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4.7. Carathéodory convergence . . . . . . . . . . . . . . . . . . . . . . 128
4.8. Improving the convergence topology . . . . . . . . . . . . . . . . 129

5. Other lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

1. Introduction

1.1. Main result

The 2-dimensional massless Gaussian free field (GFF) is a 2-dimensional-time analog of
Brownian motion. Just as Brownian motion is a scaling limit of simple random walks
and various other 1-dimensional systems, the GFF is a scaling limit of several discrete
models for random surfaces. Among these is the discrete Gaussian free field (DGFF),
also called the harmonic crystal. We presently discuss the basic definitions and describe
the main results of the current work, postponing an overview of the history and general
context to §1.3.

Let G=(V,E) be a finite graph and let V∂⊂V be some non-empty set of vertices. Let
Ω be the set of functions h:V!R that are zero on V∂ . Clearly, Ω may be identified with
RV \V∂ . The DGFF on G with zero boundary values on V∂ is the probability measure
on Ω whose density with respect to the Lebesgue measure on RV \V∂ is proportional to

exp
( ∑
{u,v}∈E

−1
2
(h(v)−h(u))2

)
. (1.1)

Note that under the DGFF measure, h is a multi-dimensional Gaussian random variable.
Moreover, the DGFF is a rather natural discrete model for a random field: the term
− 1

2 (h(v)−h(u))2 corresponding to each edge {u, v} penalizes functions h which have a
large gradient along the edge.

Now fix some function h∂ :V∂!R, and let Ωh∂
denote the set of functions h:V!R

that agree with h∂ on V∂ . The probability measure on Ωh∂
whose density with respect

to the Lebesgue measure on RV \V∂ is proportional to (1.1) is the DGFF with boundary
values given by h∂ .

Let TG be the usual triangular grid in the complex plane, i.e., the graph whose
vertex set is the integer span of 1 and eiπ/3= 1

2 (1+i
√

3), with straight edges joining v

and w whenever |v−w|=1. A TG-domain D⊂R2∼=C is a domain whose boundary is a
simple closed curve comprised of edges and vertices in TG. Let V =V
D be the set of TG-
vertices in the closure of D, let G=GD be the induced subgraph of TG with vertex set
V
D, and write V∂=∂D∩V
D. While introducing our main results, we will focus on graphs
GD and boundary sets V∂ of this form (though analogous results hold if we replace TG
with another doubly periodic planar graph; see §1.5).
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We may assume that any function f :V!R is interpolated to a continuous function
on the closure of D which is affine on each triangle of TG. We often interpret f as a
surface embedded in 3 dimensions and refer to f(v) as the height of the surface at v.

Let ∂D=∂+∪∂− be a partition of the boundary of a TG-domain D into two disjoint
arcs whose endpoints are midpoints of two distinct TG-edges in ∂D. Fix two constants
a, b>0. Let h be an instance of the DGFF on (GD, V∂), with boundary function h∂

equal to −a on the vertices in ∂− and equal to b on the vertices in ∂+. Then h (linearly
interpolated on triangles) almost surely assumes the value zero on a unique piecewise
linear path γh connecting the two boundary edges containing endpoints of ∂+.

In §1.4, we will briefly review the definition of SLE(4) (a particular type of ran-
dom chordal path connecting a pair of boundary points of D whose randomness comes
from a 1-dimensional Brownian motion), along with the variants of SLE(4) denoted
SLE(4; %1, %2). Our main result, roughly stated, is the following.

Theorem 1.1. Let D be a TG-domain, ∂D=∂+∪∂− and let h and γh be as above.
There is a constant λ>0 such that if a=b=λ, then as the triangular mesh gets finer ,
the random path γh converges in distribution to SLE(4). If a, b>λ are not assumed to
equal λ, then the convergence is to SLE(4; a/λ−1, b/λ−1).

See §1.5 for a more precise version, which describes the topology under which the
convergence is attained. As explained there, we can also prove convergence in a weaker
form when the conditions a, b>λ are relaxed.

We will elaborate on the role of the constant λ in §1.2. This constant depends only
on the lattice used. Although we do not prove it in this paper, for the triangular grid

the value of λ is λTG :=3−1/4
√

1
8π (see §1.7).

Figure 1.1 illustrates a dual perspective on an instance of γh. Here, each vertex
in the closure of a rhombus-shaped TG-domain D is replaced with a hexagon in the
honeycomb lattice. Call hexagons positive or negative according to the sign of h. Then
there is a cluster of positive hexagons that includes the positive boundary hexagons,
a similar cluster of negative hexagons, and a path γ forming the boundary between
these two clusters. Figure 1.1 depicts a computer generated instance of the DGFF—
with ±λ boundary conditions—and the corresponding γ. Followed from bottom to top,
the interface γ turns right when it hits a negative hexagon, left when it hits a positive
hexagon. It closely tracks the boundary-hitting zero contour line γh in the following
sense: the edges in γ are the duals of the edges of TG that are crossed by γh. This is
because h is almost surely non-zero at each vertex in V , so whenever a zero contour line
contains a point on an edge of TG, h must be positive on one endpoint of that edge and
negative on the other; hence the dual of that edge separates a positive hexagon from a
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Figure 1.1. (a) DGFF on a 90×90 hexagon array with boundary values λ on the right and
−λ on the left; faces shaded by height. (b) Surface plot of DGFF.
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negative hexagon.
In the fine mesh limit, there will be no difference between γ and γh. Thus (by

Theorem 1.1) the path in Figures 1.1 (a) and 1.2 (a) approximates SLE(4), while the
path of Figure 1.3 (a) approximates SLE(4; 2, 2). We will state and prove most of our
results in terms of the dual perspective displayed in the figures.

1.2. Conditional expectation and the height gap

We derive the following well-known facts as a warm-up in §2.1 (see also, e.g., [Gi]).

Boundary influence: The law of the DGFF with boundary conditions h∂ :V∂!R is
the same as that of the DGFF with boundary conditions 0 plus a deterministic function
h̃∂ :V!R which is the unique discrete-harmonic interpolation of h∂ to V. (By discrete-
harmonic we mean that for each v∈V \V∂ , the value h(v) is equal to the average value of
h(w) over w adjacent to v.) In particular, the expected value of h(v) is discrete-harmonic
in V \V∂ .

Markov property : Let h:V!R be a random function whose law is the DGFF on G
with some boundary values h∂ on V∂ . Then, given the values of h on a superset V0⊃V∂ ,
the conditional law of h is that of a DGFF on G with boundary set V0 and with boundary
values equal to the given values.

From these facts it follows that conditioned on the path γ described in the previous
section and on the values of h on the hexagons adjacent to γ, the expected value of h
is discrete-harmonic in the remainder of GD. Figures 1.2 and 1.3 illustrate the expected
value of h conditioned on the values of h on the hexagons adjacent to γ.

The reader may observe in Figure 1.2 that although the expected value of h given
the values along γ varies a great deal among hexagons close to γ, the expected value at
five or ten lattice spacings away from γ appears to be roughly constant along either side
of γ. On the other hand, in Figure 1.3, away from γ, the expected height appears to be a
smooth but non-constant function. In a sense we make precise in §3 (see Theorem 3.28),
the values −λ and λ describe the expected value of h, conditioned on γ, at the vertices
near (but not microscopically near) the left and right sides of γ; in the fine mesh limit
there is thus an “expected height gap” of 2λ between the two sides of γ. In Figure 1.2
the height expectation appears constant away from γ, because the boundary values of
±λ are the same as the expected values near (but not microscopically near) γ.

Once we have established the height gap result, the proof of Theorem 1.1 (at least
for the simplest case that the boundary conditions are −λ and λ) is similar to the proof
that the harmonic explorer converges to SLE(4), as given by the present authors in [SS],
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Figure 1.2. (a) Expectation of DGFF with boundary values ±λ given its values at hexagons
bordering the interface. (b) Surface plot of the above.
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Figure 1.3. (a) Expectation of DGFF given its values at hexagons bordering the interface;
exterior boundary values are −3λ on left, and 3λ on right. (b) Surface plot of the above.
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which, in turn, follows the same strategy as the proof of convergence of the loop-erased
random walk to SLE(2) and the uniform spanning tree Peano curve to SLE(8) in [LSW4].

We will now briefly describe some of the key ideas in the proof of the height gap
result. The main step is to show that if one samples a vertex z on γ according to discrete-
harmonic measure viewed from a typical point far away from γ, then the absolute value of
h(z) is close to independent of the values of h (and the geometry of γ) at points that are
not microscopically close to z. In other words, if we start a random walk S at a typical
point in the interior of D and stop the first time it hits a vertex z which either belongs to
V∂ or corresponds to a hexagon incident to γ, then (conditioned on z /∈V∂) the random
variable |h(z)| (and in particular its conditional expectation) is close to independent of
the behavior of γ and h at vertices far away from z.

To prove this, we will actually prove something stronger, namely that (up to mul-
tiplication by −1) the collection of all of the values of h (and the geometry of γ) in
a microscopic neighborhood of z is essentially independent of the values of h (and the
geometry of γ) at points that are not microscopically close to z. One consequence of
our analysis is Theorem 3.21, which states that if one takes z to be the origin of a new
coordinate system and conditions on the behavior of γ and S outside of a ball of radius
R centered at z and S starts outside that ball, then as R tends to infinity the conditional
law of the interface γ has a weak limit (which is independent of the sequence of boundary
conditions chosen), which is the law of a random infinite path γ on the honeycomb grid
TG∗ (almost surely containing an edge adjacent to the hexagon centered at the origin
z=0). We will define a function of such infinite paths γ which (in a certain precise sense)
describes the expected value of |h(z)| conditioned on γ; the value λ is the expectation of
this function when γ is chosen according to the limiting measure described above.

We remark that many important problems in statistical physics involve classifying
the measures that can arise as weak limits of Gibbs measures on finite systems. In such
problems, showing the uniqueness of the limiting measure often involves proving that
properties of a random system near the origin are approximately independent of the
properties of the system far away from the origin. In our case, we need to prove that in
some sense the behavior of the triple (h, γ, S) near the the origin (i.e., the first point S
hits γ) is close to independent of the behavior of (h, γ, S) far from the origin.

Very roughly speaking, our strategy will be to describe the joint law of (h, γ, S) near
the origin and (h, γ, S) far from the origin by considering a different measure in which
the two are independent and weighting it by the probability that the inside and outside
configurations properly “hook up” with one another. To get a handle on these “hook
up” probabilities, we will need to develop various techniques to control the probabilities
(conditioned on the values of h on certain sets) that certain zero-height level lines hook
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up with one another, as well as the probabilities that these level lines avoid certain
regions. We will also need bounds on the probability that there exist clusters of positive
or negative hexagons crossing certain regions; these are roughly in the spirit of the Russo–
Seymour–Welsh theorems for percolation, but the proofs are entirely different. All of the
height gap related results are proved in §3.

1.3. GFF definition and background

To help put our DGFF theorems in context and provide further intuition, we now briefly
recall the definition of the (continuum) GFF and mention some basic facts described,
e.g., in [Sh]. Let Hs(D) be the set of smooth functions supported on compact subsets
of a planar domain D, and let H(D) be its Hilbert space completion under the Dirichlet
inner product (f, g)∇=

∫
D
∇f ·∇g dx, where dx refers to area measure. We define an

instance of the Gaussian free field to be the formal sum

h=
∞∑
j=1

αjfj ,

where the αj ’s are independent identically distributed 1-dimensional standard (unit vari-
ance, zero mean) Gaussians and the fj ’s are an orthonormal basis for H(D). Although
the sum does not converge pointwise or in H(D), it does converge in the space of distri-
butions [Sh]. In particular, the sum

(h, g)∇ :=
∞∑
j=1

αj(fj , g)∇

is almost surely convergent for every g∈Hs(D).
It is worthwhile to take a moment to compare with the situation where D is 1-

dimensional. If D were a bounded open interval in R, then the partial sums of

h=
∞∑
j=1

αjfj

would almost surely converge uniformly to a limit, whose law is that of the Brownian
bridge, having the value zero at the interval’s endpoints. If D were the interval (0,∞),
then the partial sums would converge (uniformly on compact sets) to a function whose
law is that of ordinary Brownian motion Bt, indexed by t∈[0,∞), with B0=0 [Sh].

Let g be a conformal (i.e., bijective analytic) map from D to another planar domain
D′. When g is a rotation, dilation, or translation, it is obvious that∫

D′
∇(f1�g−1)·∇(f2�g−1) dx=

∫
D

(∇f1 ·∇f2) dx
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for any f1, f2∈Hs(D), and an elementary change of variables calculation gives this equal-
ity for any conformal g. Taking the completion to H(D), we see that the Dirichlet inner
product—and hence the 2-dimensional GFF—is invariant under conformal transforma-
tions of D.

Up to a constant, the DGFF on a TG-domain D can be realized as a projection of
the GFF on D onto the subspace of H(D) consisting of functions which are continuous
and are affine on each triangle of D [Sh]. Note that if f is such a function, then

(f, f)∇ =
√

3
6

∑
(|f(k)−f(j)|2+|f(l)−f(j)|2+|f(l)−f(k)|2),

where the sum is over all triangles (j, k, l) in V
D. This is because the area of each triangle
is 1

4

√
3 and the norm of the gradient squared in the triangle is

2
3 (|f(k)−f(j)|2+|f(l)−f(j)|2+|f(l)−f(k)|2).

Since each interior edge of D is contained in two triangles, for such f ,

‖f‖2∇ =
1√
3

∑
{j,k}∈EI

|f(k)−f(j)|2+
1

2
√

3

∑
{j,k}∈E∂

|f(k)−f(j)|2, (1.2)

where EI and E∂ are the interior and boundary (undirected) edges of TG in 
D. We will
refer to the sum

∑
EI
|f(k)−f(j)|2 as the discrete Dirichlet energy of f . It is equivalent—

up to the constant factor 3−1/2 and an additive term depending only on the boundary
values of f—to the Dirichlet energy (f, f)∇ of the piecewise affine interpolation of f
to D.

The above analysis suggests a natural coupling between the GFF and a sequence of
DGFF approximations to the GFF (obtained by taking finer mesh approximations of the
same domain). The GFF can also be obtained as a scaling limit of other discrete random
surface models (e.g., solid-on-solid, dimer-height-function, and ∇φ-interface models) [Ke]
[NS], [Sp]. Its Laplacian is a scaling limit of some Coulomb gas models, which describe
random electrostatic charge densities in 2-dimensional domains [F], [FS], [Ko], [KT],
[Sp]. Physicists often use heuristic connections to the GFF to predict properties of 2-
dimensional statistical physics models that are not obviously random surfaces or Coulomb
gases (e.g., Ising and Potts models, O(n) loop models) [dN], [DMS], [D], [Ka], [KN], [N1],
[N2]. As a model for the field theory of non-interacting massless bosons, the GFF is a
starting point for many constructions in quantum field theory, conformal field theory,
and string theory [BPZ], [DMS], [Ga], [GJ].

Because of the conformal invariance of the GFF, physicists and mathematicians have
hypothesized that discrete random surface models that are believed or known to converge
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to the Gaussian free field (e.g., the discrete Gaussian free field, the height function of the
oriented O(n) loop model with n=2, height functions for domino and lozenge tilings) have
level sets with conformally invariant scaling limits [Co], [DS1], [DS2], [SD], [KDH], [HK],
[Ke], [KH], [KHS], [N1]. Our results confirm this hypothesis for the discrete Gaussian
free field.

Various properties of the DGFF contour lines (such as winding exponents and the
fact that the fractal dimension is 3

2 ) have been predicted correctly in the physics litera-
ture [Co], [DS2], [DS1], [SD], [HK], [KDH], [KH], [KHS], [N1]. The techniques used to
make these predictions are also described in detail in the survey papers [D], [KN], [N2].
Analogous results about winding exponents and fractal dimension have now been proved
rigorously for SLE [Sch], [RS], [B].

The study of level lines of the DGFF and related random surfaces is also related
to the study of equipotential lines of random charge distributions in statistical physics.
The so-called 2-dimensional Coulomb gas is a model for electrostatics in which the force
between charged particles is inversely proportional to the distance between them. In this
model, a continuous function f∈Hs(D) is the Coulomb gas electrostatic potential function
(“grounded” at the boundary of D) of −∆f , when ∆f is interpreted as a charge density
function. The value (f, f)∇ is then the total potential energy—also called the energy
of assembly of the charge distribution −∆f . In the Coulomb gas model, this is the
amount of energy required to move from a configuration in which the charge density is
zero throughout D to a configuration in which the charge density is given by −∆f .

In statistical physics, it is often natural to consider a probability distribution on
configurations in which the probability of a configuration with potential energy H is
proportional to e−H . If % is a smooth charge distribution, then its energy of assembly is
given by (−∆−1%,−∆−1%)∇=(%,−∆−1%); if we define % to be the standard Gaussian in
∆H(D) determined by this quadratic form, then % is the Laplacian of the Gaussian free
field (which, like the GFF itself, is well defined as a random distribution but not as a
function). In other words, the Laplacian of a Gaussian free field is a random distribution
that we may interpret as a model for random charge density in a statistical physical
Coulomb gas.

However, we stress that when physicists refer to the Coulomb gas method for O(n)
model computations, they typically have in mind a more complicated Coulomb gas model
in which the charges are required to be discrete (i.e., % is required to be a sum of unit
positive and negative point masses) and hard core constraints may be enforced.

The surveys [BEF], [Gi], [Sp] contain additional references on lattice spin models
that have the GFF as a scaling limit and Coulomb gas models that have its Laplacian as a
scaling limit—for example, the harmonic crystal (also known as the discrete Gaussian free
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field) with quadratic nearest-neighbor potential, the more general anharmonic crystal,
the discrete-height Gaussian (where h is a function on a lattice, with values restricted to
integers), the Villain gas (where h is a function on a lattice and the values of its discrete
Laplacian p=−∆h are restricted to integers), and the hard core Coulomb gas (where h
is a function on a lattice and its discrete Laplacian p=−∆h is ±1 valued).

The physics literature on applications of the GFF to field theory and statistical
physics is large, and the authors themselves are only familiar with parts of it. Outside
of these areas, there is a body of experimental and computational research on contour
lines of random topographical surfaces, such as the surface of the earth. Mandelbrot’s
famous How Long Is the Coast of Britain? [M], which prefigured the notion of “fractal”
introduced by Mandelbrot years later, is an early example. The results about contour
lines in these studies (including fractal dimension computations) are less detailed than
the ones provided here and are not all mathematically rigorous. However, some of the
models are similar in spirit to the GFF, involving functions whose Fourier coefficients
are independent Gaussians. An eclectic overview of this literature appears in [I].

1.4. SLE background and prior convergence results

We now give a brief definition of (chordal) SLE(�) for �>0. See also the surveys [W],
[KN], [L4], [Ca] or [L3]. The discussion below along with further discussion of the special
properties of SLE(4) appears in another paper by the current authors [SS]. That paper
shows that SLE(4) is the scaling limit of a random interface called the harmonic explorer
(designed in part to be a toy model for the DGFF contour line addressed here).

Let T>0. Suppose that γ: [0, T ]!
H is a continuous simple path in the closed up-
per half-plane 
H which satisfies γ[0, T ]∩R={γ(0)}={0}. For every t∈[0, T ], there is a
unique conformal homeomorphism gt: H\γ[0, t] which satisfies the so-called hydrodynamic
normalization at infinity

lim
z!∞

(gt(z)−z) = 0.

The limit

cap∞(γ[0, t]) := lim
z!∞

z(gt(z)−z)
2

is real and monotone increasing in t. It is called the (half-plane) capacity of γ[0, t] from
∞, or just capacity, for short. Since cap∞(γ[0, t]) is also continuous in t, it is natural to
reparameterize γ so that cap∞(γ[0, t])=t. Loewner’s theorem states that in this case the
maps gt satisfy his differential equation

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z, (1.3)
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where Wt=gt(γ(t)). (Since γ(t) is not in the domain of definition of gt, the expression
gt(γ(t)) should be interpreted as a limit of gt(z) as z!γ(t) inside H\γ[0, t]. This limit
does exist.) The function t 7!Wt is continuous in t, and is called the driving parameter
for γ.

One may also try to reverse the above procedure. Consider the Loewner evolution
defined by the ordinary differential equation (ODE) (1.3), where Wt is a continuous,
real-valued function. For a fixed z, the evolution defines gt(z) as long as |gt(z)−Wt| is
bounded away from zero. For z∈
H let τz be the first time t>0 in which gt(z) and Wt

collide, or set τz=∞ if they never collide. Then gt(z) is well defined on {z∈
H:τz>t}.
The set Kt :={z∈
H:τz6t} is sometimes called the evolving hull of the evolution. In the
case discussed above where the evolution is generated by a simple path γ parameterized
by capacity and satisfying γ(t)∈H for t>0, we have Kt=γ[0, t].

The path of the evolution is defined as γ(t)=limz!Wt g
−1
t (z), where z tends to Wt

from within the upper half-plane H, provided that the limit exists and is continuous.
However, this is not always the case. The process (chordal) SLE(�) in the upper half-
plane, beginning at 0 and ending at ∞, is the path γ(t) when Wt is Bt

√
�, where

Bt=B(t) is a standard 1-dimensional Brownian motion. (Standard means B(0)=0 and
E[B(t)2]=t, t>0. Since (Bt

√
k :t>0) has the same distribution as (B�t :t>0), taking

Wt=B�t is equivalent.) In this case, almost surely γ(t) does exist and is a continuous
path. See [RS] (� 6=8) and [LSW4] (�=8).

We now define the processes SLE(�; %1, %2). Given a Loewner evolution defined by
a continuous Wt, we let xt and yt be defined by xt :=sup{gt(x):x<0 and x /∈Kt} and
yt :=inf{gt(x):x>0 and x /∈Kt}. When the Loewner evolution is generated by a simple
path γ(t) satisfying γ(t)∈H for t>0, these points xt and yt can be thought of as the two
images of 0 under gt. Note that, by (1.3),

∂txt =
2

xt−Wt
and ∂tyt =

2
yt−Wt

(1.4)

for all t such that xt<Wt<yt. Beginning from an initial time r for which xr<Wr<yr,
we define SLE(�; %1, %2) to be the evolution that makes (xt,Wt, yt) a solution to the
stochastic differential equation (SDE) system

dWt =
√
� dBt+

%1 dt

Wt−xt
+

%2 dt

Wt−yt
, dxt =

2 dt
xt−Wt

, dyt =
2 dt

yt−Wt
, (1.5)

noting that existence and uniqueness of solutions to this SDE (at least from the initial
time r until the first s>r for which either xs=Ws or Ws=ys) follow easily from standard
results in [RY]. (The xt and yt are called force points because they apply a “force”
affecting the drift of the process Wt by an amount inversely proportional to their distance
from Wt.)
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Some subtlety is involved in extending the definition of SLE(�; %1, %2) beyond times
when Wt hits the force points, and in starting the process from the natural initial values
x0=W0=y0=0. This is closely related to the issues which come up when defining the
Bessel processes of dimension less than 2 and will be discussed in more detail in §4.

Although many random self-avoiding lattice paths from the statistical physics litera-
ture are conjectured to have forms of SLE as scaling limits, rigorous proofs have thus far
appeared only for a few cases: site percolation cluster boundaries on the hexagonal lattice
(SLE(6), [Sm]; see also [CN]), branches (loop-erased random walk) and outer boundaries
(random Peano curves) of uniform spanning trees (forms of SLE(2) and SLE(8), respec-
tively, [LSW4]), the harmonic explorer (SLE(4), [SS]), and boundaries of simple random
walks (forms of SLE

(
8
3

)
, [LSW3]).

In the latter case, conformal invariance properties follow almost immediately from
the conformal invariance of 2-dimensional Brownian motion. In each of the other cases
listed above, the initial step of the proof is to show that a certain function of the partially
generated paths γ([0, t]), which is a martingale in t when γ is SLE(�) for the appropriate
�, has a discrete analog which is (approximately or exactly) a martingale for the dis-
crete paths and is approximately equivalent to the continuous version in the fine mesh
limit. For loop-erased random walk, harmonic explorer, and uniform spanning tree Peano
curves, this initial step is the easy part of the argument; it follows almost immediately
from the fact that simple random walk converges to Brownian motion. The analogous
step for site percolation on the hexagonal lattice, as given by [Sm], is an ingenious but
nonetheless short and simple argument.

By contrast, the analogous step in this paper (which requires the proof of the height
gap lemma, as given in §3) is quite involved; it is the most technically challenging part
of the current work and includes many new techniques and lemmas about the geometry
of DGFF contours that we hope are interesting for their own sake.

Another way in which the DGFF differs from percolation, the harmonic explorer,
and the uniform spanning tree is that it has a natural continuum analog (the GFF)
which can be easily rigorously constructed without any reference to SLE, and which is
itself (like Brownian motion) an object of great significance. It becomes natural to ask
whether the DGFF results enable us to define the “contour lines” of the continuum GFF
in a canonical way; we plan to answer this question (affirmatively) in a subsequent work
(see §1.7).

A final difference is that, for the DGFF, there is a continuum of choices for left
and right boundary conditions (a and b) which are equally natural a priori, so we are
led to consider a family of paths SLE(4; a/λ−1, b/λ−1) instead of simply SLE(4). (The
case a=b=0 is particularly natural; see Figure 1.4.) In these processes, the driving
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parameters Wt are generally no longer Brownian motions (rather, they are continuous
semimartingales with constant quadratic variation and a drift term that can become
singular on a fractal set). Proving driving parameter convergence to these processes
requires some rather general convergence infrastructure (§4.4), which we hope will be
useful in other settings as well.

1.5. Precise statement of main result

Let H be the upper half-plane. Let D be any TG-domain and let ∂D=∂+∪∂− be a
partition of the boundary of D into two disjoint arcs whose endpoints are midpoints of
two TG-edges contained in ∂D. As before, let V denote the vertices of TG in 
D. Let
h∂=−a on ∂−∩V and h∂=b on ∂+∩V , where a and b are positive constants.

Let h:V!R be an instance of the DGFF with boundary conditions h∂ . Let φD
be any conformal map from D to H that maps ∂+ bijectively onto the positive real ray
(0,∞). (Note that φD is unique up to positive scaling.)

There is almost surely a unique interface γ⊂
D between hexagons in the dual grid
TG∗ containing TG-vertices where h is positive and such hexagons where h is negative,
such that the endpoints of γ are on ∂D. In fact, the endpoints of γ are the same as the
endpoints of ∂+. (As mentioned above, this interface γ stays within a bounded distance
from the zero-height contour line γD of the affine interpolation of h.) Now, φD �γ is a
random path on H connecting 0 to ∞. We will show that this path converges to a form
of SLE(4). Rather than considering a fixed domain D̂ and a sequence of discrete domains
Dn approximating D̂, with the mesh tending to 0, we will employ a setup that is more
general in which the mesh is fixed (the triangular lattice will not be rescaled), and we
consider domains D that become “larger”. The correct sense of “large” is measured by

rD = rD,φ := rad
φ−1

D (i)
(D),

where radx(D) denotes the radius of D viewed from x, i.e., infy/∈D |x−y|. Of course, if
φ−1
D (i) is at a bounded distance from ∂D, then the image of the triangular grid under
φD is not fine near i, and there is no hope for approximating SLE by φD �γ.

We have chosen to use H as our canonical domain (mapping all other paths into H),
because it is the most convenient domain in which to define chordal SLE. However, to
make the completion of H a compact metric space, we will endow H with the metric it
inherits from its conformal map onto the unit disk U. Namely, we let d∗( · , ·) be the metric
on 
H∪{∞} given by d∗(z, w)=|Ψ(z)−Ψ(w)|, where Ψ(z):=(z−i)/(z+i) maps 
H∪{∞}
onto 	U. If z∈
H, then d∗(zn, z)!0 is equivalent to |zn−z|!0, and d∗(zn,∞)!0 is
equivalent to |zn|!∞.
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If γ1 and γ2 are distinct unparameterized simple paths in
H, then we define dU (γ1, γ2)
to be the infimum over all pairs (η1, η2) of parameterizations of γ1 and γ2 in [0, 1] (i.e.,
ηj : [0, 1]!
H is a simple path satisfying ηj([0, 1])=γj for j=1, 2) of the uniform distance
sup{d∗(η1(t), η2(t)):t∈[0, 1]} with respect to the metric d∗.

Our strongest result is in the case where a, b>λ. We prove the following result.

Theorem 1.2. There is a constant λ>0 such that if a, b>λ, then, as rD!∞, the
random paths φD �γ described above converge in distribution to SLE(4; a/λ−1, b/λ−1)
with respect to the metric dU .

In other words, for every ε>0 there is some R=R(ε) such that if rD>R, then there
is a coupling of φD �γ and a path γSLE whose law is that of SLE(4; a/λ−1, b/λ−1) such
that

P[dU (φD �γ, γSLE)>ε]<ε.

We first comment that it follows that when rD is large, γ is “close” to φ−1
D �γSLE. For

example, if rD!∞ and r−1
D D tends to a bounded domain D̂ whose boundary is a simple

closed path in such a way that the boundaries of the domains may be parameterized
to give uniform convergence of parameterized paths and if r−1

D ∂+ converges, then r−1
D γ

converges in law to the corresponding SLE in D̂. To prove this from Theorem 1.2, we
only need to note that in this case the maps r−1

D φ−1
D converge uniformly in 
H∪{∞} (see,

e.g., [P, Proposition 2.3]).
When we relax the assumption a, b>λ to a, b>0, we still prove some sort of con-

vergence to SLE(4; a/λ−1, b/λ−1), but with respect to a weaker topology. In fact, we
can allow a and b to be zero or even slightly negative, but in this case we need to ap-
propriately adjust the above definition of the interface γ. Say that a hexagon in the
hexagonal grid TG∗ dual to TG is positive if either the center v of the hexagon is in D

and h(v)>0, or v∈∂+. Likewise, say that the hexagon is negative if v∈D and h(v)<0,
or v∈∂−. Let γ be the unique oriented path in TG∗ that joins the two endpoints of ∂+,
has only positive hexagons adjacent to its right-hand side and only negative hexagons
adjacent to its left-hand side. (If a, b>0, this definition clearly agrees with the previous
definition of γ.) We prove the following.

Theorem 1.3. For every constant Λ̄>0 there is a constant Λ0=Λ0(Λ̄)>0 such that
if a, b∈[−Λ0, Λ̄] and γ is the DGFF interface defined above, then as rD!∞ the Loewner
driving term Ŵt of φD �γ, parameterized by capacity from ∞, converges in law to the
driving term Wt of SLE(4; a/λ−1, b/λ−1) with respect to the topology of locally uniform
convergence. That is, for every T, ε>0 there is some R>0 such that if rD>R, then γ

and SLE(4; a/λ−1, b/λ−1) may be coupled so that with probability at least 1−ε,

sup{|Ŵt−Wt| : t∈ [0, T ]}<ε.
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Figure 1.4. Zero-height interfaces starting and ending on the boundary, shown for the discrete
GFF on a 150×150 hexagonal array with zero boundary. Interior white hexagons have height
greater than zero; interior black hexagons have height less than zero; boundary hexagons (of
height zero) are black. Hexagons that are not incident to a zero-height interface that reaches
the boundary are grey.

Some (essentially well-known) geometric consequences of this kind of convergence
are proved in §4.7.

A particularly interesting case of Theorem 1.3 is the case a=b=0, corresponding to
the DGFF with zero boundary values. In this case, when h is interpolated linearly to
triangles, its zero level set will almost surely include a finite number of piecewise linear
arcs in D whose endpoints on ∂D are vertices of TG. A dual representation of this set
of arcs is shown in Figure 1.4. For any fixed choice of endpoints on the boundary, the
interface connecting those endpoints will converge to SLE(4;−1,−1). The limit of the
complete set of arcs in Figure 1.4 is in some sense a coupling of SLE(4;−1,−1) processes,
one for each pair of boundary points.

Finally, we discuss the generalizations: replace TG with an arbitrary weighted dou-
bly periodic planar lattice—i.e., a connected planar graph G⊂R2 invariant under two
linearly independent translations, T1 and T2, such that every compact subset of R2 meets
only finitely many vertices and edges, together with a map w from the edges of G to the
positive reals, which is invariant under T1 and T2.

A G-domain D⊂R2 is a domain whose boundary is a simple closed curve comprised
of edges and vertices in G. Let V =V
D be the set of G-vertices in the closure of D, let
G=GD=(V,E) be the induced subgraph of G with vertex set V
D, and write V∂=∂D∩V
D.
Given a boundary value function h∂ :V∂!R, the edge weighted DGFF on G has a density



38 o. schramm and s. sheffield

with respect to the Lebesgue measure on RV \V∂ which is proportional to

exp
( ∑
{u,v}∈E

−1
2
w({u, v})(h(v)−h(u))2

)
.

If every face of G has three edges, then every vertex in the dual graph is an endpoint of
exactly three edges, and the boundary between positive and negative faces can be defined
as a simple path in this dual lattice, similar to the one shown in Figure 1.1 (a). If not
every face of G has three edges, then we may “triangulate” G by adding additional edges
to G, while maintaining the invariance under T1 and T2, to make this the case (and set
w to zero on these edges so that their presence does not affect the law of the DGFF).

We define the weighted random walk on G to be the Markov chain with transition
probability w({u, v})/

∑
v′ w({u, v′}) from u to v, where we take w({u, v})=0 unless

u and v are neighbors in G. It is well known and easy to prove that such a walk on
the rescaled lattice εG converges to a linear transformation of time-scaled 2-dimensional
Brownian motion when ε tends to zero (but since we could not find a reference, we
very briefly explain this in §5). It is convenient to replace the embedding of G into R2

described above with a linear transformation of that embedding that causes this limit to
be standard Brownian motion.

Theorem 1.4. Both Theorems 1.2 and 1.3 continue to hold if TG is replaced by
a general weighted doubly periodic planar lattice G, as described above, provided that G

is embedded in R2 in such a way that the weighted random walk converges to Brownian
motion.

If G is the grid Z2, then one natural way to triangulate G is to add all the edges of
the form {(x, y), (x+1, y+1)}. Another would be to add the edges {(x, y), (x+1, y−1)}.
The above theorem implies, perhaps surprisingly, that the limiting law of the zero-height
interface is the same in either case, with no need for a linear change of coordinates.

1.6. Outline

In §2 we introduce the basic notation and assumptions that are necessary for the height
gap results proved in §3. In §§3.1–3.4 we develop bounds and estimates related to the
geometry of zero-height interfaces. The random walk S comes into the picture in §3.5,
where we develop results about the near-independence of the triple (h, γ, S) on micro-
scopic and macroscopic scales. In §3.6 we apply these results to prove uniqueness of the
limiting measure, namely Theorem 3.21, and in §3.7 we apply this to prove our main
height gap result, Theorem 3.28.
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Based on Theorem 3.28, the convergence in the case where the boundary values are
±λ is not too hard, using the method from [LSW4]. However, to prove the convergence
to SLE(4; a/λ−1, b/λ−1) in §4, we need to contend with a few other issues which stem
from the fact that the driving parameter of SLE(4; a/λ−1, b/λ−1) is the solution to
an SDE with a drift term that blows up to infinity on a fractal set of times. To over-
come these difficulties, we change coordinates to a coordinate system in which the drift
terms stay bounded. In §4.4 we define and study approximate diffusions. These are
random processes that are not necessarily Markov, but satisfy an approximate discrete
version of an SDE. The Loewner driving term of the DGFF interface (before going to
the scaling limit) is the approximate diffusion we are interested in. The main point is
that an approximate diffusion of an SDE is shown to be close to the corresponding true
diffusion satisfying the same SDE, under appropriate regularity conditions. This is how
the convergence of the driving term of the DGFF interface to the driving term of the
corresponding SLE(�; %1, %2) is established. In §4.7 and §4.8 more geometric convergence
results are deduced from the convergence of the Loewner driving term of the interface.

