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1. Statement of results

In this article we prove that for a large class of operators, including Schrodinger operators,
P(h)=—-h*A+V(z), VeC (X), X=R? (1.1)

with hyperbolic classical flows, the smallness of dimension of the trapped set implies that
there is a gap between the resonances and the real axis. In other words, the quantum
decay rates are bounded from below if the classical repeller is sufficiently filamentary.
The higher-dimensional statement is given in terms of the topological pressure and is
presented in Theorem 3. Under the same assumptions, we also prove a useful resolvent
estimate:
log(1/h)
o
for any compactly supported bounded function xy—see Theorem 5 and a remark following
it for an example of applications.

IX(P(h)—E) x|z 2 <C (1.2)

We refer to §3.2 for the general assumptions on P(h), keeping in mind that they
apply to P(h) of the form (1.1). The resonances of P(h) are defined as poles of the
meromorphic continuation of the resolvent:

R(z,h) ¥ (P(h)—2)"" L3(X) — L2(X), Imz>0,

through the continuous spectrum [0, c0). More precisely,
R(z,h): L2(X) — L} (X), 2z€C\(—00,0],

is a meromorphic family of operators (here LZ and LZ . denote functions which are com-
pactly supported and in L?, and functions which are locally in L?). The poles are called
resonances and their set is denoted by Res(P(h))—see [3] and [48] for introduction and
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references. Resonances are counted according to their multiplicities (which is generically
one [21]).

In the case of (1.1) the classical flow is given by Newton’s equations:

o' (2, 6) < (2(1), £(1)),

a'(t)=E(t), E(t)=—dV(x(t), x(0)==z, §0)=¢ -
This flow preserves the classical Hamiltonian
(@) L PV (@), (2,6 €T X, X=R,
and the energy layers of p are denoted as follows:
SEdéf{geT*X:p(g)zE} and Egdéf U Egr, 6>0. (1.4)
|E'—E|<$
The incoming and outgoing sets at energy E are defined as
Iy o {0€T*X :p(0) =F and ®(p) 4 co0 as t = Foo} C Eg. (1.5)
The trapped set at energy F,
Kp¥TinTy, (1.6)

is a compact, locally maximal invariant set, contained inside TE(Q RO)X , for some Ry.
That is clear for (1.1) but also follows from the general assumptions of §3.2.

We assume that the flow ®* is hyperbolic on Kg.

The definition of hyperbolicity is recalled in (3.11)—see §3.2 below. We recall that
it is a structurally stable property, so that the flow is then also hyperbolic on K/, for E’
near E. Classes of potentials satisfying this assumption at a range of non-zero energies
are given in [26], [38, Appendix C] and [47]; see also Figure 1. The dimension of the
trapped set appears in the fractal upper bounds on the number of resonances. We recall
the following result [42] (see Sjostrand [38] for the first result of this type).

THEOREM 1. Let P(h) be given by (1.1) and suppose that the flow ®' is hyperbolic

on Kg. Then, in the semiclassical limit,
|Res(P(h))ND(E,Ch)|=O(h~%), (1.7)

where
2dg+1= Hausdorff dimension of Kg. (1.8)
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Figure 1. A three-bump potential exhibiting a hyperbolic trapped set for a range of energies.

When the curve {z:V(z)=E(z)} is made of three approximate circles of radii a and centers

at equilateral distance R, the partial dimension dy in (1.8) is approximately log2/log(R/a)

when R>a.

We note that using [33, Theorem 4.1], and in dimension n=2, we strengthened the
formulation of the result in [42] by replacing upper Minkowski (or box) dimension by
the Hausdorff dimension. We refer to [42, Theorem 3] for the slightly more cumbersome
general case.

In this article we address a different question which has been present in the physics
literature at least since the seminal paper by Gaspard and Rice [14]. In the same setting
of scattering by several convex obstacles, it has also been considered around the same
time by Tkawa [18] (see also the careful analysis by Burq [5] and a recent paper by Petkov
and Stoyanov [34]).

Question. What properties of the flow ®!, or of K alone, imply the existence of a
gap v>0 such that, for h>0 sufficiently small,

z€Res(P(h)), Rez~E = Imz<-—vyh?

In other words, what dynamical conditions guarantee a lower bound on the quantum

decay rate?

Numerical investigations in different settings of semiclassical three-bump potentials
[22], [23], three-disk scattering [14], [24], [46], Cantor-like Julia sets for z+2z2+c, with
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Figure 2. A sample of numerical results of [22]: the plot shows resonances for the potential
of Figure 1 (h=0.017). For the energies inside the box, the fractal dimension is approxi-
mately di~0.288<0.5 (see [22, Table 2]), and resonances are separated from the real axis in
agreement with Theorem 2.

¢<—2 [43], and quantum maps [30], [31], [36], all indicate that a trapped set Kg of low
dimension (a “filamentary” fractal set) guarantees the existence of a resonance gap v>0.

Some of these works also confirm the fractal Weyl law of Theorem 1, which, unlike
Theorem 2 below, was first conjectured in the mathematical works on counting reso-
nances.

Here we provide the following result.

THEOREM 2. Suppose that the assumptions of Theorem 1 hold and that the dimen-
sion dy defined in (1.8) satisfies
dy < 3. (1.9)

Then there exist 6,v>0 and hs~>0 such that
0<h<hsy, = Res(P(h))N([E-6,E+0]—i[0,hy])=0. (1.10)

The statement of the theorem can be made more general and more precise using a
more sophisticated dynamical object, namely the topological pressure of the flow on Kg,
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associated with the (negative infinitesimal) unstable Jacobian

d
+ _ el t
¢ (0) =~ log det(d®”| 5y ) )

namely
Pr(s) = pressure of the flow ®" on Kg, with respect to the function s@™.

We will give two equivalent definitions of the pressure below, the simplest to formulate
(but not to use) given in (3.19).

The main result of this paper is the following.

THEOREM 3. Suppose that X is a smooth manifold of the form (3.1), that the op-
erator P(h) defined on it satisfies the general assumptions of §3.2 (in particular it can
be of the form (1.1) with X =R"), and that the flow ®* is hyperbolic on the trapped set
Kpg. Suppose that the topological pressure of the flow on Kg satisfies

Pp() <0.

Then there exists >0 such that for any ~ satisfying

0 i —Pg (% 1.11
<7< puin_ (=P (3)), (1.11)
there exits hs >0 such that

0<h<hsy = Res(P(h))N([E—36,E+%6]—i[0,hv])=2. (1.12)

For n=2, the condition dH<% is equivalent to PE(%) <0, which shows that Theo-
rem 2 follows from Theorem 3. The connection between the sign of PE(%) and a reso-
nance gap also holds in dimension n>3; however, for n>3 there is generally no simple
link between the sign of Pg (%) and the value of dy (except when the flow is “conformal”
in the unstable and stable directions, respectively [33]).

The optimality of Theorem 3 is not clear. Except in some very special cases (for
instance when Kg consists of one hyperbolic orbit) we do not expect the estimate on
the width of the resonance free region in terms of the pressure to be optimal. In fact,
in the analogous case of scattering on convex co-compact hyperbolic surfaces, the results
of Naud (see [28] and references given there) show that the resonance free strip is wider
at high energies than the strip predicted by the pressure. That relies on delicate zeta
function analysis following the work of Dolgopyat: at zero energy there exists a Patterson—
Sullivan resonance with the imaginary part (width) given by the pressure, but all other
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Figure 3. The top figure shows the phase portrait for the Hamiltonian p(x, £)=£2 +cosh™2(z),
with Fli highlighted. The middle plot shows the resonant state corresponding to the reso-

nance closest to the real axis at h:%, and the bottom plot shows the squared modulus of its

Fourier-Bros—Iagolnitzer (FBI) tranform. The resonance states were computed by D. Bindel
(http://cims.nyu.edu/~dbindel/resonantid) and the FBI transform was provided by L. De-
manet. The result of Theorem 4 is visible in the mass of the FBI transform concentrated on
Ff, with the exponential growth in the outgoing direction.

resonances have more negative imaginary parts. A similar phenomenon occurs in the case
of Euclidean obstacle scattering as has recently been shown by Petkov and Stoyanov [34].

The proof of Theorem 3 is based on the ideas developed in the recent work of Anan-
tharaman and the first author [1], [2] on semiclassical defect measures for eigenfuctions
of the Laplacian on manifolds with Anosov geodesic flows. Although we do not use
semiclassical defect measures in the proof of Theorem 3, the following result provides a

connection.

THEOREM 4. Let P(h) satisfy the general assumptions of §3.2 (no hyperbolicity
assumption here). Consider a sequence of values hy—0 and a corresponding sequence of

resonant states (see (3.22) in §3.2 below) satisfying

lu(hw)ll2(r(km)+B0,5) =1, Rez(hy)=FE+o(1), Imz(h)>—Ch, (1.13)
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where Kg is the trapped set at energy E, as defined by (1.6), and 6>0. Suppose that a

semiclassical defect measure dy on T*X is associated with the sequence (u(hy)):

(@ (2, hi.D)xu(hi), xu(h)) = a(e) du(e), as k— oo,
T*X (1.14)

aeCr(T"X), xe€CX(X), mXlsuppa=1l, mT*X—X.

Then
supppu C T} (1.15)
and there exists A\>=0 such that
. Im Z(hk) A
1 L = = . 11
Jim ” 5 and  Lp,p=Au (1.16)

See Figure 3 for a numerical result illustrating the theorem. A similar analysis
of the phase space distribution for the resonant eigenstates of quantized open chaotic
maps (discrete-time models for scattering Hamiltonian flows) has been recently performed
in [20] and [29]. Connecting this theorem with Theorems 2 and 3, we see that the
semiclassical defect measures associated with sequences of resonant states have decay
rates A bounded from below by 2v>0, once the dimension of the trapped set is small
enough (n=2) or, more generally, the pressure at % is negative.

Our last result is the precise version of the resolvent estimate (1.2).

THEOREM 5. Suppose that P(h) satisfies the general assumptions of §3.2 (in par-
ticular it can be of the form (1.1) with X=R") and that the flow ®! is hyperbolic on the
trapped set Kg. If PE(%)<O then for any x€CX(X) we have
log(1/h)

h )

Notice that the upper bound C'log(1/h)/h is the same as the one obtained in the

case of one hyperbolic orbit by Christianson [8]. To see how results of this type imply dy-

IX(P(h)=E) " xllz2(x)»12(x) SC 0<h < ho. (1.17)

namical estimates see [6] and [8]. In the context of Theorem 5, applications are presented
in [7]. Referring to that paper for details and pointers to the literatures, we present one
application.

Let P :—h2Ag be the Laplace—Beltrami operator satisfying the assumptions below,
for instance on a manifold which is Euclidean outside of a compact set with the standard
metric there. The Schrédinger propagator, e~ %9, is unitary on any Sobolev space so
regularity is not improved in propagation. Remarkably, when K=, that is, when the
metric is non-trapping, the regularity improves when we integrate in time and cutoff in

space:

T
/ e 0wl 2y dE < Cllull2a ), x €C(X),
0
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and this much exploited effect is known as local smoothing. As was shown by Doi [12],
any trapping (for instance a presence of closed geodesics or more generally K#@) will
destroy local smoothing. Theorem 5 implies that under the assumptions that the geodesic
flow is hyperbolic on the trapped set K CS*X, and that the pressure is negative at %
(or, when dim X =2, that the dimension of K C.S*X is less than 2) local smoothing holds
with H'/? replaced by H'/?~¢ for any £>0.

Notation. In the paper, C' denotes a constant the value of which may change from
line to line. The constants which matter and have to be balanced against each other
will always have a subscript: Cp, Cy and alike. The notation u=0Oy (f) means that
llully =O(f), and the notation T=0Oy _,w (f) means that |Tu|w=0(f)|ulv.

2. Outline of the proof

It this section we present the main ideas, with the precise definitions and references to
previous works given in the main body of the paper. The operator to keep in mind is
P=P(h)=—h?>A,+V, where VeC(X), X=R", and the metric g is Euclidean outside a
compact set. The corresponding classical Hamiltonian is given by p=¢2+V (z). Weaker
assumptions, which in particular do not force the compact support of the perturbation,
are described in §3.2.

First we outline the proof of Theorem 3 in the simplified case where resonances are

replaced by the eigenvalues of an operator modified by a complex absorbing potential:

Py =Py (h) < P—iw,

where WeC>(X;[0,1]) satisfies the following conditions:
W=>0, suppW CX\B(0,R1) and Wlx\B@©,Rr +r)=1,

for Ry and r; sufficiently large. In particular, R; is such that n(Kg)CB(0, R;), where
K is the trapped set given by (1.6). The non-self-adjoint operator Py has a discrete

spectrum in Im z>—1/C and the analogue of Theorem 3 reads as follows.

THEOREM 3'. Under the assumptions of Theorem 3, for

0<y< jmin_(~Pe(3)). (2.1)

there exits ho=ho(7,d) such that for 0<h<hy,

Spec(Pw (h))N([E—18, E+15]—i[0, 7)) = &. (2.2)
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This means that the spectrum of Py (h) near E is separated from the real axis by
h~y, where ~ is given in terms of the pressure PE(%) associated with half the (negative
infinitesimal) unstable Jacobian.

This spectral gap is equivalent to the fact that the decay rate of any eigenstate is

bounded from below:
1 )
Pyu=zu, z6D<E7c> and ue L2 = |e/hy|| <e | ul.

This is the physical meaning of the gap between the spectrum (or resonances) and the real
axis—a lower bound for the quantum decay rate—and the departing point for the proof.
To show (2.2) we will show that for functions v which are microlocally concentrated near
the energy layer Eg=p~'(E) (that is, u=x"(x, hD)u+O(h>) for a x supported near

Er), we have

le= Pt S CR™™2e = Jul

1 B 1 (2.3)
i - [ g SMI 7
O</\<|En}zlﬂ<5( Pr (2>>, 0<t ogh

for any M. Taking M >n/2X and applying the estimate to an eigenstate u gives (2.2).
To prove (2.3) we decompose the propagator using an open cover {W,},ca of the

neighbourhood €2, of the energy surface. That cover is adapted to the definition of the

pressure (see §5.2 and §5.3) and it leads to a microlocal partition of a neighbourhood of

the energy surface:

ZHa:Xw(m,hD)+(9(h°°)7 xEloné'g/g, esssupp I, € W,.
acA

The definition of the pressure in §5.2 also involves a time ty>1, independent of h, but

depending on the classical cover. Taking

1
N < Mlog 7 NeN, M >0 fixed but arbitrarily large, (2.4)

the propagator at time t=Nty acting on functions w microlocalized inside S};/ ® can be

written as

e—iNtOPW/hu: Z UaN ...Ualu—&—(’)(hoo)HuH, Uadéfe_itOPW/hHa. (25)

a€AN

The sequences a=(ayq,...,an) which are classically forbidden, that is, for which the
corresponding sequences of neighbourhoods are not successively connected by classical
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propagation in time tg, lead to negligible terms. So do the sequences for which the

propagation crosses the region where W=1: the operator e 0w /h

is negligible there,
due to damping (or “absorption”) by W.

As a result, the only terms relevant in the sum on the right-hand side of (2.5)
come from a€ AN NAy, where A; indexes the element of the partition intersecting the
trapped set K, and Ay are the classically allowed sequences—see (6.29). We then need
the crucial hyperbolic dispersion estimate proved in §7 after much preliminary work in

§4.3 and §5.1: for N <M log(1/h), M >0 arbitrary, we have for any sequence a€ AV N Ay,

N ~1/2
Hawulgmgh%ﬂu+%WII( inf dmqumwwg . (26)
=1 €W, NKY, ¢

The expression in parenthesis is the coarse-grained unstable Jacobian defined in (5.22),
and €9 >0 is a parameter depending on the cover {W, },c 4, which can be taken arbitrarily
small—see (5.24). From the definition of the pressure in §5.2, summing (2.6) over a€
ANN Ay leads to (2.3), with M=Mt,.

In §9 we show how to use (2.3) to obtain a resolvent estimate for Py : at an energy
FE for which the flow is hyperbolic on Kg and PE(%) <0, we have

log(1/h)

S 0<h<h. (2.7)

I(Pw —E) L2 (x)»12(x) < C
To prove Theorem 3, that is the gap between resonances and the real axis, we use
the complex scaled operator Py: its eigenvalues near the real axis are resonances of
P. If V is a decaying real-analytic potential extending to a conic neighbourhood of
R™ (for instance a sum of three Gaussian bumps, as shown in Figure 1), then we can
take Pp=—h2e" 29 A+ V (e?x), though in this paper we will always use exterior complex
scaling reviewed in §3.4, with §~M;(1/h)log(1/h), where M; is chosen depending on M
in (2.4).

To use the same strategy of estimating e~/

, we need to further modify the oper-
ator by conjugation with microlocal exponential weights. That procedure is described in
86. The methods developed there are also used in the proof of Theorem 4 and in showing
how the estimate (2.7) implies Theorem 5.

Since we concentrate on the more complicated, and scientifically relevant, case of
resonances, the additional needed facts about the study of Py and its propagator are

presented in the appendix.
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3. Preliminaries and assumptions

In this section we recall basic concepts of semiclassical analysis, state the general as-
sumptions on operators to which the theorems above apply, define hyperbolicity and
topological pressure. We also define resonances using complex scaling which is the stan-
dard tool in the study of their distribution. Finally, we will review some results about

semiclassical Lagrangian states and Fourier integral operators.

3.1. Semiclassical analysis

Let X be a C* manifold which agrees with R™ outside a compact set, or more generally
X =XoUR"\B(0, Rp))U...l/(R™"\ B(0, Ry)), Xo€X. (3.1)
The class of symbols associated with the weight m is defined as
7T X) = {a € C(T* X x (0, 1]): [050%a(a, & h)| < Cuh=h 002118 (ym=131y.

Most of the time we will use the class with §=0 in which case we drop the subscript.
When m=k=0, we simply write S(T*X) or S for the class of symbols. The reason for
demanding the decay in & under differentiation is to have invariance under changes of
variables.

We denote by \PZT;;’C(X ) or \I/hmk(X ) the corresponding class of pseudodifferential

operators. We have surjective quantization and symbol maps:
Op: S™H(T*X) — U*(X) and oy, UF(X) — S™F(T*X) /ST LE1(T* X).
Multiplication of symbols corresponds to composition of operators, to leading order:
on(AoB) =0y, (A)o(B),

and
opoO0p: S™F(T*X) — S™H(T* X)/S™HE 1 (T X)

is the natural projection map. A finer filtration can be obtained by combining semiclas-
sical calculus with the standard calculus (or the yet more general framework of the Weyl
calculus)—see for instance [41, §3].

The class of operators and the quantization map are defined locally using the defi-
nition on R™:

Op(a)u(z’) =a" (xz, hD)u(z) = ﬁ //Rzn a(

ZE/

;raz , f) U w8y (1) du dg,  (3.2)
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and we refer to [11, Chapter 7] for a detailed discussion of semiclassical quantization
(see also [40, Appendix]), and to [13, Appendix D.2] for the semiclassical calculus on
manifolds.

The semiclassical Sobolev spaces Hj(X) are defined by choosing a globally ellip-
tic, self-adjoint operator AG\II}I’O(X) (that is an operator satisfying o(A)>(¢)/C every-
where), and putting

l[ull g = | A%l L2(x)-
When X=R",

s ° 1 —i(x
ull s ~ /R T Fnu(€)? g, fhu(od:fW /R Cufw)e /M d,

Unless otherwise stated, all norms in this paper, || - ||, are L? norms.
For aeS(T*X) we follow [41] and say that the essential support is equal to a given
compact set KeT*X,
esssupppa=K eT*X,

if and only if for all xeS(T*X),
suppx CCK = xa€h™S(T*X).

Here S denotes the Schwartz class which makes sense since X is Euclidean outside a
compact set. In this article we are only concerned with a purely semiclassical theory and
deal only with compact subsets of T*X.

