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1. Introduction

1.1. The conjecture

Let A and B be two n×n Hermitian matrices and let B be positive semidefinite. In [1]
it has been conjectured that under these assumptions the function

f(t) := Tr eA−tB , t > 0, (1.1)

can be represented as the Laplace transform

f(t) =
∫

e−ts dµA,B(s) (1.2)

of a positive measure µA,B on R+=[0,∞). In the present article we prove this conjecture
from 1975 and give a semi-explicit expression for the measure µA,B (cf. Theorems 1.3
and 1.6 below).

Over the years different approaches and techniques have been tested for proving the
conjecture. Surveys are contained in [18] and [10]. Recent publications are typically con-
cerned with techniques from non-commutative algebra and combinatorics ([11], [12], [9],
[8], [10], [13], [14], [3], [6], [2]). This direction of research was opened by a reformulation
of the problem in [15]. Although our approach will follow a different line of analysis,
we nevertheless repeat the main assertions from [15] in the next subsection as points of
reference for later discussions.

After this paper was accepted, the author sadly passed away in April 2013.
Research supported by the grant STA 299/13-1 der Deutschen Forschungsgemeinschaft (DFG).
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1.2. Reformulations of the conjecture

Definition 1.1. A function f∈C∞(R+) is called completely monotonic if

(−1)mf (m)(t) > 0 for all m∈N and t∈R+.

By Bernstein’s theorem about completely monotonic functions (cf. [4] or [21, Chapter
IV]) this property is equivalent to the existence of the Laplace transform (1.2) with a
positive measure on R+. In this way, Definition 1.1 gives a first reformulation of the
BMV (Bessis–Moussa–Villani) conjecture.

In [15] two other reformulations have been proved. It has been shown that the
conjecture is equivalent to each of the following two assertions:

(i) Let A and B be two positive semidefinite Hermitian matrices. For each m∈N
the polynomial

t 7−!Tr(A+tB)m

has only non-negative coefficients.
(ii) Let A be a positive definite and B a positive semidefinite Hermitian matrix. For

each p>0 the function
t 7−!Tr(A+tB)−p

is the Laplace transform of a positive measure on R+.
Especially, reformulation (i) has paved the way for extensive research activities with

tools from non-commutative algebra; several of the papers have been mentioned earlier.
The parameter m in assertion (i) introduces a new and discrete gradation of the problem.
Presently, assertion (i) has been proved for m613 (cf. [8] and [13]). The BMV conjecture
itself has remained unproven, even for the general case of matrices with a dimension as
low as n=3. In his diploma thesis G. Grafendorfer [7] has investigated very carefully the
case n=3 by a combination of numerical and analytical means, but no counterexample
could be found.

In [15] one also finds a short review of the relevance of the BMV conjecture in
mathematical physics, the area from which the problem arose originally.(1)

Among the earlier investigations of the conjecture, especially [17] has been very
impressive and fascinating for the author. There, already in 1976, the conjecture was
proved for a rather broad class of matrices, including the two groups of examples with
explicit solutions that we will state next.

(1) Meanwhile, in a follow-up paper [16] to [15], the reformulations of the BMV conjecture have
been extended, and the conjecture itself has been generalized by replacing the expression on the left-
hand side of (1.1) by elementary symmetric polynomials of order m∈{1, ..., n} of exponentials of the n
eigenvalues of the expression A−tB. The expression in (1.1) with the trace operator then corresponds
to the case m=1.
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1.3. Two groups of examples with explicit solutions

1.3.1. Commuting matrices A and B

If the two matrices A and B commute, then they can be diagonalized simultaneously,
and consequently the BMV conjecture becomes solvable rather easily; the measure µA,B

in (1.2) is then given by

µA,B =
n∑

j=1

eaj δbj , (1.3)

with a1, ..., an and b1, ..., bn being the eigenvalues of the two matrices A and B, respec-
tively, and δx being the Dirac measure at the point x. Indeed, the trace of a matrix M

is invariant under similarity transformations M 7!TMT−1. Therefore, we can assume
without loss of generality that A and B are given in diagonal form, and the measure
(1.3) follows immediately.

1.3.2. Matrices of dimension n=2

We consider 2×2 Hermitian matrices A and B, with B assumed to be positive semi-
definite. In order to keep notation simple, we assume B to be given in diagonal form
B=diag(b1, b2) with 06b16b2.

If b1=b2, then, without loss of generality, also the matrix A can be assumed to be
given in diagonal form, and consequently the case is covered by (1.3). Thus, we have to
consider only the situation that

A =
(

a11 a12

ā12 a22

)
and B =

(
b1 0
0 b2

)
, 0 6 b1 <b2 <∞. (1.4)

Proposition 1.2. If the matrices A and B are given by (1.4), then the function
t 7!Tr exp(A−tB), t∈R+, in (1.1) can be represented as a Laplace transform (1.3) with
the positive measure

dµA,B(t) = ea11dδb1(t)+ea22dδb2(t)+wA,B(t)χ(b1,b2)(t) dt, t∈R+, (1.5)

where χ(b1,b2) denotes the characteristic function of the interval (b1, b2), and the density
function wA,B is given by

wA,B(t) =
4

(b2−b1)π
exp

(
a11(b2−t)+a22(t−b1)

b2−b1

)
×

∫ |a12|

0

cos
(

b2+b1−2t

b2−b1
u

)
sinh

(√
|a12|2−u2

)
du.

(1.6)

This density function is positive for all b1<t<b2.
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Proposition 1.2 will be proved in §7. In [17] an explicit solution has also been proved
for dimension n=2; there the density function looks rather different from (1.6), and has
the advantage that its positivity can be recognized immediately, while in our case of (1.6)
a non-trivial proof of positivity is required (cf. §7.2).

1.4. The main result

We prove two theorems. In the first one, it is just stated that the BMV conjecture
is true, while in the second one we give a semi-explicit representation for the positive
measure µA,B in the Laplace transform (1.2). In many respects this second theorem is a
generalization of Proposition 1.2.

Theorem 1.3. If A and B are two Hermitian matrices with B being positive semi-
definite, then there exists a unique positive measure µA,B on [0,∞) such that (1.2) holds
for t>0. In other words, the BMV conjecture is true.

For the formulation of the second theorem we need some preparations.

Lemma 1.4. Let A and B be the two matrices from Theorem 1.3. Then there exists a
unitary matrix T0 such that the transformed matrices Ã=(ãij):=T ∗

0 AT0 and B̃ :=T ∗
0 BT0

satisfy
B̃ =diag(b̃1, ..., b̃n) with 0 6 b̃1 6 ...6 b̃n, (1.7)

and
ãjk =0 for all j, k =1, ..., n, j 6= k, with b̃j = b̃k. (1.8)

Proof. The existence of a unitary matrix T0 such that (1.7) holds is guaranteed by
the assumption that B is Hermitian and positive semidefinite. If all b̃j are pairwise
different, then requirement (1.8) is void. If however several b̃j are identical, then one can
rotate the corresponding subspaces in such a way that in addition to (1.7) also (1.8) is
satisfied.

As the matrix A−tB is Hermitian for t∈R+, there exists a unitary matrix T1=T1(t)
such that

T ∗
1 (A−tB)T1 =diag(λ1(t), ..., λn(t)). (1.9)

The n functions λ1, ..., λn in (1.9) are restrictions to R+ of branches of the solution λ of
the polynomial equation

g(λ, t) := det(λI−(A−tB))= 0, (1.10)

i.e., λj , j=1, ..., n, is a branch of the solution λ if the pair (λ, t)=(λj(t), t) satisfies (1.10)
for each t∈C. The solution λ is an algebraic function of degree n if the polynomial
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g(λ, t) is irreducible, and it consists of several algebraic functions otherwise. In the most
extreme situation, the polynomial g(λ, t) can be factorized into n linear factors, and this
is exactly the case when the two matrices A and B commute, which has been discussed
in §1.3.1.

In any case, the solution λ of (1.10) consists of one or several multivalued functions
of t in C, and the total number of different branches λj , j=1, ..., n, is always exactly n.
In the next lemma, properties of the functions λj , j=1, ..., n, are assembled, which are
relevant for the formulation of Theorem 1.6. The lemma will be proved in a slightly
reformulated form as Lemma 3.3 in §3.

Lemma 1.5. There exist n different branches λj , j=1, ..., n, of the solution λ of
(1.10) which are holomorphic in a punctured neighborhood of infinity. They can be num-
bered in such a way that we have

λj(t) = ãjj−b̃jt+O

(
1
t

)
as t!∞, j =1, ..., n, (1.11)

where the coefficients ãjj and b̃j , j=1, ..., n, are elements of the matrices Ã and B̃

introduced in Lemma 1.4.

With Lemmas 1.4 and 1.5 we are ready to formulate the second theorem.

