rigid II1 factors. Let (M0, τM0)
be a finite von Neuman algebra which contains no rigid diffuse von Neumann subalgebras.
Let M=∗m

i=0Mi. Then

F(M)⊂
⋃

π∈Sm

m⋂
i=1

F(Mi)m(π,i)−1
⊂

m⋂
i=1

F(Mi)1/m!.

In particular , if one of the factors Mi, 16i6m, has trivial fundamental group, then so
does M .

Proof. For t∈F(M), let θ:M!M t be an isomorphism. Applying the previous theo-
rem, we get that there exists π∈Sm such that θ(Mi) and M t

π(i) are unitarily conjugate in
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M t. In particular, we have that Mi
∼=M t

π(i) for all 16i6m which, by induction, implies

that Mi
∼=M tk

πk(i) for all 16i6m, k∈N.

Fixing i and letting k=m(π, i), we obtain that tm(π,i)∈F(Mi), or equivalently t∈
F(Mi)m(π,i)−1

. By intersecting over all values of i, taking the union over all possible
permutations and noticing that m(π, i) divides m, the result follows.

For the next corollary, we denote by Xfin the set of all finite tuples of positive numbers
{ti}n

i=1⊂R∗
+, n>2, and by X∞ the set of all infinite sequences {ti}i>1⊂R∗

+. Also, we
let X=Xfin∪X∞. If X={ti}i and Y ={sj}j are in X , then we write X∼Y if both have
the same “length” and there exists a permutation (bijection) π of the (common) set of
indices {1, 2, ... } such that sπ(i)=ti for all i.

Given a II1 factor M and X={ti}i∈X , we let MX =∗iM
ti . Note that if X,Y ∈X

and X∼πY , then π induces a natural isomorphism θπ:MX'MY , in the obvious way.
For t>0 and X={ti}i∈X we let tX={tti}i∈X .

Corollary 6.5. Let M be a w-rigid II1 factor with trivial fundamental group, e.g.
M=L(Z2oSL(2,Z)) (cf. [P5]).

(1) If X,Y ∈X , then MX'MY if and only if X∼Y , which holds if and only if
MX ∗L(Fk)'MY ∗L(Fk) for some 16k6∞.

(2) F(MX)={1} for all X∈Xfin. Moreover , if we denote by X0 the set of elements
X in Xfin with minX=1, then {MX :X∈X0} is a continuous family of mutually non-
stably isomorphic II1 factors.

(3) For each X∈X∞ let SX ={t∈R∗
+ :tX∼X}. Then F(MX)=SX . In particular ,

if S⊂R∗
+ is an infinite countable subgroup and X∈X∞ has the elements of S as entries,

each one repeated with the same (possibly infinite) multiplicity , then F(M tX)=S for all
t>0. Moreover , M t1X and M t2X are stably isomorphic if and only if t1 and t2 are
in the same class in R∗

+/S. Thus, {M tX :t∈R∗
+/S} is a continuous family of mutually

non-stably isomorphic II1 factors all with fundamental group equal to S.
(4) If S⊂R∗

+ is an arbitrary infinite (possibly uncountable) subgroup then the II1
factor MS =∗s∈SM

s has fundamental group equal to S.

Proof. (1) If MX∼=MY then, by Theorem 6.3, X and Y have the same length and
there exists a bijection π of the corresponding (finite or infinite) set of indices {1, 2, ... }
such that M ti =Msπ(i) for all i. Since M has trivial fundamental group, this implies that
ti=sπ(i) for all i, and thus X∼πY . The second equivalence has exactly the same proof,
using Theorem 6.3 with M0=L(Fk).

(2) If X={ti}n
i=1 and Y ={sj}m

j=1 are in Xfin and MX'(MY )t, then

MX ∗L(F∞)' (MY )t∗L(F∞).
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But, by [DyR], the last factor is isomorphic to M tY ∗L(F∞). Thus,

MX ∗L(F∞)'M tY ∗L(F∞),

which, by part (1), implies that X∼tY . Thus, if X=Y (resp. X,Y ∈X0) then t=1 and
we get F(MX)={1} (resp. X∼Y ). This implies both statements.

(3) By [DyR], if X∈X∞ then (MX)t∼=M tX . Thus MX∼=(MX)t if and only if
X∼tX, which readily implies all statements.

(4) It is easy to see that, in fact, the proof of the amplification formula (MS)t'M tS

in [DyR] does not depend on the fact that the infinite set S is countable. Thus, since
for t∈S we have tS=S as sets, it follows that (MS)t=M tS =MS . Hence S⊂F(MS).
Conversely, if s∈R∗

+ satisfies (MS)s'MS , then MsS'MS , which, by Theorem 6.3,
implies that tS=S, so that s∈S.

Remarks 6.6. Dima Shlyakhtenko pointed out to us that, by combining Voiculescu’s
initial argument for showing that L(Fn) has no Cartan subalgebras, with Kenley Jung’s
“monotonicity” [Ju], it follows that any free product of type-II1 factors which embed
into Rω is “Cartan-less” (see [Sh] for a detailed argument). Thus, unlike the examples of
factors with prescribed fundametal group in [P8], which are group measure space factors
associated with equivalence relations coming from Connes–Størmer Bernoulli actions,
the examples of factors M that we produce here (in Corollary 6.5) have no Cartan
subalgebras, and altogether no diffuse hyperfinite “core”. In particular, they cannot be
written as crossed products of the form M=RoΓ with R being the hyperfinite factor.

It is interesting to note that Theorem 5.1 can be used to give a completely new
proof of the by now classical result of Connes and Jones showing that property (T)
factors cannot be embedded into the free group factor [CJ]. Thus, rather than using
Haagerup’s property (i.e. “deformation by compact c.p. maps”), as the original proof
does, this new proof uses a “deformation by automorphisms” of the free group factors.

Corollary 6.7. ([CJ]) For every n, 26n6∞, the free group von Neumann algebra
L(Fn) contains no relatively rigid diffuse subalgebra.

Proof. If we write L(Fn) as L(Z)∗L(Z)∗...∗L(Z) and then apply recursively the
first part of Theorem 5.1 and Corollary 3.2, it follows that a corner of L(Z) contains a
rigid diffuse von Neumann subalgebra, a contradiction.

7. Amalgamation over Cartan subalgebras: vNE/OE rigidity results

In this section we apply Theorem 5.1 to study group measure space factors of the form
AoσΓ, where Γ is a free product of groups Γ=Γ0∗Γ1∗... and σ is a free ergodic m.p. ac-
tion of Γ on A=L∞(X,µ), for a probability space (X,µ). Such a factor can alternatively
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be viewed as a free product with amalgamation M=M0∗AM1∗A ... , where Mi=Aoσi
Γi,

σi=σ|Γi , with A⊂M , with the algebra of coefficients A of the crossed product AoΓ now
becoming the “core” of the amalgamated free product. It is this form that will allow us
to use Theorem 5.1.

Following [P8], we regard an isomorphism of such group measure space factors as
a von Neumann equivalence (vNE) of the corresponding actions (σ, ∗iΓi). Thus, the
main result we prove in this section is a rigidity result showing that vNE of actions
of free products of groups Γi satisfying some weak rigidity conditions (of property (T)
type) entails the orbit equivalence (OE) of the actions σ, with componentwise OE of the
actions (σi,Γi). Due to its analogy to similar statements on (amalgamated) free products
of groups in Bass–Serre theory, we refer to this as vNE Bass–Serre rigidity. We note that
when applied to isomorphisms of group measure space factors that come from OE of the
actions, they give OE Bass–Serre rigidity results.

Since we study the group measure space factors M=Ao(Γ0∗Γ1∗... ) as AFP factors
(AoΓ0)∗A(AoΓ1)∗A ... , it is worth noticing that if M=M0∗AM1∗A ... is an AFP factor
coming from Cartan subalgebra inclusions A=L∞(X,µ)⊂Mi, i>0, then it follows that
the AFP “core” A is regular in M , but in general it may not be maximal abelian (and
thus not Cartan) in M . For instance, if A is a Cartan subalgebra of a II1 factor N , then
A is not maximal abelian in M=N ∗AN , because for any u∈NN (A) with EA(u)=0 the
element u∗u−1 is still perpendicular to A yet acts trivially on it. For more on general
properties of AFP factors arising from Cartan inclusions, we refer the reader to [Ko],
[U1] and [U2].

In caseMi=Aoσi
Γi, with each σi being a free m.p. action, then there exists a unique

m.p. action σ of Γ=Γ0∗Γ1∗... on A such that σ|Γi =σi for all i, and we still have the
natural identification M=AoσΓ=M0∗AM1∗A ... , as in the case when σ is a free action
mentioned above. Then A is Cartan in M if and only if σ is a free action, i.e. if and only
if σi are “freely independent” actions (in the obvious sense). For general equivalence
relations (or Cartan subalgebras), the definition of “free independence” was formulated
by Gaboriau [G1] and is recalled below. Recall that if B is a finite von Neumann algebra,
p and q are non-zero projections in B and θ: pBp!qBq is a ∗ -morphism, then θ is called
properly outer if b∈B and the condition θ(x)b=bx for all x∈B implies that b=0.

Definition 7.1. ([G1]) Let {Ri}i∈I be a family of countable measurable measure-
preserving equivalence relations on the same standard non-atomic probability space
(X,µ) (see e.g. [FM]). We alternatively view each Ri as a pseudogroup of local m.p.
isomorphisms φ:Y1'Y2 with Y1, Y2⊂X measurable and the graph of φ contained in
Ri [D], [FM]. We say that {Ri}i are freely independent if for any n and any prop-
erly outer local isomorphisms φj∈Rij , 16j6n, ij∈I, with ij 6=ij+1, 16j6n−1, the
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product φ1φ2 ... φn is properly outer.

In the case when each of the equivalence relations Ri is generated by properly outer
automorphisms, Definition 7.1 can be viewed as a particular case of the following.

Definition 7.1.′ Let (B, τ) be a finite von Neumann algebra and Si⊂Aut(B, τ), i∈I,
be a family of sets of τ -preserving automorphisms, with each θ∈Si either properly outer or
equal to idB . We say that {Si}i are freely independent if for any n and any θj∈Sij\{idB},
16j6n, ij∈I, with i1 6=i2 6=... 6=in, the product θ1θ2 ... θn is properly outer.

The next lemma translates the freeness conditions in Definition 7.1 into the frame-
work of operator algebras (see [U2]).

Lemma 7.2. Let (Mn, τn), n>1, be finite von Neumann algebras with a common
Cartan subalgebra A⊂Mn such that τn|A=τm|A for all n and m. Then

A⊂M1∗AM2∗A ...

is a Cartan subalgebra if and only if the equivalence relations Rn=RA⊂Mn , n>1, are
freely independent.

Proof. Since A is clearly regular in M=M1∗AM2∗A ... , all we need to prove is that
A⊂M is maximal abelian if and only if {Rn}n>1 are freely independent. But this is
trivial by the definitions of freeness and of the amalgamated free product over A.

The next result, essentially due to Törnquist [Tö], shows that a sequence of actions
of countable groups (or merely countable m.p. equivalence relations) can be made “freely
independent” by conjugating each one of them with a suitable m.p. automorphism. We
include a proof, based on Lemma A.1 in the appendix, for the reader’s convenience.