For Ac¥,(X), A=0p(a), we put

WF},(A) =esssuppy, a,

noting that the definition does not depend on the choice of Op.
We introduce the following condition:
for all u € C>((0,1]x; D' (X)) there exist P and hg such that (33)
(2)~Pull p2x) <~ for h<ho. '
We call families u=u(h) satisfying (3.3) h-tempered. What we need is that for u(h),
h-tempered, x*(x, hD)u(h)eh>®S(X) for x€h>S(T*X). That is, applying an operator
in the residual class produces a negligible contribution.

For such h-tempered families we define the semiclassical L2-wave front set as

WF},(u) =C{(x,&) : there exists a € S(T*X) such that

(3.4)
a(xz,&) =1 and ||a”(x, hD)u||r2 = O(h™)}.
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The last condition in the definition can be equivalently replaced by
a" (&, hD)u € hC((0, ]n; C (X)),

since we may always take aeS(T*X).

Equipped with the notion of semiclassical wave front set, it is useful and natural to
consider the operators and their properties microlocally. For that we consider the class
of tempered operators, T=T(h): S(X)—S'(X), defined by the condition

there exist P and hg such that ||<x>*PTu||H;p(X) < h*PH(:v)PuHH}zL)(X) for 0 < h < hg.

For open sets VCVET*X and UCUE&T*X, the operators defined microlocally near

V' xU are given by the following equivalence classes of tempered operators:

T ~T" if and only if there exist open sets
ﬁ,V@T*X, UeU and V €V such that
A(T-T")B =055 (h)
for any A, B € U;,(X) with WF;,(4) CV and WF,(B) cU.

For two such operators T and T’, we say that T=T" microlocally near VxU. If we
assumed that, say A=a"(z, hD), where ac€C°(T* X), then Og/_,s(h>) could be replaced
by Orz_r2(h*) in the condition. We should stress that “microlocally” is always meant
in this semi-classical sense in our paper.

The operators in ¥y, (X) are bounded on L? uniformly in h. For future reference,

we also recall the sharp Garding inequality (see for instance [11, Theorem 7.12]):
a€S(T*X), a0 = (a“(x,hD)u,u) > —Ch|ul?., ue L*(X), (3.6)

and Beals’s characterization of pseudodifferential operators on X (see [11, Chapter §]
and [42, Lemma 3.5] for the S; case):

H adWN adv[/1 A||L2%L2 = O(h(l_(s)N),

AeVns(X) <= 4 forall W; €Diff'(X), j=1,..., N, (3.7)
W, =(a,hDy)+(b,x), a,b€R", outside Xp.

Here adp C=[B, C].
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3.2. Assumptions on P(h)

We now state the general assumptions on the operator P=P(h), stressing that the sim-

plest case to keep in mind is
P=—-h*A+V(z), VeC>(R™).

In general we consider

P(h) € U3(X), P(h)=P(h)",
and an energy level E >0, for which
P(h)=p"(a,hD)+hpY (x,hD;h), p1€S>*(T*X),

€20 = 0> pmp — w0 (33)

and there exists Ry such that P(h)u(z)=Q(h)u(z) for all ue C*>(X\B(0, Ry)).
Here the operator near infinity takes on each “infinite branch” R™\ B(0, Rg) of X the
following form:
QM) =Y aa(; h)(hDx)",
laf<2
where aq(z; h)=aq(z) is independent of h for |a|=2, ay(z;h)€Cy°(R™) is uniformly
bounded with respect to h (here C°(R™) denotes the space of C'™ functions with bounded

derivatives of all orders), and
2

Z aa($)§a = |§7

for all £ € R™ and some constant ¢ > 0,

c
=2 (3.9)

Z ao(z;R)EY = €2, as |x| — oo, uniformly with respect to h.

la|<2

We also need the following analyticity assumption in a neighbourhood of infinity: there
exist 6p €0, 7) and €>0 such that the coefficients a, (z; h) of Q(h) extend holomorphically

in z to
{rw:weC”, dist(w,S") <e,r€C,|r|> Ry and argr e [—¢,0o+¢)},

with (3.9) valid also in this larger set of z’s. Here for convenience we chose the same Ry
as the one appearing in (3.8), but that is clearly irrelevant.
We note that the analyticity assumption in a conic neighbourhood near infinity

automatically strengthens (3.9) through an application of Cauchy inequalities:

af( ) aa<x;h>fa—52) <Je[ P i (12 (€)%, as @ - o0, (3.10)

lal<2

where for any j€N the function f;(r)\,0 when r—oo.
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3.3. Definitions of hyperbolicity and topological pressure

We use the notation
o'(g)=€""(0), o0=(x,§)eT*X,

where H, is the Hamilton vector field of p,
defx~( Op O Op 0O
3 (G5 amag) =0
j=1 J J J J
in local coordinates in T*X. The last expression is the Poisson bracket relative to the
symplectic form w=>""_, d¢; Adz;.

We assume that p=p(z,£) and E>0 satisfy the assumptions (3.8) and (3.9) of §3.2,
and study the flow ®' generated by p on £g. The incoming and outgoing sets, I'z, and
the trapped set, K, are given by (1.5) and (1.6), respectively. The assumptions imply
that Kg is compact.

We say that the flow ®¢ is hyperbolic on K if for any o€ K the tangent space to
Eg at o splits into flow, unstable and stable subspaces [19, Definition 17.4.1]:

(i) T,(€p) =RH,(0)® B} ®F,, dim EX =n—1,
(i) d®},(E7) :Ej}ft(g) for all t e R, (3.11)

(iii) there exists A >0 such that [|d®}(v)|| < Ce M| for all ve E, £t>0.

Kg is a locally mazimal hyperbolic set for the flow ®t|¢,. The following properties are
then satisfied:

(iv) Kp 30— E, CT,(€g) is Holder continuous,

(v) any ¢ € K admits local (un)stable manifolds W5 (o) tangent to E,,

(vi) there exists an “adapted” metric gaq near K such that one can take C'=1 in (iii).
(3.12)

The adapted metric g.q can be extended to the whole energy layer, so as to coincide with

the standard Euclidean metric outside Té(o RO)X . We call

def _odef _
E[°C BfoRH,(0) and E,"= E; ©RH,(o) (3.13)

the weak unstable and weak stable subspaces at the point g, respectively. Similarly, we
denote by W*0(g) (resp. W~°(p)) the weak unstable (resp. stable) manifold. The family
of all the (un)stable manifolds W*(g) forms the (un)stable lamination on Kg, and one
has

Iy=J W (o).
0€EKEp
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If periodic orbits are dense in Kg, then the flow is said to be aziom A on Kg [4].
Such a hyperbolic set is structurally stable [19, Theorem 18.2.3], so that

there exists 6 >0 such that, for all E' € [E—§, E+6],

(3.14)
K is a hyperbolic set for ®'|¢_,.
Besides, the total trapped set in the energy layer E‘;E, that is
K¢ o U Kpg, is compact. (3.15)
|E'~E|<8

Since the topological pressure plays a crucial role in the statement and proof of
Theorem 3, we recall its definition in our context (see [19, Definition 20.2.1] or [33,
Appendix A]).

Let d be the distance function associated with the adapted metric. We say that a set
SCKp is (e,t)-separated if for o1, 02€S, 01702, we have d(® (1), &' (92))>e for some
0<t'<t. Obviously, such a set must be finite, but its cardinal may grow exponentially
with t. The metric g,q induces a volume form {2 on any m-dimensional subspace of
T(T*R™). Using this volume form, we now define the unstable Jacobian on Kg. For any
o€ K, the determinant map

. 0 0
/\d@t(g)\E;ro. NE; —>/\E$t(g)
can be identified with the real number

Qg (o) (AP AdPIva A... AdDP0y,)
det(d® def 272" (e) 3.16
€ ( (,Q)‘ES—O) Qg(’Ul/\’Ug/\.../\’Un) ’ ( )

where (v1, ..., v,) can be any basis of E;O. This number defines the unstable Jacobian:
M (O E det(d! (0) o), (3.17)

and its (negative) infinitesimal version

1o oydef dA/ (o)
vilo)=——1 )
From there we take
Zi(g,s) o sup Z e_s’\j(g), (3.18)
S
0ES

where the supremum is taken over all (g, t)-separated sets. The pressure is then defined
as
def . .. 1
Pr(s) = lim limsup n log Z(e, s). (3.19)

e=0 {500
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This quantity is actually independent of the volume form (2: after taking logarithms, a
change in © produces a term O(1)/t which is irrelevant in the t— oo limit.

From the identity A/ (0)=— fot T (®*(0)) ds we see that, in the ergodic theory ter-
minology, Pg(s) is the topological pressure associated with the Holder function (“poten-
tial”) set. We remark that the standard definition of the unstable Jacobian consists in
restricting d®’(g) to the strong unstable subspace E [4]; yet, including the (neutral)
flow direction in the definition (3.17) of A} (and hence of ¢*) does not alter the pressure,
and is better suited for the applications in this article. In §5.2 we will give a different
equivalent definition of the topological pressure, more adapted to our aims.

We end this section by stating a simple property of the topological pressure, which
we will need further on. Although its proof its straightforward, we were unable to find

it in the literature.

LEMMA 3.1. For any s€R, the topological pressures P2 (s) and Pr(s) satisfy the

relation

Pi(s) = lim Pi(s). (3.20)

Proof. For any closed invariant set K, the pressure Pk (s) associated with the flow

on K can be defined through the variational principle

Pr(s)= sup (th(u)—s /K w*du>,

HEErg(K)

where Erg(K) is the set of flow-invariant ergodic measures supported on K, and hgg(p)
is the Kolmogorov—Sinai entropy of the measure [45, Corollary 9.10.1].

Take K :K%. Because the flow leaves the foliation

Ky= || Ee
E'€|E—6,E+4]

invariant, any ergodic measure supported on Kg is actually supported on a single Kpgr.

Hence, we deduce that
Po(s)= sup Pr(s).
E/€[E—§,E+0]
Now, from the structural stability of the flow on K, the function E'+Pg(s) is contin-
uous near F (this continuity is an obvious generalization of [4, Proposition 5.4]), from
which we deduce (3.20). O
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3.4. Definition of resonances through complex scaling

We briefly recall the complex scaling method—see [39] and references given there. Sup-
pose that P=P(h) satisfies the assumptions of §3.2. Here we can consider h as a fixed
parameter which plays no role in the definition of resonances.

For any 6€[0, 6y], let To CC™ be a totally real contour with the following properties:

I'eNBen (0, Ro) = Bgn (O, ARQ)7
LoNC™\ Ben (0,2Ry) = e R"NC™\ Ben (0, 2Ry), (3.21)
To={z+iFy(z): 2 €R"}, 0Oy Fy(x)=0.(0).

Notice that Fy(z)=(tan @)z for |z|>2Ry. By gluing I'y\ B(0, Ry) to the compact piece
X in place of each infinite branch R™\ B(0, Ry), we obtain a deformation of the manifold
X, which we denote by Xj.

The operator P then defines a dilated operator:

def
P=

Pu|Xea Peu:Pu(uu)‘Xev
where P* is the holomorphic continuation of the operator P, and u! is an almost analytic
extension of u€CX(Xy).

For 6 fixed and E>0, the scaled operator Py— E is uniformly elliptic in \I/i’o (Xo),
outside a compact set, hence the resolvent, (Py—z)~!, is meromorphic for z€ D(E,1/C).
We can also take 6 to be h-dependent and the same statement holds for ze D(E,6/C).
The spectrum of Py with z€ D(E,6/C) is independent of 6 and consists of quantum
resonances of P. The latter are generally defined as the poles of the meromorphic

continuation of

(P—2)"hC(X) —C™(X)

from D(FE,0/C)N{z:Im 2>0} to D(E,0/C)N{z:Im 2<0}. The resonant states associ-
ated with a resonance z, Re 2~FE>0, |Im z|<8/C, are solutions to (P—z)u=0 satisfying

there exists U € C*°(€Qg), where Qy o U X, such that
—e<6'<O+¢ (3.22)

u=Ulx, up =Ulx,, and (Pp —2z)ug: =0 for 0 <@ <0, and ug € L*(Xy).

If the multiplicity of the pole is higher, there is a possibility of more complicated states
but here, and in Theorem 4, we consider only resonant states satisfying (P—z)u=0. At
any pole of the meromorphically continued resolvent, such states satisfying (3.22) always
exist. We shall also call the state ugp€ L?(Xy) a resonant state.
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If 0 is small, as we shall always assume, we identify X with Xy using the map
R: Xy — X,

(3.23)
z+— Reux,

and using this identification, consider Py as an operator on X, defined by (R™1)* PyR*.
We note that in the identification of L?(X) with L?(Xy) using r—Rez,

CH lu()ll2cx) < Mlulh) |2 xp) < Cllulh) 2 cx),

with C' independent of 6 if 0<0<1/CY.
For later use we conclude by describing the principal symbol of Py as an operator

on L?(X) using the identification above:
po(@, &) =pla+iFy (), (1+idFy(x)") 76, (3.24)

where the complex arguments are allowed due to the analyticity of p(z,§) outside of

a compact set—see §3.2. In this paper we will always take 0=0O(log(1/h)h) so that
Po(@,€)—p(w,€)=O(log(1/R)h)(€)?. More precisely,

Re py(z,€) =p(x,§)+0(6%)(€)?,

Im py(z, &) = —dep(, €)[dFy ()" ) +dup(a, €) [Fy ()] +O(62) (). 520
In view of (3.9) and (3.10), we obtain the following estimate when |z|> Ry:
Impy (2, €) = —2(dFy (), £)+OO(fo(lz]) + f1(|z]) +6%) (), (3.26)
where f;(r)—0 as r—o0. In particular, if Ry is taken large enough,
(z,6) €&, |z| >2Ry = TImpy(z, &) <—C6. (3.27)

4. Semiclassical Fourier integral operators and their iteration

The crucial step in our argument is the analysis of compositions of a large number—of
order log(1/h)—of local Fourier integral operators. This section is devoted to general

aspects of that procedure, which will then be applied in §7.

4.1. Definition of local Fourier integral operators

We will here review the local theory of these operators in the semiclassical setting. Let
w2 T*R™"—=T*R" be a local diffeomorphism defined near (0,0), and satisfying

#(0,0)=(0,0) and x*w=w. (4.1)
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(Here w is the standard symplectic form on T*R™.) Let us also assume that the following

projection from the graph of s,
T*R"xT*R™ > (x1, &4 2%, €%) — (21, €2) e R" xR, (*,€Y) = 5(a, £0), (4.2)

is a diffeomorphism near the origin. It then follows that there exists a unique function
P €EC®(R"™ xR™) such that for (z!,£Y) near (0,0),

(2!, €°),6%) = (!, ¥ (a1,€%)), det e #£0 and (0,0)=0.

The function % is said to generate the transformation s near (0,0). The existence of such
a function % in a small neighbourhood of (0,0) is equivalent to the following property:
the nxn block (9z'/0z") in the tangent map ds<(0,0) is invertible.

A local semiclassical quantization of s is an operator T=T(h) acting as follows:
Tu(z") a1 // ei(l/’(xl’50)_(x0’50>)/h04(a:1, €% hyu(z?) da del. (4.3)
(27Th)n R2n

Here the amplitude « is of the form

L1
oz, & h) = Z hjaj(x,f)JthaL(l'af; h) forall LEN,
=0

with all the terms «;, &y €S5(1) supported in a fixed neighbourhood of (0,0). Such an
operator T is a local Fourier integral operator associated with s.
We list here several basic properties of T—see, e.g., [41, §3] and [13, Chapter 10]:
e We have T*T=A"(z,hD), AcS(T*R"),

AW, €0), ) = LWL oy (4.4)
ST T det g (wl,€0)] IO '

In particular, T is bounded on L2, uniformly with respect to h.
If T*T=1I microlocally near U >(0,0), then

12 for (2°,€%) near U. (4.5)

|O(0($1, EO)| = |det wg{(xla 50)

e If «(0,0)#£0, then T is microlocally invertible near (0,0): there exists an operator
S of the form (4.3) quantizing !, such that ST=1I and T'S=1I microlocally near (0,0).
e For beS(1),

Tv" (x,hD)=c"(x,hD)T+Or2_12(h), #"c 4 oz =b.



QUANTUM DECAY RATES IN CHAOTIC SCATTERING 169

Figure 4. A schematic illustration of the objects appearing in Lemma 4.1. We labelled the
xJ and & axes by I'; and Fj‘, respectively, in order to represent also the more general case
of (4.15).

Moreover, if «(0,0)#£0, then for any b€S(1) supported in a sufficiently small neighbour-
hood of (0,0),
Tv"(x,hD)=c"(x,hD)T, 3"c=b+0g1)(h). (4.6)

The converse is also true: if s satisfies the projection properties (4.2) and T satisfies
(4.6) for all b€ S(1) with support near (0,0), then T is equal to an operator of the form
(4.3) microlocally near (0,0). The relation (4.6) is a version of Egorov’s theorem and we
will frequently use it below.

e For beS(1) we have b*(z, hD)T=T+O;2_,2(h>), where T is of the form (4.3)
with the same phase 1 (x!, ), but with a different symbol 3(x!,£% h)eS(1). Its prin-
cipal symbol reads (y(z, %) =b(z!, ¥, (21, £°)) (2!, £Y), and the full symbol 3 is sup-
ported in supp a.

The proofs of these statements are similar to the proof of the next lemma, which is
an application of the stationary phase method and a very special case of the composition

formula for Fourier integral operators.

LEMMA 4.1. We consider a Lagrangian Ao={(z, pi(x)):x€Qo}, o€ Cy®(Qo), con-
tained in a small neighbourhood V CT*R™, such that » is generated by v near V. We

assume that

x(Do) =M ={(z,¢1(2)) ;27 €M}, @1 EC (). (4.7)

Then, for any symbol a€C® (), the application of T to the Lagrangian state

a(m)eivo(w)/h
associated with Ag satisfies
T(ae™°/")(z) = eier@)/h ( Z b (2)h? +hlrp(x, h)) , (4.8)

=0
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where the coefficients b; are described as follows. Consider the map
Q33— g(2) E mose (2, 4] (x)) € Qo (4.9)

where m: T*R"—R" is the standard projection along the fibers. Any point x'€Q, is
mapped by g to the unique point x° satisfying

(2, gp(a%)) = (at, g1 (21)).
The principal symbol by is then given by

O[O(xl, 60)

bo(z') = ePo/P
(=) (ot 07 (a1, E0)[1/2

|det dg(z')|Y2acg(xt), BoeR, €0 =pfog(at),
(4.10)

and it vanishes outside )y. Furthermore, we have, for any =N,

05llcecar) < Cellalloer2iq), 0<j<L-1,

(4.11)
[r (s P)lloean) < Cellallcererin gy

The constants Cy; depend only on s, o and supgq, 0% pg| for 0<|B|<20+.

Proof. The stationary points of the phase in the integral defining T'(ae’?°/")(x') are
obtained by solving

50 = @6(‘%0)3

d$07§0(7/}(x1,€o)_<370,§O>+<p0(x0)):O — {szé(x1’£0)'

The assumption (4.7) implies, for x1 €Q!, the existence of a unique solution z°=g(x!),
%=yl og(x!), and the non-degeneracy of the Hessian of the phase. One also checks that,
after inserting the dependence 2°(2'), ¢°(x!) in the critical phase, the derivative of the

latter satisfies

dpr ((2",€%(2")) = (2%(21), €% (1)) + 00 (% (1)) = ¢ (a).

