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1. Introduction

A celebrated theorem of Selberg [33] states that for congruence subgroups of SL2(Z) there
are no exceptional eigenvalues below 3

16 . We prove a generalization of Selberg’s theorem
for infinite index “congruence” subgroups of SL2(Z). Consequently we obtain sharp
upper bounds in the affine linear sieve, where in contrast to [3] we use an archimedean
norm to order the elements.

Let Λ be a finitely generated non-elementary subgroup of SL2(Z). Let XΛ=Λ\H
be the corresponding hyperbolic surface (which is of infinite volume if Λ is of infinite
index in SL(2, Z)). Let δ(Λ) denote the Hausdorff dimension of the limit set of Λ. The
generalization of Selberg’s theorem splits into two cases: δ(Λ)> 1

2 and 0<δ(Λ)6 1
2 .

In the case when δ(Λ)> 1
2 the discrete spectrum of the Laplace–Beltrami operator

on L2(XΛ) consists of a finite number of points in
[
0, 1

4

)
(see [18]). We denote them by

0 6λ0(Λ) <λ1(Λ) 6 ...6λmax(Λ) < 1
4 .
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The assumption δ(Λ)> 1
2 is equivalent to λ0(Λ)< 1

4 , and in this case δ(1−δ)=λ0 [25].
The following extension of Selberg’s theorem is proved in §2.

Theorem 1.1. Let Λ be a finitely generated subgroup of SL(2, Z) with δ(Λ)> 1
2 . For

q>1 let Λ(q) be the “congruence” subgroup

{x∈Λ : x≡ I mod q}.

There is ε=ε(Λ)>0 such that

λ1(Λ(q))>λ0(Λ(q))+ε,

for all square-free q>1 (note that λ0(Λ(q))=λ0(Λ)).

In [10] an explicit and stronger version of Theorem 1.1 is proven under the assump-
tion that δ(Λ)> 5

6 . See [30] for the sharpest known bounds towards Selberg’s 1
4 conjecture

as well as bounds towards the Ramanujan conjectures for more general groups.
Theorem 1.1 is a consequence of Theorem 1.2 in [3] and the following result, which

is of independent interest.

Theorem 1.2. Let Λ=〈S〉 be a finitely generated subgroup of SL(2, R) with δ(Λ)> 1
2 .

Let {Nj}j be a family of finite-index normal subgroups of Λ. Then the following are
equivalent :

(i) the Cayley graphs G(Λ/Nj , S) form a family of expanders;
(ii) there is ε=ε(Λ)>0 such that λ1(Λ/Nj)>λ0(Λ/Nj)+ε.

The argument in §2 establishes that (i)⇒ (ii). The implication (ii)⇒ (i) is proved us-
ing Fell’s continuity of induction in [10, §7]. Theorem 1.2 generalizes results of Brooks [4]
and Burger [5], [6] who proved it in the case of co-compact Λ.

Combining Theorem 1.1 with Lax–Phillips theory of asymptotic distribution of lat-
tice points [18], we obtain the following result, which is the crucial ingredient in the
execution of the affine linear sieve in the archimedean norm.

Theorem 1.3. Let Λ be a finitely generated subgroup of SL(2, Z) with δ(Λ)> 1
2 .

Assume that q is square-free and (q, q0)=1, where q0 is provided by the strong approx-
imation theorem [20]. There is ε1>0 depending on Λ such that for any g∈SL2(q) we
have

|{γ ∈Λ : ‖γ‖6T and γ≡ g mod q}|= cΛT 2δ

|SL2(q)|
+O(q3T 2δ−ε1).

We now turn to the discussion of the case δ(X)6 1
2 . In this case there is no discrete L2

spectrum and its natural replacement is furnished by the resonances of X, which are given
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as the poles of the meromorphic continuation of the resolvent RX(s)=(∆X−s(1−s))−1.
By the result of Patterson [25] and Sullivan [35], RX(s) is analytic for Re s>δ. Mazzeo
and Melrose [21] proved that RX(s) has a meromorphic continuation to the entire plane.
In [26] Patterson proved that RX(s) has a simple pole at s=δ and no further poles on the
line Re s=δ. His proof is based on ideas from ergodic theory related to the Ruelle zeta
function. Using further development of these ideas due to Dolgopyat [7], Naud [22] has
recently established that RX(s) is holomorphic (with the exception of a simple pole at
s=δ) for Re s>δ−ε, with ε depending on X. The following result, giving a resonance-free
region for congruence resolvent, is proved in §11.

Theorem 1.4. Let Λ be a finitely generated subgroup of SL(2, Z) with δ(Λ)6 1
2 . For

q>1 square-free let Λ(q) be the “congruence” subgroup

{x∈Λ : x≡ I mod q}.

Let X(q)=Λ(q)\H. There is ε=ε(Λ)>0 such that RX(q)(s) is holomorphic (with the
exception of a simple pole at s=δ) for

Re s> δ−ε min
{

1,
1

log(1+|Im s|)

}
.

When δ6 1
2 we cannot apply the expansion property [3] directly, instead, to prove

Theorem 1.4 we use a dynamical treatment and invoke a generalization of the underlying
result on measure convolution (“L2-flattening lemma”): see Lemmas 7.1 and 7.2 in §7.
It is likely that by combining our methods with the extension of Dolgopyat’s result [7]
to vector-valued functions, analyticity of RX(q)(s) can be established for Re s>δ−ε, in
complete analogy(1) with Theorem 1.1.

Using methods of Lalley [16] we obtain the following analogue of Theorem 1.3, which
is sufficient for sieving applications.

Theorem 1.5. Let Λ be a finitely generated subgroup of SL(2, Z) with 0<δ(Λ)6 1
2 .

Assume that q is square-free and (q, q0)=1, where q0 is provided by the strong approx-
imation theorem [20]. There are ε1>0 and C>0 depending on Λ such that for any
g∈SL2(q) we have

|{γ ∈Λ : ‖γ‖6T and γ≡ g mod q}|= cΛT 2δ

|SL2(q)|
(1+O(T−1/ log log T ))+O(qCT 2δ−ε1).

(1) The analogy between Theorems 1.1 and 1.4 becomes clearer when their assertions are expressed
in terms of the Selberg zeta function [32]. If Λ is a finitely generated subgroups of SL2(R) the Selberg zeta
function ZX(s) associated with X=Λ\H is known to be an entire function, whose non-trivial zeros are
given by the resonances and the finite point spectrum [11], [27]. Consequently, Theorem 1.1 is equivalent

to the assertion that when δ(Λ)> 1
2

there is ε(Λ)>0 such that ZX(q)(s) is analytic and non-vanishing

on the set {s:Re s>δ−ε}, except at s=δ which is a simple zero, while Theorem 1.4 is equivalent to the

assertion that when δ(Λ)6 1
2

there is ε(Λ)>0 such that ZX(q)(s) is analytic and non-vanishing on the

set {s:Re s>δ−ε min{1, 1/log(1+|Im s|)}}, except at s=δ which is a simple zero.
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We turn to applications to the affine linear sieve [3]. Consider the standard action
on the 2×2 integer matrices by multiplication on the left, and take the orbit O of I (the
identity matrix) under Λ. Set

|x|=
( 2∑

j,k=1

x2
jk

)1/2

,

where

x=
(

x11 x12

x21 x22

)
.

Set NΛ(T )=|{x∈Λ:|x|6T}| and let δ(Λ) be the Hausdorff dimension of the limit set of
an orbit Λz⊂H∪{∞}∪R, where H is the hyperbolic plane, z∈H and Λ acts by linear
fractional transformations. By the results of Lax–Phillips [18] and Lalley [16], we have
that NΛ(T )∼cΛT 2δ(Λ), as T!∞. Let f∈Q[xjk] be integral on O and assume that it
is weakly primitive for O, that is gcd{f(x):x∈O}=1. If f is not weakly primitive then
f/N is, where N=gcd f(O), and we can represent any weakly primitive f as g/N with
g∈Z[xjk] and N=gcd(O).

The coordinate ring Q[xjk]/(det(xjk)−1) is a unique factorization domain [29] and
we can factor f into t=t(f) irreducibles f1f2 ... ft in this ring. Set

πΛ,f (T ) = |{x∈Λ : |x|6T and fj(x) is prime for j =1, ..., t}|.