Theorem 1.6. For the measure µA,B in (1.3) we have the representation

dµA,B(t) =
n∑

j=1

eãjj dδb̃j
(t)+wA,B(t) dt, t∈R+, (1.12)

with a density function wA,B that can be represented as

wA,B(t) =
∑
b̃j<t

1
2πi

∮
Cj

eλj(ζ)+tζ dζ for t∈R+, (1.13)

or equivalently as

wA,B(t) =−
∑
b̃j>t

1
2πi

∮
Cj

eλj(ζ)+tζ dζ for t∈R+, (1.14)

where each integration path Cj is a positively oriented, rectifiable Jordan curve in C with
the property that the corresponding function λj is analytic on and outside of Cj. The
values ãjj and b̃j , j=1, ..., n, have been introduced in Lemma 1.4, and the functions λj ,
j=1, ..., n, in Lemma 1.5.
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The measure µA,B is positive, its support satisfies

supp(µA,B)⊆ [b̃1, b̃n], (1.15)

and the density function wA,B is a restriction of an entire function in each interval of
[b̃1, b̃n]\{b̃1, ..., b̃n}. In general the density function wA,B is not positive on each of the
intervals in [̃b1, b̃n]\{b̃1, ..., b̃n}, but the irreducibility of the polynomial g(λ, t) in (1.10)
is sufficient for wA,B(t)>0 for all t∈[b̃1, b̃n]\{b̃1, ..., b̃n}.

Obviously, the non-negativity of the density function wA,B is, prima vista, not evi-
dent from representation (1.13) or (1.14); its proof will be the topic of §5.

The semi-explicit representation of the measure µA,B in Theorem 1.6 is of key impor-
tance for our strategy for a proof of the BMV conjecture, but it possesses also independent
value. In any case, it already conveys some ideas about the nature of the solution.

1.5. Outline of the paper

Theorem 1.3 is practically a corollary of Theorem 1.6, and the proof of Theorem 1.6 is
given in §§2–6.

We start in §2 with two technical assumptions, which simplify the notation, but do
not restrict the generality of the treatment. After that, in §3 we compile and prove results
concerning the solution λ of (1.10) and the associated complex manifold Rλ, which is
the natural domain of definition for λ.

In §4 all assertions in Theorem 1.6 are proved, except for the positivity of the measure
µA,B .

The proof of positivity of µA,B follows then in §5, and everything concerning the
proofs of Theorems 1.3 and 1.6 is summed up in §6.

The proof of Proposition 1.2 follows in §7.

2. Technical assumptions

Assumption 1. Throughout §§3–6 we assume the matrices A and B to be given in
the form (1.7) and (1.8) of Lemma 1.4, i.e., we have

B =diag(b1, ..., bn) with 06 b1 6 ...6 bn <∞, (2.1)

and
ajk =0 for all j, k =1, ..., n, j 6= k, with bj = bk. (2.2)
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Assumption 2. Further, we assume that

0 <b1 6 ...6 bn, (2.3)

i.e., the matrix B is assumed to be positive definite.

Assumption 1 has the advantage that in the sequel we can write ajk and bj instead
of ãjk and b̃j .

Lemma 2.1. Assumptions 1 and 2 do not restrict the generality of the proof of
Theorems 1.3 and 1.6.

Proof. In Lemma 1.4 it has been shown that there exists a similarity transformation
M 7!T ∗

0 MT0, with a unitary matrix T0, such that any admissible pair of matrices A and
B is transformed into matrices Ã and B̃ that have the special forms of (2.1) and (2.2).
Since the trace of a matrix is invariant under such similarity transformations, we have

f(t) =Tr eA−tB =Tr T ∗
0 eA−tBT0 =Tr eT∗0 AT0−tT∗0 BT0

for all t∈R+, which shows that the function f in (1.1) remains invariant, and consequently
the generality of the proofs of Theorems 1.3 and 1.6 is not restricted by Assumption 1.

If (2.3) is not satisfied, then the matrix B̃ :=B+εI=diag(b̃1, ..., b̃n) with ε>0 satisfies
Assumption 2. We have b̃j =bj +ε, j=1, ..., n, and it follows from (1.1) that

f̃(t) := Tr eA−tB̃ = e−εt Tr eA−tB = e−εtf(t) for t > 0. (2.4)

From (2.4) and the translation property of Laplace transforms, we deduce that the
measure µA,B in (1.2) for the function f is the image of the measure µA,B̃ for the function
f̃ under the translation t 7!t−ε. Consequently, the proofs of Theorems 1.3 and 1.6 for the
matrices A and B̃ carries over to the situation with the original matrices A and B.

3. Preparatory results

In the present section we compile some results and definitions that are concerned with
the solution λ of the polynomial equation (1.10), and in addition we introduce a complex
manifold Rλ, which is the natural domain of definition of λ.

3.1. The branch functions λ1, ..., λn

The solution λ of the polynomial equation (1.10) is a multivalued function with n

branches λj , j=1, ..., n, defined in 	C. Each pair (λ, t)=(λj(t), t) with t∈	C, j=1, ..., n,
satisfies the equation

0 = g(λ, t) := det(λI−(A−tB))= g(1)(λ, t) ... g(m)(λ, t), (3.1)
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which is identical to (1.10), with the difference that we now have added the polynomials
g(l)(λ, t)∈C[λ, t], l=1, ...,m, which are assumed to be irreducible. If the polynomial
g(λ, t) itself is irreducible, then we have m=1, g(λ, t)=g(1)(λ, t), and λ is an algebraic
function of order n. Otherwise, in case m>1, λ consists of m algebraic functions λ(l),
l=1, ...,m, which are defined by the m polynomial equations

g(l)(λ(l), t) = 0, l =1, ...,m. (3.2)

Hence, λ consists either of a single algebraic function or of several such functions, depend-
ing on whether g(λ, t) is irreducible or not. In any case, the total number of branches λj

is always exactly n.
Obviously, for each t∈C, the numbers λ1(t), ..., λn(t) are eigenvalues of the matrix

A−tB, as has already been stated in (1.9). Since A−tB is a Hermitian matrix for t∈R,
the restriction of each branch λj , j=1, ..., n, to R is a real function.

From (3.1) and the Leibniz formula for determinants, we deduce that

g(λ, t) =
n∑

j=0

pj(t)λj (3.3)

with pj∈C[t], deg pj 6n−j for j=0, ..., n, pn≡1, and pn−1(t)=t TrB−TrA. If m>1,
then we assume that the polynomials g(l) are normalized by

g(l)(λ, t) =λnl +lower terms in λ, l =1, ...,m, (3.4)

and we have n1+...+nm=n. In situations where we have to deal with individual algebraic
functions λ(l), l=1, ...,m, which will, however, not often be the case, we denote the
elements of a complete set of branches of the algebraic function λ(l), l=1, ...,m, by λl,k,
k=1, ..., nl. There exists an obvious one-to-one correspondence

j: {(l, k) : k =1, ..., nl, l =1, ...,m}−! {1, ..., n}

such that the set of functions {λl,k :k=1, ..., nl, l=1, ...,m} bijectively corresponds to the
set {λj :j=1, ..., n}.

It is in the nature of branches of a multivalued function that their domains of
definition possess a great degree of arbitrariness. Assumptions for limiting this freedom
will be addressed in Definition 3.7 in the next subsection.

Since the solution λ of (3.1) consists either of a single or of several algebraic functions,
it is obvious that λ possesses only finitely many branch points over 	C.

Lemma 3.1. All branches λj , j=1, ..., n, of the solution λ of (3.1) can be chosen
such that they are of real type, i.e. any function λj which is analytic in a domain D0⊂C,
is also analytic in the domain D0∪{z :z̄∈D0}, and we have λj(t)=λj(t) for all t∈D0.



proof of the bmv conjecture 263

Proof. The relation λj(t̄)=λj(t) follows from the identity

g(λ, t) =det(λ̄I−(Ā− t̄B))= det(λ̄I−(Āt− t̄B))= g(λ̄, t̄),

which is a consequence of Āt=A∗=A and of B being diagonal. Since the restriction of
λj to R is real, λj(t̄) is an analytic continuation of λj across R.

Lemma 3.2. The solution λ of (3.1) has no branch points over R.

Proof. The lemma is a consequence of the fact that the functions λj , j=1, ..., n, are
of real type. We give an indirect proof, and assume that x0∈R is a branch point of
order k>1 of a branch λj , j∈{1, ..., n}, which we may assume to be analytic in a slit
neighborhood V \(iR−+x0) of x0. Using a local coordinate at x0 leads to the function
g(u):=λj(x0+uk+1), which is analytic in a neighborhood of u=0. Obviously, the function
g is also of real type. Let l0∈N be the smallest index in the development g(u)=

∑
l clu

l

such that cl0 6=0 and l0 6≡0 (mod k+1), which means that there exists 0<l16k with
l0=m(k+1)+l1, m∈N. Like λj(z)=g((z−x0)1/(k+1)), so also the modified function

λ̃j(z) :=
[
g((z−x0)1/(k+1))−

m∑
l=0

cl(k+1)(z−x0)l

]
(z−x0)−m

has a branch point of order k at x0, and is of real type. We have

λ̃j(z) = cl0(z−x0)l1/(k+1)+O((z−x0)(l1+1)/(k+1)) as z!x0,

and consequently for r>0 sufficiently small we have∣∣∣∣arg λ̃j(x0+reit)−arg cl0−
l1

k+1
t

∣∣∣∣ 6
π

4(k+1)
for all 0 6 t 6π,

which implies that

0 <
l1− 1

2

k+1
π 6 |arg λ̃j(x0+r)−arg λ̃j(x0−r)|6

l1+ 1
2

k+1
π <π. (3.5)

As the function λ̃j is of real type, we have arg λ̃j(x0+r)≡0 (mod π) and arg λ̃j(x0−r)≡0
(mod π), which contradicts (3.5).