This shows that the critical phase is equal to ¢1(x!), up to an additive constant.
The stationary phase theorem (see for instance [17, Theorem 7.7.6]) now shows that
(4.8) holds with

bo(a") =" " det (I — e (', €%) o0 (2°))| 7 ? g (a, €)a(2), (4.12)
J
bj (1’1) = Z Lj/ (CL’l, nyg)(aj,j/ (LE17 §)a(x))|5:507m:zo. (413)
3'=0
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Each L;(z, D, ¢) is a differential operator of order 2j, with coefficients of the form

Pj’y(xl)
det(I =g, (1, £0) o (20))3”

where Pj, is a polynomial of degree <2j in the derivatives of 1 and g, of order at
most 2542 (the right-hand side of (4.12) can also be written as Lo(aa)). The remainder
rz(z'; h) is bounded by a constant (depending on M and n) times

(> sup|a;%£(w<x1,5>—<x,e>+wo<x>>)QL( > swl(ae! gala)] )

laj<2L &% lal<2L4n ©E
inf |det(1—yg (", €)= ()| **

)

with similar estimates for the derivatives 9‘rz(-,h). The bounds (4.11) follow from the
structure of the operators L;, and the above estimate on the remainder.

It remains to identify the determinant appearing in (4.12) with the more invariant
formulation in (4.10). The differential, ds¢(z°,£°), is the map (6x0,6£0) (521, 5¢Y),
where

620 =1, 0x" + e 0e°,
86 =8 +4y, 0,

and the " are evaluated at (z1,£°). By expressing dz! and §¢! in terms of dz° and §¢°,

7 \—1 (o =101
d%(mo’ 50) = < /(/,(/J(i;é)/ )—1 //5 _(Qf/gr()wg ?Eﬁlwgg > : (4’14)

The upper left block in this matrix is indeed invertible, as explained at the beginning

we get

of the section. From (4.14) we also see that the restriction of dsr to Ag followed by the

projection 7 is given by
500 0t = () (T~ (62°).

1

Hence, noting that g=mosc 1o(r|s,) " =(moseo(m|a,) 1) 7L, we get

det gy, (1, €0)

1y _
At 9 ) = ST (T, €) o 00))

which completes the proof of (4.10). O
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We want to generalize the above considerations by relaxing the structure of s: we
only assume that s is locally a canonical diffeomorphism such that (0,0)=(0,0). With-
out loss of generality, we can find linear Lagrangian subspaces, Fj,Fj‘CT*R", 7=0,1,
with the following properties:

e I is transversal to I'; (that is, T';-NT;={0});(")

o if 7; (resp. ﬂj‘) is the projection T*R"™ —TI'; along Fj- (resp. the projection T*R™—
I‘jL along I';), then, for some neighbourhood U of the origin, the map

#(U)xU 3 (5(0), 0) — m1(5(0)) x 7y (0) €T1 x Ty (4.15)

is a local diffeomorphism from the graph of s|y to a neighbourhood of the origin in
[y xTg. If we write the tangent map ds(p) as a matrix from I‘OEBF(J)- to I'1@T'1, then
the upper left block is invertible.

Let A;, j=0,1, be linear symplectic transformations with the properties
A;(T;)={(z,0)} CT*R™ and Aj(l“j‘) ={(0,8)} cT*R",

and let M; be metaplectic quantizations of the A;’s (see [11, Appendix to Chapter 7] for a

self-contained presentation in the semiclassical spirit). Then the rotated diffeomorphism

7% AyoscoAgt (4.16)

has the properties of the map ¢ in Lemma 4.1. Let T be a quantization of >z as in (4.3).

Then

T M o To M, (4.17)

is a quantization of s.
By transposing Lemma 4.1 to this framework, we may apply 7" to Lagrangian states
supported on a Lagrangian Ag, s(Ag)=A1, such that m;: A;—T; is locally bijective,

j=0,1. The action of s~ ! on A; can now be represented by the function
g:’]ToO%ilO(’/TﬂAl)ilZFl —)F(). (418)
Finally, performing phase-space translations, we may relax the condition

5(0,0) = (0,0).

(1) Here I'* is not the symplectic annihilator of T—see for instance [17, §21.2].
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4.2. The Schrodinger propagator as a Fourier integral operator

Using local coordinates on the manifold X, the above formalism applies to propagators
acting on L?(X).

LEMMA 4.2. Suppose that P(h) satisfies the assumptions of §3.2,
Vo€&p, x€S5(1), xlgg=1 and ViC®(Vp).
For a fized time t>0, let
Uy (t) 2 exp(—itx® (x, hD)P(h)x" (z, hD)/h), (4.19)

be a modified unitary propagator of P, acting on L?(X).
Take some 00€VoNER and set 01=®"(go)€Vi. Let fj:m(V;)—=R™, j=0,1, be lo-
cal coordinates such that fo(m(go))=f1(m(01))=0€R™. They induce on Vy and V; the

symplectic coordinates
Fi(,6) = (f;(2), (df;(2)") g —€9),  j=0,1, (4.20)
where £9)€R™ is fized by the condition F;(0;)=(0,0). Then the operator on L?(R™),
TH(t) e @€ FE U, (1) (fo) et (4.21)

is of the form (4.17) for some choices of the A;’s, microlocally near (0,0).

Although complicated to write, the lemma simply states that the propagator is a

Fourier integral operator in the sense of this section.

Sketch of the proof of Lemma 4.2. The first step is to prove that for a€S(1) with

support in =1 we have
Uy(t)"'a® (z, hD)Uy(t) = a}’ (z,hD), a;=(®")*a+Osq)(h). (4.22)

This can be seen from differentiation with respect to t:

1 1
o =+ [P0} =

. [Py ]+0(h™), af =a".

Since (i/h)[P,ay’]=(Hpa)”+O(h) we conclude that a}’=[(®;)*a|”+Or2r2(h). An
iteration of this argument shows (4.22) (see [13, Chapter 9] and the proof of Lemma 6.2
below). The converse to Egorov’s theorem (see [41, Lemma 3.4] or [13, Theorem 10.7])
implies that (4.19) is a quantization of ®¢, microlocally near gg x 01.
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On the classical level, the symplectic coordinates Fy and Fj of (4.20) are such that

the symplectic map

P Fio®'oFy ! satisfies  3(0,0) = (0,0).
Hence the operator T%(t) is a quantization of s, and can be put in the form (4.17) for
some choice of symplectic rotations A;, microlocally near (0,0). A possible choice of

these rotations is given in Lemma 4.4 below. O

We will now describe a particular choice of coordinate chart in the neighbourhood
U, of an arbitrary point o€ K. Using the notation of the previous lemma, U, may be
identified through a symplectic map F, with a neighbourhood of (0,0)eT*R"™. This way,
Lagrangian (resp. isotropic) subspaces in T,(T*X) are identified with Lagrangian (resp.
isotropic) subspaces in Top(T*R™).

We now recall that the weak stable and unstable subspaces E;° defined by (3.13) are
Lagrangian. The proof of this well-known fact is simple: for any two vectors v, wEEg,
we have

w(v,w) = (®")*w(v,w) =w(®Lv, @ w) for all tER.

By assumption, the vectors on the right-hand side converge to zero when t— —o0, which
proves that the strong unstable subspaces are isotropic. The same method shows that
w(v, Hp)=0, so the weak unstable subspaces are Lagrangian. The same results apply to
the stable subspaces. Besides, the isotropic subspace F, is transversal to the Lagrangian

E;O7 so the tangent space to the energy layer £ at p is decomposed into T,Ex :EJOEBE;.

LEMMA 4.3. Take any point o€ Kg. As above, we may identify a neighbourhood
U,CT*X of o with a neighbourhood of (0,0)€T*R™. The tangent space To(T*X) is
then identified with To(T*R™)=T*R".

The space T*R™ can be equipped with a symplectic basis (€1, ...,en; f1, ... frn) such
that ey=H,(0), E;=span{es, ...,e,} and E,=span{fs,..., fo}. We also require that
Qo(e1A...Nep)=1, where Q is the volume form on E;O induced by the adapted metric

Jad (see (Vi) in (3.12)). The two Lagrangian subspaces

def 1240 Lodef e
I'=E;” and T—'=E,0Rf;

are transversal. Let us call (§1,...,n,T1,..-,Tn) the linear symplectic coordinates on
T*R™ dual to the basis (€1, ...,€n; 1y fr)-
There exists a symplectic coordinate chart (y,n) near 0=(0,0) such that

0 0
=p—F, —(0,00=¢e; and —(0,0)=/f;, j=1,....n. 4.23
m 5, (00) = ¢ and 5(0,0)= (4.23)
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Such a chart will be called adapted to the dynamics. The point (y,n) is mapped to (g,1)
through a local symplectic diffeomorphism fixing the origin, and tangent to the identity

at the origin.

Proof. Once we select the Lagrangian F:E;’O, with the isotropic £/, plane transver-
sal to I, it is always possible to complete £, into a Lagrangian I'" transversal to I, by
adjoining a certain subspace Rv to E,. Since I'@T+ spans the full space T*R™, the
vector v must be transversal to the energy hyperplane T,&E.

Since we took e;=H,(0), we can equip E; with a basis {e, ..., e,} satisfying
Qg(el /\62/\.../\6n) =1.

There is a unique choice of vectors {fi, ..., f,} such that these vectors generate I't and
satisfy w(f;,ex)=0;, for all j, k=1,...,n. The property w(f;,e1)=0 for j>1 implies
that f; is in the energy hyperplane, while w(f1,e1)=dp(f1)=1 shows that p((g,7))=
E+i +0(7?) when 7j; —0.

From Darboux’s theorem, there exists a (non-linear) symplectic chart (y°,7n") near
the origin such that 77? =p—FE. There also exists a linear symplectic transformation A
such that the coordinates (y,n)=A(y’,n’) satisfy n;=n} as well as the properties (4.23)
on To(T*R™). The last statement concerning the mapping (g, 77)— (y,n) comes from the
fact that the vectors 9/07; and 0/0n; satisfy (4.23) as well. O

LEMMA 4.4. Suppose that P satisfies the assumptions of §3.2 and the hyperbolicity
assumption (3.11). Fizing t>0 and using the notation of Lemmas 4.2 and 4.3, we
consider the symplectic frames To®T's and T'1@®T'L, constructed near gy and 01=%*(0o),
respectively.

Then, the graph of ®' near o1 x gy projects surjectively to I'y xI's (see (4.15)). This
implies that the operator (4.21) can be written in the form (4.17), where the metaplectic
operators M; quantize the coordinate changes Fj(z,&)—(g7,77), while T(t) quantizes ®'
written in the coordinates (7°,7°)— (71, 7').

The symplectic coordinate changes (37,77 )+ (y7,17) can be quantized by Fourier
integral operators Ty and Ty of the form (4.3) and microlocally unitary. If we set U, def
TjoM;, j=0,1, the operator (4.21) can then be written as

TH(t) =U; T (t) Uy (4.24)

microlocally near (0,0), where T'(t) is a Fourier integral operator of the form (4.3) which

quantizes the map ®°, when written in the adapted coordinates (y°,n°)—(y',n').
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Proof. We may express the map ®¢ from V; to V; using the coordinate charts (y°,n°)
on Vp and (y',n') on V;. The tangent map d®*(go) is then given by a matrix of the form

1 0 = 0
0 A = 0

dd* () = 00 1 0 (4.25)
0 0 * A°!

Since the full matrix is symplectic, the block

10
(o 2)
is necessarily invertible: this implies that the graph of ®! projects surjectively to 'y x T'g-
in some neighbourhood of g1 X gg. Equivalently, if we represent ®* near g1 X g9 as a map
# in the “linear” coordinates (§°,7°) and (7!, 7'), the graph of 3 projects surjectively to
(7', 1), so that the operator T'(t)=M;oT*(t)o My ' quantizing 5 can be put in the form
(4.3) near the origin.

For each j=0, 1, the tangency of the charts (77,77) and (y?,n?) at the origin shows
that the graph of the the coordinate change (§7,77 ) (y7,17) projects well on (y7,77),
so this change can be quantized by an operator T} of the form (4.3), microlocally unitary
near the origin. The operator T(t)=TyoM;oT#(t)o Mg oT; quantizes ®*, when written
in the coordinates (y°,n°)~ (y',n'), and can also be written in the form (4.3) near the

origin. O

4.3. Iteration of the propagators

Later we will compose operators of type U(to)Il,, where II, is a microlocal cutoff to a
small neighbourhood WaCE%. In view of Lemma 4.2, the estimates on these composi-
tions can be reduced to estimates on compositions of operators of type (4.3). The next
proposition is similar to the results of [2, §3].

We take a sequence of symplectic maps {; } 3]:1 defined in some open neighbourhood
V CT*R" of the origin, which satisfy (4.2). Now the 3;’s do not necessarily leave the
origin invariant, but we assume that s;(0,0)CV for all j. We then consider operators
{Tj}j:1 which quantize s¢; in the sense of (4.3) and are microlocally unitary near an
open set UEV containing (0,0). Let QCR™ be an open set such that U&T*Q and
»;(U)eT*Q for all j.

For each j we take a smooth cutoff function y;€C(U; [0, 1]), and let

def 4
i = Xj (x, hD)°Tj. (4.26)
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We now consider a family of Lagrangian manifolds

A ={(z,¢)(x)):x€Q}CT*R", k=0,...,N,
sufficiently close to the “position plane” {{=0}:

lokl <&, |0%0k| <Coy, k=0,...,N, aeN" (4.27)

Furthermore, we assume that these manifolds are locally mapped to one another by the
x;’s: there exists a sequence of integers jp€[1, J], k=1, ..., N, such that

J{jk+1(AkﬁU)CAk+17 k=0,...,N—1. (4.28)

We want to propagate an initial Lagrangian state a(z)e’?°(®)/h qcC>(Q), through the
sequence of operators Sj,, k=1, ..., V.
At each step, the action of zjfkl |a, can be projected on the position plane, to give a

map g defined on mae;, (U)CQ:

gi(x) =mose; (x4 ()). (4.29)

For each z=xV €, we define iteratively 2*~!=g(2*), k=N, ...,1: this procedure is
possible as long as each z* lies in the domain of definition of gj. Let us state our crucial
dynamical assumptions: we assume that for all such sequences (z%, ..., 2%), the Jacobian

matrices, Ox* /0z!, are uniformly bounded from above:

ozl (ml)

o
ozx!

[t

‘gcm 0<k<I<N, (4.30)

where Cp is independent of N. This assumption roughly means that the maps g are
(weakly) contracting.

We will also use the notation

k
Dy, sup [det dgi ()72, 7. ] D, (4.31)
e B—1
and assume that the Dy’s are uniformly bounded: 1/Cp<Dp<Cp.

We can now state the main propagation estimate of this section which describes an
N-iteration of Lemma 4.1.
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ProPOSITION 4.1. We use the above definitions and assumptions, and take N ar-
bitrarily large, possibly varying with h.

Take any a€C(Q) and consider the Lagrangian state u=ae'?°/" associated with
the Lagrangian Ag.

Then we may write
(Sjy oe085, ) (ae™ /M) (z) = eton (@)/h ( Z hal (z)+h" R} (x, h)) (4.32)

where each aj—VEC’é’O(Q) is independent of h, while RY € C>((0,1];,S(R™)).
If 2N €Q defines a sequence (see (4.29)) zF~1=gp(2*), k=N, ..., 1, then

jag (2™)| = (H X (2%, @ () | det dgk(xk)ll/z) la(a)], (4.33)

otherwise aj.V(xN):o, j=0,...,L—1. Also, we have the bounds
||a§V||CZ(Q)<ijgJN(NH)”SJ‘||a||cg+2j(m, j=0,..,L—1, LeN, (4.34)

IRY | L2@ny < Cllallgze+n ) (14+Coh) ZJ g3 (4.35)

The constants Cj ¢, Co and Cr, depend on the constants in (4.27) and on the operators
{Sj }}']:1
A crucial point in the above proposition is the explicit dependence on N.

Proof. The proof of the proposition proceeds by iterating the results of Lemma 4.1,
keeping track of the bounds on the symbols and remainders.

For each j, the operator S;=x"T} can also be written in the form (4.3), up to an error
Opr2_12(h™), with the symbol o (x1, £%; h) replaced by 37 (x!, £%; h) of compact support,
and principal symbol 56 (z1,E%)=x; (2, Vi (x!, {0))a6(x1, €%). From the unitarity of 7},
), satisfies (4.5) near U; as a result, when applying S, to a Lagrangian state as in
Lemma 4.1, the first ratio in (4.10) should be replaced by x;(z!,&1).

To abbreviate the formulas, we set
def iy (x),, ’ 1/2 _
fk(l') =€ X.]k(x7¢k($))|detdgk(x)| . k=1,..,N,
where using unitarity (4.5),

o (@) — iBr/h O‘o " (2,041 (9k(2)))
|det¢jkx§( 7(Pk_1(gk($)))‘1/2
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Here () is a constant phase, as in (4.10). We will also use the short notation

def .
a‘;‘\,[@ = ||a§V||C@(Q)’ ]:05"'7L_17 LeN.

We first analyze the principal symbol a’ (z). The formula (4.10) and the definition of f},
give

ap (zV) = fa(a™)ad "M@V, (4.36)

which by iteration yields (4.33). From || fi||co<Dj the recursive relation (4.36) also
implies the bound af)y<Jn|lal/co.

To estimate higher C* norms we differentiate (4.36) with respect to z:
oaly
oxN

OxN=1 day 1
OzN  QaN—-1

6fN N—-1

OrN 0 N_l)

= fn (™) + (x

(to simplify the notation we omit the subscripts corresponding to the coordinates in

N=(zN,...,zY)). Since we already control aé\fo_l, and the norms ||fy|/c: are bounded

sy

T

uniformly in IV, the above expression can be schematically written as

8aév OxN -1 8aév_1
oxN In OxN QxN-1

+O0(In-1lafco),

with an implied constant independent of N. Applying this equality iteratively to daf /0z*

down to k=0, we obtain

oaly 92° daf
oz N =fnfn-a flaxiN@
OxN -1 OxN 2 ozt
+O<JN1+fNaxNJN2+foN16INJN3+-~-+foN1 ~-~f23zN>||a|CO~

Notice that a)=a. Using the uniform bounds for the Jacobian matrices dx*/9z™ and

for the Dy, this expression leads to

N
J
ags <CJnlaler+Claleo 3 T < ConIn(N+1)aller
k=1

The same procedure can be applied to higher derivatives of a))': since || fn||c¢ is uniformly
bounded, the chain rule shows that the ¢th derivatives of (4.36) can be written

9taN oxN-1 laeaN—1(wN—1 -
g ) )+O(aé\{2711)-

(0N ) = fn(z) ( 0N (zN-1)!
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Assume that we have proven the bounds (4.34) for the a’é,eqa k=0,..., N. Tterating the
above equality from k=N —1 down to k=0 yields the following estimate for 9*a’ /(0x™)*:

£a N 7 0 2 N-1 L
9 ay =fnfn-1. f1<8 >(a ! +(’)<JN (N iy <8>JN_2(N—1)“

(OxN)E Az ) (9x9)f OxN
oxN-2Y _ ozt Y
+foN_1(8xN> In—3(N=2)" 1+-~-+foN—1~-~f2<axN>>||Cl|clf—1-

(4.37)

Using the uniform bounds (4.30) for dz*/0z™ and Dy, we get
N o~ N o ¢
ol < Cellllor+Cllallr-s 30 Tk < Coel(V+1 lalcr

We can now deal with higher-order coefficients aév by double induction on j and N.
Above we have proved the bounds for j=0 and all N. Assume now that, for some j>1,
we have proved the bounds (4.34) for af,’yg for all j'<j, £>0 and all N>1. By induction
on N we will prove the bounds for that j and all V.