Proposition 7.3. (1) Let (X,µ) be a standard non-atomic probability space and
σn:Gn!Aut(X,µ) be free m.p. actions of discrete countable groups Gn, n>1. Then
there exists a free m.p. action σ of G=∗∞n=1Gn on (X,µ) such that σ|Gn is conjugate
to σn, for all n>1. More generally , if {Rn}n>1 are standard equivalence relations on
(X,µ) then there exists an equivalence relation R on (X,µ) generated by a family of
freely independent subequivalence relations R′

n⊂R, n>1, such that Rn'R′
n for all n.

(2) Let (Mn, τn) be countably generated finite von Neumann algebras with a common
diffuse Cartan subalgebra A⊂Mn, n>0, such that τn|A=τm|A for all n and m. Then
there exist Cartan subalgebra inclusions {A⊂Nn}n>0 such that (A⊂Nn)'(A⊂Mn) for
all n, and such that A is a Cartan subalgebra in N0∗AN1∗AN2 ... .

Proof. (1) This is an immediate application by induction of Lemma A.1, once we
notice that any Rn can be extended to a countable m.p. equivalence relation Sn on (X,µ)
which is generated by countably many properly outer m.p. automorphisms.
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(2) By Lemma 7.2, we only need to make the equivalence relations RA⊂Mn
freely

independent, so the first part applies.

We also notice the following general “compression formula” for restrictions of “free
products of equivalence relations” R=∗n

i=1Ri, i.e. for relations R that are generated by
freely independent subequivalence relations Ri⊂R, 16i6n.

Proposition 7.4. (1) Let Mi, 16i6n, be II1 factors, for some 26n6∞, with a
common Cartan subalgebra A and assume that A⊂M=M1∗AM2∗A ...∗AMn is Cartan.
If p∈A is a projection of trace 1/m for some integer m>1 then the Cartan subalgebra
inclusion Ap⊂pMp is naturally isomorphic to Ap⊂M0∗AppM1p∗Ap ...∗AppMnp, where
(Ap⊂M0)=(Ap⊂ApoF(n−1)(m−1)) for some free action of the free group F(n−1)(m−1)

on Ap.
(2) Let R1, ...,Rn be freely independent countable ergodic m.p. equivalence relations

on the same standard probability space (X,µ) and denote the equivalence relation they
generate by R. If Y ⊂X is a subset of measure 1/m then the restriction RY of R to Y

is generated by the freely independent ergodic subequivalence relations RY
i , 16i6n, and

R0, where RY
i is the restriction of Ri to Y and R0 is generated by a free m.p. action

of a free group with (n−1)(m−1) generators F(n−1)(m−1) on Y .

Proof. It is clearly sufficient to prove part (1). By the representation of AFP algebras
(1.1), the von Neumann algebra generated by pMip, 16i6n, in pMp is isomorphic to
the AFP algebra pM1p∗Ap ...∗AppMnp. On the other hand, since τ(p)=1/m and each
Mi is a factor, by Dye’s Theorem [D], there exist matrix units {ejk

i }16j,k6m in the
normalizing groupoid GNMi(A) of A∈Mi such that e1,1

i =p and ejj
i =ejj

i′ , for all 16i, i′6n

and for all 16j6m. Let uj
i =e1,j

1 ej,1
i ∈pMp, 26i6n, 26j6m, and notice that there

are (n−1)(m−1) such unitary elements. The expansion (1.1) of M1∗A ...∗AMn implies
that {uj

i}i,j are the generators of a free group F(n−1)(m−1), all of whose elements 6=1
are perpendicular to Ap. Since A⊂M is Cartan, this implies that the action induced
by F(n−1)(m−1) on Ap is free. Moreover, if we let M0=Ap∨{uj

i}′′i,j'ApoF(n−1)(m−1),
then it is immediate to check that if v=vi1vi2 ... vij∈pMp is an “alteranting word”,
with vil

in the normalizing groupoid of Ap in pMil
p for all l, and i1 6=i2 6=... 6=ik in

{0, 1, ..., n}, EAp(vil
)=0 for all l, then v has expectation 0 on Ap as well, EAp(v)=0.

Thus, if we denote by N⊂pMp the von Neumann algebra generated by pMip, 06i6n,
then (Ap⊂N)=(Ap⊂M0∗AppM1p∗Ap ...∗AppMnp).

Finally, since ej,1
1 uj

i =ej,1
i , we have that M is generated by N=pNp and the matrix

unit {ejk
1 }j,k. This also implies that pMp is generated by

∨n
i=0 pMip. Altogether, this

shows that (Ap⊂pMp)=(Ap⊂N)=(Ap⊂M0∗AppM1p∗Ap ...∗AppMnp).

The above result shows in particular that if FnyX is a free m.p. action on the
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probability space with restrictions to each of the generators of Fn acting ergodically
on X, then the amplification of the corresponding orbit equivalence relation RFn by
1/m is an equivalence relation that can be induced by a free ergodic m.p. action of
a free group with m(n−1)+1 generators, thus recovering the “compression formula”
R1/m

Fn
=RFm(n−1)+1 in [Hj]. On the other hand, Proposition 7.4 can be viewed as an AFP

version of the “compression formula” for plain free product factors in [DyR].
Theorem 7.7 below will require the following notation.

Notation 7.5. Let {Γij}ni
j=0 be discrete countable groups, 16ni6∞, i=1, 2. LetGi=

Γi,0∗Γi,1∗...∗Γi,ni , i=1, 2. Let σi:Gi!Aut(Xi, µi) be a free m.p. action on a standard
probability space (Xi, µi), i=1, 2. Let Ai=L∞(Xi, µi), Mi=AioσiGi and Mij =Aioσij

Γij , where σij =σi|Γij for all 06j6ni, i=1, 2.

The general result that we prove shows that, under suitable weak rigidity conditions
on the groups Γij , an isomorphism between the factors M1 and M2 must take each of the
“component inclusions” (Ai⊂Mij) onto each other, modulo some permutation of indices
and unitary conjugacy. Since the weak rigidity assumption on the Γij ’s is somewhat
technical, we display the conditions separately and give right away a list of examples
when they are satisfied.

Assumption 7.6. Γ1,0 and Γ2,0 have the Haagerup property, and if both Γ1,0 and Γ2,0

are finite then we must have ni>2 for at least one i∈{1, 2}. For each j>1, i=1, 2, Γij

contains a subgroup Hij with the following properties:
(a) The subgroup Hij is non-virtually abelian and the pair (Γij ,Hij) has the relative

property (T) ([M]; see also [dHV]).
(b) The normalizer Nij of Hij in Γij is ICC in Γij (i.e. |{hgh−1 :h∈Nij}|=∞ for all

g∈Γij\{e}) and σij is ergodic on Nij .
(c) For any proper intermediate subgroup Nij⊂N ′

ij⊂Γij there exists g∈Γij\N ′
ij

such that g(N ′
ij)g

−1∩N ′
ij is non-virtually abelian.

Note that condition (c) above on the inclusion Nij⊂Γij is similar to the wq-normal
condition in [P6] and [P8]. It is equivalent to the existence of a well-ordered strictly
increasing family of intermediate subgroups {Gl :06l6L} such that G0=Nij , GL=Γij

and Gk+1={g∈Γij :gGkg
−1∩Gk is non-virtually abelian} for all k.

If Γij , j>1, is ICC and has a normal non-virtually abelian subgroup with the relative
property (T), then conditions (a), (b) and (c) are trivially satisfied.

Related to conditions (a) and (b), note that if a non-virtually abelian group H is
normal in an ICC group G, then L(H) has no type-I summand, i.e. it is of type II1.
Indeed, this is because G acts ergodically on the center of L(H), so if L(H) has non-zero
type-I part then it is homogeneous of type In for some 26n<∞, contradicting [T], [Ka].
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Theorem 7.7. (vNE Bass–Serre rigidity) With Notation 7.5 and Assumption 7.6,
if θ:M1'M t

2 for some t>0, then n1=n2 and there exist a permutation π of indices
j>1 and unitary elements uj∈M t

2 such that , for all j>1, Ad(uj)(θ(M1,j))=M t
2,π(j) and

Ad(uj)(θ(A1))=At
2. In particular , Rσ1'Rt

σ2
and Rσ1,j'Rt

σ2,π(j)
for all j>1. Also, if

Γ1,0=Γ2,0=1, 26n1<∞, then the existence of such an isomorphism forces t to be 1.

Proof. We denote by Qij⊂Mij the “rigid part” of Mij , i.e. Qij =L(Hij), where
Hij⊂Γij is a subgroup satisfying properties (a), (b) and (c) in Assumption 7.6. Also, we
denote by Pij the von Neumann algebra generated by the normalizer of Qij in Mij . Thus,
Pij⊃L(Nij), where Nij is the normalizer of Hij in Γij in (b). Notice that Assumption 7.6
implies that P ′

ij∩Mij =C so that by Theorem 1.1 we also have P ′
ij∩Mi=C, for all j>1,

i=1, 2. Also, note that Qij is relatively rigid in Mij , and thus in Mi.
Assume first that t61. For simplicity, let A2=A, M2=M , G2=G, Γ2,j =Γj and

let {ug}g∈G⊂M denote the canonical unitary elements. Let q∈A be so that τ(q)=t
and θ(1)=q. Fix i>1. Since Q1,i⊂M1 is a rigid inclusion, Q=θ(Q1,i)⊂qMq is a rigid
inclusion [P5].

Let us show that no corner of Q can be embedded into M2,0 inside M . Assume
by contradiction that there exist non-zero q0∈P(Q) and p0∈P(M2,0), a unital isomor-
phism ψ of q0Qq0 into p0M2,0p0, and a non-zero partial isometry v∈M2,0 such that
v∗v∈(q0Qq0)′∩q0Mq0, vv∗∈ψ(q0Qq0)′∩p0Mp0 and vy=ψ(y)v for all y∈q0Qq0. Since Q
is of type II, ψ(q0Qq0)⊂M2,0 is of type II, so no corner of ψ(q0Qq0) can be embedded
into A. By Theorem 1.1, this implies that ψ(q0Qq0)′∩M⊂M2,0. Thus

vQv∗ = v(q0Qq0)v∗⊂M2,0.

But Γ2,0 has the Haagerup property, so, by [P5], there exist unital trace-preserving
A-bimodular c.p. maps φn on M2,0 such that φn!idM2,0 and φn is compact relative
to A. Then φn∗id!idM . But, by [P5], vQv∗⊂vv∗Mvv∗ is a rigid inclusion. By [P5]
again, this implies that

lim
n!∞

‖(φn∗id)(x)−x‖2 =0

uniformly for x∈(vQv∗)1. Since (φn∗id)(x)=φn(x) for x∈M2,0⊃vQv∗, this implies that
the maps φn, which are A-bimodular and compact relative to A, tend uniformly to the
identity on the unit ball of the type-II1 algebra vQv∗. By [P5], this implies that a corner
of vQv∗ can be embedded into A inside M2,0, a contradiction.

Since no corner ofQ can be embedded intoM2,0 insideM , we can apply Theorem 5.1.
Thus, there exist j=j(i)>1, a non-zero projection q′∈Q′∩qMq and a unitary element
u∈M , such that uQq′u∗⊂qM2,jq=q(AoΓ2,j)q. Since P=θ(P1,j) is generated by the
normalizer ofQ, we have q′∈P and, by [P8, I, Lemma 3.5 (1)], Qq′⊂q′Pq′ is quasi-regular.
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By Theorem 1.1, it follows that uq′Pq′u∗⊂qM2,jq. Since P is a factor and a corner of
it is contained in qM2,jq, it follows that u can be suitably modified in order to satisfy
uPu∗⊂qM2,jq. If v∈qMq is such that Pv=vPv∗∩P is of type II1, then Pv⊂qM2,jq and
no corner of Pv can be embedded into the abelian algebra A. Since (Pv)v=vP⊂vM2,j , by
Theorem 1.1 it follows that v∈M2,j . By applying this recursively, by Assumption 7.6 (c)
it follows that θ(L(Γ1,i))⊂qM2,jq.