Lemma 3.2 is covered by a classical theorem by F. Rellich (cf. [19, Theorem XII.3]).
Next, we investigate the behavior of the functions λj , j=1, ..., n, in the neighborhood

of infinity.
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Lemma 3.3. Let λj , j=1, ..., n, denote n different branches of the solution λ of
(3.1). This system of branches can be chosen in such a way that there exists a simply
connected domain Uλ⊂	C with ∞∈Uλ such that the following assertions hold :

(i) Each function λj , j=1, ..., n, is defined throughout Uλ, and none of them has a
branch point in Uλ.

(ii) The n functions λj , j=1, ..., n, can be enumerated in such a way that at infinity
we have

λj(t) = ajj−bjt+O

(
1
t

)
as t!∞, (3.6)

with ajj and bj , j=1, ..., n, being the diagonal elements of the matrices A and B, re-
spectively, of (2.1) and (2.2) in Assumption 1.

Remark 3.4. Assumption 1 from §2 is decisive for the concrete form of (3.6), and
(3.6) is decisive for the verification of the representation of the measure µA,B in The-
orem 1.6, which will follow in §4.2 below. Notice that the similarity transformation
(A,B) 7!(Ã, B̃) from Lemma 1.4 in general changes the diagonal elements ajj , j=1, ..., n,
of the matrix A, while it leaves the polynomial equation (3.1) and also the branches λj ,
j=1, ..., n, invariant. For an illustration of the changes of the ajj , j=1, ..., n, one may
consult (7.4), where the simple case of 2×2 matrices has been analysed.

Remark 3.5. With Assumption 1 from §2 it is obvious that Lemma 1.5 in §1.4 is a
reformulation of Lemma 3.3.

Proof of Lemma 3.3. We first prove that the solution λ of (3.1) has no branch point
over infinity, which then leads to a proof of assertion (i). The proof of assertion (ii) is
more involved.

(i) As in the proof of Lemma 3.2 we prove the absence of a branch point at infinity
indirectly, and assume that some function λj , j∈{1, ..., n}, has a branch point of order
k>1 at infinity. The function λj is of real type, and as a branch of an algebraic function
it has at most polynomial growth as t!∞. Hence, there exists m0∈N such that the
function

λ0(z) := zm0λj

(
1
z

)
is bounded in a neighborhood of x0=0. The function λ0 is again of real type, and it has
a branch point of order k>1 at x0=0.

After these preparations we can copy the reasoning in the proof of Lemma 3.2 line
by line in order to show that our assumption leads to a contradiction.

From equation (3.1) together with (3.3), we further deduce that all n functions λj ,
j=1, ..., n, are finite in C.
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Since the solution λ of (3.1) possesses only finitely many branch points and none at
infinity, the branches λ1, ..., λn can be chosen in such a way that there exists a punctured
neighborhood of infinity in which all n functions λj , j=1, ..., n, are defined and analytic,
which concludes the proof of assertion (i).

At infinity the functions λj , j=1, ..., n, may have a pole. In the next part of the
proof we shall see that this is indeed the case, and the pole is always simple.

(ii) The proof of (3.6) will be done in two steps. In the first one we determine a
condition that has to be satisfied by the leading coefficient of the development of the
function λj , j=1, ..., n, at infinity.

Let λ0 denote one of the functions λ1, ..., λn. From part (i) we know that there
exists an open, simply connected neighborhood U0⊂	C of ∞ such that λ0 is analytic in
U0\{∞} and meromorphic in U0. Hence, λ0 can be represented as

λ0 = p+v (3.7)

with a polynomial p and a function v analytic in U0 with v(∞)=0. We will show that
the polynomial p is necessarily of the form

p(t) = c0−c1t with c1 ∈{b1, ..., bn}. (3.8)

The proof will be done indirectly, and we assume that

deg p 6=1 or p(t) = c0−c1t with c1 /∈{b1, ..., bn}. (3.9)

From (3.9) and the assumption made with respect to v after (3.7), it follows that

|p(t)+bjt−ajj +v(t)|!∞ as t!∞ for each j =1, ..., n. (3.10)

From the definition of g(λ, t) in (3.1) and the Leibniz formula for determinants we
deduce that

g(λ0(t), t) =
n∏

j=0

(p(t)+bjt−ajj +v(t))

+O
(

max
j=1,...,n

|p(t)+bjt−ajj +v(t)|n−2
)

as t!∞.

(3.11)

Indeed, the product in (3.11) is built from the diagonal elements of the matrix

λ0(t)I−(A−tB),
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and any other term in the Leibniz formula contains at least two off-diagonal elements as
factors, which leads to the error term in the second line of (3.11). From (3.9), (3.10),
and Assumption 2 in §2 we deduce that

lim
t!∞

|p(t)+bkt−akk+v(t)|
maxj=1,...,n |p(t)+bjt−ajj +v(t)|

> 0 for each k =1, ..., n,

which implies that

max
j=1,...,n

|p(t)+bjt−ajj +v(t)|2−n
n∏

j=0

|p(t)+bjt−ajj +v(t)|!∞ (3.12)

as t!∞. From (3.11) together with (3.10) and (3.12) it then follows that g(λ0(t), t)!∞
as t!∞. But this contradicts g(λ0(t), t)=0 for t∈U0, and the contradiction proves the
assertion made in (3.8).

We now come to the second step of the proof of (ii). Because of (3.8) we can make
the ansatz

λj = pj +vj for j =1, ..., n,

pj(t) = c0j−c1jt with c1j ∈{b1, ..., bn},
(3.13)

where vj is analytic in a neighborhood U0 of infinity, and vj(∞)=0. We shall show that
the functions λ1, ..., λn can be enumerated in such a way that we have

c1j = bj and c0j = ajj for each j =1, ..., n,

which proves (3.6).
A transformation of the variables λ and t into w and u is introduced by

u :=
1
t

and w :=
1

λ+b1t−a00
, (3.14)

with
a00 :=min({c11, ..., c1n, b1, ..., bn})−2. (3.15)

From (3.14) it follows that

λ =
1
w
−b1t+a00 =

1
w
− b1

u
+a00. (3.16)

There exists an obvious one-to-one correspondence between the n functions λj , for
j=1, ..., n, and the n functions

wj(u) :=
1

λj(1/u)+b1/u−a00
, j =1, ..., n. (3.17)
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The functions wj , j=1, ..., n, are meromorphic in a neighborhood Ũ0 of the origin. From
(3.13) and (3.17) we deduce that

wj(0)=

 0 for c1j 6= b1,
1

c0j−a00
6

1
2

for c1j = b1,
(3.18)

and therefore we can choose Ũ0 so small that

0 < |wj(u)|6 1 for u∈ Ũ0\{0}, (3.19)

which implies that all wj , j=1, ..., n, are analytic in Ũ0.
By V (u), u∈C\{0}, we denote the n×n diagonal matrix

V (u) := diag( 1, ..., 1︸ ︷︷ ︸
m1

,
√

u, ...,
√

u︸ ︷︷ ︸
n−m1

), (3.20)

where m1 is the number of appearances of b1 in the multiset {b1, ..., bn}={bj :j=1, ..., n},
and we define

g̃(w, u) := det(V (u)2+w(B−b1I)−wV (u)(A−a00I)V (u)). (3.21)

We then deduce that

g̃(w, u) =det
(
V (u)

(
I+

w

u
(B−b1I)−w(A−a00I)

)
V (u)

)
=wnun−m1 det

(
1
w

I+
1
u

(B−b1I)−(A−a00I)
)

=wnun−m1 det
((

1
w
− b1

u
+a00

)
I−

(
A− 1

u
B

))
=wnun−m1g

(
λ,

1
u

)
.

(3.22)

Indeed, the first equality is obvious if we take into account that

B−b1I =diag(0, ..., 0, bm1+1−b1, ..., bn−b1)

with exactly m1 zeros in its diagonal. The next three equations follow from elementary
transformations.

Directly from (3.21), but also from (3.3) and (3.22) together with (3.16), we deduce
that g̃(w, u) is a polynomial in w and u, and is of order n in w.



268 h. r. stahl

From (3.21) together with the properties used in (3.22) and the Leibniz formula for
determinants it follows that, as u!0,

g̃(w, u) =
m1∏
j=1

(1−w(ajj−a00))
n∏

j=m1+1

(u−w(bj−b1)−wu(ajj−a00))(1+O(u)). (3.23)

Indeed, the product in (3.23) is formed by the diagonal elements of the matrix

M :=V (u)2+w(B−b1I)−wV (u)(A−a00I)V (u),

and the error term O(u) in the second line of (3.23) follows from the fact that each other
term in the Leibniz formula includes at least two off-diagonal elements of the matrix M

as factors. Each off-diagonal element of M contains the factor
√

u, or it is zero since from
Assumption 1 in §2 it follows that for all elements mjk of M=(mjk) with j, k=1, ...,m1,
j 6=k, we have mjk=0.

With (3.23) we are prepared to describe the behavior of the functions w1, ..., wn near
u=0, which then translates into a proof of the first part of (3.6).

For each u∈C the n values w1(u), ..., wn(u) are the zeros of the polynomial

g̃(w, u)∈C[w].

From (3.23) we know that

g̃(w, u)!wn−m1

m1∏
j=1

(1−w(ajj−a00))
n∏

j=m1+1

(bj−b1) as u! 0.