Applying Lemma 4.1 term by term to

L-1
_1 def CON— _
N-1 1 Zh]a‘é\f 1+hLRg 17
Jj=0
we see that each component aév depends on the components a?,[ ~1,0<4'<j, and not on

Rgfl. More precisely, from (4.13) we get

J
ay (zN) =" LY (B a5 (@)
=0 (4.38)
Y Y T el
3'=11vI<25’
As explained in the proof of Lemma 4.1, the functions I‘j-\,’,y () can be expressed in terms
of the map »;, and the functions ¢ ny_1 and 47~. From the assumptions on the latter, the
norms HF |lce are bounded uniformly with respect to N, so (4.38) implies the following

upper bound.

ay < Dyaly ' +C Z al o (4.39)
<Dyado ' +CJn Z N2 +36G-3a|| 250 (4.40)
Jj'=1

<DNa —|—CJJN 1N3] 1||a||C2J (441)
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This inequality can be used in an induction with respect to N, starting from the trivial
a%,=0. Assuming that o} ' <CjoJv—1N% ||a]c2; for some Cjo>0, we obtain
N 35 ¢y 35-1
aj0<0j70JN NI+ —"— N ||a||Czj. (442)
’ CjoDn
The constant Cj can be chosen large enough, so that the brackets are smaller than
N374+3jN3~1<(N+1)%, which proves the induction step for a},.

Once we have proved the bounds for the sup-norms of the symbols a?, we can

] )
estlmate their derivatives by induction on ¢, as we did above for the principal symbol

. Assume that we have proved the bounds (4.34) for all al¥;, N>1, 0<I</—1. If we

3
dlfferentlate (4.38) /¢ times with respect to v, we get

oaly dxN-1Y 9al !
(8x ) fN( ) (6:01\?*1) ( @0 1—}—2(1] —j 0+25" )

where the implied constant depends on the bounds on ||F llce. Taking into account
this takes the form

what we already know on a®, ! -1 and o

Jj— ]’ L4257
d%aly 9rN-1\¢ 9lalN -1 -
W: N( dzN )(8x1\?_1)e+0(JN1N€+3] Hlallgeras).-

Applying iteratively this equality to 8Za§/(8xk)z down to k=1 (as in (4.37)) and using
that af(z)=0, j>0, we find

1 otalN , 9rN-1\¢ 4
eI = O Iy NI [ S ) Ty (N —1)
lallceres (02F)° dxN
a2\ .
+INfN-1 (ng> INn—s(N—2) 371 (4.43)

+otfNfvor f1 ( O ))

From the uniform bound (4.30) and || fx||co < Dy, this gives

N qe435-1

N k

al, <CJN Y
k=1

< Cj7gJNNE+3j for a certain Cq ¢ > 0.

This proves the induction step {—1—/¢, so that we now have proved the bounds for aé\fé
for all N>1 and ¢£>0. This achieves to show the induction step on j, and (4.34).
To estimate the remainder R} (z,h) we define ry, , (z, h) by

S (€95 M (af +haf +..+RE " a] )

= ew’*‘/h(algﬂ+ha’f+1+...—|—hL_1ak+l +hEr k+1(-,h)).
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Due to the cutoff function x¥', the remainder will be

© (<h+d( g thupp Xi) >OO>

outside 7supp x;, so it is essentially supported inside Q. On the other hand, from

Lemma 4.1 and the estimates (4.34), we get

L-1 L—1
P51 h) e gny < Clye Z a5 || gesnizw—n < Cre Z T (k1) 2L 6| cenar
=0 =0

< CL,ZJk (k+1)3L+l+n ||(1H014+n+2L .

In particular,
P b L2 ny < Cdi(k+1)*2 1 al g2z (4.44)

The remainder R (z,h) can now be written as

N-1
RY =rf4e 8N (S 008, ) (rf e,

Jk+1
k=1
Since we assumed that the T}’s are microlocally unitary on the support of the x;’s, and

that 0<x; <1, we have, from the sharp Garding inequality,
||Sj||L2(R")—>L2(R") <1+Chh.

The above formula for RY and (4.44) give the estimate (4.35). O

Remark 4.1. We can also obtain slightly weaker pointwise estimates on RJLV in place

of the L? estimates of (4.32). In fact, since the X;’s are compactly supported, we have
W2 RY | oe@ny < Cel| RY Nl g < CUll R M2 (amy,

and hence

N
IRY (-, 1) | cerny < Creh ™~ lal| cozin (14+Coh)N >~ JikBHHm,
k=1

5. Classical dynamics

In this section we analyze the evolution of a family of Lagrangian leaves through the
classical flow. We will check that these Lagrangians (which remain in the vicinity of
the trapped set) stay “under control” uniformly with respect to time. Eventually, this
uniform control, which implies that the conditions (4.27) hold, will allow us to apply
Proposition 5.1 in §7.
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5.1. Evolution of Lagrangian leaves
5.1.1. Poincaré sections and Poincaré maps

We describe the construction of Poincaré sections and maps associated with the flow ®?
on &g in the vicinity of Kg. This construction will be used in the next section.

Take go€ K. We use an adapted coordinate chart (y°,7") centered at go=(0,0) to
parametrize the neighbourhood of gy in T* X, with properties as described in Lemma 4.3.
To keep in mind that

0
E! =span{ —(0):j=2,...,n ¢,
e = 5P {3% (0):1 }
(and similarly for E, ), we keep the “time” and “energy” coordinates y{ and 7?, but
rename the transversal coordinates as

0 def

uj =

0 odef ¢ .
Yjpr and s; =m0, j=1,.,n—1

For any small e>0 and using the Euclidean disk D.={u€R" !:|u|<e}, we define a
neighbourhood of gy as the polydisk

Uo(e)={(",n") : |0 <&, |n?| < 6,u’ € D. and s° € D_}. (5.1)

Here §>0 corresponds to an energy interval where the dynamics remains uniformly hy-
perbolic, as mentioned in (3.14). The intersection Uy(e)NEE is obtained by imposing the
condition 7{=0, and a Poincaré section Xg=(¢) transversal to the flow is obtained by
imposing both 79=0 and y{=0. The chart (u°,s") on ¥y is symplectic with respect to
the induced symplectic structure on .

Let us assume that the point ®!(pg) belongs to a polydisk U (¢) constructed similarly
around a certain point o1 € K, using an adapted chart (y',n'). As a result, the Poincaré
section X1 ={(y',n"):y1 =n{ =0} will intersect the trajectory (®*(go))js—1|<c at a single
point, which we call gf. The Poincaré map s is defined, for p€X(e) near gg, by taking
the intersection of the trajectory (®'(0))j;—1j<. with the section ¥; (this intersection
consists of at most one point). This map is automatically symplectic. In general, the
strong (un)stable spaces Egi6 are not exactly tangent to X;, but close to it: they form

“angles” O(g) with the intersections,

=+ def 10

EL S EONT, .
Furthermore, since the (un)stable subspaces E; are Holder continuous with respect
to o€ Kp, with some Holder exponent v>0, and d(gj, 01)<e, the subspaces Eé) form
“angles” O(g7) with E;, . The tangent map ds(go) maps E,, to E;’. Hence, using the
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coordinate frames {(u°,s°)} on Xg (centered at gp) and {(ul,s')} on ¥ (centered at

01), the symplectic matrix representing ds(0p) can be written in the form

wxo=(1 ) (D), (5.2

where the second matrix on the right has uniformly bounded entries. From the assump-

tions (3.11) on hyperbolicity, for & small enough there exists
v=e 40 <1 (5.3)
such that the matrix A satisfies
A7 <y and A7V <, (5.4)

where [|A7!| is computed using the norms on T,, %o and 7,,%; induced by the adapted

metric ga.q (see §3.3). By extension, in the neighbourhood V C¥, where it is defined, s

takes the following form in the coordinates (u?, s®)r (u!, st):

s(u®, %) = (ut, s1) (0h) + (Au’ +a(u®, s), A7 s+ 8(u°, s°)),  (u°,s%) €V, (5.5)
and the smooth functions « and 3 satisfy

a(0,0):ﬁ(0,0):O, ||Ol||cl(v)<06’y and Hﬂ”cl(v) <C€’Y. (56)

5.1.2. Evolving Lagrangian leaves

Given £>0, one can choose a finite set of points {0; € Kg};er, adapted charts (y7,n7)
centered on p;, such that the polydisks

Ui(e)={(y’,n"): Iyl <&, Ini| <6,w’ € D. and &’ € D.}
form an open cover of the trapped set K¢ in the energy layer £3:

Ky clJUse). (5.7)
jel

For some index jo€I, let A=A CU,,()NEE be a connected isoenergetic Lagrangian

leaf.(?) For any t>0 we call Al=®!(A).

(%) Here and below, a leaf is a contractible submanifold with piecewise smooth boundary.
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We consider a point gg€ A, and assume that there exists an integer N >0 such that,
for each integer time 0<k<N, the point g, =®"(0p) belongs to the set Uj, () for some

jr€I. We then call AF _the connected part of (U‘s|<6 <I>5Ak) NUj, (€) containing gy.
k

We may use the symplectic coordinate chart (y7*,n7*) to represent Af .-

k

loc

Being con-
tained in a single energy shell £, the Lagrangian leaf Ay is foliated by flow trajectories

(bicharacteristics). It can be put into the form

A= (s, (5.8)

|s|<e

where S¥=AF MY, is an (n—1)-dimensional Lagrangian leaf in the symplectic section

%5 (8) = Uy, ()N { (57, ™) i = mf* =0}

(see Figure 5 for a representation of the above objects).

We will be interested in Lagrangian leaves which are “transversal enough” to the
stable subspace £, , and can therefore be represented by graphs of smooth functions in
the adapted charts:

Afe = {7 %) e = FF(y*) ). (5.9)

The intersection S* :Aﬁ)c

N3;, is then also given by a graph:
Sk = {(u*, %) : 57 = fF(uI*) and w* € D, },
and (5.8) implies that F*(y/*)=(0, f*(u’*)), so that (5.9) takes the form
Aloe ={ (", w0, f* (™)) : [y]*| < e and w* € D} (5.10)

Convention. In the rest of this section the norm |- || applying to an object living
on ¥;, =D, x D, corresponds to the Euclidean norm on T, Y, relative to the adapted
metric gaq(g;,). The same convention applies to the norm | -| of a linear operator

sending an object on ¥;, to an object on Xj, , (or vice versa).

The following result (similar to the inclination lemma of [19, Proposition 6.2.23])

shows that, if € has been chosen small enough and A is “transversal enough” to the

k

stable manifolds (that is, in some “unstable cone”), then the local Lagrangian leaves Af}

remain in the same unstable cone, uniformly with respect to k=0, ..., N.
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PROPOSITION 5.1. Fix some y1>0. Then there exists €,, >0 such that, provided
the diameter e€(0,¢,,), the following holds:
Suppose the Lagrangian A=A, CEpNU;,(g) is the graph of a smooth function f°

in the adapted frame (y7°,170), and is contained in the unstable ~y;-cone:

AL —{(y{‘),ujo;(),fo(ujo)) : \y{°| <eand u° € D.}, with sup Idf° (u?)|| < 1.

loc =
uJ0

i) Then, for any 0<k<N, the connected component AF _CU. (&) containing oy is
Jk g

loc

also a graph in the frame (y’*,nm’*), and is also contained in the unstable ~y,-cone:

Moo = {3 w0, f* () |yf*| <& and v € Dc}, with  sup ||df* ()] <.
wik €D,
(i) For any integer £>2, there exists vy>0 such that, if f° is in the unstable 7y -
cone and satisfies || f°||ce <7, then

¥ ey <ve  for all k=0,...,N. (5.11)

(iii) From the above properties, near oo the map ®N|x can be projected on the planes
{(y7o, )0 =0} and {(y/~, 1/~ )/~ =0}, inducing a map y**r—>y’~.

In the case where the sets Uj, () contain a trajectory in K (so these sets may be
centered on 0;, =®*(pj,)), the projected map yi°—y'~ satisfies the following estimate

on its domain of definition:

Oy _ M (eio)
det(&y]()) = (1+O(5))€ NAZJ0/,
Here A}, is the unstable Jacobian given in (3.17). The crucial point is that the implied

constant is independent of N.

Proof. We follow the proof of the stable/unstable manifold theorem for hyperbolic
flows [19, Theorems 6.2.8 and 17.4.3].

For each k=0,..., N, the Poincaré section >;, does generally not contain g, but
it contains a unique iterate g, =®°p; for some s€(—e,e). The Poincaré map s from
Vi CEj, () to Xy, ,, (e) will satisfy sex(0},)=0}41-

Since d(j,, 0},)<e and d(oj,,, 0}41) <€, there exists C>1 such that the extended
(Ce) sends gj, to a point ¢} €3, ., (Ce). We are

Poincaré map from 3, (¢) to ; o1

Jk+1
thus in the situation of §5.1.1, with o, gy and 1 being replaced by gj,, ¢}, and g, ,,,
respectively (see Figure 5). In the charts (u/*, s ) (u/*+1, s75+1), the map s, takes the

form

Zk(ujk7sjk) — (ujkﬂ’Sjk+1)(g;k)_~_(Akujk +ak(ujk,8jk),tAl;18jk +ﬂ~k(ujk’8jk))7 (5.12)
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Figure 5. Illustration of the objects appearing in the proof of Proposition 5.1. The local

Lagrangians A{“oc and Aﬁ)’tl appear in light grey (light blue in the online version), and are

foliated by bicharacteristics. The axes around gj, and gj, 41 Tepresent the stable and unstable
subspaces Eg on those points. The axes around ¢} =s¢x(gj, ) are the projected subspaces E?.

where || A1, [|*/A; || <v and the smooth functions & and §y satisfy (5.6). It is conve-
nient to shift the origin of the coordinates (u/*, s*) (resp. (u’s+1, s7++1)) such as to center
them at o), (resp. at g}, ;). We call the shifted coordinates (u”, s*) (resp. (uF*1, s**1)).

In these shifted coordinates, we get
sar,(uF) s%) = (Apuf + g (Wb, s%), TA P+ B (Wb, s7)), (WP, s7) €V (5.13)

The shifted functions ay and i still satisfy (5.6), where V'=V} corresponds to the
neighbourhood of g} where 3, is defined.

After fixing the coordinate charts, we can study the behaviour of the intersections
Sk:A{COCﬂEk when k grows. We are exactly in the framework of [19, Theorem 6.2.8],
and we will use the same method to control the S*.

We first show that, if € is chosen small enough, the unstable y;-cone in S* is sent

by s, inside the ~;-cone in Sk+1. Let us assume that

SE={(u", fF(uM)}, sup [ldff] <

ukeD,

The projection of s|gr on the horizontal subspace reads
uP s uF T = g (WP R () = Agu® Fag (Wb, FE(6b)), (5.14)

so by differentiation we get that it is uniformly expanding from some neighbourhood
D.cCD. to D.:

Oukt1 _4 +8ak oy, OfF
uk

k uk @W:Ak—i—(’)(s'y(l—i—yl)). (5.15)
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The property HA,:1 ||<v<1 shows that, for €7 (1++7) small enough, this map is uniformly

expanding. Hence, this map is invertible, and its inverse,

uk+1 H'U,k Cléfgk+1(uk+1), (516)
is uniformly contracting:
- ouP
|d9k+1(uk+l):Hauk+1 <wu, «*teD, (5.17)

with 11 =v4C,(e7(1471))<1. As a result, since gi4+1(0)=0, we have
[u* ]| = g1 (@D S al[u™*l, w*t e D..
We also see that the intersection S¥T1=z,(S*) can be represented as the graph
SRHT = [(uhH1, fEHL (1)) € DY
in the coordinates centered at ), 41, with the explicit expression
FrHL (k1) :tAglfk(uk)+ﬁk(uk’fk(uk)% W eD., uF = ge (WP, (5.18)

Differentiating this expression with respect to «**! leads to

6fk+1
6uk+1

’U/k k
:( : )[(tAlirasﬁk(“kaf’“(uk)))gf:k(u’“)+8uﬁ’“(u’f,f’“(u’f)) ,

Oukt1
Since for € small enough we have uniformly
P47 40,85 (¥, FF )| <vmy v =v+Cpe <1,

the above Jacobian is bounded from above by

afk+1
|9

< 148 (1/2’}/1 +CE’Y).

If £>0 is small enough, the above right-hand side is smaller than v5y;. We have thus
proved that the ~y;-unstable cones in ¥ are invariant through s, which proves the
statement (i) of the proposition.

Let us now study the higher derivatives of the functions f*, obtained by further
differentiating (5.18). We use the norms

[fllceqvy= max sup [[0%f(u)],
aEN"—1 ey

lof <2
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and will proceed by induction on the degree ¢ of differentiation. Let us assume that for
some ¢>2, there exists v,_; such that all functions f*, 0<k<N, satisfy || f*||ce-1 <ye_1.
Above we have proved this property for /=2. By differentiating (5.18) ¢ times, we get

aéfk—i—l auk U B aéfk B
(3uk+1)[ = (8uk+1) (tAk 1+asﬁk)W+P€,k(afk, --.,aé lfk),

which implies that

6éfk
(OuF)*

0
V2

a@ k+1 B
H / P (OFF, o 815

(OuF+1)?

Here Py, is a polynomial of degree ¢, with coeflicients uniformly bounded with respect to
k, and u*€D.. Using the assumption || f*||ce-1<7s_1, there exists Cyp_1(v,—1)>0 such
that the following inequality holds:

3ka
(Ouk)t

<vivg +Co—1(ve-1)-

8ka+1
|y

If we now choose v,>0 such that

Co—1(ve-1)
W>m{Z,W_l,nfonce ,
vo(1—14)

we check that the condition || f*||c¢ <, implies that ||0° f**1||co <va7ye. Hence, all func-
tions f*, 0<k<N, satisfy || f*| ce <~ve, which proves statement (ii).

The important point in (iii) is the uniformity of the estimate with respect to N.
To prove such a uniform estimate, one needs to analyze the trajectory {g;}kNZO with
respect to the “reference trajectory” {oj, }2_.(%) It is useful to replace the coordinates
(u?* ;%) on X% by coordinates (@*,5%) with the following properties. We define the

local (un)stable manifolds on the Poincaré sections:

WS W ()N

The new coordinates (@, 5%) satisfy
Wi ={(@"0):a*eD.}, W, ={(0,5):5"cD.}

and

(@*,5%) = (u*, )+ O(||(u?*, s7%)||*)  near the origin,

(3) As suggested in the statement of the proposition, we now assume that Iz :@k(gju) for all
k=0,..., N.
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and they need not be symplectic. In these coordinates, the Poincaré map s¢,: X7 — S7k+1

has a more precise form than in (5.13): we can still write it as
e (@F, 5%) = (Ap® + o (¥, 5%), 1A 155 4 B (R, 34)),
but the smooth functions oy and [ satisfy more constraints than before:
(0, 5%) = Br(@*,0)=0 and day(0,0)=dB,(0,0)=0.

This shows that, near the origin, ay (@, 5%)=0(||a*||+||5*|))||@"|| and similarly for SB.
Using these coordinates, we can show that most of the points along the trajectory {o} }_,
are very close to the reference points {p;, }2_,. If we let (@*, 5%) be the coordinates of

0,,€S*, we have

Y = A oy (0¥, 5%) = A+ O (]| a”)),

FHH = A ER 4 By (iF, 3%) = 1A 5+ O(e |30

Taking into account the fact that ||aV||<Ce and ||5°||<Ce¢, for ¢ small enough, there
exists v3=v+0O(e)<1 such that

|@*|| < Cev¥—F and ||5%|| <Cevk, k=0,...,N.

These estimates prove that, if N is large, the points g}, for k>1, N—k>1 are close

~k+1

to 0j,. The tangent of the map AI=T induced by projecting s|gx on the planes

{(@, §):5=0} is given as in (5.15) by

811’““ 60% 80% (9fk
gar T gar T o5 o

= Ap+O([[a* | +15*]).

To obtain the last equality we used the fact that ||df¥|| is uniformly bounded, as shown
above. The tangent of the map obtained by projecting sy _j°...c3¢|s0 on the planes
{(, §):5=0} then reads

oulv N-1 N-1
90— = [ (w+odia|+15*1)) = T[T (Ax+0(e(i’*+14)))
k=0 k=0

N-—1
( H Ak) kHO (T+0(c(N*+1k)).

