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1. Introduction

1.1. Introduction and the main theorem

For any m∈Z let P (m) denote the greatest prime divisor of m with the convention that

P (m)=1 when m∈{1, 0,−1}. By the problem of Erdős in the title of the present paper

we mean his conjecture from 1965 that

P (2n−1)

n
!∞ as n!∞

(see Erdős [10]) and its far-reaching generalization to Lucas and Lehmer numbers. We

briefly recall their definition in the sequel.

Let α and β be complex numbers such that α+β and αβ are non-zero coprime

rational integers and such that α/β is not a root of unity. The rational integers

un =
αn−βn

α−β

with n>0 are called Lucas numbers, see [15] published in 1876 and [16] published in

1878. The divisibility properties of numbers of such a form have been studied by Euler,

Lagrange, Gauss, Dirichlet and others (see [9, Chapter XVII]).

Similarly, let α and β be complex numbers such that (α+β)2 and αβ are non-zero

coprime rational integers and such that α/β is not a root of unity. We define for n>0

the rational integers

ũn =


αn−βn

α−β
for n odd,

αn−βn

α2−β2
for n even,
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known as Lehmer numbers. In 1930 Lehmer [13] extended the theory of Lucas numbers

to this more general setting. Note that Lucas numbers are also Lehmer numbers up to a

multiplicative factor α+β when n is even. For a detailed history of Lucas and Lehmer

numbers we refer to [25].

The generalization of the conjecture of Erdős to Lucas numbers un and Lehmer

numbers ũn is that
P (un)

n
!∞ and

P (ũn)

n
!∞,

respectively, as n!∞.

Since the 1970s one of the big goals of Stewart has been to solve the problem of

Erdős. Several partial results in this direction were obtained, see Stewart [23], [24] and

especially Shorey and Stewart [22], where the lower bounds for P (un) and P (ũn) hold

only for n belonging to a certain very restricted subset of natural numbers. They used

p-adic logarithmic forms and had to rely on the work of van der Poorten [20] on lower

bounds for logarithmic forms in the p-adic case. This work contains, as it turned out

later, some inaccuracies, as were pointed out in Yu [34] and [39], and this made their

proof not completely rigorous and it was necessary to revise van der Poorten’s paper and

to remove the inaccuracies so that their result in [22] could be fully justified. Also it

became clear through their work that for getting progress especially toward the problem

of Erdős the bounds for p-adic logarithmic forms had to be sharpened considerably.

In a sequence of papers (Yu [34]–[36]) on lower bounds for p-adic logarithmic forms

the author was able to remove, with the help of the Vahlen–Capelli theorem and some

p-adic devices, the problem in [20] and to sharpen the bounds substantially. Using the

very subtle approach of Baker and Wüstholz in the Archimedean case in their 1993 paper

[6], the author could then get a further significant refinement upon the results in [36]

in analogy to their result. This was published in Yu [37] and [38] and used by Stewart

and Yu [26] to deal with the abc-conjecture. Stimulated by the work of Matveev [18],

[19] some further refinements were made possible in Yu [40] on the basis of the work of

Loher and Masser [14] on counting points of bounded height. This was, as it turned out,

crucial for attacking the problem of Erdős.

During Stewart’s visit to the Hong Kong University of Science and Technology in

2005 we worked on improvements upon our result on the abc-conjecture in [26], using the

new bound for p-adic logarithmic forms in [40]. In this discussion, he discovered a nice

device, which we refer to as Stewart’s device in the present paper and which we describe

below. The problem came up how to estimate from above the p-adic order of numbers of

the shape θb−1 with p a prime ideal, lying above the rational prime p, θ a p-adic unit in

K, and b a rational integer. The question can be transformed into, in the number field

K, a problem of a p-adic logarithmic form with one term only. The best known result
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at the time in [40] was unfortunately insufficient to deal with the problem if one treated

θb−1 directly. Stewart’s idea was to transform the p-adic logarithmic form with one

term into a p-adic logarithmic form with many terms and then to apply [40, Theorem 1].

This looks odd at the first glance but he was able to make it work. We briefly sketch

the underlying idea. He artificially introduces k−1 prime numbers p2, ..., pk, prime to p

(if θ=α/β with α and β in the definition of Lucas or Lehmer numbers, then he requires

p2, ..., pk to be prime to pαβ), satisfying the following conditions:

(i) The numbers θ1, p2, ..., pk with θ=θ1p2 ... pk are multiplicatively independent. If

θ=α/β, then this is the case indeed.

(ii) One chooses pi as small as possible. In virtue of the prime number theorem with

error term (see Rosser and Schoenfeld [21]), log pk is basically of the size log k.

(iii) The quantity k is chosen as log p/log log p multiplied by a very carefully deter-

mined constant.

When he applied [40, Theorem 1] to θb1p
b
2 ... p

b
k−1 instead of θb−1 directly, he gained

in the upper bound for the p-adic order of θb−1 a factor of the shape

exp

(
− c log p

log log p

)
as needed. In retrospect, [40, Theorem 1] and Stewart’s device along with his strategy

were sufficient to solve the problem of Erdős in the case when α/β is rational, thereby

establishing the conjecture of Erdős from 1965 (see §9 for details). After his visit to

HKUST, he found out that the bottleneck for completely solving the problem of Erdős

is the dependence on the parameter p in the estimates for p-adic logarithmic forms.

According to [40], in the case when [Q(α/β):Q]=2 and p (>2) is inert in Q(α/β) the

dependence is of size p2. Stewart knew that if one could reduce p2 to p, one would be

able to solve the problem of Erdős completely. He was very excited and started to urge

the author to try to get the improvement needed. The author knew that it would be a

very tedious and demanding work. Nevertheless the author agreed to deliver the required

improvement to help Stewart to solve the problem of Erdős. The present work is the

result of the author’s effort. On the basis of this work Stewart was able to pass through

the bottleneck when [Q(α/β):Q]=2 and p (>2) is inert in Q(α/β), thereby solving the

problem of Erdős also for the case when [Q(α/β):Q]=2, whence solving the problem

completely (see [25]).

Since 2005 the author has re-examined [40] thoroughly and has achieved in the

present paper, through very detailed work, three refinements upon [40]:

(1) The appeal to the Vahlen–Capelli theorem as in [40] and in [35]–[38] has been

removed from the p-adic theory of logarithmic forms. It has the effect that a quadratic

extension of the ground field (when p>2) can be avoided, whence it leads to a gain of
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a factor 2n in applications. Stewart has made substantial use of this refinement in [25].

The author is very confident that this refinement together with the streamlining of the

proof carried through the present paper will have further value in the p-adic theory of

logarithmic forms and in applications;

(2) The author has succeeded in establishing the relevant refinement in the depen-

dence on the parameter p in the estimates for p-adic logarithmic forms. This is the key

for getting the reduction of p2 to p in the case when [Q(α/β):Q]=2 and p (>2) is inert

in Q(α/β);

(3) As a by-product the author has got a nice improvement on the numerical con-

stants in the theorems.

The refinements (1) and (2) will be explained in more detail after the statement of

the main theorem in §1.1. The improvement (3) will be discussed at the end of §1.3.

Throughout this paper, [40] will be referred to frequently; for convenience, we shall

refer to formulas, theorems, sections and so on in [40] by adjoining a ♣, e.g. (1.5)♣, §2♣

and Lemma 5.1♣.

We now start to state our main theorem. Let α1, ..., αn be non-zero algebraic num-

bers and K be a number field containing α1, ..., αn with d=[K :Q]. Denote by p a prime

ideal of the ring OK of algebraic integers in K, lying above the prime number p, by ep

the ramification index of p, and by fp the residue class degree of p. For α∈K, α 6=0, we

write ordpα for the exponent to which p divides the principal fractional ideal generated

by α in K and we put ordp 0=∞. An element α of K is said to be a p-adic unit if

ordp α=0; α is called a p-adic integer if ordp α>0. We shall estimate ordp(Ξ−1) for

Ξ =αb11 ... αbnn , (1.1)

with b1, ..., bn being rational integers and Ξ 6=1.

Write Kp for the completion of K with respect to the exponential valuation ordp;

and the completion of ordp will be denoted again by ordp. Denote by �K the residue class

field of K at p. Now let 
Qp be an algebraic closure of Qp and Cp be the completion of

Qp with respect to the valuation of 
Qp, which is the unique extension of the valuation

| · |p of Qp. Signify by | · |p the valuation on Cp, and by ordp the exponential valuation

on Cp, with the convention that ordp 0=∞. Then |γ|p=p− ordp γ for all γ∈Cp. There

exists a Q-isomorphism ψ from K into 
Qp such that Kp is value-isomorphic to Qp(ψ(K)),

whence we can identify Kp with Qp(ψ(K)) (see Hasse [12, pp. 298–302]). This gives

ordp γ= ep ordp γ for all γ ∈Kp.

Let � be the rational integer determined by

p�−1(p−1)6 2ep<p
�(p−1). (1.2)
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If β is in Kp and β≡1 (mod p), then the p-adic series βp
�z :=exp(z log βp

�

) converges

in the disk {z :|z|p<pϑ} (ϑ will be given later by (2.1)) in Cp which contains strictly the

unit disk (see [36, Lemma 1.1]).

One of the basic tools in the theory of logarithmic forms is the Kummer descent

introduced by Baker and Stark [5]. For this one needs to choose a prime number q,

which should be different from p in the p-adic case. The optimal choice for q is

q=

{
2, if p> 2,

3, if p= 2.
(1.3)

Let µ(K) and µ(Kp) denote the groups of roots of unity in K and Kp, respectively,

and let qu and qµ signify the order of the q -primary component of µ(K) and µ(Kp),

respectively. We fix a generator

α0 = ζqu (1.4)

of the q -primary component of µ(K), where and in the sequel ζm=e2πi/m for m∈Z>0.

The classical Kummer theory requires that the field K contains ζq. This is certainly true

if q=2 (i.e. p>2), since then ζq=−1. Therefore we impose

ζ3 ∈K, if q= 3 (i.e. p= 2). (1.5)

For a multiplicatively independent set a={α1, ..., αn} of p-adic units in K we now

introduce a quantity δ(a). We apply the lattice saturation procedure described in §5♣

as follows. From a we introduce a q -saturated lattice M=MK(α1, ..., αn)∩(Z[1/q])n,

where

MK(α1, ..., αn) =
{(s1

t
, ...,

sn
t

)
: si ∈Z, t∈Z>0 and α1

s1 ... αn
sn ∈Kt

}
is the Loher–Masser lattice, see [14] (or §2♣). We fix a basis {b1, ..., bn} of M and

introduce a set of p -adic units {ϑ1, ..., ϑn} in K corresponding to this basis (see §5♣,

replacing {α′1, ..., α′r} by {α1, ..., αn} and {θ1, ..., θr} by {ϑ1, ..., ϑn}). We remark that

{ϑ1, ..., ϑn} has the property that ϑ
[M:Zn]
i (16i6n) is in the subgroup 〈α0, α1, ..., αn〉 of

K∗ and that the Kummer condition

[K(α
1/q
0 , ϑ

1/q
1 , ..., ϑ1/q

n ) :K] = qn+1

is satisfied. Let �α0, ϑ̄1, ..., ϑ̄n be the images of α0, ϑ1, ..., ϑn under the residue class map

at p from the ring of p-adic integers in K onto the residue class field �K at p. The

cardinality |〈�α0, ϑ̄1, ..., ϑ̄n〉| of the subgroup 〈�α0, ϑ̄1, ..., ϑ̄n〉 of the multiplicative group
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�K∗ (of �K) depends on a only; it is independent of the choice of basis {b1, ..., bn} of M

(see §5♣). Thus we can define an index δ(a) by

pfp−1

δ(a)
=

{
|〈�α0, ϑ̄1, ..., ϑ̄n〉|, if n> 2,

|〈�α1〉|, if n= 1.
(1.6)

It is clear that if n>2 and the Kummer condition

[K(α
1/q
0 , α

1/q
1 , ..., α1/q

n ) :K] = qn+1 (1.7)

is satisfied then
pfp−1

δ(a)
= |〈�α0, �α1, ..., �αn〉|. (1.8)

We now assume that α1, ..., αn in (1.1) are multiplicatively independent p-adic units

in K and write a={α1, ..., αn}. For any x>0, let log∗x=log max{x, e}. We introduce

the terms

C1(n, d, p, a) = c(1)(a(1))n
nn(n+1)n+1

n!

dn+2log∗d

qufp log p
(1.9)

×max

{
pfp

δ(a)(fp log p)n+1
,
en

nn

}
max{log e4(n+1)d, ep, fp log p},

C2(n, d, p, a) =
c(2)

p�
(a(2)e p�)n

(n+1)n+1

(n−1)!

dn+2log∗d

qu(fp log p)3
(1.10)

×max

{
pfp

δ(a)
,
en

nn
(fp log p)n+1

}
max{log e4(n+1)d, ep, fp log p},

G1(n, d) = (n+1)(a
(1)
0 n+a

(1)
1 +log(a

(1)
0 n+a

(1)
2 )+log d), (1.11)

G2(n, d) = (n+1)(a
(2)
0 n+a

(2)
1 +log(n+1)+log d), (1.12)

which will appear in the main theorem. The numerical values of a(i), c(i), a
(i)
0 , a

(i)
1

(i=1, 2) and a
(1)
2 will be given in §1.3.

