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1. Introduction

Let Ω⊂R2 be a bounded open set. In this paper we consider systems of the form

Du(x)∈K for almost every x∈Ω (1)

for functions u: Ω!R2, where K⊂R2×2 is a given (compact) set of 2×2 matrices. Our
interest lies in studying compactness properties of exact and approximate solutions to
general systems of this form.

The systematic study of compactness for a general class of nonlinear systems—
including the differential inclusion (1)—was initiated by F. Murat and L. Tartar [40], [55]
in their study of oscillation phenomena in nonlinear partial differential equations, leading
to the theory of compensated compactness (see also [19], [41], [48] and [56]). The issue
of compactness for inclusion (1) is strongly linked [38], [44], [50] to the study of quasi-
convexity in the calculus of variations [8], [18]. An important example arises in the work
of J. Ball and R. James [9] on variational models for solid-solid phase transitions (see
also [10], [12], [17] and [49]).

There are two natural questions: stability and the relaxed problem. To be precise,
suppose {uj}∞j=1 is a uniformly Lipschitz sequence of approximate solutions to prob-
lem (1) in the sense that dist(Duj ,K)!0 in L1(Ω). Under what conditions on K is
the sequence {Duj}∞j=1 compact in L1(Ω), and in particular if uj!u uniformly, is the
limit u a solution to (1)? The latter corresponds to the stability of (1) under weak
convergence of the gradient Du. In situations where (1) is not stable, one usually asks
for the smallest compact set containing K for which the inclusion is stable under weak
convergence. In the terminology of the calculus of variations [38] this set is called the
quasiconvex hull Kqc, and represents the relaxed problem. In physical situations the
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relaxed problem describes the relation between microscopic and macroscopic quantities,
as has been pointed out by Tartar [55], see also [9].

More recently the study of compactness also became relevant from the point of
view of existence of solutions to (1) via Gromov’s method of convex integration [22].
This method, which stems from the famous Nash–Kuiper C1-isometric embedding theory
[30], [42], is based on the presence of sufficiently many oscillations compatible with the
inclusion. In this sense it relies on lack of compactness. One important feature of this
construction is that it yields a very rich class of solutions with highly irregular behaviour.
Recently S. Müller and V. Šverák [39] combined convex integration with a careful analysis
of oscillations in the spirit of Tartar’s compensated compactness, to obtain surprising
counterexamples to regularity in quasilinear elliptic systems (see also [46], [51] and [28]).

It is well known that for problems of type (1) the main obstruction to compactness is
due to the possible presence of rapid oscillations in the sequence of gradients Duj . Indeed,
if A,B∈R2×2 are any two matrices such that rank(A−B)=1, then one can construct a
sequence of uniformly Lipschitz functions uj , whose gradients oscillate between A and B,
such that no subsequence of {Duj}∞j=1 converges strongly in L1(Ω). If A and B are such
that rank(A−B)=1, we say that A and B are rank-one connected and in general speak
of rank-one connections. Thus a necessary condition for compactness in (1) is that K

contains no rank-one connections.

In [56] Tartar conjectured that in fact this condition should also be sufficient. For
connected sets K⊂R2×2 the conjecture was verified by V. Šverák in [48]. On the other
hand Tartar showed (see [57]) the need for additional conditions in the case of a general
compact set. Indeed, Tartar produced an example of a set consisting of four matrices
which contains no rank-one connections, but where compactness for sequences of gradi-
ents fails (this type of example was discovered in different contexts by various authors,
e.g. [6], [16], [35], [46], see also [12]). Such four-matrix sets, called T4 configurations,
were subsequently subject to an intense analysis in the literature [27], [28], [52], in part
because they were the key elements in the construction of counterexamples to regularity
for elliptic systems mentioned above.

Our first theorem shows that the additional condition that K contains no T4 con-
figurations is sufficient for compactness.

Theorem 1. (Compactness) Let K⊂R2×2 be a precompact set without rank-one
connections and suppose that K contains no T4 configurations. Then, for any uni-
formly Lipschitz sequence uj : Ω⊂R2!R2 with dist(Duj ,K)!0 in L1(Ω), the sequence
{Duj}∞j=1 is compact in L1(Ω).

The previous theorem in the case of diagonal matrices follows from [57], [37], and in
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the case of laminates from [52]. We remark that combining Proposition 2 and Theorem 2
in [52] leads to a very quick algorithm for deciding whether a compact set of 2×2 matrices
contains T4 configurations.

Now we turn to our second question, the characterization of the relaxed problem.
As mentioned earlier, this amounts to estimating the quasiconvex hull Kqc. The usual
technique in the literature [10], [12], [44], [49], [55] is to get a lower estimate from the
rank-one convex hull Krc and an upper estimate from the polyconvex hull Kpc, since

Krc⊂Kqc⊂Kpc.

In general these inclusions are known to be strict, although whether Kqc=Krc in R2×2

remains an open problem. In estimating the rank-one convex hull a very useful fact
is that the rank-one convex hull is localizable. This means that if we know a priori
that Krc is disconnected (for example by an estimate on the polyconvex hull), then Krc

can be calculated by considering just subsets of K contained in each connected compo-
nent of Krc. More precisely, if Krc⊂

⋃n
j=1 Uj for pairwise disjoint open sets Uj , then

Krc∩Uj =(K∩Uj)rc for each j, see [27], [33], [43]. This result, known as the “structure
theorem” for rank-one convex hulls, is valid in any dimension, and the proofs rely heav-
ily on the locality of rank-one convexity. In contrast, quasiconvexity is known to be a
non-local condition in higher dimensions [29], and localization of the quasiconvex hull is
not possible in general (see below). Nevertheless, our second main result is that in the
space of 2×2 matrices the structure theorem also holds for the quasiconvex hull (see also
Corollary 3 in §5).

Theorem 2. (Structure of quasiconvex hulls) If K⊂R2×2 is a compact set and
Kqc⊂

⋃n
j=1 Uj for pairwise disjoint open sets Uj , then Kqc∩Uj =(K∩Uj)qc.

There is a close relationship between Theorems 1 and 2 and Morrey’s conjecture
regarding quasiconvexity and rank-one convexity. We recall that a variational integral of
the form

∫
Ω

f(Du(x)) dx is weakly∗ lower-semicontinuous in the space W 1,∞(Ω, Rm) if
and only if f : Rm×n!R is quasiconvex (see [36]). It is well known that every quasiconvex
function is rank-one convex, and C.B. Morrey Jr. in [36] posed the interesting problem
of whether rank-one convexity implies quasiconvexity (see also [2], [7] and [24] for the
relation of this conjecture with other areas). In the higher-dimensional case, where m>3,
V. Šverák in [47] constructed an ingenious counterexample, showing that quasiconvexity
is not the same as rank-one convexity, and on the other hand S. Müller in [37] proved
equality of the two notions for 2×2 diagonal matrices. However, the general non-diagonal
case m=2 remains an outstanding open problem. Subsequently Šverák’s counterexample
was used to show that in higher dimensions, quasiconvexity is not a local condition [29],
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and moreover that the type of localization as in Theorem 2 is not possible (an example in
the space of 6×2 matrices is due to Šverák, and can be found in [38, p. 68]). Theorem 2
(and Theorem 6 in §5) suggests that if there is a difference between rank-one convexity
and quasiconvexity in R2×2, it has to be of a much more subtle nature.