The determinant of the last factor is of order 1+O(e), so we deduce

det(g:) (14+0(e) det(HAk> (5.19)
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We then recall that the change of variables (¥, $%)— (uf*, s7%) is close to the identity

o(uk, gk
(stumsom ) =100
As a result, estimate (5.19) applies as well to the Jacobian of the map sy _j°...03¢]g0,
projected in the planes {(u/°,s70):s70=0} and {(u/¥, s/~ ):s/~¥ =0}, which we denote by
det(Oui™N /Ouio).
We now consider the map y/°+y7¥ induced by projecting ®V|j 0 on the planes
{(y70,nio):pio=0} and {(y’~,n/~):p’~ =0}. From the structure of the adapted coordi-

nates, the tangent to this map has the form

(55) (0 owsjows)
Ay ) \0 QuiN Joure )’

so the estimate (5.19) also applies to det(dy’~ /dy’o).
Finally, we remark that if we take A:Wg*j 2, then the tangent map at po=pj, is given
by

; N-1
OuIN
( Oudo )(0) = H Ap.
k=0
Hence in this case we find

ie e Oy’™ N A (250
det< ;Eo Ak) :det(ang) — det (da ‘E&%) = M (2i0)

For the second equality we have used (3.16) and the fact that, for each k, the adapted
coordinates satisfy Q(9/dyl* A...AD/dyl*)=1 at the origin (see Lemma 4.3). O

Remark 5.1. Due to structural stability, the results of Proposition 5.1 apply to

Lagrangian leaves A€&gs transversal to the stable lamination, for any energy
E' € (E-6,E+9),
with the difference that the evolved local Lagrangians are of the form
Ao = {(yl* s B = B, fH(w?*)) : [yl <e,Ju?*[ <e},  with df*(w?*) <y1. (5.20)
The Poincaré sections used in the proof are taken as U;()N{(y’,n’) ) =0,1]=FE'—E}.
All constants can be taken to be independent of E'€(E—d, E+0).

Remark 5.2. Each f*:(D.),—R?~! representing the Lagrangian A _ of (5.20) can

loc
be written as f*(u)=¢} (u) for some function ¢: (D.),—R. Therefore, the function

def
Spk)(ylau) = ¢k(u)+(E/_E)y17 ’U,GDE, |y1| <€a

k

generates AY in the symplectic coordinates (y’*,n*).
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5.2. An alternative definition of the topological pressure

To connect the resonance spectrum with the topological pressure (3.19) of the flow, we
use an alternative definition of the pressure [35, §0.21I], which will provide us with a
convenient open cover of K2,.

Taking 6>0 small enough to satisfy (3.14), consider a finite cover V={V,}cp of
K 5E, made of sets of small diameters contained in the energy layer Eg and relatively open

in that layer. For any integer T>0, the refined cover V() is made of the sets
v, ﬂ & *(V,,), B=bobs...by_1 € BT (5.21)

The T-strings 3 such that V3N K #@ make up a subset B, C BT. Below it is convenient
to coarse-grain the unstable Jacobian (3.17) on subsets W CE2:

SrW) Y —  inf  AR(o) for W C &2 such that WNK?S, 2. (5.22)
0EWNKS,

We define the following quantity, similar to (3.18):

Zr(V, 5) définf{ > eV Br e By and K3 c | Vg}.
BEBT BeBT

The topological pressure of the flow on K¢, can then be obtained as follows:

Po(s)=li lim = log Zr(V,
B8 = o A0, 7 108 2T (V2 ).
Here the covers V are as above: they cover K }; in the energy strip 5155, and are relatively
open. Finally, the pressure Pg(s) can be obtained through the limit (3.20).

From now on, we will restrict ourselves to the parameter s:%. Let us fix some small
£0>0. From the above limits, there exists a cover Vo of K¢ in € (of arbitrarily small

diameter €>0) and an integer ¢,>0 depending on Vy, such that

'loth()( 1) PE<1>‘<50. (5.23)

As a consequence, there exists a subset By, CB3; , such that {Vz:8€B;,} is an open cover
of K9 in £2, which satisfies

Z eSto(Vs)/2 < eto(Pg(l/Q)-i'Eo).
BEBy,
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We rename the family {Vs:5€B,,} as {W,:a€ A}, so the above bound reads

Y eSWal2¢ eto(Pi(1/2)+e0) (5.24)
acAq

Each set W, contains at least one point g, € K%, which we may set as reference point:
following Lemma 4.3, we can represent W, by an adapted chart (y*,n%) centered at g,.
Similarly, we can also equip any V;€V, with adapted charts (y° 1") centered at some
point Qbe‘/bﬂK%.

Each point o€ W, =V} evolves such that ®*(p) €V, for all k=0, ..., o — 1. Therefore,
as long as € has been chosen small enough, we are in a position to apply Proposition 5.1

and Remarks 5.1 and 5.2 to isoenergetic v;-unstable Lagrangian leaves in W,.

PROPOSITION 5.2. Take any energy E'€[E—0, E46] and any index a€Ay. Assume
that ACEgNW, is a Lagrangian leaf generated in the chart (y*,n®) by a function ¢

defined on a subset D,CD,., and is contained in the unstable 1 -cone:
A~{(y{,u"; E'—E, o' (u")):u* € D,}, with ||ga”||CO(Da) <.

Then, for any indexr a' €A, the Lagrangian leaf ®'°(A)NW,/ is also in the unstable
y1-cone in the chart (y* ,n®).
Besides, the map y*—y® obtained by projecting ®' | on the planes {(y*,n®):n*=0}
and {(y* ,n™ ) =0} satisfies the following estimate on its domain of definition:
8ya/ )\+
det{ 22— ) = (140 7o (2a)
e(&y“) (14+0(e7))e™o
Here X/ (0a) is the unstable Jacobian (3.17) of the reference point 0, EW,NKS, and
>0 s the Holder exponent of the unstable lamination. The implied constant is uniform

with respect to tg.

Proof. From Proposition 5.1, we know that for any € A and any k=0, ...,tg—1, the

k
loc

with respect to the chart (y*,n"). On the other hand, since A is a connected leaf

connected component Af = of ®*(A)NV;, containing ®*(p) lies in the unstable v;-cone

inside W,, at each step k=0, ...,to—1 its image ®¥(A) is fully contained in V;, and is
connected, so that A _is actually equal to ®*(A) for all k=0, ...,to—1. Finally, we apply
one iteration of Proposition 5.1 to the leaf A’=®"~!(A)CV;, _,NEp, and deduce that
any intersection ®(A')NW, =®% (A)NW,. is also in the y;-unstable cone.

We now prove the statement concerning the Jacobian of the induced map. It is a
direct consequence of part (iii) in Proposition 5.1, after replacing the time N by ¢o. Let g,

be the reference point in W,NK?¢,, on which the coordinates (y,n?) are centered. If Vj, is
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a set containing ®% (g, ), we may enlarge it into a set of diameter Ce, such that ®% (W,)C
Vi and W, CVy. On V;, we may use adapted coordinates (y°, 1) centered on the point
deéfq)to(ga), and represent ®°|, by a map y%+—y®. In this setting, Proposition 5.1 (iii)

shows that the associated Jacobian satisfies

b
det (gza) = (1+O(E))e>\:r()(ga)'

There remains to compare the coordinates (y°,7?) with the coordinates (y*,7% ) cen-
tered on g, €W,/ . Since the (un)stable subspaces at g, and g,/ form angles O(¢7) and
d(0p, 0a')=0(€), the representation of ®%|, through y*—y® satisfies

’

b

det(%yy[: ) = (1+O(57))det(g§a> = (14+0O(e7))eMo (), (5.25E)]

Notice that, even though ¢ (depending on the cover Vy in an unknown way) can be

very large, applying ®° onto a near-unstable isoenergetic leaf ACW, does not fold it.

5.3. Completing the cover

We need to complete the family {W,},ca, in order to cover the full energy strip £5.
Far from the interaction region (which we define using the radius Ry of §3), we take the
unbounded set

Wo=Epn{o:|z(0)| > 3Ro}.

We complete the cover with a finite family of relatively open sets

{Wa C g%}aGAz 5

with the following properties. These sets should have sufficiently small diameters, and

for some uniform d; >0 they should satisfy

d(Wa, TH)+d(Wo, Ti’) >di, where T5 < (] T,
|E'—E|<§

and 'Y, are the incoming/outgoing sets given in (1.5). Finally, the full family should
cover E%:

EéE: U W,, where A={0}UA;UA,.
a€A
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LEMMA 5.1. Such a cover exists. Consequently, there exists NoeN such that for

any index a€ Ay we have either

(W, )N{o:|z(0)| <3Ro} =2 for any t > Noto,
or

O (W, )N{o:|z(0)| <3Ro} =@ for any t > Noto.

Proof. The complement of (J,¢ 4, Wa in S%HTE(O 3Ro)X 1S at a certain distance D>0
from K%. On the other hand, from the uniform transversality of stable and unstable
manifolds on K%, there exists d; >0 such that

for all 0 € ERNTHo3r X, d(o,Th)+d(o,T5) <4dy = d(o,Kp)<D.  (5.26)
We first cover the set
S-={ec S%QTE(O,BRO)X 1d(0,T5) > 2d1}

by small open sets {W,:a€ A, } at distance >d; from 1";5‘5. There exists T_ >0 such that
at any time t>7T_, the iterate ®'(W,) has escaped outside Té(o 3R0)X for any ac A5 .
We then cover the set

S, ={oc engg(Q?,RO)X :d(0,T5’) <2d; and d(o,T'’) >2d;}

by small open sets {W,:a€ AJ} at distance >d; from I'}{. Now, there exists T, >0 such
that all these sets have escaped outside TE(O 3R0)X for times t<—T,.. From (5.26), points

geé’% QTE(O,?)RO)X which are neither in S_ nor in S, are at distance <D from KJ‘SE, and

therefore already belong to some W,, a€ A;. Finally, we take A, défAQ’ UAS and NopeN

such that Noto>max{T_,T,}. O

6. Quantum dynamics

As reviewed in §3.4, resonances are the eigenvalues of the complex scaled operator Pjy.
To prove the lower bound on the size of the imaginary part of a resonance z(h), with a

resonant state ug(h)€L?*(Xp), ||ugl|=1, we want to estimate
t,:,—t\hnz(h)\/h:He—itPg/hue(h)”7 t>1,

where the exponential of —it Py /h is considered purely formally. In principle that could be
done by estimating ||e~*F%/"\® (x, hD)||, where x* provides a localization to the energy
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surface. However, the imaginary part of Py can be positive of size ~0~Mhlog(1/h) and
that poses problems for such estimates.

Hence the first step is to modify the operator Py without changing its spectrum. To
make the notation simpler, we normalize the operator so that we work near energy 0. In

the case of (1.1) that means considering
P(h)=~h*A+V(x)-E, p(z,§)=[+V(z)-E.

Accordingly, the energy strips and trapped sets will be denoted by £° and K?°.

6.1. Modification of the scaled operator

To modify the operator Py we follow the presentation of [42, §§4.1, 4.2, 7.3] which is based
on many earlier works cited there.
Thus, instead of Py we consider the operator Py . obtained by conjugation with an

exponential weight:
of _cqw w 1
Py =G /PG b o = My, 0=Mihlog 1. (6.1)

This section is devoted to the construction of an appropriate weight G¥=G"(x, hD).
The large constant M7 will be of crucial importance for error estimates in our argument
and will be chosen large enough to control propagation up to time M log(1/h), roughly
M;> M. The constant M, will also be given below.

We start with the construction of the weight G(z, €).

LEMMA 6.1. Suppose that p satisfies the general assumptions (3.8) (with the energy
E>0 now in the interval (=8,8)). Then, for any open neighbourhood V of K° such that
V@Tg(o RO)X, and any 606(0, %), there exists GEC®(T*X) such that

H,G(0) 20 if 0€Th03R0)X
H,G(g)>1 if 0€Th10.3p,)XNEN\V), (6.2)
H,G(g) > -0y forall peT*X.

Proof. The construction of the function G is based on the following result of [15,
Appendix]: for any open neighbourhoods U and V of K° UCV, there exists Go€
C>(T*X) such that

Golu =0, H,Gy >0, HpG0|525 <C and HpGO|55\V>1-
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Such a Gy is an escape function, and is necessarily of unbounded support. We need to
truncate Gy into a compactly supported function, without making H,G( too negative.
For T>0 and a€(0,1) to be fixed later, let x€C*>(R) satisfy

0, if|t|>T,
(t):{ t

i it <aT Ix(t)] <2aT and x'(t)>—2a, teR

(we obtain x by regularizing a piecewise linear function with these properties). Let
PeCX(R;[0,1]) be equal to 1 for |¢|<1 and 0 for |[t|>2. For R>0 to be fixed later, we

define
60 x(Gooye (B2 )u (1)),

which vanishes on U, outside £2° and for |z|>2R. We then compute

|z]

HpGx’<Go>HpGow(§)w<R) +;x<Go>w(§)w'<§)Hp(lxl>.

This is bounded from below by 0 for {o:|z(0)|<R and |Go(0)|<aT}, and by 1, if in
addition p€&°\ V. For any o€T*X we have

T
H,G(0)> —coa(1+R),

for some Co>0, since (3.10) shows that |H,(|z|)|<C; on £?°. Choosing R>3R, and
T=T(o, Ry) large enough so that |Go(p)|<aT for QeggaﬂTg(ongo)X, we have now

guaranteed the first two conditions in (6.2). To obtain the last condition we need

coa(HT(O;fO)) <o,

and this follows from choosing « small enough and then R large enough. O

Using the identification (3.23), we consider G given in Lemma 6.1 as a function
on T* Xy, and define Py . by (6.1). We note that eFeG (@ hD)/h ig g pseudodifferential
operator with the symbol in the class S(;_OO’CO for any >0 and some Cj, and that the
operator

© ks k
Py. def —eG I PyesGY /M — o=(e/h)adew p. Z % <hade> (Py)
k=0

has its symbol in the class Sg’o. This expansion shows that

Py .(h) = Pa(h)—ie{ps, G} (x, hD)+e%ey (x, hD)
=py (x, hD)—ic{pg, G}* (2, hD)+e?ey (x, hD)+hey (z, hD), e; €8,
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where py is the principal symbol of Py given by (3.24). In particular, denoting by O(«)
the quantization of a symbol in .S, we have

Re Py < (Py.+P;.) /2= (Repg)” (z, hD)+e{Impg, G}" (z, hD) +O(h+£?)

=Repy (x,hD)+O(h+0s+&?),
(6.3)
Im Py & (Py .~ P;.)/2i = Impy (x, hD) —{Re pg, G} (¢, hD) + O(h-+&2)
=Impy (v, hD)—e(HpG)" (x,hD)+O(h+e?).
We can use our knowledge of py, see (3.24)—(3.26), and the fact that the set V used to
define G is contained in TE(O’RO)X, to deduce that, for any p€&?,

0, ifpeV,
Impg(0)—eHpG(0) < § CO—e=—(My—C)b, if 0¢V and |z(0)| <2Ro, (6.4)
—09+€50=—9(C—50M2)7 if ‘.’E(Q)‘ > 2Ry.

We now choose Ms in (6.1) such that C<My<C/dp, so that
Im py(0)—eH,G(0) <O for any g€ &°. (6.5)
The sharp Garding inequality (3.6) and (6.5) give, in the sense of operators,
Im x*(x,hD)Py (h)x"(z,hD) < Ch, suppxC &2 (6.6)

where x€5(1) is real-valued. Achieving this approximate negativity was the main reason
for introducing the weight G. Indeed, we notice that, before conjugating by this weight,
we only had Im x¥ Pyx™¥ <Chlog(1/h).

6.2. The evolution operator
We take the energy width >0 as in §5, and construct the weight G accordingly, as
explained in the previous section. Let the function xs€S(T*X) satisfy

supp xs C €Y% and  xs|ess = 1. (6.7)

In this section we will compare the two energy-localized operators

P ¥ (z, hD)P(h)x¥ (x,hD) and P \¥(z,hD)Py . (h)xY (z, hD). (6.8)

P, is obviously bounded and hermitian on L2(X), and P is bounded on L2(Xg)~L%(X)
(using the map z+—Rez). We may thus define a unitary group and a non-unitary group
as follows (t€R):

Uo(t) & e=itPo/h and Ut) % e=*P/h | respectively. (6.9)
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The need for the cutoff function x§ comes from the non-dissipative contributions of
Im Py, which are compensated by the weight G only close to the energy surface. In view
of the bound (6.6), we have

IU0)] 212 <€, 0. (6.10)
We make the following observation based on §3.4 and the boundedness of e=¢¢" /" on L?:

Res(P(h))NDs,g/c =Spec(Py(h))NDsg/c =Spec(Py..(h))NDsg/c,
Dsg/c ef {z:|Rez|<d and Imz>—6/C}.

Hence, from now on, by a normalized resonant state of z(h) €Res(P(h))NDs,g/c we mean
that

u(h) € L*(Xg), lu(h)|=1 and Py.u(h)=z(h)u(h). (6.11)

PROPOSITION 6.1. Let us put 61=15, C>0, and let u(h) be given by (6.11) with
|[Re z(h)|<d1 and Im z(h)>—Ch. Then for any fixed M >0 and any 0<t< M log(1/h),
we have

U(t)u(h) = e #W/May(R) 4O 12 (™), (6.12)

where U(t) is the modified propagator given by (6.9). More precisely, the L? norm of the
error in (6.12) is bounded by h™ for any L and 0<h<ho=ho(L, M).

Proof. Let v(t) U (t)u—e~i/hy, so that
ihdyo(t) = PU(Hu—ze /"y = Pu(t)+e(t), e(t) ™ e "/"(P—z)u.

Since (Py—2)u=0, we know that WF(u(h)) lies in £%/3, so that xYu=u+0Op:2(h>).
Hence, |le(t)||=0O(h>) and, using (6.6),

Oellv(t)]* =2Re(0pv(t), v(t)) = %(hﬂ Po(t), v(t))+2Im(e(t), v(t)) < Cllo(t)[*+[le()]|?,
v(0)=0.

The Gronwall inequality implies that
t
o0 < [ e(s) P ds,
0

and the lemma follows from the logarithmic bound on ¢. O

The following lemma compares the two propagators in (6.9).
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LEMMA 6.2. For any fixed t>0, the operator

V() LU U ) (6.13)

is a pseudodifferential operator with symbol v(t)€S,(T*X) for any v€ (0, 3).

Proof. To prove both statements, we simply differentiate V' (s) with respect to s:
1
a5V (s)= Ea(s)w(x7 hD)V (s), V(0)=1I,

w det 1 15 =
a(s)”(z,hD) = ;UO(S) '(P—Po)Us(s).
Using Egorov’s theorem, we obtain the following general bounds on the symbol a(s),

uniform for s€(0,t):

1 1
—Chlog 7 <Rea(s)<Ch and [0%(s)|<Cqhlog 7 for all o € N?".

To show that V(¢) is the quantization of a symbol v(t)€S, we use the Beals’s char-
acterization of pseudodifferential operators recalled in (3.7). We proceed by induction:

suppose we know that

V1) adyy_, ...adw, V(1) =Opaype (R0 N>1 V() =V (),

where the W;’s are as in (3.7). We now consider the differential equation satisfied by

V(1) L adw, Vv_1(t).

Using the derivation property ady (AB)=(adw A)B+ A(adw B) we see that

a

8,V () =ady, ... adw, ((E

En (t) =0r2.,12 (hN(l_'Y)),

) @ mvm) = (3) @hD)Vao+Ex(t),

where we used the induction hypothesis and the fact that

a\w 1 _
ade ...adek (E) (x,hD):OLQHLQ (hk log h) :OLQHLQ(hk(l 'Y))

Since Vi (0)=0, Duhamel’s formula shows that

V(1) =/0 V(t—s)En(s)ds =02, 2(RNI=1),

concluding the inductive step and the proof. O
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The following lemma shows that the propagators U(t) and Up(t) act very similarly

on wavepackets localized close to the trapped set.

LEMMA 6.3. Let Ugéﬁg@é'%ﬂT]’g(o’Rom)X, with Ug and (7@ being open sets such
that Ug is a neighbourhood of K°, while the weight G constructed in Lemma 6.1 vanishes
identically on [7@.