For f∈Z[xjk] weakly primitive with t(f) irreducible factors, our conjectured asymp-
totics is of the form

πΛ,f (T )∼ c(Λ, f)NΛ(T )
(log T )t(f)

, as T !∞,

where c(Λ, f) can be expressed as a product of local densities, see [9] and [31] for an
example of explicit computation and numerical experiments. In §13 we establish the
following sharp upper bound for πΛ,f (T ).

Theorem 1.6. Let Λ be a subgroup of SL(2, Z) which is Zariski dense in SL2 and
let f∈Z[xjk] be weakly primitive with t(f) irreducible factors. Then

πΛ,f (T )� NΛ(T )
(log T )t(f)

.

We also obtain the following lower bound for the number of points x∈Λ for which
f has at most a fixed number of prime factors.

Theorem 1.7. Let Λ be a subgroup of SL(2, Z) which is Zariski dense in SL2 and
let f∈Z[xjk] be weakly primitive with t(f) irreducible factors. Then there is an r<∞,
which can be given explicitly in terms of ε(Λ) in Theorems 1.1 and 1.4, such that

|{x∈Λ : |x|6T and f(x) has at most r prime factors}|� NΛ(T )
(log T )t(f)

.
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2. Generalization of Selberg’s 3
16

theorem when δ> 1
2

Being a subgroup of finite index in Λ(1), Λ(q) has the same bottom of the spectrum,
λ0(Λ(q)\H)=λ0(Λ(1)\H). As in [10, §2], we have that for q large enough Λ(1)/Λ(q)∼=
SL2(Z/qZ). Let S={A1, ..., Ak}, and let Sq be the natural projection of S modulo q.

Theorem 1.7 in [3] implies that if Λ=〈S〉 is non-elementary, then

Gq =G(SL2(Z/qZ), Sq)

is a family of expanders. Consider the space H(q) of vector-valued functions F on
F=F(1), the fundamental domain of Λ=Λ(1), satisfying

F (γz) =Rq(γ)F (z)

for γ∈Λ(1)/Λ(q)∼=SL2(Z/qZ), where Rq(γ) is the regular representation of SL2(Z/qZ).
We denote by 〈· , ·〉 the inner product on this space and by ‖ · ‖ the associated norm.
Let ϕ0 denote the eigenfunction corresponding to λ0. Let H0(q) denote the subspace of
functions in H(q) orthogonal to ϕ0⊗Id. The assertion of Theorem 1.1 is equivalent to
existence of c>0 such that ∫

F ‖∇F‖2 dµ∫
F ‖F‖2 dµ

>λ0+c

for all F∈H0(q).
Applying [3, Theorem 1.7] for each z∈F(1) implies that there is ε>0, depending

only on S, such that for all F∈H0(q), we have

‖F (γz)−F (z)‖> ε‖F (z)‖ for some γ ∈S. (2.1)

Let f=‖F‖, and decompose it as

f = aϕ0(z)+b(z),

where ∫
F

ϕ0(z)b(z) dµ(z) = 0 (2.2)

and ∫
F
|f |2 dµ = a2+

∫
F
|b|2 dµ =1.

Write

F (z) = (F1(z), ..., FN (z)),
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where N=|SL2(Z/qZ)|. Since

∇
( N∑

j=1

|Fj(z)|2
)1/2

=


( N∑

j=1

Fj(z)∇Fj(z)
)( N∑

j=1

|Fj(z)|2
)−1/2

, if
N∑

j=1

|Fj(z)|2 6=0,

0, otherwise,

we have
‖∇F‖2(z) >

∣∣∇‖F‖∣∣2(z) = |∇f |2(z).

Consequently we obtain∫
F ‖∇F‖2 dµ∫
F ‖F‖2 dµ

>

∫
F

∣∣∇‖F‖∣∣2 dµ∫
F ‖F‖2 dµ

=

∫
F |∇f |2 dµ∫
F |f |2 dµ

=

∫
F 〈∆f, f〉 dµ∫
F |f |2 dµ

=
∫
F
〈aλ0ϕ0+∆b, aϕ0+b〉 dµ = a2λ0+〈∆b, b〉

(2.2)

> a2λ0+λ1

∫
F
|b|2 dµ

>λ0+(λ1−λ0)
∫
F
|b|2 dµ.

By a theorem of Lax and Phillips [18], there are only finitely many discrete eigen-
values of Λ in

[
0, 1

4

]
, consequently,

λ1−λ0 > c1 > 0.

Therefore, as soon as
∫
F |b|

2 dµ>ε1>0, we have that∫
F |∇F |2 dµ∫
F |F |2 dµ

>λ0+c1ε1.

Now consider the case
∫
F |b|

2 dµ=0. We may assume a=1 and write F (z)=u(z)ϕ0(z),
with u(z)=(u1(z), ..., uN (z)), where N=|SL2(Z/qZ)|. Now

‖u(z)‖=
N∑

j=1

|uj |2(z) = 1

implies that
N∑

j=1

uj
∂uj

∂x
=

N∑
j=1

uj
∂uj

∂x
=0,

and since

∂(ϕ0uj)
∂x

=uj
∂ϕ0

∂x
+ϕ0

∂uj

∂x
and

∂(ϕ0uj)
∂y

=uj
∂ϕ0

∂y
+ϕ0

∂uj

∂y
,
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we have that

‖∇ϕ0u‖2 =
(

∂ϕ0

∂x

)2 N∑
j=1

u2
j +ϕ2

0

N∑
j=1

(
∂uj

∂x

)2
+
(

∂ϕ0

∂y

)2 N∑
j=1

u2
j +ϕ2

0

N∑
j=1

(
∂uj

∂y

)2

+2ϕ0
∂ϕ0

∂x

N∑
j=1

uj
∂uj

∂x
+2ϕ0

∂ϕ0

∂y

N∑
j=1

uj
∂uj

∂y

= |∇ϕ0|2+ϕ2
0‖∇u‖2.

Consequently,∫
F ‖∇F‖2 dµ∫
F ‖F‖2 dµ

=

∫
F (|∇ϕ0|2+ϕ2

0‖∇u‖2) dµ∫
F |ϕ0|2 dµ

=

∫
F |∇ϕ0|2 dµ∫
F |ϕ0|2 dµ

+

∫
F ϕ2

0‖∇u‖2 dµ∫
F |ϕ0|2 dµ

>λ0+

∫
F ϕ2

0‖∇u‖2 dµ∫
F |ϕ0|2 dµ

.

Our aim now is to show that ∫
F ϕ2

0‖∇u‖2 dµ∫
F |ϕ0|2 dµ

> c2 > 0. (2.3)

To that end, we assume that ∫
F ϕ2

0‖∇u‖2 dµ∫
F |ϕ0|2 dµ

<� (2.4)

and will obtain a contradiction for sufficiently small � (�j below are of the form aj� for
suitable constants aj). Consider the fundamental domain F=Λ\H. Its boundary, ∂F ,
consists of finitely many geodesic arcs {lk}k splitting into pairs lj , l

′
j in such a way that

there is γj∈S so that lj =γj l
′
j , where γj are distinct and generate Λ. Further, we have a

decomposition of the form

F =K∪
⋃

k∈Cu

cuspk∪
⋃

j∈Fl

flarej ,

where the following hold:
(1) K is relatively compact in H;
(2) Cu is a set of cusps of F . Each cuspk is isometric to a standard cuspidal

fundamental domain P (Yk) of the form

P (Y ) = {z =x+iy : 0 <x < 1 and y >Y },

based on a horocycle
hY = {x+iy : y =Y };
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(3) Fl is a set of flares of F . Each flarej(α) is isometric to a standard hyperbolic
fundamental domain F (α) of the form

F (α) = {z : 1 < |z|<eβ and 0 < arg z <α},

where α< 1
2π.

Since ϕ0∈L2(F), we have that∫
K
|ϕ0|2 dµ > c3

∫
F
|ϕ0|2 dµ for some c3 > 0,

and therefore (2.4) implies that ∫
K ϕ2

0‖∇u‖2 dµ∫
K |ϕ0|2 dµ

6�1. (2.5)

We recall the definition of Fermi coordinates. Let η be the geodesic in the hyperbolic
plane parameterized with the unit speed in the form

t 7−! η(t)∈H, t∈R.