Finally, the rather brief §5 then describes the (very minor) modifications required
for the generalization to other lattices, Theorem 1.4.

1.7. Sequel

This paper is actually the first of two papers the current authors are writing about this
subject. In the second paper we will make sense of the “contour lines” of the continuum
GFF. An instance h of the continuum GFF is a random distribution, not a random
function; however, given an instance of the GFF on a domainD, we can project h onto the
space of functions which are piecewise linear on a triangulation of D to yield an instance
of the DGFF which is, in some sense, a piecewise linear approximation to h. We can then
define the level lines of the GFF to be the limits of the level lines of its piecewise linear
approximations (after proving that these limits exist). We will also characterize these
random paths directly—without reference to discrete approximations—by showing that
they are the unique path-valued functions of h which satisfy a simple Markov property.
Similar techniques allow us to describe the contour lines of h that form loops (instead of
starting and ending at points on the boundary of D).

The determination of the value of λ for a given lattice is not too hard, but fits
better with the general spirit of our next paper on the subject, in which we will prove,

in particular, that λTG=3−1/4
√

1
8π. If the DGFF is scaled so that its fine mesh limit is

the ordinary GFF, we have λ=
√

1
8π.
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2. Preliminaries

2.1. A few general properties of the DGFF

In this subsection, we recall a few well-known properties of the DGFF that are valid
on any finite graph. Let (V,E) be a finite graph, and let V∂⊂V be a non-empty set of
vertices. Let h denote a sample from the DGFF with boundary values given by some
function h∂ :V∂!R.

When f is a function on V , the discrete gradient ∇f is the function on the set
of ordered pairs (v, u) such that {v, u}∈E defined by ∇f((u, v))=f(v)−f(u). When
defining the norm of the gradient we sum over undirected edges, i.e., we write

‖∇f(v)‖2 =
∑

{u,v}∈E

(f(v)−f(u))2. (2.1)

Thus, the probability density of h is proportional to e−‖∇h(v)‖
2/2. Therefore, when h∂=0

on V∂ , h is a standard Gaussian with respect to the norm ‖∇h‖ on Ω. The (discrete)
Dirichlet inner product that defines this norm can be written

(f, g)∇ =
∑

{u,v}∈E

(f(v)−f(u))(g(v)−g(u)). (2.2)

Now write ∆f(v)=
∑
u∼v(f(u)−f(v)), where the sum is over all neighbors u of v.

By expanding and rearranging the summands in (2.2), we find

(f, g)∇ =−(∆f, g). (2.3)

Let V0⊂VD. We claim that the vector space of functions f :V!R that are zero on
V \V0, and the vector space of functions f :V!R that are discrete-harmonic on V0 (i.e.,
∆f=0 on V0) are orthogonal to each other with respect to the inner product ( · , ·)∇, and
together they span RV . This basic observation will be used frequently below. Indeed,
that they are orthogonal follows immediately from (2.3), and a dimension count now
shows that the two spaces together span RV .

The following consequence of this orthogonality property will be used below. Let
V0⊂V satisfy V0⊃V∂ and let h0 denote the function that is discrete-harmonic in V \V0
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and equal to h in V0. Then h−h0 and h0 are independent random variables, because
h=h0+(h−h0) is the corresponding orthogonal decomposition of h. It also follows that

h−h0 is the DGFF in V \V0 with zero boundary values on V0. (2.4)

Observe that the Markov property and the effect of boundary conditions that were men-
tioned in §1.2 are immediate consequences of (2.4). An additional useful consequence is
that the law of h0 is proportional to e−(h0,h0)

2
∇/2 times the Lebesgue measure on RV0 .

We now derive a useful well-known expression for the expectation of h(v)h(u):

E[h(v)h(u)]−E[h(v)]E[h(u)]=
G(u, v)
deg(v)

, (2.5)

where G(u, v) is the expected number of visits to v by a simple random walk started at
u before it hits V∂ and deg(v) is the degree of v; that is, the number of edges incident
with it. (The function G is known as the Green function.) As we have noted in the
introduction, h is the sum of the discrete-harmonic extension of h∂ and a DGFF with
zero boundary values. It therefore suffices to prove (2.5) in the case where h∂=0 on V∂ .
In this case, E[h(v)]=0=E[h(u)]. Setting Gv(u)=G(u, v), we observe (or recall) that
∆Gv(u)=−deg(v)1v(u). Thus,

h(v) = (h, 1v) =− (h,∆Gv)
deg(v)

(2.3)
=

(h,Gv)∇
deg(v)

.

If X is a standard Gaussian in Rn, and x, y∈Rn, then E[(X ·x)(X ·y)]=x·y. Conse-
quently, when h∂=0, we have

E[h(v)h(u)]=
E[(h,Gv)∇(h,Gu)∇]

deg(v) deg(u)
=

(Gv, Gu)∇
deg(v) deg(u)

=
−(Gv,∆Gu)
deg(v) deg(u)

=
(Gv, 1u)
deg(v)

=
G(u, v)
deg(v)

.

This proves (2.5).

2.2. Some assumptions and notation

We will make frequent use of the following notation and assumptions:
(h) A bounded domain (non-empty, open, connected set) D⊂R2 whose boundary

∂D is a subgraph of TG is fixed. The set of vertices of TG in D is denoted by VD and
V∂ denotes the set of vertices in ∂D. A constant Λ̄>0 is fixed, as well as a function
h∂ :V∂!R satisfying ‖h∂‖∞6Λ̄. The DGFF on D with boundary values given by h∂ is
denoted by h. Also set V =V
D=VD∪V∂ .
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We denote by TG∗ the hexagonal grid which is dual to the triangular lattice TG—so
that each hexagonal face of TG∗ is centered at a vertex of TG. Generally, a TG∗-hexagon
will mean a closed hexagonal face of TG∗. Denote by BR the union of all TG∗-hexagons
that intersect the ball B(0, R).

Sometimes, in addition to (h) we will need to assume:
(D) The domain D is simply connected, and (to avoid minor but annoying triviali-

ties) ∂D is a simple closed curve. We fix two distinct midpoints of TG-edges x∂ and y∂
on ∂D. Let the counterclockwise (respectively, clockwise) arc of ∂D from x∂ to y∂ be
denoted by ∂+ (respectively, ∂−).

If H⊂D is a TG∗-hexagon, we write h(H) as a shorthand for the value of h on the
center of H (which is a vertex of TG). Assuming (h) and (D), let D+ denote the union
of all TG∗-hexagons contained in D where h is positive together with the intersection
of 
D with TG∗-hexagons centered at vertices in ∂+. Let D− be the closure of 
D\D+

(which almost surely consists of TG∗-hexagons in D where h<0 and the intersection of 
D
with TG∗-hexagons whose center is in ∂−). Then ∂D−∩∂D+ necessarily consists of the
interface we previously called γ, and a collection of disjoint simple closed paths. We use
the term interface (or zero-height interface) to describe a simple (or simple closed) path
in ∂D−∩∂D+ oriented so that D+ is on its right (that is, oriented clockwise around D+).

Throughout, the notation O(s) represents any quantity f such that |f |6Cs for some
absolute constant C. We use the notation OΛ̄(s) if the constant also depends on Λ̄. When
introducing a constant c, we often write c=c(a, b) as shorthand to indicate that c may
depend on a and b.

2.3. Simple random walk background

We need to recall a very useful property of the discrete-harmonic measure of simple
random walk.

Lemma 2.1. (Hit near) Let v be a vertex of the grid TG, and let H be a connected
subgraph of TG. Set d=diamH. The probability that a simple random walk on TG
started from v exits the ball B(v, d) before hitting H is at most c(dist(v,H)/d)ζ1 , where
c and ζ1∈(0, 1) are absolute constants.

Likewise, the same bound applies to the probability that a simple random walk started
at some vertex outside B(v, d) will hit B(v,dist(v,H)) before H.

In fact, we may take ζ1= 1
2 . The continuous version of this statement is known as

the Beurling projection theorem (the extremal case is when H is a line segment). The
above statement can probably be deduced from the discrete Beurling theorem as given
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in [L1, Theorem 2.5.2], though the setting there is slightly different. In any case, since
we do not require any particular value for ζ1, the lemma is rather easily proved directly
(see [Sch, Lemma 2.1]).

We will also use the (well-known) discrete Harnack principle, in the following form.

Lemma 2.2. (Harnack principle) Let D, V , V∂ and VD be as in (h), let v, u∈VD,
and let f :V!R be discrete-harmonic in VD.

(1) If v and u are neighbors, then

|f(v)−f(u)|6O(1)
‖f‖∞

dist(v, ∂D)
.

(2) If we assume that f>0 and that there is a path of length ` from v to u whose
minimal distance to ∂D is %, then

f(u) > f(v) exp
(
−O(`+%)

%

)
.

The proof of statement (1) can be obtained by noting that f(v) is the expected value
of f evaluated at the first hitting point on V∂ of a random walk started at v, and observing
that a random walk started at v and a random walk started at u may be coupled so that
they meet before reaching a distance of r :=dist(v, ∂D) with probability 1−O(1/r) and
walk together after they meet. (See also the more general [LSW4, Lemma 6.2], for
example.)

To prove statement (2), letW :={w∈V :f(w)>f(v)}, and observe that the maximum
principle implies that W contains a path from v to ∂D. If we assume that `6 1

2%, then a
random walk started at u has probability bounded away from zero to hit W before ∂D,
which by the optional sampling theorem implies (2) in this case. The case `> 1

2% now
follows by induction on d2`/%e.

We also need the following well-known estimate on the Green function G(u, v).

Lemma 2.3. Let D, VD and V be as in (h), let u, v∈VD, and let ε>0. Set r :=
dist(u, ∂D), and suppose that within distance r/ε from u there is a connected component
of ∂D of diameter at least εr. If |u−v|6 2

3r, say , then GD(v, u) (the expected number
of visits to u by a simple random walk starting at v before hitting ∂D) satisfies

GD(v, u) = exp(Oε(1)) log
r+1

|u−v|+1
.

The probability HD(v, u) that a random walk started from v hits u before ∂D can
be expressed as GD(v, u)/GD(u, u) and hence by the lemma

HD(v, u) = exp(Oε(1))
(

1− log(|u−v|+1)
log(r+1)

)
. (2.6)
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Let pR denote the probability that a simple random walk started at 0 does not
return to 0 before exiting the ball B(0, R). We now show that the lemma follows from
the well-known estimate

pR =
exp(O(1))
log(R+2)

. (2.7)

In the setting of the lemma, consider some vertex w∈VD such that |w−u|>r. It is easy to
see that with probability bounded away from zero (by a function of ε), a simple random
walk started from w will hit ∂D before u. Hence, q :=min{1−HD(w, u):w∈VD\B(u, r)}
is bounded away from 0 by a positive function of ε. Clearly,

1
qpr

>GD(u, u) >
1
pr
.

This proves the case u=v of the lemma from (2.7). Now start a simple random walk at
a vertex v 6=u satisfying |v−u|6 2

3r, and let the walk stop when it hits ∂D. It is easy to
see that the probability that the walk visits v after exiting the ball B

(
v, 1

4 |v−u|
)
, say, is

within a bounded factor from HD(v, u). Therefore, the expected number of visits to v
after exiting B

(
v, 1

4 |v−u|
)

is within a bounded factor of GD(v, u). But the former is the
same as GD(v, v)−GB(v,|v−u|/4)(v, v). The lemma follows.

We have not found a reference proving (2.7) in a way that generalizes to the setting
of Theorem 1.4, though the result is well known. In fact, it easily follows from Rayleigh’s
method, as explained in [DoSn, §2.2]. In that book, the goal is to show that pR!0, as
R!∞, for lattices in the plane but not in R3. However, the method easily yields the
quantitative bounds (2.7).

3. The height gap in the discrete setting

3.1. A priori estimates

This subsection contains some technical (and uninspiring) estimates that are necessary
to carry out the technical (but hopefully interesting) coupling argument of the later parts
of the section.

Suppose that β is some path in the hexagonal grid TG∗, which has a positive proba-
bility to be a subset of a zero-height interface h. We will need to understand rather well
the behavior of h conditioned on β being a subset of a contour line. This conditioning
amounts to conditioning h to be positive on vertices adjacent to β on one side and neg-
ative on vertices adjacent to β on the other side. (Here and in the following, a vertex v
of TG is adjacent to β if β intersects the interior of one of the six boundary edges of the
TG∗-hexagon centered at v.) Thus, the following lemma will be rather useful.
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Lemma 3.1. (Expectation bounds) There is a finite c=c(Λ̄)>0 such that the fol-
lowing holds. Assume (h). Let V+ and V− be non-empty disjoint subsets of VD, and set
U :=V∂∪V+∪V−. Suppose that every vertex in V+ has a neighbor in V−∪V∂ and every
vertex in V− has a neighbor in V+∪V∂ . Let K be the event that h>0 on V+ and h<0
on V−. Then for every v∈V+∪V−,

E[e|h(v)| | K]<c, (3.1)

and
1
c
<E[|h(v)| | K]<c. (3.2)

Moreover ,

E[|h(v)|−1/2 | K]<c. (3.3)

Let B⊂D be a disk whose radius r is smaller than its distance to U and assume that
B∩VD 6=∅. Then

E[max{|h̄(v)| : v ∈VD∩B} |K]<c, (3.4)

where h̄ denotes the discrete-harmonic extension of the restriction of h to U (which is
also the conditional expectation of h given its restriction to U). Moreover , if ε>0 and
U has a connected component whose distance from B is R and whose diameter is at least
εR, then

E

[(
1

|VD∩B|
∑

v∈VD∩B
h(v)

)2 ∣∣∣∣K]
6 c+c′ log

R

r
, (3.5)

where c′=c′(ε).

Proof. The proof of (3.1) is a maximum principle type argument. Suppose that v1
maximizes E[e|h(v)| |K] among v∈U , and let M :=E[e|h(v1)| |K]. Clearly, M<∞. Assume
first that v1∈V+. Set Ṽ :=U \{v1}, and for v∈Ṽ let pv be the probability that the simple
random walk starting at v1 first hits Ṽ in v. We may write

h(v1) =X+Y,

where

Y :=
∑
v∈Ṽ

pvh(v) (3.6)

and X is a centered Gaussian independent of (h(v):v∈Ṽ ). Moreover, by (2.5), E[X2] is
1
6 times the expected number of visits to v1 by a simple random walk starting from v1

until it first hits Ṽ . Set a:=E[X2]. Since v1 has a neighbor in Ṽ , it follows that a=O(1).
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Also, clearly, a is bounded away from zero, since this random walk has at least one visit
to v1.

For every y∈R, we have that

E[eh(v1) |Y = y,K] =E[eX+y |Y = y,K] = eyE[eX |X+y > 0]= ey

∫∞
−y exp(x−x2/2a) dx∫∞
−y exp(−x2/2a) dx

.

If y>0, the right-hand side is bounded by O(ey). If y60, then both integrals on the right
are comparable to their value when the upper integration limit is reduced to −y+1. But
then the ratio between the corresponding integrands is bounded by e1−y, which implies
the same for the ratio of the integrals. Consequently, the right-hand side is O(1) when
y60. We take expectations conditioned on K and get

M =O(1)E[eY | K]+O(1). (3.7)

Repeated use of Hölder’s inequality shows that for non-negative random variables x1, ...,

xn and non-negative constants p1, ..., pn such that
∑n
j=1 pj61 we have

E
[ n∏
j=1

x
pj

j

]
6

n∏
j=1

E[xj ]
pj .

Thus, (3.6) and (3.7) give

M 6O(1)
∏
v∈Ṽ

E[eh(v) | K]pv +O(1).

Clearly,

E[eh(v) | K]6


1, if v ∈V−,
M , if v ∈V+,
eΛ̄, if v ∈V∂ .

Setting p+ :=
∑
v∈Ṽ ∩V+

pv, we therefore obtain

M 6O(1)Mp+e(1−p+)Λ̄+O(1). (3.8)

Since v1 has a neighbor in U \V+, we have p+6 5
6 and M6O(1)eΛ̄ follows. A symmetric

argument applies if v1∈V−. If v1∈V∂ , then obviously M6eΛ̄. Thus (3.1) holds with
c=O(eΛ̄). The right-hand inequality in (3.2) is an immediate consequence of (3.1) (pos-
sibly with a different c).

We now prove (3.4). Given v∈VD and u∈U , let H(v, u) denote the probability that
a simple random walk started at v first hits U at u. Suppose that v, v′∈B∩VD and u∈U .
The discrete Harnack principle (Lemma 2.2) then gives H(v′, u)6H(v, u)O(1). Thus,

|h̄(v′)|=
∣∣∣∣∑
u∈U

H(v′, u)h(u)
∣∣∣∣ 6

∑
u∈U

O(1)H(v, u)|h(u)|.
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The right-hand side therefore bounds max{|h̄(v′)|:v′∈VD∩B}. Now, (3.4) follows from
the right-hand inequality of (3.2) and

∑
u∈U H(v, u)=1.

We now prove (3.3). Consider some v∈V+. We first claim that if w neighbors with
v and w /∈U , then E[h(w)2 |K]=OΛ̄(1). To see this, first note that h̄(w) (where as above
h̄ is the discrete-harmonic extension of the values of h on U) is a linear combination of
the values h̄(v) for v∈U (which are the same as the values of h there); since each of these
values has mean and variance which are OΛ̄(1) (by (3.1)), the mean and variance of h̄(w)
are also OΛ̄(1). By (2.5), conditioned on h̄, the value h(w) is Gaussian with variance 1

6

times the expected number of times a random walk started at w visits w before hitting
U , which is O(1) because U contains a neighbor of w.

Let Z denote the average of h on the neighbors of v, and let Z ′ :=h(v)−Z. The
above implies that E[Z2 |K]=OΛ̄(1). Since Z ′ is a centered Gaussian with variance 1

6 ,
for every z∈R,

E[h(v)−1/2 | K, Z = z] =E[(Z ′+z)−1/2 |Z ′+z > 0]=

∫∞
0
x−1/2e−6(x−z)2/2 dx∫∞
0
e−6(x−z)2/2 dx

.

If z>−2, then this is clearly bounded. Assume therefore that z<−2. It is easy to verify
that the integrals in the numerator and denominator are comparable to the same integrals
restricted to the range x∈[0, |z|−1]. But in this range, the maximum value of

exp
(
− 6

2 (x−z)2
)

is comparable to the minimum value of the same quantity. Consequently, when z<−2,

E[h(v)−1/2 | K, Z = z] =O(1)

∫ |z|−1

0
x−1/2e−6(x−z)2/2 dx∫ |z|−1

0
e−6(x−z)2/2 dx

=O(1)

∫ |z|−1

0
x−1/2 dx∫ |z|−1

0
dx

=O(1)|z|1/2,

which gives
E[h(v)−1/2 | K] =O(1)+O(1)E[|Z|1/2 | K].

Since E[Z2 |K]=OΛ̄(1), we certainly have E[|Z|1/2 |K]=OΛ̄(1). This proves (3.3). Now
the left-hand inequality in (3.2) is an immediate consequence.

We now prove (3.5). Consider two vertices v, u∈B∩VD. Assume that within distance
R from B there is a connected component of U of diameter at least εR. Since

E[h(v) | K, h̄] = h̄(v),
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we have that

E[h(v)h(u) | K] =E[(h(v)−h̄(v))(h(u)−h̄(u)) | K]+E[h̄(v)h̄(u) | K]. (3.9)

Now, h̄(v) is just a weighted average of h(w) with w∈U (according to the discrete-
harmonic measure from v). Consequently,

E[h̄(v)2 | K]6max
w∈U

E[h(w)2 | K]6max
w∈U

2E[e|h(w)| | K]6 2c

and the Cauchy–Schwarz inequality implies that the last summand in (3.9) is also
bounded by 2c. Since h−h̄ is the Gaussian free field with zero boundary values on
U and is independent of the restriction of h to U , by (2.5) we have that

E[(h(v)−h̄(v))(h(u)−h̄(u)) | K]

is 1
6 times the expected number of visits to u by a random walker started at v which

stops when it hits U . Thus∑
u∈B∩VD

E[(h(v)−h̄(v))(h(u)−h̄(u)) | K]

is 1
6 times the expected number of steps that the walker spends in B, which is

Oε(1)|B∩VD| log
R

r
,

by Lemma 2.3. The estimate (3.5) is now obtained by averaging (3.9) over all v, u∈
B∩VD.

The following lemma provides a variant of the right-hand bound in (3.2) in the case
where instead of looking for a zero-height interface of h, we consider instead a zero-height
interface of h−g, for some fixed function g.

Lemma 3.2. (Further expectation bounds) In the setting of Lemma 3.1, suppose
that g: 
D!R is zero on V∂ and Lipschitz in 
D. Let Kg be the event that h>g on V+

and h<g on V−. Then for every v∈V+∪V−,

E[|h(v)−g(v)| | Kg]6 c(1+Λ̄)+c
‖g‖∞

log(q+2)
, (3.10)

where c>0 is a universal constant and q=‖g‖∞/‖∇g‖∞.
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Proof. The proof is similar to the proof of Lemma 3.1. Suppose that v1 maximizes
E[h(v)−g(v)|Kg] among v∈V+, and let M :=E[h(v1)−g(v1)|Kg]. By symmetry, it is
enough to get a bound on M . We define Ṽ , X, Y and pv as in the proof of Lemma 3.1.

For every y∈R we have

E[h(v1)−g(v1) |Y = y,Kg] =E[X+y−g(v1) |X+y−g(v1)> 0]6O(1)+(y−g(v1))+,

where (x)+ :=max{0, x}. Consequently,

M 6O(1)+E[(Y −g(v1))+ | Kg]

6O(1)+
∑
v∈Ṽ

pvE[(h(v)−g(v1))+ | Kg]

6O(1)+
∑
v∈Ṽ

pvE[(h(v)−g(v))+ | Kg]+
∑
v∈Ṽ

pv|g(v)−g(v1)|

6O(1)+Λ̄+M
∑
v∈V+

pv+
∑
v∈Ṽ

pv|g(v)−g(v1)|.

Consider a simple random walk started at v1 and stopped when it first hits Ṽ . Denote
the vertex where it first hits Ṽ by w. (Then, P[v=w]=pv.) Set r :=q/log(q+2). Since v1
has a neighbor in Ṽ , we have P[|v−v1|>r]6O(1)/log(r+2), by standard random walk
estimates. When |v−v1|6r, we have |g(v)−g(v1)|6O(1)r‖∇g‖∞. Therefore,∑

v∈Ṽ

pv|g(v)−g(v1)|6O(1)r‖∇g‖∞+O(1)
‖g‖∞

log(r+2)
6O(1)

‖g‖∞
log(q+2)

.

This gives

M
∑

v∈Ṽ \V+

pv 6O(1)+Λ̄+O(1)
‖g‖∞

log(q+2)
.

Because
∑
v∈Ṽ \V+

pv is bounded away from zero, the proof is now complete.

Our next result establishes the continuity of the conditional distribution of h in the
specified data. More precisely, the following proposition holds.

Proposition 3.3. (Heights interface continuity) For every ε>0 there is some R=
R(ε, Λ̄)>1/ε such that the following holds. Let D, VD, V∂ , h∂ , V+, V−, U and K be as
in Lemma 3.1, and let D̂, V̂D, V̂∂ , ĥ∂ , V̂+, V̂−, Û and K̂ be another such system, which
is also assumed to satisfy ‖ĥ∂‖∞6Λ̄. Let hK be a DGFF in D with boundary values
given by h∂ conditioned on K, and let hK̂ be a DGFF in D̂ with boundary values given
by ĥ∂ conditioned on K̂. Suppose that within BR, the two systems are the same; that
is, D∩BR=D̂∩BR, h∂ |BR

=ĥ∂ |BR
, V+∩BR=V̂+∩BR and V−∩BR=V̂−∩BR. Further

suppose that 0∈U . Then there is a coupling of hK and hK̂ such that for every vertex
v∈B1/ε we have E[|hK(v)−hK̂(v)|]<ε.
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The following lemma will be needed in the proof.

Lemma 3.4. Let X be a 1-dimensional Gaussian of zero mean and unit variance.
Let x, x̂∈R, let Z be a random variable whose distribution is the same as that of X+x
conditioned on X+x>0, and let Ẑ be a random variable whose distribution is the same
as that of X+x̂ conditioned on X+x̂>0. Then there is a coupling of Z and Ẑ such that
|Z−Ẑ|<|x−x̂| almost surely if x 6=x̂. Moreover , there is a continuous function δ(x, x̂)
satisfying δ(x, x̂)<1 such that E[|Z−Ẑ|]6δ(x, x̂)|x−x̂| under this coupling.

The coupling that we use is what is known as the quantile coupling of Z and Ẑ.

Proof. Let F (s)=P[X<s], and let G=F−1. Set t:=F (−x) and t̂:=F (−x̂). Let p
be a random variable uniformly distributed in [0, 1]. Then

Z(t) :=x+G(t+p(1−t))=G(t+p−tp)−G(t)

has the same distribution as Z. Therefore, (Z(t), Z(t̂)) is a coupling of Z and Ẑ. Conse-
quently, to verify the first claim it is sufficient to show that |∂tZ(t)|<∂tG(t). In fact, we
will prove the stronger statement, −∂tG(t)<∂tZ(t)<0 for all p∈(0, 1), which is equivalent
to

0<∂tG(t+p−tp)<∂tG(t).

The left-hand inequality is immediate, because G′>0 on (0, 1). The right-hand inequality
translates to (1−p)G′(t+p−tp)<G′(t), which we rewrite as

(1−(t+p−tp))G′(t+p−tp)< (1−t)G′(t).

This is equivalent to (1−tp)/F ′(G(tp))<(1−t)/F ′(G(t)), where tp :=t+p−tp>t. Now,
note that

1−t
F ′(G(t))

=

∫∞
−x exp(−s2/2) ds

exp(−x2/2)
=

∫ ∞

−x
e(x

2−s2)/2 ds=
∫ ∞

0

exs−s
2/2 ds

is strictly decreasing in t, because x is strictly decreasing in t. This proves the first claim.
The second claim follows with

δ(x, x̂) :=
∫ 1

0

Z(t)−Z(t̂)
x−x̂

dp when x 6= x̂

and

δ(x, x) :=
∫ 1

0

Z ′(t)
−G′(t)

dp.
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Proof of Proposition 3.3. Fix a coupling of hK and hK̂ that minimizes∑
v∈VD∩V̂D

E[|hK(v)−hK̂(v)|].

Standard continuity and compactness arguments show that there is such a coupling. Set
f(v):=E[|hK(v)−hK̂(v)|] for vertices v∈(VD∪V∂)∩(V̂D∪V̂∂).

First, we claim that f is discrete-subharmonic on vertices in BR\U . Indeed, fix a
vertex w∈BR\U . The conditional distribution of hK(w) given the value of hK at every
vertex but w is that of x+AX, where x is the average of hK on the neighbors of w,
X is a standard Gaussian, and A is the lattice-dependent constant 1/

√
6 (since each

vertex has six neighbors in TG). Similarly, hK̂(w)=x̂+AX̂. By the choice of coupling,
when we fix the values of hK and hK̂ off of w, the corresponding conditioned coupling
of hK(w) and hK̂(w) minimizes the conditioned expectation of |hK(w)−hK̂(w)|. But one
such conditioned coupling is obtained by taking X=X̂. Thus, f(w)6E[|x−x̂|], which
implies that f is discrete-subharmonic at w, since

∑
u∼w

|hK(u)−hK̂(u)|>
∣∣∣∣∑
u∼w

hK(u)−
∑
u∼w

hK̂(u)
∣∣∣∣, (3.11)

where the sums are over the neighbors of w.
Next, consider any vertex v∈V+∩BR. As before, we may write hK(v)=x+AX,

where x is the average of hK on the neighbors of v andX is a random variable whose condi-
tional law given x is that of a standard Gaussian conditional on x+AX>0. Lemma 3.4
applied with x/A instead of x and x̂/A instead of x̂ implies that f is also discrete-
subharmonic at v. We claim that there is a constant b=b(Λ̄, ε)>0 such that

∆f(v) > b, if f(v) > 1
2ε, (3.12)

where ∆ denotes the discrete Laplacian on TG. Indeed, the optimality of the coupling
gives

E[|hK(v)−hK̂(v)| |x, x̂]6 δ
( x
A
,
x̂

A

)
|x−x̂|,

where δ( · , ·)<1 is as in the lemma. Thus,

f(v) 6E
[
δ
( x
A
,
x̂

A

)
|x−x̂|

]
.

By (3.11) with v in place of w, we have

∆f(v) >E[|x−x̂|]−f(v) >E
[(

1−δ
( x
A
,
x̂

A

))
|x−x̂|

]
. (3.13)
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For every neighbor u of v we have, by (3.5), that E[hK(u)2]<OΛ̄(1). It easily follows that
E[x2]<OΛ̄(1). Hence, the Cauchy–Schwarz inequality implies that there is a constant
b0(ε, Λ̄)>0 such that E[|x|1A]< 1

8ε for every event A satisfying P[A]<b0. There is a
constant b1=b1(ε, Λ̄) such that P[|x|>b1]< 1

2b0. The same inequalities will hold with x̂

and hK̂ in place of x and hK. Therefore,

E[|x−x̂|] =E[|x−x̂|1|x|∨|x̂|6b1 ]+E[|x−x̂|1|x|∨|x̂|>b1 ]

6E[|x−x̂|1|x|∨|x̂|6b1 ]+E[(|x|+|x̂|)1|x|∨|x̂|>b1 ]

6E[|x−x̂|1|x|∨|x̂|6b1 ]+ 1
4ε.

Thus, if we assume that f(v)> 1
2ε, then also E[|x−x̂|]> 1

2ε, and therefore

E[|x−x̂|1|x|∨|x̂|6b1 ]> 1
4ε.

Therefore, (3.13) gives (3.12) with

b :=
ε

4
min

{
1−δ

( x
A
,
x̂

A

)
:x, x̂∈ [−b1, b1]

}
.

Clearly, f is also discrete-subharmonic on V−∩BR and (3.12) also holds for v∈V−∩BR

and (trivially) for v∈V∂∩BR.
Next, we prove that for all vertices w∈BR we have

f(w) 6OΛ̄(1)
√

logR. (3.14)

Fix such a w, and assume that w /∈U . We may decompose hK(w) as a sum hK(w)=y+Y ,
where y is the value at w of the discrete-harmonic extension of the restriction of hK
to U , and Y is a centered Gaussian whose variance is 1

6 times the expected number
of visits to w by a simple random walk started at w that is stopped when it hits U . A
simple random walk on TG started at w has probability at least a positive constant times
1/logR to reach distance R from w before returning to w, and once it does reach this
distance, it has probability bounded away from zero to hit 0 before returning to w. Since
0∈U , it follows that E[Y 2]=O(logR). Thus, E[|Y |]=O(

√
logR ). As y is the average of

the value of hK on U with respect to the discrete-harmonic measure from w, it follows
from (3.2) that E[|y|]=OΛ̄(1). Thus, we have E[|hK(w)|]6OΛ̄(

√
logR ). This certainly

also holds if w∈U , and a similar estimate holds for hK̂(w). Now (3.14) follows, since
f(w)6E[|hK(w)|]+E[|hK̂(w)|].

We now show that the established properties of f imply that f6ε on B1/ε if R is
sufficiently large. Fix some vertex w∈B1/ε, and let St be a simple random walk on TG
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started at w. Let t1 be the first time t such that |St|> 1
2R or St=0. Since f is discrete-

subharmonic on VD∩BR, we have that t 7!f(St∧t1) is a submartingale. The optional
sampling theorem implies that f(w)6E[f(St1)]. By standard random walk estimates,
P

[
|St1 |> 1

2R
]
6O(1)|log ε|/logR. (We assume, with no loss of generality, that ε< 1

2 , say.)
Consequently,

f(w) 6E[f(St1)]6 f(0)+O(1)
|log ε|
logR

max{f(u) :u∈VD∩BR}6 f(0)+OΛ̄(1)
|log ε|√
logR

.

This proves that f(w)6ε if f(0)6 1
2ε and R is sufficiently large.

Now assume that f(0)> 1
2ε. Let S̃t be a simple random walk starting at 0. Let

t∗ :=min
{
t : |S̃t|> 1

2R
}

and let ns be the number of t∈{0, ..., s−1} such that S̃t=0. By (3.12) and our assumption
that f(0)> 1

2ε, we have that t 7!f(S̃t∧t∗)−bnt∧t∗ is a submartingale. Thus,

0 6 f(0)6E[f(S̃t∗)]−bE[nt∗ ]6max{f(u) :u∈VD∩BR}−bE[nt∗ ]

6OΛ̄(1)
√

logR−bE[nt∗ ].

Now note that as R!∞, while ε is fixed, E[nt∗ ] grows at least as fast as a positive
constant times logR, because the probability for S̃t not to return to 0 after any specific
visit to 0 is bounded by O(1/logR). Thus, the above rules out the possibility that
f(0)> 1

2ε if R is sufficiently large. This completes the proof.

As a corollary of the proposition, we now show that the correlation in the values of
h at two vertices in U decays when the distance between them tends to infinity.

Corollary 3.5. (Correlation decay) For every ε>0 there is some R=R(ε, Λ̄) such
that the following holds. Let D, VD, V∂ , h∂ , V+, V−, U and K be as in Lemma 3.1, and
let v1, v2∈U satisfy |v1−v2|>R. Then∣∣E[h(v1)h(v2) | K]−E[h(v1) | K]E[h(v2) | K]

∣∣<ε.
Proof. Suppose, without loss of generality, that v2∈V+. Fix some a>0 and let

X :=1{0<h(v2)6a}. We may apply Proposition 3.3 to our present setup and to the setup
where the value of h(v2) is fixed at some constant y∈(0, a] and v2∈∂D. Thus, the
proposition would apply, provided that Λ̄ is replaced by Λ̄∨a. Consequently, we find
that there is an R′=R′(ε, Λ̄, a) such that if |v1−v2|>R′, then∣∣E[h(v1) |h(v2),K]−E[h(v1) | K]

∣∣X 6
ε

2a
.
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Since h(v2)X6a, X2=X and h(v2)X is h(v2)-measurable, this gives

1
2ε>

∣∣E[h(v1) |h(v2),K]h(v2)X−E[h(v1) | K]h(v2)X
∣∣

=
∣∣E[h(v1)h(v2)X |h(v2),K]−E[h(v1) | K]h(v2)X

∣∣.
Taking expectations conditioned on K now gives∣∣E[h(v1)h(v2)X | K]−E[h(v1) | K]E[h(v2)X | K]

∣∣ 6 1
2ε. (3.15)

Since

(1−X)h(v2)2 6
(1−X)|h(v2)|3

a
6

6e|h(v2)|

a

and h(v1)262e|h(v1)|, if c denotes the constant satisfying (3.1), then the Cauchy–Schwarz
inequality gives

E[h(v1)h(v2)(1−X) | K]2 6E[h(v1)2 | K]E[h(v2)2(1−X) | K]6 2c
6c
a
.