Throughout this paper we shall use the notation of heights introduced in [6, §2].

Thus let h0(α) denote the absolute logarithmic Weil height of an algebraic number α

with the minimal polynomial a0

∏δ
j=1(x−α(j)) over Z, where a0>0. Then

h0(α) =
1

δ

(
log a0+

δ∑
j=1

log max{1, |α(j)|}
)
.

We further introduce, for i=1, 2,

h(i) = max

{
log

(
ω(d) max

16j<n

(
|bn|

h0(αj)
+
|bj |

h0(αn)

))
, logB�, Gi(n, d), (n+1)fp log p

}
.

(1.13)
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Here we note that α1, ..., αn are not roots of unity, since they are multiplicatively inde-

pendent, whence h0(αi) 6=0, 16i6n, and the terms B� and ω(d) are given by

B� = min
16j6n
bj 6=0

|bj | (1.14)

and

ω(d) =


1

d log3 3d
, if d> 1,

log 2·log 3

log 6
, if d= 1,

(1.15)

respectively. With the above notation we now state our main theorem.

Main theorem. Assume that n>2 and that (1.5) holds. Suppose further that

α1, ..., αn are multiplicatively independent elements of K, b1, ..., bn are in Z, not all zero,

and that they satisfy

ordp αj = 0 (16 j6n), (1.16)

ordp bn6 ordp bj (16 j6n). (1.17)

Then we have

ordp(Ξ−1)< min
i=1,2

(Ci(n, d, p, a)h(i))h0(α1) ... h0(αn). (1.18)

Comparing our main theorem with the main theorem♣, we observe that (1.5)♣ has

been relaxed to (1.5). Namely, now we may simply take K as our ground field when p>2,

whereas in [40] and in [36]–[38] if the first condition in (1.5)♣, that is, ordq(p
fp−1)=1

or ζ4∈K when q=2 (i.e. p>2), does not hold, a quadratic extension of K obtained

by adjoining ζ4 to K is necessary. The underlying cause of this is that the author has

succeeded in removing the appeal to the Vahlen–Capelli theorem as in [40] and in [35]–[38]

from the theory of p-adic logarithmic forms. This is the first refinement.

Moreover, neglecting the difference between pfp and pfp−1, the cardinality |�K|=pfp ,

as a factor in the upper bounds for ordp(Ξ−1) in [35]–[38] and [40], has been reduced to

the cardinality of a subgroup of �K∗, i.e., the quantity (1.6). This is the second refinement.

We now explain how we achieve the two refinements. Recall the definition of qu and

qµ between (1.3) and (1.4). Set

G0 =
pfp−1

qu
and G1 =

pfp−1

qµ
.
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By Hasse [12, p. 220], we see that qu |(pfp−1) and µ=ordq(p
fp−1), whence µ>u. In [40],

we use, in the Ith inductive step, (8.1)♣ (iii), i.e.,

d1λ1+...+drλr ≡ ε(I) (mod G1) for all λ∈Λ(I),

where Λ(I) is a subset of Zr; accordingly, in the study of fractional points s/q (with s∈Z
and (s, q)=1) for the Kummer descent, we demand the irreducibility of the polynomial

xq
µ−u+1−1 over K(θ

1/q
1 , ..., θ

1/q
r ), for which we appeal to the Vahlen–Capelli theorem,

whence we are forced to impose (1.5)♣ on K. In contrast to [40], in the present paper,

we use (iii) of (5.1), i.e.,

d1λ1+...+drλr ≡ ε(I) (mod G0) for all λ∈Λ(I);

accordingly, in the Kummer descent, we demand the irreducibility of the polynomial

xq−α0 over K, which is, a priori, guaranteed by (1.4). Therefore we can avoid the

Vahlen–Capelli theorem in the p-adic theory of logarithmic forms and relax (1.5)♣ to

(1.5). For more details, see the proof of Lemma 5.4; for the history of the introduction

of the Vahlen–Capelli theorem into the p-adic theory of logarithmic forms, see [39].

Furthermore, to create Λ(I) for I=0 (the initial inductive step), in the construction of

auxiliary functions using Siegel’s lemma, we classify the set{
d1

δ(a′)
λ1+...+

dr
δ(a′)

λr : (λ1, ..., λr)∈Λ′
}

by the congruence relation modulo G0/δ(a
′), where δ(a′)=gcd (G0, d1, ..., dr) and Λ′ is

a certain finite subset of Zr. By Dirichlet’s pigeonhole principle, there exist ε1∈Z and a

subset Λ(0)⊆Λ′ with cardinality |Λ(0)|>|Λ′|/(G0/δ(a
′)) such that

d1

δ(a′)
λ1+...+

dr
δ(a′)

λr ≡ ε1

(
mod

G0

δ(a′)

)
for all (λ1, ..., λr)∈Λ(0).

Thus Λ(0) is created and (5.1) (iii) for I=0 is satisfied with ε(0) :=δ(a′)ε1 (see (4.19) (iii)).

Now the quantity G0/δ(a
′) comes into play through Siegel’s lemma (here we use [6,

Lemma 1]) and δ(a′) is switched into δ(a) (see (1.6)) by the basic hypothesis in §2.

Finally pfp/δ(a) appears as a factor of the upper bound for ordp(Ξ−1) in our main

theorem, in place of pfp in the main theorem♣. For more details, see §4. Note that

some difficulty in the estimation from below arises due to the introduction of δ(a′) and

δ(a). We overcome this difficulty by taking the first maximum in (3.4) (see, for instance,

the proof of (3.23)); consequently, we take the first maximum in (1.9) and (1.10), which

appear in our main theorem.
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1.2. Variants for applications

Let a={α1, ..., αn},
Γ = 〈a〉 and r= rank Γ. (1.19)

If r>1 we write b for a multiplicatively independent subset of a with cardinality |b|= r.

For Theorems 1 and 2 below we define, for α∈K,

h(n)(α) = max

{
h0(α),

max{n, fp log p}
�1(n+5)d

}
, (1.20)

where the value of �1 will be given in §1.3. Let

Ω(b) =
∏
α∈b

h0(α)·
∏
α∈a\b

h(n)(α), Ω = min
b

Ω(b) (1.21)

and

C∗1 (n, d, p, b) = (n+1)C1(n, d, p, b), (1.22)

where C1(n, d, p, b) is given by (1.9) with a replaced by b. We note that here δ(b) is

defined by (1.6) with a replaced by b. Let B be a real number satisfying

B>max{|b1|, ..., |bn|, 3}. (1.23)

Theorem 1. Let r>1. Suppose that (1.5) and (1.16) hold. If Ξ 6=1, then

ordp(Ξ−1)<C∗1 (n, d, p, b)Ω max{logB, fp log p}, (1.24)

where b satisfies Ω(b)=Ω. Furthermore, if r=1 then the right-hand side of (1.24) can

be multiplied by 1
2100 .

For Theorem 2 below we define, for α∈K,

h(n)(α) = max

{
h0(α),

max{n/fp log p, 1}
�2p�d

}
, (1.25)

where the value of �2 will be given in §1.3. Define Ω(b) and Ω by (1.21) with h(n)(α)

given by (1.25). Set

C∗2 (n, d, p, b) = (n+1)C2(n, d, p, b), (1.26)

where C2(n, d, p, b) is given by (1.10) with a replaced by b. Here, again, δ(b) is defined

by (1.6) with a replaced by b. Let B satisfy (1.23).

Theorem 2. Let r>1. Suppose that (1.5) and (1.16) hold. If Ξ 6=1, then

ordp(Ξ−1)<C∗2 (n, d, p, b)Ω max{logB, fp log p}, (1.27)

where b satisfies Ω(b)=Ω. Furthermore, if r=1 then the right-hand side of (1.27) can

be multiplied by 1
4000 .
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1.3. Numerical values

We consider the following cases:

(I) p=3, including sub-cases (I.1) d>1 and (I.2) d=1;

(II) p=5 with ep>2;

(III) p>5 with ep=1, including sub-cases (III.1) d>1 and (III.2) d=1;

(IV) p>7 with ep>2;

(V) p=2.

We give the values of a(i), �i, a
(i)
0 (i=1, 2) by (1.28) and (1.29), the values of c(i),

a
(i)
1 (i=1, 2) by (1.30) and the values of a

(1)
2 by (1.31) below:

(a(1),�1, a
(1)
0 ) =


(14, 18, 2+log 14), in cases (I), (II) and (IV),(

7
p−1

p−2
, 9
p−1

p−2
, 2+log 7

)
, in case (III),

(26, 34, 2+log 26), in case (V).

(1.28)

(a(2),�2) =

{
(7, 25), if p> 2,

(13, 48), if p= 2.
a

(2)
0 =


2+log 21, in case (I),

2+log 35, in case (II),

2+log 7, in cases (III) and (IV),

2+log 52, in case (V).

(1.29)

(c(1), a
(1)
1 , c(2), a

(2)
1 ) =



(939, 4.03, 1438, 1.94), in case (I.1),

(636, 4.79, 648, 2.76), in case (I.2),

(505, 3.44, 690, 0.71), in case (II),(
1794, 4.71, 495

p−1

p−2
, 1.99

)
, in case (III.1),(

1790, 5.84, 557
p−1

p−2
, 3.32

)
, in case (III.2),

(2680, 5.12, 2418, 3.58), in case (IV),

(206, 2.52, 406, 1.48), in case (V),

(1.30)

a
(1)
2 =

{
a

(1)
1 , in cases (I.2) and (III.2),

a
(1)
1 +log 2, in the remaining cases.

(1.31)

According to the definition of cases (I)–(V), (1.36)♣ and (1.37)♣ give

a(1) =


16, in cases (I), (II) and (IV),

8
p−1

p−2
, in case (III),

32, in case (V),

(1.32)
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and

a(2) =

{
8, if p> 2,

16, if p= 2.
(1.33)

Comparing (1.9) and (1.10) with (1.6)♣ and (1.7)♣, and (1.28) and (1.29) with (1.32)

and (1.33), one can see the numerical refinements.

1.4. Outline of the paper

Obviously the main theorem is equivalent to the following two theorems.

Theorem I. Under the hypotheses of the main theorem, we have

ordp(Ξ−1)<C1(n, d, p, a)h0(α1) ... h0(αn)h(1).

Theorem II. Under the hypotheses of the main theorem, we have

ordp(Ξ−1)<C2(n, d, p, a)h0(α1) ... h0(αn)h(1).

In §§2–7 below, we give a proof of Theorem I.

Then we deduce Theorem 1 from Theorem I in §8. We have also carefully worked

out a proof of Theorem II, which implies Theorem 2 and which is obtained following

the same line of argumentation as in Part II of [40] and utilizing the three refinements

upon [40] explained in §1.1. In order to reduce the size of the present paper, we have

skipped the proofs of Theorems II and 2. We remark further that one can deduce from

Theorem I (resp. Theorem II) a theorem, which is an improvement upon Theorem 2♣

(resp. Theorem 4♣), following the argumentation in §12♣. Finally, in §9 we give further

remarks on the solution of the problem of Erdős, in order to be more streamlined with

respect to the p-adic theory of logarithmic forms.

2. Basic hypothesis

From now on till the end of this paper, we always assume (1.5). Let � be defined by

(1.2), q by (1.3), u and α0 by (1.4). Set ϑ and θ to be

ϑ=


p−2

p−1
, if p> 5 with ep = 1,

p�

2ep
, otherwise

and θ=

(
1+

1

2n
10−26

)−1

ϑ. (2.1)
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Put

c2 =

{
7
4 , if p> 2,

13
9 , if p= 2.

(2.2)

Let α1, ..., αn and b1, ..., bn be given as in the main theorem. Define

l0 =
2πi

qu
, lj = log |αj |+i argαj , argαj ∈ (−π, π] (16 j6n), (2.3)

and

L= b1z1+...+bnzn. (2.4)

Our basic hypothesis is that there exist linear forms L0, L1, ..., Lr in z0, z1, ..., zn with

coefficients in Z and positive real numbers σ1, ..., σr having the following properties:

(i) L0=z0; L0, L1, ..., Lr are linearly independent; and

L=B0L0+B1L1+...+BrLr (2.5)

for some rationals B0, B1, ..., Br, with Br 6=0.