Then η separates H into two half-planes: a left-hand side and a right-hand side of η. For
each p∈H we have the directed distance % from p to η. There exists a unique t such that
the perpendicular from p to η meets η at η(t). Now (% , t) is a pair of Fermi coordinates
of p with respect to η. In these coordinates the metric tensor is

ds2 = d%2+cosh2% dt2. (2.6)

Introduce Fermi coordinates based on the bounding geodesics lj , and use them to
foliate K. By compactness, using (2.5), we can find z∈K and δ>0 such that∫

B(z,δ)

|ϕ0|2 dµ > c4 > 0,

and, for all j=1, ..., k, ∫
Tj(δ)

ϕ2
0‖∇u‖2 dµ∫

Tj(δ)
|ϕ0|2 dµ

<�2, (2.7)

where Tj(δ) is a tube lying in K and containing B(z, δ) along the perpendicular to lj .
Each tube Tj is of the form [−δ, δ]×[%1,j , %2,j ] in the appropriate Fermi coordinates.

Rewriting (2.7) in Fermi coordinates (2.6), we have∫
Tj(δ)

ϕ2
0‖∇u‖2 dµ >

∫ δ

−δ

∫ %2,j

%1,j

ϕ2
0

∥∥∥∥∂uj

∂%

∥∥∥∥2

cosh % d% dt.
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Let L denote the maximal length of the tubes Tj . Using the fact that if

|u(%1)−u(%2)|>C and %1−%2 6L

then ∫ %2

%1

|u′(%)|2 d% >
C2

L
,

since

C2 6

(∫ %2

%1

u′(%) d%

)2
6

(∫ %2

%1

1 d%

)(∫ %2

%1

|u′(%)|2 d%

)
,

we obtain that (2.7) implies that for all j=1, ..., k we have∫
B(z,δ)

ϕ2
0‖u(γjz)−u(z)‖ dµ(z) <�3

∫
B(z,δ)

ϕ2
0 dµ(z). (2.8)

On the other hand, since F (z)=u(z)ϕ0(z) and ϕ0(γz)=ϕ0(z) for all γ∈SL2(Z/qZ),
(2.1) implies that there is ε(S)>0 independent of q, such that

‖u(γz)−u(z)‖>ε(S) for some γ ∈S. (2.9)

Applying the mean-value theorem, we see that (2.8) implies a contradiction with (2.9)
once � is small enough depending on ε(S). Consequently we have proved the validity of
(2.3) and the proof of Theorem 1.1 is complete.

The adaption of the preceding argument to proving the implication (i)⇒ (ii) of The-
orem 1.2 is straightforward, as is the generalization of this result to higher-dimensional
hyperbolic spaces: The theorem of Lax and Phillips, of which we made crucial use in
the first part of the argument, holds for geometrically finite subgroups of SO(n, 1) with
Hausdorff dimension of the limit set greater than 1

2n. The second part of the argu-
ment proceeds as above by restricting to a compact part of the fundamental domain
and foliating it using Fermi coordinates. In particular, by combining the H3 analogue of
Theorem 1.2 with [36] and Theorem 6.3 in [3], we obtain the following theorem which
has applications to integral Apollonian packings [9], [15], [31].

Theorem 2.1. Let Λ be a geometrically finite subgroup of

SL2(Z[i])

with δ(Λ)>1 and such that the traces of elements of Λ generate the field Q(i). There is
ε=ε(Λ)>0 such that

λ1(Λ(A))>λ0(Λ(A))+ε

as A varies over square-free ideals in Z[i].
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3. Counting lattice points for δ> 1
2

Recall that the Poincaré upper half-plane model is the following subset of the complex
plane C:

H = {z =x+iy ∈C : y > 0},

with the hyperbolic metric

ds2 =
dx2+dy2

y2
.

The distance function on H is explicitly given by

%(z, w) = log
|z−	w|+|z−w|
|z−	w|−|z−w|

. (3.1)

We will use the expression

cosh %(z, w) = 1+2u(z, w),

where

u(z, w) =
|z−w|2

4 Im z Im w
. (3.2)

The ring M2(R) of 2×2 real matrices is a vector space with inner product given by

〈g, h〉=trace(ght).

One easily checks that ‖g‖=〈g, g〉1/2 is a norm in M2(R) and that

‖g‖2 = a2+b2+c2+d2 for g =
(

a b

c d

)
.

By taking z=w=i in (3.2), we obtain that

‖g‖2 = a2+b2+c2+d2 =4u(gi, i)+2. (3.3)

Now the result of Lax and Phillips [18] is as follows. Let

NΛ(T ; z, w) =#{γ ∈Λ : %(z, γw) 6T}.

Suppose that δ> 1
2 and write λj =δj(1−δj), δ0=δ. Denoting the eigenfunctions corre-

sponding to λj by ϕj , we have∣∣∣∣N(T ; z, w)−
∑

j

cjϕj(z)ϕj(w)eδjT

∣∣∣∣=O(T 5/6eT/2).
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Turning to congruence subgroups Λ(q) we have, using the methods of [18], that∣∣∣∣NΛ(q)(T ; z, w)−
∑

j

cjϕj,q(z)ϕj,q(w)eδj,qT

∣∣∣∣=O(q3T 5/6eT/2), (3.4)

where the implied constant is independent of q.
The base eigenfunction for Λ(q), normalized to have L2 norm 1, is given by

ϕ0,q =
1

|SL2(Z/qZ)|
ϕ0,1.

Combining Theorem 1.1 with (3.4), (3.1) and (3.3), we obtain ε1>0 depending on
Λ such that for any g∈SL2(q) we have

|{γ ∈Λ : ‖γ‖6T and γ≡ g mod q}|= cΛT 2δ

|SL2(q)|
+O(q3T 2δ−ε1),

establishing Theorem 1.3.

4. Shifts and thermodynamic formalism

When δ6 1
2 the L2 spectral theory of Lax and Phillips [18] is not available and we use

a symbolic dynamics approach, in particular the work of Lalley [16]. In this section we
review the key necessary notions and results pertaining to shifts of finite type.

A shift of finite type is defined as follows. Let A be an irreducible, aperiodic l×l

matrix of zeros and ones, called the transition matrix. Define Σ to be the space of all
sequences taking values in the alphabet {1, 2, ..., l} with transitions allowed by A, that is

Σ =
{

x∈
∞∏

n=0

{1, ..., l} :A(xn, xn+1) = 1 for all n

}
.

The space Σ is compact and metrizable in the product topology. Define the forward
shift σ: Σ!Σ by (σx)n=xn+1 for n>0.

Let C(Σ) be the space of continuous, complex-valued functions on Σ. For f∈C(Σ)
and 0<%<1 define

varnf =sup{|f(x)−f(y)| :xj = yj for 06 j 6n},

|f |% = sup
n>0

varn(f)
%n

,

F% = {f ∈C(Σ) : |f |% <∞}.
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The elements of F% are called Hölder continuous functions. The space F%, when
endowed with the norm ‖ · ‖%=| · |%+‖ · ‖∞ is a Banach space.

For f, g∈C(Σ) define the transfer operator Lfg∈C(Σ) by

Lfg(x) =
∑

y:σy=x

ef(y)g(y).

For each %∈(0, 1) and f∈F%, Lf :F%!F% is a continuous linear operator. If f is real-
valued then Lf is positive.

Denoting

Snf = f+fσ+...+fσn−1,

we have

Ln
f g(x) =

∑
y:σny=x

eSnf(y)g(y).

The following result is due to Ruelle, a proof can be found in [24] or [28].

Theorem 4.1. Let f∈F% be a real-valued function.
(1) There is a simple eigenvalue λf >0 of Lf :F%!F% with strictly positive eigen-

function hf .
(2) The rest of the spectrum of Lf is contained in {z∈C:|z|6λf−ε} for some ε>0.
(3) There is a Borel probability measure νf on Σ such that L∗fνf =λfνf .
(4) If hf is normalized so that

∫
Σ

hf dνf =1 then for every g∈C(Σ),

lim
n!∞

∥∥∥∥λ−n
f Ln

f g−
(∫

Σ

g dνf

)
hf

∥∥∥∥
∞

=0.

(5) There exist constants C1 and ε1 such that for all g∈F% and for all n,∥∥∥∥λ−n
f Ln

f g−
(∫

Σ

g dνf

)
hf

∥∥∥∥
%

6C1(1−ε1)n‖g‖%.

The pressure functional is defined by

P (f) = sup
ν

∫
Σ

f dν+Hν(σ),

where the supremum is taken over the set of σ-invariant probability measures and Hν(σ)
is the measure-theoretic entropy of σ with respect to ν. We have (see [24] or [28])

P (f) = log λf .
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A measure µ is called the equilibrium state or the Gibbs measure with potential f if∫
Σ

f dµ+Hµ(σ) =P (f).