To close this introduction, we briefly discuss the method of proof. Our approach
is based on the notion of incompatible sets, continuing the study started by the second
author in [53]. Following [11], two disjoint compact sets K1,K2⊂R2×2 are said to be
homogeneously incompatible if whenever uj : Ω⊂R2!R2 is a sequence of uniformly Lips-
chitz mappings which are affine on the boundary and such that dist(Duj ,K1∪K2)!0 in
L1, then either dist(Duj ,K1)!0 or dist(Duj ,K2)!0. Notice that if K=K1∪K2 is the
union of homogeneously incompatible sets, then the compactness issue for K is reduced
to the compactness issue of the two smaller sets K1 and K2 separately. Accordingly, in
both theorems our aim is to find a decomposition of K into homogeneously incompatible
sets. We do this in two steps, a geometric and an analytic step.

The first step in finding such a decomposition is to analyse the rank-one convex
geometry of K. In both Theorems 1 and 2 the assumptions on the set K imply restrictions
on the rank-one convex hull Krc, and these in turn imply a certain geometric structure
for K, namely that K⊂EΓ, where EΓ is the quasiconformal envelope of an elliptic curve
(see Definition 1). This analysis, mainly based on work in [52] and [54], is carried out
in §4.

In §3 we show that the condition K⊂EΓ implies a decomposition of K into homo-
geneously incompatible sets. The key point is to realize that the set EΓ corresponds on
the one hand to elliptic equations and on the other hand to families of quasiconformal
mappings. More precisely, if u∈W 1,2(Ω, C) satisfies Du(z)∈EΓ for almost every z∈Ω,
then u solves a corresponding nonlinear Beltrami equation of the form

∂z̄u =H(z, ∂zu),

whereas, when coupled with appropriate boundary conditions, u gives rise to a family of
quasiconformal mappings parametrized by the curve Γ as

ut(z) =u(z)−Γ(t)z.

The former allows us to use the approach in [3], [21] and [53] to construct certain nonlinear
operators which act as projectors onto the set EΓ, whereas the latter, an idea which
appeared in [14], leads to the required incompatibility result for solutions of the inclusion
Du(z)∈EΓ. Indeed, our proof of this incompatibility (see Theorem 4) relies heavily on
adapting the methods in [14, §7]—where Γ is a straight line in the conformal plane—to
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our nonlinear setting. Using a different approach, the special case when Γ is a straight
line and K consists of symmetric 2×2 matrices has been obtained in [53].

Finally, in §5 we combine the results of the previous sections to give the proofs of
the main theorems.

2. Preliminaries

Throughout the paper we denote by Rm×n the space of m×n matrices. We introduce
conformal-anticonformal coordinates on R2×2 in the following way: for each A∈R2×2

there exist unique z, w∈R2 such that

A =
(

z1+w1 w2−z2

w2+z2 z1−w1

)
, (2)

so that R2×2∼=C×C, and for matrices A∈R2×2 we write A=(a+, a−) with a+∈C denoting
the conformal part and a−∈C denoting the anticonformal part of A. Also, we identify
the complex number z=x+iy with the vector (x, y)∈R2, so that

Az = a+z+a−z̄. (3)

The norm | · | is the Euclidean norm on R2. Then, for each matrix A=(a+, a−), one has
det A=|a+|2−|a−|2, so that

det A > 0 if and only if |a+|> |a−|.

Furthermore, we have

|A|2 =2|a+|2+2|a−|2 and ‖A‖= |a+|+|a−|,

where |A| and ‖A‖ denote the Hilbert–Schmidt and the operator norm, respectively.
Let K⊂Rm×n be a compact set and let uj : Ω⊂Rn!Rm be a sequence of uniformly

Lipschitz functions such that dist(Duj ,K)!0 in L1(Ω). The technical tool to describe
possible oscillations in the sequence of gradients {Duj}∞j=1 is the Young measure {νx}x∈Ω

generated by the sequence (see e.g. [38], [44] and [55]). Specifically, {νx}x∈Ω is a family
of probability measures on Rm×n, depending measurably on x∈Ω, such that supp νx⊂K

and for every f∈C0(Rm×n),

f(Duj)
∗
⇀

∫
Rm×n

f(A) dνx(A) in L∞(Ω). (4)
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In particular the sequence {Duj}∞j=1 of gradients is precompact in L1 precisely if the
measure νx is a Dirac mass for almost every x∈Ω. An important tool in the study of
gradient Young measures is spatial localization in the sense that if {νx}x∈Ω is a gradient
Young measure, then for almost every x∈Ω the measure νx coincides with a homogeneous
gradient Young measure, i.e. one which is independent of x (see [26]). In turn, if ν is a
homogeneous gradient Young measure with barycenter A=ν̄, then for any domain Ω⊂Rn

there exists a sequence of uniformly Lipschitz functions uj : Ω!Rm, with uj(x)=Ax on
∂Ω, such that {Duj}∞j=1 generates the Young measure ν in the sense of (4). Therefore,
in studying the issue of compactness for differential inclusions, one can restrict attention
to sequences of approximate solutions defined on some special domain (e.g. the unit ball
in Rn) and subject to linear boundary conditions. In our case we will consider mappings
u: D!C, where D⊂C is the unit disc.

A function f : Rm×n!R is quasiconvex if for all open sets U⊂Rn and all A∈Rm×n,∫
U

(f(A+Du)−f(A)) dx > 0 for all u∈C∞
0 (U, Rm),

and f is said to be rank-one convex if it is convex along each rank-one line, i.e. if
t 7!f(A+tB) is convex whenever rank(B)=1. Every quasiconvex function is rank-one
convex. Homogeneous gradient Young measures are in duality with quasiconvex functions
via Jensen’s inequality [26]: a (compactly supported) probability measure µ on Rm×n

is a homogeneous gradient Young measure if and only if f(µ̄)6
∫

Rm×n f(A) dµ(A) for
all quasiconvex functions f : Rm×n!R. In analogy, a probability measure µ is called a
laminate if Jensen’s inequality holds for all rank-one convex functions [34], [43], [44].
Thus, all laminates are homogeneous gradient Young measures.

The quasiconvex hull of a compact set K⊂Rm×n can be defined as the set of barycen-
ters of homogeneous gradient Young measures which are supported in K:

Kqc = {ν̄ : ν is a homogeneous gradient Young measure and supp ν⊂K},

and the rank-one convex hull is defined similarly with laminates supported in K.
Throughout the paper we assume that the approximating sequence {uj}∞j=1 with

dist(Duj ,K)! 0

is uniformly Lipschitz. Nevertheless we remark that this is no real restriction and can be
assumed without loss of generality (as long as the set K is assumed to be compact), by
the truncation argument of K. Zhang [58]. See also the remark at the end of §3 for an
extension to the case where K is not compact. For further information concerning the
general theory of gradient Young measures we refer the reader to [38] and [44].
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A mapping u∈W 1,2(D, R2) is said to be K-quasiregular if the inequality

‖Du(z)‖2 6K det Du(z) (5)

holds for almost every z∈D. If in addition u is a homeomorphism, then it is called
K-quasiconformal. Defining ∂z= 1

2 (∂x−i∂y) and ∂z̄= 1
2 (∂x+i∂y) allows one to write (5)

equivalently as |∂z̄u(z)|6k|∂zu(z)|, where k=(K−1)/(K+1), since ∂zu(z) and ∂z̄u(z) are
nothing but the conformal and anticonformal parts of the 2×2 matrix Du(z) in the sense
of (2). For the basic theory of planar quasiregular mappings see [1], [25] and [31]. In
particular quasiregular mappings are continuous and differentiable almost everywhere.
An important fact which was discovered recently by several authors (see [32, Theorem 5]
and [14, Theorem 6.1]) is that restrictions on the boundary values of the real part of the
mapping are already enough to make quasiregular mappings quasiconformal.