Similarly,

0 6E[|h(v2)|(1−X) | K]6E

[
2e|h(v2)|

a

∣∣∣∣K]
6

2c
a
.

Consequently, if a is chosen sufficiently large then∣∣E[h(v1)h(v2)X | K]−E[h(v1)h(v2) | K]
∣∣ =

∣∣E[h(v1)h(v2)(1−X) | K]
∣∣< 1

4ε

and ∣∣E[h(v1) | K]E[h(v2)X | K]−E[h(v1) | K]E[h(v2) | K]
∣∣< 1

4ε.

The corollary now follows from (3.15).

Next, we provide a simple lemma which bounds the amount in which adding a
function to h affects its distribution.

Lemma 3.6. (DGFF distortion) Assume (h). Let f :VD∪V∂!R satisfy f=0 on V∂ .
Let µ be the law of h, and let µf be the law of h̃:=h+f . Then, for every event A,

µf [A]6 exp
(
‖∇f‖2

2

)
µ[A]1/2.

Proof. Suppose that X is a standard Gaussian in Rn, y∈Rn is some fixed vector,
and A⊂Rn is measurable. Then

P[X+y ∈A] = cn

∫
Rn

1A exp
(
−‖x−y‖

2

2

)
dx

= cn

∫
Rn

1A exp
(
x·y−‖y‖

2

2

)
exp

(
−‖x‖

2

2

)
dx,



contour lines of the two-dimensional discrete gaussian free field 55

where c−1
n =

∫
Rn exp(−‖x‖2/2) dx and the integrals are with respect to the Lebesgue mea-

sure in Rn. (This is the Cameron–Martin formula.) We may think of the right-hand side
as the inner product of 1A and exp(x·y−‖y‖2/2) with respect to the Gaussian measure.
Hence, the Cauchy–Schwarz inequality gives

P[X+y ∈A]6P[X ∈A]1/2E[exp(2X ·y−‖y‖2)]1/2 =P[X ∈A]1/2 exp
(
‖y‖2

2

)
.

Let h̄ denote the discrete-harmonic extension of h∂ . Then h−h̄ is the DGFF with
zero boundary values, and hence is a standard Gaussian on RVD with respect to the norm
g 7!‖∇g‖2. The lemma follows.

3.2. Near independence

In this subsection we build on the infrastructure developed above to prove that under
appropriate assumptions the shape of an interface inside a ball does not depend too
strongly on the shape of an interface outside a slightly larger ball. More precisely, we
have the following result.

Proposition 3.7. (Near independence) Let C>1 and let R>103C. Assume (h)
and B5R⊂D. Let R1, R2, R3∈[R, 5R] satisfy

R1+
R

C
<R2, R2+

R

C
<R3 and R3+

R

C
< 5R.

Let V 3
+ and V 3

− be disjoint sets of vertices in D\BR3 and let V 1
+ and V 1

− be disjoint
sets of vertices in BR1 . Suppose that every vertex of V 1

+ neighbors with a vertex in V 1
− ,

every vertex of V 1
− neighbors with a vertex in V 1

+ , and similarly for V 3
− and V 3

+ . Also
suppose that a random walk started at 0 has probability at least 1/C to hit V 3

−∪V 3
+ before

exiting B5R. Let K1 be the event that h>0 on V 1
+ and that h<0 on V 1

− , and let K3

be the corresponding event for V 3
− and V 3

+ . Let a(V 1
+ , V

1
− ) be the probability of K1 for

the DGFF on BR2 with zero boundary values outside BR2 . Then there is a constant
c=c(Λ̄, C)>0 such that

1
c
a(V 1

+ , V
1
− ) 6P[K1 | K3]6 ca(V 1

+ , V
1
− ).

Proof. For j=0, ..., 8 set rj=R1+ 1
8j(R2−R1). Then r8=R2 and rj+1>rj+ 1

8C
−1R.

We set W j :=(VD∪V∂)∩Brj =VD∩Brj , Wj :=(VD∪V∂)\W j and W k
j :=Wj∩W k. Let h̃

denote the discrete-harmonic extension of the restriction of h to W 1∪W7. We may
identify h̃ with a point in RW 1∪W7 ; namely, its restriction to W 1∪W7. As we have noted
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after (2.4), the probability density of h̃ with respect to the Lebesgue measure on RW 1∪W7

is proportional to exp(−‖∇h̃‖2/2). Hence,

P[K1 | K3] =

∫
K1∩K3

exp(−‖∇h̃‖2/2) dx∫
K3

exp(−‖∇h̃‖2/2) dx
, (3.16)

where the integrals are with respect to the Lebesgue measure on RW 1∪W7 . Let h1 be the
function that agrees with h on W 1, is discrete-harmonic on W 7

1 , and is zero in W7. Let
h3 be the function that agrees with h on W7, is discrete-harmonic on W 7

1 , and is zero in
W 1. Clearly, h̃=h1+h3.

We claim that∫
K1∩K3

exp
(
−‖∇h̃‖

2

2

)
dx�

∫
K1∩K3

exp
(
−‖∇h1‖2

2

)
exp

(
−‖∇h3‖2

2

)
dx, (3.17)

where � means equivalence up to multiplicative constants depending on Λ̄ and C. Let
V+ :=V 1

+ ∪V 3
+ and V− :=V 1

−∪V 3
− . Fix some v∈W 6

2 . Let h̄ denote the discrete-harmonic
extension of the restriction of h to V+∪V−. Then h(v)−h̃(v) and h̃(v)−h̄(v) are indepen-
dent Gaussian random variables, and both are independent of h̄ (by the orthogonality
property noted in §2.1). By (2.5), the variance of h(v)−h̃(v) is 1

6 times the expected
number of visits to v by a random walk started at v, which is stopped when it hits
W 1∪W7, and the variance of h(v)−h̄(v) is 1

6 times the expected number of visits to v
by the same random walk stopped when it hits V+∪V−. Consequently, the variance of
h̃(v)−h̄(v) is 1

6 times the expected number of visits to v after the first hit of W 1∪W7

and before the first hit of V+∪V−. Note that the probability to hit v by a random walk
started in W 1∪W7 before exiting B5R is O(1/logR) and conditioned on hitting v before
exiting B5R the number of visits to v prior to exiting B5R is O(logR). Our assumption
on the probability to hit V 3

−∪V 3
+ therefore easily implies that E[(h̃(v)−h̄(v))2]=OC(1)

and hence E[|h̃(v)−h̄(v)|]=OC(1). Since K1∩K3 is determined by h̄, it is independent
of h̃(v)−h̄(v) and, consequently, E[|h̃(v)−h̄(v)||K1,K3]=OC(1). Now, by (3.4), we have
E[|h̄(v)||K1,K3]=OΛ̄(1). Combining these estimates, we get E[|h̃(v)||K1,K3]=OC,Λ̄(1).

We will now apply the argument used to prove (3.4) in order to establish

E[max{|h̃(v)| : v ∈W 5
3 } |K1,K3] =OC,Λ̄(1). (3.18)

Indeed, let A denote the set of vertices in W 6
2 neighboring with some vertex outside W 6

2 ,
and let H(v, u) denote the probability that a simple random walk started at v first hits A
in u. As in the proof of (3.4), H(v, u)6OC(1)H(v′, u) for v, v′∈W 5

3 . Now (3.18) follows
as in the proof of (3.4).
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Next, we want to show that (3.18) holds with h1 and h3 replacing h̃; that is,

E[M | K1,K3] =OC,Λ̄(1), (3.19)

where M :=max
{
|hj(v)|:v∈W 5

3 , j=1, 3
}
. Let v1 be the vertex v∈W 5

3 where |h1(v)| is
maximized, and let v3 be the vertex v∈W 5

3 where |h3(v)| is maximized. Then M=
max{|h1(v1)|, |h3(v3)|}. Assume, for now, that M=|h3(v3)|. The maximum principle
for discrete-harmonic functions implies that v3 neighbors with a vertex outside Br5 and
v1 neighbors with a vertex in Br3 . Let p be the probability that a simple random walk
started at v3 exits BR3 before hitting a vertex neighboring with a vertex in Br3 . Then p is
bounded away from 0 by a function of C. Since h1 composed with a simple random walk
is a martingale while the walk stays in W 7

1 , we get |h1(v3)|6(1−p)|h1(v1)|6(1−p)M . As
h̃=h1+h3, we get |h̃(v3)|>|h3(v3)|−|h1(v3)|=M−|h1(v3)|>pM . The case M=|h1(v1)|
is similarly treated. Using (3.18), we then get (3.19).

Next, we want to prove that

|∇h1 ·∇h3|=O(M2). (3.20)

Since h1 is discrete-harmonic in W 7
1 , if v∈W 7

1 we have∑
u∼v

(h1(v)−h1(u))h3(v) = 0,

where the sum is over the neighbors of v. This is also true for v∈W 1, since h3 is zero
there. Consequently, ∑

v∈W 4

∑
u∼v

(h1(v)−h1(u))h3(v) = 0. (3.21)

Similarly, we find that ∑
u∈W4

∑
v∼u

(h3(u)−h3(v))h1(u) = 0. (3.22)

Set ∂W 4 :={(v, u)∈W 4×W4 :u∼v}. By considering the contribution of each edge [v, u]
to ∇h1 ·∇h3, we compare the sum of the left-hand sides of (3.21) and (3.22) to ∇h1 ·∇h3

and conclude that

∇h1 ·∇h3 =
∑

(v,u)∈∂W 4

(h3(v)h1(u)−h1(v)h3(u))

=
∑

(v,u)∈∂W 4

((h1(u)−h1(v))h3(u)+(h3(v)−h3(u))h1(u)).
(3.23)

The number of summands is clearly O(R). Note that for every v∈W 4 neighboring with
a vertex u∈W4, there is a disk of radius proportional to R/C such that all the vertices
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in that disk are in W 5
3 . Consequently, the discrete Harnack principle (Lemma 2.2) gives

|h1(u)−h1(v)|=O(M/R) and |h3(u)−h3(v)|=O(M/R). Hence, (3.23) gives (3.20).

Now, (3.19) implies that the expectation of |∇h1 ·∇h3|1/2 conditioned on K1∩K3 is
bounded by a function of C and Λ̄. In particular, there is a constant c1=c1(Λ̄, C)>0
such that

P[|∇h1 ·∇h3|<c1 | K1,K3]>
1
c1
.

In terms of Lebesgue measure, this may be written as

∫
K1∩K3

exp
(
−‖∇h̃‖

2

2

)
dx< c1

∫
K1∩K3

exp
(
−‖∇h̃‖

2

2

)
1{|∇h1·∇h3|<c1} dx.

Since h̃=h1+h3, this implies that

∫
K1∩K3

exp
(
−‖∇h̃‖

2

2

)
dx< c1e

c1

∫
K1∩K3

exp
(
−‖∇h1‖2+‖∇h3‖2

2

)
dx,

which gives one side of (3.17).

The other direction is proved in essentially the same way. Under the probability
measure weighted by exp

(
− 1

2 (‖∇h1‖2+‖∇h3‖2)
)

(with respect to the Lebesgue measure
on RW 1∪W7), h1 restricted to W 1 has the law of the DGFF with zero boundary values on
W7 restricted to W 1. Similarly, with this weighting, h3 restricted to W7 has the law of
the DGFF with zero boundary values on W 1 and with boundary values given by h∂ on
∂D, restricted to W7. Moreover, under this measure, h1 and h3 are clearly independent.
The above arguments show that under this measure (3.19) holds (where K1 refers to h1

while K3 refers to h3). Since (3.20) is still valid, the opposite inequality in (3.17) is then
easily established.

We may also apply (3.17) in the case where V 1
+ =V 1

−=∅, and hence K1 has full
measure. Since∫

K1∩K3

exp
(
−‖∇h1‖2

2

)
exp

(
−‖∇h3‖2

2

)
dx

=
∫

RW1
1K1 exp

(
−‖∇h1‖2

2

)
dx

∫
RW7

1K3 exp
(
−‖∇h3‖2

2

)
dx,

from (3.16) we get

P[K1 | K3]�
∫
K1

exp(−‖∇h1‖2/2) dx∫
RW1 exp(−‖∇h1‖2/2) dx

,

which completes the proof.
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3.3. Narrows and obstacles

The present subsection and the next will use the infrastructure developed in §3.1 to prove
some bounds on the probabilities that contour lines cross certain regions in specified
ways. This is roughly in the spirit of the Russo–Seymour–Welsh theorem for percolation,
though the proofs are entirely different.

The following lemma is an estimate for having a crossing by TG∗-hexagons where h is
negative between two arcs on the boundary of some subset of the domain, conditioned on
some zero-height interface paths. The statement below is slightly complicated, because
we need to keep the geometric assumptions quite general. In percolation, boundary
values do not play a role, of course. But in our case we need the crossing estimate in the
case where one boundary arc of the domain is conditioned to be an interface.

Lemma 3.8. (Narrows) For every ε>0 there is a δ=δ(Λ̄, ε)>0 such that the fol-
lowing crossing estimate holds. Assume (h) and (D). Let K be the event that a fixed
collection {γ1, ..., γk} of oriented paths in TG∗ are contained in oriented zero-height in-
terfaces of h, and suppose that P[K]>0. Let α⊂D\(γ1∪...∪γk) be a simple path that
has both its endpoints on the right-hand side (positive side) of γ1. Let A be the domain
bounded by α and a subarc of γ1, and assume that A does not meet the left side of γ1

and that Ā∩(γ2∪γ3∪...∪γk∪∂D)=∅. Let α1, α2 and α′ be three disjoint subarcs of α,
where α1 contains one endpoint of α, and α2 contains the other endpoint of α. (See
Figure 3.1.) Suppose that each point in α′ is contained in a TG∗-hexagon whose center
is outside A. Set d1 :=supz∈α′ dist(z, γ1). Let C be the event that there is a path crossing
from α1 to α2 in A inside hexagons where h is negative. Let d∗ be the infimum diameter
of any path connecting α′ to γ1∪... γk∪∂D which does not contain a subpath connecting
α\(α1∪α2) to γ1 in A. If

d1+1 6 δmin{d∗,dist(α1, α
′),dist(α2, α

′),diamα′}, (3.24)

then

P[C |K]<ε.

The idea of the proof is to observe the effect that such a crossing would have on
certain averages of heights of vertices, and thereby conclude that it is unlikely. The
challenge in the implementation of this strategy is to condition on a crossing in such a
way that the expected heights are easy to estimate.

Proof. Set N :=
⌊

1
2 diamα′

⌋
. Assume that (3.24) holds. Note that

diam γ1 >diamα′−2d1.
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A

α1

α2

α′

γ1

Figure 3.1. Setup in the narrows lemma.

Choose some point z0∈α′. For j=1, ..., N let zj be a point in α′ at distance j from
z0. Now for each zj we let sj be some center of a hexagon that contains zj satisfying
sj /∈A. Then |sj−sj′ |>|j−j′|−O(1). Let U be the union of V∂ and the set of vertices
adjacent to any one of the paths γ1, ..., γk. (These are precisely the vertices v where h
takes boundary values, or the sign of h(v) is determined by K.) Set

X :=
1
N

N∑
j=1

h(sj),

b:=E[X |K] and fix some ε′>0. We first claim that

E[(X−b)2 | K]<ε′ (3.25)

if δ=δ(ε′, Λ̄)>0 is sufficiently small. Let hU denote the discrete-harmonic extension of the
restriction of h to U and setXU :=N−1

∑N
j=1 hU (sj). Note that E[X−XU |K, hU ]=0, and

hence E[XU |K]=b. For each u∈U and j∈{1, ..., N} let p(j, u) denote the probability that
a simple random walk started from sj first hits U at u. Also set p(u):=N−1

∑N
j=1 p(j, u).

Then XU=
∑
u∈U p(u)h(u). Consequently,

E[(XU−b)2 | K] =
∑

u,u′∈U
p(u)p(u′)(E[h(u)h(u′) | K]−E[h(u) | K]E[h(u′) | K]).

Let Z(u, u′) denote the term in parentheses corresponding to the summand involving u
and u′. Then E[(XU−b)2 |K] is just the average of the conditioned covariances Z(u, u′)
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weighted by p(u)p(u′). We know from (3.1) that E[h(u)2 |K] is bounded by a constant
depending only on Λ̄. It then follows by the Cauchy–Schwarz inequality that the same
is true for Z(u, u′). Consequently, to prove that E[(XU−b)2 |K] is small, it suffices to
show that when (u, u′) is chosen with probability p(u)p(u′) it is very likely that |Z(u, u′)|
is small. Suppose that we select j from {1, ..., N} uniformly at random and given j

select u∈U with probability p(j, u). Independently, we also select (j′, u′) with the same
distribution. It suffices to show that |Z(u, u′)| is likely to be small, and by Corollary 3.5 it
suffices to show that the distance between u and u′ is likely to be large. Since |sj−sj′ |=
|j−j′|+O(1) is unlikely to be much smaller than diamα′, which is larger than δ−1(d1+1),
it follows from Lemma 2.1 (hit near) that for any fixed R the probability that |u−u′|<R
tends to zero as δ!0. Consequently,

E[(XU−b)2 | K]< 1
2ε
′,

provided that δ is sufficiently small.
Set Xj :=h(sj)−hU (sj). Recall from §2.1 that, given the restriction of h to U , the

function h−hU is the DGFF on VD\U with zero boundary values on U . Therefore,
by (2.5), E[XiXj |K, hU ]= 1

6G(si, sj), where G(v, u) is the expected number of visits to u
by a random walker started at v and stopped when it hits U . From Lemmas 2.1 and 2.3,

G(sj , sj′) 6

{
O(1) log(d1/(|sj−sj′ |∨1)), if |sj−sj′ |< 1

2d1,
O(1)(d1/(|sj−sj′ |∨1))ζ1 , if |sj−sj′ |> 1

2d1.

Since |sj−sj′ |>|j−j′|−O(1) and ζ1∈(0, 1), these estimates give

E[(X−XU )2 | K] =
1
N2

N∑
j,j′=1

G(sj , sj′)
6

=O(1)
(
d1

N

)ζ1
.

Now (3.25) follows for sufficiently small δ=δ(ε′, Λ̄)>0, since X−XU is independent of
XU and they are also independent given K.

We now claim that b>0 if δ is sufficiently small. Let c be the constant given by
Lemma 3.1. If u is a fixed vertex adjacent to γ1 on the right, then E[h(u)|K]>1/c,
by (3.2). On the other hand, E[|h(u)||K]<c for every u∈U . By (3.24) and Lemma 2.1,
it follows that when δ is small with high probability a random walk starting at any sj

is likely to first hit U at a vertex adjacent to the right-hand side of γ1. Thus, when δ is
small, we have b=E[XU |K]>0. Also, clearly, b6c.

Now set a=b+1. Let Q denote the union of the closed hexagons in TG∗ for which
h(H)∈[0, a] and let Q′ denote the union of the edges in TG∗ that are on the common
boundary of two hexagons H1 and H2 satisfying h(H1)<0 and a<h(H2). Let Q0 denote
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5 8

9

1011

12

Q0

A′

Figure 3.2. A portion of the sequence of hexagons adjacent to ∂A′\∂A.

the connected component of (Q∪Q′)∩Ā that contains γ1∩∂A. Let Q denote the event
Q0∩(α\(α1∪α2))=∅. If C holds, then the corresponding crossing by hexagons where h
is negative separates γ1∩∂A from α\(α1∪α2) in A, and hence Q holds as well. Thus,
C⊂Q.

On the event Q, let A′ be the connected component of Ā\Q0 that contains α′, and
let UQ denote the set of centers of hexagons H such that H∩A′∩Q0 6=∅. Clearly, h(v)<0
or h(v)>a for each v∈UQ. Since A′ and Q0 are connected, it is immediate to verify (using
the Jordan planar curve theorem) that A′ is simply connected and ∂A′\∂A⊂Q0 is con-
nected. The closed hexagons of TG∗ with centers in UQ form a sequence (possibly with
repetitions) with each pair H,H ′ of consecutive hexagons along the sequence satisfying
H∩H ′\Q0 6=∅ and H∩H ′∩Q0 6=∅. (See Figure 3.2.) If v, u∈UQ are centers of consecu-
tive hexagons in this sequence, then it is impossible that h(v)<0 and h(u)>a (otherwise,
the boundary between the hexagons would be in Q′). Thus, either h(UQ)⊂(a,∞), or
h(UQ)⊂(−∞, 0). Let Q+ be the event that Q occurs and minh(UQ)>a, and let Q− be
the event that Q occurs and maxh(UQ)<0.

We now want to estimate E[X |K,Q−] and E[X |K,Q+]. Let U ′ be the set of vertices
that are either in hexagons adjacent to Q0 or in U . Since a=OΛ̄(1), it is clear that the
proof of (3.2) gives E[|h(u)||K, U ′,Q±]=OΛ̄(1) for u∈U ′. On the other hand, Lemma 2.1
shows that at least 1−O(δζ1) of the discrete-harmonic measure on U ′ starting from every
sj is in UQ. If Q− holds and u∈UQ, then E[h(u)|K,Q−, UQ] is negative and bounded
away from zero, by the corresponding analog of the left-hand side of (3.2). Thus, we find
that E[X |K,Q−] is negative and bounded away from zero when δ=δ(ε′, Λ̄)>0 is small.
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Since E[(X−b)2 |K]<ε′ and b>0, we conclude that by choosing ε′>0 small it can be
guaranteed that P[Q− |K]< 1

2ε.
On Q+, we clearly have h(u)>a>b+1 on every u∈UQ. Thus, as above, it follows

that when δ is small E[X |K,Q+]>b+ 1
2 . This again implies that P[Q+ |K] can be made

smaller than 1
2ε. Since C⊂Q+∪Q−, this completes the proof.

Next, we formulate an analogous lemma for crossings near the boundary of the
domain.

Lemma 3.9. (Domain boundary narrows) There is a constant Λ0=Λ0(Λ̄)>0 such
that for every ε>0 there is a δ=δ(Λ̄, ε)>0 such that the following crossing estimate
holds. Assume (h) and (D), assume that ∂+ is a simple path contained in ∂D and
that h∂>−Λ0 on ∂+∩V∂ . Set ∂− :=∂D\∂+. Let K be the event that a fixed collection
{γ1, ..., γk} of oriented paths in TG∗ are contained in oriented zero-height interfaces of
h, and suppose that P[K]>0. Let α⊂D\(γ1∪...∪γk) be a simple path that has both its
endpoints on ∂+. Let A be the domain bounded by α and a subarc of ∂+, and assume
that Ā∩(γ1∪γ2∪...∪γk∪∂−)=∅. Let α′⊂α be a subarc. Suppose that each point in α′

is contained in a hexagon whose center is outside A. Set d1 :=supz∈α′ dist(z, ∂+). Let
α1 be a subarc of α that contains one of the endpoints of α, and let α2 be a subarc of
α that contains the other endpoint of α. Let C be the event that there is a path crossing
from α1 to α2 in A inside hexagons where h is negative. Let d∗ be the infimum diameter
of any path connecting α′ to γ1∪... γk∪∂D which does not contain a subpath connecting
α\(α1∪α2) to ∂+ in A. If

d1+1 6 δmin
{
d∗,dist(α1, α

′),dist(α2, α
′),diamα′

}
, (3.26)

then
P[C |K]<ε.

Proof. The proof is slightly simpler but essentially the same as that of Lemma 3.8
(narrows). We use the same notation as in that lemma, and only indicate the few
differences in the proof. In the present setting b=E[X |K] can be made larger than −2Λ0

by taking δ>0 small. Here, we define Q0 as the connected component of (Q∪Q′∪∂+)∩Ā
that contains ∂+∩∂A. Observe that UQ∩∂D=∅ on Q−∩K. It follows that E[X |K,Q−]
is negative and bounded away from zero (by a function of Λ̄) when δ>0 is small. By
taking Λ0>0 sufficiently small, we can make sure that E[X |K,Q−]<−3Λ0. But since
E[(X−b)2 |K] is arbitrarily small and b>−2Λ0, this makes P[Q− |K] small. The rest of
the argument is essentially the same.

The previous lemmas will help us control the behavior of the continuation of contours
near existing contours or the boundary of the domain. The next lemma will help us
control the behavior in the interior away from existing contours.
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Lemma 3.10. (Obstacle) For every ε>0 there is some constant c=c(ε, Λ̄)>0 such
that the following estimate holds. Assume (h) and (D). Let K be the event that a fixed
collection {γ1, ..., γk} of oriented paths in TG∗ are contained in oriented zero-height
interfaces of h, and suppose that P[K]>0. Let U be the union of V∂ and the vertices of
TG adjacent to �γ :=γ1∪...∪γk. Let g be a function defined on the vertices of TG that
is 0 on U . Let γ̂g denote the union of the interfaces of h+g that contain any one of
the paths γ1, ..., γk. Let B(z0, r) be a disk of radius r that is centered at some vertex z0

satisfying |g(z0)|> 1
2‖g‖∞. Let d>0 and suppose that at distance at most ε−1d from z0

there is a connected component of �γ∪∂D whose diameter is at least εd. Also assume
that ‖g‖∞/‖∇g‖∞>cr>c. Then

P[γ̂g∩B(z0, r) 6= ∅ | K]6 c‖g‖−2
∞ log

d

r
.

Proof. With no loss of generality, we assume that g(z0)>0. Set q :=‖g‖∞/‖∇g‖∞
and r1 := 1

10q. Since between any two vertices z and z′ in TG there is a path in TG whose
length is at most 2|z−z′|,

min{g(z) : z ∈B(z0, r1)}> g(z0)−2r1‖∇g‖∞ = g(z0)− 1
5‖g‖∞ > 1

4‖g‖∞.

As g=0 on U , it follows that ε−1d>r1. Since we are assuming that q>cr, and we may
assume that c is a large constant which may depend on ε, it follows that d/r>100, say.
Thus, we also assume, with no loss of generality, that ‖g‖∞>

√
c, since the required

inequality is trivial otherwise.
Let X denote the average value of h on the vertices in B(z0, r). The inequality (3.5)

and d/r>100 give

E[X2 | K]6Oε,Λ̄(1) log
d

r
. (3.27)

If γ1 is not a closed path, we start exploring the interface of h+g containing γ1

starting from one of the endpoints of γ1 until that interface is completed or B(z0, r) is
hit, whichever occurs first. (This may entail going through several of the interfaces γj ,
j>1.) If that interface is completed before we hit B(z0, r), we continue and explore the
interface of h+g containing γ2, and so forth, until finally either all of γ̂g is explored or
B(z0, r) is hit. Let Q denote the event that B(z0, r) is hit, and let β be the interfaces
explored up to the time when the exploration terminates.

Let U ′ be the union of U with the vertices adjacent to β. Since we are assuming
that q>cr, r>1 and ‖g‖∞>

√
c, and since c may be chosen arbitrarily large, Lemma 3.2

shows that for every vertex v∈U ′, we have that

E[|h(v)+g(v)| | K,Q, β]6
‖g‖∞
100

. (3.28)
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(Note that conditioning on Q and β amounts to conditioning that h+g>0 on vertices
adjacent to the right-hand side of β and h+g<0 on vertices adjacent to the left-hand
side. Consequently, the lemma applies.)

Now let x be any vertex in B(z0, r). For each u∈U ′, let pu denote the probability
that a simple random walk started at x will first hit U ′ in u; that is, the discrete-harmonic
measure from x. Then (3.28) gives

E[h(x) | K,Q, β]6
‖g‖∞
100

−
∑
u∈U ′

pug(u). (3.29)

Since β∩B(z0, r) 6=∅ and β intersects the complement of B(z0, r1), Lemma 2.1 gives

∑
u∈U ′\B(z0,r1)

pu 6O(1)
( r

r1

)ζ1
.

Since we are assuming that q>cr, we may assume that the right-hand side is less than 1
10 .

Recall that g> 1
4‖g‖∞ inside B(z0, r1). Outside B(z0, r1), the trivial estimate g>−‖g‖∞

applies. When these estimates are applied to (3.29), one gets

E[h(x) | K,Q, β]−‖g‖∞
100

6−
∑

u∈U ′∩B(z0,r1)

pug(u)−
∑

u∈U ′\B(z0,r1)

pug(u)

6−
(
‖g‖∞

4

)(
1− 1

10

)
+
‖g‖∞

10
=−‖g‖∞

8
.

We may take expectation with respect to β and average with respect to x to conclude
that E[X |K,Q]6− 1

9‖g‖∞, which implies, by Jensen’s inequality, that

E[X2 | K,Q]>
‖g‖2∞

81
.

Since

P[Q |K]6
E[X2 | K]

E[X2 | Q,K]
,

the lemma now follows from the above and (3.27).

3.4. Barriers

In this subsection we apply Lemmas 3.8, 3.10 and 3.6 to get a flexible (though slightly
complicated) criterion giving lower bounds for the probability that contours avoid certain
sets. The complications arise from the need to handle pre-existing contours that are
highly non-smooth on large scales.
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Az

γ1

γ2

z

χz

Υ

Figure 3.3. The domain Az in a situation where condition (3) fails. (The figure does not show
detail on the scale of the lattice; that is, D(�γ) appears as D\�γ.)

The following relative notion of distance will sometimes be used below:

dist(A,B;X) := inf{diamα :α is a path in �X connecting A and B}. (3.30)

If �γ is a collection of paths in 
D, let D(�γ) denote the complement in D of the union of
the closed triangles of TG meeting �γ.

We now define the notion of barrier. Assume (h). Let γ1, γ2, ..., γk be disjoint simple
paths or simple closed paths in 
D. Set �γ :=γ1∪...∪γk. Let Υ⊂D(�γ) be a path, which is
contained in D(�γ), except possibly for its two endpoints. Fix some R>0 and ε>0. We
call Υ an (ε,R)-barrier for the configuration (D, �γ) if the following conditions hold:

(1) εR<diam Υ6R;
(2) within distance ε−1R from Υ there is a connected component of �γ∪∂D whose

diameter is at least εR;
(3) if z∈∂D(�γ) is an endpoint of Υ and χz is the connected component of ∂B(z, εR)∩

D(�γ) first encountered when traversing Υ from z (which exists by (1)), then the
connected component Az of D(�γ)\χz that contains points of Υ arbitrarily close
to z satisfies (a) ∂Az consists of χz and a simple path contained in ∂D(�γ) and
(b) Υ∩Az∩∂B(z, r) consists of a single point for every r∈(0, εR);

(4) for every point w∈Υ such that dist(w, ∂D(�γ))6 1
5εR there is an endpoint z∈

Υ∩∂D(�γ) such that w∈Az and |w−z|< 1
2εR (roughly, Υ does not get close to

∂D(�γ) except near its endpoints on ∂D(�γ)).
One example where condition (3) fails is given in Figure 3.3. If we remove the strand

of γ2 from that figure, we get an example that illustrates that Az⊂B(z, εR) does not
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follow from the above conditions. Note that it may happen that ∂Az\χz, which is a
simple path, by (3), consists of an arc in ∂D together with one or two arcs in �γ that have
endpoints in ∂D.

We now use barriers to “manipulate” contours of the DGFF.

Theorem 3.11. (Barriers) For every ε>0, m∈N+ and Λ̄>0 there is a

p= p(ε, Λ̄,m)> 0

such that the following estimate holds. Assume (h) and (D). Let K be the event that a
fixed collection {γ1, ..., γk} of oriented paths in TG∗ is contained in the oriented zero-
height interfaces of h, and suppose that P[K]>0. Set

�γ :=
k⋃
j=1

γj .

Let V+ (respectively , V−) be the set of vertices adjacent to �γ on the right-hand (respec-
tively , left-hand) side. Let R>0 and let Y =Y+∪Y− be a collection of m (ε,R)-barriers
for the configuration (D, γ̄). Assume that the endpoints of these barriers are not on ∂D

and that for every Υ∈Y+ (respectively , Υ∈Y−) and every endpoint z∈Υ∩∂D(�γ), the ver-
tices in Az(Υ)∩∂D(�γ) are in V+ (respectively, V−), where Az(Υ) is as in condition (3).
Also assume that dist(

⋃
Y+,

⋃
Y−;D(�γ))>2εR. In the situation where εR=O(1), we also

need to assume that there is no hexagon in TG∗ meeting both V+∪(
⋃
Y+) and V−∪(

⋃
Y−)

and there is no hexagon meeting
⋃
Y and ∂D. Let γ̂ denote the union of the zero-height

interfaces of h which contain any one of the arcs γ1, ..., γk. Then

P[(γ̂\�γ)∩(
⋃
Y ) = ∅ | K]>p.

The basic idea of the proof is as follows. We define a function g that is large (positive)
near

⋃
Y+ away from ∂D(�γ) and is negative and large in absolute value near

⋃
Y− away

from ∂D(�γ). The obstacle lemma (Lemma 3.10) will then imply that γ̂g, as defined there,
is unlikely to hit Υ, except near endpoints of barriers. The narrows lemma (Lemma 3.8)
will be used to show that γ̂g is also unlikely to hit

⋃
Y near endpoints. Finally, the

distortion lemma (Lemma 3.6) will be used to conclude that with probability bounded
away from zero, γ̂ will not hit Υ.

Proof. Let

Â1
+ :=

⋃
{Az(Υ)∩B(z, εR) :Υ∈Y+ and z ∈Υ∩�γ},

Â2
+ :=

{
z ∈D(�γ) : dist(z,

⋃
Y+;D(�γ))6 1

10εR
}
,
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and Â+ :=Â1
+∪Â2

+. Similarly, define Â−, with Y− replacing Y+. We fix constants c0>0,
large, and δ>0 much smaller than ε, and set

g(z) :=


c0δ

−1R−1 min{δR,dist(z,R2\Â+)}, if z ∈ Â+,
−c0δ−1R−1 min{δR,dist(z,R2\Â−)}, if z ∈ Â−,
0, otherwise.

Note that Â+∩Â−=∅ and ‖g‖∞=c0.
Let Z :={z∈R2 :|g(z)|=c0}. Let c1>1 be some large constant and set r :=δR/c1. Let

W be a maximal collection of vertices in
{
v :|g(v)|> 1

2c0
}

such that the distance between
any two distinct vertices in W is at least 1

3r, and for a∈W let Ba denote the disk of radius
r centered at a. Then the disks Ba, a∈W , cover Z, assuming that r>1 and c1>100, say.
Note that

|W |=O(m)
(
R

r

)2

=O(m)
(c1
δ

)2
.