Therefore it follows by Rouché’s theorem that with an appropriate enumeration of the
functions wj , j=1, ..., n, we have

lim
u!0

wj(u) =


1

ajj−a00
for j =1, ...,m1,

0 for j =m1+1, ..., n,
(3.24)

which is a concretization of (3.18). Since we know from (3.19) that all functions wj ,
j=1, ..., n, are analytic in a neighborhood Ũ0 of the origin, it follows from (3.24) that

wj(u) =
1

ajj−a00
+O(u) as u! 0 for j =1, ...,m1. (3.25)

From the correspondence (3.17) between the functions wj and λj , it then follows
from (3.25) that, for j=1, ...,m1,

λj(t) =
1

wj(1/t)
−b1t+a00 = ajj−a00−b1t+a00+O

(
1
t

)
= ajj−bjt+O

(
1
t

)
(3.26)
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as t!∞. The last equation is a consequence of bj =b1 for j=1, ...,m1. With (3.26) we
have proved relation (3.6) for j=1, ...,m1.

By the definition of m1 and the ordering in (2.3) we have

bm1+1 >bm1 = ...= b1.

Let now m2 denote the number of appearances of the value bm1+1 in the multiset

{bj : j =1, ..., n}.

In order to prove relation (3.26) for j=m1+1, ...,m1+m2, we repeat the analysis from
(3.14) until (3.26) with b1 replaced by bm1+1 and m1 by m2, which then leads to the
verification of (3.26) for j=m1+1, ...,m1+m2.

Repeating this cycle for each different value bj in the multiset {bj :j=1, ..., n} proves
relation (3.26) for all j=1, ..., n, which completes the proof of (3.6), and concludes the
proof of assertion (ii).

We would like to add as a short remark that if all bj , j=1, ..., n, are pairwise different,
then the analysis in these last cycles could be considerably shortened since in such a case
one could proceed rather directly from (3.18) to the conclusion (3.26).

3.2. The complex manifold Rλ

If the polynomial g(λ, t) in (3.1) is irreducible, then the solution λ of (3.1) is an algebraic
function of order n, and its natural domain of definition is a compact Riemann surface
with n sheets over 	C (cf. [5, Theorem IV.11.4]). We denote this surface by Rλ.

If, however, the polynomial g(λ, t) is reducible, then we have seen in (3.1) and (3.2)
that the solution λ of (3.1) consists of m algebraic functions λ(l), l=1, ...,m. Each λ(l)

has a compact Riemann surface Rλ,l, l=1, ...,m, as its natural domain of definition, and
therefore we have the disjoint union

Rλ :=Rλ,1∪...∪Rλ,m (3.27)

as the natural domain of definition for the multivalued function λ. In each of the two
cases, Rλ is a covering of 	C with exactly n sheets, except that in the latter case Rλ is
no longer connected. Within each Rλ,l, l=1, ...,m, the different sheets are separated by
cuts in the plane. By πλ:Rλ!	C we denote the canonical projection of Rλ.

A collection of subsets {S(j)
λ ⊂Rλ :j=1, ..., n} forms a system of sheets on Rλ if the

following three requirements are satisfied:
(i) The restriction πλ|S(j)

λ
:S(j)

λ !	C of the canonical projection πλ is a bijection for
each j=1, ..., n.
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(ii) We have
⋃n

j=1 S
(j)
λ =Rλ.

(iii) The interior points of each sheet S
(j)
λ ⊂Rλ, j=1, ..., n, form a domain. Different

sheets are disjoint except for branch points. A branch point of order k>1 belongs to
exactly k+1 sheets.

Because of requirement (i) each sheet S
(j)
λ can be identified with 	C, however, formally

we consider it as a subset of Rλ.
While the association of branch points and sheets is specified completely in require-

ment (iii), there remains freedom with respect to the other boundary points of the sheets.
We assume that this association is done in a pragmatic way. It is only required that each
boundary point belongs to exactly one sheet if it is not a branch point.

Requirement (i) justifies the notational convention that a point of S
(j)
λ is denoted

by t(j) if πλ(t(j))=t∈	C.
The requirements (i)–(iii) give considerable freedom for choosing a system of sheets

on Rλ. In order to get unambiguity up to boundary associations, we define a standard
system of sheets by the following additional requirement.

(iv) The cuts, which separate different sheets S
(j)
λ in Rλ, lie over lines in C that

are perpendicular to R. Each cut is chosen in a minimal way. Hence, it begins and ends
with a branch point.

Lemma 3.6. There exists a system of sheets S
(j)
λ ⊂Rλ, j=1, ..., n, that satisfies the

requirements (i)–(iv). Such a system is essentially unique, i.e., unique up to the associa-
tion of boundary points that are not branch points. The domain Uλ from Lemma 3.3 can
be chosen in such a way that each sheet S

(j)
λ , j=1, ..., n, of the standard system covers

Uλ, i.e., we have

πλ(Int(S(j)
λ ))⊃Uλ. (3.28)

Proof. From part (i) of Lemma 3.3 it is evident that there exist n unramified sub-
domains in Rλ over the domain Uλ; they are given by the set π−1

λ (Uλ). We can choose
Uλ⊂	C as a disc around ∞. Because of Lemmas 3.1 and 3.2 it is then always possible to
start an analytic continuation of a given branch λj , j=1, ..., n, at ∞ and continue along
rays that are perpendicular to R until one hits a branch point or the real axis. The first
case can happen only finitely many times. Each of these continuations then defines a
sheet S

(j)
λ , and the whole system satisfies the requirements (i)–(iv), and also (3.28) is

satisfied.

Each system {S(j)
λ ⊂Rλ :j=1, ..., n} of sheets corresponds to a complete system of

branches λj , j=1, ..., n, of the solution λ of (3.1) if we define the functions λj by

λj :=λ�π−1
t,j , j =1, ..., n, (3.29)
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with π−1
λ,j denoting the inverse of πλ|S(j)

λ
, which exists because of requirement (i). If we

use the standard system of sheets, then the branches λj , j=1, ..., n, are uniquely defined
functions.

Definition 3.7. In the sequel we denote by λj , j=1, ..., n, the n branches of the
solution λ of equation (3.1) that are defined by (3.29) with the standard system of sheets
{S(j)

λ :j=1 ... n}.

The next lemma is an immediate consequence of the monodromy theorem.

Lemma 3.8. Let λj , j=1, ..., n, be the functions from Definition 3.7. Then for any
entire function g the function

G(t) =
n∑

j=1

g(λj(t)), t∈C,

is analytic and single-valued throughout C.

With the functions λj , j=1, ..., n, we get a very helpful representation of the function
f from (1.1) and also of the determinant det(ζI−(A−tB)).

Lemma 3.9. With the functions λj , j=1, ..., n, from Definition 3.7, the function f

from (1.1) can be represented as

f(t) =Tr eA−tB =
n∑

j=1

eλj(t) for t∈C. (3.30)

It follows from Lemma 3.8 that f is an entire function.

Proof. From (3.1) it follows that for any t∈C the n numbers λ1(t), ..., λn(t) are
the eigenvalues of the the matrix A−tB. Let Vλ⊂C be the set of all t∈C such that
not all λ1(t), ..., λn(t) are pairwise different. This set is finite. For every t∈C\Vλ the
n eigenvectors corresponding to λ1(t), ..., λn(t) form an eigenbasis. The n×n matrix
T0=T0(t) with these vectors as columns satisfies

T−1
0 (A−tB)T0 =diag(λ1(t), ..., λn(t)). (3.31)

Since the trace of a square matrix is invariant under similarity transformations, (3.30)
follows from (3.31) and (1.1) for t /∈Vλ, and by continuity for all t∈C.

Lemma 3.10. With the functions λj , j=1, ..., n, from Definition 3.7 we have

n∏
j=1

(ζ−λj(t))= det(ζI−(A−tB)) for ζ, t∈C. (3.32)
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Proof. From (3.31) we deduce that

T−1
0 (ζI−(A−tB))T0 =diag(ζ−λ1(t), ..., ζ−λn(t))

for each ζ∈C and t∈C\Vλ, which then proves (3.32).

In the last lemma of this section we lift the complex conjugation from 	C to Rλ.

Lemma 3.11. There exists a unique anti-holomorphic mapping %:Rλ!Rλ such that

πλ�%(z) =πλ(z) for all z ∈Rλ (3.33)

and that %|π−1
λ (R) is the identity.

Proof. We start with the problem of existence. By requirement (i) of the standard
system of sheets {S(j)

λ :j=1 ... n} on Rλ, we can define % on each S
(j)
λ , j=1, ..., n, by a

direct transfer of the complex conjugation from 	C to S
(j)
λ . Note that each of the πλ(S(j)

λ ),
j=1, ..., n, is invariant under complex conjugation because of requirement (iv) and since
each λj is of real type. It is not difficult to see that this piecewise definition of % is well
defined throughout Rλ, and possesses the required properties.

The uniqueness of % is a consequence of the fact that %|π−1
λ (R) is the identity map.

Indeed, let %1 and %2 be two maps with the required properties. Then %1�%1 and %1�%2

are both analytic maps from Rλ to Rλ. On π−1
λ (R) both maps are the identity, and

consequently %1�%1 and %1�%2 are both the identity map on Rλ, which proves %1=%2.

4. First part of the proof of Theorem 1.6

In this section we prove all assertions of Theorem 1.6 except for the positivity of the
measure µA,B , which will be the topic of the next section.

4.1. Equivalence of (1.13) and (1.14)

Lemma 4.1. For each t>0 we have
n∑

j=1

1
2πi

∮
Cj

eλj(ζ)+tζ dζ =0 (4.1)

with Cj and λj as specified in Theorem 1.6.