Thus, if {u1,h :h∈G1} denotes the canonical unitary elements in M1=A1oG1, then
vh=θ(u1,h)∈qMq, h∈G1, are in the normalizer of θ(A1) in qMq. Thus, the unitary
elements {uvhu

∗ :h∈Γ1,j}⊂qM2,jq normalize uθ(A1)u∗ and they generate a II1 von Neu-
mann algebra N⊂qM2,jq. By Theorem 1.8, this implies that uθ(A1)u∗⊂M2,j and
w(uθ(A1)u∗)w∗=Aq for some w∈U(qMijq). Taking v=wu, it follows that

v(θ(L(Γ1,i)))v∗⊂M2,j and vθ(A1)v∗⊂M2,j .

Thus vθ(M1,i)v∗⊂M2,j .
This shows that if t61, then for all i>1 there exists j=j(i)>1 (unique by Theo-

rem 1.1) and a unitary element v∈M t
2 such that

Ad(v)θ(M1,i) =M t
2,j and Ad(v)(θ(A1))=At

2.

Let us now consider the case t>1. Let n>t be an integer and note that if we let
B=Mn×n(A2)⊂Mn×n(M2)=M , G=G2 and extend σ2 to the action σ which acts triv-
ially on Mn×n(C)⊂Mn×n(M2)=M , then M=BoσG2. Let q∈A=Dn⊗A2 be a projec-
tion of trace t/n.

The hypothesis then states that θ:M1'qMq is an onto isomorphism. Fix i>1 and
let Q=θ(Q1,i)⊂qMq and P=θ(P1,i)⊂qMq. As in the case t61, it follows that there
exist j=j(i)>1 and a unitary element u in qMq=M t

2 such that

uPu∗⊂ q(BoΓ2,j)q=M t
2,j .

In particular, {θ(u1,h):h∈Γ1,i}⊂qM2,jq and they normalize uθ(A1)u∗. By applying The-
orem 1.8 to A0=uθ(A1)u∗⊂qBq, it follows that u(θ(A1))u∗⊂q(BoΓ2,j)q as well, so that
Ad(u)(θ(M1,i))⊂M t

2,j . Since Ad(u)(θ(A1)) is regular in M t
2=qMq, by Corollary 1.4 and

[P5, §A.1] it follows that there exists a unitary element in M2,j that conjugates θ(A1)
onto At

2.
Since we have dealt with both cases t>1 and t61, we can apply the above equally

well to θ and θ−1, to obtain the following: for all 16i6n1 and 16j6n2, there exist uni-
tary elements ui∈M t

2 and vj∈M1, and indices j(i)∈{1, 2, ..., n2} and i(j)∈{1, 2, ..., n1}
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such that

θ(A1⊂M1,i)⊂ui(A2⊂M2,j(i))tu∗i , 1 6 i6n1,

θ−1((A2⊂M2,j)t)⊂ vj(A1⊂M1,i(j))v∗j , 1 6 j6n2,

so, altogether,
θ(M1,k)⊂Ad(ukθ(vj(k)))(M1,i(j(k))), 1 6 k6n1,

which, by Theorem 1.1, implies i(j(k))=k for all k. Similarly, j(i(k))=k for all k. Thus,
n1=n2=n and j defines a permutation π of the set of indices 16i6n.

To prove the last part, note that the equivalence Rσ1'Rt
σ2

and [G1] imply that

n∑
j=1

β1(Γ1,j)+(n−1) =β1(Rσ1) =
β1(Rσ2)

t
=

1
t

( n∑
j=1

β1(Γ2,j)+(n−1)
)
.

On the other hand, by the equivalence Rσ1,j
'Rt

σ2,π(j)
, we get β1(Γ1,j)=β1(Γ2,π(j))/t for

all j>1, while, by [BeVa] and Assumption 7.6, all Γ1,j ’s have 0 as first `2-Betti number,
β1(Γ1,j)=0. (Indeed, this follows easily from [BeVa, Corollary 4] and the argument in
the proof of [P6, Lemma 2.4].) Altogether we get n−1=(n−1)/t, implying that t=1.

Before stating specific OE applications, recall from [Fu1] that two groups Γ and Λ
are said to be measure equivalent (ME) with dilation constant t>0 if there exists free
m.p. actions (σ,Γ) and (θ,Λ) such that Rσ'Rt

θ. We will use the notation Γ∼OEt Λ to
denote this property. It was recently proved in [G2] that if Γi∼OE1 Λi for all i>0, then
∗jΓj∼OE1 ∗jΛj . Note that an alternative proof of this fact follows from Proposition 7.3 (1)
(see also [MoS, Comment 2.27]).

The OE rigidity result below, of Bass–Serre type, can alternatively be viewed as
a converse to Gaboriau’s ME result above, for free products of w-rigid ICC groups.
Note however that we need the actions involved to be “separately ergodic” (which is not
assumed in [G2]).

Corollary 7.8. (OE Bass–Serre rigidity) Let Γ0 and Λ0 be Haagerup groups, and
Γi and Λj , 16i6n6∞, 16j6m6∞, be ICC groups having normal non-virtually abelian
subgroups with the relative property (T). Let σ (resp. θ) be a free ergodic m.p. action
of Γ=Γ0∗Γ1∗... (resp. Λ=Λ0∗Λ1∗... ) on the probability space such that σj =σ|Γj (resp.
θj =θ|Λj ) is ergodic for all j>1. If Rσ,Γ'Rt

θ,Λ, then n=m and there exists a permutation
π of the set of indices >1 such that Rσi,Γi'Rt

θπ(i),Λπ(i)
for all i>1.

The condition on the groups Γi and Λj , i, j>1, in Corollary 7.8 can be weakened by
using the full generality of Theorem 7.7.
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Corollary 7.8.′ The same statement as in Corollary 7.8 holds true if we assume
that each (σ|Γi ,Γi) (resp. (θ|Λi ,Λi)), i>1, satisfies Assumption 7.6.

Corollary 7.9. Let Γi, 06i6n, Γ=Γ0∗Γ1∗... and σ be as in Corollaries 7.8
or 7.8′. Assume that Out(Rσ1,Γ1)={1} and (σ1,Γ1) is not orbit-equivalent to (σi,Γi)
for any i 6=1. Then Out(Rσ,Γ)={1} and Out(AoσΓ)=H1(σ,Γ). Also, if n is finite and
either all Γi are finitely generated or there exists i>1 with βn(Γi) 6=0,∞, then

F(AoσΓ) = {1}.

Proof. The first part is trivial by Theorem 7.7. The last part follows from [G1].

Outer automorphism groups of equivalence relations are usually hard to calculate
and there are only a few special families of group-actions (σ1,Γ1) for which one knows
that Out(Rσ1)={1} (cf. [Ge2], [Fu2] and [MoS]). Similarly for the 1-cohomology group
H1, where the only known calculations are in [Ge1], [PSa] and [P6]. Below we recall some
examples from [Ge2], [Fu2] and [MoS], where both calculations can be made. We add
a new construction of examples, in Example 7.12 below, which uses the Monod–Shalom
OE rigidity theorem to calculate Out and [P6] to calculate H1.

Example 7.10. (Gefter [Ge2], Furman [Fu2]) Take Γ1 to be a lattice in SO(p, q),
with p>q>2 and notice that Γ1 has rkR>2 (thus has property (T)) and admits a dense
embedding into the compact Lie group SO(n), where n=p+q. Let σ1 be the action by
left translation of Γ1 on the homogeneous space SO(n)/SO(n−1). Then Out(Rσ1)={1}.

Example 7.11. (Monod–Shalom [MoS]) Let G=SO(n), n>5, and let Λ0 be an ICC
torsion-free Kazhdan group which admits a dense embedding into G and has no outer
automorphisms (such groups exist for any n>5, for instance lattices in SO(p, q) with
p>q>2 and n=p+q as in Example 7.10). Let K be any torsion-free group embeddable
into G and K0⊂K be a non-trivial subgroup such that K0 is not isomorphic to K (for
instance, K0=Fr⊂Fs=K, for some s>r>1). Let Γ1=(Λ0∗K)×(Λ0∗K0) and note that
any automorphism of the group Γ1 is inner on Λ0×Λ0 (by Kurosh or Bass–Serre). Let σ1

be the action of Γ1=(Λ0∗K)×(Λ0∗K0) on G by left-right translation. Notice that this
action is free ergodic on Λ0×Λ0 and that, by [MoS], one can choose the embedding K⊂G
such that σ1 is free on Γ1 (by considering all embeddings gKg−1, g∈G, and using a Baire
category argument). Then Γ1 is in the class Cgeom of Monod–Shalom and Out(Rσ1)={1}.

Example 7.12. Let this time Λ0 be any torsion-free ICC group with only inner
automorphisms and which cannot be decomposed as Z∗Λ′

0 (note that if Λ0 is w-rigid
then it does have this latter “free indecomposability” property). Let K be any torsion-
free group with K0⊂K being a non-trivial subgroup such that K0 is not isomorphic
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to K. Let Λ=Λ0∗K and Γ1=(Λ0∗K)×(Λ0∗K0)⊂Λ×Λ. Denote by σ1 the action of Γ1

on the product probability space (X,µ)=
∏

g∈Λ(X0, µ0)g by left-right (double) Bernoulli
shifts. Then Out(Rσ1)={1}. Indeed, noticing that Λ0∗K,Λ0∗K0∈Cgeom and that σ1 is
separately ergodic (on Λ0∗K and Λ0∗K0), it follows from [MoS] that any automorphism
θ∈Aut(Rσ1) is an inner perturbation of a conjugacy σ1∼σ1�γ with respect to some
γ∈ Aut(Γ1). But Γ1 has only inner automorphisms (again by Kurosh or Bass–Serre).
Thus, any such θ is an inner perturbation of an automorphism of the probability space
that commutes with σ1(Γ1). But this commutant is trivial if for instance (X0, µ0) is
atomic with non-equal weights, as shown by the following proposition.

Proposition 7.13. Let Λ be a countable discrete group with two subgroups Λ1

and Λ2 such that Λ0=Λ1∩Λ2 satisfies |{hgh−1 :h∈Λ0}|=∞ for all g∈Λ, g 6=e. Let
(B0, τ0) be a finite von Neumann algebra and let (B, τ)=

∏
g∈Λ(B0, τ0)g. Let σ be the

action of Λ1×Λ2 on (B, τ) given by σh1,h2((xg)g)=(x′g)g, where x′g=xh−1
1 gh2

for g∈Λ,
h1∈Λ1 and h2∈Λ2. Then σ is a free separately mixing action of Λ1×Λ2 on (B, τ) and
the following are true:

(1) If θ∈Aut(B, τ) commutes with σ(Λ1×Λ2) then there exists a unique

θ0 ∈Aut(B0, τ0)

such that θ is the product action given by θ0, i.e. θ=
∏

g(θ0)g.
(2) Any δ∈Aut(Λ) satisfying δ(Λi)=Λi, i=1, 2, induces an automorphism

∆=∆(δ)∈Aut(B, τ), by ∆((bg)g)=(δ(bg))g, which satisfies ∆σ∆−1=σ�δ.
(3) If (B0, τ0)=(L∞(X0, µ0),

∫
· dν0) for some atomic probability space (X0, µ0),

then the commutant of σ(Λ1×Λ2) in Aut(X,µ) is equal to Aut(X0, µ0)=Aut(B0, τ0).
Moreover , if σ is conjugate to another double Bernoulli shift σ′ with atomic base space
(X ′

0, µ
′
0), then (X0, µ0)'(X ′

0, µ
′
0).