Fix some a∈W . We wish to invoke Lemma 3.10 to get a good upper bound on
P[γ̂g∩Ba 6=∅|K]. We now verify the assumptions of the lemma. We note that in our
case ‖g‖∞=c0 and ‖∇g‖∞=c0/δR. Thus, q :=‖g‖∞/‖∇g‖∞=δR. Consequently, we set
c1 to be the maximum of 100 and twice the constant c in the lemma, and the assumption
q>cr is satisfied. The assumption r>1 will hold once R is large enough, which we assume
for now (we promise that δ will be a constant depending only on ε, m and Λ̄). For the
d in the lemma we may take d=R. Thus, log(d/r)=log(c1/δ), and the lemma gives

P[γ̂g∩Ba 6= ∅ | K]6Oε,Λ̄(1)
1
c20

log
c1
δ
.

Since
⋃
a∈W Ba⊃Z and |W |=O(m)(c1/δ)2, we conclude that

P[γ̂g∩Z 6= ∅ | K]6Oε,Λ̄(m)
1
c20

(c1
δ

)2
log

c1
δ
.

Although we have not specified δ yet, we choose c0=c0(c1, δ, ε,m, Λ̄) so that

P[γ̂g∩Z 6= ∅ | K]6 1
10 . (3.31)

Now that we have established that it is unlikely that γ̂g intersects Z, we need to worry
about the case in which γ̂g circumvents Z but hits

⋃
Y \Z. This can only happen near

endpoints of barriers. Let us fix some Υ∈Y+ that has an endpoint, say z1, on ∂D(�γ). Let
χ̃z1 be the arc ∂Az1(Υ)\χz1 . (It is an arc, by condition (3) of the definition of barrier.)
We will now prepare the geometric setup that will enable the use of Lemma 3.8 to prove
that P[γ̂g∩Az1(Υ)∩Υ\Z 6=∅|K] is small.
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A

γ1

α0

z1

α2

S̃

S′

α1

Υ

Figure 3.4. The set S, and the paths α0 and α̃0. The shaded region is Q.

Let Q be the set of all hexagons of the grid TG∗ whose distance from ∂D(�γ) is at
most 2δR. Let S be the connected component of

Az1∩B
(
z1,

7
8εR

)
\
(
Q∪B

(
z1,

5
8εR

))
that intersects Υ. (See Figure 3.4.) Condition (4) in the definition of barriers and our
assumption that δ�ε guarantees that there is a unique such component S. We have
S⊂Z, and so γ̂g is unlikely to hit S.

Let S′ and S̃ be the two connected components of S\Υ. Consider the connected
component M1 of ∂B

(
7
8z1εR

)
\χ̃z1 that intersects Υ. Let α1 be the arc in M1\	S that has

one endpoint in 	S′ and the other in χ̃z1 . Likewise, let M2 be the connected component of
∂B

(
5
8z1εR

)
\χ̃z1 that intersects Υ, and let α2 be the arc in M2\	S that has one endpoint

in 	S′ and the other in χ̃z1 . Let α denote the union of α1∪α2 with the arc of ∂S′\Υ
that connects the endpoint of α1 with the endpoint of α2. Let A⊂Az1(Υ) be the domain
whose boundary consists of α1∪α2, an arc of ∂S′ connecting α1 and α2 and an arc of
χ̃z1 connecting α1 and α2. Let α0 be the unique arc of ∂A\

(
∂B

(
5
8z1εR

)
∪∂B

(
7
8z1εR

))
connecting ∂B

(
5
8z1εR

)
with ∂B

(
7
8z1εR

)
. Finally, let α′ be any subarc of α0 whose

diameter is 1
16εR that intersects the circle ∂B

(
z1,

3
4εR

)
. We use A, α1, α2 and α′ in

Lemma 3.8. In the present situation, the value of d1 of that lemma is d1=2δR+O(1). If
we have a path connecting α′ to ∂D∪�γ, it must either exit B

(
z1,

7
8εR

)
\B

(
z1,

5
8εR

)
, hit

Υ\B
(
z1,

5
8εR

)
(whose distance from �γ is at least 1

5εR) or connect α0 to χ̃z1 inside A.
Consequently, the minimum on the right-hand side in (3.24) is presently at least 1

16εR.
The lemma now implies that if we choose our current δ=δ(ε,m, Λ̄)>0 sufficiently small
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Ã

A

S

Figure 3.5. No way to penetrate.

and make sure that R>1/δ, then

P[C |K]6
1

10m
,

where C is the event that there is a crossing of hexagons satisfying h<0 between α1 and
α2 inside A. If there is no such crossing, then also γ̂g does not make such a crossing,
because g>0 in A.

Likewise, we may define α̃1, α̃2, α̃′, Ã and C̃, when we replace S′ by S̃ in the above
paragraph. The same argument shows that P[C̃ |K]6 1

10m
−1.

Condition (3) of the definition of a barrier implies that 	S∪A∪Ã∪χz1 separates
Υ∩Az1(Υ) from all the endpoints of the strands γ1, ..., γk. Consequently, in order for
γ̂g to hit Υ∩Az1(Υ), we must have γ̂g∩S 6=∅ or C∪C̃. See Figure 3.5 (also compare
Figure 3.4). A similar argument applies for every other endpoint of a barrier. Since
S⊂Z, we conclude that

P[γ̂g∩(∪Y ) 6= ∅ | K]6 3
10 . (3.32)

We are really more interested in γ̂ than in γ̂g. To do the translation, we will appeal
to Lemma 3.6. For this purpose, note that

‖∇g‖∞ =O(1)
c0
δR

=Oε,Λ̄,m

(
1
R

)
and that g is supported in a union of m sets of diameter O(R). Consequently, we have
‖∇g‖2=Oε,Λ̄,m(1). Let U be the set of vertices in ∂D(�γ), and let hU denote the restriction
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of h to U . By (3.32), even if we further condition on hU , the left-hand side stays bounded
away from one on an event whose probability is bounded away from zero, namely,

P
[
P[γ̂g∩(

⋃
Y ) = ∅ | K, hU ]> 1

10

∣∣K]
> 1

10 .

Because g=0 on U , we may apply Lemma 3.6 and conclude that for hU such that the
inner inequality above holds,

Oε,Λ̄,m(1)P[γ̂∩(
⋃
Y ) = ∅ | K, hU ]> 1.

Since this set of hU has conditioned probability at least 1
10 , the theorem follows.

It remains to remove the assumption that R is larger than some fixed constant
R0=R0(ε,m, Λ̄). Assume now that R is bounded. It is not too hard to see that the event
H that h(H)∈(0, 1) for every hexagon meeting

⋃
Y+ and h∈(−1, 0) for every hexagon

meeting
⋃
Y− has probability bounded below by (a rather small) positive constant. This

is proved by considering these O(mR2) hexagons one by one. On the event H, we have
γ̂∩(

⋃
Y )=∅. This completes the proof.

Remark 3.12. There is a corresponding analog of Theorem 3.11 in the case where
the endpoints of the barriers are permitted to land on ∂D. In that case, it is necessary
to assume that h∂>−Λ0 (respectively, h∂6Λ0) on ∂Az(Υ)∩V∂ if Υ∈Y+ (respectively,
Y−) and z∈∂D∩Υ, where Λ0=Λ0(Λ̄)>0 is the constant given by Lemma 3.9. We refrain
from stating a complete formulation of this variant, though it will be useful. The proof
is the same, except that Lemma 3.9 is used to deal with the narrows near ∂D, instead
of the narrows lemma (Lemma 3.8).

3.5. Meeting of random walk and interface

We now need to further develop the basic setup and introduce some more notation. If α
is a path in the hexagonal grid TG∗, we let V (α) denote the set of TG-vertices adjacent
to it. If α is an arc of an oriented zero-height interface of h, let V+(α) denote the vertices
adjacent to it on its right-hand side, and let V−(α) denote the vertices adjacent to it on
its left-hand side.

In addition to our previous assumptions (h) and (D), we will use the following setup:
(S) Let γ denote the interface of h from x∂ to y∂ . Let v0 be some vertex of TG

in D, and let S be a simple random walk on the vertices of TG started at v0 that is
independent of h. Let τ be the first time t such that St∈∂D(γ).

The point Sτ will play a special role. Essentially, we will be interested in the configu-
ration “as viewed from Sτ”; that is, in the coordinate system where Sτ is translated to 0.
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In order to eliminate too much additional notation, it will be convenient to consider the
event Sτ=0 instead. Let τ0 be the first t such that St=0, and let �S denote the reversed
walk �St :=Sτ0−t, t=0, 1, ..., τ0.

For σ=0, 1, ..., 5, let eσ denote the edge
[
0, exp

(
1
3πiσ

)]
of the triangular grid TG,

and let e∗σ denote the dual edge in TG∗. Let Zσ0 denote the event Zσ0 :={Sτ=0}∩{e∗σ⊂γ}.
Fix some large R. Suppose that BR⊂D and v0 /∈BR. Let extRγ denote the union of

the components of γ\BR containing x∂ and y∂ . (If γ∩BR=∅, then extRγ=γ.) If there
is an interface of h containing e∗σ, denote it by β̂=β̂σ, and let β=βσR be the connected
component of β̂∩BR that contains e∗σ. Otherwise, set β=β̂=∅. Let intR�S denote the
part of �S up to the first exit of BR, and let extRS denote the part of S up to the first
entry to BR.

Set ΦR :=(D, ∂+, h∂ , v0, extRγ, extRS) and ΘR=ΘR(σ):=(βσR, intR�S). Our goal is
to show that conditioned on Zσ0 , the distribution of β does not depend strongly on Φ4R.
(A precise version of this statement is given in Corollary 3.16 below.) To this end we
will use something like

P[ΘR =ϑ |Φ3R,Zσ0 ] =
P[ΘR =ϑ |Φ3R]P[Zσ0 |ΘR =ϑ,Φ3R]

P[Zσ0 |Φ3R]
. (3.33)

This equality is obtained by applying Bayes’ formula to the measure P[ · |Φ3R]. The
following lemma takes care of the first factor in the numerator on the right-hand side.

Lemma 3.13. Assume (h), (D) and (S). There exists a constant c=c(Λ̄)>0 and a
function pR( ·) such that if R>50, R′∈

[
5
4R, 3R

]
, D⊃B4R and v0 /∈B4R, then for all

ϑ=(β̃, S̃) such that β̃ 6=∅ one has
1
c
pR(ϑ) 6P[ΘR =ϑ | γ∩B4R 6= ∅,ΦR′ ]6 cpR(ϑ).

The function pR may depend on R and ϑ, but not on anything else (in particular , not
on D, v0, ΦR′ or h∂).

Proof. The corresponding statement with ΘR replaced by β, the first coordinate of
ΘR, is an immediate consequence of Proposition 3.7.

We assume that v0 /∈B4R. The configuration ΦR′ determines the first vertex, say q,
inside BR′ visited by the random walk S. The continuation of the walk is just a simple
random walk starting at q. Suppose that we had another such walk starting at a vertex
q′∈BR′ . It is easy to see that with probability bounded away from zero the walk starting
at q visits q′ before 0. If that happens, we couple the continuation of the walk to be the
same as the walk which starts at q′ (otherwise, we let them be independent). On the
event that the walk started at q hits q′ before 0, the corresponding intR�S for both walks
will be the same. This proves the corresponding statement about the second coordinate
of ΘR. Since the two coordinates are independent given ΦR′ , the lemma follows.
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Proving an analogous result for the second factor in the numerator of the right-hand
side of (3.33) will be considerably more difficult. To this end, we now define a measure
of the quality Q=QR of the configurations ΦR and ΘR.

If γ∩BR 6=∅, let xR (respectively, yR) denote the endpoint in ∂BR of the component
of extRγ containing x∂ (respectively, y∂). When v0 /∈BR, let qR denote the vertex in
BR first visited by S. If γ∩BR=∅ or extRS visits ∂D(extRγ), then set Q(ΦR)=0.
Otherwise, define

Q(ΦR) :=
dist(x, extRS)∧dist(y, extRS)∧dist(q, extRγ)∧|x−y|

R
∧ 1

100
,

where x=xR, y=yR and q=qR. This is a measure of the separation between the strands
comprising ΦR. Similarly, define Q(ΘR), as follows. Suppose that v0 /∈BR⊂D and let
q̂R be the first vertex outside of BR visited by �S. Fix an orientation of e∗σ. If β̂ 6⊂BR,
let x̂R and ŷR be the two endpoints of the component of β=βR containing e∗σ, chosen so
that the orientation of the arc of β from x̂R to ŷR agrees with that of e∗σ. If β̂⊂BR or if
�S visits any vertex in ∂D(βR)\{0}, then set Q(ΘR)=0. Otherwise, set

Q(ΘR) :=
dist(x̂, intR�S)∧dist(ŷ, intR�S)∧dist(q̂, β)∧|x̂−ŷ|

R
∧ 1

100
,

where x̂=x̂R, ŷ=ŷR and q̂=q̂R.

Lemma 3.14. (Compatibility) Assume (h), (D) and (S). For every ε>0 there is a
constant c=c(ε, Λ̄)>0 such that

1
c

1{Q(ΘR)>ε}1{Q(ΦR′ )>ε} 6P[Zσ0 |ΘR,ΦR′ ] logR6 c

holds whenever R>c, 5R>R′> 9
8R and v0 /∈B6R⊂D.

Proof. We start by proving the lower bound on P[Zσ0 |ΘR,ΦR′ ], which is the harder
estimate. Assume thatQ(ΘR)∧Q(ΦR′)>ε, R>c>1010/ε, 5R>R′> 9

8R and v0 /∈B6R⊂D.
Let D̂S denote the connected component of BR\βR that intersects intR�S and let DS

denote the connected component of D\(extR′γ∪BR′) that contains v0 and therefore
extR′S. Note that the sign of h on vertices in D̂S adjacent to β is constant, as is the sign
of h on vertices in DS adjacent to extR′γ. Let D denote the event that these signs are
the same, namely, the sign of h on vertices in V (extR′γ)∩DS is the same as on vertices in
V (βR)∩D̂S . Using symmetry, Proposition 3.7 immediately implies that P[D|ΦR′ ,ΘR] is
bounded away from zero. (Although β is determined by ΘR, its orientation as a subarc
of an oriented zero-height interface of h is not determined by ΘR.)

We now construct some barriers, as illustrated in Figure 3.6. Let a be the initial
point of the arc ∂BR′∩
DS , when the arc is oriented counterclockwise around BR′ , and
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extR′γ

intR
�S

Aa

β

BR′

BR Ab

extR′S

extR′γ

Figure 3.6. The construction of the barriers.

let b be the other endpoint of this arc. Likewise, let â be the initial point of the arc
∂BR∩

	̂
DS , when the arc is oriented counterclockwise around BR, and let b̂ be the other

endpoint of this arc. Note that {â, b̂}={x̂R, ŷR} and {a, b}={xR′ , yR′}.
We now describe a path αa connecting a to â and a path αb connecting b to b̂

and a path αq connecting q̂R to qR
′

such that these paths do not come too close to
each other. For example, if the arguments arg a, arg b, arg qR

′
, arg â, arg b̂ and arg q̂R

are chosen so that arg â<arg q̂R<arg b̂<arg â+2π, arg a<arg qR<arg b<arg a+2π and
|arg a−arg â|6π, then we may take αa to be defined in polar coordinates by θ=s+tr,
with s and t chosen so that a and â are on the path, and similarly for αb and αq. It is
easy to check that our assumptions guarantee that the distance between any two of these
paths is at least c1εR for some constant c1>0. Set ε′= 1

10c1ε.

Let D+ be the connected component of D\(extR′γ∪βR∪αa∪αb) that contains
V+(extR′γ), and let D− be the other connected component. Let α′a be the connected
component of {z∈D+ :dist(z, αa)=ε′R} that meets the circle ∂B

(
0, 1

2 (R+R′)
)
. Note

that α′a is a simple path which intersects the circle ∂B
(
0, 1

2 (R+R′)
)

at one point. Let
a0 denote that point. We want to construct a pertubation of α′a, which will be some
(ε′′, 12R)-barrier, with ε′′ not much smaller than ε′. Let a1 be the closest point to a0

along α′a such that the distance from a1 to ∂D(extR′γ) is 1
10ε

′R, and let â1 be the closest
point to a0 along α′a such that the distance from â1 to ∂D(βR) is 1

10ε
′R. Let αa+ be the

path which is the union of the arc of α′a connecting a1 and â1 together with a shortest
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line segment connecting a1 to ∂D(extR′γ) and a shortest line segment connecting â1 to
∂D(βR).

We claim that αa+ is an (ε′′, 12R)-barrier for the configuration (D, extR′γ∪βR) with
ε′′= 1

1000ε
′. Indeed, conditions (1), (2), (4) and (3) (b) in the definition of the barrier

clearly hold. To verify condition (3) (a), let z1 be the endpoint of αa+ on ∂D(extR′γ),
and let z′1 and z′′1 be the two endpoints of χz1 on ∂D(extR′γ). Consider the simple arc
χ̃ connecting z′1 to z′′1 in ∂D(extR′γ). By the Jordan curve theorem, χ̃∪χz1 separates
the plane into two connected components. Since αa+ crosses χz1 , it follows that the part
of αa+ inside BR′ is outside of Az1 , and thus the endpoints xR

′
, yR

′
and also βR are all

outside Az1 . It follows that ∂Az1 =χz1∪χ̃, as required. A similar argument applies near
the endpoint of αa+ on ∂D(βR). Thus, αa+ is indeed an (ε′′, R′)-barrier. Note also that
the above easily implies that ∂Az1⊂D+. This will be useful below when we apply the
barriers theorem (Theorem 3.11).

We similarly construct a path αa− in D− close to αa. Likewise, we construct barriers
αb+ and αb− near the path αb. The construction is the same, except that we replace αa
by αb.

On the event D, we may apply Theorem 3.11 with Y+={αa+, αb+}, Y−={αa−, αb−},
Y =Y+∪Y− and �γ=extR′γ∪βR. (Here we use the assumption that R>c.) Note that
conditioning on ΘR, ΦR′ and D, amounts to conditioning on K in the theorem and on
the behavior of intR�S∪extR′S, which is anyway independent of h. Therefore, there is a
p=p(ε, Λ̄)>0 such that

P[Y |ΘR,ΦR′ ,D]> p,

where Y denotes the event

Y := {(γ\�γ)∩(
⋃
Y ) = ∅}.

Let Aa be the connected component of D(extR′γ∪βR)\(αa+∪αa−) that contains αa, and
let Ab be the connected component of D(extR′γ∪βR)\(αb+∪αb−) that contains αb. Again,
using the Jordan curve theorem, it is easy to verify that Aa∩Ab=∅. On the event Y,
there is no other choice for the strand of γ extending extR′γ at a, but to be confined to
Aa until it hooks up with β at â, since every other exit from Aa is blocked. Consequently,
on Y, we have γ⊃β. A similar argument applies to Ab, and we get

β⊂ γ⊂ extR′γ∪β∪Aa∪Ab on Y.

We now turn to the random walk S. For Zσ0 to hold, we must make sure that
{St :t<τ0} does not meet any vertex neighboring with γ. First consider extR′S. Note
that extR′S does not intersect ∂Aa, because ∂Aa is contained in BR′∪B(a, 2ε′R), and we
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are assuming that Q(ΦR′)>ε. (Recall that {a, b}={xR′ , yR′}.) Thus, extR′S∩Aa=∅,
and we may also conclude that extR′S does not visit any vertex adjacent to Aa when
R is large. Similar arguments apply to Ab and to intR�S. Thus, intR�S∪extR′S does not
visit any vertex adjacent to γ on the event Y∩{Q(ΦR′)>ε,Q(ΘR)>ε}.

Now let S∗ be the walk S from the first time it visits qR
′

until the first time it
visits q̂R. Then, conditioned on ΘR and ΦR′ , S∗ is just a simple random walk started at
qR

′
conditioned to hit q̂R before hitting 0. Let Aq denote the ε′R-neighborhood of αq.

Clearly, dist(Aq, Aa∪Ab)>ε′R. The probability that S∗ gets within distance 1
4ε
′R of q̂R

before exiting Aq is at least some (perhaps small) positive constant depending only on
ε′ (and hence on ε). Conditional on this event, the probability that S∗ visits q̂R before
exiting Aq is within a constant multiple of 1/log(ε′R), by (2.6). Now let S∗∗ be the walk
S from the first visit of q̂R to the last visit of q̂R before time τ0. Note that S∗∗ and
intR�S are independent given q̂R. Thus, given ΦR′ , ΘR, D and S∗, we may sample S∗∗

by starting a random walk from q̂R, stopping when it hits 0, and then removing the part
of that walk after the last visit to q̂R. When the latter walk first gets to distance 1

2ε
′R

from q̂R, it has probability bounded away from zero (by a constant depending only on ε′)
to hit 0 before q̂R. (This follows, for example, from Lemma 2.2 applied to the function
giving for every vertex the probability to hit 0 before q̂R for a random walk started at
that vertex.) Thus, conditioned on (S∗,ΘR,ΦR′), with probability bounded away from
zero, S∗∗⊂Aq. Since

Zσ0 ⊃{S∗∪S∗∗⊂Aq}∩Y,

we conclude that

Oε,Λ̄(1)P[Zσ0 |ΦR′ ,ΘR,D]>
1

logR
.

Above, we have argued that P[D|ΦR′ ,ΘR] is bounded away from zero, and so we conclude
that the lower bound estimate in the proposition holds.

It remains to prove the upper bound. Conditional on γ, intR�S and extR′S, the
probability that S∗ (as defined in the proof of the lower bound) hits q̂R before hitting
γ is clearly O(1)/logR, since the conditional law of S∗ is that of a random walk started
at qR

′
and conditioned to hit q̂R before 0, and the probability that an ordinary random

walk started at qR
′

hits q̂R before 0 is bounded away from zero. The upper bound now
follows, and the proof is complete.

To make the previous lemma useful, we will need to argue that configurations with
quality bigger than ε are not too rare, in an appropriate sense. This is achieved by the
following lemma.
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extrj S

extrj γ

Figure 3.7. An example for Qj =0 6=Q(Φrj ). The set Brj is shaded.

Lemma 3.15. (Separation) Assume (h), (D) and (S). Let p<1. There exists some
constant c=c(p, Λ̄)>0 such that if R>1/c and v0 /∈B6R⊂D, then

P[Q(Φ3R)∧Q(Θ2R)>c |ΘR,Φ4R,Zσ0 ]>p, (3.34)

provided that P[Zσ0 |ΘR,Φ4R]>0.

The proof of this lemma is modeled after Lawler’s separation lemma for Brownian
motions from [L2, Lemma 4.2].

Proof. To keep the notation simple, we start by proving a simpler version of the
lemma, where we also assume that Q(ΘR)> 1

100 , say (and therefore Q(ΘR)= 1
100 ), and

we prove that
P[Q(Φ3R)>c |ΘR,Φ4R,Zσ0 ]>p. (3.35)

We define inductively a random sequence r0, r1, ... as follows. Set r0 :=4R. Suppose that
rj is defined. Set

Qj :=
{
Q(Φrj ), if P[Zσ0 |Φrj ,ΘR]> 0,
0, otherwise,

and rj+1 :=(1−10Qj)rj . Note that Qj=0 implies that P[Zσ0 |Φrj ,ΘR]=0. (An example
showing that Qj=0 6=Q(Φrj ) is possible is given in Figure 3.7. Such a situation can only
occur when |xrj−yrj |=O(1).) Also note that P[Zσ0 |Φrj ,ΘR]>0 if and only if there are
paths γ∗ and S∗ satisfying the following: (1) γ∗ is a simple TG∗-path in 
D containing
βR and extrjγ, (2) S∗ is a TG-path in D containing extrjS and the reversal of intR�S
and (3) S∗ does not visit any vertex in ∂D(γ∗), except for 0.

We claim that for every j∈N,

P
[
Qj+1 > (2Qj)∧ 1

100

∣∣ Φrj , rj > 2R,ΘR

]
>c0 (3.36)
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extrj S

∂Brj

∂Brj+1

extrj γ

Figure 3.8. The construction of the barriers giving (3.36).

for some constant c0=c0(Λ̄)>0. Clearly it suffices to prove this in the case Qj>0. The
gap between ∂Brj and ∂Brj+1 is larger than but comparable to 5rjQj . Note also that
because Brj is a union of TG∗-hexagons, rjQj>1/

√
3. If rjQj>20, say, then, we can

easily use barriers as in the proof of Lemma 3.14 (see Figure 3.8) to direct and separate
the two strands of extrj+1γ\extrjγ and the walk extrj+1S\extrjS so as to obtain (3.36).

Now assume that rjQj620. In this case the discrete structure of the lattice is
“visible”. Let q′ be the point on ∂Brj crossed by extrjS in its last step, and let α be a
longest arc among the three connected components of ∂Brj \{q′, xrj , yrj}. Suppose first
that q′ is not an endpoint of α. Let α be oriented counterclockwise around Brj , and let
a and b be the initial and terminal points of α, respectively. Let ηa (respectively, ηb)
denote the connected component of extrj+1γ\extrjγ that has a (respectively, b) as an
endpoint. Assume that |q′−a|<500 and |q′−b|<500. Consider the event X that ηa goes
as far to the right as possible subject to the conditions that it remains inside B(q′, 550)
and avoids extrjγ and that ηb goes as far to the left as possible subject to the conditions
that it remains inside B(q′, 550) and avoids extrjγ. See Figure 3.9. It is easy to see that
P[Zσ0 |Φrj ,ΘR]>0 implies that on X there is a simple TG-path in B(q′, 250) from q′ to
Brj+1 that avoids ∂D(extrj+1γ). Since the number of edges traversed by these paths is
bounded, it is easy to see that the probability that S follows the latter path and X holds
given Φrj and ΘR satisfying the above assumptions is bounded away from zero (for X ,
note that we can extend the interfaces one step at a time and the probability for every
specific step given the previous ones is bounded away from zero). This gives (3.36) in this
case. Similar, or simpler, arguments apply if one or more of the assumptions |q′−a|<500
and |q′−b|<500 do not hold.
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∂Brj

∂Brj+1

ηb

S

ηa

Figure 3.9. The interfaces spreading out.

If q′ is an endpoint of α a similar argument may be used. Suppose, for example, that
q′ is the initial point of α, that yrj is the other endpoint of α and that |q′−yrj |<300. Then
we may consider the possibility that the connected component of extrj+1γ\extrjγ that
has yrj as an endpoint goes as far to the left as possible subject to the requirements that
it stays inside B(yrj , 5000) and avoids hexagons containing vertices visited by extrjS, and
that the connected component of extrj+1γ\extrjγ that has xrj as an endpoint goes as far
to the left as possible subject to the requirements that it stays inside B(xrj , 4000) and
avoids the previous strand extending extrjγ at yrj and finally, the random walk avoids
∂D(extrj+1γ) and stays in B(q′, 300) until it hits Brj+1 . A similar argument applies if
|q′−yrj |>300. This proves (3.36).

We now prove that for every j∈N,

P[Qj+2 =0 |Φrj , rj > 2R,ΘR, Qj+1< 2Qj ]> c1, (3.37)

for some c1=c1(Λ̄)>0. Let x=xrj+1 , y=yrj+1 and q=qrj+1 . Let S† be the part of the
walk S from the first visit to qrj up to the first visit to q. Note that

dist(x, extrjS) > 2rjQj > 2rj+1Qj ,

if Qj>0, and similarly for y. Thus, the event Qj+1<2Qj is the union of the following
five events

M0 := {Qj+1 =0},

M1 := {dist(S†, {x, y})< (2Qjrj+1)∧|x−y|},

M2 := {rj+1Qj+1 =dist(q, extrj+1γ), Qj+1< 2Qj},
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M3 := {0< |x−y|= rj+1Qj+1, Qj+1< 2Qj},

M4 :=
{
Qj+1 = 1

100 , Qj+1< 2Qj
}
.

(In the definition of M1, dist(S†, {x, y}) means the least distance from a vertex visited
by S† to x or y, of course.) Clearly,

OΛ̄(1)P[Qj+2 =0 |Φrj ,ΘR,Mk]> 1 (3.38)

holds for k=0. The same is also true for k=4, because Qj+1= 1
100 implies that the

random walk started at q has conditional probability bounded away from zero to hit
extrj+1γ before ∂Brj+2 . A similar argument gives (3.38) when k=2.

Now condition on M1, and let v be the vertex first visited by S† that is at distance
less than (2Qjrj+1)∧|x−y| from {x, y}. Conditioned additionally on ΘR, extrj+1γ and
the walk S† until it hits v, there is clearly probability bounded away from zero that
S† hits a vertex adjacent to extrj+1γ before Brj+2 , and in this case we have Qj+2=0.
Consequently, (3.38) also holds for k=1.

Now condition on M3, Φrj+1 and ΘR. Let z be the midpoint of the segment
[x, y], and consider the circle ∂B(z, 2|x−y|). We may build a barrier by using the
connected component of ∂B(z, 2|x−y|)\∂D(extrj+1γ) that intersects Brj+1 (and pos-
sibly perturbing it slightly near its endpoints). If γ does not cross this barrier, then
Qj+2=0 holds. Thus, we get from Theorem 3.11 that (3.38) also holds for k=3. Since
{Qj+1<2Qj}=

⋃4
k=0Mk, and (3.38) holds for k=0, 1, ..., 4, it follows that (3.37) holds

as well.
Set sn :=2R

∏n−1
k=0(1−2−k/10)−1. It follows from Lemma 3.14 and our assumption

that Q(ΘR)> 1
100 that for any j∈N,

P[Zσ0 |Φrj ,ΘR]>
c2

logR
1{Qj>1/100}1{rj>s0}

for some c2=c2(Λ̄)>0. An appeal to (3.36) therefore implies that

P[Zσ0 |Φrj ,ΘR]>
c0c2
logR

1{Qj>2−1/100}1{rj>s1}.

Continuing inductively, we get for every n∈N,

P[Zσ0 |Φrj ,ΘR]>
cn0 c2
logR

1{Qj>2−n/100}1{rj>sn}.

Since

sup
n
sn< 2R

(
1−

∞∑
k=0

2−k

10

)−1

=
5
2
R,
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we get for every j∈N,

P[Zσ0 |Φrj ,ΘR]>
c
− log2Qj

0 c2
logR

1{rj>5R/2} = c2
Q
− log2 c0
j

logR
1{rj>5R/2}. (3.39)

From (3.37) we get that for every j the conditional probability that there is some
k>j such that rk>2R, Qk<2Qj and Qk+1>0, given Φrj

and ΘR, is at most 1−c1. Let
mn denote the number of k∈N such that rk>3R and Qk∈(2−n, 21−n]. Fix some n∈N,
and suppose that P[mn>0|Φ4R,ΘR]>0. On the event mn>0, let kn be the first k such
that Qk∈(2−n, 21−n]. By induction and (3.37), for every m∈N,

P[mn> 2m |mn> 0,Φrkn
,ΘR]6 (1−c1)m.

An appeal to the upper bound in Lemma 3.14 gives

P[Zσ0 ,mn> 2m |mn> 0,Φrkn
,ΘR]6

c3(1−c1)m

logR

for some c3=c3(Λ̄). On the other hand, (3.39) gives

P[Zσ0 |mn> 0,Φrkn
,ΘR]>

c2c
n
0

logR
.

Comparing the last two inequalities, we get

P[mn> 2m | Zσ0 ,Φr0 ,ΘR]6
c3c

−n
0 (1−c1)m

c2
.

In particular, there is an n0=n0(Λ̄, p)∈N and a c4=c4(Λ̄) such that

P[there exists n>n0 :mn>c4n | Zσ0 ,Φr0 ,ΘR]6 1
3 (1−p).

Let n1 be the least integer larger than 3 such that
∏∞
n=n1

(1−10·21−n)c4n> 7
8 , and let

n2=n1∨n0. On the event Zσ0 ∩
⋂
n>n2

{mn6c4n} we must have some j∈N with rj>
7
2R

and Qj>2−n2 (because rj+1/rj=1−10Qj and n2>n1). Consequently,

P
[
there exists j :Qj >c5, rj > 7

2R
∣∣Zσ0 ,Φ4R,ΘR

]
> 1− 1

3 (1−p) (3.40)

holds for some c5=c5(p, Λ̄)>0. Note that this almost achieves our goal of proving (3.35).
The difference between (3.40) and (3.35) is that in the latter the radius r at which Q(Φr)
is bounded from below is variable.

Let A be the event that there is a j∈N with Qj>c5 and rj>
7
2R, and on A, let j0

denote the first such j. We have from (3.39) that

P[Zσ0 | A,Φrj0
,ΘR]>

c2c
− log2 c0
5

logR
. (3.41)
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Fix some s>0 small. We now argue that

P[Zσ0 | A,Φrj0
,ΘR, |x3R−y3R|<sR]6

c7s
c6

logR
(3.42)

for some positive constants c7 and c6 depending only on Λ̄. The argument is similar
to the one given in the proof of the case k=3 in (3.38). Let z be the midpoint of the
segment [x3R, y3R]. We construct a barrier as a perturbation of the connected com-
ponent of ∂B(z, 2sR)\∂D(ext3Rγ) that intersects B3R. If that barrier is hit by the
extension of ext3Rγ (which happens with probability bounded away from 1), then we
condition on the extension up to that barrier, and construct another barrier at radius
4sR, instead. We continue in this manner, constructing barriers at radii 2nsR up to the
least n such that 2ns> 1

1000 , say. Because the probability of avoiding the nth barrier
given that the (n−1)th barrier has been reached is bounded away from 1, we find that
P[γ⊃βR |A,Φrj0

,ΘR, |x3R−y3R|<sR] is bounded by a constant times some positive
power of s. The estimate (3.42) follows by considering the behavior of S.

Suppose now that the random walk S after its first hit to Brj0
but before its first

hit to B3R gets within distance sR of ext3Rγ. Then, by Lemma 2.1, conditional on S

up to the first time this has happened and on A, Φrj0
, ΘR and ext3Rγ, the conditional

probability for S hitting B5R/2 before hitting ∂D(ext3Rγ) is at most c8sζ1 , for some
universal constant c8. Thus, the conditional probability for Zσ0 is at most c8sζ1/logR.
Combining this with (3.42), one gets

P[Zσ0 | A,Φrj0
,ΘR, Q(Φ3R)<s]6

c7s
c6 +c8sζ1

logR
.

Comparison with (3.41) now gives

P[Q(Φ3R)<s | Zσ0 ,A,Φrj0
,ΘR] =

P[Q(Φ3R)<s,Zσ0 | A,Φrj0
,ΘR]

P[Zσ0 | A,Φrj0
,ΘR]

6
P[Zσ0 | A,Φrj0

,ΘR, Q(Φ3R)<s]
P[Zσ0 | A,Φrj0

,ΘR]
6
c7s

c6 +c8sζ1

c2c
− log2 c0
5

.

Thus, we obtain, for all s sufficiently small,

P[Q(Φ3R)<s | Zσ0 ,A,Φ4R,ΘR]6 1
3 (1−p).

Taking (3.40) into account, this gives (3.35), and completes the proof of the simplified
case.