Proof. From Lemma 3.3 it is obvious that we can choose all Cj , j=1, ..., n, to be
identical to a single curve C⊆C such that all λ1, ..., λn are analytic on and outside of C.
We interchange summation and integration in (4.1), and deduce from Lemma 3.8 that∑n

j=1 eλj(ζ)+tζ =etζ
∑n

j=1 eλj(ζ) is an entire function, which proves (4.1).
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From (4.1) it follows immediately that the representations (1.13) and (1.14) in The-
orem 1.6 for the density function wA,B are equivalent.

4.2. Proof of (1.12)–(1.14)

We use (1.12) and (1.13) in Theorem 1.6 as an ansatz for a measure µA,B and show by
direct calculations that this measure satisfies (1.2).

From (1.13) it is evident that wA,B(t)=0 for 06t<b1; and since we know from the
last subsection that (1.13) and (1.14) are equivalent representations, we further deduce
from (1.14) that also wA,B(t)=0 for t>bn. From (1.12) and (1.13) we then get∫

e−ts dµA,B(s) =
n∑

j=1

eajj e−tbj +
n−1∑
k=1

Ik(t), (4.2)

with

Ik(t) =
∫ bk+1

bk

k∑
j=1

1
2πi

∮
Cj

eλj(ζ)+s(ζ−t) dζ ds, k =1, ..., n−1. (4.3)

As in the proof of Lemma 4.1, we assume again that all integration paths Cj , j=1, ..., n,
in (4.3) are identical with a single curve C⊆C such that all λ1, ..., λn are analytic on and
outside of C with a simple pole at infinity. Because of Lemma 3.2 we may assume that

R+⊂Ext(C). (4.4)

After these preparations we deduce from (4.3) that
n−1∑
k=1

Ik(t) =
n−1∑
k=1

1
2πi

∮
C

eλk(ζ)

∫ bn

bk

es(ζ−t) ds dζ

=
n−1∑
k=1

1
2πi

∮
C

eλk(ζ)(ebn(ζ−t)−ebk(ζ−t))
dζ

ζ−t

=
n∑

k=1

−1
2πi

∮
C

eλk(ζ)ebk(ζ−t) dζ

ζ−t

=
n∑

k=1

(eλk(t)−eakk−tbk).

(4.5)

Indeed, the first equality in (4.5) is a consequence of Fubini’s theorem and (4.3), the
second one follows from elementary integration, and the third one follows in the same
way as the conclusion in the proof of Lemma 4.1. We give some more details, and deduce
with the help of Lemma 3.8 that

n∑
k=1

1
2πi

∮
C

eλk(ζ)ebn(ζ−t) dζ

ζ−t
=

1
2πi

∮
C

ebn(ζ−t)
n∑

k=1

eλk(ζ) dζ

ζ−t
=0,
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which then proves the third equality in (4.5). Notice that t∈Ext(C). For a verification
of the last equality in (4.5) we define the functions rk, k=1, ..., n, by

λk(z)+bkz = akk+rk(z).

It then follows from (3.6) in Lemma 3.3 that rk(∞)=0 for k=1, ..., n, and obviously each
rk is analytic on and outside of C. Since C is positively oriented, it follows from Cauchy’s
formula that

− 1
2πi

∮
C

eλk(ζ)ebk(ζ−t) dζ

ζ−t
=−e−tbk

2πi

∮
C

eλk(ζ)+bkζ dζ

ζ−t
=−eakk−tbk

2πi

∮
C

erk(ζ) dζ

ζ−t

= eakk−tbk(erk(t)−1) = eλk(t)−eakk−tbk

for each k=1, ..., n, which completes the verification of the last equality in (4.5).
By putting (4.2) and (4.5) together we arrive at (1.2), which proves that (1.12) and

(1.13) is a representation of the measure µA,B that satisfies (1.2). From §4.1 it then
follows that also (1.12) in combination with (1.14) defines the same measure µA,B .

4.3. Proof of the inclusion (1.15)

Since before (4.2) we have verified that wA,B(t)=0 for 06t<b1 and for t>bn, inclu-
sion (1.15) in Theorem 1.6 follows from (1.12).

From (4.3) it is immediately obvious that the density function wA,B is the restriction
of an entire function in each interval of the set [b1, bn]\{b1, ..., bn}.

4.4. Remark about the proof of (1.12)–(1.14)

In §4.2 the representation of the measure µA,B in Theorem 1.6 has been proved with the
help of an ansatz. This strategy is very effective, but it gives no hints how one can sys-
tematically find such an ansatz. Actually, the expressions in (1.12) and (1.13) were only
found after a lengthy asymptotic analysis of the function (1.1) with a subsequent appli-
cation of the Post–Widder formulae for the inversion of Laplace transforms. Interested
readers can find this systematic, but laborious, approach in [20].

5. The proof of positivity

For the completion of the proof of Theorem 1.6 it remains only to show that the measure
µA,B is positive, which is done in this section. The essential problem is to show that
the density function wA,B given by (1.13) or by (1.14) in Theorem 1.6 is non-negative in
[b1, bn]\{b1, ..., bn}.
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5.1. A preliminary assumption

In a first version of the proof of positivity we make the following additional assumption,
which will afterwards, in §5.4, be shown to be superfluous.

Assumption 3. We assume that the polynomial g(λ, t) in equation (3.1), which is
identical to the polynomial in (1.10), is irreducible.

For the convenience of the reader we list the definitions from §3 that will be especially
important in the next subsection. Some of them now have special properties because of
Assumption 3.

(i) The solution λ of equation (3.1) is an algebraic function of degree n (cf. §3.1).
(ii) The covering manifold Rλ over 	C from §3.2 is now a compact Riemann surface

with n sheets over 	C. As before, by πλ:Rλ!	C we denote its canonical projection.
(iii) The n functions λj , j=1, ..., n, from Definition 3.7 are n branches of the single

algebraic function λ.
(iv) By Cj , j=1, ..., n, we denote n Jordan curves that are all identical with a single

curve C⊂C, and this curve is assumed to be smooth, positively oriented, and chosen in
such a way that each function λj , j=1, ..., n, is analytic on and outside of C.

(v) The reflection function %:Rλ!Rλ from Lemma 3.11 is the lifting of the complex
conjugation from 	C onto Rλ, i.e., we have πλ(%(ζ))=πλ(ζ) for all ζ∈Rλ. By R+⊂Rλ

we denote the subsurface R+ :={z∈Rλ :Im πλ(z)>0}, and by R−⊂Rλ the corresponding
subsurface defined over base points with a negative imaginary part; R+ and R− are
bordered Riemann surfaces over {z :Im z>0} and {z :Im z<0}, respectively.

5.2. The main proposition

The proof of positivity under Assumption 3 is based on assertions that are formulated
and proved in the next proposition.

Proposition 5.1. Under Assumption 3, for any t∈(bI , bI+1) with I∈{1, ..., n−1}
there exists a chain γ of finitely many closed integration paths on the Riemann surface
Rλ such that

Im eλ(ζ)+tπλ(ζ) =0 for all ζ ∈ γ, (5.1)

1
2πi

∮
γ

eλ(ζ)+tπλ(ζ) dζ < 0, (5.2)

1
2πi

∮
γ

eλ(ζ)+tπλ(ζ) dζ =−
I∑

j=1

1
2πi

∮
Cj

eλj(z)+tz dz, (5.3)
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and as a consequence of (5.2) and (5.3) we have∑
bj<t

1
2πi

∮
Cj

eλj(z)+tz dz > 0. (5.4)

The definition of the objects πλ, λ, λj , Cj , j=1, ..., I, in (5.1)–(5.4) were listed in (i)–(iv)
in the last subsection.

The proof of Proposition 5.1 will be prepared by two lemmas and several technical
definitions. Throughout this subsection the numbers t∈(bI , bI+1) and I∈{1, ..., n−1} are
kept fixed, and Assumption 3 is effective.

We define

D± := {ζ ∈Rλ :± Im πλ(ζ) > 0 and ±Im(λ(ζ)+tπλ(ζ))> 0},

D := Int(D+∪D−).
(5.5)

The set D⊂Rλ is open, but not necessarily connected. Since the algebraic function λ is of
real type, we have %(D±)=D∓ and D±⊂R± with the reflection function % and Riemann
surfaces R+ and R− from (v) in the listing in the last subsection.

By Cr⊂Rλ we denote the set of critical points of the function Im(λ+tπλ), which
are at the same time the critical points of Re(λ+tπλ), and the zeros of the derivative
(λ+tπλ)′. Since Rλ is compact, it follows that Cr is finite.

Lemma 5.2. (i) The boundary ∂D⊂Rλ consists of a chain

γ = γ1+...+γK (5.6)

of K piecewise analytic Jordan curves γk, k=1, ...,K. The orientation of each γk,
k=1, ...,K, is chosen in such a way that the domain D lies to its left. The curves γk,
k=1, ...,K, are not necessarily disjoint, however, intersections are possible only at critical
points ζ∈Cr.

(ii) The choice of the Jordan curves γk, k=1, ...,K, in (5.6) can be done in such a
way that each of them is invariant under the reflection function % except for its orienta-
tion, i.e., we have %(γk)=−γk for k=1, ...,K.