(ii) We have

h0(α′i)6σi (16 i6 r) (2.6)

for

α′i = el
′
i with l′i =Li(l0, ..., ln) (06 i6 r), (2.7)

and
n∑
j=1

∣∣∣∣∂Li∂zj

∣∣∣∣h0(αj)6σi (16 i6 r). (2.8)

(iii) σ1, ..., σr satisfy

σ1 ... σr 6ψ1(r)h0(α1) ... h0(αn), (2.9)

where

ψ1(r) =

(
ec2q

p�

epθ
(n+1)d

)n−r
max{pfp/δ(a)(fp log p)n+1, en/nn}
max{pfp/δ(a′)(fp log p)r+1, er/rr}

, (2.10)

with a′={α′1, ..., α′r}.
Note that (2.8) will be used for the estimation of |γj | (see (4.23)) and |γ(I)

j | (see

(5.6)) from above. For more details see p. 220♣, line 9.

We note that l′0=l0, α′0=α0 and that α′1, ..., α
′
r are multiplicatively independent, since

l′0, l
′
1, ..., l

′
r are linearly independent. Further, we see that α′1, ..., α

′
r are in K and

ordp α
′
i = 0 (16 i6 r). (2.11)

Thus δ(a′) is well defined in the sense of (1.6). For r=n, a set of linear forms and a set

of positive real numbers as above exist, e.g., Li=zi (06i6n) and σi=h0(αi) (16i6n).

We now take r as the least integer for which two such sets exist.
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Lemma 2.1. If r=1, then Theorem I holds.

Before proving Lemma 2.1, we remark that [35, Lemma 1.4] can be restated as

follows. Suppose that α is a p-adic unit in a number field K of degree d and b∈Z\{0}.
If αb 6=1, then

ordp(αb−1)6
d

fp log p

(
log 2|b|+|〈�α〉|

(
1+

1

p−1

)
eph0(α)

)
,

where |〈�α〉| denotes the cardinality of 〈�α〉 as a subgroup of �K∗.

Proof. Note that B1 6=0. Write B1=p1/q1, with p1, q1∈Z, (p1, q1)=1 and q1>0. By

(2.5), we have

q1L= q1B0z0+p1L1.

Thus q1B0∈Z and p1 |bj (16j6n), whence |p1|6B�. Now

ordp(Ξ−1)6 ordp((αb11 ... αbnn )q1q
u

−1) = ordp((α′1)p1q
u

−1)

6
d

fp log p
(log 2quB�+2|〈�α′1〉|eph0(α′1)),

where the second inequality is obtained by the above restated [35, Lemma 1.4]. Note

that log 2quB�62h(1) by (1.13). Now, by applying [14, Theorem 3] for a lower bound

of h0(α1) ... h0(αn), and by (2.6), (2.9) and (2.10), observing that |〈�α′1〉|<pfp/δ(a′) (by

(1.6)), Theorem I follows.

By Lemma 2.1, we may assume that r>2 in our basic hypothesis from now on to

the end of §7.

Proposition 3.1♣ will be applied to a polynomial P(Y0, ..., Yr) with differential op-

erators ∂1, ..., ∂r−1 replaced by a new set as follows. We write

∂∗j =
1

Br

r−1∑
i=1

(
bn
∂Li
∂zj
−bj

∂Li
∂zn

)
∂i (16 j <n). (2.12)

Now the linear independence of L0, ..., Lr implies that the matrix of coefficients of

∂1, ..., ∂r−1 has rank r−1. It follows that this matrix has a non-singular square sub-

matrix of order r−1. Let Sn−1 be the symmetric group on {1, ..., n−1}. Without loss of

generality, we may assume that

ordp det

(
bn
∂Li
∂zj
−bj

∂Li
∂zn

)
16i,j<r

= min
τ∈Sn−1

ordp det

(
bn

∂Li
∂zτ(j)

−bτ(j)
∂Li
∂zn

)
16i,j<r

. (2.13)

Thus ∂∗1 , ..., ∂
∗
r−1 are linearly independent over Q, and Proposition 3.1♣ holds with

∂∗1 , ..., ∂
∗
r−1 in place of ∂1, ..., ∂r−1. Furthermore, ∂∗j (r6j<n) are linear combinations
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of ∂∗1 , ..., ∂
∗
r−1 with coefficients in Q∩Zp , where Zp is the ring of p-adic integers. Note

that the asterisked operators can be written in the form

∂∗j =

r∑
i=1

(
bn
∂Li
∂zj
−bj

∂Li
∂zn

)
Yi

∂

∂Yi
. (2.14)

In §§3–7 below, we assume that the lattice saturation procedure described in §5♣

has been applied to the set {α′1, ..., α′r} in the basic hypothesis of this section.

3. Choices of parameters and numerical preparation for §§4–7

3.1. Choices of parameters

We introduce the parametersDj , j=−1, 0, 1, ..., r, for our auxiliary function (in §4 below),

and S and T for the range of zeros and the multiplicity of zeros.

Let h be given by (1.13) for i=1 with G1(n, d) replaced by g0=g0(r, d):=G1(r, d)

and (n+1)fp log p replaced by (r+1)fp log p. Let q be given by (1.3), u by (1.4), ν by

(5.4)♣, c2 by (2.2) and c0, c1, c3 and c4 be given by Table 3.1 (in §3.3 below). Put

S=
c3q(r+1)d(h+ν log q)

fp log p
, (3.1)

γ=
qνh max{g1, ep, fp log p}

(h+ν log q)(max{g1, ep, fp log p}+ν log q)
, (3.2)

where g1=g1(r, d)=log e4(r+1)d (see also (3.16) in §3.3). Note that γ, as a function of

ν, increases for ν>0, since h>g0=G1(r, d)>39 (by (1.11) and r>2) and g1>5. So

16 γ6 qν . (3.3)

Set

D=
γ

qν+u
(1+ε)

(
2+

1

g2

)
c0c1c4

(
c2q

p�

epθ

)r
rr(r+1)r

r!

×max

{
pfp

δ(a′)(fp log p)r
,
er

rr
fp log p

}
×dr+1(log∗d)σ1 ... σr(max{g1, ep, fp log p}+ν log q),

(3.4)

where ε and g2 will be given by (3.16), � by (1.2), θ by (2.1), and r, a′={α′1, ..., α′r},
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δ(a′) and σ1, ..., σr are those in the basic hypothesis (see §2),

T =
q(r+1)D

c1θ epfp log p
, (3.5)

D̃−1 =h+ν log q−1, D−1 = bD̃−1c, (3.6)

D̃0 =
1

c1c4

1

(D−1+1)

SD

d

1

max{g1, ep, fp log p}+ν log q
, D0 = bD̃0c, (3.7)

Di =
D

c1c2rp�dσi
, 16 i6 r. (3.8)

3.2. Proposition 3.1

Set

U =
qr+1

epfp log p
SD. (3.9)

Proposition 3.1. Under the hypotheses of Theorem I, we have

ordp(Ξ−1)<U.

In §§4–7, we shall prove Proposition 3.1.

Lemma 3.2. Proposition 3.1 implies Theorem I.

Proof. On noting (2.1), (3.1), (3.2) and (3.4), Proposition 3.1 gives

ordp(Ξ−1)<
f0

1+10−26

(
c2q

2 p
�

epθ

)r
rr(r+1)r+1

r!

dr+2log∗d

qufp log p

×max

{
pfp

δ(a′)(fp log p)r+1
,
er

rr

}
max{g1, ep, fp log p}σ1 ... σrh,

(3.10)

where

f0 = (1+10−26)(1+ε)

(
2+

1

g2

)
c0c1c3c4q

2. (3.11)

Recall a(1) and c(1) given in §1.3. By Table 3.2 below, we have f06c(1). From (1.2),

(1.3), (2.1) and (2.2) we get (
c2q

2p�

epθ

)n
< (1+10−26)a(1)n.

On applying (2.9) and (2.10) and observing that

rr

r!
6

2r−nnn

n!
,

Theorem I follows from (3.10).
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Case c0 c1 c3 c4

c5 g9

r=2 r∈[3, 7] r>8 r=2 r>3

(I.1) 2.66 1.449 1.4647 20.74 0.5377 0.55 0.56 1.1062 1.0666

(I.2) 1.9 1.4494 1.3852 20.8 0.538 0.551 0.56 107
103

107
103

(II) 2.74 1.4372 0.8412 19 0.53 0.54 0.55 1.109 02 1.067 94

(III.1) 2.78 1.4341 2.992 18.7 0.528 0.536 0.55 1.1096 1.069 93

(III.2) 2.6 1.432 3.26 18.2757 0.5267 0.534 0.55 107
103

107
103

(IV) 3 1.4441 3.849 20 0.5345 0.543 0.56 1.101 34 1.064 22

(V) 2.5 2.5347 0.4757 3.765 0.753 0.78 0.827 1.107 45 1.0658

Table 3.1. We have g9= 107
103

for r>8 in all cases.

3.3. Numerical preparation for §§4–7

Here we make a detour. The reader may skip this subsection and continue to §4. We

shall prepare most inequalities, which are needed in the theoretical argumentation in

§§4–7, and the validity of which is reduced to numerical verifications in each of the cases

(I)–(V) (see §1.3), using PARI/GP CALCULATOR V. 2.3.0 (shortened as PARI/GP).

We hope, in this way, we can make the proof in §§4–7 neater and verifiable from the very

bottom.

We keep the notation introduced in §1, §2 and §5♣. The values of c0, c1, c3, c4 and

c5 are given in Table 3.1 above. The definition of g9 is given in (3.16).

Let c2 be given by (2.2), and

a∗=


7, in cases (I), (II) and (IV),
7
2 , in case (III),
26
3 , in case (V).

(3.12)

Set

η= 1− c5
r+1

and %=

{
58, if d> 2,

17, if d= 1.
(3.13)

Recall that � is defined by (1.2), ϑ and θ by (2.1), and wK is the number of roots of

unity in K. Note that θ satisfies

θ̌6 θ6 ϑ̂, (3.14)

where θ̌=ϑ̌/(1+10−26), and ϑ̌ and ϑ̂ are given by Table 3.2 below.

We shall need
d

ep
> qu−1(q−1), (3.15)
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which is a consequence of the fact that p is unramified in Q(ζqu).

We now define gj (06j612), g61, g91, ε, i∗ and i1 by the following set of formulas:

g0 = g0(r, d) =G1(r, d), where G1(n, d) is defined by (1.11),

g1 = log e4(r+1)d,

i∗=


3g1

log qηr+1
+1, if 26 r6 7,

3g1

log qe−c5
+1, if r> 8,

g2 =


c3q(r+1)g0ep

log p
, in cases (I), (II) and (V),

c3q(r+1)2d, in cases (III) and (IV),

g3 =
2

%
c0c1c4(a∗)r

rr(r+1)r

(r!)2
g1fp log p,

g4 =
q(r+1)

c1ϑ̂

g3

fp log p
·
{

1, in cases (I.2) and (III),

g−1
1 , otherwise,

1+ε=

(
1+

r+1

2g4

)r
,

i1 =

⌊
log c5(r+1)−1g4

log η−(r+1)

⌋
, (3.16)

g5 =
c3
c1c4

q(r+1)g3

g1fp log p
,

g61 = 2c0c
1−r
1 c4

(
q

ϑ̂

)r
(r+1)rer

r! rr
fp log p· q−1

q
g1 ·


gr−1

3 , in cases (I.2) and (III),(
g3

g1

)r−1

, otherwise,

g6 = %

(
1+

1

g5

)(
1+

1

g61

)
1

cr+1
1 cr2c4p

�rwK

r!er

r2r
,

g7 =
c3q(r+1)g0g3

fp log p
,

g8 =
1

g7

(
log g7+g1+max

{
log

g6d

eg1
, 0

})
+

r

c3q(r+1)2

log g3

g3
,

g91 =


1+

1+3 log log 3d

g0
, if d> 2,

1+
1

g0

(
1+log

log 6

log 2·log 3

)
, if d= 1,

g9 = max
{
g91,

107
103

}
,

g10 = exp(−1+10−15)
r−1

q(r+1)c2p�
·

 g−1
0 log p, in case (I.2),
1

r+1
, otherwise,
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g11 =
4

%
qec0c1c3c4(a∗)r

(r+1)r+1(r−1)r−1

(r!)2
g0g1,

g12 =


g1

2g7
+

1

g11
, if d> 2,

0, if d= 1.

Now we show how to get the upper bound for g9 in Table 3.1 by an example: case

(I.1) with r=2. By considering d as a continuous variable with d>2 and analyzing

∂g91/∂d and ∂2g91/∂d
2, we see that

g91(2, d)6 g91(2, 4113)6 1.1062,

whence g9(2, d)61.1062.