The argument in the general case proceeds as follows. We define inductively two
sequences rj and r̂j , starting with r0=4R and r̂0=R. At each step j, we set

Qj :=Q(Φrj )∧Q(Θr̂j )∧1{P[Zσ
0 |Φrj

,Θr̂j
]>0}

and take rj+1=(1−10Qj)rj and r̂j+1=(1+10Qj)r̂j . The proof proceeds essentially as
above. The straightforward details are left to the reader.
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Corollary 3.16. There exists a constant c=c(Λ̄)>0 such that the following esti-
mate holds. Let (D′, ∂′+, ∂

′
−, h

′
∂ , h

′, γ′, v′0) satisfy the same assumptions as we have for
(D, ∂+, ∂−, h∂ , h, γ, v0). Let R>c, and assume that B6R⊂D′∩D and v0, v

′
0 /∈B6R. Let

Θ′
R, Φ′

4R and Zσ0
′ be the objects corresponding to ΘR, Φ4R and Zσ0 for the system in D′

(with the same σ, that is, σ′=σ). Then

P[ΘR =ϑ | Zσ0 ,Φ4R]6 cP[Θ′
R =ϑ | Zσ0

′,Φ′
4R] (3.43)

holds for all ϑ and for all Φ4R and Φ′
4R satisfying P[Zσ0 |Φ4R]>0 and P[Zσ0

′ |Φ′
4R]>0,

respectively. Consequently , under the same assumptions, there exists a coupling of the
conditional laws of ΘR and Θ′

R such that

P[ΘR =Θ′
R | Zσ0 ,Zσ0

′,Φ4R,Φ′
4R]>

1
c
.

Proof. It is enough to prove the first claim, since the latter claim immediately follows.
Let c′>0 be the constant denoted as c in the separation lemma (Lemma 3.15) with p= 1

2 .
Let Q denote the event Q(Φ3R)∧Q(Θ2R)>c′. Let X be the collection of all θ such
that Θ2R=θ is possible and Q(θ)>c′, and let Xϑ be the collection of all θ∈X that
are compatible with ΘR=ϑ; that is, such that {Θ2R=θ and ΘR=ϑ} is possible. In the
following, f≈g will mean that f/g is contained in [1/c, c] for some constant c=c(Λ̄)>0.
By Lemma 3.15 and the choice of p,

P[ΘR =ϑ | Zσ0 ,Φ4R]≈P[ΘR =ϑ | Q,Zσ0 ,Φ4R] =
∑
θ∈Xϑ

P[Θ2R = θ | Q,Zσ0 ,Φ4R]. (3.44)

Now, if Q(Φ3R)>c′ and θ∈X, then

P[Θ2R = θ | Q,Zσ0 ,Φ3R] =
P[Θ2R = θ,Q,Zσ0 |Φ3R]

P[Zσ0 ,Q |Φ3R]

=
P[Θ2R = θ,Zσ0 |Φ3R]

P[Zσ0 ,Q |Φ3R]

=
P[Θ2R = θ |Φ3R]P[Zσ0 |Θ2R = θ,Φ3R]

P[Zσ0 ,Q |Φ3R]
.

We apply Lemma 3.13 to the first factor in the numerator and Lemma 3.14 to the second
factor, and get

P[Θ2R = θ | Q,Zσ0 ,Φ3R]≈ p2R(θ)/logR
P[Zσ0 ,Q |Φ3R]

.

The sum of the left-hand side over all θ∈X is 1. Consequently,

P[Θ2R = θ0 | Q,Zσ0 ,Φ3R]≈ p2R(θ0)∑
θ∈X p2R(θ)

.
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By taking expectation conditioned on Q, Zσ0 and Φ4R, it follows that the same relation
holds when we replace Φ3R by Φ4R. We now sum over θ0∈Xϑ and invoke (3.44), to
obtain

P[ΘR =ϑ | Zσ0 ,Φ4R]≈
∑
θ∈Xϑ

p2R(θ)∑
θ∈X p2R(θ)

.

This implies (3.43), and completes the proof.

Our intermediate goal to show that the dependence between the local behavior near
Sτ and the global behavior far away is now accomplished. Roughly, the next objective
will be to show that it is unlikely that γ contains an arc with a very large diameter whose
endpoints are both relatively close to Sτ .

For R>r>0, let J =J (r,R) denote the event that there are more than two disjoint
arcs of γ connecting Br and ∂BR or that S exits BR between the time it first hits Br

and τ0. Set Z0 :=
⋃5
σ=0Zσ0 . Our next objective is to show that conditioned on Zσ0 or Z0,

J (r,R) is unlikely if R�r>0. More precisely, the claim is as follows.

Lemma 3.17. Assume (h), (D) and (S). For every p>0 there is some a=a(p, Λ̄)>10
such that if r>1, R>ar, v0 /∈B4R⊂D and P[Zσ0 |ΦR,Θr]>0, then

P[J (r,R) |ΦR,Θr,Zσ0 ]<p

and also
P[J (r,R) |ΦR,Z0]<p.

One may first think that this can be proved by repeating the argument in the proof
of Lemma 3.14. The difficulty in carrying out this idea is that the sets Aa and Ab

described in the proof of Lemma 3.14 may extend beyond BsR′ for large s (where R′ is
as in that lemma) if there are more than two disjoint arcs of extR′γ connecting ∂BR′+ε′R

and ∂BsR′ .
Since the proof of the lemma is a bit involved and somewhat indirect, we take a

few moments to give an overview of the strategy. First, it is established that under the
conditioning the simple random walk S is unlikely to backtrack to ∂BR after hitting Br

and before τ0. Next, we identify a pair of arcs α1 and α2 that are defined from Φ3r each
of which has one endpoint on ext3rS and the other on ext3rγ. A barriers argument is
then used to show that with high conditional probability γ\ext3rγ does not hit α1∪α2.
In this case, we see that α1∪α2 has an alternative definition in terms of γ and S, which
is in some sense more symmetric. Next we define another pair of arcs α̃1∪α̃2, which have
a similar definition as α1∪α2, except that they are defined from ΘR/3. Again, the same
barriers argument can be used to show that with high conditional probability these arcs
are not visited by γ\βR/3. In this case, these arcs have a more symmetric definition,
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which leads us to conclude that with high conditional probability α1∪α2=α̃1∪α̃2. This
is then used to establish that the endpoints of these arcs on γ belong to ext3rγ as well as
βR/3. Next, we prove that these two endpoints belong to different connected components
of γ\e∗σ. This then implies that each of the two strands of ext3rγ merges with βR/3,
which implies that there are no more than two disjoint crossings between ∂BR and B3r

in γ.

Proof. The second claimed inequality with p replaced by 6p follows from the first
inequality and taking conditional expectation, since Z0=

⋃5
σ=0Zσ0 . Thus, we only need

to prove the first inequality. By Lemma 3.15, there is a constant c0=c0(Λ̄, p)>0 such
that

P[Q(Φ3R/4)∧Q(ΘR/2)∧Q(Φ3r)∧Q(Θ2r) 6 c0 |ΦR,Θr,Zσ0 ]< 1
10p. (3.45)

Let r′ be in the range
[√
rR,

√
rR+1

]
, chosen so that the circle ∂B(0, r′) does not

contain any TG-vertices nor any TG∗-vertices. Let S∗ denote the part of the walk S

from its first visit to q3r until its last visit to q̂r prior to τ0. Conditional on Φ3r and Θr,
the probability that S∗ exits Br′/3 without hitting ext3rγ decays to zero as a!∞ (by
Lemma 2.1). On the event that this happens, let S∗∗ be the initial segment of the walk
S∗ until it exits Br′/3. By the proof of the upper bound in Lemma 3.14,

P[Zσ0 |Θ2r,Φ3r, S∗ 6⊂Br′/3, S∗∗]6
O(1)
log r

.

By the lower bound in that lemma, on the event Q(Φ3r)∧Q(Θ2r)>c0 we have

Op,Λ̄(1)P[Zσ0 |Θ2r,Φ3r]>
1

log r
.

Consequently, a may be chosen sufficiently large so that

1{Q(Φ3r)∧Q(Θ2r)>c0}P[S∗ 6⊂Br′/3 |Θ2r,Φ3r,Zσ0 ]< 1
10p.

Hence, (3.45) implies that

P[S∗ 6⊂Br′/3 |Θr,ΦR,Zσ0 ]< 1
5p. (3.46)

Let S′ be the path traced by ext3rS from the last time in which ext3rS was outside
BR/3 until its terminal point q3r∈B3r. Let S̃ be the path traced by intR/3�S from the
last time in which intR/3�S was inside B3r until its terminal point q̂R/3. Observe that
S′ is Φ3r-measurable, S̃ is ΘR/3-measurable, and when S∗⊂Br′/3, we have S′=S̃ as
unoriented paths.
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Observe that there is a connected component α of ∂B(0, r′)\S′ such that S′∪α
separates ∂D from B3r. We fix such an α, and if there is more than one possible choice,
we choose one in a way which depends only on S′.

On the event Q(Φ3r)>0 each strand of ext3rγ connects ∂D with B3r, and hence
ext3rγ intersects α. Thus, there are precisely two connected components of α∩D(ext3rγ)
which have one endpoint in S′ and the other in ∂D(ext3rγ). Let α1 and α2 be these two
arcs.

We now argue that

1{Q(3r)∧Q(2r)>c0}P[γ∩α1 6= ∅ | Zσ0 ,Φ3r,Θ2r]< 1
10p (3.47)

if a is sufficiently large.
The basic idea of the proof of (3.47) is to construct a sequence of barriers separating

B3r from α1 in D(ext3rγ) such that if γ hits a barrier in the sequence, the conditional
probability that it will hit the next barrier is bounded away from 1.

Let D′ be the connected component of D(ext3rγ)\B3r that contains α1. Note that
D′ is a simply connected domain. See Figure 3.10. Let zα1 denote the endpoint of α1

on ∂D′ and let ξ1 and ξ2 be the two connected components of ∂D′\({zα1}∪
B3r). (Both
have zα1 as an endpoint and the other endpoint in ∂B3r.) Note that any path in D′\α1

connecting ξ1 and ξ2 separates α1 from ∂B3r in D(ext3rγ). For each %∈(3r+3, r′−3)
let A(%) denote the connected component of D′\B(0, %) that contains α1, and let α(%)
denote the connected component of ∂A(%)∩∂B(0, %) that separates α1 from B3r in D′.
Observe that α(%) has one endpoint on ξ1 and the other on ξ2. If 3r+3<%<%′<r′−3,
then A(%)⊃A(%′) and therefore α(%′) separates α(%) from α1 in D(ext3rγ) and α(%)
separates α(%′) from B3r. When 3r+3<%<%′<r′−3, let A(%, %′) denote the connected
component of D′\(α(%)∪α(%′)) whose boundary contains α(%)∪α(%′).

For n∈N, let %n :=2n(3r+3), and let N be the largest n such that 8%n<r′. Fix some
n∈{1, ..., N} and some small δ>0 (δ= 1

100 should do). Set Aδn :=A((1−δ)%n, (1+δ)%n).
By continuity, Aδn contains points w such that dist(w, ξ1)=dist(w, ξ2). Set

η(n) := min
{
dist(w, ξ1) :w∈Aδn,dist(w, ξ1) =dist(w, ξ2)

}
.

First, assume that η(n)>δ%n. In that case, a barrier Υn is defined as follows. By conti-
nuity, there is a subarc Υ′ of α(%n)⊂Aδn with endpoints z1 and z2 such that dist(zj , ξj)=
1
10δ%n, j=1, 2, and dist(Υ′, ∂D′)= 1

10δ%n. Let z′j be a point in ξj at distance 1
10δ%n

from zj , j=1, 2. Then we take Υn as the union of Υ′ with the two line segments
[z1, z′1] and [z2, z′2]. Recall the definition of dist( · , · ; ·) from (3.30), and note that
dist(z′j , ξ3−j ;D

′)> 1
10δ%n, j=1, 2, for otherwise, by continuity again, there would be a
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α1

D′
ξ1

ξ2

B3r

∂B(0, r′)

Figure 3.10. The domain D′.

point w∈
D′ satisfying dist(w, z′j ;D
′)6 1

10δ%n (and therefore w∈Aδn) that is at equal dis-
tance from ξ1 and from ξ2, which would contradict our assumption η(n)>δ%n. It easily
follows that in this case Υn is a

(
1
20δ, 2%n

)
-barrier.

We now assume that η(n)6δ%n. Let w1∈Aδn be a point satisfying

dist(w1, ξ1) =dist(w1, ξ2) 6 δ%n.

For j=1, 2, let pj∈ξj be a point satisfying |w1−pj |=dist(w1, ∂D
′). If

dist(pj , ξ3−j ;D′) > δ2%n for j=1, 2,

then we may take as our barrier the union [p1, w1]∪[w1, p2]. This will be a
(

1
4δ, 2δ%n

)
-

barrier. Otherwise, fix a point w2 satisfying

dist(w2, pj ;D′) 6 δ2%n and dist(w2, ξ1) =dist(w2, ξ2) 6 δ2%n

and consider the above construction with w2 in place of w1. It may happen that the
construction succeeds now, and we construct a

(
1
4δ, 2δ

2%n
)
-barrier. Otherwise, we find a

point w3∈D′ satisfying dist(w3, w1;D′)6(δ+δ2+δ3)%n such that

dist(w3, ξ1) =dist(w3, ξ2) 6 δ3%n.

We continue this procedure until some
(

1
4δ, 2δ

m%n
)
-barrier is obtained. The procedure

must terminate successfully at some finite m, for otherwise the points wm would converge
to some point in ξ1∩ξ2 within distance 2δ%n from Aδn, which is clearly impossible. Note
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that the barrier Υn thus constructed is contained in A2δ
n . Thus, when 16n′<n6N ,

n, n′∈N, we have dist(Υn,Υn′ ;D′)> 1
4%n and Υn separates α1 from Υn′ in D′.

Suppose n∈{1, ..., N−1}. Note that (contrary to what appears in Figure 3.10, which
does not show the scale of the lattice) the endpoints of Υn are not on γ, since ξ1∪ξ2 are
disjoint from γ, by construction. On the event γ∩Υn 6=∅, let γ1 and γ2 be the two arcs
of γ extending from the endpoints of ∂+ to the first encounter with Υn. Now we apply
Theorem 3.11 with Y ={Υn+1}. Our careful construction above ensures that Υn+1 is
an (ε,diam Υn+1)-barrier for some universal constant ε>0. Note that ξ1 and ξ2 contain
vertices on which h takes the same sign. We conclude from the theorem that

P[γ∩Υn+1 6= ∅ | γ1, γ2,Φ3r,Θ2r]< 1−c1

for some c1=c1(Λ̄)>0. The above implies that

P[γ∩Υn+1 6= ∅ | γ∩Υn 6= ∅,Φ3r,Θ2r]< 1−c1,

which gives
P[γ∩α1 6= ∅ |Φ3r,Θ2r]6 (1−c1)N−1. (3.48)

Conditioned on γ,Φ3r and Θ2r, the probability of Zσ0 is at most O(1)/log r, by the proof
of the upper bound in Lemma 3.14. Thus,

P[γ∩α1 6= ∅,Zσ0 |Φ3r,Θ2r]6
O(1)(1−c1)N−1

log r
.

On the other hand, the lower bound tells us that on the event {Q(3r)∧Q(2r)>c0}, we
have OΛ̄,p(1)P[Zσ0 |Φ3r,Θ2r]>1/log r. Thus, (3.47) follows.

Clearly, (3.47) also holds for α2. On Zσ0 let α∗1 and α∗2 be the two connected compo-
nents of α∩D(γ) that have one endpoint in S′ and the other in ∂D(γ). Note that when
Zσ0 holds and γ∩(α1∪α2)=∅, we have α∗1∪α∗2=α1∪α2. Thus, (3.47) for α1 and for α2

together with (3.45) now gives

P[α∗1∪α∗2 6=α1∪α2 |ΦR,Θr,Zσ0 ]< 3
10p. (3.49)

We now follow an analog of the above argument with the roles of inside and outside
switched. Observe that there is a connected component α̃ of ∂B(0, r′)\S̃ such that S̃∪α̃
separates ∂D from B3r. We fix such an α̃, and if there is more than one possible choice,
we choose it in the same way in which α was chosen from S′; that is, we make sure that
α=α̃ if S′=S̃ (as unoriented paths). The point is that although α is Φ3r-measurable and
α̃ is ΘR/3-measurable, we have α=α̃ if S′=S̃.
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On the event Q(ΘR/3)>0, let α̃1 and α̃2 be the two connected components of
α̃∩D(βR/3) that have one endpoint on S̃ and the other on ∂D(βR/3). On the event
Zσ0 , let α̃∗1 and α̃∗2 be the two connected components of α̃∩D(γ) that have one endpoint
on S̃ and the other on ∂D(γ). Essentially the same proof which gave (3.49) now gives

P[α̃∗1∪α̃∗2 6= α̃1∪α̃2 |ΦR,Θr,Zσ0 ]< 3
10p. (3.50)

But observe that when Zσ0 and S′=S̃ hold, we clearly have α̃∗1∪α̃∗2=α∗1∪α∗2. Also recall
that S′=S̃ when S∗⊂Br′/3. Thus, from (3.46), (3.49) and (3.50), we get

P[α̃1∪α̃2 6=α1∪α2 or S∗ 6⊂Br′/3 |ΦR,Θr,Zσ0 ]< 4
5p.

Assume that Zσ0 , α̃1∪α̃2=α∗1∪α∗2=α1∪α2 and S∗⊂Br′/3 hold. It remains to show
that in this case the path γ has no more than two disjoint arcs connecting Br and
∂BR. Recall that α̃1 has an endpoint on ∂D(βR/3). This endpoint is on a TG-triangle
containing a TG∗-vertex v1∈βR/3. Similarly, there is a TG∗-vertex v2∈βR/3 for which
the TG-triangle containing it has an endpoint of α̃2. From α̃1∪α̃2=α1∪α2, we conclude
that v1, v2∈ext3rγ as well.

Shortly, we will prove that v1 and v2 are in separate connected components of
βR/3\e∗σ. This implies that each connected component of βR/3\e∗σ intersects ext3rγ. Since
βR/3∪ext3rγ⊂γ, and γ is a simple path, it easily follows that γ=βR/3∪ext3rγ, which
implies that there are at most two disjoint crossings in γ between Br and ∂BR.

It remains to prove that v1 and v2 are in different connected components of βR/3\e∗σ.
This will be established using planar topology arguments. Let α̂ consist of α̃1∪α̃2, a
simple path S̃0⊂S̃ connecting them, and short line segments (contained in the TG-
triangles containing v1 and v2) from the endpoints of α̃1 and α̃2 on ∂D(βR/3) to v1

and v2. Then α̂ is a simple path and only the endpoints of α̂ are on γ. Let β̃ be the
connected component of βR/3\{v1, v2} with endpoints v1 and v2. Then β̃∪α̂ is a simple
closed path and it suffices to show that e∗σ⊂β̃. If β̃∪α̂ separates 0 from ∂D, then β̃ must
contain e∗σ, because each connected component of γ\{e∗σ} connects ∂D to TG∗-vertices
adjacent to 0 and is disjoint from α̂\{v1, v2}.

Suppose that β̃∪α̂ does not separate 0 from ∂D. Recall that α̃∪S̃ separates ∂D
from B3r and therefore from 0. Since S̃ itself does not separate ∂D from 0, it follows
that the winding number of α̃∪S̃0 around 0 is ±1 (depending on orientation). Since β̃∪α̂
does not separate 0 from ∂D, its winding number around 0 is zero. If we remove from
the union of the two paths α̃∪S̃0 and β̃∪α̂ all the non-trivial arcs where they agree, we
get a closed curve χ, which consists of β̃, a segment of α̃ and the two short connecting
segments near v1 and v2, and χ has odd winding number around 0. Consequently, it
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separates 0 from ∂D. But observe that S̃ is disjoint from χ. Moreover, since we are
assuming S∗⊂Br′/3, it follows that intR/3�S is also disjoint from it. But this contradicts
the fact that χ separates ∂D from 0, since intR/3�S can be extended to a path disjoint
from χ and connecting 0 and ∂D. Thus, the proof is now complete.

3.6. Coupling and limit

In this subsection, we retain our previous assumptions (h), (D) and (S) about the system
D, ∂+, ∂−, h∂ , v0, h, γ. Moreover, we also consider another such system D′, ∂′+, ∂′−, h′∂ ,
v′0, h

′, γ′, which is supposed to satisfy the same assumptions. In particular, ‖h′∂‖∞6Λ̄.
Generally, we will use ′ to denote objects related to the system in D′. For example,
J ′(r,R) will denote the event corresponding to J (r,R).

Definition 3.18. Fix R>r>0, and suppose that BR⊂D∩D′. Consider the intersec-
tion extrγ∩BR as a collection of oriented paths, oriented so as to have vertices in V+(γ)
on the right. We say that Φr and Φ′

r match in BR if the set of vertices in BR visited by
extrS is the same as the corresponding set for S′ and extrγ∩BR=extrγ′∩BR with all
the orientations agreeing or with all the orientations reversed.

We now show that if the configurations match in a big annulus, then it is likely that
the interfaces agree in the inner disk; more precisely, we have the following result.

Lemma 3.19. For every δ>0, r>10 and R∗>r+3 there is an R=R(δ, r, R∗, Λ̄)>R∗

such that the following holds. Suppose that v′0, v0 /∈BR⊂D∩D′, P[¬J (r,R∗),Z0 |Φr]>0
and P[¬J ′(r,R∗),Z ′

0 |Φ′
r]>0. Assume that Φr and Φ′

r match in BR. In particular ,
the endpoint qr of extrS in Br is the same as that of extrS′. Let ν be the law of
γ∗ :=γ\extrγ (as an unoriented path) conditioned on Z0, Φr and ¬J (r,R∗), and let ν′

be the law of γ′∗ :=γ
′\extrγ′ conditioned on Z ′

0, Φ′
r and ¬J ′(r,R∗). Then ‖ν−ν′‖<δ.

Here, ‖ν−ν′‖ denotes the total variation norm
∑
ϑ |ν[γ∗=ϑ]−ν′[γ′∗=ϑ]|.

Proof. Assume that the orientation of extrγ∩BR agrees with that of extrγ′∩BR.
This involves no loss of generality, since we may replace ∂′+ with ∂′−, replace h′ by −h′,
etc.

Since we are assuming that P[¬J (r,R∗),Z0 |Φr]>0, there is a path ϑ⊂BR∗ such
that P[γ∗=ϑ,¬J (r,R∗),Z0 |Φr]>0. Let Γ̂ be the collection of all such ϑ, and fix some
ϑ∈Γ̂. Obviously, the length of ϑ is O(R∗)2. We start extending extrγ starting at one
of the endpoints, say xr, and consider the conditional probability that each successive
step follows ϑ, given that the previous steps follow θ and given Φr. Each step is decided
by the sign of h on a specific vertex v. When we condition on the values of h on the
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neighbors of v, the conditional law of h(v) is a Gaussian with some constant positive
variance. It follows from (3.2) that with high probability (conditioned on the success of
the previous steps) the mean of this Gaussian random variable is unlikely to be large.
Thus, the probability for either sign is bounded away from zero, which means that each
step is successful with probability bounded away from zero. By (3.3) it is unlikely that
h(v) will be very close to zero. Proposition 3.3 therefore implies that if R>R∗ is very
large, the probability for a successful one-step extension for γ′ is almost the same as
for γ. Thus, we conclude that for sufficiently large R>R∗,

(1−δ)P[γ′∗ =ϑ |Φ′
r]6P[γ∗ =ϑ |Φr]6 (1+δ)P[γ′∗ =ϑ |Φ′

r]

holds for all ϑ∈Γ̂. It is moreover clear that

P[Z0,¬J (r,R∗) | γ∗ =ϑ,Φr] =P[Z ′
0,¬J ′(r,R∗) | γ′∗ =ϑ,Φ′

r],

because under ¬J (r,R∗) the random walk S cannot get close to any place where extrγ
differs from extrγ′ between the first visit to qr and time τ0. Thus,

1−δ6
P[γ∗ =ϑ,Z0,¬J (r,R∗) |Φr]
P[γ′∗ =ϑ,Z ′

0,¬J ′(r,R∗) |Φ′
r]

6 1+δ.

The lemma follows (though perhaps δ needs to be readjusted).

The next lemma shows that given ΦR the events Zσ0 have comparable probabilities
for different σ.

Lemma 3.20. As usual , assume (h), (D) and (S). There is a constant c=c(Λ̄)>1
such that for all R sufficiently large and every σ, σ′∈{0, 1, ..., 5} we have

P[Zσ0 |ΦR]6 cP[Zσ
′

0 |ΦR].

Proof. The statement is clear when R=100, because in that case if it is at all possible
to extend ΦR in such a way that Zσ0 holds, then the probability that Zσ′0 holds is
bounded away from zero (by a function of Λ̄). (We may choose the continuations of γ
and S as we please, and as long as the continuations involve a bounded number of steps,
the probability for these continuations are bounded away from zero, as in the proof of
Lemma 3.19.) When R>100, we may just condition on the corresponding extension of
ΦR up to radius 100.

We now come to one of the main results in this section—the existence of a limiting
interface.
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Theorem 3.21. (Limit existence) There is a (unique) probability measure µ∞ on
the space of two-sided infinite simple TG∗-paths γ̇ which is the limit of the law of γ (un-
oriented) conditioned on Z0 and ΦR, in the following sense. Assume (h), (D) and (S).
For every finite set of TG∗-edges E0 and every δ>0 there is an R0=R0(δ, E0, Λ̄) such
that if R>R0, v0 /∈BR⊂D and P[Z0 |ΦR]>0, then

|P[E0⊂ γ | Z0,ΦR]−µ∞[E0⊂ γ̇]|<δ.

Proof. Clearly, it suffices to show that, for every r>0, if R is sufficiently large,
v0, v

′
0 /∈BR⊂D∩D′, P[Z0 |ΦR]>0 and P[Z ′

0 |Φ′
R]>0, then we may couple the conditioned

laws of γ given ΦR and Z0, and γ′ given Φ′
R and Z ′

0 such that

P[γ\extrγ= γ′\extrγ′ |ΦR,Z0,Φ′
R,Z ′

0]> 1−δ. (3.51)

(Here, the equivalence is an equivalence of unoriented paths.) Let an be the constant
a given by Lemma 3.17 when one takes p=δn := 1

82−nδ. We define a sequence of radii
r0, r1, ... inductively, as follows. Let c1 be the constant c given by Corollary 3.16, and set
r0 :=r∨10∨c1. Given rn, let r̂n be the R promised by Lemma 3.19 when we take rn for
r, δn for δ and anrn for R∗. Finally, set rn+1=4anr̂n. Let c2 be the constant promised
by Lemma 3.20. We assume, with no loss of generality, that δ<1/4c1. Let N∈N be
sufficiently large so that (1−1/72c1c22)

N−1< 1
2δ. We will prove (3.51) on the assumption

that R>6rN .
The construction of the coupling is as follows. First, we choose ΦrN−1 and Φ′

rN−1

independently according to their conditional distribution given ΦR, Z0, Φ′
R and Z ′

0. We
proceed by reverse induction. Suppose that n∈[1, N−1]∩N and that Φrn and Φ′

rn
have

been determined. If Φrn and Φ′
rn

match inside Br̂n , then we couple γ and γ′ in such a
way as to maximize the probability that γ\extrnγ=γ′\extrnγ

′, subject to maintaining
their correct conditional distributions given the choices previously made. If they do not
match, then we couple Φrn−1 and Φ′

rn−1
in such a way as to maximize the probability

that they match in Br̂n−1 , subject to their correct conditional distributions. If Φr0 and
Φ′
r0 have been determined, but γ and γ′ have not, then we couple γ and γ′ arbitrarily,

subject to their correct conditional distributions.
We claim that the coupling just described achieves the bound (3.51). LetMn denote

the event that Φrn and Φ′
rn

match inside Br̂n , where n∈{1, ..., N−1}, and let M denote
the union of these events Mn. It follows from the choice of r̂n that if Mn holds and
n is the largest n′∈{1, ..., N−1} with that property, then there is a coupling of the
appropriately conditioned laws of γ and γ′ such that

P[γ\extrnγ 6= γ′\extrnγ
′ |Φrn ,Φ

′
rn
,Z0,Z ′

0]

6 δn+P[J (rn, anrn) |Φrn
,Z ′

0]+P[J ′(rn, anrn) |Φ′
rn
,Z ′

0],
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and hence this also holds for our coupling. By taking conditional expectation and sum-
ming over n, we get

P[M, γ\extrγ 6= γ′\extrγ′ |ΦR,Z0,Φ′
R,Z ′

0]

6
1
8
δ+

N−1∑
n=1

(P[J (rn, anrn) |ΦR,Z0]+P[J ′(rn, anrn) |Φ′
R,Z ′

0])6
3
8
δ.

(where the last inequality follows by the choice of an).
Now fix some n∈{1, ..., N−2}, and suppose that none of the events Mn′ , n′>n,

occurs. Fix some arbitrary σ∈{0, 1, ..., 5}. Conditional on Φrn+1 and Z0, by the choice
of c2, there is probability at least 1/6c2 that Zσ0 holds, and the same is true for the
system in D′. If we additionally condition on Zσ0 and Zσ0

′, then, by the choice of c1,
there is a coupling of the appropriate conditioned laws of Θrn+1/4 and Θ′

rn+1/4
such that

P[Θrn+1/4 =Θ′
rn+1/4

|Φrn+1 ,Φ
′
rn+1

,Zσ0 ,Zσ0
′]>

1
c1
.

But note that if Θrn+1/4=Θ′
rn+1/4

and ¬
(
J

(
r̂n,

1
4rn+1

)
∪J ′(r̂n, 1

4rn+1

))
both hold (as

well as Zσ0 ∩Zσ0
′), then Mn holds as well. We may then consider a coupling of the two

systems which first decides the two events Zσ0 and Zσ0
′ independently, and if both hold

(which happens with probability at least 1/(6c2)2), then with conditional probability at
least 1/c1 we also have Θrn+1/4=Θ′

rn+1/4
. Thus, under this coupling,

(6c2)2P[Mn |Φrn+1 ,Φ
′
rn+1

,Z0,Z ′
0]

> c−1
1 −P

[
J

(
r̂n,

1
4rn+1

)
∪J ′(r̂n, 1

4rn+1

)
|Φrn+1 ,Φ

′
rn+1

,Zσ0 ,Zσ0
′]

> c−1
1 −2δn (by the choices of rn+1 and an)

> 1
2c
−1
1 (by our assumption 4c1δ < 1).

This must hold for our coupling as well. Consequently, induction gives

P[¬M]6
(

1− 1
72c22c1

)N−1

,

which is less than 1
2δ by the choice of N . Therefore (3.51) follows, and the proof is

complete.

3.7. Boundary values of the interface

Consider the random path γ̇ whose law is the measure µ∞ provided by Theorem 3.21. We
orient γ̇ so that the edges e∗σ, σ=0, 1, ..., 5, that are in γ̇ are oriented clockwise around the
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hexagon
⋃5
σ=0 e

∗
σ centered at 0. Let U+ denote the set of TG-vertices adjacent to γ̇ on its

right-hand side, and let U− denote the set of vertices adjacent to γ̇ on its left-hand side.
Using the heights interface continuity (Proposition 3.3), it is clear that given γ̇ we may
define the DGFF ḣ on all of TG conditioned to be positive on U+ and negative on U−,
as a limit of an appropriately conditioned DGFF on bounded domains. Moreover, many
properties of the DGFF on bounded domains easily transfer to ḣ. In particular, (3.2)
applies, to give E[|ḣ(0)||γ̇]=O(1). Set

λ :=E[ḣ(0)]. (3.52)

Clearly, 0<λ<∞.
Recall that τ is the first time t such that St∈∂D(γ) and recall the notation dist( ·, · ; ·)

from (3.30). In this subsection we will show that in the limit as dist(v0, ∂D)!∞ we have

E[(±h(Sτ )−λ)1{Sτ∈V±(γ)} | γ]! 0

in probability, under the assumption that

h∂(∂+∩V∂)⊂ [−Λ0, Λ̄] and h∂(∂−∩V∂)⊂ [−Λ̄,Λ0], (∂)

where Λ0=Λ0(Λ̄)>0 is the constant given by Lemma 3.9. The importance of the assump-
tion (∂) is that, by Remark 3.12, it enables the application of Theorem 3.11 to barriers
with endpoints on ∂D, provided that the barriers in Y+ do not have endpoints in ∂− and
those in Y− do not have endpoints in ∂+. This allows us to prove the following result.

Theorem 3.22. Assume (h), (D), (S) and (∂). There are positive constants ζ2=
ζ2(Λ̄) and c=c(Λ̄) such that the following holds true. Let z be any point on ∂+. Then
for every r>1,

P[dist(z, γ;D)<r]6 c

(
r

dist(z, ∂−;D)

)ζ2
.

Proof. Let β1 and β2 be the two components of ∂+\{z}. Let R=dist(z, ∂−;D). For
each %∈(0, R), let A(%) denote the connected component of B(z, %)∩D that has z in its
boundary, and let α(%) denote the connected component of ∂A(%)\∂D that separates z
from ∂− in D. Using this construction, the proof proceeds as in the proof (3.48), except
that the barriers start from the outside and get closer to z, and we appeal to Remark 3.12
instead of the barriers theorem. We leave it to the reader to verify that the proof carries
over with no other significant modifications.

Our next lemma shows that it is unlikely that Sτ is adjacent to γ and is near ∂D.
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Lemma 3.23. Assume (h), (D), (S) and (∂). For all p>0 there is some δ=δ(p, Λ̄)>0
such that

P[0<dist(Sτ , ∂D)<δ dist(v0, ∂D)]<p.

Proof. Let τD be the first t such that St∈∂D, and let

M =M(S, γ) := {St :St ∈ ∂D(γ) and 06 t< τD}.

We will prove the stronger statement

P[dist(M,∂D)<δ dist(v0, ∂D)]<p. (3.53)

(By convention dist(∅, ∂D)=∞.) Fix r>0 and set R=dist(v0, ∂D). Conditioned on
dist(M,∂D)<r, we have dist(SτD

, γ;D)<4r with probability bounded away from zero,
since the random walk started at any v∈M such that dist(v, ∂D)<r has probability
bounded away from 0 to surround the closest point to v on ∂D (and therefore hit ∂D)
before exiting the ball of radius 2r about that point. It therefore suffices to prove that

P[dist(SτD
, γ;D)<δR]<p (3.54)

for δ=δ(p, Λ̄)>0. Let A+=A+(δ) denote the event dist(SτD
, ∂−;D)>δ1/2R, and similarly

define A− with ∂− replaced by ∂+. By conditioning on SτD
, Theorem 3.22 shows that

P[A+,dist(SτD
, γ;D)<δR]< 1

3p

for an appropriate choice of δ. A symmetric argument applies on A−. Consequently, it
is enough to prove that P[¬(A+∪A−)]< 1

3p for an appropriate choice of δ.
Fix r0 :=δ1/2R, let Lr0 denote the set of points that lie on some path in 
D of diameter

at most r0 connecting ∂+ and ∂−, and let D∗ be the connected component of v0 in D\Lr0 .
(See Figure 3.11.) We now prove that

∂D∗\∂D is contained in the union of two balls of radius 2r0. (3.55)

Every path connecting ∂+ and ∂− in 
D must separate v0 from x∂ or from y∂ in 
D (because,
by Jordan’s theorem, it separates x∂ from y∂ in 
D). Let Γ1 (respectively, Γ2) denote the
collection of paths in 
D of diameter at most r0 that connect ∂+ and ∂− and separate x∂
(respectively, y∂) from v0. Then ∂D∗\∂D is contained in the union of the set of points
belonging to a path in Γ1 and the set of points belonging to a path in Γ2. Suppose that
α and α′ are two paths in Γ1, both of which intersect ∂D∗. Let β be a path connecting
x∂ with α∪α′ in 
D, which is disjoint from α∪α′, except for its endpoint. If β∩α 6=∅,
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x∂

D∗

v0 y∂

Figure 3.11. The set Lr0 (shaded) and D∗.

then one can connect x∂ to v0 in β∪α∪D∗, and therefore α∩α′ 6=∅ (since α′ separates
v0 from x∂ in 
D). Similar reasoning applies if β∩α′ 6=∅. It follows that any two paths
in Γ1 that intersect ∂D∗ must intersect each other, and hence the collection of all such
paths is covered by the ball of radius 2r0 centered at any point on any such path. Since
a similar argument applies to Γ2, (3.55) follows.