(iii) Let 2sk be the length of the Jordan curve γk, k=1, ...,K; with a parametrization
by arc length we then have γk: [0, 2sk]!∂D⊂Rλ. The starting point γk(0) can be chosen
in such a way that

γk((0, sk))⊂ ∂D+\π−1
λ (R) and γk((sk, 2sk))⊂ ∂D−\π−1

λ (R). (5.7)

(iv) The function
Re(λ�γk+t(πλ�γk))

is increasing on (0, sk), decreasing on (sk, 2sk), and these monotonicities are strict at
each ζ∈γk\(Cr∪π−1

λ (R)).
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Proof. The function Im(λ+tπλ) is harmonic in Rλ\π−1
λ ({∞}). As a system of level

lines of a harmonic function, ∂D consists of piecewise analytic arcs, and their orientations
can be chosen in such a way that the domain D lies to the left of ∂D. Since ∂D\Cr
consists of analytic arcs, locally each ζ∈∂D\Cr touches only two components of Rλ\∂D,
and locally it belongs only to one of the analytic Jordan subarcs of ∂D\Cr. Globally, for
each ζ∈∂D there exists at least one Jordan curve γ̃ in ∂D with ζ∈γ̃, but this association is
in general not unique, different choices may be possible, and the cuts that are candidates
for such a choice bifurcate only at points in Cr. By a stepwise exhaustion it follows that
∂D is the union of Jordan curves, i.e., we have

∂D = γ = γ1+γ2+... . (5.8)

Different curves γk may intersect, but because of the implicit function theorem, intersec-
tions are possible only at points in Cr.

After these considerations it remains only to show in assertion (i) that the number
of Jordan curves γk in (5.8) is finite; basically this follows from the compactness of Rλ.
If we assume that there exist infinitely many curves γk in (5.8), then there exists at least
one cluster point z∗∈Rλ such that any neighborhood of z∗ intersects infinitely many
curves γk from (5.8). Obviously, z∗∈π−1

λ ({∞}) is impossible. Let z:V!D be a local
coordinate of z∗ that maps a neighborhood V of z∗ conformally onto the unit disc D
with z(z∗)=0. The function

g := Im(λ+tπλ)�z−1

is harmonic in D and not identically constant. If g has a critical point of order m at the
origin, then, by the local structure of level lines near a critical point, small neighborhoods
of the origin can intersect only with at most m elements of the set {z(γk|V ):k=1, 2, ... }.
If, on the other hand, g has no critical point at the origin, then it follows from the implicit
function theorem that small neighborhoods of the origin can intersect with at most one
element of the set {z(γk|V ):k=1, 2, ... }. Hence, the assumption that z∗ is a cluster point
of curves γk from (5.8) is impossible, and the finiteness of the sum in (5.8) is proved,
which completes the proof of assertion (i).

For each Jordan curve γk, k=1, ...,K, in (5.6) we deduce from (5.5) that

∂

∂n
Im(λ(ζ)+tπλ(ζ))> 0 for each ζ ∈ γk∩(R+\Cr), (5.9)

and since the orientation of ∂D=γ has been chosen in such a way that D lies to the left
of each γk, we further have

∂

∂u
Re(λ(ζ)+tπλ(ζ))> 0 for each ζ ∈ γk∩(R+\Cr) (5.10)
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by the Cauchy–Riemann differential equations. In (5.9), ∂/∂n denotes the normal de-
rivative on γk pointing into D, and in (5.10), ∂/∂u denotes the tangential derivative. In
R−, we get the corresponding inequality

∂

∂u
Re(λ(ζ)+tπλ(ζ))< 0 for each ζ ∈ γk∩(R−\Cr). (5.11)

Since λ is a function of real type, we deduce with the help of the reflection function
% that

(λ�%)(ζ)+t(πλ�%)(ζ) =λ(ζ)+tπλ(ζ) for ζ ∈Rλ,

and therefore also that
%(∂D) = ∂D. (5.12)

As a first consequence of (5.10) and (5.11) we conclude that none of the Jordan
curves γk in (5.6) can be contained completely in 
R+ or 
R−. Indeed, if we assume that
some γk is contained in 
R+, then it would follow from (5.10) that Re(λ+tπλ) could not
be continuous along the whole curve γk.

As each γk, k=1, ...,K, in (5.6) intersects at the same timeR+ andR−, it follows that
all curves γk can be chosen from ∂D in the exhaustion process in the proof of assertion
(i) in such a way that %(γk)=−γk for each k=1, ...,K, which proves assertion (ii). We
remark that a choice between different options for a selection of the γk, k=1, ...,K, exists
only if some points of the intersection γk∩π−1

λ (R) belong to Cr.
From the fact that each γk in (5.6) is a Jordan curve, which is neither fully contained

in 
R+ nor in 
R− and that we have %(γk)=−γk, we deduce that γk∩π−1
λ (R) consists of

exactly two points. By an appropriate choice of the starting point of the parametrization
of γk in γk∩π−1

λ (R) it follows that (5.7) is satisfied, which proves assertion (iii).
The monotonicity statements in assertion (iv) are immediate consequences of (5.10)

and (5.11), which completes the proof of Lemma 5.2.

Lemma 5.3. We have

1
2πi

∮
γk

eλ(ζ)+tπλ(ζ) dζ < 0 for each k =1, ...,K. (5.13)

Proof. We abbreviate the integrand in (5.13) by

g(ζ) := eλ(ζ)+tπλ(ζ), ζ ∈Rλ\π−1
λ ({∞}),

and assume k∈{1, ...,K} in (5.13) to be fixed.
From assertion (i) in Lemma 5.2 we know that Im g(ζ)=0 for all ζ∈γk, from assertion

(iv) we further know that Re g(ζ)=g(ζ) is strictly increasing on γk∩(R+\Cr), from (5.7)
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that γk∩R+ is the subarc γk|(0,sk), and from the proof of assertion (iv) it is evident that
also the following slightly stronger statement

(g�γk)′(s) > 0 for 0<s <sk and γk(s) /∈Cr (5.14)

holds. It further follows from (5.7) that we have

Im πλ�γk(0)= Im πλ�γk(sk) = 0 and Im πλ�γk(s) > 0 for 0<s <sk. (5.15)

Let the coordinates z, x and y and the differentials dz, dx and dy be defined by

πλ(ζ) = z =x+iy ∈C, ζ ∈ γk, and dz = dx+i dy,

and let these coordinates and differentials be lifted from 	C onto Rλ, where we then have
ζ=ξ+iη and dζ=dξ+i dη. Taking into consideration that %(γk)=−γk, %(dζ)=�dζ, and
(g�%)(ζ)=g(ζ)=g(ζ) for all ζ∈γk, we conclude that

1
2πi

∮
γk

g(ζ) dζ =
1

2πi

∫
γk∩D+

g(ζ)(dξ+i dη)+
1

2πi

∫
γk∩D−

g(ζ)(dξ+i dη)

=
1
π

∫
γk∩D+

g(ζ) dη

=
1
π

∫ sk

0

(g�γk)(s) Im(πλ�γk)′(s) ds

=− 1
π

∫ sk

0

(g�γk)′(s) Im(πλ�γk)(s) ds < 0.

(5.16)

Indeed, the first three equalities in (5.16) are a consequence of the specific symmetries
and antisymmetries with respect to % that have been listed just before (5.16). From
the three equalities we consider the second one in more detail, and concentrate on the
transformation of the second integral after the first equality. We have

1
2πi

∫
γk∩D−

g(ζ)(dξ+i dη) =− 1
2πi

∫
γk∩D+

g(ζ)(dξ−i dη) =
1

2πi

∫
γk∩D+

g(ζ)(−dξ+i dη),

which verifies the second equality. The last equality in (5.16) follows from integration by
parts together with the equalities in (5.15). The inequality in (5.16) is then a consequence
of (5.14) and the inequality in (5.15).

Proof of Proposition 5.1. The chain γ of oriented Jordan curves (5.6) introduced
in Lemma 5.2 is the candidate for the chain γ in Proposition 5.1. Equality (5.1) and
inequality (5.2) have been verified by Lemmas 5.2 and 5.3, respectively. Identity (5.3)
and its consequence (5.4) remain to be proved.
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As integration paths Cj , j=1, ..., I, on the right-hand side of (5.3) we take the com-
mon Jordan curve C from (iv) in the listing in the last subsection. The set π−1

λ (Ext(C))
consists of n disjoint components if C is chosen sufficiently close to infinity; it then also
follows that all branch points of λ are contained in Rλ\π−1

λ (Ext(C)). Further, we have

Im(λj(z)+tz)
{

> 0 for all z ∈C with Im z > 0,
< 0 for all z ∈C with Im z < 0,

j =1, ..., I, (5.17)

and

Im(λj(z)+tz)
{

< 0 for all z ∈C with Im z > 0,
> 0 for all z ∈C with Im z < 0,

j = I+1, ..., n. (5.18)

A choice of C with these properties is possible because of (3.6) in Lemma 3.3 and the
assumption that b16...6bI <t<bI+16...6bn.