Let c0 be given by Table 3.1, g9=g9(r, d) in (3.16) and set

c01 =
c0(log∗d)pfp

pfp−1
, (3.17)

c02 = c0(log∗d)·
{ 3

2 , in case (I.2),

1, otherwise,
(3.18)

c03 = c03(r, d, p) =
g9(r, d)

c01−1
. (3.19)

It is readily verified that

c03 6 ĉ03, (3.20)

where ĉ03=ĉ03(r) is given by

ĉ03(r) =



max

{
g9(r, 2)

c0
9
8−1

,
g9(r, 3)

27
26c0 log 3−1

,
g9(r, 4)

c0 log 4−1

}
, in case (I.1),

107
103

3
2c0−1

, in case (I.2),

max

{
g9(r, 2)
5
4c0−1

,
g9(r, 3)

5
4c0 log 3−1

,
g9(r, 4)

c0 log 4−1

}
, in case (II),

max

{
g9(r, 2)

c0−1
,
g9(r, 3)

c0 log 3−1

}
, in cases (III.1) and (IV),

g9(r, 1)

c0−1
, in case (III.2),

max

{
g9(r, 2)
4
3c0−1

,
g9(r, 4)

c0 log 4−1

}
, in case (V).

(3.21)



p-adic logarithmic forms and a problem of erdős 333

Case p> d> ep> fp> p�> epϑ̌ ϑ̂
ep
d
6 wK> f06

(I.1) 3∗ 2 1 1 3 3
2

3
2

1 2 939

(I.2) 3∗ 1∗ 1∗ 1∗ 3∗ 3
2

∗ 3
2

∗
1∗ 2∗ 636

(II) 5∗ 2 2 1 5 5
2

5
4

1 2 505

(III.1) 5 2 1∗ 1 1∗ 3
4

1 1
2

2 1794

(III.2) 5 1∗ 1∗ 1∗ 1∗ 3
4

1 1∗ 2∗ 1790

(IV) 7 2 2 1 1 1
2

7
6

1 2 2680

(V) 2∗ 2 1 2 4 2 2 1
2

6 206

Table 3.2. Here ∗ means the exact equality

(Note that d is even in case (V) by (1.5).) In the computation, we shall use that

ĉ03(r)6 ĉ03(3) (36 r6 7) and ĉ03(r)6 ĉ03(8) (r> 8).

It can be verified that Table 3.2 above is true, where the values of epϑ̌ and ϑ̂ make

(3.14) valid, and the column of f0 is obtained by direct computation according to its

definition (3.11), using the rest of Table 3.2.

We assert that the following inequalities for r(>2), d and p,

fj = fj(r, d, p)> 0 (16 j6 30) (3.22)

hold for all cases (I)–(V), where fj (16r630) are defined as follows. (The inequality

fj>0 will be referred to as (3.22) (j).) In fact, we have tried very hard to make, in each

case, a nearly optimal choice of c0, c1, c3, c4 and c5, such that f0 (see (3.11)) is as small

as possible, subject to condition (3.22). We let

f1 = 2c5q

(
1− 1

2g2

)
−c1

(
g12+

(
1+

1

2(c02−1)

)
g8

)
− 1

c2

(
q+

1

2(c02−1)

(
1+

1

2g2+1

))
− 1

c3

(
1

epθ
(g9η̂+ĉ03)+

(
1+

1

c02−1

)
g10

)
− 1

c4

(
1+

1

g5

)(
1+

1

c02−1
+

(
θ+

1

p−1

)
ep
d

)
,
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where and in the sequel, c0, c1, c3, c4 and c5 are given by Table 3.1, c2 by (2.2), q by

(1.3), gj (06 j6 12) and i1 by (3.16), c02 by (3.18), ĉ03 by (3.21), θ by (2.1), epϑ̌ and ϑ̂

by Table 3.2, and

η̂=

{
η, if 26 r6 7,

1, if r> 8,
with η given by (3.13),

f2 = ((qη)r−1)
q

c2
− 1

c4

(
1+

1

g5

) q log q

(q−1)g1
+

 0, if p> 2,
5 log q

3 log qηr+1
, if p= 2

 ,

where (qη)r is replaced by qre−c5 when r> 8,

f3 = f1+2c5q

(
q−2+

1

2g2

)
+

g9

c3epθ
(η̂−ηr+2)

− 1

c4

(
1+

1

g5

) log q

(q−1)g1
+

 0, if p> 2,
5 log q

3 log qηr+1
, if p= 2

 ,

where ηr+2 is replaced by e−c5 when r> 8,

f4 = 2c5q(q−1)

(
η− r+1

c5g2g4

)
−c1

(
g12+

(
1+

1

2(c02−1)

)
g8

)
− 1

c2

(
1

2(c02−1)

(
1+

1

2g2+1

)
+q

{
7
8 , if p> 2,

13
16 , if p= 2

)

− 1

c3

(
1

epθ

(
g9
r+1

c5g4
+ĉ03

)
+

(
1+

1

c02−1

)
g10

)

− 1

c4

(
1+

1

g5

)1+
1

c02−1
+

(
θ+

1

p−1

)
ep
d

+


log qηr+1

g1
, if p> 2,

5 log q

3 log qηr+1
, if p= 2

 ,

where log qηr+1 is replaced by log qe−c5 when p> 2 and r> 8,

f5 =


c1−4c5η

r− 2

qrηg4

(
r+1

g2
+

1

qc3epθ̌

)
, if p> 2,

c1−6c5η
r− 1

qrg4

(
r+1

ηg2
+

1

qc3epθ̌

)
, if p= 2,

f6 = 2−
(

1

g2
+

1

qc3epθ̌(r+1)

)
,
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f7 =


2c5−

(
2− c5

r+1

)(
r+1

qrg2
+

1

qr+1c3epθ̌

)
, if p> 2,

1− 1

qrg2
− 1

qr+1(r+1)c3epθ̌
, if p= 2,

where 2−c5/(r+1) is replaced by 2 when r> 8,

f8 =


2c5−

η̂

qr+1c3epθ̌
, if p> 2,

1− η̂

qr+1(r+1)c3epθ̌
, if p= 2,

f9 =

({
7
8 , if p> 2,

13
16 , if p= 2

)
− 1

(e4(r+1)d)3
−
(

1+
1

g5

)
c2
c4

log q

q log qηr+1

{
3, if p> 2,
4
3 , if p= 2,

f10 =

({
7
8 , if p> 2,

13
16 , if p= 2

)
− 1

(qηr+1)i1
−
(

1+
1

g5

)
c2
c4

log q

q

i1
g1

{
1, if p> 2,
4
9 , if p= 2,

where i1 is replaced by 10 when r> 8,

f11 = 2c5η−
log q

log qη

(
1

c2
+

1

c4

(
1+

1

g5

)
1

g1q

)
,

f12 = 2c5η
2− log q

log qη

(
1

c2
+

1

c4

(
1+

1

g5

)
1

g1q2

)
(for r> 3),

f13 = 2c5η
3− log q

log qη

(
1

c2
+

1

c4

(
1+

1

g5

)
1

g1q3

)
(for r> 4),

f14 = 2c5η
r−1− log q

log qη

(
1

c2
+

1

c4

(
1+

1

g5

)
1

g1q4

}
(for 56 r6 7),

f15 = 2c5

({
ηr+1, if p> 2,

e−c5 , if p= 2

)
−
(

1

c2
+

1

c4

(
1+

1

g5

)
1

g1q4

)
(for r> 8),

f16 = 2c5η
r− log q

log qη

(
1

c2

({
7
8 , if p> 2,

13
16 , if p= 2

)
+

1

c4

(
1+

1

g5

)
1

g1qr

)
,

where ηr is replaced by e−c5 when r> 8,

f17 = 2c5(q−1) log qη− 1

c2

log q

(qηr+1)i1
− 1

c4

(
1+

1

g5

)
log q

g1qη
,

f18 = e3− 2

(r+1)d
− c3g0

(g0−1)fp log p

{
q2, if p> 2,

q13/6, if p= 2

f19 = e3− 2q

(r+1)d
− c3qg0

(g0−1)fp log p
,
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f20 = q− 1

ηr+1
− 1

g2
,

f21 =


r−1

c1c2

g3

p�
−e, in cases (I.2) and (III),

p−1

2p

r−1

c1c2

g3

g1
−e, otherwise,

f22 =
g0

r+1
−log

c5g4

r+1
,

f23 =
c5g4η

r+1

r+1
−e,

f24 = 1− log g0

g0
− 2

r+1
,

f25 = 2c5−
(r+1)q

g2g4
− 1

c3epθ̌

1

g4
,

f26 =
g0

r+1
−log

(
3qr+2 c3(r+1)d

fp log p

)
,

f27 = 2c5η
r− r+1

qrg2g4η
+

(
1− 2

η

)
1

qr+1c3epθ̌ g4

(for p= 2 only),

where ηr is replaced by e−c5 and 1−2/η is replaced by −2/η when r> 8,

f28 = 2c5

(
1− 1

g2

)
qη− 1

c4

(
1+

1

g5

)
log q

g1
,

f29 = (qηr+1)i1−q,

f30 =
q2η

3

(
1− 1

g2

)
− 1

c4

(
1+

1

g5

)
ep
d
ϑ̂.

We now prove (3.22). Observe that each fj (16j630), as a function of r, increases

monotonically for r>8. (Here we use the fact that, as functions of r, ηr+1 increases and

ηr decreases, and both tend to e−c5 as r!∞.) Thus (3.22) with r=8 implies (3.22) for

r>8, and it suffices to verify (3.22) for r=2, 3, ..., 8.

Let

δ=
1

c4

(
1+

1

g5

)
.

We estimate the following terms Fj(epθ) appearing in fj (j=1, 3, 4), where

Fj(x) =
βj
x

+
δ

d
x,
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with

β1 =
1

c3
(g9η̂+ĉ03),

β3 =
1

c3

(
ĉ03+g9

{
ηr+2, if 26 r6 7,

e−c5 , if r> 8

)
,

β4 =
1

c3

(
g9
r+1

c5g4
+ĉ03

)
.

Thus, by the fact that F ′′j (x)>0 for x>0 (j=1, 3, 4), we have

Fj(epθ)6max{Fj(epθ̌), Fj(epϑ̂)}, j= 1, 3, 4.

In fj (j=1, 3, 4), for cases (III) and (IV), we replace Fj(epθ) by the above upper bound;

for cases (I), (II) and (V), we replace Fj(epθ) by

βj

epθ̌
+δ
(ep
d

)
ϑ̂.

We denote by f̃j (j=1, 3, 4) the resulting function. Thus fj>f̃j (j=1, 3, 4).

In fj (16j630, with j 6=1, 3, 4), f̃1, f̃3 and f̃4, we now apply the values

epθ̌=
epϑ̌

1+10−26

and ϑ̂ given by Table 3.2; furthermore, we replace g9 by its upper bound in Table 3.1, p,

d, ep, fp, p� and wK by their lower bounds in Table 3.2, and ep/d by its upper bound in

Table 3.2. Now we are ready to run PARI/GP, separately in each of the cases (I)–(V),

for computing fj (16j630, j 6=1, 3, 4), f̃1, f̃3 and f̃4 for r=2, 3, ..., 8. We conclude that,

in each case,

fj(r, d, p)> 0 (r= 2, 3, ..., 8), 16 j6 30, j 6= 1, 3, 4,

f̃j(r, d, p)> 0 (r= 2, 3, ..., 8), j= 1, 3, 4.

This completes the proof of (3.22).

Recall (3.16). It is readily seen that the following inequalities (3.23), (3.25)–(3.33)

hold. We now list (3.23)–(3.33) and prove part of them, when it is necessary.

S> g2, D> g3,
SD

d
> g7 and

2SD

rd2σi
> g11 (16 i6 r). (3.23)
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Proof. We prove D>g3. The other three inequalities can be proved similarly. Note

that wK>qu and c2qp
�/epθ>a∗, by (1.2)–(1.4), (2.1), (2.2) and (3.12). Applying [14,

Theorem 3], and using (2.6) and (5.4)♣, we obtain

dr+1(log∗d)σ1 ... σr >
1

%

rr

r!er
qνwK , (3.24)

where % is given by (3.13). Now D>g3 follows at once. Observe that we have replaced

the first maximum in (3.4) by (er/rr)fp log p to obtain the lower bound g3 of D.

T > g4 and

(
[T ]+r

r

)
6 (1+ε)

T r

r!
, (3.25)

D̃0 > g5 and D0+16

(
1+

1

g5

)
D̃0, (3.26)

(D−1+1)(D0+1)
qνD1 ... Dr

G0/δ(a′)
> c01(2S+1)

(
[T ]+r

r

)
, (3.27)

where G0=G/qu with G=pfp−1, a′={α′1, ..., α′r} and δ(a′) are those in the basic hy-

pothesis (see §2), and c01 is given by (3.17).