By (3.55) and Lemma 2.1,

P[there exists t6 τD :St ∈Lr0 ]< 1
3p

for all sufficiently small δ>0. Thus P[¬(A+∪A−)]=P[SτD
∈Lr0 ]< 1

3p, and the proof is
complete.

Next, we show that Sτ is unlikely to be close to v0 by proving the same for γ.

Lemma 3.24. Assume (h) and (D). There are constants c>0 and ζ3>0, both de-
pending only on Λ̄, such that for every δ>0,

P[dist(v0, γ)<δ dist(v0, ∂D)]<cδζ3 .

We expect that the left-hand side is bounded by δ1/2+o(1), using the corresponding
result [RS] for SLE(4).

Proof. Let Υn denote the circle of radius 2−n−1 dist(v0, ∂D) about v0. As in the
proof of (3.48), Theorem 3.11 implies that, given that γ intersects Υn (where n∈N),
the conditional probability that γ does not intersect Υn+1 is bounded away from zero
by a function of Λ̄, provided that 2−n−1 dist(v0, ∂D)>10, say. The lemma follows by
induction.
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Proposition 3.25. Assume (h), (D), (S) and (∂). For every ε>0 there exists an
R=R(ε, Λ̄) such that

E[E[(|h(Sτ )|−λ)1{Sτ /∈∂D} | γ]
2]<ε (3.56)

holds, provided that dist(v0, ∂D)>R, where λ is the constant given by (3.52).

The proof is based on the simple idea that given a single instance of γ we consider
two independent copies of (h, S).

Proof. Set
X :=E[(|h(Sτ )|−λ)1{Sτ /∈∂D} | γ].

To get a handle on E[X2], let (h′, S′) be independent of (h, S) given γ and have the same
conditional law as that of (h, S) given γ. Thus, (h, S, γ) has the same law as (h′, S′, γ).
Let τ ′ :=min{t:S′t∈∂D(γ)}, y :=E[|h(Sτ )|−λ|Sτ , γ] and y′ :=E[|h′(S′τ ′)|−λ|S′τ ′ , γ]. Then
X2=E[yy′1{Sτ ,S′τ′ /∈∂D} |γ] and hence

E[X2] =E[yy′1{Sτ ,S′τ′ /∈∂D}]. (3.57)

Fix some r3�r2�r1�0, and assume that dist(0, {v0, ∂D})>r3. Suppose that we con-
dition on Z0; that is, on Sτ=0. Then, with high conditional probability |S′τ ′ |>2r2,
and moreover dist(0, {S′0, S′1, ..., S′τ ′})>2r2. By the heights interface continuity (Propo-
sition 3.3), given extr1γ and S′τ ′ and γ\extr1γ⊂Br2 , the actual choice of γ\extr1γ can
change the value of y′ by very little if |S′τ ′ |>2r2. Thus, we conclude that y′1S′

τ′ /∈∂D is
nearly independent of y given Z0, ¬J (r1, r2) and extr1γ. Since y and y′ are bounded, in
the limit as r3!∞, we have

E[yy′1{S′
τ′ /∈∂D} | Z0, extr1γ,¬J ]

= o(1)+E[y′1{S′
τ′ /∈∂D} | Z0, extr1γ,¬J ]E[y | Z0, extr1γ,¬J ],

(3.58)

where J =J (r1, r2). By Lemma 3.17, P[J |Z0]!0 as r2/r1!∞. Thus

E[y | Z0, extr1γ,¬J ]−E[y | Z0, extr1γ]! 0

in probability as r2/r1!∞. A similar remark applies to the other terms in (3.58). Since
y and y′ are bounded, taking conditional expectation given Z0 in (3.58) gives

E[yy′1{S′
τ′ /∈∂D} | Z0] = o(1)+E[E[y′1{S′

τ′ /∈∂D} | Z0, extr1γ]E[y | Z0, extr1γ] | Z0]. (3.59)

By the limit existence theorem (Theorem 3.21), given Z0 and extr1γ, near 0 the path
γ∗ is close in distribution to γ̇ when r1 is large. Consequently, Proposition 3.3 implies
that E[|h(0)||Z0, extr1γ]−λ=o(1) as r1!∞, which gives that

E[y | Z0, extr1γ] = o(1).
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Now (3.59) implies that

E[yy′1{S′
τ′ /∈∂D} | Z0]! 0 (3.60)

as dist(0, ∂D∪{v0})!∞. Lemmas 3.23 and 3.24 tell us that, for r0<∞ fixed,

P[Sτ /∈ ∂D,dist(Sτ , ∂D∪{v0})<r0]! 0

as dist(v0, ∂D)!∞. Since there is nothing special about the vertex at 0, except for our
assumption that dist(0, ∂D∪{v0}) is large, we conclude from (3.60) that

limE[yy′1{Sτ ,S′τ′ /∈∂D} |Sτ ] = 0

in probability, as dist(v0, ∂D)!∞. Now, equation (3.57) implies that E[X2]!0, since
yy′1{Sτ ,S′τ′ /∈∂D} is bounded. This gives (3.56) and completes the proof.

Let F be the function that is equal to h∂ on ∂D, λ on V+(γ), −λ on V−(γ) and is
discrete-harmonic on all other TG-vertices in D. Since E[h(v0)|γ]=E[h(Sτ )|γ], Propo-
sition 3.25 gives

E[h(v0) | γ]−F (v0)! 0 (3.61)

in probability as dist(v0, ∂D)!∞.
We now need to generalize the proposition and (3.61) to apply when γ is replaced

by an appropriate initial segment of γ.
Let T be some stopping time for γ started at x∂ and let γT denote γ stopped at T .

(Note that the relevant filtration here, the one generated by intitial segments of γ, only
reveals the signs of h on vertices adjacent to these initial segments, but not the actual
values of h.) Let zT denote the vertex in ∂D(γT ) first visited by S, and let ST denote
the initial segment of S up to its first visit to zT .

Lemma 3.26. Assume (h), (D), (S) and (∂). For every p0>0 there is some s=
s(p0, Λ̄)>0 such that

P[dist(zT , γ\γT )<s dist(v0, ∂D), zT /∈ ∂D]<p0.

Note that we could rather easily prove the estimate with dist(zT , γ\γT ;D(γT ))
instead of dist(zT , γ\γT ), by the argument giving (3.48), but this is not sufficient for our
purposes. The idea of the proof of the lemma is to first show that Sτ=zT is usually not
too unlikely given γT and S. Then Lemma 3.17 may be used in conjunction with the
argument giving (3.48) to deduce the required result. Note that the event Sτ=zT is the
event that γ\γT is not adjacent to any vertex visited by S prior to zT .
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Proof. We first show that for every ε>0 there is a p>0 and an R>0, both depending
only on ε and Λ̄, such that

P[P[zT =Sτ |S, γT ]<p]<ε (3.62)

holds provided that dist(v0, ∂D)>R.
We choose δ=δ(ε, Λ̄)>0 very small. Set r=dist(v0, ∂D), and assume that r>100δ−2.

Set further DT :=D(γT ). Let bT be the point on ∂DT near the tip of γT that is at equal
distance from V+(γT ) and V−(γT ) along ∂DT . Let ∂T+ and ∂T− denote the two connected
components of ∂DT \{y∂ , bT } that have y∂ and bT as their endpoints, with ∂T+ being the
one containing vertices in ∂+.

Let A1 be the event dist(zT , ∂T+ ;DT )∨dist(zT , ∂T− ;DT )>2δr, let A2 be the event
diam(ST )<δ−1r, let A3 be the event that the diameter of the segment of ST after the
first time at which it is distance at most δ2r from ∂DT is less than 1

2δr, and let A4 be
the event dist(v0, γT )>δ1/2r.

Lemma 3.24 shows that if δ=δ(Λ̄, ε) is sufficiently small, then P[¬A4]< 1
4ε. On the

other hand, Lemma 2.1 implies that, by choosing δ sufficiently small, one can ensure that
P[¬Aj |γT ]< 1

4ε for j=2, 3. We now prove the same for j=1. Assume that A4 holds.
Let L be the set of points in DT that lie on a path of diameter at most 4δr in 
DT

connecting ∂T+ and ∂T− , and let D∗ be the connected component of DT \L that contains
v0 (we know that v0 /∈L, since δ is small and A4 holds). By (3.55) applied to DT in place
of D, ∂D∗∩DT may be covered by two balls of radius 8δr. Thus, Lemma 2.1 shows that
if δ=δ(ε) is chosen sufficiently small, then P[S hits L before ∂DT ,A4]< 1

4ε. This implies
that P[¬A1,A4]< 1

4ε. Thus P[¬A]<ε, where A:=A1∩A2∩A3∩A4.
We now complete the proof of inequality (3.62) by showing that the event

P[Sτ = zT |S, γT ]<p

is contained in ¬A if p=p(Λ̄, δ)>0 is chosen sufficiently small. The latter is equivalent
to showing that the random variable P[Sτ=zT |S, γT ] is bounded away from zero on A
by a function of δ and Λ̄.

Suppose that A holds, and that zT ∈∂T+ . Let ξ1 and ξ2 be the two connected com-
ponents of ∂T+ \{zT }. The construction of Υn in the proof (3.48) shows that there is a
path Υ0 connecting ξ1 and ξ2 in B(zT , δr)\B

(
zT ,

1
2δr

)
that separates zT from ∂T− in DT

such that Υ0 is an (s,diam Υ0)-barrier for (D, γT ) for every s∈(0, δ′], where δ′∈(0, 1) is
a universal constant. (The assumption that A1 holds is used here.) If ST never visits a
vertex adjacent to Υ0, then Υ0 separates ST from ∂T− . In this situation, if γ\γT does not
hit Υ0, then ST does not visit a vertex adjacent to it, and therefore zT=Sτ . Thus, The-
orem 3.11 (or Remark 3.12) applies to give the needed lower bound on P[Sτ=zT |S, γT ]
when ST does not visit a vertex adjacent to Υ0.
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Suppose now that ST does visit vertices adjacent to Υ0. We can then construct a
path Υ whose image is Υ0 as well as all the boundaries of hexagons visited by ST that
are not separated from ∂T− by Υ0. Since we are assuming that A2 holds, diam Υ62δ−1r.
As A3 holds, dist(Υ\Υ0, ∂DT )> 1

2δ
2r and therefore also diam Υ0>

1
2δ

2r. Consequently,
Υ is a

(
1
2δ

′δ3, 2δ−1r
)
-barrier. Now Theorem 3.11 and Remark 3.12 may be used again

to give a similar lower bound on P[Sτ=zT |S, γT ]. As a similar argument applies when
Sτ∈∂T− , the proof of (3.62) is now complete.

We now choose ε= 1
9p0 and take a p>0 and R>0 depending only on ε and Λ̄ and

satisfying (3.62). Let a be such that the estimate given in Lemma 3.17 holds with the p
there replaced by 1

9p0p. Let δ=δ(p0, Λ̄)>0 be sufficiently small so that δ−1>R∨a. We
assume that r>10δ−5. For z∈D, let Jz denote the event that there are more than two
disjoint arcs in γ joining the two circles ∂B(z, δ4r) and ∂B(z, δ5r), and let J T

z denote
the event that there are more than two such arcs in γT . By the choice of a and δ, the
probability that dist(Sτ , ∂D∪{v0})>4δ4r and JSτ

holds is at most 1
9p0p. Consequently,

the same bound applies for the probability that dist(zT , ∂D∪{v0})>4δ4r, zT=Sτ and
J T
zT

holds. Thus, as the events dist(zT , ∂D∪{v0})>4δ4r and J T
zT

are (γT , S)-measurable,

1
9p0p>P[zT =Sτ ,dist(zT , ∂D∪{v0})> 4δ4r,J T

zT
]

=E[P[zT =Sτ ,dist(zT , ∂D∪{v0})> 4δ4r,J T
zT
| γT , S]]

=E[P[zT =Sτ | γT , S]1{dist(zT ,∂D∪{v0})>4δ4r}1J T
zT

].

By (3.62) and our choice of ε, we therefore have

P[dist(zT , ∂D∪{v0})> 4δ4r,J T
zT

]6 2
9p0. (3.63)

Let H denote the event (γ\γT )∩∂B(zT , δ5r) 6=∅. Now condition on γT and S such
that dist(zT , ∂D)>δr and ¬J T

zT
holds. Suppose also that dist(zT , bT )>δ3r. Then there

are precisely two connected components of B(zT , δ4r)∩DT that intersect ∂B(zT , δ5r).
Let w1, w2∈∂B(zT , δ5r)∩DT be points in each of these two connected components. By
constructing barriers as in the proof of (3.48), it is easy to see that if δ=δ(p0, Λ̄) is
sufficiently small, then

P[dist(wj , γ\γT ;D(γT ))6 δ4r | γT , S]6 1
9p0

for j=1, 2. Now note that if dist(wj , γ\γT ;D(γT ))>δ4r for j=1, 2, then ¬H holds.
Consequently,

P[H,¬J T
zT
,dist(zT , bT )>δ3r, dist(zT , ∂D)>δr]6 2

9p0.
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We combine this with (3.63), and get

P[H,dist(v0, zT )> 4δ4r, dist(zT , bT )>δ3r, dist(zT , ∂D)>δr]6 4
9p0. (3.64)

Since r=dist(v0, ∂D), provided that we take δ=δ(p0, Λ̄)>0 sufficiently small, Lemma 3.24
gives P[dist(v0, zT )6δr]< 1

9p0, Lemma 2.1 gives P[dist(v0, zT )>δr,dist(zT , bT )6δ2r]<
1
9p0 and (3.53) gives P[dist(zT , ∂D)6δr, zT /∈∂D]< 1

9p0. These last three estimates may
be combined with (3.64), to yield P[H, zT /∈∂D]6 7

9p0, which completes the proof.

We now prove the analog of (3.61) with γT replacing γ. Let FT denote the function
that is +λ on V+(γT ), −λ on V−(γT ), equal to h∂ on TG-vertices in ∂D, and is discrete-
harmonic at all other vertices in 
D.

Proposition 3.27. Assume (h), (D), (S) and (∂). Then

E[h(v0) | γT ]−FT (v0)! 0

in probability as dist(v0, ∂D)!∞ while Λ̄ is held fixed.

Proof. Fix ε>0 and set r :=dist(v0, ∂D). We have, by the heights interface continuity
(Proposition 3.3), ∣∣E[h(zT ) | γ, zT ]−E[h(zT ) | γT , zT ]

∣∣<ε
if dist(zT , γ\γT )>R0, where R0=R0(ε, Λ̄). Therefore, Lemma 3.26 with p0=ε/OΛ̄(1)>0
gives

E
[∣∣E[h(zT ) | γ, zT ]−E[h(zT ) | γT , zT ]

∣∣]< 2ε (3.65)

when r>s−1R0, and s is as given by the lemma.
(Note that E[h(zT )|γ, zT ]=E[h(zT )|γT , zT ] when zT ∈∂D.)
In the following, we will use a parameter δ>0. The notation o(1) will be shorthand

for any quantity g satisfying limδ!0 limr!∞ |g|=0 while Λ̄ is fixed. Let Z be a maximal set
of TG-vertices in D∩B(v0, 2δ−1r) such that the distance between any two such vertices
is at least δ2r and the distance between any such vertex to ∂D is at least δ3r. Then
|Z|=O(δ−6). By (3.61) (with each u∈Z in place of v0), we therefore have

P[there exists u∈Z :E[h(u)−F (u) | γ]2>ε] = o(1). (3.66)

Let t0 be the first t∈N such that dist(St, ∂D(γT ))6δr. By Lemma 2.1,

P[dist(zT , St0 ;D) > δ1/2r] = o(1). (3.67)

By (3.54),
P[dist(zT , γ;D)<δ1/3r, zT ∈ ∂D] = o(1),
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while Lemma 3.26 gives

P[dist(zT , γ\γT )<δ1/3r, zT /∈ ∂D] = o(1).

Thus,
P[dist(zT , γ\γT ;D)<δ1/3r] = o(1).

This and (3.67) imply that

P
[
dist(St0 , γ\γT ;D)< 1

2δ
1/3r

]
= o(1). (3.68)

Since dist(St0 , ∂D(γT ))<δr, this and Lemma 2.1 imply that with probability 1−o(1) the
L1 norm of the difference between the discrete-harmonic measure from St0 on ∂D(γT )
and the discrete-harmonic measure from St0 on ∂D(γ) is o(1). Because E[h(St0)|γ, St0 ] is
the average of E[h(z)|γ], where z is selected according to the discrete-harmonic measure
on ∂D(γ) from St0 and similarly for γT , we conclude from the above and (3.65) that

E[h(St0) | γT , St0 ]−E[h(St0) | γ, St0 ] = o(1)

in probability. Now, Lemma 2.1 implies that P[dist(St0 , v0)>δ
−1r]=o(1). On the event

dist(St0 , v0)6δ
−1r, fix some z0∈Z within distance δ2r from St0 (if there is more than

one such z0, let z0 be chosen uniformly at random among these given (h, γ, S)). By the
discrete Harnack principle (Lemma 2.2) and (3.68), we have

E[h(St0) | γ, St0 ]−E[h(z0) | γ, z0] = o(1)

in probability, which in conjunction with (3.66) yields E[h(St0)|γ, St0 ]−F (z0)=o(1).
The discrete Harnack principle now implies that F (z0)−F (St0)=o(1) in probability,
and (3.68) gives F (St0)−FT (St0)=o(1) in probability. Consequently,

E[h(St0) | γT , St0 ]−FT (St0) = o(1)

in probability. Since E[h( ·)|γT ] and FT are discrete-harmonic in D(γT ), the proposition
follows.

We can now prove the height gap theorem.

Theorem 3.28. Assume (h), (D), (S) and (∂). As above, let T denote a stopping
time for γ, let γT :=γ[0, T ], let DT be the complement in D of the closed triangles meeting
γ[0, T ). Let hT denote the restriction of h to V ∩∂DT and let v0 be some vertex in D.
Then

E[h(v0) | γT , hT ]−FT (v0)! 0

in probability as dist(v0, ∂D)!∞ while Λ̄ is held fixed , where FT is as in Proposi-
tion 3.27.
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Proof. Set

X :=E[h(v0) | γT , hT ]−E[h(v0) | γT ].

By Proposition 3.27, it suffices to show that X!0 in probability as dist(v0, ∂D)!∞.
For v∈V ∩∂DT , let av denote the conditional probability that a simple random walk
started at v0 first hits ∂DT at v, given γT . Then

X =
∑

v∈V ∩∂DT

av(h(v)−E[h(v) | γT ]).

Consequently,

X2 =
∑
v,u

avau(h(v)−E[h(v) | γT ])(h(u)−E[h(u) | γT ]).

Now Corollary 3.5 implies that it suffices to show that for every r>0,∑
v,u

avau1{|v−u|<r}1{v,u/∈V∂}! 0

in probability. This follows by Lemmas 2.1 and 3.24.

4. Recognizing the driving term

In this section we use a technique introduced in [LSW4] and used again in [SS] in order
to show that the driving term for the Loewner evolution given by the DGFF interface
with boundary values −a and b converges to the driving term of SLE(4; a/λ−1, b/λ−1)
if a, b∈[−Λ0, Λ̄]. The reader unfamiliar with this method is advised to first learn the
technique from [SS, §4] or [LSW4, §3.3]. The account in [SS] is closer to the present
setup and somewhat simpler, but some parts of the argument there are referred back
to [LSW4].

The present argument is more involved than those of the above mentioned papers, be-
cause we prove convergence to an instance of SLE(�; %1, %2) rather than just plain SLE(4).
The main added difficulty comes from the fact that the drift term in SLE(�; %1, %2) be-
comes unbounded as Wt comes close to the force points. These difficulties disappear
if a=b=λ, in which case the convergence is to ordinary SLE and the argument giving
the convergence of the driving term to scaled Brownian motion is easily established with
minor adaptations of the established method. We therefore forego dwelling on this sim-
pler case, and move on to the more general setting, assuming that the reader is already
familiar with the fundamentals of the method.
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4.1. About the definition of SLE(�; %1, %2)

Throughout this section, given a Loewner evolution defined by a continuous Wt, we let
xt and yt be defined as in §1.4 by

xt := sup{gt(x) :x< 0 and x /∈Kt} and yt := inf{gt(x) :x> 0 and x /∈Kt},

and we make use of the definition of SLE(�; %1, %2) by means of the SDE (1.5). As we
mentioned in §1.4, some subtlety is involved in extending the definition of SLE(�; %1, %2)
beyond times when Wt hits the force points, and in starting the process from the natural
initial values x0=W0=y0=0. This is closely related to the issues involved in defining the
Bessel process, which we presently recall.

The Bessel process Zt of dimension δ>0 and initial value x 6=0 satisfies the SDE

dZt =
δ−1
2Zt

dt+dBt, Z0 =x, (4.1)

which we also write in integral form as

Zt =x+
∫ t

0

δ−1
2Zs

ds+Bt−B0, (4.2)

up until the first time t for which Zt=0. When defining Zt for all times, this SDE is
awkward to work with directly since the drift blows up whenever Zt gets close to zero
(and some of the standard existence and uniqueness theorems for SDE solutions, as
given, e.g., in [RY], do not apply in this situation). However, for every δ>0, the square
of the Bessel process Z2

t turns out to satisfy an SDE whose drift remains bounded and
for which existence and uniqueness of solutions follow easily from standard theorems.
For this reason, many authors construct the Bessel process by first defining the square
of the Bessel process via an SDE that it satisfies and then taking its square root [RY].
(Recall also that when δ61 the Bessel process itself does not satisfy (4.2) at all without
a principal value correction. Even when 1<δ<2, which, as we will see below, is the
case that corresponds to SLE(�; %) that hit the boundary and can be continued after
hitting the boundary, the solution to (4.2) is not unique unless we restrict attention to
non-negative solutions.)

The formal definition for SLE(�; %) with one force point (i.e., %1=% and %2=0) was
given in [LSW3]. It was observed there that in this case, (1.5) implies that the process
Wt−xt satisfies the same SDE as the Bessel process of dimension δ=1+2(%+2)/� up
until the first time t for which Wt=xt. Thus, to define SLE(�; %), the paper [LSW3]
starts with a constant multiple of a Bessel process Zt of the appropriate dimension and
defines the evolution of the force point xt by xt=x0+

∫ t
0
(2/Zs) ds and the driving term

by Wt=xt+Zt.
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Defining SLE(�; %1, %2) is a slightly more delicate matter since neither Wt−xt nor
yt−Wt is exactly a Bessel process (although each one is quite close to a Bessel process
when the other force point is relatively far away). Although this is not a very difficult
issue, it seems that there does not yet exist, in the literature, an adequate definition of
SLE(�; %1, %2) that is valid beyond the time that the driving term hits a force point.
Since we prove the convergence to SLE(�; %1, %2), we have to define it.

The approach we adopt is basically similar to the way in which the Bessel process
(and hence SLE(�; %)) is usually defined: we pass to a coordinate system in which the
corresponding SDE becomes tractable. We will describe the coordinate change we use in
§4.2. Within this new coordinate system, we then prove the convergence of the Loewner
driving parameters of our discrete processes to those of the corresponding SLE(�; %1, %2)
in §4.3 and §4.4. Then §4.5 describes the reverse coordinate transformation and use it
to give a formal definition of SLE(�; %1, %2), Definition 4.14.

We remark that there are many equivalent ways to define SLE(�; %1, %2) (for exam-
ple, one can probably show directly that (1.5) has a unique strong solution for which
xt6Wt6yt for all t), but ours seems most efficient given that the coordinate change also
simplifies the proofs in §4.3 and §4.4.

4.2. A coordinate change

In this subsection, we recall a different coordinate system for Loewner evolutions, which
is virtually identical to the setup used in [LSW2, §3]. Suppose that γ: [0,∞)!
H is a con-
tinuous simple path that starts at γ(0)=0, does not hit R\{0}, satisfies limt!∞ |γ(t)|=∞
and is parameterized by half-plane capacity from ∞. Let gt: H\γ[0, t]!H be the con-
formal map satisfying the hydrodynamic normalization at ∞, let Wt=gt(γ(t)) be the
corresponding Loewner driving term. Loewner’s theorem says that gt satisfies Loewner’s
chordal equation (1.3). Now we introduce a 1-parameter family of maps G∗

t : H\γ[0, t]!H
satisfying the normalization for t>0,

G∗
t (∞) =∞, G∗

t ((0,∞))= (1,∞) and G∗
t ((−∞, 0))= (−∞,−1).

That is,

G∗
t (z) =

2gt(z)−xt−yt
yt−xt

, (4.3)

where xt and yt (as defined earlier) are the two images under gt of 0 and xt<yt. Set

W ∗
t :=G∗

t (γ(t))=
2Wt−xt−yt

yt−xt
.
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By differentiating (4.3) and using (1.3) and (1.4) it is immediate to verify that G∗
t satisfies

dG∗
t (z)
dt

=
8

(yt−xt)2
1−G∗

t (z)
2

(G∗
t (z)−W ∗

t )(1−(W ∗
t )2)

.

We now define a new time parameter

s(t) = log(yt−xt) = log 2−log(G∗
t )
′(∞).

It is easy to verify that s is continuous and monotone increasing and s((0,∞))=(−∞,∞).
Set Gs=G∗

t and W̃ s=W ∗
t when s=s(t). Differentiation gives

ds=
8(yt−xt)−2dt

1−(W ∗
t )2

. (4.4)

Consequently, this change of time variable allows us to write the ODE satisfied by G as

dGs(z)
ds

=
1−Gs(z)2

Gs(z)−W̃ s

, (4.5)

where all the terms come from the new coordinate system. Later, in §4.5, we explain
how to go back to the standard chordal coordinate system.

4.3. The Loewner evolution of the DGFF interface

In addition to our previous assumptions (h) and (D) about the domain D and the bound-
ary conditions, we now add the assumption that

(ab) there are constants a and b such that h∂=b on ∂+, h∂=−a on ∂− and

min{a, b}>−Λ0,

where Λ0>0 is given by Lemma 3.9 with Λ̄:=max{|a|, |b|}.
In this case, clearly (∂) holds. In the following, a and b will be considered as constants,
and the dependence of various constants on a and b will sometimes be suppressed (for
example, when using the O( ·) notation).

Let φ:D!H be a conformal map that corresponds ∂+ with the positive real ray.
Let γ be the zero-height interface of h joining the endpoints of ∂+, and let γφ denote
the image of γ under φ. Now, γφ satisfies the assumptions in the previous subsection.
Consequently, we may parameterize γφ according to the time parameter s=s(t) and
consider the conformal maps Gs: H\γφ(−∞, s]!H as defined in §4.2. As above, we set
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W̃ s=Gs(γφ(s)) and have the differential equation (4.5). Our goal now is to determine
the limit of the law of W̃ as radφ−1(i)(D)!∞. Set for x∈[−1, 1],

q1(x) := 2(1−x2) and q2(x) :=−λ+a
2λ

(x−1)− λ+b
2λ

(x+1). (4.6)

We extend the definitions of q1 and q2 to all of R by taking each qj to be constant in
each of the two intervals (−∞,−1] and [1,∞). Consider the SDE

dYs = q2(Ys) ds+q1(Ys)1/2 dBs, (4.7)

where B is a standard 1-dimensional Brownian motion. A weak solution is known to
exist (see [KS, §5.4.D]). We also recall that the weak solution is strong and pathwise
unique (see [RY, §IX, Theorems 1.7 and 3.5]).

Theorem 4.1. There is a time-stationary solution Y : (−∞,∞)![−1, 1] of (4.7).
Moreover , for every finite S>1 and ε>0, there is an R0=R0(S, ε) such that if R:=
radφ−1(i)(D)>R0 and the assumptions (h), (D) and (ab) hold , then there is a coupling
of Ys with h such that

P[sup{|Ys−W̃ s| : s∈ [−S, S]}>ε]<ε.

The following proposition is key in the proof of the theorem. In essence, it states that
W̃ s satisfies a discrete version of (4.7). Let Fs be the σ-field generated by (W̃ r :r6s).
(Note that, although the filtration defining W̃ s is discrete, there is no problem in con-
sidering Fs for arbitrary s, though the behavior of W̃ r for r in some neighborhood of s
might be determined by Fs.)

Proposition 4.2. Assume (h), (D) and (ab). Fix some S>1 large and some δ, η>0
small. There is a constant C>0, depending only on a, b and S, and there is a function
R0=R0(S, δ, η), depending only on a, b, S, δ and η, such that the following holds. If R:=
radφ−1(i)(D)>R0 and s0 and s1 are two stopping times for W̃ s such that almost surely
−S6s06s16S, ∆s:=s1−s06δ2 and sups∈[s0,s1] |W̃ s−W̃ s0 |6δ, then the following two
estimates hold with probability at least 1−η:∣∣E[∆W̃−q2(W̃ s0)∆s | Fs0 ]

∣∣ 6Cδ3, (4.8)∣∣E[(∆W̃ )2−q1(W̃ s0)∆s | Fs0 ]
∣∣ 6Cδ3, (4.9)

where ∆W̃ :=W̃ s1−W̃ s0 .

To prepare for the proof of the proposition, we need the following easy lemma.
The first two statements in this lemma should be rather obvious to anyone with a solid
background on conformal mappings.
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Lemma 4.3. Set c1=c1(S)=100eS. There are finite constants c2=c2(S)>0 and
R0=R0(S)>0, depending only on S, such that if R:=radφ−1(i)(D)>R0 and if z∈H
satisfies 5c1>Im z>c1>|Re z|, then the following holds true:

(1) radφ−1(z)(D)>c2R;
(2) there is a TG-vertex v∈D satisfying |φ(v)−z|< 1

100 |z|;
(3) ImGs(z)> 1

2e
−sc1 for s∈[−S, S] (and in particular , Gs(z) is well defined in

that range);
(4) |Gs(z)−2e−sz|62 for s∈[−S, S].

Proof. Consider the conformal map ψ(z)=(z−i)/(z+i) from H onto the unit disk
U taking i to 0 and set f=(ψ�φ)−1. The Schwarz lemma applied to the map z 7!
f−1(f(0)+Rz) restricted to U gives 1/|f ′(0)|=|(f−1)′(f(0))|61/R. Thus |f ′(0)|>R.
For a fixed c1 the set of possible z is a compact subset of H, and its image under ψ
is a compact subset of U. Consequently, the Koebe distortion theorem (see, e.g., [P,
Theorem 1.3]) implies that |f ′(ψ(z))|>c′2R for some c′2 depending only on c1. Now the
Koebe 1

4 -theorem (see, e.g., [P, Corollary 1.4]) gives that radf(ψ(z))(D)>c2R for some c2
depending on c1. This takes care of statement (1).

Let B be the open disk of radius 1
200 |z| about z. Clearly, B⊂H. We conclude from

|f ′(ψ(z))|>c′2R that |(φ−1)′(z)|>c′′2R for some c′′2 depending only on c1. Thus, the Koebe
1
4 -theorem implies that

rad
φ−1(z)

(φ−1(B))> 1
4c
′′
2 rad(B)R.

Consequently, statement (2) holds once R0>4/c′′2 rad(B). This takes care of (2), because
1/rad(B) is bounded by a function of c1.

It is easy to check that (3) follows from (4). It remains to prove the latter. Let xt
and yt be as in §4.2. Note that xt<Wt<yt for all t>0 and limt&0 xt=W0=0=limt&0 yt.
Therefore, (1.4) implies that xt<0<yt for all t>0. By (1.4),

∂t(yt−xt) =
2(yt−xt)

(yt−Wt)(Wt−xt)
>

8
yt−xt

.

Therefore, ∂t((yt−xt)2)>16, which gives

e2s(t) > 16t. (4.10)

Observe, by (1.3), that
∂t((Im gt(z))2) >−4.

Thus, (Im gt(z))2>(Im z)2−4t>c21−4t. Another appeal to (1.3) now gives

|gt(z)−z|6
2t√
c21−4t

.
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By (4.3) and the definition of s(t), the above gives

|Gs(z)−2e−sz|6
∣∣∣∣xt+ytyt−xt

∣∣∣∣+ 2te−s√
c21−4t

.

Now, the first summand on the right-hand side is at most 1, because yt>0>xt. The
second summand is also at most 1 in the range s∈[−S, S], by (4.10) and the choice of
c1. This completes the proof of the lemma.

Proof of Proposition 4.2. With the notation of Lemma 4.3, let zj :=2c1i+ 1
2c1j for

j=0, 1, and let vj be a TG-vertex satisfying condition (2) of the lemma with zj in place
of z. Then z′j :=φ(vj) satisfies in turn the assumptions required for z in the lemma.
For k=0, 1, note that there is a stopping time Tk for γ such that φ�γ(Tk)=γφ(sk). Fix
j∈{0, 1} and set

Xk =Xk(j) :=E[h(vj) | Fsk
], k=0, 1.

Clearly,
E[X1 | Fs0 ] =X0. (4.11)

Recall the definition of the function FT from Proposition 3.27. Let Ak be the event
|Xk−FTk

(vj)|>δ5. By that proposition and the fact that z′j satisfies condition (1) of
Lemma 4.3, if R is chosen sufficiently large then P[Ak]< 1

4ηδ
5. Since FTk

(vj)=Oa,b(1),
and likewise Xk=Oa,b(1) by (3.2), we get∣∣E[X1−FT1(vj) | Fs0 ]

∣∣ 6 δ5+Oa,b(1)P[A1 | Fs0 ].

Let Ã be the event that P[A1 |Fs0 ]>δ5. Then P[Ã]< 1
4η (since we are assuming P[A1]<

1
4ηδ

5) and we have ∣∣E[X1−FT1(vj) | Fs0 ]
∣∣ 6Oa,b(δ5) on ¬Ã.