Proposition 1. Suppose u∈W 1,2(D, C) is a quasiregular mapping such that Re u

agrees with an affine map on the boundary ∂D, in the sense that Re(u−A)∈W 1,2
0 (D) for

some affine map A. Then u is a homeomorphism and hence quasiconformal.

We will also need some basic facts concerning nonlinear Beltrami equations [4], [5],
[23]. These are equations of the form

∂z̄u =H(z, ∂zu)+h(z), (6)

where H: Ω×C!C is a measurable function satisfying the ellipticity condition

|H(z, w1)−H(z, w2)|6 k|w1−w2| and H(z, 0) =0 (7)

for some constant k<1. As shown in [15], general nonlinear systems Φ(z, ∂zu, ∂z̄u)=0
which are elliptic in the sense of Lavrentiev can be reduced to this form. We will need the
following result concerning the existence and uniqueness for the corresponding Riemann–
Hilbert problem in the unit disc D⊂C.

Proposition 2. Let H: D×C!C satisfy (7), and let h∈L2(D). Then equation (6)
admits a unique solution u∈W 1,2(D, C) with Re u∈W 1,2

0 (D), and moreover there exists
a constant C=C(k) such that

‖Du‖L2(D) 6C‖h‖L2(D).

Proof. This result is well known to experts, we sketch the proof for the reader’s
convenience. The proof is based on local versions of the classical Cauchy transform and
the Beurling–Ahlfors transform. The local Cauchy transform is given by the formula

CDf(z) =
1
π

∫∫
D

(
f(w)
z−w

− z�f(w)
1−z	w

)
dw,
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and the local Beurling–Ahlfors transform is defined as SD(f)=∂zCD(f). As the classical
Beurling–Ahlfors transform, SD is an isometry on L2(D) (see, e.g., [13], [14] and [23]).
Thus the operator BD(v)(z)=H(z, SDv(z))+h(z) is a contraction on L2(D, C):

‖BD(v1)−BD(v2)‖L2(D) 6 k‖v1−v2‖L2(D),

and hence has a unique fixed point v∈L2(D, C). Then the solution u∈W 1,2(D, C) is given
by u=CDv, since then ∂z̄u=v, ∂zu=SDv and Re u∈W 1,2

0 (D, C).
The L2-estimate is obtained similarly. Because of the condition (7), we obtain for

the fixed point v,

‖v‖L2(D) = ‖BD(v)‖L2(D) 6 k‖v‖L2(D)+‖h‖L2(D),

and since SD is an isometry, we find that

‖Du‖2
L2(D) =2‖v‖2

L2(D)+2‖SDv‖2
L2(D) 6 4‖v‖2

L2(D) 6
4

(1−k)2
‖h‖2

L2(D).

For the corresponding Lp-theory of equation (6) for the sharp range of exponents p,
we refer the reader to [4] and [5].

3. Quasiconvex hulls

In this section we give a geometric condition for two disjoint compact sets K1,K2⊂R2×2

to be homogeneously incompatible. Recall that this means that whenever uj : Ω⊂R2!R2

is a sequence of uniformly Lipschitz mappings which are affine on the boundary of Ω and
such that dist(Duj ,K1∪K2)!0 in L1, then either

dist(Duj ,K1)! 0 or dist(Duj ,K2)! 0.

In terms of gradient Young measures, this means that if ν is a homogeneous gradient
Young measure with support supp ν⊂K1∪K2, then supp ν⊂K1 or supp ν⊂K2.

Definition 1. A continuous curve Γ:S1!R2×2 is said to be K-elliptic if Γ(t) 6=Γ(s)
for t 6=s and

‖Γ(t)−Γ(s)‖2 6K det(Γ(t)−Γ(s)) for all t, s∈S1.

For an elliptic curve Γ we define the K-quasiconformal envelope of Γ as

EΓ = {X ∈R2×2 : ‖X−Γ(t)‖2 6K det(X−Γ(t)) for all t∈S1}.
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Observe that in conformal-anticonformal coordinates, EΓ can be written as

EΓ = {X =(z, w)∈R2×2 : |w−Γ−(t)|6 k|z−Γ+(t)| for all t∈S1},

where k=(K−1)/(K+1) and Γ(t)=(Γ+(t),Γ−(t)).
We start with the following elementary fact, relating the quasiconformal envelope of

elliptic curves to elliptic partial differential equations.

Lemma 1. Let Γ:S1!R2×2 be a K-elliptic curve and let EΓ be the K-quasicon-
formal envelope of Γ for some K>1. For every matrix X=(x+, x−)∈EΓ there exists a
k-Lipschitz map H: C!C, where k=(K−1)/(K+1), such that x−=H(x+) and

(z,H(z))∈EΓ for all z ∈C.

Proof. Let p0: R2×2!C be the orthogonal projection onto the conformal plane, iden-
tified with C. We consider the set E=Γ∪{X}⊂R2×2 and denote by p0(E) the projection
of E onto the conformal plane. Note that K-ellipticity of Γ and X∈EΓ together imply

‖A1−A2‖2 6K det(A1−A2) for all A1, A2 ∈E.

As observed by K. Zhang [59] and further exploited in [21], this condition implies that
the function H0: p0(E)⊂C!C defined by

H0(a+) = a− for A =(a+, a−)∈E

is well defined and k-Lipschitz on p0(E) with k=(K−1)/(K+1). Thus, by Kirszbraun’s
theorem, it can be extended to a k-Lipschitz function H: C!C. Now, if z∈C and t∈S1,
then

|H(z)−Γ−(t)|= |H(z)−H(Γ+(t))|6 k|z−Γ+(t)|,

therefore (z,H(z))∈EΓ.

Next we describe some geometric properties of quasiconformal envelopes.

Lemma 2. Let EΓ be the K-quasiconformal envelope of a K-elliptic curve Γ. Then
EΓ\Γ consists of precisely two connected components,

EΓ\Γ = E0
Γ∪E1

Γ,

that can be characterized in the following way : let L⊂R2×2 be any two-dimensional sub-
space such that det X>0 for all X∈L, and let pL: R2×2!L be the orthogonal projection
onto L. Then pL(Γ)⊂L∼=C is a Jordan curve and hence L\pL(Γ)=ω∪(L\�ω), where
ω⊂L is a bounded simply connected open set in L. Then

E0
Γ = {X ∈EΓ : pL(X)∈ω} and E1

Γ = {X ∈EΓ : pL(X)∈L\�ω}. (8)

Moreover
�E0
Γ∩�E1

Γ =Γ.
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Proof. Let L be any 2-dimensional subspace in R2×2 such that det X>0 for all
X∈L. It is not difficult to see (see [59] or Lemma 1) that such subspaces can be written
in conformal coordinates as

L= {(z,Az) : z ∈C}, (9)

where A: R2!R2 is some linear map with norm ‖A‖61, and Az is understood as in (3).
In particular the perpendicular subspace L⊥ can be written as

L⊥= {(−A∗w,w) :w∈C}, (10)

where A∗: R2!R2 is the adjoint of A (with respect to the standard scalar product in R2).
Therefore, if X, Y ∈R2×2 with pL(X)=pL(Y ), then det(X−Y )60.