For f∈F% the Gibbs measure µf is the unique σ-invariant probability measure on Σ for
which there exist constants 0<C16C2<∞ such that

C1 6
µf{y ∈Σ : yj =xj for 06 j <n}

λ−n
f eSnf(x)

6C2.

As will become clear in the next section, the analyticity properties of the map
z 7!Lzf , z∈C, will play a crucial role in the proof. For a fixed, real-valued function
f∈F%, such that Smf is strictly positive for some m, the quantities Lzf , λzf , hzf and
νzf will be abbreviated by Lz, λz, hz and νz, respectively.

5. Resolvent of transfer operator and lattice count problem

Let Λ be a Fuchsian group with no parabolic elements (this condition is automatically sat-
isfied in the case δ(Λ)6 1

2 , see [18]), generated by k elements g1, ..., gk⊂SL2(Z). We iden-
tify Λ with Σ∗, defined as the set of finite sequences in the alphabet {g1, g

−1
1 , ..., gk, g−1

k }
(l=2k) with admissible transitions. According to Series [34], this may be done so as to
obtain a shift of finite type.

Let w∈H, and suppose it is not a fixed point for any γ∈Λ. Let dH denote hyperbolic
distance. For x=x1, ..., xm∈Σ∗(=Λ) define

τ(x) = dH(i, x1 ... xmw)−dH(i, x2 ... xmw). (5.1)

The left shift σ on Σ corresponds to the Nielsen map (see [34]) F :L!L, where L

denotes the limit set of Λ.
Recalling that

Snτ = τ +τσ+...+τσn−1,

we have

Snτ(x) = dH(i, x1 ... xnxn+1 ... w)−dH(i, xn+1 ... w).

For a∈R, x∈Σ∗ and φ: Σ∗!R, let

N(a, x) =
∞∑

n=0

∑
y:σny=x

φ(y)1{Snτ(y)6a}. (5.2)
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Clearly
N(a, x) =

∑
y∈Λ

dH(i,yxw)−dH(i,xw)6a

φ(yx), (5.3)

where in the summation y is restricted so as to make yx admissible.
In particular, for φ=1,

N(a, x) = |{γ ∈Λ : dH(i, γxw)−dH(i, xw) 6 a}|.

Returning to (5.2), one has the renewal equation (cf. [16, equation (2.2)])

N(a, x) =
∑

x′:σ(x′)=x

N(a−τ(x′), x′)+φ(x)1{a>0}. (5.4)

The link with the transfer operator comes by taking the Laplace transform of (5.4).
Defining, for Re z<−C,

F (z, x) =
∫ ∞

−∞
eazN(a, x) da, (5.5)

equation (5.4) gives the relation

F (z, x) =
∑

x′:σ(x′)=x

ezτ(x′)F (z, x′)+
φ(x)

z
.

Thus we have

(I−Lz)F (z, x) =
φ(x)

z
. (5.6)

This leads us to the study of the resolvent (I−Lz)−1. Before stating the results
of Lalley [16] and Naud [22] for Lz|F%(Σ) (Theorem 5.1 below) we recall the following
reinterpretation of the Hausdorff dimension of the limit set in terms of the pressure
functional (see [24] or [28]). Because τ is eventually positive, the variational principle
implies (see [24] or [28]) that the pressure functional P (−sτ) is strictly decreasing and
has a unique positive zero. Define δ by P (−δτ)=0, that is,

λ−δ =1.

Theorem 5.1. (1) There is ε>0 such that for Re z<−δ+ε, z /∈U (U being a suit-
able neighborhood of −δ), we have

‖Ln
z |F%(Σ)‖% . |Im z|2e−εn. (5.7)

(2) For z∈U decompose on F%(Σ),

Lz =λz(νz⊗hz)+L′′z , (5.8)
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where z 7!λz, z 7!hz and z 7!νz are holomorphic extensions to U satisfying

Lzhz =λzhz, L∗zνz =λzνz and
∫

Σ

hz dνz =1.

Then
‖(L′′z )n‖% <e−εn for z ∈U. (5.9)

Part (1) follows from the discussion in Lalley [16, p. 25] (in the case when τ is not a
lattice) and Theorem 2.3 in Naud [22] to provide (5.7) when |Im z| is large. Naud’s work
build crucially on the approach of Dolgopyat [7]. Note that Lalley does not give explicit
estimates on ‖Ln

z ‖ for Re z=−δ and Im z!∞ and certainly no bound of the strength of
Theorem 2.3 in Naud [22].

Part (2) is Proposition 7.2 in [16].

6. Lattice count in congruence subgroups for δ6 1
2

In this section we modify the setup discussed in the preceding two sections to the setting
of congruence subgroups of Λ—the modification is analogous to the one preformed in the
case δ> 1

2 .
Fix the modulus q such that πq(Λ)=SL2(q). Instead of considering functions on Σ

(as in Lalley [16]), we consider functions on Σ×SL2(q).
For f∈C(Σ×SL2(q)) define

‖f‖∞ =max
x

( ∑
g∈SL2(q)

|f(x; g)|2
)1/2

,

Varnf =sup
{( ∑

g∈SL2(q)

|f(x; g)−f(y; g)|2
)1/2

:xj = yj for 06 j 6n

}
,

|f |% =sup
n

Varn(f)
%n

.

Let F%=F%(Σ×SL2(q)) denote the space of %-Lipschitz continuous functions with
the norm

‖ · ‖% = ‖ · ‖∞+| · |%.

Let τ : Σ∗!R be given by (5.1) and consider the “congruence transfer operator”
Mz=Mzτ on F%(Σ×SL2(q)):

Mzf(x; g) =
l∑

j=1

ezτ(j,x)f((j, x); gjg),
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where z∈C and the summation is restricted so as to make (j, x) admissible.
Thus our Mz differs from the one considered in [16] in that it acts on functions on

Σ×SL2(q) rather than on functions on Σ: the reason behind this difference is the same
as in the proof of the spectral gap when δ(Λ)> 1

2 .
We have

M2
zf(x; g) =

l∑
i1=1

ezτ(i1,x)Mzf((i1, x); gi1g)

=
l∑

i1,i2=1

ez(τ(i1,x)+τ(i2,i1,x))f((i2, i1, x); gi2gi1g),

and in general for the nth iterate we have

Mn
z f(x; g) =

l∑
i1,...,in=1

ez(τ(in,...,i1,x)+τ(in−1,...,i1,x)+...+τ(i1,x))f((in, ..., i1, x); gin ... gi1g),

(6.1)
where again the summation is restricted to admissible words.

From Ruelle’s theorem (Theorem 4.1) it follows that

l∑
i1,...,in=1

eRe z(τ(in,...,i1,x)+τ(in−1,...,i1,x)+...+τ(i1,x))∼λn
Re z (6.2)

for large n.
Let ϕ be a function on SL2(q). Returning to (5.2) and (5.3), we let

N(a, x) =
∑
y∈Λ

dH(0,yxw)−dH(0,xw)6a

ϕ(πq(y))

and F (z, x) be its Laplace transform, defined by (5.5).
Then

F (z, x) = f((z, x);πq(x)), (6.3)

where f((z, x); g) satisfies

(1−Mz)f =
1⊗ϕ

z
, (6.4)

and Mz is the congruence transfer operator introduced above (note that obviously 1⊗ϕ

is in F%(Σ×SL2(q))).
Our aim is to evaluate

N(a) =
∑
y∈Λ

dH(0,yw)−dH(0,w)6a

ϕ(πq(y)), (6.5)
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which gives the sum of ϕ on the mod-q reduction of the hyperbolic ball

{y ∈Λ : dH(0, yw)−dH(0, w) 6 a}.

Our goal now is to obtain the appropriate extension of Theorem 5.1 to the setting
of congruence subgroups. As is to be expected, it is at this point that the expansion
property will play a crucial role.

7. Expansion and L2 flattening

Let µ be a symmetric measure on G=SL2(p) (for the sake of exposition we first consider
the simpler case of prime p) and consider the convolution map T :L2(G)!L2(G), given by
ϕ 7!µ∗ϕ. Decomposing the regular representation of G into irreducible representations,
it follows from the result of Frobenius [8] that each eigenvalue λ of the convolution
restricted to L2

0(G) occurs with multiplicity at least 1
2 (p−1). Trace calculation yields

therefore
|G| ‖µ‖22 =

∑
x∈G

〈T 2δx, δx〉> 1
2 (p−1)λ2.