Next we define
D0 :=D\π−1

λ (Ext(C))⊂Rλ. (5.19)

From (5.17), (5.18) and (5.5) it follows that exactly I of the n components Ĉj⊂Rλ,
j=1, ..., n, of π−1

λ (Ext(C)) are contained in D. Each Ĉj lies in a different sheet S
(j)
λ ,

j=1, ..., n, of the system of standard sheets introduced in Lemma 3.6. The enumeration
of the sheets S

(j)
λ corresponds to that of the functions λj as stated in (3.29). Let C̃j⊂Rλ,

j=1, ..., n, denote the lifting of the oriented Jordan curve C⊂C onto S
(j)
λ ⊂Rλ. We then

have πλ(C̃j)=Cj =C for j=1, ..., n, and from (3.29) it follows that

λ(ζ) =λj(πλ(ζ)) for ζ ∈ C̃j , j =1, ..., n. (5.20)

Since C̃j =∂Ĉj for j=1, ..., n, the open set D0 lies to the left of each C̃j . Together
with assertion (i) of Lemma 5.2, it follows from (5.19) that the chain

γ+C̃1+...+C̃I = γ1+...+γK +C̃1+...+C̃I ⊂Rλ (5.21)

forms the contour ∂D0 with an orientation for which D0 lies everywhere to its left. By
Cauchy’s theorem we have

1
2πi

∮
γ+C̃1+...+C̃I

eλ(ζ)+tπλ(ζ) dζ =0. (5.22)

Identity (5.3) follows immediately from (5.22) and (5.20). Inequality (5.4) is a conse-
quence of (5.2) and (5.3), since we have

∑
bj<t

1
2πi

∮
Cj

eλj(ζ)+tζ dζ =
I∑

j=1

1
2πi

∮
Cj

eλj(ζ)+tζ dζ =− 1
2πi

∮
γ

eλ(ζ)+tπλ(ζ) dζ > 0. (5.23)
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5.3. A preliminary proof of positivity

With Proposition 5.1 we are prepared for the proof of positivity of the measure µA,B

in Theorems 1.6 under Assumption 3, which then completes the proof of Theorem 1.6
under Assumption 3.

Proof of positivity under Assumption 3. From representation (1.12) in Theorem 1.6
it is obvious that the discrete part

dµd =
n∑

j=1

eãjj δb̃j
=

n∑
j=1

eajj δbj (5.24)

of the measure µA,B is positive. From (5.4) of Proposition 5.1 it follows that the density
function wA,B in (1.13) of Theorem 1.6 is positive on

[b̃1, b̃n]\{b̃1, ..., b̃n}= [b1, bn]\{b1, ..., bn},

which proves the positivity of the measure µA,B . Notice that the last identity holds
because of Assumption 1 in §2.

Under Assumption 3, relation (1.15) in Theorem 1.6 is proved in a slightly stronger
form.

Lemma 5.4. Under Assumption 3 we have wA,B(t)>0 for all t∈[b1, bn]\{b1, ..., bn}
and

supp(µA,B) = [b1, bn] = [b̃1, b̃n]. (5.25)

Proof. The lemma is an immediate consequence of the strict inequality in (5.4) in
Proposition 5.1.

5.4. The general case

In this subsection we show that Assumption 3, which has played a central role in §5.3,
is actually superfluous for the proof of positivity of the measure µA,B in Theorems 1.6.
For this purpose we have to revisit some definitions and results from §3.1 and §3.2.

If the polynomial g(λ, t) in (3.1) is not irreducible, then it can be factorized into
m>1 irreducible factors g(l)(λ, t), l=1, ...,m, of degree nl as already stated in (3.1). For
the partial degrees nl we have n1+...+nm=n. Each polynomial g(l)(λ, t), l=1, ...,m, can
be normalized in accordance with (3.4).

The m polynomial equations (3.2) define m algebraic functions λ(l), l=1, ...,m, and
each of them has a Riemann surface Rλ,l, l=1, ...,m, with nl sheets over 	C as its natural
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domain of definition. The solution λ of equation (3.1) consists of these m algebraic
functions, and its domain of definition is the union (3.27) of the m Riemann surfaces
Rλ,l, l=1, ...,m.

Each algebraic function λ(l), l=1, ...,m, possesses nl branches λl,k, k=1, ..., nl, which
are assumed to be chosen analogously to Definition 3.7, but with a new form of indices.
After (3.4) we have denoted by

j: {(l, k) : k =1, ..., nl, l =1, ...,m}−! {1, ..., n}

a bijection that establishes a one-to-one correspondence between the two types of indices
that are relevant here. We may assume that this correspondence has been chosen in such
a way that

bj(l,1) 6 ...6 bj(l,nl) for each l =1, ...,m, (5.26)

and in the new system of indices (3.6) in Lemma 3.3 takes the form

λj(l,k)(t) =λl,k(t) = aj(l,k),j(l,k)−bj(l,k)t+O

(
1
t

)
as t!∞ (5.27)

for k=1, ..., nl, l=1, ...,m.
We define

wA,B,l(t) :=
nl∑

k=1
bj(l,k)<t

1
2πi

∮
Cl,k

eλl,k(ζ)+tζ dζ for l =1, ...,m (5.28)

with Cl,k=Cj(l,k). From (5.28) it follows that in (1.13) and (1.14) in Theorem 1.6 we
have

wA,B(t) =
m∑

l=1

wA,B,l(t). (5.29)

Under Assumption 3 the new definitions remain consistent in a trivial way with m=1.
In the general proof of positivity of the measure µA,B the next proposition will take

the role of Proposition 5.1.

Proposition 5.5. (i) For each l∈{1, ...,m} with nl=1 we have

wA,B,l(t) = 0 for all t∈R+. (5.30)

(ii) For each l∈{1, ...,m} with nl>1 we have

wA,B,l(t)
{

> 0 for all t∈ [bj(l,1), bj(l,nl)]\{bj(l,1), ..., bj(l,nl)},
=0 for all t∈R+\[bj(l,1), bj(l,nl)].

(5.31)

Each function wA,B,l, l=1, ...,m, is the restriction of an entire function in each interval
of [bj(l,1), bj(l,nl)]\{bj(l,1), ..., bj(l,nl)}.
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Proof. Equality (5.30) and the equality in the second line of (5.31) follow from (5.28)
and the analogue of Lemma 4.1, which also holds for each complete set of branches λl,k,
k=1, ..., nl, of the algebraic function λ(l), l=1, ...,m. In the case of the second line in
(5.31) we have also to take into consideration the ordering (5.26).

For the proof of the inequality in the first line of (5.31) we have to redo the analysis
in the proofs of Lemmas 5.2 and 5.3, and of Proposition 5.1, but now with the role of
the algebraic function λ, the Riemann surface Rλ and the branches λj , j=1, ..., n, taken
over by λ(l), Rλ,l and λl,k, k=1, ..., nl, respectively, for each l=1, ...,m with nl>1. It is
not difficult to see that this transition is a one-to-one copying of all steps of the earlier
analysis, and we will not go into further details. The inequality in the first line of (5.31)
follows then together with (5.28) as an analogue of (5.4) in Proposition 5.1.

It follows from (5.28) that each wA,B,l is the restriction of an entire function in each
interval in [bj(l,1), bj(l,nl)]\{bj(l,1), ..., bj(l,nl)} for l=1, ...,m.

5.5. General proof of positivity

With (5.28) and Proposition 5.5 we are prepared for the proof of positivity without
Assumption 3.

General proof of positivity. Since the discrete part (5.24) of the measure µA,B is
positive, it remains only to show that the density function wA,B in (1.13) of Theorem 1.6
is non-negative in [b̃1, b̃n]\{b̃1, ..., b̃n}=[b1, bn]\{b1, ..., bn}. But this follows immediately
from (5.31) and (5.30) in Proposition 5.5 together with (5.28). Notice that, because of
Assumption 1 in §2, we have b̃j =bj for j=1, ..., n.

6. Summing up the proofs of Theorems 1.3 and 1.6

All assertions of Theorem 1.6, except for the positivity of the measure µA,B , have been
proved in §4, and after the proof of positivity in the last section, the proof of Theorem 1.6
is complete.

Theorem 1.3 is an immediate consequence of Theorem 1.6.

7. Proof of Proposition 1.2

The proof of Proposition 1.2 is given in two steps. In the first one, formulae (1.5) and
(1.6) are verified. After that, in §7.2, it is shown that the density function wA,B(x) in
(1.6) is positive for b1<x<b2. In the last subsection, representation (1.6) of the density
function wA,B in Proposition 1.2 is compared with the corresponding result in [17].
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7.1. Proofs of representations (1.5) and (1.6)

Representation (1.5) of the general structure of the measure µA,B follows as a special
case from the analogous result (1.12) in Theorem 1.6. From (1.13) we further deduce
that the density function wA,B in (1.5) can be represented as

wA,B(x) =
1

2πi

∮
C1

eλ1(ζ)+xζ dζ for b1 <x <b2, (7.1)

with λ1 being the branch of the algebraic function λ of degree 2 defined by the polynomial
equation

g(λ, t) =det(λI−(A−tB))= (λ+b1t−a11)(λ+b2t−a22)−|a12|2 =0 (7.2)

that satisfies

λ1(t) = a11−b1t+O

(
1
t

)
as t!∞. (7.3)

Further, the integration path C1 in (7.1) is a positively oriented Jordan curve that con-
tains all branch points of the function λ in its interior. From (7.2) and (7.3) it follows
that λ1 is explicitly given by

λ1(t) = 1
2

[
(a22+a11)−(b2+b1)t+

√
[(a11−a22)+(b2−b1)t]2+4|a12|2

]
, (7.4)

with the sign of the square root in (7.4) chosen in such a way that
√

...≈(b2−b1)t for t

near ∞. Evidently, λ1 has the two branch points

t1,2 =
a22−a11

b2−b1
±i

2|a12|
b2−b1

. (7.5)