It follows from the ellipticity that pL(Γ) cannot have self-intersections and is there-
fore a Jordan curve. Indeed, if pL(Γ(t))=pL(Γ(s)) for some t, s∈S1, then

det(Γ(t)−Γ(s))6 0,

and hence Γ(t)=Γ(s), which is only possible if t=s.
We start by showing that pL(EΓ\Γ)=L\pL(Γ). Because the curve Γ is K-elliptic,

we find, as in Lemma 1, a k-Lipschitz function H: C!C such that

H(Γ+(t))= Γ−(t) for all t∈S1,

where k=(K−1)/(K+1), and we write Γ(t)∈R2×2∼=C×C in conformal-anticonformal
coordinates as Γ(t)=(Γ+(t),Γ−(t)). Consider the graph

GH = {(ξ,H(ξ)) : ξ ∈C}⊂R2×2

of H. Since H is k-Lipschitz, we have that

|H(ξ)−H(Γ+(t))|6 k|ξ−Γ−(t)| for all ξ ∈C and t∈S1,

or equivalently

‖X−Γ(t)‖2 6K det(X−Γ(t)) for all X ∈GH and t∈S1,

and therefore
GH ⊂EΓ. (11)

We claim that pL(GH)=L. Using (9) and (10), this amounts to proving that for any z∈C
there exists w∈C such that (z,Az)+(−A∗w,w)∈GH , i.e. that

Az+w =H(z−A∗w). (12)
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For any fixed z consider the map F (w)=H(z−A∗w)−Az. Since H is k-Lipschitz and
‖A‖61, we have that

|F (w1)−F (w2)|= |H(z−A∗w1)−H(z−A∗w2)|6 k|A∗w1−A∗w2|6 k|w1−w2|,

therefore F : C!C is a contraction, and thus it has a (unique) fixed point w satisfying
w=F (w). But then w satisfies (12), showing that L=pL(GH), and hence, in light of (11),
that L=pL(EΓ). Moreover, pL(EΓ\Γ)∩pL(Γ)=∅, since det(X−Y )>0 for any X∈EΓ\Γ
and Y ∈Γ. Therefore we see that pL(EΓ\Γ)=L\pL(Γ), and so pL(EΓ\Γ) consists of
precisely one bounded and one unbounded component, i.e. pL(EΓ\Γ)=ω∪(L\�ω). In
particular EΓ can be written as the disjoint union EΓ=E0

Γ∪E1
Γ∪Γ, where E0

Γ and E1
Γ are

defined in (8).
It remains to show that E0

Γ and E1
Γ are connected. Suppose for a contradiction

(without loss of generality) that E0
Γ has more than one connected component, i.e. there

exist disjoint nonempty open sets U, V ⊂R2×2 such that E0
Γ⊂U∪V . Since pL(E0

Γ)=ω is
connected, we have that pL(U∩E0

Γ)∩pL(V ∩E0
Γ) 6=∅. We claim that this is a contradiction.

Indeed, let X∈U∩E0
Γ and Y ∈V ∩E0

Γ be such that pL(X)=pL(Y ), and consider for any
fixed t∈S1 the function

q(λ) =K det((λX+(1−λ)Y )−Γ(t))−‖(λX+(1−λ)Y )−Γ(t)‖2. (13)

Since det(X−Y )60 and X 7!det X is quadratic, q is a strictly concave quadratic polyno-
mial. Therefore q(λ)>0 for λ∈(0, 1). Using the definition of EΓ we deduce that the whole
line segment connecting X and Y is contained in EΓ\Γ, which shows that X and Y are
contained in the same connected component of EΓ\Γ. This is the promised contradiction.

Finally we show that �E0
Γ∩�E1

Γ=Γ. Note that certainly Γ⊂�E0
Γ∩�E1

Γ, and on the other
hand pL(�E0

Γ∩�E1
Γ)⊂pL(Γ). Assume that there exists X∈(�E0

Γ∩�E1
Γ)\Γ and let Y ∈Γ be such

that pL(Y )=pL(X). Then in particular det(X−Y )60, so that for any fixed t∈S1 the
function q defined above in (13) is strictly concave, and also q(0)=q(1)>0. But then
q(λ)>0 for λ∈(0, 1), implying that λX+(1−λ)Y ∈EΓ\Γ. This contradicts the fact that
pL(EΓ\Γ)∩pL(Γ)=∅, and so we deduce that �E0

Γ∩�E1
Γ=Γ.

The main result in this section is the following theorem, showing that quasiconfor-
mal envelopes of elliptic curves provide separating sets for homogeneous gradient Young
measures.

Theorem 3. Let Γ:S1!R2×2 be a K-elliptic curve and let EΓ be the K-quasicon-
formal envelope of Γ for some K>1. If ν is a compactly supported homogeneous gradient
Young measure with supp ν⊂EΓ\Γ, then

supp ν⊂E0
Γ or supp ν⊂E1

Γ.
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As explained in the introduction, the idea is to use the fact that the set EΓ corre-
sponds to elliptic equations, to project the generating sequence of the Young measure
onto the set EΓ. This is done by solving an appropriate Riemann–Hilbert problem. Then
the result follows from the analogue separation statement for functions.

Theorem 4. (Separation for functions) Let Γ:S1!R2×2 be a K-elliptic curve and
let EΓ be the K-quasiconformal envelope of Γ for some K>1. Let u∈W 1,2(D, C) be such
that Du(z)∈EΓ for almost every z∈D and Re(u) is affine on the boundary ∂D. Then
either Du(z)∈�E0

Γ almost everywhere, or Du(z)∈�E1
Γ almost everywhere in D.

Proof. Consider for any t∈S1 the mapping

ut(z) := u(z)−Γ(t)z.

By the definition of EΓ, the mapping u satisfies, for any t∈S1, the distortion inequality

‖Du(z)−Γ(t)‖2 6K det(Du(z)−Γ(t)),

and hence ut satisfies

‖Dut(z)‖2 6K det(Dut(z)) for almost every z ∈D. (14)

In short, ut is a quasiregular mapping.
Furthermore Re(ut) is affine on ∂D for all t∈S1. Therefore Proposition 1 implies

that ut is a homeomorphism, a quasiconformal mapping. In particular

ut(z1) 6=ut(z2) for all t∈S1 and z1, z2 ∈D with z1 6= z2,

or, in other words,
u(z1)−u(z2)−Γ(t)(z1−z2) 6=0.