Hence

|λ|6
√

2
p−1

‖µ‖2|G|1/2. (7.1)

Recall also the L2-flattening lemma proven in [2]. Let µ∈P(G), a probability mea-
sure on G, satisfy

‖µ‖∞ <p−τ (7.2)

for some τ >0 and also
µ(aG1) <p−τ (7.3)

for all cosets of proper subgroups G1 of G. Given �>0 there is l=l(τ, x)∈Z+ such that

‖µ(l)‖2 < |G|−1/2+�. (7.4)

Set µ′(x)=µ(x−1). Since µ∗µ′ also satisfies (7.2) and (7.3), we have by (7.4) that

‖(µ′∗µ)(l)‖2 < |G|−1/2+�.

Consider the convolution operator Tϕ=µ′∗µ∗ϕ and let λ be an eigenvalue of T on L2
0(G).

Hence λl is an eigenvalue of T l on L2
0(G) and applying (7.1) with µ replaced by (µ′∗µ)(l)

implies that

|λ|l 6
√

2
p−1

‖(µ′∗µ)(l)‖2 |G|1/2 <

√
2

p−1
|G|� <p−1/4
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if we take �< 1
4 . Consequently,

|λ|<p−1/4l.

This means that if ϕ∈L2
0(G), then

‖µ′∗µ∗ϕ‖2 6 p−1/4l‖ϕ‖2,

and hence
‖µ∗ϕ‖2 6 p−1/8l‖ϕ‖2.

We proved that if µ∈P(G) satisfies (7.2) and (7.3) for some τ >0, then

‖µ∗ϕ‖2 6 p−τ ′‖ϕ‖2, ϕ∈L2
0(G),

for some τ ′>0. Therefore, if µ∈M+(G), a positive real-valued measure on G, satisfies

‖µ‖∞ <p−τ‖µ‖1 (7.5)

and
µ(aG1) <p−τ‖µ‖1 (7.6)

for cosets of proper subgroups G1, then

‖µ∗ϕ‖2 6 p−τ ′‖µ‖ ‖ϕ‖2, ϕ∈L2
0(G). (7.7)

We make next the following observation. Assume that B>0 and µ∈M+(G) satisfies
‖µ‖16B,

‖µ‖∞ <p−τB, (7.8)

and
µ(aG1) <p−τB (7.9)

for cosets of proper subgroups G1. Then

‖µ∗ϕ‖2 <p−τ ′B‖ϕ‖2 for ϕ∈L2
0(G). (7.10)

Indeed, if ‖µ‖1>p−τ/2B, then (7.5) and (7.6) hold with τ replaced by 1
2τ and (7.10)

follows from (7.7). If ‖µ‖16p−τ/2B then obviously

‖µ∗ϕ‖2 6 ‖µ‖1‖ϕ‖2 <pτ/2B‖ϕ‖2.

More generally, let µ∈MC(G) satisfy ‖µ‖16B,

‖µ‖∞ <p−τB
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and
|µ|(aG1) <p−τB

for cosets of proper subgroups G1. Decompose

µ= |µRe|−(|µRe|−µRe)+i(|µIm|−(|µIm|−µIm)).

Each of the measures ν=|µRe|, |µRe|−µRe, |µIm| and |µIm|−µIm obviously satisfies (7.8)
and (7.9). Hence

‖ν∗ϕ‖2 <p−τ ′B‖ϕ‖2.

Thus we obtain the following result.

Lemma 7.1. Given �>0, there is �′>0 such that if µ∈MC(G) and B>‖µ‖1 satisfy

‖µ‖∞ <p−�B and |µ|(aG1) <p−�B

for cosets of proper subgroups G1 of G, then

‖µ∗ϕ‖2 6Cp−�
′
B‖ϕ‖2 for ϕ∈L2

0(G).

Here p is assumed to be sufficiently large.

We have a similar result for G=SL2(q) with q square-free (see [3] and [36]). We
make the following decomposition of the space L2(SL2(q)). For q1 |q, define Eq1 as the
subspace of functions defined mod q1 and orthogonal to all functions defined mod q2 for
some q2 |q1, q2 6=q1. Hence

L2(SL2(q))= R⊕
⊕
q1|q

Eq1 , (7.11)

which is, in fact, the generalized Fourier–Walsh decomposition corresponding to the
product representation

SL2(q)∼=
∏
p|q

SL2(p).

Let P1 (resp. Pq1) be the projection operator on the constant functions (resp. Eq1).

Lemma 7.2. Let q be square-free and G=SL2(q). For µ∈MC(G) and q1 |q define
|||πq1(µ)|||∞ to be the maximum weight of |µ| over cosets of subgroups of SL2(q1) that
have proper projection in each divisor of q1. Given �>0, there is �′>0 such that if µ

satisfies ‖µ‖16B and

|||πq1(µ)|||∞ <q−�B for q1 | q, q1 >q1/10, (7.12)

then
‖µ∗ϕ‖2 6Cq−�

′
B‖ϕ‖2 for ϕ∈Eq. (7.13)

Remark. The assumption ϕ∈Eq is important in (7.13). The restriction q1>q1/10 in
(7.12) has to do with the fact that an irreducible representation of SL2(q) which does
not factor through SL2(q′) for some q′ |q has dimension at least

∏
p|q

1
2 (p−1).
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8. Bounds for congruence transfer operator

Our goal is to obtain a bound for powers of transfer operator ‖Mm
z ‖% for the family of

congruence subgroups. Here z denotes a complex number with Re z<0 which is bounded
in absolute value. Recall that Mz acts on functions on Σ×G, so in order to apply
Lemma 7.2 we need to decouple the variables. Returning to (6.1), fix m6r<n such that
m=n−r∼log q to be specified (we assume q large enough). Write

Mn
z f(x; g)

=
l∑

i1,...,in=1

ez(τ(in,...,i1,x)+τ(in−1,...,i1,x)+...+τ(i1,x))f((in, ..., in−r+1, 0); gin ... gi1g)

+O(λn
Re z|f |%%r),

where the error term refers to the L∞l2(G)(Σ)-norm.
Fix then the matrices corresponding to indices in, ..., in−r+1 and consider the func-

tion ϕ on G defined by

ϕ(g) = f((in, ..., in−r+1, 0); gin ... gin−r+1g).

We assume that f(x; ·)∈Eq for each x. Hence ϕ∈Eq.
Our aim is to apply Lemma 7.2 with

µ=
∑

i1,...,in−r

ez(τ(in,...,i1,x)+...+τ(i1,x))δgin−r
...gi1

.

Thus, by (6.2), we have

‖µ‖1 .λm
Re ze

Re z(τ(in,...,in−r+1,0)+...+τ(in−r+1,0))e|Re z| |τ |%/(1−%)≡B,

where we used the inequality

|τ(in, ..., in−r+1, in−r, ..., i1, x)−τ(in, ..., in−r+1, x)|6 |τ |%%r.

We now bound ‖µ‖∞, which amounts to estimating

S :=
∑

gim ...gi1=g

eRe z(τ(in,...,i1,x)+...+τ(i1,x)),

where g is fixed. (We use here the fact that the relation gim ... gi1 =g mod q is equivalent
to gim ... gi1 =g because of the restriction on m.) Also because of the index restriction
on the transition matrix A, the condition gim ... gi1 =g specifies (im, ..., i1)∈Σ so that
estimating S amounts to bounding

T := eRe z(τ(in,...,i1,x)+...+τ(i1,x)) .Bλ−m
Re ze

Re z(τ(im,...,i1,x)+...+τ(i1,x))
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for fixed (in, ..., i1, x)∈Σ. Thus

B−1T =λ−m
Re zM

m
Re zδ(im,...,i1,x)(x) 6λ−m

Re z‖M
m
Re zφ‖∞

with φ being any non-negative function on Σ satisfying φ(im, ..., i1, x)=1.
By Ruelle’s theorem (Theorem 4.1),∥∥∥∥λ−m

Re zM
mφ−

(∫
Σ

φdν

)
h

∥∥∥∥
%

. (1−ε1)m‖φ‖%,

implying that

‖λ−m
Re zM

mφ‖∞ 6 c

(∫
Σ

φdν+(1−ε1)m‖φ‖%

)
.

We may now choose φ suitably, so as to obtain an estimate

λ−m
Re z‖M

mφ‖∞ . e−cm.