Proof. Part (2) is trivial. To prove part (1), it is sufficient to show that any θ com-
muting with σ must take the subalgebra Be

0=... 1⊗(B0)e⊗1 ... of B into itself. Indeed,
because if we let θ0=θ|Be

0
and regard it as an automorphism of B0 then θ�(

∏
g(θ0)g)−1

still commutes with σ(Λ1×Λ2) and it acts as the identity on Be
0, and thus on σ(g1, g2)(Be

0)
for all g1, g2∈Λ0. Since Λ1Λ2=Λ, the latter generate all of B. Thus θ=

∏
g(θ0)g.

To show that θ leaves Be
0 globally invariant, it is sufficient to show that the fixed

point algebra {b∈B :σ(g, g)(b)=b for all g∈Λ0} coincides with Be
0. This in turn follows

trivially from the fact that for any finite subset F⊂Λ\{e} there exists g∈Λ0 such that
gFg−1∩F=∅. To see that this latter property holds true, note that if some finite set
∅ 6=F⊂Λ\{e} would satisfy |gFg−1∩F |>1, for all g∈Λ0, then the “left-right” represen-
tation π(g)(f)=λ(g)%(g)(f) on `2(Λ) would satisfy 〈π(g)(χF ), χF 〉>|F |−1 for all g∈Λ0.
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Taking the element f of minimal Hilbert norm in cow{π(g)(χF ):g∈Λ0}⊂`2(Λ), it follows
that f>0, f 6=0 (because 〈f, χF 〉>|F |−1) and π(g)(f)=f for all g∈Λ. But then any ap-
propriate “level set” K for f will be finite non-empty, and will satisfy π(g)(χK)=χK for
all g∈Λ0, i.e. gKg−1=K for all g∈Λ0, implying that Λ has elements with finite conjugacy
class, a contradiction.

The first part of (3) is trivial by (2). Then to see that conjugacy of double Bernoulli
shifts entails isomorphism of the base spaces, note that σ conjugate to σ′ implies that
all “diagonal” actions σ⊗σ′′ and σ′⊗σ′′ must also be conjugate, for all σ′′, thus having
isomorphic commutants in Aut. Taking σ′′ to be itself a double Bernoulli Γ1-action of
base (X ′′

0 , µ
′′
0), it follows that Aut((X0, µ0)×(X ′′

0 , µ
′′
0))'Aut((X ′

0, µ
′
0)×(X ′′

0 , µ
′′
0)) for all

(X ′′
0 , µ

′′
0), which easily implies the result.

Notation 7.14. Denote by wT2 the class of groupsG that have a non-virtually abelian
subgroup H0⊂G such that: (G,H0) is a property (T) pair; the normalizer H of H0 in G
satisfies |{hgh−1 :h∈H}|=∞ for all g∈G\{e}; the wq-normalizer of H in G generates G.
Note that any group in wT2 is ICC and that if G is ICC and has a normal non-abelian
relatively rigid subgroup then G∈wT2. Thus, any group of the form G=H0×K with H0

being ICC Kazhdan and K being either ICC or equal to 1, is w-rigid and thus in wT2.
Also, if G∈wT2 then (G∗K0)×K∈wT2 for any ICC groupK and any arbitrary groupK0.

Corollary 7.15. Let Γ0 be a Haagerup group and Γi∈wT2 for 16i6n, where
16n6∞. Assume that Γ1 is as in Examples 7.10–7.12. Then Γ=Γ0∗Γ1∗... has a free
ergodic m.p. action σ with Out(Rσ)={1}. Moreover , the following are true:

(1) If Γ1 is as in Examples 7.11 or 7.12, then there exist uncountably many non-
stably orbit-equivalent actions σ of Γ with Out(Rσ)={1} and F(Rσ)={1}.

(2) If in addition Γ0 is a product of amenable groups, then given any discrete count-
able abelian group K, the uncountable family of actions σ in (1) can be taken to satisfy
H1(σ,Γ)=Gn−1

0 ×G×
∏

j>1 Char(Γj)×Kn−1, where G is the Polish group U(L∞(T, λ))
and G0=G/T.

Proof. By Proposition 7.3, we can take the free m.p. action σ of Γ on A=L∞(X,µ)
so that for each i 6=1, σi=σ|Γi is a (left) Bernoulli Γi-action, or a quotient of it as in [P6],
and of one of the forms in Examples 7.10–7.12 for i=1. Notice that in Example 7.10 the
group Γ1 has property (T) and is ICC, and thus Γ1∈wT2. Then, in both Examples 7.11
or 7.12, Γ1 has Λ0×Λ0 as a relatively rigid subgroup, which is wq-normal in Γ1, with
Λ×Λ being ICC in Γ1. Furthermore, since Out(Rσi) is huge for i>2 and trivial for i=1,
σ1 cannot be stably orbit-equivalent to σi, i>2. The existence of “many actions” σ in
the cases of Examples 7.11 and 7.12 follows from the existence of uncountably many non-
stably OE relations (σ1,Γ1) of the form in Example 7.11 (cf. [MoS]), and respectively of
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the form in Example 7.12 (by Proposition 7.13 (3) and [MoS]).
Finally, the calculation of the 1-cohomology groups follows from [P6, Corollary 2.12,

Lemmas 3.1, 3.2] and the fact that in all the cases of Examples 7.10, 7.11 and 7.12 one
has H1(σ1,Γ1)=Char(Γ1). Indeed, in case σ1 is as in Example 7.10 or 7.11, then this
calculation follows from [Ge1] and [P6, Corollary 2.12], while in the case of Example 7.12
the calculation is in [P6].

Corollary 7.16. Let Γ=∗i>0Γi, K and σ be as in Corollary 7.15 (2), and let
A=L∞(X,µ) and M=AoσΓ. Then F(M)={1} and

Out(M) =H1(σ,Γ) =Gn−1
0 ×G×

∏
j>1

Char(Γj)×Kn−1.

Proof. This is trivial by Corollaries 7.9 and 7.15.

Note that Out(M) is abelian and non-locally compact in all examples in Corol-
lary 7.16 above, but if we denote by Õut(M) the quotient of Out(M) by the connected
component of idM (which is closed in Out(M), with the latter being a Polish group in
all examples considered), then Õut(M) is the quotient of

∏
j>1 Char(Γj)×Kn−1 by the

connected component of 1, which for n<∞ is a totally disconnected separable locally
compact group.

We end this section by mentioning another rigidity result, which from an isomor-
phism of group measure space factors corresponding to relatively rigid actions of free
products of groups derives the orbit equivalence of the actions. This type of results were
first obtained in [P5] for HT group actions, and in [P8] for Bernoulli shift actions of groups
containing infinite subgroups (not necessarily normal) with the relative property (T).

Theorem 7.17. (vNE/OE rigidity) Let (Mj , τj) be type-II1 von Neumann alge-
bras with a common Cartan subalgebra A⊂Mi, i=1, 2, such that τ1|A=τ2|A. Assume
that M=M1∗AM2 is a factor and A is Cartan in M . (N.B. By Lemma 7.2, this is
the same as requiring that RA⊂Mi , i=1, 2, are freely independent). If A0⊂M t is a rigid
Cartan subalgebra, for some t>0, then there exists a unitary element u∈M t such that
uA0u

∗=At.

Proof. It is clearly sufficient to prove this in the case t=1. If some corner of A0 can
be embedded into A inside M , then the statement follows by [P5, §A.1]. If we assume
that this is not the case, then we can apply Theorem 7.7 to get a non-zero p∈P(A0) such
that vA0pv

∗⊂Mi for some i∈{1, 2} and v∈U(M). Moreover, since M is a factor and A0

is Cartan in M , we may assume that vpv∗ is central in Mi, so in particular p1=vpv∗ lies
in A (the latter being maximal abelian in Mi). Then vA0pv

∗ is Cartan in p1Mp1, so, by
Corollary 1.4, we have p1M2p1=Ap1, contradicting the fact that M2 is of type II.
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Corollary 7.18. Let F be the class of groups that can be written as a free product
of two (or more) infinite groups. Let σ:G!(X,µ) be a free ergodic m.p. action of a
group G∈F and denote by M=L∞(X,µ)oσG the corresponding group measure space
II1 factor , with A=L∞(X,µ)⊂M being the corresponding Cartan subalgebra. Let M0 be
a II1 factor with a relatively rigid Cartan subalgebra A0⊂M0 and let R0=RA0⊂M0 .

(1) If θ:M0'M t for some t>0, then θ can be perturbed by an inner automorphism
so as to take A0 onto At. In particular , R0'Rt

σ and thus β(2)
n (R0)=β

(2)
n (G)/t for all n.

(2) If G∈F satisfies β
(2)
1 (G) 6=0,∞ for some n (for instance, if G=Γ1∗Γ2, with

Γ1 and Γ2 being finitely generated infinite groups, in which case β(2)
1 (G) 6=0,∞) and the

action σ is relatively rigid , then F(M)={1}.

Proof. All statements are trivial by Theorem 7.17 and [G1].

Note that Corollary 7.18 (2) above shows in particular that F(L(Z2oFn))={1} for
any Fn⊂SL(2,Z), with 26n<∞, thus giving a new proof (but still using Gaboriau’s
work [G1]) of one of the main results in [P5].

Definition 7.19. A countable measurable standard m.p. equivalence relation R is
an FT equivalence relation if it is of the form R=Rt

σ, where t>0 and (σ,Γ) are free
ergodic m.p. actions on the probability space (X,µ) with the following properties: (a)
The group Γ is a free product of two (or more) infinite groups; (b) σ is relatively rigid,
in the sense of [P5, Definition 5.10.1], i.e. L∞(X,µ)⊂L∞(X,µ)oσG is a rigid inclusion
[P5, Definition 4.2.1]. The above Corollary 7.18 thus shows that all OE invariants for FT
equivalence relations R are in fact vNE invariants for R, i.e. are isomorphism invariants
of the associated group measure space II1 factors M=L(R, w), where w∈H2(R). We
denote by FT the class of all such II1 factors M .

Note that if R=Rt
σ,Γ for some free ergodic m.p. action (σ,Γ) with Γ being a free

product of two infinite groups, then R is HTs in the sense of [P5] if and only if it
is FT and Γ has the Haagerup property. Thus, all equivalence relations coming from
amplifications of actions σ of non-amenable subgroups Γ⊂SL(2,Z) on L∞(T2, λ) are FT
actions. However, actions σ of groups such as SL(n,Z)∗H, with H being an infinite
group and σ|SL(n,Z) being isomorphic to the canonical action of SL(n,Z) on (Tn, λ), give
FT equivalence relations which are not HTs. Thus, the class FT provides additional
group measure space II1 factors for which orbit equivalence invariants of the actions,
such as Gaboriau’s `2-Betti numbers, become isomorphism invariants of the factors.