(D−1+1)(D0+1)(qνD1 ... Dr+1)6 g6SD
r+1 6 exp

(
g8
SD

d

)
. (3.28)

Proof. By (3.4), (3.8) and (3.16), we have qνD1 ... Dr>g61. Now (3.7), (3.8), (3.24)

and (3.26) yield the first inequality of (3.28). Note that

g6SD
r+1 =

g6d

eg1
eg1

SD

d
Dr and

r logD

SD/d
6

r

c3q(r+1)2

logD

D
.

Now on applying (3.23), the second inequality of (3.28) follows.

p�S

r∑
i=1

Diσi6
1

c1c2

SD

d
, (3.29)

T (D̃−1+1) =T (h+ν log q) =
1

c1c3epθ

SD

d
, (3.30)

log

(
e

(
2+

S

D−1+1

{
q, if p> 2,

q7/6, if p= 2

))
6 g1, (3.31)

log

(
e

(
2q+

S

D−1+1

))
6 g1. (3.32)

Proof. Formulas (3.31) and (3.32) are consequences of (3.22) (18) and (3.22) (19),

respectively.
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x log

(
1

eh
+

(r−1)D

c1c2 p�
1

x

)
6 g10

1

c1c3

SD

d
for x> 1. (3.33)

Proof. Recall that h>g0=G1(r, d)>39 (by (1.11) and r>2). By (3.22) (21), we see

that (r−1)D/c1c2p
�>f21+e>e. The proof of [37, (9.31)] also works here, which gives

left-hand side of (3.33) 6
e−1+δ(r−1)D

c1c2p�
,

where δ∈(0, 1) satisfies δ=e−(h+1− δ)<e−h<10−15. Using the fact that

S

d
>


c3q(r+1)g0

log p
, in case (I.2),

c3q(r+1)2, otherwise,

(3.33) follows.

4. The construction of auxiliary functions

Recall (1.4). By Hasse [12, p. 220], we have qu |(pfp−1). Put

G= pfp−1 and G0 =
G

qu
. (4.1)

Choose and fix ζ, a Gth primitive root of unity in Kp, such that

ζG0 =α0. (4.2)

Fix ξ∈Cp satisfying

ξq = ζ. (4.3)

Thus ξG0∈Cp is a qth root of α0. We fix

α
1/q
0 := ξG0 . (4.4)

Furthermore, we have

ζG0/q =α
1/q
0 if q |G0. (4.5)

Recall α′1, ..., α
′
r in the basic hypothesis (see §2) and θ1, ..., θr in §5♣. By (1.16),

(2.11) and (5.10)♣, there exist rational integers ãj , ã
′
j and d̃j such that

αj ≡ ζ ãj (mod p) (16 j6n),

α′j ≡ ζ ã
′
j (mod p) (16 j6 r),

θj ≡ ζ d̃j (mod p) (16 j6 r).

(4.6)
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Now [36, Lemma 1.1] implies that

ordp(α
p�

j ζ
aj−1)>θ+

1

p−1
(16 j6n),

ordp((α
′
j)
p�ζa

′
j−1)>θ+

1

p−1
(16 j6 r),

ordp(θ
p�

j ζ
dj−1)>θ+

1

p−1
(16 j6 r),

(4.7)

where aj=−ãjp� , a′j=−ã′jp� , dj=−d̃jp� , � is given by (1.2) and θ by (2.1).

Recall that r>2 and

|〈�α0, θ̄1, ..., θ̄r〉|=
pfp−1

δ(a′)

(see (1.6), §2 and §5♣). By (4.2) and (4.6), we have

|〈�α0, θ̄1, ..., θ̄r〉|= |〈ζG0 , ζ d̃1 , ..., ζ d̃r 〉|= |〈ζgcd(G0,d̃1,...,d̃r)〉|= pfp−1

gcd(G0, d̃1, ..., d̃r)
. (4.8)

Obviously, gcd(G0, d̃1, ..., d̃r)=gcd(G0, d1, ..., dr). Thus

δ(a′) = gcd(G0, d1, ..., dr). (4.9)

We have noted in §1.1 that there exists a Q-isomorphism ψ from K into 
Qp⊆Cp such

that Kp is value-isomorphic to Qp(ψ(K)), whence we can identify Kp with Qp(ψ(K)).

Henceforth we embed Kp into Cp in this fashion.

For the basic properties of the p-adic exponential function exp and logarithmic

function log, see, e.g., [34, §1.1].

Let Li(z0, ..., zn) and α′i (16i6r) be as specified in the basic hypothesis in §2. Then

exp(Li(0, logαp
�

1 ζ
a1 , ..., logαp

�

n ζ
an)) = (α′i)

p�ζa
′
i , 16 i6 r, (4.10)

(this is just (7.5)♣). Here and in (4.11) below exp and log signify the p-adic exponential

and logarithmic functions. Henceforth for all z∈Cp with ordp z>−θ, we define

((α′i)
p�ζa

′
i)z = exp(z log(α′i)

p�ζa
′
i) and (θp

�

i ζ
di)z = exp(z log θp

�

i ζ
di). (4.11)

Observe that the functions in (4.11) have supernormality θ in the sense that

((α′i)
p�ζa

′
i)p
−θz and (θp

�

i ζ
di)p

−θz

are p-adic normal functions by (4.7). (The concepts of p-adic normal series and functions

are due to Mahler [17], see also Adams [1] and [34].) We define (θp
�

i ζ
di)1/q by (4.11) with
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z=1/q, and we fix a choice of qth roots of θ1, ..., θr in Cp, denoted by θ
1/q
1 , ..., θ

1/q
r , such

that

(θp
�

i ζ
di)1/q = (θ

1/q
i )p

�

ξdi , 16 i6 r, (4.12)

where ξ has been fixed, satisfying (4.3). We remark that, taking θ
1/q
0 as α

1/q
0 in (4.4),

and θ
1/q
i (16i6r) as in (4.12), then (5.11)♣ still holds.

We shall use the notation introduced in Baker and Wüstholz [6, §12]:

∆(z; k) =
(z+1) ... (z+k)

k!
for k∈Z>0 and ∆(z; 0) = 1,

Π(z1, ..., zr−1; t1, ..., tr−1) =

r−1∏
i=1

∆(zi; ti) (t1, ..., tr−1 ∈N (:=Z>0)),

and

Θ(z; k, l,m) =
1

m!

(
d

dz

)m
∆(z; k)l (l,m∈N).

For the functions Π with T ′=t1+...+tr−1>1 we have

|Π|6 eT
′
(

1+
|z1|+...+|zr−1|

T ′

)T ′
.

By the argument in Tijdeman [27, p. 200], we see that [36, Lemma 1.3] and the first

assertion of [27, Lemma T1] remain valid for x60.

Recall the matrices B̃ and B in §5♣, and that b1, ..., br, the rows of B, form a basis

for the lattice M. For every (λ1, ..., λr)∈Zr, (µ1, ..., µr):=(λ1, ..., λr)B is in M. We fix

µ0 =λ1b10+...+λrbr0, (4.13)

so that

(µ0, µ1, ..., µr) = (0, λ1, ..., λr)B̃ (4.14)

is in M̃. On defining for all s∈Z, with the usual exponential function,

(α′i)
µis = exp(µis l

′
i) (06 i6 r), (4.15)

where l′i is given by (2.7), we see that (4.14) yields

r∏
i=1

θλisi =

r∏
i=0

(α′i)
µis. (4.16)

We also write for µ∈M and λ=µB−1=µV (see (5.15)♣),

µ′i = qνµi (06 i6 r) and λ′i = qνλi (16 i6 r), (4.17)
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where µ0 is given by (4.13). Thus µ′i∈Z (06i6r) by (5.4)♣.

We quote Lemma 7.1♣ as our Lemma 4.1 below, where

((α′i)
p�ζa

′
i)µis/q and (θp

�

i ζ
di)λis/q

are given by the p-adic functions in (4.11) at z=µis/q and z=λis/q, respectively.

Lemma 4.1. For all µ∈M and s∈Z, we have

r∏
i=1

((α′i)
p�ζa

′
i)µis/q =

r∏
i=1

(θp
�

i ζ
di)λis/q,

where λ=(λ1, ..., λr)∈Zr is determined by λ=µB−1=µV.

Recall Di (16i6r) defined by (3.8) and qνD1 ... Dr>g61 (see the proof of (3.28)).

Let

C = {x∈Rr : 06xi6Di, 16 i6 r} and m= [qνD1 ... Dr]. (4.18)

It may be of some interest to note that qνD1 ... Dr>g61>5·105, computed by running

PARI/GP. Thus m>5·105. By Lemma 5.1♣, we see that M∩(C−x(0)) (x(0) :=x0)

contains m+1 distinct points

0, µ1 =x1−x0, ..., µm =xm−x0.

Let d1, ..., dr be given by (4.7), G and G0 by (4.1), and consider {0,µ1, ...,µm}V⊆Zr

(recalling V=B−1, see (5.15)♣). We classify the set{
d1

δ(a′)
λ1+...+

dr
δ(a′)

λr : (λ1, ..., λr)∈{0,µ1, ...,µm}V
}

by the congruence relation modulo G0/δ(a
′), where δ(a′)=(G0, d1, ..., dr) (see(4.9)). By

Dirichlet’s pigeonhole principle, there exist a subset Λ(0)⊆{0,µ1, ...,µm}V⊆Zr with

cardinality |Λ(0)|>(m+1)/(G0/δ(a
′)) and ε1∈Z such that

d1

δ(a′)
λ1+...+

dr
δ(a′)

λr ≡ ε1

(
mod

G0

δ(a′)

)
for all (λ1, ..., λr)∈Λ(0).

Observe that Λ(0)⊆{0,µ1, ...,µm}V⊆Zr has the following properties:

(i) M(0) := Λ(0)B⊆M∩(C−x(0));

(ii) qνD1 ... Dr/(G0/δ(a
′))< |M(0)|= |Λ(0)|6 qνD1 ... Dr+1;

(iii) d1λ1+...+drλr ≡ ε(0) (mod G0) for all λ∈Λ(0), where ε(0) := δ(a′)ε1.

(4.19)
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Fix a point λ(0)=(λ
(0)
1 , ..., λ

(0)
r ) of Λ(0). Then

d1(λ1−λ(0)
1 )+...+dr(λr−λ(0)

r )≡ 0 (mod G0) for all λ∈Λ(0). (4.20)

Write λ̂=(λ−1, λ0,λ)=(λ−1, λ0, λ1, ..., λr) and define, with D−1 and D0 given by

(3.6) and (3.7),

Λ̂
(0)

= {λ̂∈Zr+2 : 06λi6Di (i=−1, 0) and λ∈Λ(0)}. (4.21)

We shall construct a rational function P=P (Y0, ..., Yr) of the form

P =
∑

λ̂∈Λ̂
(0)

%(λ̂)(∆(Y0+λ−1;D−1+1))λ0+1Y
µ′1−(µ

(0)
1 )′

1 ... Y
µ′r−(µ(0)

r )′

r (4.22)

with coefficients %(λ̂) in OK , where (µ
(0)
1 , ..., µ

(0)
r )=λ(0)B with λ(0)∈Λ(0) in (4.20),

(µ1, ..., µr)=λB for each λ∈Λ(0), and µ′i=q
νµi and (µ

(0)
i )′=qνµ

(0)
i (16i6r) (see (4.17)).

Denote by ∂∗1 , ..., ∂
∗
n−1 the differential operators specified in (2.12) (see also (2.14))

and put ∂∗0 =∂/∂Y0. Then we have

∂∗j Y
µ′1−(µ

(0)
1 )′

1 ... Y
µ′r−(µ(0)

r )′

r = γjY
µ′1−(µ

(0)
1 )′

1 ... Y
µ′r−(µ(0)

r )′

r (16 j <n),

where

γj = qν
r∑
i=1

(
bn
∂Li
∂zj
−bj

∂Li
∂zn

)
(µi−µ(0)

i ) (16 j <n), (4.23)

and γj (16j<n) are rational integers by (5.4)♣.

For t=(t0, ..., tr−1)∈Nr, write |t|=t0+...+tr−1 and put

Π(t) = Π(γ1, ..., γr−1; t1, ..., tr−1) = ∆(γ1; t1) ...∆(γr−1; tr−1),

Θ(Y0; t) = v(D−1+1)t0Θ(Y0+λ−1;D−1+1, λ0+1, t0),

where

v(k) = lcm(1, 2, ..., k) for k∈Z>0.