Setting z1=z and z2=z+ε for ε>0 we obtain that

u(z+ε)−u(z)
ε

6=Γ(t)e1

for all t∈S1, z∈D and ε>0 such that z+ε∈D, where e1=(1, 0)∈R2. The curve Γ(t)e1

can be identified with the orthogonal projection of the curve Γ onto the rank-one plane
L={a⊗e1 :a∈R2}. Since Γ is elliptic in the sense of Definition 1, the curve pL(Γ)⊂L∼=C
is a Jordan curve, forming the boundary of some bounded simply connected domain
ω⊂C. Considering the map (z, ε) 7!(u(z+ε)−u(z))/ε on the connected set

∆ = {(z, ε) : z ∈D, ε > 0 and z+ε∈D}
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and observing that u is continuous, we deduce that either

u(z+ε)−u(z)
ε

∈ω for all (z, ε)∈∆, or

u(z+ε)−u(z)
ε

∈C\�ω for all (z, ε)∈∆.
(15)

Since u is quasiregular, Du(z) exists almost everywhere. Let z∈D be a point of differen-
tiability. Then

u(z+ε)−u(z)
ε

−∂xu(z) = o(1),

where z=x+iy. Therefore, from (15) we obtain that

∂xu(z)∈ �ω for a.e. z ∈D, or

∂xu(z)∈C\ω for a.e. z ∈D.
(16)

On the other hand ∂xu(z)=Du(z)e1=pL(Du(z)), so that from (16) and Lemma 2 we
deduce that

Du(z)∈�E0
Γ for a.e. z ∈D, or

Du(z)∈�E1
Γ for a.e. z ∈D.

Proof of Theorem 3. Let ν be a homogeneous gradient Young measure satisfying
supp ν⊂EΓ. Our aim is to show that ν can be generated by a sequence of mappings
uj : D!C uniformly bounded in W 1,2 such that Duj(z)∈EΓ almost everywhere and
Re(uj) is affine on ∂D. To such a sequence we can then apply Theorem 4.

As explained in §2, we may assume that ν is generated by a sequence {Dvj}∞j=1 for
uniformly Lipschitz mappings vj : D!C such that vj(z)=Az on ∂D for A=ν̄∈R2×2. In
particular, since supp ν⊂EΓ, we have that

lim
j!∞

∫
D

distEΓ(Dvj)p =0 for all p <∞. (17)

Since {Dvj}∞j=1 is uniformly bounded in L∞(Ω, R2×2), the measurable selection
theorem ([20], see also [60, Proposition 2.12]) provides us with a sequence of measurable
functions Pj(z): D!EΓ such that

distEΓ(Dvj)(z) = |Pj(z)−Dvj(z)|.

Lemma 1 implies that for every j and z there exists a k-Lipschitz function

Hj(z, ·): C!C
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such that Pj(z)∈GHj(z)⊂EΓ, where GHj(z)={(w,Hj(z, w)):w∈C} denotes the graph of
Hj(z, ·) in C×C∼=R2×2. In particular, writing Pj(z)=(pj(z)+, pj(z)−), we have that

pj(z)− =Hj(z, pj(z)+).

But then, for almost every z∈D we have that

|∂z̄vj(z)−Hj(z, ∂zvj(z))|6 |∂z̄vj(z)−pj(z)−|+|pj(z)−−Hj(z, ∂zvj(z))|

= |∂z̄vj(z)−pj(z)−|+|Hj(z, pj(z)+)−Hj(z, ∂zvj(z))|

6 |∂z̄vj(z)−pj(z)−|+k|pj(z)+−∂zvj(z)|

6 2distEΓ(Dvj(z)).

(18)

Thus, if we define Ej(z)=∂z̄vj(z)−Hj(z, ∂zvj(z)), it holds that

lim
j!∞

‖Ej‖L2(D) =0. (19)

Next, we solve the following Riemann–Hilbert problem for wj∈W 1,2(D, C), by appealing
to Proposition 2:{

∂z̄wj−Hj(z, ∂z(vj +wj))+Hj(z, ∂zvj) =−Ej , in D,
Re(wj) = 0, on ∂D.

(20)

We obtain wj satisfying ‖Dwj‖L2(D)6C(k)‖Ej‖L2(D), and hence, by (19),

lim
j!∞

‖Dwj‖L2(D) =0. (21)

Now we claim that uj =vj +wj fulfills all the properties demanded. Firstly, from (20) we
see that uj solves the equation

∂z̄uj(z) =Hj(z, ∂zuj(z)),

and thus Duj(z)∈GHj(z)⊂EΓ for almost every z. Since vj is linear on the boundary
∂D, we find that Re(uj) is also linear on the boundary. Finally, since Duj−Dvj =Dwj ,
by (21) we have that ‖Duj−Dvj‖L2!0 as j!∞, therefore the sequence {Duj}∞j=1

generates the same gradient Young measure as {Dvj}∞j=1, namely the measure ν.
From Theorem 4 we deduce that for each j∈N,

Duj ∈�E0
Γ a.e. or Duj ∈�E1

Γ a.e. (22)

Then there must be an infinite subsequence jk!∞, as k!∞, such that Dujk
∈�E0

Γ for
all k∈N, or Dujk

∈�E1
Γ for all k∈N. Since any subsequence generates the same gradient

Young measure ν, we deduce in the former case that supp ν⊂�E0
Γ and in the latter case

that supp ν⊂�E1
Γ. This completes the proof of Theorem 3.
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We remark that in Theorem 3 we assumed that ν is a compactly supported homo-
geneous gradient Young measure. Using a local version of the recent work of K. Astala,
T. Iwaniec and E. Saksman in [5] concerning the optimal Lp-properties of nonlinear Bel-
trami operators in the plane, this requirement can be relaxed to the condition that ν is
a homogeneous gradient Young measure generated by a sequence {Duj}∞j=1 uniformly
bounded in Lq, for some q>2K/(K+1).

4. Rank-one convex hulls

In this section we consider compact sets of matrices whose rank-one convex hull is dis-
connected. Our aim is to show that for such sets it is possible to find an elliptic curve
(in the sense of Definition 1) separating the set, so that the ideas of §3 apply.

Definition 2. Let K⊂R2×2 be a compact set. A continuous, closed curve

Γ:S1!R2×2

is said to be separating for K if

K ⊂UΓ := {X ∈R2×2 : det(X−Γ(t))> 0 for all t∈S1},

and K is contained in more than one connected component of UΓ.

In [52] it was shown that if a compact set K⊂R2×2 contains no rank-one connections
and no T4 configurations, then such a separating curve exists. To pass from this result
to general compact sets we consider the connected components of Krc. If X and Y are
contained in different connected components of Krc, then rank(X−Y )>1. Therefore
the idea is to treat the set of connected components of Krc as a “set without rank-one
connections”. With this point of view, the proofs in [52] can be repeated with minor
modifications, since the essential information used for sets without rank-one connections
is not really det(X−Y ), but only the sign of det(X−Y ). In addition to finding a sepa-
rating curve we will need to show that in fact a separating curve exists which is elliptic.

Theorem 5. Suppose K⊂R2×2 is a compact set such that Krc is not connected.
Then, possibly after changing sign(1), there exists an elliptic separating curve for K.