Hence,
S, T . q−�B. (8.1)

More generally, we also need to evaluate |||πq1(µ)|||∞ for q1 |q. It turns out that the
issue reduces to the previous one, using the following observation (cf. [2]). Let H<G

and πp(H)<SL2(p) proper for each p|q1. Then we can assume the second commutator of
πp(H) to be trivial if p|q1, and hence the second commutator of H to be trivial (mod q1).
Take m1<m, m1∼log q1, so as to ensure that words of length 2m1 have norm less than q1.
Using properties of the free group (see [2]), it follows from the preceding that the number
of (im1 , ..., i1)∈Σ such that gim1

... gi1∈aH is bounded by O(mC
1 ) for some constant C.

Hence we may invoke the estimate on T with m replaced by m1, to obtain also that

|||πq1(µ)|||∞ <q−�1 B.

Applying Lemma 7.2, it follows that

‖µ∗ϕ‖2 6 q−�
′
‖µ̃‖1‖ϕ‖2

6 q−�
′
λm

Re ze
Re z(τ(in,...,in−r+1,0)+...+τ(in−r+1,0))e|Re z| |τ |%/(1−%)‖f‖∞,

or ∥∥∥∥ l∑
i1,...,in−r=1

ez(τ(in,...,i1,x)+...+τ(i1,x))f((in, ..., in−r+1, 0); gin ... gi1g)
∥∥∥∥

l2(G)

6 q−�
′
λm

Re ze
Re z(τ(in,...,in−r+1,0)+...+τ(in−r+1,0))e|Re z| |τ |%/(1−%)‖f‖∞.

(8.2)
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Summing (8.2) over in, ..., in−r+1 implies by (6.2) again that∥∥∥∥ l∑
i1,...,in=1

ez(τ(in,...,i1,x)+τ(in−1,...,i1,x)+...+τ(i1,x))f((in, ..., in−r+1, 0); gin ... gi1g)
∥∥∥∥

l2(G)

. q−�
′
λm+r‖f‖∞.

Therefore it follows that, if n�log q, then

‖Mn
z f‖L∞

l2(G)
(Σ) 6λn

Re z(q
−�′‖f‖∞+%r|f |%) 6λn

Re zq
−�′(‖f‖∞+%n/2|f |%) (8.3)

for
f ∈F ′

% =F%∩CEq (Σ),

where Eq was defined just before (7.11). Note that in (8.3) there is no restriction on
Im z.

We also need to estimate |Mn
z f |%.

Let x, y∈Σ be such that xi=yi for 06i<l. Estimate

|Mn
z f(x; g)−Mn

z f(y; g)|

6
∑

i1,...,in

eRe z(τ(in,...,i1,x)+...+τ(i1,x))

×|f((in, ..., i1, x); gin ... gi1g)−f((in, ..., i1, y); gin ... gi1g)|

+
∣∣∣∣ ∑

i1,...,in

(ez(τ(in,...,i1,x)+...+τ(i1,x))−ez(τ(in,...,i1,y)+...+τ(i1,y)))

×f((in, ..., i1, y); gin ... gi1g)
∣∣∣∣

=:U+V.

Clearly for the first term we have

U .λn
Re z|f |%%n+l. (8.4)

To estimate V we repeat the argument leading to (8.3). Thus we bound V as follows∣∣∣∣ ∑
i1,...,in

(ez(τ(in,...,i1,x)+...+τ(i1,x))−ez(τ(in,...,i1,y)+...+τ(i1,y)))

×f((in, ..., in−r+1, 0); gin ... gi1g)
∣∣∣∣

+%r|f |%
∑

i1,...,in

|ez(τ(in,...,i1,x)+...+τ(i1,x))−ez(τ(in,...,i1,y)+...+τ(i1,y))|=:H+K.
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Estimate∑
i1,...,in

|(ez(τ(in,...,i1,x)+...+τ(i1,x))−ez(τ(in,...,i1,y)+...+τ(i1,y)))|

6
∑

i1,...,in

eRe z(τ(in,...,i1,x)+τ(i1,x))|1−ez(τ(in,...,i1,y)+...+τ(i1,y)−τ(in,...,i1,x)−...−τ(i1,x))|

.λn
Re z(1+|Im z|)|τ |%(%n+l+...+%1+l)

<λn
Re z

1+|Im z|
1−%

|τ |%%l. (8.5)

Therefore

K < λn 1+|Im z|
1−%

|τ |%%l+r|f |%. (8.6)

To bound H we apply again the convolution estimate on G from §7. Consider the
measure

ν =
∑

i1,...,in−r

(ez(τ(in,...,i1,x)+...+τ(i1,x))−ez(τ(in,...,i1,y)+...+τ(i1,y)))δgin−r
...gi1

with in, ..., in−r+1 fixed.
Repeating (8.5) gives (with m=n−r)

‖ν‖.λm(1+|Im z|)|τ |%
%l

1−%
eRe z(τ(in,...,in−r+1,0)+...+τ(in−r+1,0))≡B′.

Also, as above, we have

1
B′ ‖ν‖∞ =

1
B′ |e

z(τ(in,...,i1,x)+...+τ(i1,x))−ez(τ(in,...,i1,y)+...+τ(i1,y))|

6λ−meRe z(τ(im,...,i1,x)+...+τ(i1,x))
(8.1)
< q−�

and
1
B′ |||πq1(ν)|||∞ <q−�1 for q1 | q.

Therefore, by the results from §7, we obtain (with ϕ defined as in §7) that

‖ν∗ϕ‖l2(G) 6 q−�
′
B′‖f‖∞

. q−�
′
λm(1+|Im z|)|τ |%

%l

1−%
eRe z(τ(in,...,in−r+1,0)+...+τ(in−r+1,0))‖f‖∞.

Summation over in, ..., in−r+1 gives then

‖H‖l2(G) . q−�
′
λn(1+|Im z|)|τ |%%l‖f‖∞. (8.7)
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From (8.4), (8.6) and (8.7) it follows that

‖Mn
z f(x; ·)−Mn

z f(y; ·)‖l2(G)

. %lλn
Re z(%

n|f |%+%r(1+|Im z|)|f |%+q−�
′
(1+|Im z|)‖f‖∞).

Therefore, if n�log q, we have

|Mn
z f |% 6Cλn

Re zq
−�′(‖f‖∞+%n/2|f |%)(1+|Im z|). (8.8)

Take n such that
n∼ log q+C log(1+|Im z|) (8.9)

for a suitable constant C. It follows from (8.3) and (8.8) that

‖Mn
z f‖∞+%n/2|Mn

z f |% <λn
Re zq

−�′(‖f‖∞+%n/2|f |%). (8.10)

Iterating (8.10) shows that if f∈F ′
%, then for all m∈Z+,

‖Mmn
z f‖∞+%n/2|Mmn

z f |% 6λmn
Re zq

−m�′‖f‖%,

and hence
‖Mmn

z f‖% <λmn
Re zq

−m�′q(1+|Im z|)‖f‖%,

where n is given by (8.9). Thus for m>1,

‖Mm
z |F ′%‖% <λm

Re zq
−m�′/n(q(1+|Im z|))c.

We distinguish two cases: log(1+|Im z|).log q and log q�log(1+|Im z|). The con-
clusion is the following.

Lemma 8.1. Notation being as above, there is ε>0 such that

‖Mm
z |F ′%‖% <qCe−εmλm

Re z, if |Im z|6 q, (8.11)

and
‖Mm

z |F ′%‖% < |Im z|Ce−εm log q/log |Im z|λm
Re z, if |Im z|>q. (8.12)

9. Resolvent of congruence transfer operator

We now use Lemma 8.1 to estimate the resolvent (I−Mz)−1 on F ′
%. By (6.3) and (6.4),

this will provide us with bounds on F (z, x), assuming that ϕ∈Eq.
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Take Re z<−δ+ε1 such that

λ−δ+ε1 <eε/2

with ε>0 from (8.11). If |Im z|<q, we obtain that

‖(I−Mz)−1|F ′%‖<qC
∞∑

m=0

e−εmλm
Re z .

1
ε
qC .

If |Im z|>q, we impose the restriction

Re z <−δ+ε2
log q

log |Im z|

with ε2>0 small enough to ensure that

λRe ze
−εlog q/log |Im z| <e−ε log q/2 log |Im z|.

Under this restriction on z, we obtain from (8.12) that

‖(I−Mz)−1|F ′%‖< |Im z|C .