We record (see Rosser and Schoenfeld [21, p. 71, (3.35)])

log v(k)< 1.03883k < 107
103k. (4.24)

We introduce further rational functions Q(t)=Q(Y0, ..., Yr; t) by

Q(t) =
∑

λ̂∈Λ̂
(0)

%(λ̂)Π(t)Θ(Y0; t)Y
µ′1−(µ

(0)
1 )′

1 ... Y
µ′r−(µ(0)

r )′

r . (4.25)
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As indicated in §1.1, we use the notation of heights introduced in [6, §2]. Now we

apply Siegel’s lemma—here we use [6, Lemma 1], which is a consequence of Bombieri

and Vaaler [7, Theorem 9], to prove the following lemma, where

%= (%(λ̂) : λ̂∈ Λ̂
(0)

)∈PN with N = |Λ̂
(0)
|,

c02 is given by (3.18) and ĉ03 by (3.21). Recall S and T given by (3.1) and (3.5).

Lemma 4.2. There exist %(λ̂)∈OK , λ̂∈Λ̂
(0)

, not all zero, with

h0(%)6
SD

d

(
g12+

1

c02−1

(
1

2
g8+

1

2

(
1+

1

2g2+1

)
1

c1c2

+g10
1

c1c3
+

(
1+

1

g5

)
1

c1c4

)
+
ĉ03

epθ

1

c1c3

)
,

(4.26)

such that

Q(s, ((α′1)p
�

ζa
′
1)s/q

ν

, ..., ((α′r)
p�ζa

′
r )s/q

ν

; t) = 0 (4.27)

for all s∈Z with |s|6S and t∈Nr with |t|6T .

In the sequel, s always denotes a rational integer and t is always in Nr. The expres-

sions “s∈Z” and “t∈Nr” will be omitted.

Proof. If λ̂∈Λ̂
(0)

then, by (4.20), there exists w1(λ̂)∈Z such that

d1(λ1−λ(0)
1 )+...+dr(λr−λ(0)

r ) =w1(λ̂)G0.

Thus for each λ̂=(λ−1, λ0,λ)∈Λ̂
(0)

, µ=λB, we have, by Lemma 4.1, (4.2), α′0=θ0=α0

(see §5♣) and (4.16),

r∏
i=1

(((α′i)
p�ζa

′
i)s/q

ν

)µ
′
i−(µ

(0)
i )′ =

r∏
i=1

((α′i)
p�ζa

′
i)(µi−µ(0)

i )s

=
r∏
i=1

(θp
�

i ζ
di)(λi−λ(0)

i )s

= θ
w1(λ̂)s
0

r∏
i=1

θ
(λi−λ(0)

i )p�s
i

= (α′0)w(λ̂)s
r∏
i=1

(α′i)
(µi−µ(0)

i )p�s ∈Q(θ0, θ1, ..., θr),

(4.28)

where w(λ̂)=w1(λ̂)+(µ0−µ(0)
0 )p�∈q−νZ with µ0 and µ

(0)
0 determined by λ and λ(0)

through (4.13). Thus it suffices to construct %(λ̂)∈OK , λ̂∈Λ̂
(0)

, not all zero, such that∑
λ̂∈Λ̂

(0)

%(λ̂)Π(t)Θ(s; t)(α′0)w(λ̂)s
r∏
i=1

(α′i)
(µi−µ(0)

i )p�s = 0 (4.29)
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for all |s|6S and |t|6T .

Here (4.29) is a system of

M 6 (2S+1)

(
[T ]+r

r

)

homogeneous linear equations in N=|Λ̂
(0)
| unknowns %(λ̂), λ̂∈Λ̂

(0)
, with coefficients in

E=Q(θ0, θ1, ..., θr)⊆K. Note that (4.19) and (3.27) imply that

N >
(D−1+1)(D0+1)qνD1 ... Dr

G0/δ(a′)
> c01M. (4.30)

By applying [6, Lemma 1] and following the lines of argumentation in the proof of

Lemma 7.2♣, we can determine %(λ̂)∈OE , λ̂∈Λ̂
(0)

, not all zero, and Lemma 4.2 follows.

We omit the details here.

5. The first main inductive argument

In order to state and prove the first and second main inductive argument in the sequel,

we have to introduce further notation. Let I∈N. Suppose that x(I)∈Rr, ε(I)∈Z and

Λ(I)(⊆Zr) satisfy the following properties:

(i) M(I) := Λ(I)B⊆M∩(q−IC−x(I));

(ii) 16 |M(I)|= |Λ(I)|6 qνD1 ... Dr+1;

(iii) d1λ1+...+drλr ≡ ε(I) (mod G0) for all λ∈Λ(I).

(5.1)

Fix a point λ(I)=(λ
(I)
1 , ..., λ

(I)
r )∈Λ(I). Then

d1(λ1−λ(I)
1 )+...+dr(λr−λ(I)

r )≡ 0 (mod G0) for all λ∈Λ(I). (5.2)

Define

Λ̂
(I)

= {λ̂= (λ−1, λ0,λ)∈Zr+2 : 06λi6Di (i=−1, 0) and λ∈Λ(I)}. (5.3)

We shall construct Λ(I), x(I), ε(I) and %(I)(λ̂)∈OK , λ̂∈Λ̂
(I)

, in the first main inductive

argument below.

We introduce Q(I)(t)=Q(I)(Y0, ..., Yr; t) by

Q(I)(t) =
∑

λ̂∈Λ̂
(I)

%(I)(λ̂)Π(I)(t)Θ(q−IY0; t)Y
µ′1−µ

(I)
1

′

1 ... Y
µ′r−µ

(I)
r

′

r , (5.4)
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where

Π(I)(t) = Π(γ
(I)
1 , ..., γ

(I)
r−1; t1, ..., tr−1) = ∆(γ

(I)
1 ; t1) ...∆(γ

(I)
r−1; tr−1) (5.5)

with

γ
(I)
j = qν

r∑
i=1

(
bn
∂Li
∂zj
−bj

∂Li
∂zn

)
(µi−µ(I)

i ) (16 j <n), (5.6)

(µ1, ..., µr)=λB for each λ∈Λ(I), (µ
(I)
1 , ..., µ

(I)
r )=λ(I)B with λ(I)∈Λ(I) in (5.2), µ′i=q

νµi

and (µ
(I)
i )′=qνµ

(I)
i (16i6r).

We now define the linear forms

Mi =Li−
1

bn

∂Li
∂zn

L (16 i6 r), (5.7)

where Li (16i6r) are the linear forms in the basic hypothesis (see §2) and

L= b1z1+...+bnzn.

Then

bnMi = bn

(
∂Li
∂z0

)
z0+

n−1∑
j=1

(
bn
∂Li
∂zj
−bj

∂Li
∂zn

)
zj (16 i6 r).

For z0, z1, ..., zn in Cp with ordp z0>0 and ordp zj>1/(p−1) (16j6n), we define the

p-adic functions (here eLi=exp(Li) and eMi=exp(Mi)),

ϕ(I)(z0, ..., zn; t) =Q(I)(z0, e
L1(0,z1,...,zn), ..., eLr(0,z1,...,zn); t), (5.8)

f (I)(z0, ..., zn−1; t) =Q(I)(z0, e
M1(0,z1,...,zn−1), ..., eMr(0,z1,...,zn−1); t). (5.9)

We put, for z∈Cp with ordp z>0,

ϕ(I)(z; t) =ϕ(I)(z, zq−ν logαp
�

1 ζ
a1 , ..., zq−ν logαp

�

n ζ
an ; t), (5.10)

f (I)(z; t) = f (I)(z, zq−ν logαp
�

1 ζ
a1 , ..., zq−ν logαp

�

n−1ζ
an−1 ; t). (5.11)

By (4.10), we have, for z∈Cp with ordp z>0,

ϕ(I)(z; t) =Q(I)(z, ((α′1)p
�

ζa
′
1)z/q

ν

, ..., ((α′r)
p�ζa

′
r )z/q

ν

; t). (5.12)

Recall η given by (3.13), S by (3.1), T by (3.5). Define S(I), T (I), I∗, I1 and I0 by

S(I) = η−(r+1)I , T (I) = η(r+1)IT, (5.13)

I∗=
3(max{g1, ep, fp log p}+ν log q)

log(qηr+1)
+1, (5.14)



p-adic logarithmic forms and a problem of erdős 347

T (I1+1) c5
r+1

< 16T (I1) c5
r+1

, (5.15)

I0 = min{I∗, I1}. (5.16)

Note that (5.15) means that I1 is the farthest depth of descent one can reach by the

classical small inductive steps (see the proofs of Lemmas 5.2–5.4 below), using [37, Lem-

mas 2.1 and 2.2] with M>1. I∗ in (5.14) indicates the depth of descent determined by

the multiplicity estimates in §3♣. In the next two formulas we set

a=

{
1, if p> 2,
4
9 , if p= 2.

Observe that (3.22) (9) and (5.14) imply that

1

(qηr+1)I
+a

(
1+

1

g5

)
c2
c4

log q

q

I

max{g1, ep, fp log p}+ν log q
6 1 (5.17)

for 06I6I∗−1. Note that I1>i1 (see (3.16)) and i1>10 when r>8, where the latter can

be verified by running PARI/GP. Now, by (3.22) (9), (3.22) (10) and (5.14), I1>i1 imply

that if I∗>I1 then

1

(qηr+1)I
+a

(
1+

1

g5

)
c2
c4

log q

q

I

max{g1, ep, fp log p}+ν log q
6

{
7
8 , if p> 2,

13
16 , if p= 2,

(5.18)

for I16I6I∗−1.

The first main inductive argument. Suppose that Proposition 3.1 is false, i.e.,

ordp(Ξ−1)>U (5.19)

for some α1, ..., αn and b1, ..., bn in the main theorem. Then for every I∈Z with 06I6I0
there exist Λ(I)⊆Zr, x(I)∈Rr, ε(I)∈Z satisfying (5.1) and %(I)(λ̂)∈OK , λ̂∈Λ̂

(I)
, not all

zero, satisfying (4.26) with % replaced by %(I), such that

ϕ(I)(s; t) = 0 for all |s|6 qS(I) and |t|6 ηT (I). (5.20)

In the remainder of this section, and in §6 and §7, we always keep (5.19).

Lemma 5.1. Suppose that %(I)(λ̂)∈OK , λ̂∈Λ̂
(I)

, are not all zero, and set

∆(I) = min
λ̂∈Λ̂

(I)
ordp %

(I)(λ̂). (5.21)

Then for all y∈Q∩Zp and |t|6T we have

ordp(f
(I)(y; t)−ϕ(I)(y; t))>U−ordp bn+∆(I).
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Proof. This is similar to the proof of [37, Lemma 11.1]. We omit the details here.

We now define %(0)(λ̂) to be % (λ̂) (λ̂∈Λ̂
(0)

) in Lemma 4.2, γ
(0)
j to be γj (16j<n)

in (4.23) and Π(0)(t) to be Π(t) in Lemma 4.2. Thus Lemma 4.2 gives

ϕ(0)(s; t) = 0 for all |s|6S(0) and |t|6T (0). (5.22)

Lemma 5.2. Suppose I=0 or I is in Z with 16I6I0−1, for which the first main

inductive argument holds. Then for J=1, ..., r we have

ϕ(I)(s; t) = 0 for all |s|6 qJS(I) and |t|6 ηJT (I). (5.23)

Proof. By (5.6), (5.7), (5.9) and (5.11),

f (I)(z; t) =
∑

λ̂∈Λ̂
(I)

%(I)(λ̂)Π(I)(t)Θ(q−Iz; t)

n−1∏
j=1

(αp
�

j ζ
aj )zγ

(I)
j /bnq

ν

. (5.24)

We remark that (8.26)♣ with f
(I)
b replaced by f (I) holds.

Note that (5.23) holds for J=0 when I=0 by (5.22), and for J=1 when I>1 by

(5.20). Assume that (5.23) holds for J=k with 06k6r when I=0, and with 16k6r

when I>1. We shall prove (5.23) for J=k+1 with k<r and include the case k=r for

later use.

Similarly to [37, §11], we see that, by (5.21) and (5.24),

F (I)(z; t) := p(D−1+1)(D0+1)(θ+1/(p−1))−∆(I)

f (I)(p−θz; t) (|t|6 ηk+1T (I)) (5.25)

are p-adic normal functions. Obviously

1

m!

(
d

dz

)m
F (I)(spθ; t) = p(D−1+1)(D0+1)(θ+1/(p−1))−∆(I)−mθ 1

m!