Thus we have, from (4.11),

E[FT1(vj) | Fs0 ]−FT0(vj) =Oa,b(δ5) on ¬(Ã∪A0). (4.12)

Let Hk be the bounded function that is harmonic (not discrete-harmonic) in D\γ[0, Tk],
has boundary values b on ∂+, −a on ∂−, +λ on the right-hand side of γ[0, Tk], and −λ
on the left-hand side of γ[0, Tk]. We claim that the difference Hk(vj)−FTk

(vj) is small if
dist(vj , ∂D∪γ[0, Tk]) is large. Indeed, this easily follows by coupling the simple random
walk on TG to stay with high probability relatively close to a Brownian motion and
using (3.54) and Lemmas 3.23 and 2.1 to show that with high probability the boundary
value sampled by the hitting point of the Brownian motion is the same as that sampled
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by the hitting vertex of the simple random walk. Now, Lemma 3.24 guarantees that if
R is sufficiently large, then with high probability dist(vj , ∂D∪γ[0, Tk]) is large as well.
Consequently, if R is chosen sufficiently large, we have P[|Hk(vj)−FTk

(vj)|>δ5]< 1
4ηδ

5.
Let Bk be the event |Hk(vj)−FTk

(vj)|>δ5, let B̃ be the event P[B1 |Fs0 ]>δ5 and let
Ā:=A0∪Ã∪B0∪B̃. Note that P[Ā]<η. The above proof of (4.12) from (4.11) now gives

E[H1(vj) | Fs0 ]−H0(vj) =Oa,b(δ5) on ¬Ā. (4.13)

Now, the point is that Hk(vj) can easily be expressed analytically in terms of
Zk=Zk,j :=Gsk

(z′j)=Gsk
(φ(vj)) and W̃ sk

. Indeed, conformal invariance implies that
the harmonic measure of ∂+ in D\γ[0, Tk] from vj is the same as the harmonic measure
of [1,∞) from Zk, which is 1−arg(Zk−1)/π, because Gs�φ corresponds ∂+ with [1,∞).
Likewise, the harmonic measure of the right-hand side of γ[0, Tk] is

arg(Zk−1)−arg(Zk−W̃ sk
)

π
.

Similar expressions hold for the harmonic measure of the left-hand side of γ[0, Tk] and
of ∂−. These give

π(Hk(vj)−b) = (λ−b) arg(Zk−1)−2λ arg(Zk−W̃ sk
)+(λ−a) arg(Zk+1). (4.14)

Recall that Zk=Gsk
(z′j). By (4.5), we have in the interval s∈[s0, s1],

Gs(z′j) =Z0+
∫ s

s0

1−Gr(z′j)2

Gr(z′j)−W̃ r

dr. (4.15)

Note that conditions (3) and (4) of Lemma 4.3 imply that the integrand is OS(1). There-
fore Gs(z′j)−Z0=OS(∆s)=OS(δ2) for s∈[s0, s1]. Moreover, we have |W̃ s−W̃ s0 |6δ in
that range. Thus, it follows from (4.15) and condition (3) of the lemma that

Z1−Z0 =∆s
(

1−Z2
0

Z0−W̃ s0

+OS(δ)
)

=∆s
1−Z2

0

Z0−W̃ s0

+OS(δ3). (4.16)

We will now write an expression for H1(vj)−H0(vj) and then use (4.13) to complete
the proof. Let us first look at the term arg(Zk−W̃ sk

) on the right-hand side of (4.14),
and see how it changes from k=0 to k=1. For this purpose, we expand log(Z−W̃ )
in Taylor series up to first order in Z−Z0 and up to second order in W̃−W̃ s0 (since
Z1−Z0=OS(δ2) while W̃ s1−W̃ s0 =O(δ)), as follows:

arg(Z1−W̃ s1)−arg(Z0−W̃ s0) = Im
(
log(Z1−W̃ s1)−log(Z0−W̃ s0))

= Im
(
Z1−Z0

Z0−W̃ s0

− W̃ s1−W̃ s0

Z0−W̃ s0

− (W̃ s1−W̃ s0)
2

2(Z0−W̃ s0)2

)
+OS(δ3).
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Similar (but simpler) expansions apply to the other arguments in (4.14). We use these
expansions as well as (4.14) and (4.16), to write

π(H1(vj)−H0(vj))= (λ−b) Im
∆s(1−Z2

0 )

(Z0−W̃ s0)(Z0−1)

−2λ Im
∆s(1−Z2

0 )−∆W̃ (Z0−W̃ s0)− 1
2 (∆W̃ )2

(Z0−W̃ s0)2

+(λ−a) Im
∆s(1−Z2

0 )

(Z0−W̃ s0)(Z0+1)
+OS(δ3).

With the abbreviations x̃:=Re(Z0−W̃ s0) and y :=ImZ0, the above simplifies to

π

λ
(H1(vj)−H0(vj))

=
2y

x̃2+y2

(
x̃

x̃2+y2
(∆sq1(W̃ s0)−(∆W̃ )2)+∆sq2(W̃ s0)−∆W̃

)
+OS(δ3).

We know from (4.13) that on ¬Ā the conditioned expectation given Fs0 of the left-hand
side is Oa,b(δ5). Since (x̃2+y2)/y=OS(1) (by statement (4) of Lemma 4.3), we have
on ¬Ā,

E
[

x̃

x̃2+y2

(
∆sq1(W̃ s0)−(∆W̃ )2

)
+∆sq2(W̃ s0)−∆W̃

∣∣∣∣Fs0]=Oa,b,S(δ3). (4.17)

Now, this is valid for z′j , with j=0, 1. The choice of j only affects the left-hand
side in the term x̃/(x̃2+y2). By the choice of the points z′j and by statement (4) of
Lemma 4.3, the factor x̃/(x̃2+y2)=Re((Z0−W̃ s0)

−1) differs between the two z′j by an
amount that is bounded away from zero by a constant depending on S. Subtracting the
above relation (4.17) for z′0 from that of z′1, we therefore get (4.9) on ¬Ā. When this
is used in conjunction with (4.17) again, one obtains (4.8) on ¬Ā. This concludes the
proof of the proposition.

4.4. Approximate diffusions

In this subsection we embark on the general study of random processes satisfying the
conclusions of Proposition 4.2 and show that the proposition essentially characterizes
the macroscopic behavior of the process. As one of the referees of this paper pointed
out, one can try to do this more “traditionally” by proving tightness of the driving term
and characterizing the subsequential fine mesh limit using the appropriate martingale
problem. However, our approach is somewhat different (though not necessarily better).
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Motivated by the proposition, we say that a continuous random W : [0, S]![−1, 1] is
a (C, δ, η)-approximate (q1, q2)-diffusion if it satisfies the conclusion of the proposition;
namely, for every pair of stopping times s0 and s1 such that almost surely 06s06s16S,
∆s:=s1−s06δ2 and sups∈[s0,s1] |Ws−Ws0 |6δ we have with probability at least 1−η
that (4.8) and (4.9) hold with W in place of W̃ .

Lemma 4.4. Suppose that a, b>−λ and that Ys satisfies (4.7), where q1 and q2 are
given by (4.6). Suppose that Y0∈[−1, 1] almost surely. Then there is a C>0 such that Ys
is a (C, δ, 0)-approximate (q1, q2)-diffusion for every δ∈(0, 1) and in every time interval
[0, S].

Proof. First, note that q1(x)=0 and xq2(x)60 for |x|>1. This clearly implies that
{Ys :s>0}⊂[−1, 1] almost surely. Now fix some δ>0 and two stopping times s06s1
satisfying the assumptions in the definition of approximate diffusions. Let Fs0 denote
the σ-field generated by (Ys :s6s0). Then

Ys−Ys0 =
∫ s

s0

q2(Yr) dr+
∫ s

s0

q1(Yr)1/2 dBr.

The second summand is a martingale, and therefore

E[Ys1−Ys0 | Fs0 ] =E
[∫ s1

s0

q2(Ys) ds
∣∣∣∣Fs0].

Since |Ys−Ys0 |6δ for s∈[s0, s1] and q2 is a Lipschitz function, we conclude that

E[Ys1−Ys0 | Fs0 ] =E[∆sq2(Ys0) | Fs0 ]+O(δ)E[∆s | Fs0 ].

Thus, Ys satisfies (4.8).
We now use Itô’s formula to calculate (Ys1−Ys0)2:

(Ys1−Ys0)2 =
∫ s1

s0

2(Ys−Ys0) dYs+〈Y 〉s1−〈Y 〉s0

=
∫ s1

s0

2(Ys−Ys0)q2(Ys) ds+
∫ s1

s0

2(Ys−Ys0)q1(Ys)1/2 dBs+
∫ s1

s0

q1(Ys) ds.

The left summand is O(δ3) and the middle summand is a martingale and therefore its
expectation given Fs0 is zero. Thus

E[(Ys1−Ys0)2 | Fs0 ] =E
[∫ s1

s0

q1(Ys) ds
]
+O(δ3) =E[∆sq1(Ys0)]+O(δ3),

because q1 is Lipschitz. This shows that Ys satisfies (4.9), and completes the proof.
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Proposition 4.5. Fix S>2. Let q1, q2: [−1, 1]!R be defined as in (4.6), where
we assume that a, b>−λ. Suppose that W 1: [0, S]![−1, 1] is a (C, δ, η)-approximate
(q1, q2)-diffusion and that W 2: [0, S]![−1, 1] is a solution of (4.7) with the same q1

and q2 and W 1(0)=W 2(0) almost surely. Also assume that η<δ5/S2. Then there is
a coupling of W 1 and W 2 such that sups∈[0,S−1] |W 1

s −W 2
s |!0 in probability as δ!0,

while C is fixed. Namely , for every ε>0 there is a δ0>0, depending only on a, b, S, C
and ε such that sups∈[0,S−1] |W 1

s −W 2
s |6ε with probability at least 1−ε if δ<δ0.

A useful tool in the proof of the proposition is the following lemma.

Lemma 4.6. Let W : [0, S]![−1, 1] be a (C, δ, η)-approximate (q1, q2)-diffusion, and
let τ0 and τ1 be two stopping times for W satisfying 06τ06τ16S. Assume that Cδ< 1

2 .
Let f : [−1, 1]!R be a function whose second derivative is Lipschitz with Lipschitz con-
stant 1 and which satisfies ‖f ′‖∞, ‖f ′′‖∞61. Set

Lf(x) := 1
2q1(x)f

′′(x)+q2(x)f ′(x).

Then there is a stopping time τ ′1 satisfying τ06τ ′16τ1 almost surely and P[τ ′1 6=τ1]6η
such that

E
[
f(Wτ ′1

)−f(Wτ0)−
∫ τ ′1

τ0

Lf(Ws) ds
∣∣∣∣Fτ0]=O(C+1)δE[δ2+τ ′1−τ0 | Fτ0 ].

Moreover , in the above the function f may be random, provided that it is Fτ0-measurable.

Proof. We inductively define the stopping times sj as follows. Set s0 :=τ0, and
sj+1 :=min{s>sj :s=sj+δ2 or |Ws−Wsj |=δ or sj=τ1}. If there is a j∈N such that W
does not satisfy (4.8) or (4.9) for the stopping times (sj , sj+1) in place of (s0, s1), then let
n be the minimal such j. (Note that the event that W does not satisfy (4.8) or (4.9) for
(sj , sj+1) is Fsj -measurable.) Otherwise, let n be the minimal j such that sj=τ1. Note
that (sn, sn+1) is a pair of stopping times and they do not satisfy both (4.8) and (4.9)
unless sn=τ1. Consequently,

P[sn 6= τ1]6 η. (4.18)

Since |Wsj+1−Wsj |6δ using a Taylor series for f around Wsj we have

f(Wsj+1)−f(Wsj ) = f ′(Wsj )∆jW+ 1
2f

′′(Wsj )(∆jW )2+O(δ3),

where ∆jW :=Wsj+1−Wsj
. We may use (4.8) and (4.9) to estimate the conditioned

expectation of ∆jW and (∆jW )2 given Fsj and get for j<n

E[f(Wsj+1)−f(Wsj
) | Fsj

] =Lf(Wsj
)E[sj+1−sj | Fsj

]+O(1+C)δ3.
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By our assumptions about f , this may also be written as

E
[
f(Wsj+1)−f(Wsj

)−
∫ sj+1

sj

Lf(Ws) ds
∣∣∣∣Fsj

]
=O(1+C)δ3.

We sum this over j from 0 to n−1, then take expectations conditioned on Fτ0 , to obtain

E
[
f(Wsn)−f(Wτ0)−

∫ sn

τ0

Lf(Ws) ds
∣∣∣∣Fτ0]=O(1+C)δ3E[n | Fτ0 ]. (4.19)

Now fix some j∈N. On the event j+1<n, we have (∆jW )2=δ2 or sj+1−sj=δ2. There-
fore,

E[((∆jW )2+sj+1−sj)1{j<n} | Fsj ]> δ2P[j+1<n | Fsj ].

By (4.9), this gives

E[(1+q1(Wsj ))(sj+1−sj)1{j<n} | Fsj ]> δ2P[j+1<n | Fsj ]−Cδ31{j<n}.

We take expectation conditioned on Fτ0 and use the fact that q1 is bounded, to obtain

O(1)E[(sj+1−sj)1{j<n} | Fτ0 ]> δ2P[j+1<n | Fτ0 ]−Cδ3P[j <n | Fτ0 ].

We sum this over all j∈N, to get

O(1)E[sn−τ0 | Fτ0 ]> δ2(1−Cδ)E[n−1 | Fτ0 ]−Cδ3.

By our assumption that Cδ< 1
2 , this implies that

O(1)E[δ2+sn−τ0 | Fτ0 ]> δ2E[n | Fτ0 ].

When combined with (4.19), this gives

E
[
f(Wsn)−f(Wτ0)−

∫ sn

τ0

Lf(Ws) ds
∣∣∣∣Fτ0]=O(1+C)δE[δ2+sn−τ0 | Fτ0 ].

By (4.18), this completes the proof with τ ′1=sn.

The next lemma bounds the expected time that Ws spends close to ±1.

Lemma 4.7. Let W be a (C, δ, η)-approximate (q1, q2)-diffusion W : [0, S]![−1, 1],
where q1 and q2 are given by (4.6), Cδ< 1

2 and b>−λ. Suppose that S>1. Given any
ε>0 there is some x0<1, δ′>0 and η′>0 all depending only on ε, a, b and S such that
if δ<δ′ and η<η′, then

E
[∫ S

0

1{Ws>x0} ds

]
<ε.

A similar statement holds for the set of times such that Ws is near −1, provided that
a>−λ.
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Proof. Set µ(A):=E
[∫ S

0
1{Ws∈A} ds

]
. Note that q2(1)<0. Fix some y0∈[0, 1) such

that q2(x)6 1
2q2(1) throughout [y0, 1] and set yn :=1−(1−y0)2−n. Let f(x) be the twice

continuously differentiable function that is zero on [−1, y0] and satisfies

f ′′(x) =
{

min{x−y0, y1−x}, on [y0, y1],
0, on [y1, 1].

We apply Lemma 4.6 to f with τ0=0 and τ1=S. Clearly Lf(x)=0 in [−1, y0]. On the
interval [y0, y1], we have f ′′(x)6 1

2 (y1−y0), f ′(x)>0 and q2(x)<0. Consequently,

Lf(x) 6 1
4q1(x)(y1−y0) 6 (1−x)(y1−y0) 6 (1−y0)2 on [y0, y1].

On the interval [y1, 1], we have f ′′(x)=0, f ′(x)= 1
4 (y1−y0)2 and q2(x)6 1

2q2(1)<0. Con-
sequently, Lf(x)6−c(1−y0)2, where c>0 depends only on q2(1). Also note that

|f(WS)−f(W0)|6 sup
x
f(x)−inf

x
f(x) = f(1)−0 6 (1−y0)3.

Therefore, Lemma 4.6 gives

(1−y0)2µ([y0, y1))−c(1−y0)2µ([y1, 1])>−(1−y0)3+O(C+1)δS+O(S)η.

We assume that δ′ and η′ are sufficiently small so that the right-hand side is larger than
−2(1−y0)3. Then we get

cµ([y1, 1])6 2(1−y0)+µ([y0, y1)).

This implies that

µ([y1, 1])6 2(1−y0)+
µ([y0, 1])

1+c
.

A similar inequality applies to yn and yn+1. Induction therefore gives

µ[yn, 1]6
µ([y0, 1])
(1+c)n

+
n−1∑
j=0

2(1−yj)<
µ([y0, 1])
(1+c)n

+4(1−y0),

provided that δ′ and η′ are smaller than some functions of n, S, C and y0. Consequently,
we first choose y0 such that in addition to the requirements stated in the beginning
of the proof, 4(1−y0)6 1

2ε. Then we take n sufficiently large so that (1−c)−nS< 1
2ε.

Then δ′ and η′ are determined. This proves the first claim. The second one follows by
symmetry.

The next lemma estimates the conditional expectation and conditional second mo-
ment of the time it takes Ws to move a distance of δ beyond its location at a stopping
time.
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Lemma 4.8. Let W be a (C, δ, η)-approximate (q1, q2)-diffusion W : [0, S]![−1, 1],
where q1 and q2 are given by (4.6) and S>1. Let x0∈(0, 1). There is a function δ0>0,
depending only on x0, C, a and b such that the following holds if δ<δ0∧ 1

2 and η<δ5/S2.
Let τ0 be a stopping time for W and let τ1 :=inf{s>τ0 :s=S or |Ws−Wτ0 |=δ}. Let A
denote the event

{
τ0<S− 1

2

}
∩{|Wτ0 |<x0}. Then

E
[∣∣∣∣E[τ1−τ0 | Fτ0 ]−

δ2

q1(Wτ0)

∣∣∣∣1A]
=Ox0(C+1)δ3. (4.20)

Moreover ,
E[E[(τ1−τ0)2 | Fτ0 ]1A] =Ox0(δ

4). (4.21)

Proof. Let f(x)= 1
4 (x−Wτ0)

2, and let L be as in Lemma 4.6. Then

Lf(x) = 1
4q1(Wτ0)+O(δ)

for x∈[Wτ0−δ,Wτ0 +δ]. Therefore, Lemma 4.6 gives

E
[
f(Wτ ′1

)− 1
4q1(Wτ0)(τ

′
1−τ0)

∣∣Fτ0]=O(C+1)δE[δ2+τ ′1−τ0 | Fτ0 ].

That is,

E[f(Wτ ′1
) | Fτ0 ]− 1

4 (q1(Wτ0)+O(C+1)δ)E[τ ′1−τ0 | Fτ0 ] =O(C+1)δ3. (4.22)

By choosing δ0 sufficiently small, we make sure that O(C+1)δ< 1
2q1(Wτ0) on A. Since

|f(Wτ ′1
)|6 1

4δ
2, the above gives

P[τ ′1 =S | Fτ0 ]1A =
O(δ2)
q1(Wτ0)

.

Recall that f(Wτ ′1
)= 1

4δ
2 unless τ ′1=S or τ ′1<τ1. Therefore, on A,

E[f(Wτ ′1
) | Fτ0 ] = 1

4δ
2+Ox0(δ

4)+O(δ2)P[τ ′1<τ1 | Fτ0 ].

We plug this and
E[τ ′1−τ1 | Fτ0 ] =O(S)P[τ ′1 6= τ1 | Fτ0 ]

into (4.22), simplify, and get

δ2−(q1(Wτ0)+O(C+1)δ)E[τ1−τ0 | Fτ0 ] =Ox0(C+1)δ3+O(S)P[τ ′1<τ1 | Fτ0 ] (4.23)

on A. Now (4.20) follows by dividing (4.23) by q1(Wτ0)+O(C+1)δ, taking expectation
and recalling that P[τ ′1 6=τ1]6η.
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Now define tn :=τ1∧(τ0+16nδ2/q1(Wτ0)). If δ0 is sufficiently small, then Lf(x)>
1
2Lf(Wτ0)=

1
8q1(Wτ0) throughout [Wτ0−δ,Wτ0 +δ] on the event A. Thus, we get by

applying Lemma 4.6 to the stopping times tn and tn+1,

1
8 (q1(Wτ0)−O(C+1)δ)E[t′n+1−tn | Ftn ]6 1

4δ
2+O(C+1)δ3,

where t′n+1 is the stopping time provided by the lemma. Again, on A we may assume
that O(C+1)δ< 1

2q1(Wτ0)∧ 1
4 . Thus,

1
16q1(Wτ0)E[t′n+1−tn | Ftn ]6 1

2δ
2,

which implies that

P
[
t′n+1 = tn+

16nδ2

q1(Wτ0)

∣∣∣∣Ftn]
6

1
2
.

But if t′n+1 6=tn+16nδ2/q1(Wτ0), then t′n+1=τ1 or t′n+1 6=tn+1. If Bn denotes the event
that t′j=tj for all j=1, ..., n, then induction gives

P[tn 6= τ1,Bn | Fτ0 ]1A 6 2−n.

Lemma 4.6 gives P[t′n+1 6=tn+1]6η and therefore P[¬Bn]6nη. (In fact, it is not hard to
get the better estimate P[¬Bn]6η.) Consequently, for n∈N,

P
[
τ1−τ0>

16nδ2

q1(Wτ0)

∣∣∣∣Fτ0]1A 6 2−n+P[¬Bn | Fτ0 ].

The above applies with ñ:=n∧d− log2 ηe in place of n, and hence

P
[
τ1−τ0>

16nδ2

q1(Wτ0)

∣∣∣∣Fτ0]1A 6P
[
τ1−τ0>

16ñδ2

q1(Wτ0)

∣∣∣∣Fτ0]1A 6 2−ñ+P[¬Bñ | Fτ0 ].

We multiply both sides by 2(n+1)(16δ2/q1(Wτ0))
2, and sum over n from n=0 to the

least m such that 16mδ2/q1(Wτ0)>S. The result on the left-hand side bounds

E[(τ1−τ0)2 | Fτ0 ]1A.

Consequently, the required bound (4.21) follows by taking expectations and using our
assumed upper bound for η.

The following lemma shows that when we discretize the approximate diffusion the
resulting random walk has transition probabilities that can be well estimated from q1

and q2 away from the boundary.
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Lemma 4.9. Fix some x0∈(0, 1). Let W : [0, S]![−1, 1] be a (C, δ, η)-approximate
(q1, q2)-diffusion, where q1 and q2 are given by (4.6), S>1 and η6δ5/S. Set

Z := {kδ : k∈Z and |kδ|<x0},

s0 :=inf{s>0:Ws∈Z or s=S} and inductively

sn+1 := inf{s> sn :Wsn 6=Ws ∈Z or s=S}.

Also set Xn :=Wsn
and Z0 :=Z\{minZ,maxZ}. Let

p±n :=P[Xn+1 =Xn±δ | Fsn ]

and

r±n :=
1
2
±δ q2(Xn)

2q1(Xn)
.

There is a δ0>0, depending only on C, x0, a and b, such that if δ<δ0, then for all n∈N,

E[|p±n−r
±
n |1{sn<S−1/2}1{Xn∈Z0}]6Ox0(C+1)δ2.

Proof. We now use a different test function:

f(x) :=α(x−Xn)2+β(x−Xn),

where α:=−q2(Xn)β/q1(Xn) and β :=|q1(Xn)/6q2(Xn)|∧ 1
3 with β= 1

2 if q2(Xn)=0. The
choice of α and β above is tailored to give Lf(Xn)=0 and |4α|+|β|61. The latter
implies that ‖f ′′‖∞, ‖f ′‖∞61 when f is restricted to the interval [−1, 1]. We now apply
Lemma 4.6 again with this f and stopping times sn and sn+1. Note that Lf=O(δ) in
the interval [Xn−δ,Xn+δ]. Hence Lf(Ws)=O(δ) for s∈[sn, sn+1]. Lemma 4.6 gives

E[f(Ws′n+1
)−f(Wsn) | Fsn ] =O(C+1)δE[δ2+s′n+1−sn | Fsn ],

on the event Xn∈Z0, where s′n+1 is the stopping time produced by the lemma. The
above may be written

(βδ+αδ2)p+
n+(−βδ+αδ2)p−n =−E[1{Ws′n+1

/∈Z}f(Ws′n+1
) | Fsn ]

+O(C+1)δE[δ2+s′n+1−sn | Fsn ].

Set p0
n :=P[Ws′n+1

/∈{Xn−δ,Xn+δ}|Fsn ]. Then 1>p+
n+p−n>1−p0

n. Hence, the above
gives

(2p+
n−1)β+αδ=O(p0

n)+O(C+1)δ2+O(C+1)E[sn+1−sn | Fsn ],



contour lines of the two-dimensional discrete gaussian free field 119

which, by the definitions of α and r+
n may be rewritten

2β(p+
n−r

+
n) =O(p0

n)+O(C+1)δ2+O(C+1)E[sn+1−sn | Fsn ]. (4.24)

By (4.20) and our assumption η6δ5/S, we have

E[(sn+1−sn)1Xn∈Z01sn<S−1/2] =Ox0(δ
2), (4.25)

provided that δ0 is sufficiently small. Since Ws′n+1
/∈Z only when s′n+1 6=sn+1 or s′n+1=

sn+1=S, on the event {Xn∈Z0}∩
{
sn<S− 1

2

}
,

E[p0
n | Fsn ]6P[s′n+1 6= sn+1 | Fsn ]+P

[
s′n+1 > sn+ 1

2

∣∣Fsn ]

6P[s′n+1 6= sn+1 | Fsn ]+2E[sn+1−sn | Fsn ].
(4.26)

Note that β−1=Ox0(1) and P[s′n+1 6=sn+1]6η. Hence, we now obtain the result for p+
n

by taking expectation on the event {Xn∈Z0}∩
{
sn<S− 1

2

}
in (4.24) and using (4.25)

and (4.26). A symmetric argument applies to p−n and r−n , and the proof is complete.

Next, we show that the time parameterization of W can be well approximated by a
function of the discretized walk trajectory.

Lemma 4.10. Assume the setting and notation of Lemma 4.9 in addition to δ<δ0.
For n∈N let tn denote the time spent up to time sn in segments [sj , sj+1] such that
Xj=Wsj∈Z0; that is,

tn :=
n−1∑
j=0

1{Xj∈Z0}(sj+1−sj).

Also let

σn :=
n−1∑
j=0

1{Xj∈Z0}
δ2

q1(Xj)
.

Let N0 :=min
{
n∈N:sn>S− 1

2

}
. Then for all n∈N,

E[max{|σj−tj | : j=1, ..., n∧N0}]6Ox0(C+1)(δ2n1/2+δ3n). (4.27)

Proof. Let vj :=(sj+1−sj)1{Xj∈Z0}1{j<N0}, uj :=E[vj |Fsj ] and

wj :=
δ2

q1(Xj)
1{Xj∈Z0}1{j<N0}.

Now, Mn :=
∑n−1
j=0 (vj−uj) is clearly a martingale. Consequently, Doob’s maximal in-

equality for L2 martingales [RY, II.1.6] gives

E[max{|Mj | : j=1, ..., n}]2 6O(1)E[M2
n] =O(1)

n−1∑
j=0

E[(vj−uj)2].
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Since uj=E[vj |Fsj
], we have E[(vj−uj)2]6E[v2

j ]. By Lemma 4.8, E[v2
j ] is bounded by

the right-hand side of (4.21). Now, the right-hand side of (4.20) bounds E[|uj−wj |].
The result follows by our assumption η6δ5/S2, since for every m6n∧N0,

|σm−tm|=
∣∣∣∣m−1∑
j=0

(vj−wj)
∣∣∣∣ 6 |Mm|+

m−1∑
j=0

|uj−wj |

6max
{
|Mj | : j=1, ..., n

}
+
n−1∑
j=0

|uj−wj |.

Proof of Proposition 4.5. By Lemma 4.4, W 2 is a (C ′, δ, 0)-approximate (q1, q2)-
diffusion for some fixed constant C ′>0 and every δ>0. We may assume, with no loss of
generality, that C>C ′. Let ε>0. Let x′0∈(1−ε, 1) satisfy Lemma 4.7 with this given ε,
and assume that δ is sufficiently small so that that lemma is valid. Take x0= 1

2 (1+x′0).
Let Z and Z0 be as in Lemma 4.9, let skj be the corresponding stopping times introduced
there for W k and let p±k,j denote the random transition probabilities for W k defined
there. Also abbreviate Xk

j :=W k
sj

. Let Fks denote the filtration of W k, k=1, 2. Let
Y kj =1 if Xk

j+1−Xk
j =δ, Y kj =−1 if Xk

j+1−Xk
j =−δ and Y kj =0 if |Xk

j+1−Xk
j | 6=δ. Then

P[Y kj =±1|Fk
sk

j
]=p±k,j and P[Y kj =0|Fk

sk
j
]=1−p+

k,j−p
−
k,j if Xk

j ∈Z0.

For the coupling of W 1 and W 2 we use an independent identically distributed se-
quence Uj of uniform random variables in [0, 1]. The coupling proceeds as follows. Up to
their corresponding stopping times sk0 , k=1, 2, let them run independently. Inductively,
we suppose that the coupling has been constructed up to their corresponding stopping
times skj , k=1, 2. For each k=1, 2, we take

Y kj =


1, if Uj 6 p+

k,j ,
−1, if Uj > 1−p−k,j ,
0, if Uj ∈ (p+

k,j , 1−p
−
k,j).

(In other words, we try to match up X1
j+1−X1

j with X2
j+1−X2

j as much as possible.)
These choices respect the correct conditional distributions for these variables. Now we
sample the restriction of W 1 to [s1j , s

1
j+1] and the restriction of W 2 to [s2j , s

2
j+1] inde-

pendently of their corresponding conditional distribution given (F1
sj
, Y 1
j ) and (F2

sj
, Y 2
j ),

respectively. This completes the description of the coupling.
Let N :=min

{
n:s1n∨s2n>S− 1

2

}
. Let Aj be the event {X1

j , X
2
j ∈Z0} and set

Qj := 1Aj |Y 1
j −Y 2

j | and Q̂n :=
n∑
j=0

Qj1{j<N}.

Note that on ¬Aj we have |X1
j+1−X2

j+1|6|X1
j −X2

j | unless s1j+1∨s2j+1=S. Moreover,
|X1

0−X2
0 |6δ and when Y kj =0 we have skj+1=S. Consequently,

|X1
n−X2

n|1{n<N} 6 δ+δQ̂n−1. (4.28)
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We now proceed to estimate θj :=E[Qj1{j<N}]. Clearly,

P[Qj 6=0 | F1
s1j
∨F2

s2j
]6 (|p+

1,j−p
+
2,j |+|p

−
1,j−p

−
2,j |)1Aj .

Let r±k,j be the r±j in Lemma 4.9 corresponding to the process W k. Then

|p±1,j−p
±
2,j |6 |p

±
1,j−r

±
1,j |+|r

±
1,j−r

±
2,j |+|r

±
2,j−p

±
2,j |.

By that lemma,
E[|p±k,j−r

±
k,j |1Aj 1{j<N}]6Ox0(C+1)δ2.

Using the expression given for r±k,j , we deduce that

|r±1,j−r
±
2,j |6Ox0(δ)|X1

j −X2
j |.

Thus, we get

θn =E[Qn1{n<N}]6Ox0(C+1)δ2+Ox0(δ)E[|X1
n−X2

n|1{n<N}].

In conjunction with (4.28), this gives

θn 6Ox0(C+1)δ2
(

1+
n−1∑
j=0

θj

)
.

Induction therefore implies

θn 6Ox0(C+1)δ2(1+Ox0(C+1)δ2)n.

Taking note of (4.28), we infer that

E[maxj<n∧N |X1
j −X2

j |]6 δ+Ox0(C+1)δ3n(1+Ox0(C+1)δ2)n. (4.29)

Now let m0 :=d4Sδ−2 max{q1(x):|x|6x0}e. Observe that at least one of every two con-
secutive j∈N satisfies Xk

j ∈Z0 or skj =S. Consequently, m0<N implies that σkm0
>2S for

k=1, 2, where σkj denotes the σj from Lemma 4.10 corresponding to W k. Note that in
that lemma tj6sj6S. Therefore, taking n=m0 in (4.27) implies that

P[N >m0]6Ox0(C+1)S−1(δ2m1/2
0 +δ3m0) =Ox0(C+1)δ.

Set X∗ :=maxj<N |X1
j −X2

j |. The above and (4.29) with n=m0 imply that

P[X∗>δ1/2 or N >m0]6Ox0,C,S(δ1/2). (4.30)
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Now for each s6S let J(s):=min{j∈N:s1j>s}. Then

sup
s∈[0,S−1]

|W 1
s −W 2

s |6 sup
s∈[0,S−1]

|W 1
s −X1

J(s)|

+ sup
s∈[0,S−1]

|X1
J(s)−X

2
J(s)|+ sup

s∈[0,S−1]

|W 2
s −X2

J(s)|.
(4.31)

First, it is clear that
sup

s∈[0,S−1]

|W 1
s −X1

J(s)|6 ε+δ.

(The left-hand side is usually at most δ but can be as large as 1−x0+δ if, for example,
XJ(s)−1=maxZ=x0.) We leave aside, for now, the estimation of the second summand
in (4.31) and consider the last. Set

t∗ := sup
s∈[0,S−1]

|s−s2J(s)|.

Since X2
J(s)=W

2
s2J(s)

, we have

sup
s∈[0,S−1]

|W 2
s −X2

J(s)|6 sup
s∈[0,S−1]

sup
t∈[0,t∗]

|W 2
s −W 2

s+t|. (4.32)

Observe from (4.27) that for k=1, 2,

max
j6N∧m0

{|σkj −tkj |}! 0

in probability as δ!0, where tkj is the tj of Lemma 4.10 corresponding to W k. Now the
choice of x0 (via Lemma 4.7) implies that

P[maxj∈N |sk0+tkj−skj |>
√
ε ]<

√
ε.

Lemmas 4.7 and 4.8 imply that E[sk0 ]6ε∨Ox0,C(δ2). Consequently, we have

max
j6N∧m0

{|σkj −skj |}! 0 (4.33)

in probability as ε, δ!0. Now,

|σ1
n−σ2

n|6
n−1∑
j=0

∣∣∣∣1{X1
j∈Z0}

δ2

q1(X1
j )
−1{X2

j∈Z0}
δ2

q1(X2
j )

∣∣∣∣
6
n−1∑
j=0

∣∣∣∣ δ2

q1(X1
j )
− δ2

q1(X2
j )

∣∣∣∣+ 2∑
k=1

n−1∑
j=0

1{Xk
j /∈Z0}

δ2

q1(Xk
j )
.
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The right-hand side is monotone non-decreasing in n. When n6N∧m0 the first sum is
at most Ox0(δ

2)m0X
∗. It is easy to see that for n=N∧m0 the iterated sum on the right

tends to 0 in probability: this follows from the proof of (4.33), because if we replace
x0 by x0+δ, the terms appearing in this iterated sum are included in σn. We now get,
from (4.30),

max
j6N

|σ1
j−σ2

j |! 0 in probability as ε, δ! 0.

By (4.33), this also gives

max
j6N

|s1j−s2j |! 0 in probability as ε, δ! 0.

In particular, (4.30) and (4.33) imply supj6N−1(skj+1−skj )!0 in probability, because
σkj+1−σkj 6Ox0(δ

2). One consequence is that P[J(S−1)>N ]!0. Furthermore, we now
have

t∗ 6 sup
s∈[0,S−1]

|s−s1J(s)|+ sup
s∈[0,S−1]

|s2J(s)−s
1
J(s)|! 0

in probability. Now (4.32) implies that sups∈[0,S−1] |W 2
s −X2

J(s)|!0 in probability, be-
cause the right-hand side in (4.32) is smaller than (t∗)1/3 with probability going to 1
as t∗!0, since W 2 is a solution of (4.7). This takes care of the last summand on the
right-hand side of (4.31).