We end by mentioning an application of Proposition 7.3 (1) which brings some light
to [P5, Problems 5.10.2 and 6.12.1] and to the problem of existence of “many” non-OE
actions for non-amenable groups, as a consequence of [GP, Corollary 7].
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Corollary 7.20. (1) The class of groups Γ which admit free ergodic relatively rigid
m.p. actions on the probability space is closed to free products with arbitrary groups Γ′.
Also, if Γ is an HTs group (i.e. Γ has Haagerup’s property and admits relatively rigid
actions, see [P5, 6.11]), then Γ∗Γ′ is HTs for any Γ′ with Haagerup property.

(2) If Γ admits a relatively rigid action (e.g. if Γ⊂SL(2,Z) is non-amenable, or
Γ is an arithmetic lattice in an absolutely simple non-compact Lie group with trivial
center, cf. [P5] and [Va]) and Γ′ is an arbitrary infinite amenable group, then Γ∗Γ′

has uncountably many non-stably OE free ergodic m.p. actions on the probability space.
Also, if Γ0 is an arbitrary group and Γ1 and Γ2 are non-trivial amenable groups, at least
one having more than two elements, then Γ0∗Γ1∗Γ2 has uncountably many non-stably
OE free ergodic m.p. actions on the probability space.

Proof. Part (1) is a trivial consequence of Proposition 7.3 (1) and of the (trivial)
property of relatively rigid equivalence relations R that any R0 that contains R is also
relatively rigid (see e.g. [P5, Proposition 4.6.2]).

Part (2) is just the combination of [GP, Corollary 7]) and Proposition 7.3.

8. Amalgamation over R: factors with no outer automorphisms

In this section we prove another rigidity result for AFP factors, this time in the case
M=M0∗RM1∗R∗ ... , where R is the hyperfinite II1 factor. As an application, we obtain
factors M with Out(M)={1}, thus answering a well-known problem posed by A.Connes
in 1973.

Like in the group measure space case in §7, we only consider crossed product inclu-
sions (R⊂Mi)=(R⊂Roσi Γi), with the σi being freely independent, i.e. inducing a free
action σ of Γ=Γ0∗Γ1∗... on R. Thus, M will be viewed alternatively as a crossed product
factor M=RoσΓ, with the algebra of coefficients R having trivial relative commutant
in M .

The key assumption is that the action (σ, ∗iΓi) has the relative property (T), i.e. that
R⊂M is a rigid inclusion in the sense of [P5]. The rigidity result shows the uniqueness,
modulo unitary conjugacy, of the “core” R of such factors. Since the normalizer of R
in M completely encodes the group Γ, we can completely recover the isomorphism class
of the groups Γi, by classical Bass–Serre theory. The result is similar to the vNE/OE
rigidity Theorem 7.17 (where however only the orbit equivalence class of Γ could be
recovered) and to the unique crossed product decomposition result in [P9]. But since we
also get the componentwise unitary conjugacy of the factors Mi, it is again a Bass–Serre
type rigidity result.
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Through this theorem, the calculation of Out(M) and F(M) reduces to the calcu-
lation of the commutant of σ(Γ) in Out(R), like in [P9], where however no such com-
mutant could be calculated! This time, due to Bass–Serre arguments and the possibility
of choosing the actions (σi,Γi) with prescribed properties (cf. Proposition 8.2 below),
we can control such commutants and calculate Out(M) completely for large classes of
factors.

Lemma 8.1. Let Mn, n>0, be II1 factors with a common subfactor N⊂Mn. Then
N⊂M=M0∗NM1∗NM2∗N ... is irreducible and regular if and only if N⊂Mn is regular ,
irreducible for all n>1, and the groups of outer automorphisms

Γn = {Ad(u) :u∈NMn(N)}/U(N), n> 0,

on N are freely independent.

Proof. This is trivial by the definitions of freeness and of amalgamated free product
over N , respectively.

The result below is the analogue for actions on the hyperfinite II1 factor R of the
result on the existence of freely independent actions on the probability space in Propo-
sition 7.3. It shows the existence of free actions σ of groups Γ=Γ0∗Γ1∗Γ2∗... on R

such that the restriction of σ to each individual group Γj is conjugate to a prescribed
free action of Γj on R. It will be frequently used in this section. The proof relies on
Lemma A.2 in the appendix.

Proposition 8.2. Let σn: Γn!Aut(R) be free actions of countable discrete groups
Gn, n>0. Then there exists a free action σ of the group G=∗nΓn on R such that σ|Γn

is conjugate to σn for all n>0.

Proof. For each n>0 let G̃n=G0∗G1∗...∗Gn. Assume that we have constructed a
map σ̃n of G̃n into Aut(R) such that the quotient map σ̃′n of G into Aut(R)/Int(R) is
a faithful group morphism with σ̃n|Gj conjugate to σj , for all 06j6n. We then apply
Lemma A.2 to {σ̃n(g):g∈G̃n}∪{σn+1(h):h∈Gn+1} to get an automorphism θn+1 of R
such that σ̃n(G̃n) and θn+1σn+1(Gn+1)θ−1

n+1 are freely independent. Denoting by σ̃n+1

the map of G̃n+1=G̃n∗Gn+1 into Aut(R) which restricted to G̃n equals σ̃n and restricted
to Gn+1 equals θn+1σn+1(Gn+1)θ−1

n+1, the statement follows by induction.

Theorem 8.3. Let Gi=Γi,0∗Γi,1∗...∗Γi,ni with Γij , 06j6ni, being non-trivial
groups, for some 16ni6∞, i=1, 2. For each i=1, 2 let σi:Gi!Aut(Ni) be a free ergodic
action on a II1 factor Ni. Let Mi=NioσiGi, i=1, 2, and assume that Ni⊂Mi are rigid
inclusions, i=1, 2. Let θ:M1'M t

2 for some t>0. Then the following are true:
(1) There exists u∈U(M t

2) such that Ad(u)(θ(N1))=N t
2. Thus, G1'G2, and σ1

and σt
2 are cocycle conjugate actions with respect to the identification G1'G2.
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(2) If in addition Γi,0 are free groups and Γij are free, indecomposable and not equal
to the infinite cyclic group, for all 16j6ni, i=1, 2, then Γ1,0'Γ2,0, n1=n2 and there
exists a permutation π of the indices j>1 and unitary elements uj∈M t

2 such that

Ad(uj)(θ(M1,j))=M t
2,π(j) and Ad(uj)(θ(N1))=N t

2 for all j> 1.

In particular , Γ1,j'Γ2,π(j), and σ1,j and σt
2,π(j) are cocycle conjugate with respect to this

identification of groups, for all j>1.

Proof. We first prove that a corner of θ−1(N t
2) can be embedded into N1 inside M1.

Assume that this is not the case. By applying recursively Theorem 5.1 (2), it follows that
there exist a unitary element u∈U(M1) and some 16j6n1 such that uθ−1(N t

2)u
∗⊂M1,j .

Since uθ−1(N t
2)u

∗ is regular in M1, using again the assumption by contradiction, Corol-
lary 1.4 implies that a corner of uθ−1(N t

2)u
∗ can be embedded into N1 inside M1,j (and

thus inside M1 as well). Altogether, this shows that a corner of θ−1(N t
2) can be embedded

into N1 inside M1.
Similarly, a corner of θ(N1)1/t=θ1/t(N1/t

1 ) can be embedded into N2 inside M2.
Thus, a corner of N1 can be embedded into θ−1(N t

2) inside M1. Since both N1 and
θ−1(N t

2) are regular inM1, withNM1(N1)/U(N1)'G1 and with the other similar quotient
isomorphic to G2, and since both G1 and G2 are ICC (being free products of non-trivial
groups), the unitary conjugacy of N1 and θ−1(N t

2) in M1 (equivalently, of θ(N1) and N t
2

in M t
2) follows from the following general result.

Lemma 8.4. Let M be a II1 factor and P,Q⊂M be irreducible regular subfactors.
Assume that Γ=NM (P )/U(P ) and Λ=NM (Q)/U(Q) are ICC groups. Also, assume that
each one of the inclusions P⊂M and Q⊂M is an amplification of a genuine crossed
product inclusion. If L2(M) contains non-zero P -Q Hilbert bimodules H,K⊂L2(M)
such that dim(PH)<∞ and dim(KQ)<∞, then P and Q are unitarily conjugate in M .

Proof. We first prove that L2(M) is generated by irreducible P -Q Hilbert bimodules
that are finite-dimensional both as left P modules and as right Q modules. We will
actually prove this by only using the fact that P and Q are quasi-regular in M . Note
that, by [P5, §1.4], H0=H∩M is dense in H and contains an orthonormal basis over Q.
Similarly, since Q is quasi-regular in M and it is a factor, L2(M) is generated by Hilbert
Q-Q bimodules Hβ such that H0

β=Hβ∩M is dense in Hβ and contains both left and
right orthonormal bases over Q. But then H0 ·H0

β span all of L2(M) and are finite-
dimensional over Q. Equivalently, P ′∩JMQ′JM is generated by projections that have
finite trace in JMQ′JM . Similarly, P ′∩JQ′J is generated by projections that have finite
trace in P ′. Thus, A=P ′∩JQ′J is generated by projections that are finite with respect
to both traces, thus corresponding to Hilbert P -Q bimodules which are finite-dimensional
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both from right and left. Since P and Q are factors, by [J], each such bimodule is a direct
sum of irreducible bimodules.

Let now H⊂L2(M) be an irreducible P -Q bimodule. By [J], we have

dim(PH)dim(HQ) > 1

and the equality means that the orthogonal projection pH of L2(M) onto H satisfies
pH∈P ′∩〈M, eQ〉, Tr〈M,eQ〉(pH)=1 and pH〈M, eQ〉pH=PpH. Thus, by [P3, proof of
Lemma 1], upHu∗=eQ for some u∈U(M), which also satisfies uPu∗=Q.

Assume now that Tr(pH)>1. By [P8, I, Theorem 2.1], there exist a projection p∈P ,
a unital isomorphism ψ: pPp!Q and a partial isometry v∈M such that

vv∗ = p, q′ = v∗v ∈ψ(pPp)′∩Q and xv= vψ(x) for all x∈ pPp.

Moreover, the finite-dimensionality plus irreducibility of H as a P -Q bimodule, implies
that Q1=ψ(pPp) has finite index in Q and trivial relative commutant in Q, and that q′

is minimal in Q′
1∩M .

By appropriately amplifying Q⊂M , we may assume that this inclusion is a genuine
crossed product inclusionQ⊂QoσΓ. Denote by {ug}g⊂M=QoσΓ the canonical unitary
elements implementing σ onQ. Let q′=

∑
g xgug, with xg∈Q. By identification of Fourier

series, it follows that xgug∈Q′
1∩M for all g. Thus xgx

∗
g=xgugu

∗
gx

∗
g∈Q′

1∩Q=C, so that
all xg are scalar multiples of unitary elements in Q. Let K0⊂Γ be the support of this
Fourier expansion of q′. Let alsoK⊂Γ be the set of all k∈Γ such that uk can be perturbed
by a unitary element in Q so as to fix Q1 pointwise. Since [Q:Q1]<∞ and Q′

1∩Q=C,
K is a finite subgroup of Γ and K0⊂K.

Since Q′
1∩Q=C, by Connes’ vanishing 1-cocycle for finite groups, the unitary ele-

ments wk∈Q satisfying Ad(wkuk)|Q1 =idQ1 can be chosen of the form σk(w)w∗, k∈K,
for some unitary element w∈Q1. Thus, by perturbing all {ug}g∈Γ by a 1-cocycle, we may
assume that Ad(uk) act trivially on Q1. Let Γ0⊂Γ be the subgroup of all g∈Γ such that
ug can be perturbed by a unitary element in Q so as to normalize Q1. Clearly, K⊂Γ0

and K is normal in Γ0. We will prove that Γ0 has finite index in Γ, thus contradicting
the hypothesis.