The main task is now to transform the right-hand side of (7.1) into the more explicit
expression in (1.6). In order to simplify the exponent in (7.1), we introduce a new variable
v by the substitution

t(v) :=
a22−a11

b2−b1
+

2
b2−b1

v, v ∈C, (7.6)

which leads to

(λ1�t)(v)+xt(v) =
a11(b2−x)+a22(x−b1)

b2−b1
+

2x−(b2+b1)
b2−b1

v+
√
|a12|2+v2

=
a11(b2−x)+a22(x−b1)

b2−b1
+g(v),

(7.7)

with

g(v) :=
2x−(b2+b1)

b2−b1
v+

√
|a12|2+v2. (7.8)
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Notice that if x moves between b1 and b2, then the first term in the second line of (7.7)
moves between a11 and a22, and the coefficient in front of v in the second term moves
between −1 and 1. The assumption made after (7.4) with respect to the square root
transforms into

√
|a12|2+v2≈v for v near ∞. It is evident that g is analytic and single-

valued throughout 	C\[−i|a12|, i|a12|]. From (7.7) and (7.1) we deduce the representation

wA,B(x) =
2

b2−b1
exp

(
a11(b2−x)+a22(x−b1)

b2−b1

)
1

2πi

∮
C1

eg(v) dv, (7.9)

where again C1 is a positively oriented Jordan curve, which is contained in the ring
domain C\[−i|a12|, i|a12|]. Shrinking this curve to the interval [−i|a12|, i|a12|] yields
that

wA,B(x) =
1

(b2−b1)π
exp

(
a11(b2−x)+a22(x−b1)

b2−b1

)
×

∫ |a12|

−|a12|
exp

(
−i

b2+b1−2x

b2−b1
v

)(
e
√
|a12|2−v2−e−

√
|a12|2−v2 )

dv,

(7.10)

and further that

wA,B(x) =
4

(b2−b1)π
exp

(
a11(b2−x)+a22(x−b1)

b2−b1

)
×

∫ |a12|

0

cos
(

b2+b1−2x

b2−b1
v

)
sinh

(√
|a12|2−v2

)
dv,

(7.11)

which proves formula (1.6).

7.2. The positivity of wA,B

Since Proposition 1.2 is a special case of Theorem 1.6, and since the matrices A and B

have been given in the special form of Assumption 3 in §5.1, the positivity of wA,B(x)
for b1<x<b2 has in principle already been proved by Proposition 5.1. However, the
prominence of the positivity problem in the BMV conjecture may justify an ad hoc proof
for the special case of dimension n=2, which is simpler than the general approach in §5,
and may also serve as an illustration for the basic ideas in this approach.

From (7.1) and (7.7)–(7.9), it follows that we only have to prove that

I0 :=
1

2πi

∮
C1

eg(ζ) dζ =
2
π

∫ a

0

cos(bv) sinh
(√

a2−v2
)
dv > 0 (7.12)

with the function g defined in (7.8), a and b being abbreviations for

a := |a12| and b := b(x) =
2x−(b2+b1)

b2−b1
, (7.13)
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respectively, and C1 being a positively oriented integration path in the ring domain
C\[−ia, ia].

Obviously, we have −1<b(x)<1 for b1<x<b2. The value I0 of the second inte-
gral in (7.12) depends evenly on the parameter b, and I0 is obviously positive for b=0.
Consequently, we can, without loss of generality, restrict our investigation to values of
x∈(b1, b2) that correspond to values b∈(−1, 0), and they are b1<x< 1

2 (b1+b2).
For a fixed value x∈

(
b1,

1
2 (b1+b2)

)
we now study the behavior of the function g of

(7.8) in C\[−ia, ia]. Because of the convention with respect to the sign of the square
root in (7.8), we have

g(z)≈ (1+b)z for z≈∞. (7.14)

The function Im g is continuous in C, harmonic in C\[−ia, ia], we have

Im g(z̄) =− Im g(z) for z ∈C,

and

Im g(z) = b Im z

{
< 0 for z ∈ (0, ia],
> 0 for z ∈ [−ia, 0).

(7.15)

From (7.14), (7.15), 1+b>0 and the harmonicity of Im g, we deduce that the set

{z : Im g(z) = 0}= R∪γ (7.16)

implicitly defines an analytic Jordan curve γ, which is contained in C\[−ia, ia]. We
parameterize this curve by γ: [0, 2π]!C in such a way that it is positively oriented in C
and that

γ|(0,π)⊂{z : Im z > 0}, γ(0)=: r0 > 0 and γ(2π−t) = γ(t) for t∈ [0, π]. (7.17)

From (7.16) it follows that g is real on γ. Further, we have

(g�γ)′(t) < 0 for t∈ (0, π). (7.18)

Indeed, if we set D+ :=Ext(γ)∩{z :Im z>0} and D− :=Int(γ)∩{z :Im z>0}, then it follows
from (7.14), 1+b>0, (7.15) and (7.16) that

Im g(z)
{

> 0 for z ∈D+,
< 0 for z ∈D−,

and with the harmonicity of Im g we deduce that(
∂

∂n
Im g

)
�γ(t) < 0 for t∈ (0, π),
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where ∂/∂n denotes the normal derivative on γ pointing into D−. The inequality in (7.18)
then follows by the Cauchy–Riemann differential equations and the fact that g�γ=Re g�γ.

With the Jordan curve γ and the inequality in (7.18) we are prepared to prove the
positivity of the integral I0 in (7.12). Using γ as integration path in the first integral in
(7.12) yields that

I0 =
1

2πi

∫ 2π

0

eg�γ(t)γ′(t) dt

=
1
π

Im
∫ π

0

eg�γ(t)γ′(t) dt

=
1
π

Im[eg�γ(t)γ(t)]π0−
1
π

Im
∫ π

0

(g�γ)′(t)eg�γ(t)γ(t) dt

=− 1
π

∫ π

0

(g�γ)′(t)eg�γ(t) Im γ(t) dt > 0.

(7.19)

Indeed, the second equality in (7.19) is a consequence of the symmetry relations

(g�γ)(t) = (g�γ)(2π−t), γ′(t) =−γ′(2π−t), and γ(t) = γ(2π−t)

for t∈[0, 2π). The next equality follows from partial integration, and the last equality
is a consequence of Im γ(0)=Im γ(π)=0 and Im(g�γ)(t)=0 for t∈[0, 2π). Finally, the
inequality in (7.19) is a consequence of (7.18) together with Im γ(t)>0 for t∈(0, π).

With (7.19) we have verified that wA,B(x)>0 for all x∈(b1, b2), which completes the
proof of Proposition 1.2.

7.3. A comparison with the solution in [17]

In [17, Formulae (2.13)–(2.16)] an explicit representation for the measure µA,B has been
proved for the case of dimension n=2, in which the expression of the density function
wA,B differs considerably in its appearance from representation (1.6) in Proposition 1.2;
it reads(2) as

wA,B(x) = exp
(

a11(b2−x)+a22(x−b1)
b2−b1

)
G12(x) (7.20)

with

G12(x) =
∞∑

j=1

|a12|2j

j!(j−1)!
(b2−x)n−1(x−b1)n−1

(b2−b1)2n−1
, b1 <x <b2, (7.21)

(2) Formula (2.15) of [17], which is reproduced here as (7.21), contains a misprint; there is written
erroneously 2n+1 instead of 2n−1 in the exponent of the denominator. The correction can easily be
verified by following its derivation starting from [17, (2.11)].
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where we use the terminology from Proposition 1.2. The representations (7.21) and
(1.6) have not only a rather different appearance, they have also been obtained by very
different approaches. However, they are identical, as will be shown in the next lines. We
have to show that

G12(x) =
4

(b2−b1)π

∫ |a12|

0

cos
(

b2+b1−2x

b2−b1
u

)
sinh

(√
|a12|2−u2

)
du (7.22)

for b1<x<b2.
We use the same abbreviations a and b as in (7.13). From

cos(bu) sinh
(√

a2−u2
)
=

∞∑
j=0

∞∑
k=1

(−1)jb2j

(2j)!(2k−1)!
u2j(a2−u2)k

√
a2−u2

and ∫ a

0

u2j(a2−u2)k

√
a2−u2

du = a2(j+k) Γ
(
j+ 1

2

)
Γ
(
k+ 1

2

)
(j+k)!

=πa2(j+k) (2j)!(2k)!
22(j+k)(j+k)!j!k!

,

we deduce that∫ a

0

cos(bu) sinh
(√

a2−u2
)
du =π

∞∑
j=0

∞∑
k=1

(−1)jb2ja2(j+k) 4−(j+k)

(j+k)!j!(k−1)!

=π

∞∑
n=1

a2n

4nn!(n−1)!

n−1∑
j=0

(−1)j (n−1)!
j!(n−j−1)!

b2j

=
π

4

∞∑
n=1

a2n

n!(n−1)!

(
1−b2

4

)n−1

=
π

4

∞∑
n=1

|a12|2n

n!(n−1)!
(b2−x)n−1(x−b1)n−1

(b2−b1)2(n−1)
.

(7.23)

The last equality in (7.23) follows from

1−b2

4
=

1
4

(
1−

(
b2+b1−2x

b2−b1

)2)
=

(b2−x)(x−b1)
(b2−b1)2

.

With (7.23), the identity (7.22) is proved.
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