The middle summand on the right-hand side of (4.31) also tends to 0 in probability
because, as we have seen, P[J(S−1)<N ]!1 and X∗!0 in probability. This completes
the proof.

Proof of Theorem 4.1. Let x1, x2∈[−1, 1] be two arbitrary points, and let

Y 1
s , Y

2
s : [0,∞)! [−1, 1]

be two independent solutions of (4.7) (with respect to two independent Brownian mo-
tions) which start at x1 and x2, respectively. We claim that s= :=min{s:Y 1

s =Y 2
s }<∞

almost surely. The argument is quite standard. Suppose without loss of generality that
x2>x1. By Lemma 4.7, it is unlikely that Y 2

s stays very close to 1 for a long time and un-
likely that Y 1

s stays very close to −1 for a long time. It is therefore easy to conclude from
Lemmas 4.8 and 4.9 that there are constants s0, c0>0 (which do not depend on x1 or x2)
such that P[Y 2

s0<0]>c0 and P[Y 1
s0>0]>c0. This implies that P[s=<s0]>c20. By strong

uniqueness of solutions of (4.7), it follows that the solutions are Markov and have sta-
tionary transition probabilities. Consequently, we get by induction P[s=>ns0]<(1−c20)n

for all n∈N, which proves that s=<∞ almost surely.
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We now argue that P[s=<∞]=1 and the uniqueness in law of solutions of (4.7)
implies that for every Borel subset A⊂[−1, 1] the limit

µ(A) := lim
r!∞

P[Y 1
r ∈A]

exists. We may couple a solution started at some time s0<r such that r−s0 is a large
constant to be independent of Y 1

s until the first time in [s0,∞) in which they meet
and to agree with Y 1

s afterwards. Because these solutions are likely to meet prior to
time r, it follows that P[Y 1

r ∈A] is close to the probability that the solution started
at time s0 is in A at time r, proving the existence of µ. (In our setting, µ may be
explicitly described. Its density with respect to the Lebesgue measure is proportional to
(1+x)(b−λ)/2λ(1−x)(a−λ)/2λ.) Since solutions of (4.7) are Markov, a solution

Ỹ : [0,∞)! [−1, 1]

of (4.7) such that the distribution of Ỹ0 is given by µ is time-stationary. To get a time-
stationary solution Y : (−∞,∞)![−1, 1], we may take the weak limit of time-translations
of Ỹ .

Now let S′ be much larger than S. By Proposition 4.2 with S′ instead of S and
Proposition 4.5 translated to start at time −S′ and an appropriate choice of the S

appearing there, we may couple W̃ s so that with probability close to 1 it stays close to a
solution W 2

s of (4.7) starting at W̃−S′ throughout [−S′, S′]. We may at the same time
couple W 2

s so that with high probability it agrees with Ys inside the interval [−S, S].
Then with high probability W̃ s stays close to Ys in [−S, S], which concludes the proof of
the theorem.

Remark 4.11. At this point, it may be worthwhile to point out which properties of
the functions q1 and q2 played a part in the proof. The only properties that are essential
for the above proof are that q1 and q2 are both Lipschitz continuous in [−1, 1], that q1>0
in (−1, 1) and q1=0 on {−1, 1}, and that q2(1)<0<q2(−1).

4.5. Back to chordal

In §4.2, we described the transition from the chordal Loewner system to the setup with
the points ±1 fixed. We now describe the reverse transformation. We start with some
continuous Y : (−∞,∞)![−1, 1]. Set

ws :=
es

2
Ys+

1
2

∫ s

−∞
euYu du. (4.34)
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Also define

t∗(s) :=
1
8

∫ s

−∞
e2u(1−Y 2

u ) du, s∗(t) := sup{s∈ (−∞,∞) : t∗(s) 6 t}.

Now set Ŷt :=ws∗(t) for t>0, Ŷ0 :=0, and observe that Ŷ is continuous provided that there
is no non-trivial time interval in which Y ∈{±1}.

Lemma 4.12. If Ys=W̃ s is defined from Wt as in §4.2, then Ŷt=Wt.

Proof. By the definition of s(t) in §4.2, we have es=yt−xt. Consequently, (4.4)
implies that ∂t(t∗(s(t)))=1. Since s(0)=−∞ and t∗(−∞)=0, it follows that t∗(s(t))=t
for all t>0 and s∗(t∗(s))=s for all s∈(−∞,∞). Next, (1.4) and the definition of W ∗

give

∂t(yt+xt) =
8W ∗

t

(yt−xt)(1−(W ∗
t )2)

.

Since y0=0=x0 and W̃ s(t)=W ∗
t , this implies that

yt+xt =
∫ t

0

8W̃ s(r)

(yr−xr)(1−W̃ 2
s(r))

dr=
∫ s(t)

−∞
euW̃u du,

where the second equality follows by a change of variable. Now Ŷt=ws(t)=Wt follows
from the definition of W ∗

t . The proof of the lemma is therefore complete.

We now discuss the behavior of solutions of (4.7) in the chordal coordinate system,
but generalize to the case � 6=4.

Lemma 4.13. Let ã, b̃>0, let Y : (−∞,∞)![−1, 1] be a solution of

dYs =(−ã(Ys−1)−b̃(Ys+1)) ds+
√

1
2�(1−Y 2

s ) dBs,

and let Ŷt be the corresponding process, as described following (4.34). Then on any time
interval which avoids {t:Ys∗(t) /∈{±1}}, the process Ŷt satisfies the SDE of the driving
term for SLE(�; 2(ã−1), 2(b̃−1)):

dŶt =
2(ã−1)

Ŷt−xt
+

2(b̃−1)

Ŷt−yt
+
√
� dB̂t

for some Brownian motion B̂t, where xt and yt satisfy (1.4) with Ŷt in place of Wt.
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Proof. Let βs=
∫ s
−∞ euYu du, y∗s := 1

2 (βs+es) and x∗s :=
1
2 (βs−es). Itô’s formula and

the definition of t∗ give

dws = esYs ds+ 1
2e
s
√

1
2�(1−Y 2

s ) dBs+ 1
2e
s(−ã(Ys−1)−b̃(Ys+1)) ds

=
√
�(t∗)′(s) dBs+4e−s

(
ã−1
Ys+1

+
b̃−1
Ys−1

)
(t∗)′(s) ds

=
√
�(t∗)′(s) dBs+2

(
ã−1
ws−x∗s

+
b̃−1
ws−y∗s

)
(t∗)′(s) ds.

Now set

B̂t =
∫ s∗(t)

−∞

√
(t∗)′(u) dBu.

Then B̂t is clearly a continuous martingale. Since also 〈B̂〉t=
∫ s∗(t)
−∞ (t∗)′(u) du=t, we find

that B̂ is a Brownian motion with respect to t. The above formula for dw gives

dŶt =
√
� dB̂t+2

(
ã−1

Ŷt−xt
+

b̃−1

Ŷt−yt

)
dt,

where xt :=x∗s∗(t) and yt :=y∗s∗(t). Now

∂txt =
∂sx

∗
s

(t∗)′(s)
=

2

xt−Ŷt
,

and similarly for yt. This concludes the proof.

As mentioned at the beginning of this section (§4), existence and uniqueness of
solutions to the usual SDE defining SLE(�; %1, %2) have not been proved beyond times
when the driving term Wt meets the force points. We now offer the following.

Definition 4.14. If ã, b̃>0, then the Loewner equation driven by the process Ŷ of
Lemma 4.13 is called SLE(�; 2(ã−1), 2(b̃−1)) (starting from (0, 0−, 0+)).

4.6. Loewner driving term convergence

In this section, we complete the proof of Theorem 1.3. The theorem will follow quite
easily from Theorem 4.1.

Proof of Theorem 1.3. Fix T, ε, ε0, ε
′>0. Let Ys and W̃ s be coupled as in Theo-

rem 4.1, but with ε′ in place of ε. Let Ŷt, t∗(s) and s∗(t) be defined from Ys as in the
beginning of §4.5. Since the interior of the set of times for which Ys∈{−1, 1} is empty,
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it follows that there is some positive t0>0 such that with probability at least 1−ε0 we
have t∗(1)−t∗(0)>t0. Because Ys is stationary, it follows that

P[t∗(s+1)−t∗(s)>e2st0]> 1−ε0.

In particular, there is some S0>0 such that P[t∗(S0)>T+1]>1−ε0. Fix S0 satisfying
this and additionally e−S0< 1

2ε0.

Let

t̃(s) :=
1
8

∫ s

−∞
e2u(1−W̃ 2

u) du,

which is the equivalent of t∗(s) with W̃ replacing Y . It is clear that if ε′=ε′(S0, ε0) is
sufficiently small and

sup
{
|W̃ s−Ys| : s∈ [−S0, S0]

}
<ε′, (4.35)

then for every s∈[−∞, S0] the right-hand side in (4.34) differs from the corresponding
quantity where W̃ replaces Y by at most ε0. Lemma 4.12 then gives

sup{|Ŵt̃(s)−Wt∗(s)| : s6 [0, S0]}<ε0,

where Wt is the chordal driving term for SLE(4; a/λ−1, b/λ−1) and Ŵ is the chordal
driving term for φD �γ. (Here, we also use the fact that s∗(t∗(s))=s.) If we assume (4.35)
with ε′ sufficiently small, we also get sup{|t∗(s)− t̃(s)|:s6S0}<ε0. Let T0 be the obvious
upper bound for t̃ and t∗ in (−∞, S0]; that is, T0 := 1

16e
2S0 . Also set

M(ε0) := sup{|Wt0−Wt1 | : 0 6 t0 6 t1 6 t0+ε0 6T0+ε0}.

SinceWt is almost surely continuous, M(ε0)!0 in probability as ε0!0. Now the triangle
inequality |Ŵt̃(s)−Wt̃(s)|6|Ŵt̃(s)−Wt∗(s)|+|Wt∗(s)−Wt̃(s)| shows that when (4.35) holds

we have sup{|Ŵt̃(s)−Wt̃(s)|:s6S0}<ε0+M(ε0). Hence,

sup{|Ŵt−Wt| : t∈ [0, t̃(S0)]}<ε0+M(ε0).

But we have seen that t∗(S0) is very likely to be larger than T+1 and that

|t∗(S0)− t̃(S0)|<ε0

when (4.35) holds. By Theorem 4.1, when rD is large (4.35) holds with high probability.
This concludes the proof.
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4.7. Carathéodory convergence

For K⊂
H let Nε(K) denote the ε-neighborhood of K in 
H, and let 
Hε(K) denote the
unbounded connected component of 
H\Nε(K). Set

dCKC(K,K ′) := inf{ε> 0 :K∩
Hε(K ′) = ∅ =K ′∩
Hε(K)}.

It is easy to see that dCKC is a metric on the collection of compact connected K⊂
H such
that H\K is connected. This metric is related to the Carathéodory kernel convergence
topology, which is of central importance in the theory of conformal mappings.

Let Kt and K ′
t denote the evolving hulls corresponding to two Loewner evolutions

generated by continuous driving terms Wt and W ′
t , respectively (as defined in §1.4). Such

evolving hulls are also sometimes called Loewner chains. We set, for T>0,

dTCKC(K,K ′) := sup
t∈[0,T ]

dCKC(Kt,K
′
t).

The following is a simple lemma relating uniform convergence of driving terms to dCKC-
convergence of the corresponding Loewner chains.

Lemma 4.15. The Loewner transform W 7!K is a continuous map from the space
of continuous paths W with the topology of uniform convergence to the space of Loewner
chains with dTCKC-convergence.

In other words, for every ε>0, every T>0 and every W : [0, T ]!R continuous,
there is some δ=δ(ε, T,W )>0 such that if W̃ : [0, T ]!R is continuous and satisfies
supt∈[0,T ] |Wt−W̃ t|<δ, then the corresponding Loewner chains satisfy dTCKC(K, K̃)<ε.

This lemma is similar in spirit to [L4, Proposition 4.47]. As is well known, K̃T!KT

in the Hausdorff metric does not follow from W̃!W uniformly in [0, T ].

Proof. Fix T>0. Suppose that Wn!W uniformly in [0, T ]. Let Kn denote the
Loewner chain corresponding to Wn and let g(n)

t : H\Kn
t !H denote the corresponding

Loewner evolution. Fix some t0∈[0, T ]. Since diamKn
t0 is clearly bounded by a function

of T and ‖Wn‖∞ [L4, Lemma 4.13], the closure of {Kn
t0 :n∈N+} is compact with respect

to the Hausdorff metric on non-empty compact subsets of 
H. Consider some integer
sequence nj!∞ for which the Hausdorff limit K ′ :=limj!∞K

nj

t0 exists. If z∈
H\Kt0 ,
then there is a neighborhood U of z in 
H such that U∩Kn

t0 =∅ for all sufficiently large n,
by the continuity of solutions of ODE’s in the vector field specifying the ODE. It follows
that z /∈K ′, and hence K ′⊂Kt0 .

With the intention of reaching a contradiction, suppose that there is some point
z∈∂Kt0\(K ′∪R). Let z′ be a point in H\Kt0 satisfying |z−z′|< 1

3 dist(z′,K ′∪R). The
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above argument shows that limj!∞ g
(nj)
t0 (z′)=gt0(z

′)∈H. On the other hand, for all
sufficiently large j we have dist(z′,Knj

t0 )>2|z−z′|. Now the Koebe distortion theorem
(e.g., [P, Corollary 1.4]) applied to the restriction of g(nj)

t0 to the disk of radius 2|z−z′|
about z′ (once with z′ and again with z) shows that Im g

(nj)
t0 (z)> 3

16 Im g
(nj)
t0 (z′). How-

ever, since z∈Kt0 , for every ε>0 there is some first t1∈[0, t0) such that Im gt1(z)6ε. The
convergence argument above shows that for all arbitrarily large n, Im g

(n)
t1 (z)62ε. Since

Im g
(n)
t (z) decreases monotonically in t, it follows that Im g

(n)
t0 (z)62ε for all sufficiently

large n. This contradicts our previous conclusion

Im g
(nj)
t0 (z) > 3

16 Im g
(nj)
t0 (z′)! 3

16 Im gt0(z
′)> 0,

and proves that K ′⊃∂Kt0\R.
Let K̃ be the union of K ′ and the bounded connected components of 
H\K ′. The

above implies that K̃⊃Kt0\R. Now note that Kt0\R is dense in Kt0 . (This follows from
the easy direction (2)⇒ (1) in [LSW1, Theorem 2.6] and from the fact that (H∩Kt)\Kt′

is non-empty when t>t′.) Consequently, K̃=Kt0 , which implies that dCKC(Kn
t ,Kt)!0

for every fixed t∈[0, T ].
Note that the above proof also gives lims!t dCKC(Ks,Kt)=0 for t∈[0, T ] and s tend-

ing to t in [0, T ]. Thus, Kt is continuous in t with respect to dCKC. Since dCKC(L, L̃)6
dCKC(L′, L̃)∨dCKC(L′′, L̃) when L′⊂L⊂L′′, the dTCKC convergence easily follows from
the pointwise convergence, from continuity of Kt and from monotonicity of Kn

t in t.

4.8. Improving the convergence topology

In this subsection we complete the proof of Theorem 1.2. There are examples showing
that the convergence of the Loewner driving term does not imply the uniform convergence
of the paths parameterized by capacity. (See [LSW4, §3.4].) Therefore, we will need to
apply other considerations. Before embarking on the proof, we note that when a, b>λ

the trace of SLE(4; a/λ−1, b/λ−1) is a simple path that does not hit R, except at its
starting point. Indeed, note first that the force points are moving monotonically away
from one another. By comparison with a Bessel process, for example, it is easy to see
that the trace does not hit the real line at any time t>0. It also does not hit itself, since
t 7!gs(γ(t+s)) has law that is mutually absolutely continuous with the path of SLE(4).

Lemma 4.16. Let T>0 and let Wn: [0, T ]!R be a sequence of continuous func-
tions converging uniformly to a function W : [0, T ]!R. Suppose that each Wn is the
driving term of a Loewner evolution of a path γn: [0, T ]!
H, and W is the driving term
of a Loewner evolution of a simple path γ: [0, T ]!
H satisfying γ(0, T ]∩R=∅. Then
limn!∞ supt∈[0,T ] dH(γn[0, t], γ[0, t])=0, where dH denotes the the Hausdorff metric.
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Proof. First note that diam γn[0, T ] is bounded, because ‖Wn‖∞ is bounded. Fix
some t∈[0, T ], and let Γ denote a subsequential Hausdorff limit of γn[0, t]. It suf-
fices to prove that Γ=γ[0, t]. By Lemma 4.15, we know that for every ε>0 we have
Γ∩
Hε(γ[0, t])=∅. Since γ is a simple path satisfying γ(0, T ]∩R=∅, it follows that⋃
ε>0


Hε(γ[0, t])=H\γ[0, t], which implies that Γ⊂R∪γ[0, t]. Fix some z1∈R\γ[0, t]=
R\{γ(0)}. By the continuity in W and z of the solutions of Loewner’s equation (1.3), it
follows that there is a neighborhood V of z1 such that V ∩γn[0, T ]=∅ for all sufficiently
large n. This implies that z1 /∈Γ, and hence Γ⊂γ[0, t].

Now let t′∈[0, t]. By Lemma 4.15 again, for every ε>0 and every n sufficiently large,
γ(t′) /∈
Hε(γn[0, t]), which means that every path connecting γ(t′) to ∞ in 
H must come
within distance ε from γn[0, t]. Thus, every such path must intersect Γ. Since Γ⊂γ[0, t]
is closed, this implies that γ(t′)∈Γ. Therefore, Γ=γ[0, t]; that is,

lim
n!∞

dH(γn[0, t], γ[0, t])= 0.

Since γn[0, t] and γ[0, t] are monotone increasing in t and γ[0, t] is continuous in t with
respect to dH, it easily follows that limn!∞ supt∈[0,T ] dH(γn[0, t], γ[0, t])=0.

Here is an outline of the main ideas going into the proof of Theorem 1.2. Let γφ be
the path φ�γ parameterized by half-plane capacity. The main step in the proof is to show
that if we fix T>0, we have supt∈[0,T ] |γφ(t)−γSLE(t)|!0 in probability. By Theorem 1.3
and Lemma 4.16, we get supt∈[0,T ] dH(γφ[0, t], γSLE[0, t])!0 in probability (since γSLE is
a simple path). We only need to rule out the possibility that γφ has significant (and fast)
backtracking along γSLE. This is ruled out by invoking Lemma 3.17 and observing that
the φ-image of the place where simple random walk (starting from a vertex near φ−1(i))
hits ∂D(γ) can be close to any fixed segment of γSLE(0, T ].

Proof of Theorem 1.2. Let γφ be the path φ�γ parameterized by half-plane capacity.
Let δ, T >0 and rD=radφ−1(i)(D). Let W denote the Loewner driving term of γSLE.
Since γSLE is almost surely a simple path, Lemma 4.16 implies that for every ε>0 there
is some ε′=ε′(ε, γSLE)>0 such that if W̃ is the driving term of a continuous path γ̃ and
supt∈[0,T ] |W̃ t−Wt|<ε′, then supt∈[0,T ] dH(γSLE[0, t], γ̃[0, t])<ε. Moreover, it is not hard
to see that ε′ can be chosen as a measurable function of W . Hence, Theorem 1.3 implies
that for every ε0>0, if rD is larger than some function of ε0, δ, T , a and b, then there is
a coupling of h and SLE(4; a/λ−1, b/λ−1) such that

% := sup
t∈[0,T ]

dH(γφ[0, t], γSLE[0, t])<ε0

with probability at least 1−δ. Without yet specifying ε0, we assume that indeed γφ[0, T ]
and γSLE are so coupled. Let A0 be the event that %<ε0. Then P[A0]>1−δ.
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Let 0<t0<t1<t2<t36T . We will show that under this coupling, if rD is large, then
with high probability γφ(t) is close to γSLE[t0, T ] for every t∈[t3, T ]. This will then imply
that supt∈[0,T ] |γSLE(t)−γφ(t)| is small.

Since γSLE is almost surely a simple path disjoint from {i}, there is a constant
s0=s0(t0, t1, t2, t3, T, δ)>0 such that P[A1]>1−δ, where A1 is the event that

(1) the harmonic measure of γSLE[t1, t2] from i with respect to H\γSLE[0,∞) is at
least s0,

(2) dist(R, γSLE[t0, T ])>s0,
(3) dist(γSLE[0, tj ], γSLE[tj+1, T ])>s0 for j=0, 1, 2,
(4) diam γSLE[0, T ]<1/s0, and
(5) i∈
Hs0(γSLE[0, T ]).
(It is tedious, but straightforward, to check that A1 is measurable.)
Consider a simple random walk S independent of h starting at a TG-vertex closest

to φ−1(i). Let τT be the first time t when S(t)∈∂D(φ−1
�γφ[0, T ]), and, as in §3.7, let

zT :=S(τT ). We claim that for every ε1>0, if rD is sufficiently large and ε0 is sufficiently
small, then

P[dist(φ(zT ), γSLE[t1, t2])<ε1 | γSLE, γ
φ[0, T ]]> 1

2s0 on A0∩A1. (4.36)

To prove (4.36), first observe that conditional on γSLE such that A1 holds, a 2-
dimensional Brownian motion Ŝ started at i has probability at least s0 to first hit γSLE∪R
in γSLE[t1, t2]. Moreover, if this happens, the Brownian motion is likely to stay within
a compact subset L⊂H before hitting γSLE[t1, t2] and not to come arbitrarily close to
γSLE far from its hitting point. On compact subsets of H, the map r−1

D φ−1 distorts
distances by a bounded factor, by the Koebe distortion theorem [P, Theorem 1.3 and
Corollary 1.4]. Since φ−1 takes a Brownian motion to a monotonically time-changed
Brownian motion, by taking rD large we may couple r−1

D S and r−1
D φ−1

�Ŝ to stay arbi-
trarily close (until φ−1

�Ŝ hits ∂D) with high probability, up to a time change. Assuming
that % is arbitrarily small and taking (5) into account, we find that on A1 and given
(γSLE, γ

φ[0, T ]), with conditional probability at least 5
6s0 the random walk gets to a ver-

tex v where dist(φ(v), γSLE[t1, t2]) is arbitrarily small before time τT . Now, on the event
A0, γφ[0, T ] has to be close by, and so we find from Lemma 2.1 that on A0∩A1 and given
(γSLE, γ

φ[0, T ]), with conditional probability at least 2
3s0 we have dist(φ(zT ), γSLE[t1, t2])

arbitrarily small. This proves (4.36).
We take γφ[T,∞) independent of γSLE given γφ[0, T ] in the coupling of γSLE with γ.

As in §3.5, let τ be the hitting time of S on ∂D(γ). In (3.62) we choose ε=δ, and get a
corresponding p>0. Let A2 denote the event

P[zT =Sτ |S, γφ[0, T ]]> p.
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Then (3.62) reads P[A2]>1−δ. In conjunction with (4.36) and P[Aj ]>1−δ, j=0, 1, this
implies that

P
[
P[dist(φ(Sτ ), γSLE[t1, t2])<ε1 | γSLE, γ

φ[0, T ]]> 1
2ps0

]
> 1−3δ. (4.37)

Conditional on Sτ , on the event A1∩{dist(φ(Sτ ), γSLE[t1, t2])<ε1} we invoke Lem-
ma 3.17 with Sτ translated to 0 where the p in that lemma is chosen as 1

2ps0δ and the R
is taken to be s2rD, where s2=s2(s0)>0 is a small constant depending only on s0. Note
that the assumption necessary for the lemma that dist(Sτ , {v0}∪∂D)>4R holds by (2),
(4) and (5) in the definition of A1 and the fact that the distance distortion of r−1

D φ−1 is
bounded on compact subsets of H. Let ã denote the a provided by the lemma, which is a
function of s0, a, b and δ. Set r=R/(ã+1). Then the lemma together with (4.37) imply
that with probability 1−O(δ) there is within distance ε1 from γSLE[t1, t2] the φ-image
of a vertex v∈∂D(γ) such that φ−1

�γφ[0, T ] has precisely two disjoint crossings of the
annulus {z :r6|z−v|6R}. If this happens, let z1 be a point in γSLE[t1, t2] closest to such
a φ(v).

Let r′ denote the lower bound we get on {|φ(v)−φ(z)|:|v−z|>r} which follows
from the bounded distortion of rDφ. We may also assume that |φ(v)−φ(z)|6 1

8s0 when
|v−z|6R. Now take ε1= 1

4r
′ and let s3=s3(δ, r′)∈

(
0, 1

8r
′) be so small that with prob-

ability at least 1−δ for every ball of radius 1
4r

′ centered at a point z0∈γSLE[t0, T ]
the distance outside of the ball B

(
z0,

1
4r

′) between the two connected components of
R∪(γSLE[0, T ]\{z0}) is at least s3. Note that when this is the case, every path connecting
these two components outside of B

(
z0,

1
4r

′) has to intersect 
Hs3/3(γSLE[0, T ]). Conse-
quently, if additionally %< 1

3s3, then γφ[0, T ] cannot contain an arc whose endpoints are
within distance 1

4s3 of these two components, unless the arc visits the ball B
(
z0,

1
4r

′). If
% is sufficiently small, then there is some t′36t3 such that |γSLE(t3)−γφ(t′3)|< 1

4s3. Now
choose z0 :=z1, for the previous paragraph. The path γφ[0, t′3] must pass through the
ball B

(
z0,

1
4r

′), and therefore φ−1
�γφ[0, t′3] contains two disjoint crossings of the annulus

{z :r6|z−v|6R}. If we assume that φ−1
�γφ[0, T ] has no more than two disjoint cross-

ings of this annulus (which happens with probability at least 1−O(δ)), it follows that
for t∈[t3, T ] the point γφ(t) is closer to γSLE[t0, T ] than to γSLE[0, t0]∪R. Since in the
above δ, t0 and t3 are arbitrary subject to the constraint 0<t0<t3 and δ>0, the claimed
uniform convergence in [0, T ] follows.

To prove convergence in law with respect to the uniform d∗ metric, it suffices to
show that for every radius r1>0 there is some r2>r1 such that γφ is unlikely to return
to B(0, r1) after its first exit from B(0, r2). For this proof, we will use the conformal
invariance of extremal length (see [A]).

Fix some r1>0. The extremal length of the collection of arcs in the half-annulus
A:={z∈
H:r1<|z|<r2}, which connect R+ with R−, tends to zero as r2!∞. Let A′ :=
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φ−1(A), ∂j :=φ−1({z∈
H:|z|=rj}), j=1, 2, L:=dist(∂1, ∂2;A′) and L′ :=dist(∂+, ∂−;A′).
By conformal invariance of extremal length, it follows that L′/L!0 as r2!∞, uniformly
in D. (Otherwise, the metric which is equal to the Euclidean metric in the ball of radius
3L centered on a point in an arc of length at most 2L from ∂1 to ∂2 in A′, and is zero
outside this ball, contradicts the extremal length going to zero.)

Let β⊂A′ be an arc of diameter at most 2L′ connecting ∂+ and ∂−. Let

L1 := dist(β, ∂1;A′) and L2 := dist(β, ∂2;A′).

Since L′/L!0 as r2!∞, we have L1> 1
3L or L2> 1

3L if r2 is sufficiently large. Suppose
first that L2> 1

3L. Let s0 denote the first time such that |φ�γ(s0)|=r2. Then there are
two connected components β1 and β2 of β\γ[0, s0] such that γ[0, s0]∪β1∪β2 separates
φ−1(B(0, r1)) from y∂ in D. Now the proof of Theorem 3.22 shows that

P[γ∩β1 6= ∅ | γ[0, s0]]<δ

if L2/L
′ is sufficiently large. (Hence when L2> 1

3L and r2 is sufficiently large.) A similar
estimate holds with β2. Thus, with probability at most O(δ), γφ contains two disjoint
crossings of the annulus r16|z|6r2. On the other hand, if L2<

1
3L and L1> 1

3L, then
we may apply the same argument to the reversal of γ (or else slightly modify the way
the analog of Theorem 3.22 is proved) to reach the same conclusion. This completes the
proof.

5. Other lattices

In this section we describe the modifications necessary to adapt the proofs of Theo-
rems 1.3 and 1.2 to the more general framework of Theorem 1.4.

Before we go into the actual proof, a few words need to be said about the proper-
ties of the weighted random walk on G and its convergence to Brownian motion. Fix
some vertex v0 in G, and let V0 denote its orbit under the group generated by the two
translations T1 and T2 preserving G. If the walk starts at v0, then a new Markov chain
is obtained by looking at the sequence of vertices in V0 that the walk visits. A simple
path reversal argument shows that for this new Markov chain the transition probability
from v to u is the same as the transition probability from u to v, for every pair of ver-
tices v, u∈V0. Also observe that the R2-length of a single step has an exponential tail.
This is enough to show that the Markov chain on V0, rescaled appropriately in time and
space, converges to a linear image of Brownian motion (and it is not hard to verify that
the linear transformation is non-singular). Moreover, the few properties of the simple
random walk on TG that we have used in the course of the paper are easily verified for
this Markov chain on V0 and easily translated to the weighted walk on G.
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Proof of Theorem 1.4. Very few changes are needed to adapt the proof. Let G de-
note the original lattice consisting of only edges of positive weight, and let 
G denote the
triangulation of G, as described in §1.5. Let 
G∗ denote the planar dual of 
G.

The statement and proof of Lemma 3.1 requires some changes, because in the more
general setup it is not true that every vertex adjacent to an interface on the right has a
G-neighbor on the left of the interface (and similarly in the other direction). Thus, in
the revised version of the lemma, the assumption that each vertex in V+ neighbors with
a vertex in V−∪V∂ and every vertex in V− neighbors with a vertex in V+∪V∂ needs to be
replaced by the assumption that for some constant m, depending on the lattice, for every
vertex v∈V+ the G-graph-distance from v to V−∪V∂ is at most m, and symmetrically
for vertices in V−. This change requires a few extra lines in the proof of (3.1). Let Mj

be the maximum of E[eh(v) |K] for vertices in V+ at G-distance at most j from V−∪V∂ .
Every vertex at G-distance j>0 from V−∪V∂ has a G-neighbor at G-distance j−1 from
V−∪V∂ . Therefore, the proof of (3.8) now gives

Mj 6O(1)M c
mM

1−c
j−1 +O(1),

where c<1 is some constant depending only on the lattice and its edge weights. We can
certainly drop the trailing additive O(1). Induction on j now gives

Mj 6O(1)qjM c qj
m M

(1−c)j

0 ,

where qj=1+(1−c)+...+(1−c)j−1=(1−(1−c)j)/c. When j=m, this reads

M (1−c)m

m 6O(1)qmM
(1−c)m

0 ,

Clearly, M06eΛ̄, and the bound Mm=Om,Λ̄(1) follows. A corresponding bound clearly
also holds for E[e−h(v) |K] when v∈V−. The remainder of the proof of the analog of
Lemma 3.1 proceeds without difficulty.

The proof of Lemma 3.2 needs to be similarly adapted, but essentially the same
argument works.

The next point which requires adaptation is the definition of Zσ0 in §3.5. Let Σ denote
the set of pairs (v, e∗), where v is a vertex in G and e∗ is an edge in 
G∗ that is dual to
one of the edges incident with v in 
G. If σ=(v, e∗)∈Σ, let Zσ denote the event that the
first vertex adjacent to γ that S hits is v and moreover e∗∈γ. Let Σ′ be a collection of
elements of Σ, one from each orbit under the group generated by the translations T1 and
T2 preserving G. Let Z0 :=

⋃
σ∈Σ′ Zσ. The proof then proceeds essentially unchanged,

with Zσ in place of Zσ0 and with the modified definition for Z0.
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H. Poincaré Probab. Statist., 38 (2002), 109–123.

[LSW3] — Conformal restriction: the chordal case. J. Amer. Math. Soc., 16 (2003), 917–955.
[LSW4] — Conformal invariance of planar loop-erased random walks and uniform spanning

trees. Ann. Probab., 32:1B (2004), 939–995.
[M] Mandelbrot, B., How long is the coast of Britain? Statistical self-similarity and

fractional dimension. Science, 156 (1967), 636–638.
[NS] Naddaf, A. & Spencer, T., On homogenization and scaling limit of some gradient

perturbations of a massless free field. Comm. Math. Phys., 183 (1997), 55–84.
[N1] Nienhuis, B., Exact critical point and critical exponents of O(n) models in two di-

mensions. Phys. Rev. Lett., 49:15 (1982), 1062–1065.
[N2] — Critical behavior of two-dimensional spin models and charge asymmetry in the

Coulomb gas. J. Stat. Phys., 34:5–6 (1984), 731–761.
[dN] den Nijs, M., Extended scaling relations for the magnetic critical exponents of the

Potts model. Phys. Rev. B, 27:3 (1983), 1674–1679.
[P] Pommerenke, C., Boundary Behaviour of Conformal Maps. Grundlehren der Math-

ematischen Wissenschaften, 299. Springer, Berlin–Heidelberg, 1992.
[RY] Revuz, D. & Yor, M., Continuous Martingales and Brownian Motion. Grundlehren

der Mathematischen Wissenschaften, 293. Springer, Berlin–Heidelberg, 1999.
[RS] Rohde, S. & Schramm, O., Basic properties of SLE. Ann. of Math., 161 (2005),

883–924.
[SD] Saleur, H. & Duplantier, B., Exact determination of the percolation hull exponent

in two dimensions. Phys. Rev. Lett., 58:22 (1987), 2325–2328.
[Sch] Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees.

Israel J. Math., 118 (2000), 221–288.
[SS] Schramm, O. & Sheffield, S., Harmonic explorer and its convergence to SLE4. Ann.

Probab., 33:6 (2005), 2127–2148.



contour lines of the two-dimensional discrete gaussian free field 137

[Sh] Sheffield, S., Gaussian free fields for mathematicians. Probab. Theory Related Fields,
139 (2007), 521–541.

[Sm] Smirnov, S., Critical percolation in the plane: conformal invariance, Cardy’s formula,
scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 239–244.

[Sp] Spencer, T., Scaling, the free field and statistical mechanics, in The Legacy of Norbert
Wiener : A Centennial Symposium (Cambridge, MA, 1994), Proc. Sympos. Pure
Math., 60, pp. 373–389. Amer. Math. Soc., Providence, RI, 1997.

[W] Werner, W., Random planar curves and Schramm–Loewner evolutions, in Lectures
on Probability Theory and Statistics, Lecture Notes in Math., 1840, pp. 107–195.
Springer, Berlin–Heidelberg, 2004.

Oded Schramm
was at the Theory Group
of Microsoft Research
One Microsoft Way
Redmond, WA 98052-6399
U.S.A.

Scott Sheffield
Courant Institute
New York University
251 Mercer Street
New York, NY 10012
U.S.A.
sheff@math.nyu.edu
sheffield@math.mit.edu

Received October 18, 2006