By the minimality of q′ in Q′
1∩M , it follows that q′ is minimal in the group algebra

L(K)=sp{uk :k∈K}. Identify pPp⊂pMp with Q1q
′⊂q′Mq′ via Ad(v). Let {vh :h∈Λ}

be a choice of canonical unitary elements in M=PoΛ, which we assume commute with
p∈P (we can do that for each h by perturbing if necessary with unitary elements in
the factor P ). For each h∈Λ, h 6=e, let vh=

∑
g x

h
gug∈QoσΓ be the Fourier expansion

of vh, and denote by θh the action implemented by Ad(vh) on Q1'Q1q
′=pPp. Thus,
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vhy=θh(y)vh for all y∈Q1. Identifying the Fourier series in {ug}g, this implies that
θh(y)(xh

gug)=(xh
gug)y for all y∈Q1. As before, this implies that each xh

g is a scalar
multiple of a unitary element in Q and that Ad(xh

gug) normalizes Q1. Thus, the support
Kh of the Fourier series for vh is contained in Γ0. Since Q1q

′⊂q′Mq′ is the closure of the
span of elements in Q1vhq

′, h∈Λ, and each vh is supported on Γ0, as a Fourier expansion
in {ug}g with coefficients in Q, it follows that q′Mq′⊂

⊕
g∈Γ0

L2(Q)ug. In particular,
since q′∈L(K)⊂L(Γ0), we get q′L(Γ)q′=q′L(Γ0)q′, which clearly implies that Γ0 has
finite index in Γ. But this implies that Γ0 is also ICC, so in particular it cannot have a
non-trivial normal subgroup K. This contradiction finishes the proof.

End of proof of Theorem 8.3. By Lemma 8.4, θ(N1) and N t
2 are conjugate by a

unitary element, so we may assume that θ(N1)=N t
2. Thus, θ induces an isomorphism

between the groups Γ1=NM1(N1)/U(N1) and Γ2=NM2(N2)/U(N2). But then, by the
classical Kurosh theorem (see e.g. [LS]) and the condition on “free indecomposability”
of the groups Γij , it follows that n1=n2=n and that there exists a permutation π of
the indices 16j6n such that gjΓ1,jg

−1
j =Γ2,π(j), for some elements gi∈G. Thus, uj =ugj

normalizes N t
2 and Ad(uj) takes θ(M1,j) onto M t

2,π(j).

Notation 8.5. We denote by fTR the class of free actions σ: Γ0∗Γ1!Aut(R) on the
hyperfinite II1 factor R, with the properties:

(1) Γ0 is free indecomposable; Γ1 is w-rigid (in particular free indecomposable);
(2) σ0=σ|Γ0 has the relative property (T), i.e. R⊂Roσ0 Γ0 is a rigid inclusion;

σ1=σ|Γ1 is a non-commutative Bernoulli shift action of Γ1 on R=
⊗g(N0, τ0)g, where
N0=R or N0=Mn×n(C) for some n>2;

(3) σ(Γ1) and the normalizer of σ(Γ0) in Out(R) (which is countable by [P5]) are
freely independent.

Lemma 8.6. Let Γ1 be an arbitrary w-rigid group and Γ0=SL(n,Z), n>2, or more
generally Γ0 be a free indecomposable arithmetic lattice in an absolutely simple non-
compact Lie group with trivial center. Then Γ0∗Γ1 has fTR actions on R.

Proof. By [M], [Bu], [Fe], [Va], any such Γ0 has a free ergodic action on some Zm

such that the pair (ZmoΓ0,Zm) has the relative property (T) of Kazhdan–Margulis [M].
By [Ch] and [NPSa], it follows that Γ0 admits a free action σ0 on the hyperfinite II1
factor R such that R⊂Roσ0 Γ0 has the relative property (T). By [P5], it follows that the
normalizer N0 of σ0(Γ0) in Out(R) is countable. Let σ′ be a fixed copy Bernoulli shift
action of Γ1. By Proposition 8.2, it follows that there exists an automorphism θ of R
such that θ(σ′(Γ1))θ−1 is freely independent from N0.

Thus, if we denote by σ the unique action of Γ=Γ0∗Γ1 on R given by σ|Γ0 =σ0 and
σ|Γ1 =θσ′θ−1, then conditions (1)–(3) in Notation 8.5 are all satisfied.
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Theorem 8.7. Let σi: Γi,0∗Γi,1!Aut(Ri), i=1, 2, be fTR actions, Gi=Γi,0∗Γi,1

and Mi=RioσiGi, i=1, 2. If θ:M1'M t
2 is an isomorphism, for some projection t>0,

then t=1 and there exist a unitary element u∈M2, a character γ of Γ2,0 and isomor-
phisms δ:G1'G2 and ∆:R1'R2 such that θ0=Ad(u)�θγ

�θ satisfies θ0(xu1
g)=∆(x)u2

δ(g)

for all x∈R1, g∈G1, where {ui
g}g⊂Mi are the canonical unitary elements implementing

σi, i=1, 2. Moreover , any other isomorphism θ′:M1'M2 is a perturbation of θ by an
automorphism of M2 of the form Ad(v)�θγ′ for some v∈U(M2) and γ′∈Char(G2).

Proof. Since Ri⊂Rioσi
Γi,0 are rigid inclusions, Ri⊂Rioσi

Gi=Mi are rigid as well.
We can thus apply Theorem 8.3 to get a unitary element v∈M t

2 such that

v(θ(R1))v∗ =Rt
2 and v(θ(M1,1))v∗ =(M2,j)t for some j ∈{0, 1},

where Mij =RioΓij , i=1, 2, j=0, 1. But by [P5] or [P8], R1⊂M1,1 is not rigid, while
(R2⊂M2,0)t is rigid, so the only possibility is that j=1. Thus,

(R1⊂M1,1)' (R2⊂M2,1)t

and both inclusions come from crossed products associated with non-commutative
Bernoulli shift actions of w-rigid groups. By [P7], this implies that t=1.

On the other hand, Adv�θ induces an isomorphism δ: Γ1,0∗Γ1,1'Γ2,0∗Γ2,1, which
takes Γ1,1 onto Γ2,1. By Kurosh’s theorem, δ(Γ1,0)=gΓ2,0g

−1 for some g∈G2. But by
[GoS], the groups gΓ2,0g

−1 and Γ2,1 can generate Γ2,0∗Γ2,1 only if g=g1g2 for some
gi∈Γ2,i, i=0, 1. By conjugating with g, we may thus assume that the unitary element v
is such that θ0=Ad(v)�θ induces an isomorphism δ:G1'G2 which takes Γ1,j onto Γ2,j ,
j=0, 1. Thus, after identifying R1 with R2 via ∆=θ0|R1 and G1'G2 via δ, we are left
with finding all automorphisms α of M2 that take R2 onto itself and take the canonical
unitary elements ug into unitary elements wgug, g∈G2, for some w:G2!U(R2) a 1-
cocycle for σ2.

By [P7], this implies that w is co-boundary modulo scalars when restricted to Γ2,1,
i.e. wg∈Cσg(w)w∗ for all g∈Γ2,1, for some unitary element w∈R2. Thus, by replacing
α by Ad(w∗)�α, we may assume that α(ug)∈Cug for all g∈Γ2,1. Thus α|R2∈Aut(R2)
commutes with σ2(Γ2,1), while still normalizing σ2(Γ2,0). But, by condition (3) in Nota-
tion 8.5, the latter condition implies that α|R2 is freely independent from σ2(Γ2,1). This
contradicts the commutation condition with σ2(Γ2,1), unless α|R2 is inner. By perturbing
α by Ad(w0) for an appropriate w0∈U(R2), we may thus assume that αR2 =idR2 . Thus,
α is given by a character of G2.

The above theorem shows in particular that the fundamental group of any fTR

factor M=Roσ (Γ0∗Γ1), corresponding to an fTR action (σ,Γ0∗Γ1), is trivial, while its
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Out-group is equal to Char(Γ0)×Char(Γ1). By Lemma 8.6, one can take Γ0=SL(n,Z),
which has only trivial characters, thus making Aut(M)=Char(Γ1), with Γ1 being an
arbitrary w-rigid group. For instance, one can take Γ1=SL(3,Z)×H, where H is an
arbitrary discrete abelian group, and hence getting Aut(M)=Ĥ. We thus obtain the
following result.

Corollary 8.8. Let σ: Γ0∗Γ1!Aut(R) be an fTR action and let

M =Roσ (Γ0∗Γ1).

Then the following are true:
(1) F(M)={1} and Out(M)=Char(Γ0)×Char(Γ1)=Out(M∞).
(2) Given any compact abelian group K, there exists (σ,Γ0∗Γ1) such that the corre-

sponding fTR factor M satisfies Out(M)=K=Out(M∞). For instance, if Γ0=SL(n,Z)
and Γ1=SL(m,Z)×K̂ for some n,m>3, then Out(M)=K.

Remark 8.9. One can use Remark A.3 (2) in place of Lemma A.2 in all the above
proofs, to construct more II1 factors with small calculable symmetry groups. Thus,
let fT ′

R be the class of free actions σ: Γ0∗Γ1!Aut(R) on the hyperfinite II1 factor R,
satisfying the properties:

(a) Γ0 and Γ1 are free, indecomposable and not equal to Z;
(b) R⊂Roσ0 Γ0 is a rigid inclusion and σ1=σ|Γ1 is a non-cocycle conjugate to

σ0=σ|Γ0 (note that this is indeed the case if σ1 is a non-commutative Bernoulli shift);
(c) σ(Γ1) is freely independent with respect to the set N (σ0(Γ0))∪N op(σ0(Γ0)),

consisting of all automorphisms and anti-automorphisms of R∞ that normalize σ0(Γ0).

By Remark A.3 (2) and Lemma 8.6, it follows that there exist such actions σ for any
linear group Γ0 as in Lemma 8.6 and for any free indecomposable Γ1. It then follows as in
Corollary 8.8 that the corresponding crossed product II1 factors M=Roσ (Γ0∗Γ1) satisfy
Out(M)=Char(Γ0∗Γ1). Moreover, if t∈F(M) and θ:M'M t, then θ must normalize
σ(Γ0), contradicting condition (c) above. Thus, F(M)={1}. Notice that to get this
calculation we no longer have to use the results in [P7] on the fundamental group of
R⊂Roσ1 Γ1. Similarly, if α is an anti-automorphism of M , then the same argument
shows that it must normalize σ0(Γ0), in contradiction to the choice (c). Altogether, this
shows that in addition to the properties F(M)={1} and Out(M)=Char(Γ0∗Γ1), the
factors M in the class fT ′

R have no anti-automorphisms either. This provides a fairly
large new family of factors with this latter property, after Connes’ first examples in [C2].
Thus, if we choose the groups Γ0 and Γ1 without characters, e.g. Γi=SL(ni,Z), ni>3,
then the resulting factors M have no outer symmetries at all. Moreover, noticing that
fT ′

R factors are w-rigid, it follows that any factor of the form N ∗M , with N being a
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property (T) II1 factor (e.g. N=L(PSL(n,Z)), n>3) and M∈fT ′
R, has all the above

properties (as a consequence of Theorem 6.3 and of the properties of M), and in addition
has no Cartan subalgebras (by [V2], cf. Remark 6.6)!