(
d

dz

)m
f (I)(s; t). (5.26)

We now apply [37, Lemma 2.1] to each function in (5.25), taking

R= [qkS(I)] and M =
[
ηkT (I) c5

r+1

]
. (5.27)

(Note that M>1, since I6I0−16I1−1 and k6r). By (5.26), (8.26)♣ with f
(I)
b replaced

by f (I), and (5.23) with J=k and Lemma 5.1, we see that [37, (2.3)] holds for each

F (I)(z; t) in (5.25) whenever

U+(D−1+1)(D0+1)

(
θ+

1

p−1

)
> (M+1)(2R+1)θ+

(M+1) max{h+ν log q, log(2R+1)}
log p

.

(5.28)
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We now verify (5.28). By (5.15), we see that (8.31)♣ holds. Further (3.23) and (5.27)

give (8.32)♣. Thus we have, on noting (3.5) and (3.9),

ηk

qr

(
2qk− 1

g2

)
c5
c1
U < (M+1)(2R+1)θ6

ηk+ηr+1

qr

(
2qk+

1

g2

)
c5
c1
U. (5.29)

Now (3.1), (3.22) (26) and (5.27) yield

log(2R+1)6 log 3qrS(I) 6 η−(r+1)I(h+ν log q) (5.30)

for all I>0 (here we extend the definition of R in (5.27) for all I>0). Now, by (8.31)♣,

(3.1), (3.5), (3.9) and (5.30) we obtain

(M+1) max{h+ν log q, log(2R+1)}
log p

6
1

c3epθ

ηk+ηr+1

(r+1)qr+1

c5
c1
U. (5.31)

Denote by A(k) the sum of the extreme right-hand sides of (5.29) and (5.31), multiplied

by qrc1/c5U , and consider k as a continuous variable on the interval 06k6r. Then

1

(qη)k
dA(k)

dk
> 2 log qη+(log η)

(
1

g2
+

1

qc3epθ̌(r+1)

)
> 2 log qη2> 0,

where the second inequality follows from (3.22) (6). Thus (5.28) follows from the inequal-

ity U>A(r)c5U/c1q
r, which is implied by

c1 > c5(ηr+ηr+1)

(
2+

1

qrg2
+

1

c3epθ̌qr+1(r+1)

)
.

The above inequality is a consequence of (3.22) (5) and (3.22) (7). This proves (5.28).

Thus we can apply [37, Lemma 2.1] to each of the functions in (5.25), and by (5.28),

(5.29) and Lemma 5.1 we obtain

ordp ϕ
(I)

(
s

q
; t

)
+(D−1+1)(D0+1)

(
θ+

1

p−1

)
−∆(I)> 2c5η

k

(
qk− 1

2g2

)
U

c1qr
(5.32)

for all s∈Z and |t|6ηk+1T (I).

We now assume k<r and prove (5.23) for J=k+1. Suppose that it were false, i.e.,

there exist s and t such that

ϕ(I)(s; t) 6= 0, with |s|6 qk+1S(I) and |t|6 ηk+1T (I). (5.33)

We proceed to get a contradiction. In the remainder of the proof, we fix these s and t.
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In virtue of (5.2) and similarly to the proof of formula (4.28), we see that for each

λ̂=(λ−1, λ0,λ)∈Λ̂
(I)

, µ=λB, there exists a rational integer w
(I)
1 (λ̂), such that

d1(λ1−λ(I)
1 )+...+dr(λr−λ(I)

r ) =w
(I)
1 (λ̂)G0

and

r∏
i=1

(((α′i)
p�ζa

′
i)s/q

ν

)µ
′
i−(µ

(I)
i )′ =

r∏
i=1

((α′i)
p�ζa

′
i)(µi−µ(I)

i )s

=

r∏
i=1

(θp
�

i ζ
di)(λi−λ(I)

i )s

= θ
w

(I)
1 (λ̂)s

0

r∏
i=1

θ
(λi−λ(I)

i )p�s
i

= (α′0)w
(I)(λ̂)s

r∏
i=1

(α′i)
(µi−µ(I)

i )p�s ∈Q(θ0, θ1, ..., θr),

(5.34)

where w(I)(λ̂)=w
(I)
1 (λ̂)+(µ0−µ(I)

0 )p�∈q−νZ with µ0 and µ
(I)
0 determined by λ and λ(I)

through (4.13). Let

δI =

{
0, if I = 0,

1, if I > 1.

Then, by [27, Lemma T1] if I=0 and [36, Lemma 1.3] if I>1, we see that

qδI(D0+1)[(D−1+1)I+ordq((D−1+1)!)]Θ(q−Is; t)Π(I)(t)∈Z. (5.35)

By (5.34), we have ordp ϕ
(I)(s; t)=ordp ϕ

′, where

ϕ′=
∑

λ̂∈Λ̂
(I)

%(I)(λ̂)qδI(D0+1)[(D−1+1)I+ordq((D−1+1)!)]

×Θ(q−Is; t)Π(I)(t)(α′0)w
(I)(λ̂)s

r∏
i=1

(α′i)
(µi−µ(I)

i )p�s

(5.36)

is in Q(θ0, θ1, ..., θr)⊆K and is non-zero. Now let | · |v be an absolute value on K nor-

malized as in [6, §2], and let | · |v0 be the one corresponding to p, whence

ordp ϕ
′=

1

epfp log p
(− log |ϕ′|v0) =

1

epfp log p

∑
v 6=v0

log |ϕ′|v, (5.37)

by the product formula on K. We note that (8.42)♣ with Λ̂
(I)

b replaced by Λ̂
(I)

, (8.43)♣

with Λ̂
(I)

b replaced by Λ̂
(I)

and ∆
(I)
b replaced by ∆(I), (8.44)♣ and (8.46)♣ are valid in
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the current setting. By (1.13), (2.8), (3.33), (5.1), (5.5), (5.6) and the definition of g91 in

(3.16), we see that (7.32)♣ with Π(t) replaced by Π(I)(t) (i.e, γj replaced by γ
(I)
j , 16j<r)

is valid for T ′>1 and it holds trivially for T ′=0. Using [35, Lemma 1.6], the fact that

qηr+1>1 and (3.22) (18), we obtain

log |Θ(I)(q−Is; t)|6 107

103
t0(D−1+1)

+

(
1+

1

g5

)
1

c1c4

SD

d

(
1+

log q

max{g1, ep, fp log p}+ν log q
kp

)

for λ̂∈Λ̂
(I)

, with s and t as in (5.33), where

kp =

{
k, if p> 2,

max
{
k− 1

6 , 0
}

, if p= 2.

Thus we have

log |Θ(q−Is; t)Π(I)(t)|6 SD

d

[(
g9η

k+1

epθ
+g10

)
1

c1c3
+

(
1+

1

g5

)
1

c1c4

×
(

1+
log q

max{g1, ep, fp log p}+ν log q
kp

)] (5.38)

for λ̂∈Λ̂
(I)

, with s and t as in (5.33). We assert that

1

c2

qk+1

(qηr+1)I
+

1

c4

(
1+

1

g5

)
log q

max{g1, ep, fp log p}+ν log q

(
δI

(
I+

1

q−1

)
+kp

)
6

1

c2
qk+1+

1

c4

(
1+

1

g5

)
k log q

max{g1, ep, fp log p}+ν log q
.

(5.39)

Clearly (5.39) holds for I=0. If I>1, then k>1. On noting that I6I0−16I∗−1, (5.39)

follows from (5.17).

By the above discussion and (4.26) (with % replaced by %(I)), and noting (3.9), we

see that (5.33) implies that

c1q
r+1

U

(
ordp ϕ

(I)(s; t)+(D−1+1)(D0+1)

(
θ+

1

p−1

)
−∆(I)

)
6 c1

[
g12+

(
1+

1

2(c02−1)

)
g8

]
+

1

c2

[
qk+1+

1

2(c02−1)

(
1+

1

2g2+1

)]
+

1

c3

[
1

epθ
(g9η

k+1+ĉ03)+

(
1+

1

c02−1

)
g10

]
+

1

c4

(
1+

1

g5

)[
1+

1

c02−1
+
k log q

g1
+

(
θ+

1

p−1

)
ep
d

]
.

(5.40)
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Write R(k) for the right-hand side of (5.40). Observe that (5.32) and (5.40) give

L(k) := 2c5qη
k

(
qk− 1

2g2

)
−R(k)< 0. (5.41)

Now (3.22) (j), j=11, ..., 15, imply that L′(x)>0 for 06x6r−1. Thus (5.41) yields

L(0)<0. Recalling f1 in (3.22) and η̂>η, we get f16L(0)<0, contradicting (3.22) (1).

This proves that (5.33) is impossible, whence (5.23) holds for J=k+1. The proof of

Lemma 5.2 is thus complete.

Lemma 5.3. For every I as in Lemma 5.2 we have

ϕ(I)

(
s

q
; t

)
= 0 for all |s|6 q([S(I+1)]+1) and |t|6T (I+1). (5.42)

Proof. The proof follows the pattern of that of Lemma 8.3♣ and utilizes §3.3, espe-

cially (3.22) (1) and (3.22) (2). We omit the details here.

Lemma 5.4. For every I as in Lemma 5.2 there exist Λ(I+1)⊆Zr, x(I+1)∈Rr,
ε(I+1)∈Z satisfying (5.1) with I replaced by I+1 and %(I+1)(λ̂)∈OK , λ̂∈Λ̂

(I+1)
, not

all zero, satisfying (4.26) with % replaced by %(I+1), such that

ϕ(I+1)(s; t) = 0 for all |s|6 q([S(I+1)]+1) and |t|6 ηT (I+1). (5.43)

Proof. Write the elements of Λ(I) as ι=(ι1, ..., ιr) and recall the fixed λ(I)∈Λ(I) in

(5.2). For every λ∗=(λ∗1, ..., λ
∗
r)∈Zr with 06λ∗i<q (i=1, ..., r), let

Λ(I)(λ∗) = {ι∈Λ(I) : ι−λ(I)≡λ∗ (mod q)}, (5.44)

where the congruence signifies the system of r congruences for the corresponding coor-

dinates. Thus for ι∈Λ(I)(λ∗), there exists a unique λ∈Zr, such that

ι−λ(I) = qλ+λ∗. (5.45)

Writing ι−1 and ι0 for λ−1 and λ0, set Λ̂
(I)

(λ∗)={ι̂=(ι−1, ι0, ι)∈Λ̂
(I)

:ι∈Λ(I)(λ∗)}. We

decompose ϕ(I)(s/q; t) (see (5.12)) into the sum of qr sub-sums indexed by λ∗

ϕ
(I)
λ∗

(
s

q
; t

)
:=

∑
ι̂∈Λ̂

(I)
(λ∗)

%(I)(ι̂)Π(I)(t)Θ(q−(I+1)s; t)

×
r∏
i=1

(((α′i)
p�ζa

′
i)1/qν )(τ ′i−(µ

(I)
i )′)s/q,
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where τ=(τ1, ..., τr)=ιB, and τ ′i=q
ντi (16i6r). For ι∈Λ(I)(λ∗), we have, by (5.2) and

(5.45),

q

r∑
i=1

diλi+

r∑
i=1

diλ
∗
i =

r∑
i=1

di(ιi−λ(I)
i ) = g(λ,λ∗)G0

for some g(λ,λ∗)∈Z. Thus, Lemma 4.1 and (4.12) give

r∏
i=1

((α′i)
p�ζa

′
i)(τi−µ(I)

i )s/q =

r∏
i=1

(θi
p�ζdi)(ιi−λ(I)

i )s/q

=

r∏
i=1

((θi
1/q)p

�

ξdi)(qλi+λ
∗
i )s

=

( r∏
i=1

(θi
1/q)p

�sλ∗i

)( r∏
i=1

θi
p�sλi

)
ξG0g(λ,λ

∗)s.

(5.46)

Now, (5.46), (4.4) and α0=θ0 yield

ϕ
(I)
λ∗

(
s

q
; t

)
∈
( r∏
i=1

(θi
1/q)p

�sλ∗i

)
K(θ

1/q
0 ). (5.47)

From (5.11)♣ and [K(θ
1/q
0 ):K]=q (by θ0=α0 and (1.4)), we get

[K(θ
1/q
0 )(θ

1/q
1 , ..., θ1/q

r ) :K(θ
1/q
0 )] = qr. (5.48)

By (5.42), (5.47) and (5.48), we obtain, for every λ∗=(λ∗1, ..., λ
∗
r)∈Zr with 06λ∗i<q

(16i6r),

ϕ
(I)
λ∗

(
s

q
; t

)
= 0 for all |s|6 q([S(I+1)]+1) with (s, q) = 1 and |t|6T (I+1). (5.49)

There exists a λ∗ as above, such that Λ(I)(λ∗) 6=∅ and %(I)(ι̂), ι̂∈Λ̂
(I)

(λ∗), are not all

zero. We fix this λ∗ in the remainder of the proof of the current lemma. Using the

second line of (5.46) and

q

r∑
i=1

diλi+

r∑
i=1

diλ
∗
i = g(λ,λ∗)G0,

we obtain from (5.49) that

∑
ι̂∈Λ̂

(I)
(λ∗)

%(I)(ι̂)Π(I)(t)Θ(q−(I+1)s; t)

r∏
i=1

(θp
�

i ζ
di)λis = 0 (5.50)



354 k. yu

for all |s|6q([S(I+1)]+1), with (s, q)=1, and |t|6T (I+1).