In summary, we have proved the following result.

Theorem 9.1. The resolvent (I−Mz)−1|F ′% is holomorphic on the complex region
D(q) given by

Re z <−δ+ε2 min
{

1,
log q

log(|Im z|+1)

}
(9.1)

(with ε2 independent of q) and satisfies the estimate

‖(I−Mz)−1|F ′%‖< (q+|Im z|)C .

Returning to (6.3) and (6.4), it follows that for ϕ∈Eq the Laplace transform F (z, x)
of N(a, x) is bounded by

|F (z, x)|. (q+|Im z|)C

|z|
‖ϕ‖2 (9.2)

for z satisfying (9.1).
To extract information about N(a), we apply Fourier inversion to (5.5), following

the argument in [16, p. 31] (but with a different class of functions k).
Specify some smooth and compactly supported bump function k on R. From (5.5)

we get

I :=
∫ ∞

−∞
k(t)e−δtN(a+t) dt = eδa

∫ ∞

−∞
e−iaθk̂(−iθ)F (−δ+iθ) dθ, (9.3)
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where
k̂(z) =

∫ ∞

−∞
eztk(t) dt

is an entire function.
Note that |k̂(iθ)| is rapidly decaying since k is smooth.
In fact, proceeding more precisely, fix a small parameter γ>0 (the localization of k)

and consider functions

kγ(t) =
1
γ

K

(
t

γ

)
,

where K is a fixed smooth bump function such that∫ ∞

−∞
K(t) dt =1, (9.4)

suppK ⊂
[
− 1

2 , 1
2

]
,

|K̂(λ)|. e−|λ|
1/2

for |λ|!∞.

Hence
|k̂(z)|. e−|γ|z||

1/2
for |Re z|=O(1). (9.5)

Returning to (9.3), modify the line of integration Re z=0 to the curve

z(θ) =w(θ)+iθ,

where

w(τ) =
1
2
ε2 min

{
1,

log q

log(1+|θ|)

}
,

so as to remain in the analyticity region given by Theorem 9.1.
We obtain

eδa

∫ ∞

−∞
e−az(θ)k̂(z(θ))F (−δ+z(θ)) dθ

= eδa

∫ ∞

−∞
e−aw(θ)−iaθk̂(w(θ)+iθ)F (−δ+w(θ)+iθ) dθ,

which is bounded by

J := ‖ϕ‖2eδa

∫ ∞

−∞
e−aw(θ)e−(γ|θ|)1/2

(q+|θ|)C dθ,

applying (9.5) and (9.2).
From the definition of w(θ) it is clear that

I, J < eδaqCγ−C exp
(
−aε3 min

{
1,

log q

log(a/γ)

})
‖ϕ‖2.

This proves (replacing k(t) by eδtk(t)) the following estimate.

Proposition 9.2. Let ϕ∈Eq and N(a) be given by (6.5). Then∣∣∣∣∫ γ/2

−γ/2

kγ(t)N(a+t) dt

∣∣∣∣<qCγ−C exp
(
−aε3 min

{
1,

log q

log(a/γ)

})
eδa‖ϕ‖2.
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10. Bound for the error term

Next consider the case where in (5.2), φ=1 (the constant function).
Here we consider simply the action of Lz on F%(Σ) exactly as in [16], but we use the

stronger estimates on (I−Lz)−1 following from (5.7), given by [22].
If Re z<−δ+ε4 (with ε4 small enough) and z /∈U (some complex neighborhood of

−δ), (5.7) implies that
‖(I−Lz)−1‖. |Im z|2. (10.1)

For s∈U , apply (5.8). Thus

Ln
z =λn

z (νz⊗hz)+(L′′z )n,

where ‖(L′′z )n‖<eεn by (5.9).
Hence for z∈U ,

(I−Lz)−1 =
1

1−λz
(νz⊗hz)+(I−L′′z )−1 (10.2)

with (I−L′′z )−1 holomorphic (this is Proposition 7.2 in [16]).
Combining (10.1) and (10.2), we get the following result.

Proposition 10.1. Consider Lz acting on F%(Σ). Then, for Re z<−δ+ε5,

(I−Lz)−1− 1
1−λz

(νz⊗hz)

is holomorphic and bounded by C(|Im z|2+1).
Let µz=νz⊗hz. The function 1/(1−λz) has a pole at z=−δ with residue

− 1
(dλz/dz)|z=−δ

=
1∫

Σ
τ dµ−δ

.

Consequently

(I−Lz)−1− ν−δ⊗h−δ∫
Σ

τ dµ−δ

1
z+δ

(10.3)

is analytic for Re z<−δ+ε5.

Letting
N(a) =

∑
y∈Λ

dH(0,yw)−dH(0,w)6a

1 (10.4)

and
F (z) =

∫ ∞

−∞
eazN(a) da,
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it follows from (5.6) and (10.3) that

F (z) =
1
z
(I−Lz)−11 =

h−δ(ξ≡w)∫
Σ

τ dµ−δ

1
z+δ

+G(z),

where G(z) is analytic on Re z<−δ+ε5 and bounded by C(|Im z|2+1).
As in §9 we have∫ ∞

−∞
kγ(t)e−δtN(a+t) dt

= eδa

∫ ∞

−∞
k̂γ(iθ)F (−δ+iθ)e−iaθ dθ

= eδa

(
C0 PV-

∫ ∞

−∞
e−iaθk̂γ(iθ)

1
iθ

dθ+
∫ ∞

−∞
e−iaθk̂γ(iθ)G(−δ+iθ) dθ

)
,

(10.5)

where

C0 =
h−δ(ξ≡w)∫

Σ
τ dν−δ

.

The second term in (10.5) is estimated by moving the line of integration Re z=0 to
Re z= 1

2ε5. We obtain, by (9.5) and the assumption on G, that∣∣∣∣∫ ∞

−∞
e−iaθk̂γ(iθ)G(−δ+iθ) dθ

∣∣∣∣. e−ε5a/2

∫ ∞

−∞
(1+θ2)e−(γ|θ|)1/2

dθ < cγ−3e−ε5a/2.

Also
PV-

∫ ∞

−∞
e−iaθk̂γ(iθ)

1
iθ

dθ =
∫ ∞

0

kγ(t+a) dt
(9.4)
= 1.

Therefore we obtain the following result.

Proposition 10.2. Let N(a) be given by (10.4). Then∫ ∞

−∞
kγ(t)N(a+t) dt =C0e

δa+o(γ−3e(δ−ε6)a)

for some ε6>0. Here C0 is a fixed constant.

11. Proof of Theorem 1.4

Let ϕ be a function on SL2(q) and let N(a, x) denote the counting function given as
above by

N(a, x) =
∑
y∈Λ

dH(0,yxw)−dH(0,xw)6a

ϕ(πq(y)).
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What we proved in Theorem 9.1 is that for ϕ∈Eq the Laplace transform of N(a, x) in a

(given by (5.5)) is holomorphic on D(q) given by

D(q) =
{

z : Re z <−δ+ε2 min
{

1,
log q

log(|Im z|+1)

}}
with ε2 independent of q. Let us denote by Lz(q) the dynamical transfer operator on the
congruence subgroup Λ(q). Thus det(1−Lz(q)) is the dynamical (Ruelle’s) zeta function
associated with the congruence subgroup Λ(q). Using (5.6) we have that the Laplace
transform of N(a, x) is also obtained as the inverse of 1−Lz(q). Now considering the
action of Lz(q) on F%(Σ(q)), recalling the decomposition of L2(SL2(q)) given by (7.11),
and applying Theorem 9.1 to Eq1 , for all q1 |q, and Proposition 10.1 to the constant
function, we obtain that 1−Lz(q) has a holomorphic inverse (apart from at z=−δ) on

D =D(1)∩
⋂
q1|q

D(q1),

where
D(1)= {z : Re z <−δ+ε5}

by Proposition 10.1. Consequently D is given by

D =
{

z : Re z <−δ+ε6 min
{

1,
1

log(|Im z|+1)

}}
for some ε6 independent of q, implying that the dynamical zeta function det(1−Lz(q))
has no zeros on D (apart from a simple zero at −δ).

Theorem 1.4 now follows from the equality of the dynamical zeta function and
Selberg’s zeta function (Theorem 15.8 in [1]), and the correspondence between the zeros
of Selberg’s zeta function and resonances (see [27] and Chapter 10 in [1]).