Take (51:%6 as in Proposition 6.1 and fix some t>0. Assume that the open set V is
such that ®*(V)eUgNE for all times s€[0,t]. Take any TI€C® (V). The propagators
U(t) and Uy(t) then satisfy

(U(#)=Uo(t)I1* (2, hD) = Opa_, 12 (h).

Proof. The proof is very similar to that of the previous lemma. The norm is equal
to ||(V(t)—1)II*||p2_,r2. Differentiating this operator with respect to ¢, we find, for all
s€[0,],

1 -~
OV ()" = %UO(3)71(P*PO)UO(S)V(S)HUJ'

From the dynamical assumption and using Egorov’s theorem, we easily deduce that
Us(s)™(P—Py)Uo(s) =0,

microlocally near V', uniformly for all s€[0,¢]. Since II is supported inside V, we obtain
(Q)SV(S)Hw:OL2*>L2 (hoo) O

Using Lemma 6.2, we also prove a basic semiclassical propagation estimate for U(¢).

PROPOSITION 6.2. Take 61 as in Proposition 6.1 and fiz t>0 and v€ [07 %)
(1) Take to,11€Sy(1) such that 1P takes the value 1 near suppo: precisely,

assume that
hY

67

where d(-,-) is a Riemannian distance on T*X which coincides with the standard Eu-

d(supp o, C{o:1h10®'(0) =1}) > supp ¢y C £, (6.14)

clidean distance outside TE(O’RO)X. Then
VY (2, RD)U ()¢ (x, hD) =U ()¢ (2, hD)+Opz 12 (™). (6.15)
(i) If o,¢1€S5,(1) are such that Yo=1 near suppo®*, then

"/}iu (ma hD)U(t)%” ('75’ hD) = 1/’1” (x’ hD)U(t) +Or2 12 (hoo> (6'16)
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Before proving the proposition, we remark that if instead g, 12 €S(1) satisfy

d(supp o, supp ¥hoo®') > —,  supp1h; CE”, (6.17)

Ql~

then
¥y (x, RD)U () (2, hD) = Oz, 2 (™). (6.18)

Indeed, we can apply (6.15) with ¢;=1—1)s.

Proof. We use Lemma 6.2 to write
O (@, RDYU ()45 (2, hD) = Uo (1) (Uo () "' 47° (ar, RD)Uo () V (1)405 (2, hD). (6.19)

Pseudodifferential calculus on ¥y, , (see for instance [11, Chapter 7] or [13, Chapter 4])
shows that the wavefront set of the operator V(¢)yy (z,hD) is a subset of supp o,
while Egorov’s theorem and the condition (6.14) implies that Uy ()19t (z, hD)Us(t)=1
microlocally in an h”-neighbourhood of supp . This operator can thus be omitted in
(6.19), up to an error O(h°), which proves the first statement.

The proof of the second statement goes similarly: ¢ (z, hD)=1 microlocally near
the wavefront set of Uy (t) =t (x, hD)Up(t). O

We can use this proposition to show that the “deep complex scaling” region acts as

an absorbing potential, that is, strongly damps the propagating wavepackets.

LEMMA 6.4. Take &1 as in Proposition 6.1, Ry as in (3.21) and fix some time t1>0.
Then, for any symbol € S(T*X) satisfying

supp (o @) C 5451/50{91 lz(0)|>5Ro}  for all te0,t1], (6.20)
we have
U (1) (x, hD)|| L2y 2 < e~ 1C0 || (@, AD)|| L2y 2 +Op2 2 (), (6.21)

where Cy>0 is independent of the choice of .

Proof. For any symbol o€ S(1) supported inside £5*N{p:x(0)>2Ro}, the estimates
(6.4) imply that

(P (2, hD)u, U8 (2 hD)u) < — W (o DYl + O ul? (6:22)

for some C7>0. From the hypothesis (6.20) on 1, and assuming R, large enough, there
exists a symbol ¢ €5(1) such that

supp ¥1 C Eélﬂ{gzm(g) >2Ry} and d(supp®,C{o:¢io®"(0)=1}) > é, te0,t1].
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Proposition 6.2 (i) then shows that
Ui’ (z, AD)U ()" (2, hD) =U ()" (2, hD)+Opz2_,12(h>), uniformly for ¢ € [0, #1].
Combining this with (6.22) we obtain, uniformly for €0, ¢1],

O\ U ()9 ul)* = % Tm( Py U (69w, U (D)9 u)+O(h*) [ul|?

20
< w 2 00 2
<= G U0l +00) ful

from which the lemma follows by Gronwall’s inequality, with 1/Cy=2t; /C}. O

6.3. Microlocal partition

We consider 51:%5 as in Proposition 6.1, and take a smooth partition of unity adapted

to {W,NE% }4ea, which by quantization produces a family {II,€W¥}},c4 such that

WF(I1,) C W,NE3N/A 11, = II7  and Z I1, = I microlocally near £%/2.
acA

The difference

Mo ©7-3"11,
acA

is also a pseudodifferential operator in ¥y, and
WF, (I )NER2 = &.

Using this microlocal partition of unity, we decompose the modified propagator (6.9) at
time tp:

Ulto)= Y. Us Us®U(to). (6.23)

a€ AU{co}
We then decompose the Nth power of the propagator as follows:

U(Nto))= Y Uay - Ua, +Rn. (6.24)

a€AN

The remainder Ry is the sum over all sequences o containing at least one index a;;=00.
The following lemma shows that the remainder Ry is irrelevant when applied to states

microlocalized near £.
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LEMMA 6.5. Suppose that x€C°(T*R) is supported inside E0/5 and that we con-

sider logarithmic times in the semiclassical limit:
N < Mlog %, M >0 fized. (6.25)
Then the remainder term in (6.24) satisfies
[BRnX" (2, hD)|| 1212 = O(h™),

with the implied constants depending only on M.

Proof. Let ac AN be a sequence containing at least one index aj=o00. Call jy, the

smallest integer such that a;=o00, so the corresponding term in Ry reads

U

an

U,

a].erlU(to)Hoan Uy, with ag, ..., Qg —1€ A.

Jm—1""

The lemma will be proved once we show that
HooUa;, - Uay X (2, hD) = Op2, 12 (™), (6.26)

with implied constants uniform with respect to the sequence . Indeed, the remaining
factor on the left is bounded as

Uay ... U,

Xjm +1

Ulto)|| < Ce®N < Ch= M,

and the full number of sequences is (|A|+1)N=O(h= M),

The estimate (6.26) is obvious if j,, =0, because WF},(Ilo,) and WF,(x") are at a
positive distance from each other. To treat the cases j,, >0, we will define a family of N
nested symbols which cutoff in energy in various ranges between %51 and %51. Because
N ~log(1/h), we must use symbols in some class Sy (1), §'€(0,3). We first define a
sequence of functions x; €C°(R, [0,1]), j=1, ..., N, as follows:

~ 1, if |t < 16y, - {
X t={ . 1 , Xjt+1(t) =
1() |>%(51+%h67 J+1()

1, if |t
Xi ([t =n%), if |t

1
Igzé‘l? ]>1
>30T
= 2%,

The function Xy vanishes for \t|>i51 +N h‘s', and we will take h small enough so that
%51 +NR' < %61. From there, the energy cutoff functions x; €Ss (1) are defined by

(2,6 % (p(x,€), j=1,..,N.

From the support properties of x, the first cutoff function satisfies

Xy (@, hD)x" (z, hD) = x*(x, hD)+ O, 1> (h™). (6.27)
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For any j=1, ..., j, — 1, we have x;=x,;°®', and the nesting between x; and x;+1 allows

us to apply the propagation results of Proposition 6.2 (i):
Xj1(x, RD)Uo,; X5 (2, hD) = Ua; X5 (2, RD)+O(h),  j=1,..., jm—1. (6.28)

Therefore, inserting xj’,; after each Uy, leaves the operator (6.26) almost unchanged.
Finally, the cutoff function xj,, is supported in the energy shell {o:|p(0)|<361+N h‘;/}
which, for h small enough, is at finite distance from WF},(Il,), so that

HOOX;{:” (l‘, hD) = OL2~>L2 (hoo)

Combining this expression with (6.27) and (6.28) proves (6.26) and the lemma. O

The set AN of N-sequences can be split between several subsets. Using the time N

characterized in Lemma 5.1, we define the set Ay C AN as follows:

D (Wo, )\ Wy,,, #@ for j=1,..,N—1, and

. (6.29)
OéjEAl for Ny <j<N-—Ng.

a=ai..ayEANy <— {

The sequences in Ay spend most of the time in the vicinity of the trapped set.

The next lemma shows that we can discard all sequences except for those in Ay .

LEMMA 6.6. Suppose that (6.25) holds. Then there exists C1>0 such that, for h
small enough,
> Uy o Ua, | S Ci| AN e Nt =0/ 0,
a€AN\ AN

If N<XMlog(1/h), =M hlog(1/h) and My>>Mtg, this implies that

> NUay Ui [|<BM/C20 0 < b < ho(M, My, |A)). (6.30)
a€AN\ AN

Proof. Take a€ AN\ Ay. If the first condition on the right in (6.29) is violated, then
the property WFy,(IT,) €W, NE31/4 for ac A and (6.18) imply that ||Uy|=0(h>).
Assume that for some j, No<j<N — Ny, we have a;; ¢ A;. We have three possibilities.

First, assume that a;=0. In this case, the factor U, =U (to)Ily can be decomposed as
U(to—1)U(1)I,.
If Ry has been chosen large enough, the set Wo=E°N{p:2(0)>3R,} satisfies the property

' (Wo) C{o:|z(0)| > §Ro}, te]0,1].
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Using the fact that WE),(IIy) CWoNE3/4 and applying Lemma 6.4 for t;=1, we find
that
U (to—1)U (1)Io|| < eCFo=D Cpe=/C0 L O(h>). (6.31)

Second, assume that «; €A, using the same notation as in the proof of Lemma 5.1. In
this case,
@t(Waj) C Wy for any t > Nytg. (6.32)

Applying Proposition 6.2 (i) Ny times, one realizes that the operator

I1 U

Qj+Ng—1 """

Qj+Ng Ua 41 Ua;

is negligible unless WF, (11
A2 and Wo/
enough)

a;in,) intersects Wo. This is the case if a4 v, =0, or aji N, €

NWo#>. In both cases, we have (as long as Ry has been taken large

Ji+No

' (Wa,,n,) C{o:]z(0)| > 5Ro}, tel0,1],

and the estimate (6.31) applies to [|U(to)a, v, II-
Third, if jeAj, we have ®'(W,,)eW, for t<—Nyto. Again, iterating Proposi-

tion 6.2 (i) Ny times shows that the operator

M,.U,. ..U

Y -1 Qj—No+1

U (to)TT

;- Ng
will be negligible unless Wy, —intersects Wy. This yields
U (to) e, _y, [| < P Coe /M + O(h>).
For these three cases, we find, using (6.10),
Uy - Uay || < eCN=NoJtoo—=6/hCo

This estimate concerns an individual element a€ AVN\ Ay. Summing over all such el-
ements produces a factor |A|", which proves the first estimate. The second estimate

follows from the assumptions on N and 6. O

The following proposition, which is at the center of the method, controls the terms
a€Ay in (6.24). The proof is more subtle than for the above lemmas, and uses the
whole machinery of §4.3 and §5. In particular, a crucial use is made of the hyperbolicity
of the classical dynamics on K. For this reason, we call the following bound a hyperbolic

dispersion estimate.
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PROPOSITION 6.3. Assume that N<M log(1/h) for some M>0. Then, if the di-
ameter >0 of the cover Vy has been chosen small enough, for any a€ AxNAY we have
the bound

N
[Uay o Uy | S B2 (120) T 500 a2, (6.33)
j=1
where the coarse-grained Jacobian Sy () is defined in (5.22) and eg is the parameter

appearing in (5.23).

Before proving this proposition in §7, we show how it implies Theorem 3.

6.4. End of the proof of Theorem 3

Suppose that [|u(h)||=1 is an eigenfuction of Py .(h), with the same conditions as in
Proposition 6.1: Py . (h)u(h)=z(h)u(h), |Re z(h)— E|<d, and Im z(h) >—Ch. Then, tak-
ing t=Ntg, N<M log(1/h), in Proposition 6.1, we get

Nt W/R = || U (Nto)u(h)||+O(h*).

Using the decomposition (6.24) and Lemmas 6.5 and 6.6, the state U(Nto)u(h) can be

decomposed as

U(Nto)u(h)= > Uay .. Uayu(h)+Op2 (W),
acAN

where M3 can be as large as we like, if we take 0= M, hlog(1/h) with M; large, depending
on Mto.
The norm of the right-hand side can be estimated by applying (6.33) to the factors

U, Uny+1. This leads to

QN-_Ng—1 ***

N—Ny—1
eNto Imz(h)/h<ch n/2 1+Eo Z H eSto Wa )/2+O(hMg,) (6.34)
a€AN j=No+1

The sum over Ay can be factorized:
N—No—1 N—2Np—1
Z H eSto(Waj)/Q < |A‘2No+1 ( Z eStO(Wa)/2> .

acAy j=No+1 a€A;

Combining this bound with (5.24), we finally obtain

eNtoImz(h)/h <Clhfn/Q(1+50)N6Nt0(P§(1/2)+50)_i_o(hMg). (6.35)
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Taking the logarithm and dividing by Ntg, we get

Im z(h) s (1 log(1/h) logC’
< - .
n \PE<2)+3€0+" 2Nto | Nt

We can take N=M log(1/h) with M arbitrarily large (and consequently with M, in the
definition of 6, large), so that, for any h sufficiently small (say, h<h(d,eo))

Im z(h) 1
h( <P (2> +4eo.

In §5.2 we could take £9>0 as small as we wished. This proves Theorem 3.

7. Proof of the hyperbolic dispersion estimate

To prove the estimate in Proposition 6.3, we adapt the strategy of [1] and [2] to the present
setting. We decompose an arbitrary state microlocalized inside W,, into a combination
of Lagrangian states associated with “horizontal” Lagrangian leaves (namely, Lagrangian
leaves situated in some unstable cone). By linearity, the evolution of the full initial state
can be estimated by first evolving each of these Lagrangian states. Proposition 5.1 shows
that, being in an unstable cone, the Lagrangians spread uniformly along the unstable
direction, at a rate governed by the unstable Jacobian. Proposition 4.1 shows that this
spreading implies a uniform exponential decay of the norm of the evolved Lagrangian

state and, by linearity, a uniform decay of the full evolved state.

7.1. Decomposing localized states into a Lagrangian foliation

In this section we consider states we L?(R™) with wavefront sets contained in an open
neighbourhood W of the origin, WFh(w)CWdéfB(E)yxB(E)n. Here B(e) is the open
ball of radius € in R®. We will decompose such a state w into a linear combination
of “local momentum states” {e,},cp(2c), associated with horizontal Lagrangian leaves

{Ay}neB(2e). Each Lagrangian leaf A, is defined by
def KT
Ay ={(y,n) eT"R":y€ B(2)}, neB(2e).
This family of Lagrangian foliates B(e) x B(¢):

we |J Ay MDAy =@ifn#y.
neB(2e)
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The associated Lagrangian states e, are defined as follows. We start from the “full”

momentum states En €C®(R™):

E,(y)=e'm/h g e R neR™,

and we smoothly truncate these states in a fixed ball:

en(W) E Ey(y)xe(v), xe €CZ(B(22)), Xelp(sesa) =1. (7.1)

Notice that all states e, satisfy
llenllzz = lIxellr2 < Ce. (7.2)

The h-Fourier decomposition of an arbitrary state wGLZ(RZ) reads

w= [ G ) ) B dn.

With the assumption WFy, (w)C B(e), x B(e)y,, one deduces that

w:/3(2 ) ﬁ (Fnw) (mey di+O(h>) ). (7.3)

This is the decomposition into horizontal Lagrangian states we were aiming at. If we

apply a semiclassically tempered operator T to this state (see §3.1), we obtain

1 oo
Tw_/B@a) ez Frw) ()(Teq) dn+ O(h) ]

This gives the following bound for the norm of Tw:

[Tw]| 2 < Ch*"/Q/ [(Frw)(m)] [ Tey|| dn+Oh>)[Jw]|

<Ch™"/? T +O(Z)||wl].
(5 1Tl I Ol

7.1.1. Decomposition of the initial state into near-unstable Lagrangian states

By using semiclassical Fourier integral operators, see for instance [13, Chapter 10], we
can transplant the construction of the previous paragraph to any local coordinate rep-
resentation. Here we will decompose states microlocalized in the sets W,, a€ A;. The
horizontal Lagrangians are constructed with respect to the coordinate chart (y*,n®) cen-
tered at some point o, €W,NK?, as described in Lemma 4.3. In order to cover the set

Wa, we use the following family (A, q):

Ay oa={y"n"):y* € B(2) and n* =n}, neB(d,2e), (7.5)
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where B(0, E)déf{n:(m,s)ER”:leé and |s|<e}. Notice that these Lagrangians are
isoenergetic (A, oCEy,) and they belong to arbitrarily thin unstable cones in Wy, in
particular to the cones used in Proposition 5.1 and Remark 5.1.

Using the Fourier integral operator U, associated with the coordinate change (z,§)—

(y*,m*) (see Lemma 4.4), each state (7.1) can be brought to a Lagrangian state:

en,a =U, e, associated with the Lagrangian leaf A, , C&,,,

with norms bounded as in (7.2).

7.2. Evolving the Lagrangian states through U, ... Uy,

We now consider an arbitrary sequence a€ AyNAY. For any normalized u€ L?(X), the
state
w I, u satisfies WF(w)C Wy, NEX/4,

and can thus be decomposed into the Lagrangian states (e, «, ) associated with the leaves
Ay ap, asin (7.3). In order to prove the estimate (6.33), we will first study the individual
states

Uay - UayU(to)enars n€B(261,2¢). (7.6)

We recall that each set W,, a€ Ay, has the property
dF(W,) Wy, k=0,...,to—1, for some sequence by, ..., by, _1. (7.7)

Therefore, to the sequence a=a; ...any €AY corresponds a sequence 3=0y ... Bn¢,—1 of
neighbourhoods Vj, visited at the times k=0, ..., Ntp—1. For later convenience, we also
consider a set V{, (of diameter Ce), which contains ®*° (W, ).

From now on, we fix some n€B(36;,2¢) and compute the state (7.6), making use

of various properties proved in the preceding sections.

7.2.1. Evolution of the near-unstable Lagrangians A, .,

The results of §4.2 and Lemma 4.1 show that it is relevant to study the evolution of the
0 through

locdéfA,Wl NW,, through the following operations: one evolves A
®’o | then restricts the result to W,,, then evolves it through ®% restricts to W,,, and so

Lagrangian A loc
on. It is also useful to consider the intermediate steps, that is, for k=mto+m’, 0<m <N,
0<m/ <tg, we take

Ato & to (AT =1, N1,

mto+m' def = m’ mt
Arntortm’ def o’ (pmtoy

[ —
loc loc m —1,...,t0 1.
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By construction, A?

loc 18 contained in the unstable 7;-cone in the coordinates

1
5.
(y*t,n*1). We can thus apply Proposition 5.1 (i) and Proposition 5.2 to this sequence of

k
loc

Fix v =
Lagrangian leaves: each Af _ is contained in the unstable y;-cone (when expressed in the

coordinates (y”*,7”) on the set Vj,). Furthermore, part (ii) of the proposition shows

k
loc

that the higher derivatives of the functions ¢y generating Ay . also remain uniformly

bounded with respect to k. The sequence of Lagrangians is thus totally “under control”,
and the implied constants are independent of the choice of ne B(28;,2¢) parametrizing

the initial state e, .