Proof. The proof is split into several parts:
(I) Prove that (up to changing sign) the set K admits a nontrivial decomposition

of the type K=K1∪K2, where K1 and K2 are disjoint compact sets with det(X−Y )>0

(1) Changing sign corresponds to considering K′={XJ :X∈K} with J=
( 1 0

0 −1

)
.
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for X∈K1 and Y ∈K2, such that whenever X1, X2∈K1 and Y1, Y2∈K2, the four-point
set {X1, X2, Y1, Y2} is not a T4 configuration;

(II) Use Theorem 4 in [52] to find a separating curve in the sense of Definition 2,
corresponding to the decomposition K=K1∪K2;

(III) Show that if a separating curve exists, then there exists another separating
curve for K (possibly corresponding to a different decomposition), which is elliptic in the
sense of Definition 1.

(I) Sign-separation.

We start with the following equivalence relation on K: let X∼Y whenever X and
Y are contained in the same connected component of Krc. Let �K=K/∼ denote the
quotient space, equipped with the quotient topology, and let π:K!�K be the canonical
projection. With some abuse of notation we will write �X=π(X) to denote the equivalence
class of X∈K, and also the connected subset of Krc containing X. Note that �K is a
totally disconnected, compact Hausdorff space.

Notice that a T4 configuration has a connected rank-one convex hull, therefore to
obtain (I) it suffices to find a nontrivial decomposition of K into disjoint compact sets
K1 and K2, both consisting of equivalence classes for ∼, such that det(X−Y )>0 for
X∈K1 and Y ∈K2. In other words we need to find a decomposition of �K into compact
sets which are sign-separated.

Let �X and 
Y be two distinct elements of �K, and let X0∈�X and Y0∈
Y . Observe
that det(X0−Y0) 6=0, since otherwise the line segment [X0, Y0] would be contained in
Krc, contradicting the assumption that �X and 
Y are disjoint connected components of
Krc. Assume for example that det(X0−Y0)>0. We claim that in this case det(X−Y )>0
for all X∈�X and Y ∈
Y . Indeed, let X1∈�X and Y1∈
Y . The function Y 7!det(X0−Y ) is
continuous and does not vanish on 
Y , hence det(X0−Y )>0 for all Y ∈
Y , by the con-
nectedness of 
Y . In particular, det(X0−Y1)>0. But then, by a similar argument,
det(X−Y1)>0 for all X∈�X, by the connectedness of �X. This forces det(X1−Y1)>0,
proving our claim.

The above argument implies that the function s:�K×�K!{−1, 0, 1} defined by

s(�X,
Y ) =
{

sign det(X−Y ), if �X 6=
Y , where X ∈�X and Y ∈
Y ,
0, if �X =
Y ,

is well defined, and that s(�X,
Y ) 6=0 for �X 6=
Y . By viewing s(�X,
Y ) as a discrete version
of det(X−Y ), we can roughly speaking treat �K as a compact set without rank-one
connections, and therefore apply the ideas of §6 in [52].

To be concrete, for n∈N let X1, ..., XN(n) be a (1/n)-net for K, and consider the
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image
�Kn = {�X1, ...,�XN ′(n)}=π{X1, ..., XN(n)},

where N ′(n)6N(n) (with strict inequality if π(Xj)=π(Xk) for some j 6=k). Associated
with �Kn there is a complete graph of N ′(n) vertices, where we color each edge XY

according to the sign of s(�X,
Y ). In this graph we call 	-path connecting �X,
Y ∈�Kn a
sequence �Xj∈�Kn, j=0, ..., l, for some l, where �X0=�X, �Xl=
Y and s(�Xj ,�Xj+1)=−1 for
all j (similarly we can speak of a ⊕-path). For such a path we say that the length is l.

Since �X1, ...,�XN ′(n) are disjoint connected components of Krc, in particular the
associated graph does not contain the sign configuration (A) in Figure 1, where dashed
lines denote det(Xj−Xk)<0 and solid lines det(Xj−Xk)>0.

X1

X2 X3

X4

Figure 1. Sign configuration (A).

Indeed, by [52, Theorem 2], four matrices whose associated graph is of this type
always form a T4 configuration, and the rank-one convex hull of a T4 configuration is
connected. This leads to the following observations:

(1) If there is a 	-path between �X and 
Y , then there exists also another 	-path
between �X and 
Y of length at most 2, i.e. where l62;

(2) Moreover, the whole graph cannot be both ⊕- and 	-connected. In other words,
it cannot happen that for any two points �X and 
Y there exists both a ⊕- and a 	-path
between them.

The first observation follows by contradiction on assuming that the minimal path
has length 3 at least, as in this case we will find the sign-configuration (A). The second
observation follows by induction on the number of vertices in the graph. The details can
be found in Lemma 5 and Proposition 3 in [52]. In particular, because of the second
observation, we may assume without loss of generality(2) that there is a subsequence
nk!∞ with the corresponding decomposition

�Knk =�Knk
1 ∪�Knk

2 ,

(2) This is the point where the signs are fixed.
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such that
s(�X,
Y ) = 1 for all �X ∈�Knk

1 and 
Y ∈�Knk
2 .

Since each connected component of Krc is compact and �Knk is finite, we deduce that
there exist ck>0 such that

det(X−Y ) > ck for all X ∈�X and Y ∈
Y with �X ∈�Knk
1 and 
Y ∈�Knk

2 . (23)

As k!∞, either ck>c>0, or (for a subsequence) ck!0.
Let us consider first the case when there exists c>0 such that

det(X−Y ) > c for all X ∈�X and Y ∈
Y with �X ∈�Knk
1 and 
Y ∈�Knk

2

for all k. Since K is compact, there exists δ>0 such that det(X1−Y1)> 1
2c whenever

|X−X1|, |Y −Y1|6δ, X∈�X and Y ∈
Y with �X∈�Knk
1 and 
Y ∈�Knk

2 . Fix k large enough so
that nk>1/δ, and let

K1 = {X ∈K : |X−X1|6 δ for some X1 with �X1 ∈�Knk
1 },

K2 = {X ∈K : |X−X2|6 δ for some X2 with �X2 ∈�Knk
2 }.

By definition, K1,K2⊂K are closed sets and K=K1∪K2 because �Knk arises from a
(1/nk)-net. Also, det(X−Y )> 1

2c for all X∈K1 and Y ∈K2 by the choice of k. In turn this
implies that K1∩K2=∅, and therefore K=K1∪K2 yields the required decomposition.

Now consider the case when in (23) the constant ck!0 as k!∞. In this case we find
sequences Xk, Yk∈K, with �Xk∈�Knk

1 and 
Yk∈�Knk
2 , such that det(Xk−Yk)!0 as k!∞.

By taking further subsequences, we may assume that Xk!P and Yk!Q in K, so that in
particular det(P−Q)=0. But then P∼Q, so that 
Q=
P . We claim that s(�X, 
P )=1 for
all �X 6=
P . Indeed, if there exists R∈K with 	R 6=
P and s(
P , 	R)=−1, then det(P−R)<0
and det(Q−R)<0 (since Q∈
P ), and so, for some δ>0,

det(P1−R1) < 0 whenever |P−P1|<δ and |R−R1|<δ,

det(Q1−R1) < 0 whenever |Q−Q1|<δ and |R−R1|<δ.
(24)

Take k sufficiently large so that nk>1/δ and |Xk−P |, |Yk−Q|<δ. Then there exists a
matrix X in the (1/nk)-net for which |X−R|<δ, and so (24) implies that det(X−Xk)<0
and det(X−Yk)<0. Therefore s(�X,�Xk)=−1 and s(�X,
Yk)=−1. On the other hand,
either s(�X,�Xk)=1 or s(�X,
Yk)=1, depending on whether �X is in �Knk

1 or in �Knk
2 . This

is a contradiction, from which we deduce that

s(�X, 
P ) = 1 for all �X 6= 
P . (25)
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Let us point out here that the decomposition 
P∪(K\
P ) would give a sign-separation,
but K\
P might not be compact. To get a decomposition into compact sets we need to
work more.