Appendix. Constructing freely independent actions

We now prove the technical results needed in the proofs of Propositions 7.3 and 8.2,
which established the existence of free actions of groups Γ=Γ0∗Γ1∗... on A=L∞(X,µ)
and on R with restrictions to Γi isomorphic to prescribed actions (σi,Γi), for all i.

More precisely, we prove that given any countable set {θn}n>1 of properly outer
automorphisms of (X,µ) (resp. of R) the set V of θ∈Aut(X,µ) (resp. θ∈Aut(R)) with
the property that all alternating words θi0θθi1θ

−1θi2θθi3θ
−1 ... are properly outer, is

Gδ-dense in Aut(X,µ) (resp. Aut(R)). Writing V as an intersection of open sets Vn is
obvious, and the non-trivial part is to show that each Vn is dense. To prove the density,
in the commutative case (Lemma A.1) we use a maximality argument inspired from [P3],
while in the hyperfinite case (Lemma A.2) we use directly a result from [P3], not having
to re-do such a maximality argument.

The idea of using Baire category, in both the proofs of Lemmas A.1 and A.2, was
triggered by [MoS, Remark 2.27] and [Tö, category lemma]. In fact, the commutative
case A.1 below is essentially contained in [Tö]. We have included the complete proof,
with a different treatment of the “density”, for the reader’s convenience.

Lemma A.1. Let (X,µ) be a standard non-atomic probability space and

{θn}n>1⊂Aut(X,µ)

be a sequence of properly outer m.p. automorphisms of (X,µ). Denote by V⊂Aut(X,µ)
the set of all θ∈Aut(X,µ) with the property that θi0

∏n
j=1 θθi2j−1θ

−1θi2j is properly outer ,
for all n>1, i1, i2, ..., i2n−1∈{1, 2, 3, ... } and i0, i2n∈{0, 1, 2, ... }, where θ0=idX . Then
V is a Gδ-dense subset of Aut(X,µ). In particular , V 6=∅.

Proof. Let A=L∞(X,µ) and τ=
∫
· dµ. Denote by F the set of all finite partitions

of the identity {pi}i⊂P(A). If %∈Aut(X,µ), then we still denote by % the automorphism
that it induces on (A, τ). As usual, Aut(A, τ) is endowed with the topology given by
pointwise ‖ · ‖2 -convergence, with respect to which it is metrizable and complete.

For each %∈Aut(A, τ), let k(%)=inf
{∥∥∑

i %(pi)pi

∥∥
2
:{pi}i∈F

}
. Note that % is prop-

erly outer if and only if k(%)=0. Also, if Dn denotes the set of %∈Aut(A, τ) with
k(%)<1/n then Dn is clearly open in Aut(A, τ). Given an n-tuple (θ1, ..., θn)⊂Aut(A, τ),



144 a. ioana, j. peterson and s. popa

we denote by Vn=V(θ1, ..., θn) the set of all %∈Aut(A, τ) with

θi0

l∏
j=1

%θi2j−1%
−1θi2j ∈Dn,

for all 16l6n and all choices i1, i2, ..., i2l−1∈{1, 2, ..., n} and i0, i2l∈{0, 1, 2, ..., n}.
It is immediate to see that Vn is open in Aut(A, τ) and that

⋂
n>1 Vn=V. We have

to prove that each Vn is also dense in Aut(A, τ), i.e. that any fixed %′∈Aut(A, τ) can be
approximated arbitrarily well (in the point ‖ · ‖2 -norm convergence on A) by some %∈Vn.

By replacing, if necessary, {θj}j by the properly outer automorphisms

{θj}j∪{%′θk(%′)−1}k,

it follows that in order to prove the density of Vn it is sufficient to prove that idA is in
the closure of Vn=V(θ1, ..., θn), for any n-tuple of properly outer automorphisms.

To this end we will use the ultrapower II1 factor Rω [McD] as a framework. Thus,
we choose a free ultrafilter ω on N and let Rω=`∞(N, R)/Iω, where Iω is the ideal
associated with the trace τω((xn)n)=limn!ω τ(xn), i.e. Iω={x=(xn)n :τω(x∗x)=0}.

We regard the abelian von Neumann algebra (A, τ) as a Cartan subalgebra of R.
By [D], given any %∈Aut(A, τ), any finite set F⊂A and ε>0, there exists v∈NR(A)
such that ‖%(a)−Ad(v)(a)‖26ε for all a∈F . Thus, there exist un∈NR(A) such that
u=(un)n∈Rω satisfies uau∗=%(a) for all a∈A⊂Aω⊂Rω. Note that % is properly outer
if and only if EA′∩Rω (u)=0.

Write A=
⋃

mDm
w
, for some increasing sequence of finite-dimensional subalgebras

of A. Let Nm denote D′
m∩NR(A), i.e. the part of the normalizer of A in R that leaves

Dm be pointwise fixed. To prove that idA is in the closure of Vn, it is sufficient to prove
the following fact:

Let U0 =1, U1, U2, ..., Un ∈NRω (A) with EA′∩Rω (Ui) = 0 for all i 6=0. For all
m> 1, there exists u∈Nm such that EA′∩Rω

(
ui0

∏l
j=1 uUi2j−1u

∗Ui2j

)
=0 for

all 1 6 l6n and all i1, i2, ..., i2l−1 ∈{1, 2, ..., n} and i0, i2l ∈{0, 1, 2, ..., n}.
(A.1)

We construct u by a maximality argument, “patching together” partial isometries
in Gm

def= {vp:v∈Nm and p∈P(A)}=D′
m∩GNR(A).

Thus, for each v∈Gm with vv∗=v∗v and each 16k62n, we denote by Vv
k the set of

all products of the form
∏k−1

j=0 (Uijv
αj )Uik

, where ij∈{1, 2, ..., n} for 16j6k−1, i0, ik∈
{0, 1, ..., n}, αj∈{±1} and α1 6=α2 6=... 6=αk. We also put Vv

0 ={Ui :16i6n}. Note that if
i0, i2l∈{0, 1, ..., n} and i1, i2, ..., i2l−1∈{1, 2, ..., n}, then Ui0

∏l
j=1 vU2j−1v

∗U2j∈Vv
2l. We

let
W = {v ∈Gm : vv∗ = v∗v and EA′∩Rω (x) = 0 for all x∈Vv

k , 1 6 k6 2n}.
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We endow W with the order given by: v6v′ if v=v′v∗v. (W,6) is clearly inductively
ordered. Let v0∈W be a maximal element. Assume that 0 6=p=1−v0v∗0∈P(A). Since
EA′(x)=0 for all x∈Vv0

k , 16k62n, it follows that EA′(pxp)=0 as well. Since all such
elements w=pxp satisfy ww∗, w∗w∈A and wAw∗=Aww∗, by [D] it follows that

there exists 0 6= q1 ∈P(Ap) such that q1Dm =Cq1 and q1wq1 =EA′(w)q1 =0
for all w∈

⋃2n
k=0 V

v0
k .

(A.2)

Let v1∈Nq1Rq1(Aq1). Note that v1∈Gm and v1v∗1 =v∗1v1=q1. Set u=v0+v1. We will
show that if v1∈Nq1Rq1(Aq1) is chosen appropriately, then u∈W, thus contradicting the
maximality of v0. Write

x=
k−1∏
j=0

(Uiju
αj )Uik

=
∑

β

k−1∏
j=0

(Uijv
αj

βj
)Uik

=
∑

β

yβ ,

where the sum is taken over all choices β=(βj)k−1
j=0∈{0, 1}k. We will show that v1 can

be taken such that EA′(yβ)=0 for all β and all x∈
⋃2n

k=0 Vu
k . For β=(0, 0, ..., 0) we have

yβ=
∏k−1

j=0 (Uijv
αj

0 )Uik
∈Vv0

k , so that EA′(yβ)=0, by the fact that v0∈W.
The k terms yβ corresponding to just one occurrence of v1 (i.e. β=(β1, ..., βk) with

all βi=0 except one), are of the form w0v1w1, with w0, w1∈
⋃k−1

j=0 V
v0
j . Thus, each wi

satisfies wiw
∗
i , w

∗
iwi∈A and wiAw

∗
i =Awiw

∗
i , i=0, 1. By shrinking q1 recursively, we may

assume that (w∗0w0)q1(w1w
∗
1) is either equal to 0 or to q1, for all such yβ and all 06k62n.

For the yβ for which (w∗0w0)q1(w1w
∗
1)=0 we have yβ=0 and there is nothing to prove.

For the yβ with (w∗0w0)q1(w1w
∗
1)=q1, take u0, u1∈NRω (A) such that u0q1=w0q1 and

q1u1=q1w1. Then EA′(yβ)=EA′(u0v1u1)=u0EA′(v1u1u0)u∗0, so that

‖EA′(yβ)‖1 = ‖EA′(v1u1u0)‖1.

Shrinking q1 recursively again, all conditions so far are still satisfied, while we can assume
that q1u1u0q1 is either 0 or an element in A′∩Rω, for all u0 and u1 coming from all w0

and w1 arising as above. Thus, if we take v1∈Nq1Rq1(Aq1) to be properly outer, then in
both cases EA′(v1u1u0)=0 for all u0 and u1. We have thus shown that q1 and v1 can be
chosen so that for all β=(β1, ..., βh) having just one occurrence of 1 we have EA′(yβ)=0
as well.

Finally, the yβ with at least two occurrences of v1 can be written as

yβ =x0(vα
1wv

α′

1 )x1,

with w∈Vv0
l for some 06l6k−2, α, α′∈{±1} and partial isometries xi. Thus

‖EA′(yβ)‖1 6 ‖yβ‖1 6 ‖vα
1wv

α′‖1 = ‖q1wq1‖1 = ‖EA′(w)q1‖1 =0,



146 a. ioana, j. peterson and s. popa

the last equality by (A.2).
Altogether, EA′(x)=0 for all x∈

⋃2n
k=0 Vu

k , showing that u∈W. But this contradicts
the maximality of v0. Thus v0 must be a unitary element, finishing the proof that Vn is
dense in Aut(A, τ) and thus the proof of the statement.

Lemma A.2. Let {θn}n>1 be a sequence of properly outer automorphisms of the hy-
perfinite II1 factor R. Denote by V the set of all automorphisms θ of R such that
any automorphism of R of the form θi0

∏n
j=1 θθi2j−1θ

−1θi2j is outer , for all n>1,
i1, i2, ..., i2n−1∈{1, 2, 3, ... } and i0, i2n∈{0, 1, 2, ... }, where θ0=idR. Then V is a Gδ-
dense subset of Aut(R). In particular , V 6=∅.

Proof. Let {un}n>1 be a sequence of unitary elements in R, dense in U(R) in the
‖ · ‖2 -norm and with each element repeated infinitely many times. For each x∈R and
%∈Aut(R), denote by k(%, x) the unique element of minimal ‖ · ‖2 -norm in

K(%, x) = cow{%(v)xv∗ : v ∈U(R)}.

Let Dn be the set of automorphisms % of R with the property that ‖k(%, ui)‖2<1/n for
all 16i6n.

We claim that Dn is open in Aut(R). To see this, let %∈Dn and for each 16i6n

choose vi
1, v

i
2, ..., v

i
mi
∈U(R) such that∥∥∥∥ 1

mi

mi∑
j=1

%(vi
j)uiv

i∗
j

∥∥∥∥
2

<
1
n
.