7.2.2. Analysis of the operator Uy, ... Uqy,

We now show that all the propagators U(1) in (7.6) may be replaced by the unitary
propagators Uy(1), up to a negligible error. For each a€A; we recall that the set W,
satisfies (7.7). All the sets V, €V, were chosen so that ®!(V}) remains close to K° in the
interval t€[0,1]. As a result, one can apply Lemma 6.3 to the differences

(U (1) =Uo(1)TTY,
where ﬁbellfh satisfies
[, =1 near V, and @t(WFh(ﬁb)) €Ug for all t€10,1].
Each factor U,=U (t)Il, can then be decomposed as

U(to)Ta = U (1), _, ... U1, U (1), +O(h™)

~ ~ (7.8)
= Up(1)ILy,, _, - Up(1)ILy, Up(1)IL, +O(h).

The first equality uses the propagation properties of Proposition 6.2 (i) and (7.7). The
second one is obtained by applying Lemma 6.3 to all factors U (1)1:Ibk. The operator (7.6)

can thus be expanded as
Uay - Uay = SﬂNtoﬂNto—l Sﬂl,ﬁonal +O(hoo)’ (79)
where we called

def =~
Sﬁk+1»ﬁk = Hﬁk+1UO(1)7 k:07"'7Nt0_]-7 t0+k+17

M, Us(l),  k+l=mity, m=1,..,N—1,

def =
SﬂNtoyﬂNto—l = H/NtOUO(l)'

Sﬁkﬂ,ﬁk
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The operator ﬁm €Wy, on the last line has a compactly supported symbol, and is equal to
the identity, microlocally near the set V3, , so that ﬁQVtOU(tO)HaN =U(to)la,y +O(R™).

From Lemmas 4.2 and 4.4, each of the propagators Sg, ., g, can be put in the form
Sﬁk+1-ﬂk :Z/{Ek+1Tﬁk+1ﬂkuﬁk +O(hoo)v (7‘10)

where Ug, is the Fourier integral operator quantizing the local change of coordinates
(z,&)— (y?,n"") (see Lemma 4.4), while T}, , , 5, is an operator of the form (4.26), which
quantizes the map s, 5, , obtained by expressing ®! in the coordinates (y b )

(ybk+1 ; nbk+1 )
Inserting (7.10) in (7.9), we obtain

Uay - UazU(tO)e’mOtl :Z/{ENtO TﬂNtovﬁo eTI+OL2 (),

where we took for short

def
T,BNtO,ﬁo = TﬂNtoyﬁNto—l - T3,,6,-

Here we used the fact that U3 Us, =1 microlocally near the wavefront set of o, o

k) Qm

!
or HNto'

7.2.3. Applying the semiclassical evolution estimate

The state Tpy,, g,6n has the same form as the left-hand side in (4.32). Since the La-
grangians
Moo ={™ 0™ = ¢k (y™))}

remain under control uniformly for 1<k< NV, we can apply Proposition 4.1 to obtain a

precise description of that state: for any integer L>0, we may write
Ty on(y) = a0 (y)e' ¥ W/M L RERTT (y), yeR™,

The symbol a™*o admits an expansion,
L—1
i Nt
aVto(y)=>"hral"(y),
=0

which we now analyze. Starting from some y€ B(Ce), let us assume that there exists no

sequence of coordinates

(R rte, y=yN, " =gu(yh),
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where g, is the projection of the map %B_k{ﬁk—l ‘Aﬁ,c on the axes {(y%,n%):n% =0} and
{(yPk-1,nP=1):nfr-1=0}. In this case, Proposition 4.1 shows that a’V*o(y)=0.

On the other hand, if such a sequence exists, the principal symbol aév fo(y) satisfies
a formula of the type (4.33). The functions x;, now correspond to the symbols of the
operators ﬁgk_, [, or Iy, , which are uniformly bounded from above by 14+O(h).

The main factor in (4.33) is the product of determinants |det dgx(y*)|'/2, which
corresponds to the uniform expansion of the Lagrangians along the horizontal direction.
To estimate this product, we follow §4.3 and group these determinants by packets of

length ty. According to Proposition 5.2, for any to-packet we have

(m+1)to (m+1)to \—1/2
I [detdgi(y*)" det(%) = (1+0(7))e Mo (eam)/2
k=mto+1

for m=0,..., N—1. Here we have used the coordinate frames (y®mt, nSmt) to label
points in W, instead of the coordinates (y*™,n®™) centered at g,,, € W,,, ; this change
does not modify the estimate of the corollary, as is clear from (5.25). The product of
determinants is thus governed by the unstable Jacobian along the trajectory. Because
the points g,,, €W,, NK? are somewhat arbitrary, we prefer to use the coarse-grained
Jacobian (5.22) to bound the above right-hand side. Taking the product over all ¢o-
packets, we thus obtain, for some C'>0 independent of N,
N—-1
lag *(y)| < [[ (1+Ch)o (14CeM)eS0Wer)2y e suppag™® € B(Ce).  (7.11)
m=0
The proof of Proposition 5.1 (see (5.17)) also shows that the determinants det dgx(y)
satisfy
sup |detdgy(y)| <det(Ax) ' +Ce?, k=1,... Nto.
y€Dom(g)
We will assume that € is small enough, so that the right-hand side is bounded from above
by v3<1. This implies that the Jacobians Jj of (4.31) decay exponentially when k— oo.
Henceforth, the higher-order symbols ajv ‘o bounded as in (4.34), are smaller than the
principal symbol, so that the upper bound (7.11) also holds if we replace aév to by the full
symbol aV*. This decay of .J; also shows that the remainder R} ™, estimated in (4.35),
is uniformly bounded in L?. As a result, the bound (7.11) implies the bound
N—-1
1T Bxeg B0l < Ce(14+CemMN H eStoWan)/2 e B(361,2¢). (7.12)
m=0
To end the proof of Proposition 6.3, it remains to apply the decomposition (7.3) to the
w=I1,,u, with u€ L?(X) of norm unity, and the bound (7.4) that follows is
N-1
1Uay - Unyul| < Ceh™"2(14CeN T eSoWem)/2 L 0(h).

m=0
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Notice that the main term on the right-hand side is larger than h™3 for some Mz >0.
This bound thus proves Proposition 6.3 if, given €3 >0, we choose the diameter ¢ of the

partition Vy small enough.

8. Microlocal properties of the resonant eigenstates

In this section we will use the results of §6.1 and §6.2 to prove Theorem 4. We will turn

back to the notation of §3.2, that is, the operator to keep in mind is
P(h)=—h*A+V(z), with symbol p(z,&)=&E>+V ().
We also recall that
Pyo=e G pesC /e =My, 6= M hlog % and G =G"(x,hD), (8.1)

where G is given by Lemma 6.1, and M; >0 can be arbitrarily large. In this section we

will choose the set V' in Lemma 6.1 to be
V=Tg3r,/4X, andassume that G(x,§)=0 for z€ B(0,1Ry). (8.2)

We now consider a resonant state u in the sense of (3.22), in particular u|p(o,r,) =
ug|B(0,ry)- If u satisfies (3.22) for some choice of Ro>0 (which implies a choice of defor-
mation Xy, see §3.4), then it has the same property with any larger Ry (and associated

Xp). The state

def _ w
uge = e My

is in L?(Xy) and satisfies
(P97E —Z)U,g,g =0.

Furthermore, the support properties of G imply that
[uo.e —ullL2(B(0,Ro/2)) = O(h™) [[ug el L2 (x,)- (8.3)

The following lemma provides control on the behaviour of ug . near infinity.

LEMMA 8.1. Let Py, be the operator given by (8.1) for some choice of Ry>1 and
Mi>1. Suppose that

(Ppe—2)upe=0, Imz>—-Ch, Rez=FE+o(l) and |ugcllr2(xy) =1 (8.4)
Then, there exist Ry >4Ry and Cy>1, independent of My, such that

49,2l L2 (x0\ Ben (0,R1)) = O(RMV D) 0 < h < ho(M). (8.5)
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Proof. We will use the properties of the “deep complex scaling” region, explained in
Lemma 6.4. The first step is localization in energy. Take ¢»€C°((—2,2), [0,1]) such that
Yli=1,1=1 and define

(o) :w<4(p(§>l‘E)) and (o) w(W). (.6)

Fix some time ¢1 >0 and consider spatial cutoff functions xo, x1 €C*(X, [0, 1]) localized
near infinity:
0, ifxeB(0,R;),

. o j:O717
1, ifzeX\B(0,R;+1),

Xj(x):{

where the radii R, >Eo+2>>1 are sufficiently large so that the following conditions are
satisfied:

supp((xot0)>® ) CER°n{o:|x(0)| > SRy} for all t € [0, 4], (8.7)
(xo%0)(0) =1 near supp((x1¢1)°®"). (8.8)

We will now estimate the norm of the state
0y (, D)U (t1) X0t (2, hD)ug - (8.9)

Using the condition (8.8), we apply Proposition 6.2 (ii) to the operator x1¢3'U (¢1)xo¢y,

and obtain
v=x197 (x, hD)U(t1)ug c+Or2(h™)
= e "My (@, hD)ug e +Op2 (h)
=e 2/ My ug 4+ Op2 (h).

In the second equality we have applied Proposition 6.1. For the third one we used the

microlocalization of ug . on Eg:
Uy (@, hD)ug.e =ug,e +Opx (h™)  for all k. (8.10)
On the other hand, the condition (8.7) allows us to apply Lemma 6.4:
U (t1) X005 (2, hD)ug e || < €= " || xot (2, hD)ug c||+O(h™)
<My oug [+ O(h).

Here we have taken §=»M;hlog(1/h) and used again the microlocalization of ug . near
Ek.
Using that Im z>—Ch and combining the above estimates, we find that

Ix1ue.e || < eCrRM/Co L O(h*).

This proves the proposition, once we take Ry >max{]§1 +1,4Rp}. O
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Remark. The statement of the lemma can be refined using exponential weights to

give a stronger statement about ug . (including the case of e=0):

”ealzl/czué’,aHL2(X9\BCW (0,R1)) — 0(1)7

see [37] for a similar argument.

LEMMA 8.2. Let K=Kp be the trapped set (1.6) for p(z,€) at energy E. Suppose
that ugpe is as in Lemma 8.1 and G and € have the properties in (8.1) and (8.2). Then
for any >0 there exists C(6)>0 such that

llullo.e <C(S)[|ullL2(x(x)+Bx(0.6)), 0<h<ho(d). (8.11)

As a consequence, for any resonant state u=u(h) with Re z—E=0(1) and Imz>—Ch,
we have

for all R>0 there exist C(d, R) and ho(d, R) such that (8.12)

lull2(B(0,R)) < C(O, R)||ullL2(r(k)+Bx (0.6)) for h<ho(d, R).

This means that a normalization in any small neighbourhood of 7(K) leads to an
h-independent normalization in any compact set. This property allows us to define a

global measure p in Theorem 4.

Proof. Lemma 8.1 shows that, to establish (8.11), it is enough to prove that

[uo,cl| Bx, 0,7:) < Cllull L2 (x(x) 4 Bx (0,67 0 <A< ho(6). (8.13)

For 69>0 small and R; as in Lemma 8.1, we consider the compact set

o Tyvr—
SEEROT, oy X

If o€ SNT§%, there exist T,>0 and a neighbourhood UQCE%‘SO of ¢ such that
o~ Te(U,) cT*(n(K)+B(0,6)), (8.14)

provided &y is small enough depending on § (so that K%°€T*(r(Kg)+B(0,4))).
On the other hand, if ¢ SNT®, there exist T,>0 and a neighbourhood Ugcé'é‘so
of o such that
& T (U,) cT*(X\B(0,2Ry)). (8.15)

Since the set .S is compact, we can cover it with the union of two families of sets

{Ugj :j€J1} and {Ugj ZjEJQ}
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of the preceding two types, where J; and J are (disjoint) finite index sets. We can also
choose open sets U, €U,, such that (J;c; s, Uy, still covers S. We note that these
covers have different properties than the cover {W,},ca constructed in §5.2.

We now construct a “quantum cover” adapted to the above classical cover:
A; €VL(Xy), WF,(Aj) €U, and A; =TI microlocally near Uéj, jeJiUds.
In view of the localization of ug . to the energy shell (see (8.10)), we have

uoellL2(B0,R1)) S C Z [ Ajugel-

JeJ1UJ>
Hence (8.13) will follow from the bounds
HAjU0,e|| SCHU@)A LZ(W(K)+B(O}5))+O(I’LOO)7 je€J, (8.16)
| Ajug.c|| < ChM/Co, je.o. (8.17)

With U(¢) defined by (6.9), Proposition 6.1 and the condition |[Im z|<Ch imply that for
any bounded ¢>0,

[ Ajug || < e“H|A;U(ug.c | +O(R), j€JiU .
Considering operators tA; €W, (Xg) with the properties
WE,(A;) @ Tes (Uy;) and A; =TI microlocally near & Tes (WF,(4,)),
we may apply Proposition 6.2 (ii):
14 ug.c || < 772 || AU (T, Jug e | +O(h™)

<I14;U(Ty;) Ajug.c || +O(h™)

< | Ajug o]|+O(1).
In the last line we used the bound (6.10) and that [|A;[|<C’. Notice that the times T},
are uniformly bounded, depending on § and R;. From (8.14) we obtain the first estimate
in (8.16). Lemma 8.1 and (8.15) provide the second estimate. This completes the proof
of (8.11).

To see how (8.12) follows from (8.11), we choose Ry>2R in the construction of Py .
(see (8.1) and (8.2) above). From the support properties of the weight G, we have the
following relationship between ug . and the corresponding resonant state wu:
lu—ug el (B0.R/2)) = Oh™)ugcll2(x)  for all k.

Then

lull2(B(0,r)) < lug.ell2(xq) (1+O(R)) < C(6, R)||ull 22 (x (k) + B(0,6))- O
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The next proposition is a refined version of (1.15) appearing in Theorem 4.

PROPOSITION 8.1. Suppose that u satisfies the assumptions of Theorem 4 and that
a€C® is supported in T*X\I'},. Then, for any x€CX(X), we have

|a® (x, hD)xu| < Cprh™  for any M >0, (8.18)

that is, u=0 microlocally in T*X\I'},. The constant Cyr in (8.18) depends on E, a
and X.

Proof. We choose Ry such that supp XCB(O, %RO) in the construction of Py . de-
scribed in the beginning of this section. Then, by Lemma 8.2, the normalization in
Theorem 4 is, up to uniform constants, equivalent to the normalization |lug c||z2(x,)=1.
From (8.3) we see that

la* (z, hD)xul| = [|a* (2, hD)xug ¢ |+ O(h).
The condition on the support of a shows that for dg>0 small enough, supp aﬂI‘E‘s” =d.
Using an energy cutoff function ¢ of the form (8.6) supported inside Sg“, there exists a
time 7'>0 such that

&~ supp(aty) € T* (X \ B(0,2R1))NER,

where Rp is given by Lemma 8.1. Taking into account the microlocalization of type
(8.10), we get

la*(z, hD)xul| = [|a* (z, RD)Yg (x, hp ) xug e[| +O(h>).
We can now proceed as in the previous lemma:
|a*1g xup,e || < Clla” g’ xU(T)ug,e || < Clla g xU(T) ¥ X1 xuo e ||,
where 1, €C>(T* X, [0, 1]) satisfies 9126, =1, while x1 €C°(X) vanishes on B(0, I1)
E
and takes the value 1 for |z|>2R;. The second line above is then due to Proposi-
tion 6.2 (ii). Lemma 8.1 shows that ||x1ug c||=0O(hM1/0) so we finally get

la® (z, hD)xul| = O(hM/ ),

where M can be taken arbitrarily large. O
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Proof of Theorem 4. Inclusion (1.15) follows directly from Proposition 8.1, which
shows that only points in I'}; can be in the support of the limit measure.

The proof of (1.16) follows the standard approach (see [16] and for a textbook
presentation [13, Chapter 5]). Suppose that x and u are as in (1.14). From Lemma 8.2
we know that ||xu(h)||<C, with the constant C), independent of h. Hence, there exists
a sequence {hy}ren\(0 for which (1.14) holds for any A=a"(x, hD) with a€C®(T*X)
and supp a@(7*x)~1(1). From this support property we get

A[P,x]=0p2,12(h*),

so that
O(h*) =Im((P—2)xu, Axu) =Im(Pxu, Axu) —Im z(Axu, yu)
= 1h((Hpa)" (z, hD)xu, xu)—Im z(Ayu, yu)+O(h*)| xu?.

For the sequence {hj }ren appearing in (1.14) we obtain

1 I h
z Hpadu_m

adu=o(l), ask—oo.
2 Jrex hy /*X w=oll)

Hence there exists A>0 such that Im z(hg)/hy——1 A and

Hpad,qu/\/ adp=0,

T*X *X

which is the same as (1.16). O

9. Resolvent estimates

In this section we will prove Theorem 5 and consequently we assume that the hypothesis
of that theorem holds throughout this section. In particular £>0 is an energy level at
which the pressure, Pg ( %), is negative. We first need a result which is a simpler version

of the estimates on the propagator U(t) described in §6.4.

PROPOSITION 9.1. Suppose that WeC>(X;(0,1]), W >0, satisfies the conditions
supp W C X\B(0, R1) and W|x\B,Ry4+r) =1

for Ry and r1 sufficiently large. Assume that PE(%)<0 and choose )\G(O, |73E(%)D
Then there exists §o>0 such that, for any €S(1) supported inside 5%0 and any M >0,

) . 1
|e=# P =W) /by (02 WD) 202 KCR™2e M40y (R®), 0<t< Mlog TRECRY
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The proof of this proposition is very similar to the proof in the case of the complex-
scaled operator P . treated in §6. In fact the case of the absorbing potential is easier to
deal with than complex scaling, and in particular we do not need the weights G. The
modifications needed to apply §6 directly are given in the appendix.

Before proving (1.17), we will establish a resolvent estimate for the operator with

the absorbing potential.

PROPOSITION 9.2. Let P=P(h), the energy E>0 and the absorbing potential W be
as in Proposition 9.1. Then, for any €>0,

n(l+¢) log(1/h)
2/Pe(z)| h

[(P(h)=iW —B) ™ L2 (x)»12(x) < 0<h<hg(e). (9.2)

Proof. We will use Proposition 9.1 and h-dependent complex interpolation similar
to that in [44].

If we put
(]1 (t) déf e—it(P(h)—iW)/hww (l’, hD),

where 9 is as in (9.1), then the following estimates hold for any M >0 and 0<h<hy;:

1+0(h), 0<t<Tp,  Tr(h) = nlog(1/h)/2\,
UL < Coh=™/2e=M, T <t<Ty, Tar(h)™ Mlog(1/h), (9.3)
h]VI/CO’ t>TM7

where Cj is independent of M. The notation Tx(h) comes from the analogy with the
Ehrenfest time (the time the system needs to delocalize a Gaussian wavepacket).

The first estimate in (9.3) follows from the subunitarity of e~ **(F()=W)/h and the
bound |||/ 22 <1+O(h). The second estimate follows from Proposition 9.1 by ab-
sorbing the remainder Qs (h*°) in the leading term by taking h<hps small enough. The

last estimate follows by writing
U, (t) _ e—i(t—TM)(P(h,)—iW)/hU'1 (TM)7
and using subunitarity for the first factor and the previous estimate for ||Uy(Tas)||-

The estimates (9.3) and ellipticity away from the energy surface give the following

lemma.
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LEMMA 9.1. In the notation of Proposition 9.1 and (9.3) we have, for any N >0,
Ci1+Tg(h N
1+ p(h) |

|(P(R)—iW —2) |22 < Imz>0, [2—E|<6§, 0<h<hy.

h Imz’
(9.4)
Proof. We first prove the same estimate for the energy-localized operator
1 [ ;
(P(h)—iW —2)" " (z,hD) = 7 / Uy (t)e™/hdt, Tmz>0.
0

From (9.3) we obtain

1 Tr T 0o
e N TE 1Y A M A (GOt
0 Te Ty
Tr(h) C hM/Co
S h ThAtImz Imz
This is the estimate on the right-hand side of (9.4), once we take M large enough and h

small enough.