If s(�X,
Y )=1 for all �X 6=
Y , then any nontrivial decomposition of Krc into two closed
subsets (such a decomposition must exist by the assumption that Krc is not connected)
yields a decomposition for K as required.

Otherwise there exist X1, X2∈K, with �X1 6=�X2, such that s(�X1,�X2)=−1. As in the
proof of [52, Proposition 3] we consider

CC	(X1) = {X ∈K : there exists a 	-path from �X1 to �X},

with the only difference that now the 	-path is defined in �K to be a finite sequence
�X1,�X2, ...,�XN =�X such that s(�Xj ,�Xj+1)=−1. We recall (see observation (1) above)
that if such a path exists between two elements of �K, then the shortest such path has
length at most 2. Using this fact, we also deduce that CC	(X1) is compact, and since
there exists X2 with �X1 6=�X2 and s(�X1,�X2)=−1, CC	(X1) is also open (relative to K).
The proofs of these facts are again precisely as in the proof of [52, Proposition 3]. Finally,
(25) impies that P /∈CC	(X1), so that

K1 =CC	(X1) and K2 =K\K1

give the required nontrivial decomposition.

(II) Existence of a separating curve.
So far we have proved that if Krc is not connected, then K admits a decomposition

K=K1∪K2 into nonempty disjoint compact subsets such that (without loss of generality)

det(X−Y ) > 0 for all X ∈K1 and Y ∈K2,

and moreover, whenever X1, X2∈K1 and Y1, Y2∈K2, the four-point set {X1, X2, Y1, Y2}
is not a T4 configuration. In turn [52, Theorem 4] implies that there exists a continuous
curve Γ:S1!R2×2 with the properties that

(i) det(X−Γ(t))>0 for all X∈K and all t∈S1;
(ii) the projection Γ+ of Γ onto the conformal plane is a Jordan curve;
(iii) the projections of K1 and K2 onto the conformal plane lie in different compo-

nents of C\Γ+.
Since K and Γ are compact, the conditions (i)–(iii) are preserved under small

(C0-)perturbations of the curve Γ. Therefore in particular we may assume that Γ is
a Lipschitz curve, so that |Γ(t)−Γ(s)|6L|t−s| for all t, s∈S1. Furthermore, again by
compactness, there exists δ>0 such that

det(X−Γ(t))> δ for all X ∈K and t∈S1.



298 d. faraco and l. székelyhidi jr.

(III) Existence of an elliptic separating curve.
Our aim is to prove the existence of a separating curve for K, which is elliptic in

the sense of Definition 1. In the following it will be more convenient to parametrize the
closed curves with the unit interval [0, 1], so that Γ: [0, 1]!R2×2 with Γ(0)=Γ(1).

In obtaining ellipticity, it turns out to be rather difficult to control which particular
subsets of K the curve “separates”, and for this reason we fix elements X1∈K1 and
X2∈K2. For a closed Lipschitz curve Γ: [0, 1]!R2×2 consider the projection Γ+: [0, 1]!C
onto the conformal plane and for any point z∈C let

ιΓ(z) =
1

2πi

∫
Γ+

dw

z−w

be the winding number of the curve Γ+ at the point z. It is not difficult to check that
Γ 7!ιΓ(z) is continuous on the set of closed Lipschitz curves Γ: [0, 1]!R2×2 with respect
to the sup-norm topology, and moreover that z 7!ιΓ(z) is an integer-valued function on
C\Γ+ which is constant on each connected component of C\Γ+. For C1-curves this is
classical, see for example [45]. To pass to Lipschitz curves we argue by density using the
weak∗ continuity of Γ 7!ιΓ(z) in W 1,∞([0, 1], R2×2). We will consider closed curves which
“separate” X1 and X2 in the sense that ιΓ(x+

1 ) 6=ιΓ(x+
2 ).

Let S be the set of curves Γ: [0, 1]!R2×2 satisfying the following properties:


Γ(0)= Γ(1),
|Γ(t)−Γ(s)|6L|t−s| for all t, s∈ [0, 1],
det(X−Γ(t))> δ for all X ∈K and t∈ [0, 1],
ιΓ(x+

1 ) 6= ιΓ(x+
2 ).

From step (II) we see that S is nonempty, and from Arzelà–Ascoli’s theorem it follows
that S is compact in C([0, 1], R2×2). For any Γ∈S, let l(Γ) be the length of the curve,
i.e.

l(Γ)=
∫ 1

0

|Γ̇(s)| ds.

It is clear that l is lower semicontinuous on S, so that infS l is achieved for some Γ∈S.
We claim that for the minimizer Γ we necessarily have that

det(Γ(t)−Γ(s))> 0.

Indeed, assume that Γ∈S is a minimizer and that there exist t0<s0 such that

det(Γ(t0)−Γ(s0))< 0. (26)
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For λ∈[0, 1] let Zλ=λΓ(t0)+(1−λ)Γ(s0), and let X∈K. Then

det(Zλ−X) =det(Γ(s0)−X+λ(Γ(t0)−Γ(s0)))

=det(Γ(s0)−X)+λ〈Γ(s0)−X, cof(Γ(t0)−Γ(s0))〉+λ2 det(Γ(s0)−Γ(t0)),

so that, since det(Γ(s0)−Γ(t0))<0, the function

λ 7−! f(λ) def= det(Zλ−X)

is concave. But f(0)>δ and f(1)>δ, so that f(λ)>δ for λ∈[0, 1].
Now consider the two new closed curves Γj∈C([0, 1], R2×2), j=1, 2, formed by con-

necting Γ(t0) and Γ(s0) with a straight line segment. More precisely, we define

Γ1(t) =
{

Γ(t), if t∈ [0, t0]∪[s0, 1],
λΓ(t0)+(1−λ)Γ(s0), if t∈ (t0, s0) with t =λt0+(1−λ)s0,

and similarly Γ2, oriented in such a way that
∫
Γ
=

∫
Γ1

+
∫
Γ2

.
The above argument shows that det(X−Γj(t))>δ, for all X∈K and t∈S1, j=1, 2.

Furthermore, it is clear that |Γj(t)−Γj(s)|6L|t−s|. Finally, since ιΓ(z)=ιΓ1(z)+ιΓ2(z)
for any z∈C\(Γ1∪Γ2), and since ιΓ(x+

1 ) 6=ιΓ(x+
2 ), we have either ιΓ1(x

+
1 ) 6=ιΓ1(x

+
2 ) or

ιΓ2(x
+
1 ) 6=ιΓ2(x

+
2 ).