12. Proof of Theorem 1.5

Propositions 10.1 and 10.2 are our basic estimates used in the proof of Theorem 1.5.
Note that what comes out of Proposition 9.2 will only play the role of error terms.

Fix a modulus q, (q, q0)=1 (with q0 given by the strong approximation property)
and q square-free.

For some element ξ∈SL2(q) we need to evaluate

N(a; q, ξ) = |{y ∈Λ : πq(y) = ξ and dH(0, yw) 6 a}|

(replace a by a+dH(0, w) in (6.5)).
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Recall the decomposition of the space L2(SL2(q)) in (7.11). Writing

1g=ξ =
1

|SL2(q)|
+
∑
q1|q
q1 6=1

Pq1(1g=ξ),

we get

N(a; q, ξ) =
1

|SL2(q)|
∑
y∈Λ

dH(0,yw)6a

1+
∑
q1|q
q1 6=1

∑
y∈Λ

dH(0,yw)6a

ϕq1(πq1(y))=: S+T,

with
ϕq1 =Pq1(1g=ξ)∈Eq1 .

Thus,

‖ϕq1‖2 <
|SL2(q1)|1/2

|SL2(q)|
.

We use Proposition 10.2 to evaluate S and Proposition 9.2 to bound T . Hence,
fixing some γ>0,∫ ∞

−∞
kγ(t)N(a+t; q, ξ) dt =

C1

|SL2(q)|
eδa+o(γ−3e−caeδa)

+γ−C
∑
q1|q
q1 6=1

qC
1 exp

(
−camin

{
1,

log q1

log(a/γ)

})
|SL2(q1)|1/2

|SL2(q)|
eδa.

We estimate the last term above as

γ−C |a|C

|SL2(q)|

( ∑
q1|q

1<q1<|a|/γ

e−calog q1/log(a/γ)

)
eδa+γ−CqCe(δ−c)a

and ∑
q1|q
q1 6=1

e−calog q1/log(a/γ) <
∏
p|q

(1+e−calog p/log(a/γ))−1

< exp
( ∞∑

s=2

e−calog s/log(a/γ)

)
−1 <e−ca/log(a/γ),

assuming

log
1
γ
� a.

Therefore we have proved the following result, of which Theorem 1.5 is an immediate
consequence.
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Proposition 12.1. Notation being as above, we have∫ ∞

−∞
kγ(t)N(a+t; q, ξ) dt =

eδa

|SL2(q)|
(C1+o(γ−Ce−ca/log(a/γ)))+γ−CqCe(δ−c)a,

where we assume that

log
1
γ
� a

log a
.

We remark that what is really required for sieving applications is a bound for the
ratio ∫∞

−∞ kγ(t)N(a+t; q) dt∫∞
−∞ kγ(t)N(a+t) dt

(12.1)

of the form
1

|SL2(q)|
+O(e−εaqC)

or
1

|SL2(q)|
(1+O(e−ca/log a))+O(e−εaqC).

To bound the ratio (12.1) it suffices to use Proposition 9.2 (which builds crucially on the
generalized expansion result given by Lemma 7.2) combined with the result of Lalley [16].
Of course, the results of Dolgopyat [7] and Naud [22], [23] are necessary to establish
Theorem 1.4, which is of independent interest.

13. Proof of Theorem 1.6

13.1. Combinatorial sieve

As in [3], we will make use of the simplest combinatorial sieve which in turn is based
on the fundamental lemma in the theory of elementary sieves, see [12] and [13]. Our
formulation is tailored for the applications below.

Let A denote a finite sequence an, n>1, of non-negative numbers. Denote by X the
sum ∑

n>1

an =X.

The sum X will be large, in fact tending to infinity. For a fixed finite set of primes B

let z be a large parameter (in our applications z will be a small power of X and B will
usually be empty). Let

P =Pz =
∏
p6z

p/∈B

p.
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Under suitable assumptions about sums of A over n’s in progressions with moderate-
size moduli d, the sieve gives upper and lower estimates which are of the same order of
magnitude for sums of A over the n’s which remain after sifting out numbers with prime
factors in P .

More precisely, let

S(A,P ) :=
∑

(n,P )=1

an.

The assumptions on sums in progressions are as follows:

(A0) For d square-free, and having no prime factors in B (d<X), we assume that
the sums over multiples of d take the form

∑
n≡0 (mod d)

an =β(d)X+r(A, d),

where β(d) is a multiplicative function of d and, for p /∈B,

β(d) 6 1− 1
c1

for a fixed c1.

The understanding being that β(d)X is the main term and that the remainder r(A, d) is
smaller, at least on average (see the next axiom).

(A1) A has level distribution D=D(X), D<X, that is

∑
d6D

|r(d, A)|� X

(log X)B
for all B > 0.

(A2) A has sieve dimension t>0, that is for a fixed c2 we have∣∣∣∣∣ ∑
w6p6z

p/∈B

β(p) log p−t log
z

w

∣∣∣∣∣6 c2

for 26w6z.

In terms of these conditions (A0), (A1) and (A2) the elementary combinatorial sieve
yields the following result.

Theorem 13.1. Assume (A0), (A1) and (A2). For s>9t, z=D1/s and X large we
have

X

(log X)t
�S(A,Pz)�

X

(log X)t
.



generalization of selberg’s theorem and sieve 287

13.2. Applying the sieve

Now let Λ be a Zariski-dense subgroup of SL(2, Z) and let f∈Z[xjk] be weakly primitive
with t(f) irreducible factors. The key non-negative sequence an to which we apply the
combinatorial sieve is defined as follows: for n>0 we let

an = an(T ) =
∑
γ∈Λ

|γ|6T

|f(γ)|=n

1.

The sums on progressions are then, for d>1 square-free,∑
n≡0 (mod d)

an(T ) =
∑
γ∈Λ

|γ|6T

f(γ)≡0 (mod d)

1 =
∑

%∈Λ/Λ(d)

f(%)≡0 (mod d)

∑
γ∈Λ(d)

|γ|6T

1.

Consider the case when δ< 1
2 , the case when δ> 1

2 is similar and simpler. According to
Theorem 1.5, we then obtain∑

n≡0 (mod d)

an(T ) =
∑

%∈Λ/Λ(d)

f(%)≡0 (mod d)

T 2δ

|Λd|
(1+O(T−1/log log T ))+O(dCT 2δ−ε1)

=X
|Λf

d |
|Λd|

+O

(
|Λf

d |
|Λd|

X1−1/2δ log log X

)
+O(|Λf

d |d
CX1−ε1/2δ),

where
X =

∑
k∈N

ak(T ) =
∑
γ∈Λ

|γ|6T

1,

Λd is the reduction of Λ mod d, and Λf
d is the subset of Λd at which f(x)=0 mod d.

Using the strong approximation theorem [20] and Goursat’s lemma as in [3], we
obtain that outside of a finite set of primes S(Λ) we have Λp

∼=SL2(Fp) and Λ!Λd1×Λd2

is surjective for (d1, d2)=1 and d1d2 square-free and coprime with S(Λ). Let

β(d) =
|Λf

d |
|Λd|

.

Using the Lang–Weil theorem [17] as in [3], we obtain

|Λf
d |� d2

and
|Λf

d |
|Λd|

=
t(f)
p

+O(p−3/2). (13.1)
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Hence we have ∑
n≡0 (mod d)

an(T ) =β(d)X+r(A, d),

with
r(A, d)� 1

d
X1−1/2δ log log X +dC+2X1−ε1/2δ.

Verification of (A0) is completely analogous to Proposition 3.1 in [3]. Regarding the level
distribution (A1), we have that

∑
d6D

|r(A, d)|�X1−1/2δ log log X +DC+3X1−ε1/2δ � X

(log X)B

for any B>0 as long as

D 6Xτ with τ <
2δ

(C+3)ε1
.

Finally, to verify the third axiom concerning the sieve dimension, we have, using
(13.1), that

∑
w6p6z

β(p) log p =
∑

w6p6z

(
t log p

p
+O

(
log p

p3/2

))
= t log

z

w
+O(1),

which establishes (A2) with the sieve dimension being t.

Note added in proof. The details of the extension of the proof of Theorem 1.3 to
higher-dimensional hyperbolic manifolds, outlined on page 263, have appeared in the
preprint [14] by I. Kim. Mention should also be made of the preprint [19] by M. Magee,
in which a quantitative spectral gap result for thin groups acting on higher-dimensional
hyperbolic manifolds is obtained, generalizing the result of [10].
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