To solve (P—iW —2)u=(1—9¢") f, f€ L?(X), we follow the following standard proce-
dure—see for instance [13, Proof of Theorem 6.4] for a simple example. There exists 1 €
C(T*X;[0,1]) supported near the energy surface £g, such that the pseudodifferential
operator (P—iW —z—iy{¥)~! is uniformly bounded in L? for z as in the lemma and
he(0, ho), while ¥}’ (1—9")=0Opr2_,12(h>). It follows that

(P—=iW —2)(P—iW —z—itp?") " (1=4") f = (1=¢") f+ R,
where R=0pz2_,12(h*>). If we put

LE (P—iW —z—i)?) " (1= ")+ (P—iW —2) g,

then
. C/A+Tg(h) Y
(Piw—2)L=1+R, o< PEEOL I gy o)
and (P—iW —z)"'=L(I+R)™! satisfies the estimate (9.4). O

To estimate the norm of the resolvent on the energy axis, ||(P—iW —E)~}||, we need

the following parametric version of the maximum principle.

LEMMA 9.2. Suppose that (—F(C) is holomorphic in a neighbourhood of [—1,1]+

i[—c_,cy], for some fized c.>0, and that
log [F'(¢)] < M, Ce[-11]4i[—c, c.],

FQl<at g CE[L1+i0.e)

where M, a1, while y<1. Then, for € satisfying yM>/?/a< %2 <1, we have
|F(0)] < (1+¢)a.
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Proof. Let g(¢)=e=3M¢*+ia¢ with a€R to be chosen later. Then g(0)=1 and
19(¢)] < exp(=3M (Re ¢)*+3M (Im ¢)*+|al Im ).
Let 1>>0_>>0.>0. The following bounds hold on the boundary of [—1,1]+4[—d_, ]

—2M +3M 62 +]als_, Re(=+1, -6 <Im( <0,
log [F(¢)g(Q)| < M+3Mé? +aé_, Re¢| <1, Im{=—6_,
log(a+7v/6,)+3Md% —ad,, |Re(|<1, Im(=4,.

Following the standard “three-line” argument, we select

s (FMHon(a ) = - (-aog(a+ 7)),

so that the bounds for Im {==40. and |Re z|<1 are the same:

a=

dy Y d 2
1 M
510 +og(a+5+>5++§ +3Mo<

< M5, 5~ +10g<a+6 >+3M52

log [F(Q)g(Q)| < M

To ensure that the above right-hand side is smaller than log(a(14-¢)), we need the fol-
lowing conditions to be satisfied:

6.0 'M<e, M&*<e and %<<5
+

5/2 is large enough compared with yM3/2 /a, which

These conditions can be arranged if €
is the condition in the statement of the lemma. One easily checks that the bound
log |F(¢)g(¢)|<log(c(1+¢)) then also holds for |[Re(|=1 and Im (==4., and therefore
for (=0 by the maximum principle. O

We now complete the proof of Proposition 9.2. To apply Lemma 9.2 we need the
estimate of Lemma 9.1, but also an estimate of ||(P—iW —z)71|| for [Re2—FE|<J and
[Im z| <Ak (where we recall that (P—iW —2)~! has no poles in that strip for h small
enough). We can cite [10, Lemma 6.1](*) and obtain

[(P—iW —2)"Y| < Ce®" " ", Imz>—\h.
Lemma 9.2 applied to the data

F(QO=((P=iW—-E=h¢)""f.9), frgel*(X), |fll=lgll=1,
. 4 JrTE(h)

—
proves the corollary (observe that the condition vM?3/2/a<1 is satisfied for h small

M=Ch~"1, v="h"

3

enough). O

(%) Strictly speaking the quoted lemma is stated for P with bounded symbols. However, since
the symbol of P—iW —z is bounded away from zero outside a compact set, exactly the same argument
applies.
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To pass from the estimate (9.2) to an estimate on x(P—z)"1x, x€C(X), we first
recall (see for instance [44]) that if supp x CB(0, Ro), where Ry is as in §3.4, then

X(P—2)""x=x(Py—2)""x.
Also, if supp 7*xNsupp G=J, then

X(PO_Z)_lx — Xeer/h(P&E_Z)—le—aG“’/hX
=X(Pog,e—2) "' x+O0p2 12 (h%)[[(Po,e —2) 1.

Hence,
X (P —2)"" x|l = (1+O(h>)) | (Pp,e —2) |- (9-5)

For future use, we now consider an auxiliary simpler scattering situation, namely
an operator P!=P%(h) satisfying the assumptions of §3.2 and for which the associated
classical flow is non-trapping at energy E, that is, Kp=@. From a result of Martinez [25],

we have 1

X(PP—2)"x=0 (h) , z€D(E,Ch),
see [27, Proposition 3.1].(°) Below we will need the following estimate for the resolvent
of Pg .

LEMMA 9.3. Suppose that P*=P*%(h) is an operator satisfying the assumptions of
§3.2 and that the flow of p* is non-trapping at energy E, that is, Kp=@. Then, in the
notation of §6.1,

1
(Pg,s_2)71:OL2HL2 (h)’ z€ D(E,Ch). (9.6)

Proof. Since Pé{ _—z is a Fredholm operator on L?(X) (as elsewhere we identify Xg
with X), the estimate will follow if we find Q(z) such that, for ze D(E, Ch),

(Pg}s—z)Q(z):I—&—A(z), Q(2)=0r2_12 (;) and A(z)=0p2,12(h). (9.7)

We will solve this problem in two steps, away and near the energy layer £g. Consider

the two nested energy cutoff functions

il 9= (PEY=E) v (MHEIZE) o)

(°) The statement of that proposition should be corrected to include a cutoff function x, or, without
a cutoff function, a factor log(1/h) on the right-hand side of [27, (3.2)]. Lemma 9.3 gives a correct global
version without the logarithmic loss.
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where 1€C°((—2,2),[0,1]) and |_,;j=1. Since Pgﬁ is elliptic on supp(1—11) (that
is, away from Eg), standard symbolic calculus (as in the proof of Lemma 9.1) provides

an operator (QQp(z) such that
(P} .—2)Qo(2) = I—}'(x,hD)+Ao(2), Qo(2)=0r2r2(1), Ag(z)=0paz2(h).

We now treat the problem near the energy layer. We want to produce an operator @Q1(z)
such that

(Pgﬁfz)Ql(z):z/)iU(x’ hD)+A1(Z)a Ql(z):0L2_>L2 (2), Al(Z):OLz_)Lz(h).

To this aim we use the tools developed in §6.2 and consider the energy-localized propa-
gator
U(t) e tFih B g (2, hD) Py (2, hD),

which satisfies ||U*(¢)||<e®? for any ¢>0. The non-trapping assumption at energy F
implies that

there exists T' > 0 such that, for all o€ 52/4OT*

B(0.370)X> [T(2(0)] > 3Ro for t >T.

(9.9)
We claim that we can take

def 1

Q1(2) N

T
/ U (t)p¥ (x, hD)e >/ dt. (9.10)
0
Indeed,

(i . —2)Q1(2) =¢¥ (2, hD)+As (2),

. T
41(2) & U (T (2, D) /0 (Pt .~ B U (1) (x, hD)eit=/" dt.

The escape property (9.9) shows that there exists a time 0<Ty,;, <7 such that points
in 52/40T§(073R0)X will have escaped outside B(O, %RO) after T'—Tiin, while points in
EY*NT*(X\ B(0,3Ry)) cannot penetrate inside B(0, 2Ry) before the time Tini. In both
cases, Lemma 6.4 provides the following estimate:

IUH(T)i (z, hD) || = O(AM /)

for some Co=Co(T—Tmin). On the other hand, M; can be chosen arbitrarily large, in
particular we assume that M;/Co>1.
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To analyze the second term in the definition of Ay, we use the energy cutoff function

¥1/2(0) déf1/}<4(p(95)_E)>,

which is nested between 1 and g, and write
Fj — P} .= P (1=4§)+ (1= 08 P (1)) + Opa 2 ().
From the support properties of the ¢; and using (6.18), we get

(1= UHR)YY, (1=t UF (D)} = Opa_, 2 (h).

These estimates show that Ay (2)=0r2_2(h).
As aresult, the operators Q(z)=0Qo(2)+Q1(2) and A(z)=A¢(z)+ A1 (z) satisty (9.7),
completing the proof. O

Proof of Theorem 5. We now return to our original operator P(h) with the proper-

ties described in §3.3. As is seen from (9.5), it is sufficient to prove the bound

PO (C 1))

As in Lemma 9.3 above, we will construct an approximate inverse

log(1/h
(Pro—E)Q=T+4, Q= o("g(h/)) and A= O(h).
We consider the cutoff functions (9.8). Once again, the operator can be easily inverted

away from the energy shell. We then need to solve

log(1/h)

(Poc— E)Qy =¥ (2, hD) + Ay, Qlo( !

) and A; =0(h). (9.11)
We will now use our knowledge of the absorbing-potential resolvent, see Propositions 9.1
and 9.2: we will use the fact that the operators Py . and P—iW are very similar near
the trapped set.

Assume that 1<<R4<R3<R2<R1<%R0, where the radius R; is used to define the
absorbing potential W, while Ry is used in the complex deformation of X (see §3.4),
and the weight G is supposed to vanish on W’lB(O, %Ro). Consider the spatial cutoff
functions x,; €C (X, [0,1]), j=1, 2, satisfying

supp x; € B(0, R;) and x;|po,r,..) =1, j=1,2,3.
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To solve (9.11), we first put
def . —1 w
Q2 = xa(P—iW—E)" x2¢Y.
We can then compute
(Po.e = E)Q2 = X201 + [P, x1](P—iW — E) " xothy’ + Op2-y 12 (%), (9.12)
where the error term is due to the weight G, which vanishes near the supports of x;:
x;e5CM =y, +O0p2,yx(h™)  for all k.

On the other hand, Proposition 9.2 implies that

log(1/h)

Q2=0r22 ( h

) and [P, x1](P—iW —E) ol = Op2_,p2 (log fll)

To treat the operator on the right, we observe that the differential operator [P, x1] van-
ishes outside B(0, R2), while x; vanishes outside B(0,R;). We are thus in position
to apply Lemma A.2. For any velL?, |v]=1, set fdéf)@z/;}”v. The support of f is
contained inside B(0, Rz), and its wavefront set lies inside 5%. As a consequence, the
(P—iW —E)~1f also satisfies WF},(u) CE%, and the wavefront set of the state
[P, x1]u is contained inside WFy, (u)NT* (X \ B(0, R2)). According to Lemma 9.3,

def
state u=

O (WFy, ([P, X1Ju)NT 50 35, X =2 for any t > T(R2, Ry, 1 E). (9.13)

Using T:T(Rg, Ry, %E), we put

. AT
e 1 i . _ w log(1/h
dizf—ﬁ/ U(t)e B/ [P x1|(P—iW — E) Lyt dtZOLzﬁLz(g(h/)).

0

Like in the proof of Lemma 9.3, the outgoing property (9.13) implies that
(Pp.e~E)Qs =[P, xa] (P—iW —E) " xot)} +-Opa_y 2 (W),
Hence, assuming that M;>1, we have
(Po,e = E)(Q2+Q3) = x2¥1 +Or2s 12 (h).

It remains to find an approximate solution with the right-hand side given by

(1=x2)¥1"+O0r2,12(h).
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Since we chose R3 large enough to contain 7(Kg), we can choose some 1< R4 <R3, and

construct an operator P* which is non-trapping in the sense of Lemma 9.3, and satisfies

P x\B(0,r) = Plx\B(0,Ry)-

From the discussion leading to (9.5), it follows that

P Ix\so,r0) = Poclx\0,.r0) 012 (h).

Using the cutoff function ys, we put

def

Q1= (1-x3)(Pf .~ B) ' (1= x2)¥’

and then check that

(Poe—E)Qs=(1—x2)¢) —As+O0r2,12(h™), Qs=0r2,12(1/h),

A E [P x|(Py .~ B) ' (1—x2)ul,  As=Opap2(1).

We have Ay=X2A4, where X has the same properties as x2 (in particular, X2 |supp ys =1)-
For any v€L?, the state A4v will be supported inside B(0, R3), and its wavefront set
will be contained in Sg. One can thus adapt the construction of Q2+ 3 when replacing

x2¢}’ by A4, to obtain an approximate inverse Q)5 with the properties

og1/1))

(Poe—E)Qs5=A44+012,12(h), Q5=0pr2> ( -

We conclude that Q4 dﬁfQ2+Q3 +Q4+Qs5 satisfies (9.11), which proves the theorem. [

Appendix

In this appendix we explain how the methods of §6 apply to the case in which the
deformed operator P . is replaced by the operator with the absorbing-potential operator,
P—iW  where W is described in Proposition 9.1. The arguments are easier in the case of

P—iW and the only complication comes with the following replacement of Lemma 6.2.

LEMMA A.1. Let W satisfy the conditions given in Proposition 9.1. Then, for any

fizxed t>0, the operator
V) def LitP/h,—it(P—iW)/h (A1)

satisfies
V(t)=v(t)"(z,hD)+Or212(h>), v(t) €Sy o(T*X). (A.2)
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Proof. We start as in the proof of Lemma 6.2: differentiating V' (s) with respect to
s gives
1 ) .
0.V (s)=a(s)" (@, hD)V(s), V(0)=1, a(s)"(x, hD) % _eisP/hyy—isP/h

with a€S. Let t
A= / a(s)ds and vg(t) L eAD/,
0

We claim that the function vy €S, /5. If fact, by Egorov’s theorem,
A=A +0(R), Aot /W €)))ds <0,

hence we only need to check the claim for e40(!)/"  The non-negativity and the C2-
boundedness of —Ag imply the standard estimate |97, . Ag| <C|Ao|'/2, |a|=1, from which
we see that for any S€N",

a,é’er(t)/h_( Z kHa,@l >A0(t

Z;ﬂ=1ﬁl
k
_ Z O( H |A0 ‘51 161/2 Ao(t)/kh)
Ef:l Bi=8 =1
<Cy Z Hh—1+51 1ml/2 L O Hh’ 181172 — O (p=181/2),
Zz 1 Bi= Bl 1

that is, vo(t) €Sy /2. It follows that
0sv9(8)” (x,hD) = %(a(s)vo(s))w(x, hD) = %a(s)w(x, hD)vy(s)"(x,hD)—r(s)"(x, hD),
where the symbolic calculus shows that T(S)eh1/251/2. By Duhamel’s formula,

E(t) def V(t)—vo(t)(x,hD) = /Ot V(t—s)r(s)”(z,hD)ds=Or2_,12(h'/?)

and

V(t) =vo(t)" (x, hD)—i—/O (vo(t—s)#r(s))” (x, hD) ds
+/0/0 V(t—s—s)E(s—s")r(s")(xz,hD) ds ds

zvo(t)w(x,hD)—F/O (vo(t—8)#7r(8))" (x,hD)ds+Orz_2(h).

The iteration of this argument gives the full expansion of a symbol v(t) €S /2, the quan-
tization of which is equal to V' (¢) modulo an error Op2_ 2 (h). O
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Using Lemma A.1, we obtain the analogues of all the results of §6.2, for ¢>0, with
U(t) replaced by e *(F=iW)/h “and errors given by O(h™) instead of O(hM1/C°). The
proof of the modified Proposition 6.3 is then the same, and Proposition 9.1 follows from
the argument presented in §6.4. For instance, here is a version of the propagation results

of Proposition 6.2 (see also Proposition 8.1).

PROPOSITION A.1. Fiz T>0. Then, for any v=v(h)€L?, |lv]|=0(h=™) (in par-

ticular, v is h-tempered in the sense of (3.3)),
WE, (e~ F=W)/hy) « & (WF(v)),
where WFy, is defined by (3.4).
Proof. In the notation of Lemma A.1, we write

e TP =IW)/hy, — o =itP/hy/ (1),

and observe that the symbolic calculus on Sy, and (A.2) give WF,(V (t)v) CWF,(v).
Indeed, if a(z, hD)*v=0r2(h*>°) and a(x,&)=1 in a neighbourhood of (xg,&p) (that is,
(w0, &0) ¢ WFp(v)), then for any symbol b with supp b€{(z,&):a(z,£)=1},

b (x, hD)V () =b"v(t)"a" +Or2_r2(h™).

Hence, b*(z, hD)V (t)v=0r2(h*>°) and (¢, &) EWF(V (¢)v). It follows that all we need
is the inclusion
WE (e~ PV (t)o) C B (WF,(V (1)),

and that follows from the h-temperedness of V' (t)v and Egorov’s theorem. O
In §9 we also need the following propagation result.

LEMMA A.2. Let P satisfy the general assumptions of §3.2 and let W be as in
Proposition 9.1, in particular W|go,r,)=0. Suppose that, for some radii 1< Ry <Ry,

(P—iW —2)u=f, Imz=0(h), [lul| =O(R™), ||f|=0O(1), supp f € B(0, Ry).
Then,

for all € >0 there exists T =T(Ra, Ro,e) >0 such that
for all (x,§) e WFL(u)\T5 g g, X with p(z,§) >¢, (A.3)
| (®(x,€))|>3Ry for allt>T.

Here m:T* X — X s the natural projection. In other words, u|x\p(o,r,) is outgoing.
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Proof. The principal symbol satisfies Im(p—iW —Re z) <0, hence we have backward
propagation:
WF)(u) C O (WF(u)U | @(WF(f)) forall t>0. (A.4)
0<s<t
Indeed, we check that
(ihdy— (P —iW)) (U (t)u—e~=/My) = eit2/0 §,
and thus, by Duhamel’s formula,
ot
e—itz/hy, _ U(t)u+% / efi(tfs)(PfiW)/hefisz/hf ds,
0

from which (A.4) follows by applying Proposition A.1.
From the ellipticity of P—iW —z in X\ B(0, R;+r1) we have

Hu||L2(X\B(O,R1+r1)) =0(h™).

Together with (A.4), this implies that

WE(u) CTL U @5 (WEL(f), Ty = {(,€): e (2,€) A oo as t— —o0}.

s=20
The assumptions on P in §3.2 (essentially the fact that it is close to the Euclidean
Laplacian near infinity) show that for x(t) dﬁfﬁ(@’f(xo, &), p(zo,&0) ¢,

)2

d 2
=0, —|x(t , t>0, A.
pr 0, |xg| >R = dt\x()| >0 0 (A.5)

t=0
if R is large enough. Indeed,
d2 2 d / d /
2 [E@)7 =2 (x(t), 2(8)) = 27 (2 (1), pe ((2), £(2)))
= 2|p, [ +2(x(t), pi, [Pe] — P [P}]) = 467 —0(1)(€)*,

where we used (3.10) to obtain

Pz =o0((&)lz|™") and  pl=o((&)*[x|),

(here 0(1)—0 as z—00). Hence, t— |z(t)|? is strictly convex and that proves (A.5).
Now observe that, for any point QGWFh(u)\T§(07R2)X, we hzive Q€F+\T§(O,R2)X7
or p€®*(WF,(f)) for some s>0. In both cases, there exists 1< Re <Ry and t>0 such
—t *
that @ (Q)ETB(O,EQ)'
sphere {z:|z|=Rs} for some ty, coming from inside. From the above discussion, the

Thus, the trajectory (®°(¢))se[—¢,0) has necessarily crossed the

trajectory is then strictly outgoing (d|z(s)|/ds>0) for s>t¢. In particular, there exists a
time T=T(Rz, Ro,¢) (uniform for all such p) such that ®*(p) will be outside B(0,3Ry)
for s>T. O
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Note added in proof. The authors have obtained a direct proof of resolvent estimates

valid in a complex h-sized neighbourhood of the real axis [32]. That replaces parts of
the argument in §9. On the other hand, K. Datchev [9] has extended the validity of the

resolvent estimate on the real axis to operators on asymptotically Euclidean manifolds,

eliminating the need for analyticity of the symbol near infinity.
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