If δ>0 is sufficiently small, then any %′∈Aut(R) satisfying ‖%′(vi
j)−%(vi

j)‖2<δ, for all
16i6n and for all 16j6mi, will satisfy∥∥∥∥ 1

mi

mi∑
j=1

%′(vi
j)uiv

i∗
j

∥∥∥∥
2

<
1
n
,

implying that ‖k(%′, ui)‖2<1/n for all 16i6n. Thus %′∈Dn.
Denote by Vn=Vn(θ1, ..., θn) the set of all %∈Aut(R) with the property that

σi0

l∏
j=1

%θi2j−1%
−1θi2j

∈Dn

for all 16l6n and all choices i1, i2, ..., i2l−1∈{1, 2, ..., n} and i0, i2l∈{0, 1, 2, ..., n}. Since
Dn is open and

Aut(R)3 % 7−! θi0

l∏
j=1

%θi2j−1%
−1θi2j
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is a continuous map, for each m and ij as before, it follows that Vn is open in Aut(R).
It is immediate to see that

⋂
n>1 Vn=V. Thus, in order to show that V is a Gδ-

dense subset of Aut(R), we have to prove that each Vn is dense in Aut(R). Moreover,
arguing as in the proof of Lemma A.1, we see that, by replacing if necessary {θn}n>1

with the sequence {θ′n}n>1={θn}n>1∪{%θm%
−1}m>1, it is enough to show that idR is in

the closure of Vn. We will prove that in fact idR is in the closure of Vn∩Int(R), i.e., given
any finite-dimensional subfactor R0⊂R, there exists u∈U(R′

0∩R) such that Ad(u)∈Vn.
In turn, this will be an easy consequence of [P3, Theorem 2.1].

To make the ideas more transparent, let us consider first the case when {θn}n>0 is
an enumeration of the automorphisms of a free cocycle action of a countable group Γ on
R, θ: Γ!Aut(R). Let M=RoΓ and U0=1, U1, U2, ...∈U(M) be the canonical unitary
elements implementing θ0, θ1, ... . Since the action is free (i.e. θg is non-inner for all
g 6=e), we have R′∩M=C. Fix a free ultrafilter ω on N. We view R⊂M as subalgebras
of constant sequences in the ultrapower II1 factor Mω.

Since (R′
0∩R)′∩M=R0, by [P3, Theorem 2.1], there exists a unitary element V ∈

(R′
0∩R)ω⊂Mω such that

V RV ∗∨M 'R∗R0M.

In particular, if w∈U(R′
0∩R) is a Haar unitary element and we put U=V wV ∗∈V RV ∗,

then for any choice of 16l6n, i1, i2, ..., i2l−1∈{1, 2, ..., n}, i0, i2l∈{0, 1, 2, ..., n} and
16r6n, the unitary elements

Ad
(
Ui0

l∏
j=1

(UUi2j−1U
−1)Ui2j

)
(Uk)urU

−k, k=1, 2, ... (A.3)

are mutually orthogonal with respect to the scalar product given by the trace. To see
this, we need to show that

τ

(
Ad

(
Ui0

l∏
j=1

(UUi2j−1U
−1)Ui2j

)
(Uk)urU

−k

)
=0 for all k 6=0.

This amounts to showing that

τ

(
U−k

( l∏
j=1

UUi2j−1U
−1Ui2j

)
Uk

( l∏
j=1

U−1
i2l−2j

UU−1
i2l−2j+1

U−1

)
ur

)
=0,

which does indeed hold true, because after some appropriate word-reduction we are left
with a word of alternating “letters” Uk∈V RV ∗	R0, for all k 6=0, and Uij , U

∗
ij
∈M	R⊂

M	R0, for all ij 6=0.
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By the orthogonality of the elements in (A.3), it follows that for large enough N we
have ∥∥∥∥ 1

N

N∑
k=1

Ad
(
Ui0

l∏
j=1

(UUi2j−1U
−1)Ui2j

)
(Uk)urU

−k

∥∥∥∥
2

<
1
n

(A.4)

for all choices of 16l6n, i1, i2, ..., i2l−1∈{1, 2, ..., n}, i0, i2l∈{0, 1, 2, ..., n} and 16r6n.
Writing U as a sequence of unitary elements in R′

0∩R, U=(vm), it follows that for m
large enough u=vm satisfies∥∥∥∥ 1

N

N∑
k=1

θi0

( l∏
j=1

Ad(u)θi2j−1Ad(u∗)θi2j

)
(uk)uru

−k

∥∥∥∥
2

<
1
n

(A.5)

for all 16l6n, all i1, i2, ..., i2l−1∈{1, 2, ..., n}, i0, i2l∈{0, 1, 2, ..., n} and all 16r6n. Thus
Ad(u)∈Vn, finishing the proof of this particular case.

Now, in the general case we can take θ0=idR, θ1, θ2, ... to be a lifting in Aut(R)
of an injective group morphism Γ!Out(R), with Γ generated by n elements. Notice
that the automorphisms θj⊗θopj on R
⊗R induce a cocycle action θ̃: Γ!Aut(R
⊗Rop)
(see e.g. [P4, §3]), so we can consider the crossed product factor M̃=R
⊗RopoΓ. Denote
by Un∈M̃ the canonical unitary elements implementing θn⊗θopn . By [P4] again, we
can view R
⊗R⊂M̃ as the symmetric enveloping inclusion associated with a “diagonal
subfactor” N⊂R'Mn+1(N), with the embedding of N given by x⊕θ1(x)⊕...⊕θn(x).
Moreover, the associated Jones tower N⊂R⊂N1⊂...%N∞ can be viewed as a sequence
of subalgebras of M̃ , making a non-degenerate commuting square:

R
⊗Rop ⊂ M̃

∪ ∪
R∨R′∩N∞⊂N∞.

As before, we view M̃ as the algebra of constant sequences in M̃ω. Since

(R′
0∩R)′∩N∞ =R0∨R′∩N∞

and each R′∩Nk is finite-dimensional, we can apply [P3, Theorem 2.1] to get a unitary
element V ∈(R′

0∩R)ω⊂Nω
∞ such that V N∞V

∗∨N∞'N∞∗R0∨R′∩N∞N∞. By the above
commuting square, we then also have V M̃V ∗∨M̃'M̃ ∗R0∨Rop M̃ .

Like before, take a Haar unitary element w∈U(R′
0∩R) and let U=V wV ∗∈V RV ∗.

For any choice of 16l6n, i1, i2, ..., i2l−1∈{1, 2, ..., n}, i0, i2l∈{0, 1, 2, ..., n} and 16r6n,
the unitary elements

Ad
(
Ui0

l∏
j=1

(UUi2j−1U
−1)Ui2j

)
(Uk)urU

−k, k=1, 2, ..., (A.3′)
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are then mutually orthogonal with respect to the scalar product given by the trace.
Indeed, as Uk∈V RV ∗	R0⊂V N∞V

∗	R0∨N ′∩N∞ for k 6=0, and Uij , U
∗
ij
∈M̃	R∨Rop

for ij 6=0, it follows that

τ

(
Ad

(
Ui0

l∏
j=1

(UUi2j−1U
−1)Ui2j

)
(Uk)urU

−k

)
=0 for k 6=0,

showing the orthogonality in (A.3′).
Now, by the orthogonality of the elements in (A.3′), it follows that for large enough

N , we have ∥∥∥∥ 1
N

N∑
k=1

Ad
(
Ui0

l∏
j=1

(UUi2j−1U
−1)Ui2j

)
(Uk)urU

−k

∥∥∥∥
2

<
1
n

(A.4′)

for all choices of 16l6n, i1, i2, ..., i2l−1∈{1, 2, ..., n}, i0, i2l∈{0, 1, 2, ..., n} and 16r6n.
Writing U as a sequence of unitary elements in R′

0∩R, U=(vm), it follows again that for
large enough m the unitary element u=vm satisfies∥∥∥∥ 1

N

N∑
k=1

θi0

( l∏
j=1

Ad(u)θi2j−1Ad(u∗)θi2j

)
(uk)uru

−k

∥∥∥∥
2

<
1
n

(A.5′)

for all 16l6n, i1, i2, ..., i2l−1∈{1, 2, ..., n}, i0, i2l∈{0, 1, 2, ..., n} and 16r6n. Thus

Ad(u)∈Vn.

Remarks A.3. The proofs of both Lemmas A.1 and A.2 can of course be carried
out without using the hyperfinite II1 factor R and its ultrapower Rω as framework,
working exclusively in the spaces Aut(X,µ) and Aut(R), respectively. But while it is
straightforward to re-write the proof of Lemma A.1 this way, the proof of Lemma A.2
then becomes much more tedious, as one can no longer use results from [P3]. Instead,
one has to go through a similar maximality argument as in the proof of Lemma A.1,
but with the non-commutativity requiring some complicated estimates, similar to [P3,
pp. 189–192].

When written in the “Aut(X,µ) framework”, a suitable adaptation of the proof of
Lemma A.1 shows the following result.

(1) Let (X,X , ν) be a standard probability space and denote by A the set of all
measurable isomorphisms % of X into X such that ν �% is non-singular with respect to ν.
Let µ be another measure (not necessarily finite) on (X,X ), equivalent to ν. Denote by
Aut(X,µ) the µ-preserving automorphisms in A. If {θn}n>1∈A are properly outer, then
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the set V⊂Aut(X,µ) of all θ∈Aut(X,µ) with the property that θi0

∏n
j=1 θθi2j−1θ

−1θi2j

is properly outer, for all n>1, i1, i2, ..., i2n−1∈{1, 2, 3, ... } and i0, i2n∈{0, 1, 2, ... }, where
θ0=idX , is a Gδ-dense subset of Aut(X,µ).

In turn, the proof of the non-commutative case in the “Aut(R) framework” can be
adapted to show the following more general result.

(2) For each n>1, let θn:R∞!R∞ be either an endomorphism or an anti-endomor-
phism of the hyperfinite II∞ factor R∞ such that θn is outer, Tr�θn is a finite multiple
of the trace Tr and θn(R∞)′∩R∞ is atomic, for all n. Denote by V the set of all
trace-preserving automorphisms θ of R∞ such that any product θi0

∏n
j=1 θθi2j−1θ

−1θi2j

is outer, for all n>1, i1, i2, ..., i2n−1∈{1, 2, 3, ... } and i0, i2n∈{0, 1, 2, ... }, where θ0=idR.
Then V is a Gδ-dense subset of Aut(R∞).

The case [R∞ :θn(R∞)]<∞, for all n, of (2) follows easily from [P3, Theorem 2.1], by
arguing exactly as in the proof of Lemma A.2 above. The only change in that argument is
the definition of the finite index subfactor N⊂R, which will again be a “diagonal” inclu-
sion, but with R'N t for some appropriate amplification of N , and N embedded into it
by taking a partition p0, ..., pn∈P(R) and defining N'p0Rp, t=τ(p0)−1 and N ↪!N t=R
by x+

∑n
i=1 θi(x)pi, x∈p0Rp0, where τ(pi)/τ(p0)=dTr�θi/dTr, θi: p0Rp0!piRpi being

“corners” of the endomorphisms θi:R∞!R∞. When the resulting subfactor is extremal,
the rest of the argument is identical, while in case it is not extremal, then one replaces
the symmetric enveloping algebra of N⊂R by an appropriately defined enveloping alge-
bra M̃ , containing N∞ and satisfying appropriate commuting square properties.

Note that this result shows in particular that given any two subfactors of finite
Jones index of the hyperfinite II1 factor, P⊂R and Q⊂R, there exists a subfactor N⊂R
having standard invariant “free product” of the standard invariants GP,R and GQ,R, as
considered in [BJ].
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