Therefore, either Γ1 or Γ2 satisfies the conditions for being in S. Notice also that
unless the straight line segment [Γ(t0),Γ(s0)] is contained in Γ, then both Γ1 and Γ2 have
strictly smaller length. Because Γ was a length-minimizer, we deduce that necessarily
[Γ(t0),Γ(s0)] is contained in Γ.

Now choose t1 and s1 so that

t1 =min{t 6 t0 : Γ is a straight line on [t1, s0]},

s1 =max{s> s0 : Γ is a straight line on [t0, s1]}.

By the assumption (26), we have det(Γ(t1)−Γ(s1))<0. If t1=0 and s1=1, then in par-
ticular Γ is a straight line segment, contradicting the requirement that ιΓ(x+

1 ) 6=ιΓ(x+
2 ).

Therefore, we may assume without loss of generality that t1>0. By continuity, there
exists t2<t1 such that det(Γ(t2)−Γ(s0))<0, but then the above argument again implies
that Γ is a straight line on [t2, s0], a contradiction.

We have shown that there exists a Lipschitz-continuous closed curve Γ:S1!R2×2

such that
(i) det(X−Γ(t))>δ for all X∈K and all t∈S1;
(ii) det(Γ(t)−Γ(s))>0 for all t, s∈[0, 1];
(iii) the projections of X1 and X2 onto the conformal plane lie in different compo-

nents of C\Γ+.
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To obtain a separating curve which is elliptic in the sense of Definition 1, consider
for 0<k<1 the new curve

Γ̃(t) = (Γ+(t), kΓ−(t)) .

If 1−k is sufficiently small, then det(X−Γ̃(t))>0 for all X∈K and t∈S1, by compactness
of K, and Γ̃+ still separates x+

1 and x+
2 . Moreover,

|Γ̃−(t)−Γ̃−(s)|6 k|Γ̃+(t)−Γ̃+(s)| for all t, s∈S1,

and therefore Γ̃ is K-elliptic with K=(1+k)/(1−k).

5. Rank-one convexity versus quasiconvexity

Finally, we come to the main results in the paper. In order to state them in the strongest
form, we use the language of Young measures. As discussed in §2, Theorem 1 is equivalent
to Corollary 2, and we restate Theorem 2 as Corollary 3 below. In fact these results can
all be easily deduced from the following theorem.

Theorem 6. If ν is a compactly supported homogeneous gradient Young measure,
then (supp ν)rc is a connected set.

Proof. Let K=supp ν and assume for a contradiction that Krc is not connected.
Then Theorem 5 implies that there exists an elliptic separating curve Γ:S1!R2×2 for K.
In particular, since K⊂R2×2 is compact, there exists K>1 so that, with EΓ denoting the
K-quasiconformal envelope of Γ, we have K⊂EΓ, and moreover E0

Γ∩K and E1
Γ∩K are

both nonempty compact sets. But this gives a contradiction with Theorem 3, which says
that either supp ν⊂�E0

Γ or supp ν⊂�E1
Γ. Recall from Lemma 2 that �E0

Γ∩�E1
Γ=Γ. This proves

the theorem.

Corollary 1. (Incompatible sets) Disjoint compact sets K1,K2⊂R2×2 are incom-
patible for homogeneous gradient Young measures if and only if they are incompatible for
laminates.

Proof. Since laminates are also homogeneous gradient Young measures, it suffices
to prove one direction, namely that incompatibility for laminates implies incompatibility
for homogeneous gradient Young measures. So assume that K1 and K2 are incompatible
for laminates. We claim that in this case (K1∪K2)rc is disconnected. Once we prove
this, the corollary will follow from Theorem 6.

Let P∈(K1∪K2)rc. Then there exists a laminate ν with supp ν⊂K1∪K2 and
barycenter ν̄=P . Since K1 and K2 are incompatible for laminates, supp ν⊂K1 or
supp ν⊂K2. Thus P∈Krc

1 or P∈Krc
2 . This shows that (K1∪K2)rc=Krc

1 ∪Krc
2 . On
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the other hand, if P∈Krc
1 ∩Krc

2 , then P =ν̄1=ν̄2 for laminates νj with supp νj⊂Kj , but
then ν= 1

2 (ν1+ν2) is a laminate where supp ν∩K1 and supp ν∩K2 are both nonempty,
contradicting the incompatibility. Hence (K1∪K2)rc=Krc

1 ∪Krc
2 is disconnected.

Corollary 2. (Compactness) If K⊂R2×2 is a compact set without rank-one con-
nections and contains no T4 configuration, then K supports no nontrivial homogeneous
gradient Young measures.

Proof. First of all, [52, Theorem 1] implies that Krc=K. Let ν be a homogeneous
gradient Young measure with support supp ν⊂K. Theorem 6 implies that (supp ν)rc is
connected. On the other hand, (supp ν)rc⊂Krc=K, and hence (supp ν)rc is a compact,
connected subset of R2×2 with no rank-one connections. But then [48, Lemma 3] implies
that ν=δν̄ .

Corollary 3. (Structure of quasiconvex hulls) If ν is a compactly supported ho-
mogeneous gradient Young measure, then (supp ν)qc is a connected set.

If K⊂R2×2 is a compact set and Kqc⊂
⋃n

j=1 Uj for pairwise disjoint open sets Uj ,
then Kqc∩Uj =(K∩Uj)qc.

Proof. Let ν be a compactly supported homogeneous gradient Young measure, let
K=supp ν, and suppose that Kqc is not connected. Then there exist disjoint open sets
U1 and U2, with Kqc⊂U1∪U2, such that Uj∩Kqc 6=∅ for j=1, 2. From Theorem 6 we
know that Krc is connected, so let us assume without loss of generality that Krc⊂U1. In
particular K⊂U1. Furthermore, let X0∈U2∩Kqc.

Then there exists a homogeneous gradient Young measure µ0 with barycenter
µ̄X0=X0 and support suppµ0⊂K. But then also the new measure

µ= 1
2 (µ0+δX0)

is a homogeneous gradient Young measure. Applying Theorem 6 again, we find that
(supp µ)rc=(suppµ0∪{X0})rc is a connected set. On the other hand,

(supp µ0∪{X0})rc⊂ (supp µ0∪{X0})qc⊂ (K∪{X0})qc =Kqc,

since X0∈Kqc. This shows that X0 and supp µ0 are in the same connected component
of Kqc. In particular, since X0∈U2, we have that suppµ0⊂U2. But this contradicts the
fact that supp µ0⊂K⊂U1.

To prove the second part of the corollary, let X∈Kqc∩Uj . Then there exists a
homogeneous gradient Young measure ν with ν̄=X and supp ν⊂K. Since (supp ν)qc

is connected and X∈(supp ν)qc, necessarily (supp ν)qc⊂Uj , and hence supp ν⊂Uj . But
then X∈(K∩Uj)qc. Conversely, if X∈(K∩Uj)qc, then there exists a homogeneous gradi-
ent Young measure ν with ν̄=X and supp ν⊂K∩Uj . Again, connectedness of (supp ν)qc

implies that (supp ν)qc⊂Uj , so that X∈Uj .
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[39] Müller, S. & Šverák, V., Convex integration for Lipschitz mappings and counterexam-
ples to regularity. Ann. of Math., 157 (2003), 715–742.



304 d. faraco and l. székelyhidi jr.
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1153–1158. Birkhäuser, Basel, 1995.
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