From (5.45) and (5.2) we see that for ι∈Λ(I)(λ∗),

q

r∑
i=1

diλi+

r∑
i=1

diλ
∗
i ≡

r∑
i=1

di(ιi−λ(I)
i )≡ 0 (mod G0). (5.51)

Now we consider two cases: (i) (q,G0)=1 and (ii) q |G0.

(i) (q,G0)=1. (5.51) implies that there exists a unique ε′∈Z (mod G0) satisfying

qε′+

r∑
i=1

diλ
∗
i ≡ 0 (mod G0). (5.52)

(ii) q |G0. (5.51) and q |G0 imply that q |
∑r
i=1 diλ

∗
i and

r∑
i=1

diλi≡−
1

q

r∑
i=1

diλ
∗
i +b

G0

q
(mod G0) (5.53)

for some b∈Z with 16b6q. Now we have a partition

Λ(I)(λ∗) =

q⋃
b=1

Λ
(I)
b (λ∗),

where

Λ
(I)
b (λ∗) = {ι∈Λ(I)(λ∗) :λ= (λ1, ..., λr) in (5.45) satisfies (5.53)}. (5.54)

The left-hand side of (5.50) is decomposed into a sum of q sub-sums, denoted by Σb,

over

Λ̂
(I)

b (λ∗) = {ι̂= (ι−1, ι0, ι)∈Zr+2 : 06 ιi6Di (i=−1, 0) and ι∈Λ
(I)
b (λ∗)}

(b=1, ..., q). For ι̂∈Λ̂
(I)

b (λ∗), (4.2), (4.5) and (5.53) give

ζq
−1(

∑r
i=1 diλ

∗
i )s

r∏
i=1

(θp
�

i ζ
di)λis =

( r∏
i=1

θp
�λis
i

)
ζb(G0/q)sζg1(λ,λ∗)G0s

=

( r∏
i=1

θp
�λis
i

)
α
g1(λ,λ∗)s
0 (α

1/q
0 )sb

for some g1(λ,λ∗)∈Z. Thus

ζq
−1(

∑r
i=1 diλ

∗
i )sΣb ∈ (α

s/q
0 )bK.
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Now (1.4) and (s, q)=1 imply that [K(α
s/q
0 ):K]=q. Thus (5.50) implies, for b=1, ..., q,

Σb=0 for s and t in (5.50). There exists a b∈{1, ..., q} such that Λ
(I)
b (λ∗) 6=∅ and %(I)(ι̂),

ι̂∈Λ̂
(I)

b (λ∗), are not all zero. Fix this b in the remainder of the proof of the current lemma

and let

ε′′=−1

q

r∑
i=1

diλ
∗
i +b

G0

q
. (5.55)

Now we write out “ Σb=0 for s and t in (5.50)” as

∑
ι̂∈Λ̂

(I)
b (λ∗)

%(I)(ι̂)Π(I)(t)Θ(q−(I+1)s; t)

r∏
i=1

(θp
�

i ζ
di)λis = 0 (5.56)

for all |s|6q([S(I+1)]+1), with (s, q)=1, and |t|6T (I+1).

We take

Λ(I+1) = {λ= q−1(ι−λ(I)−λ∗) : ι∈Λ(I)(λ∗)} (5.57)

if (q,G0)=1, whereas if q |G0, Λ(I)(λ∗) in (5.57) is replaced by Λ
(I)
b (λ∗). Let

x(I+1) = q−1(x(I)+µ(I)+µ∗), where µ∗=λ∗B, (5.58)

ε(I+1) =

{
ε′ in (5.52), if (q,G0) = 1,

ε′′ in (5.55), if q |G0.
(5.59)

Set M(I+1)=Λ(I+1)B. It is readily verified that Λ(I+1), x(I+1) and ε(I+1) satisfy (5.1)

with I replaced by I+1. For each λ̂=(λ−1, λ0,λ)∈Λ̂
(I+1)

, on noting that λ−1=ι−1 and

λ0=ι0, we define

%(I+1)(λ̂) := %(I)(ι̂),

where λ and ι are connected by (5.57). Obviously %(I+1) :=(%(I+1)(λ̂):λ̂∈Λ̂
(I+1)

) satisfies

(4.26) with % replaced by %(I+1). We now fix λ(I+1)∈Λ(I+1). For ι in (5.57), we have,

by (5.5),

Π(I)(t) = ∆(γ
(I)
1 ; t1) ...∆(γ

(I)
r−1; tr−1),

where, by (5.6) and (5.45), with τ=ιB, µ=λB, µ∗=λ∗B and µ(I+1)=λ(I+1)B,

γ
(I)
j = qν

r∑
i=1

(
bn
∂Li
∂zj
−bj

∂Li
∂zn

)
(τi−µ(I)

i ) = qγ
(I+1)
j +γ∗j (16 j < r), (5.60)

in which γ
(I+1)
j is given by (5.6) with I replaced by I+1, and γ∗j is given by the right-

hand side of (5.6) with µi−µ(I)
i replaced by qµ

(I+1)
i +µ∗i . Note that γ∗j ∈Z (16j<r). By

(5.60) and [34, Lemma 2.6], we see that, for 16j<r, ∆(γ
(I)
j ; tj) is a linear combination of
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∆(γ
(I+1)
j ; k), k=0, ..., tj , with the coefficient of ∆(γ

(I+1)
j ; tj) non-zero. So ∆(γ

(I+1)
j ; tj) is

a linear combination of ∆(γ
(I)
j ; k), k=0, ..., tj . Thus (5.50) (when (q,G0)=1) and (5.56)

(when q |G0) imply that

∑
λ̂∈Λ̂

(I+1)

%(I+1)(λ̂)Π(I+1)(t)Θ(q−(I+1)s; t)

r∏
i=1

(θp
�

i ζdi)(λi−λ(I+1)
i )s = 0 (5.61)

for all |s|6q([S(I+1)]+1), with (s, q)=1, and |t|6T (I+1).

Now (5.61) gives, by Lemma 4.1,

ϕ(I+1)(s; t) = 0 for all |s|6 q([S(I+1)]+1), with (s, q) = 1, and |t|6T (I+1). (5.62)

In order to prove Lemma 5.4, it remains to verify (5.43) for s with q |s. We now apply

[37, Lemma 2.2] to each function in (5.25) with I replaced by I+1 and with |t|6ηT (I+1),

taking

R= q([S(I+1)]+1) and M =
[
T (I+1) c5

r+1

]
. (5.63)

(Note that I6I0−16I1−1, so M>[T (I1)c5/(r+1)]>1.) By (5.26) with I replaced by

I+1, (8.26)♣ with f
(I)
b replaced by f (I+1), (5.62) and Lemma 5.1, we see that [37, (2.6)]

holds for each F (I+1)(z; t) with |t|6ηT (I+1) whenever

U+(D−1+1)(D0+1)

(
θ+

1

p−1

)
> 2

(
1− 1

q

)
R(M+1)θ+

(2M+2) max{h+ν log q, log 2R}
log p

.

(5.64)

By (3.22) (20), we have ∣∣∣∣sq
∣∣∣∣6 [S(I+1)]+16 qS(I).

This inequality and (5.63) imply that

qS(I+1)<R6 q2S(I) and
c5
r+1

T (I+1)<M+16 2M 6
2c5
r+1

T (I+1). (5.65)

The second inequality of (5.30) implies that

η(r+1)I log 2R6h+ν log q. (5.66)

Now, (5.65), (5.66), c3>0.47 (see Table 3.1) and epθ̌>0.49 (see Table 3.2) yield

c1
U
·right-hand side of (5.64)6 4c5η

r+1

(
q−1

qr−1
+

1

qr+1(r+1)c3epθ̌

)
6 2c5η

r+1

(
2+

1

qr+1(r+1)c3epθ̌

)
6 c1,
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where the third inequality follows from (3.22) (5) and (3.22) (8). The above inequality

implies (5.64). Thus we can apply [37, Lemma 2.2] to each F (I+1)(z; t) with |t|6ηT (I+1).

By (5.64), (5.65) and Lemma 5.1, we obtain

ordp ϕ
(I+1)(s; t)+(D−1+1)(D0+1)

(
θ+

1

p−1

)
−∆(I+1)>

2c5(q−1)U

c1qr
(5.67)

for all |s|6q([S(I+1)]+1), with q |s, and |t|6ηT (I+1).

Assume (5.43) were false, i.e., there exist s and t such that

ϕ(I+1)(s; t) 6= 0 for all |s|6 q([S(I+1)]+1), with q | s, and |t|6 ηT (I+1). (5.68)

We proceed to deduce a contradiction. In the sequel, we fix these s and t. Now, since

q |s, we have, by [27, Lemma T1] if I=0 and by [36, Lemma 1.3] if I>1,

qδI(D0+1)((D−1+1)I+ordq((D−1+1)!))Θ(q−(I+1)s; t)Π(I+1)(t)∈Z. (5.69)

Similarly to the proof of Lemma 5.2, we have ordp ϕ
(I+1)(s; t)=ordp ϕ

′′′, where

ϕ′′′=
∑

λ̂∈Λ̂
(I+1)

%(I+1)(λ̂)qδI(D0+1)((D−1+1)I+ordq((D−1+1)!))

×Θ(q−(I+1)s; t)Π(I+1)(t)(α′0)w
(I+1)(λ̂)s

r∏
i=1

(α′i)
(µi−µ(I+1)

i )p�s

(with w(I+1)(λ̂)∈q−νZ) is in K and non-zero. Let | · |v be an absolute value on K

normalized as in [6, §2], and | · |v0 be the one corresponding to p. Then we have (5.37)

with ϕ′ replaced by ϕ′′′. Following the same lines of argumentation as in the proof of

Lemma 5.2, and utilizing (5.17), we see that (5.68) implies that

c1q
r+1

U
·left-hand side of (5.67)

6 c1

(
g12+

(
1+

1

2(c02−1)

)
g8

)
+

1

c2

(
q+

1

2(c02−1)

(
1+

1

2g2+1

))
+

1

c3

(
1

epθ
(g9η

r+2+ĉ03)+

(
1+

1

c02−1

)
g10

)
+

1

c4

(
1+

1

g5

)(
1+

1

c02−1
+

log q

(q−1)g1
+

(
θ+

1

p−1

)
ep
d

)
(5.70)

if p>2, whereas if p=2, the right-hand side of (5.70) is replaced by the sum of it and the

term
1

c4

(
1+

1

g5

)
5

3

log q

log qηr+1
.
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Write R2 for the right-hand side of (5.70). Then (5.67), (5.70) and the definition of f3

in (3.22) give

f3 = 2c5q(q−1)−R2< 0, (5.71)

contradicting (3.22) (3). Thus (5.68) is impossible, whence Lemma 5.4 follows.

By applying Lemma 5.2 with I=0 and J=1, and applying Lemma 5.4 with I=0,

we see that the first main inductive argument is true for I=0, 1. Now the first main

inductive argument follows by induction on I, utilizing Lemma 5.4.

If I∗6I1, we take I=I0=I∗ in the first main inductive argument. In §6, starting from

(5.20) with I=I∗, we shall carry out a group variety reduction and reach a contradiction

to the minimal choice of r. This will prove Proposition 3.1 when I∗6I1.

In the remainder of this section we prepare the proof of Proposition 3.1 when

I∗>I1. (5.72)

(We shall complete this proof in §7). The first main inductive argument with I=I0=I1

gives

ϕ(I1)(s; t) = 0 for all |s|6 qS(I1) and |t|6 ηT (I1). (5.73)

Define r1∈Z by

16 ηr1T (I1) c5
r+1

<
1

η
. (5.74)

Thus, by (5.15),

06 r1 6 r. (5.75)

Lemma 5.5. If I∗>I1, we have

ϕ(I1)(s; t) = 0 for all |s|6 qr1+1S(I1) and |t|6 ηr1+1T (I1). (5.76)

Proof. The proof follows the pattern of that of Lemma 8.5♣ and utilizes §3.3, espe-

cially (3.22) (j), j=1, 5, 27. We omit the details here.

6. Group variety reduction (I∗6I1)

Now I∗6I1 implies I0=I∗. We write I=I∗ in this section. Then the first main inductive

argument gives

ϕ(I)(s; t) = 0 for all |s|6 qS(I) and |t|6 ηT (I). (6.1)

Let

δi = [qν−IDi], 16 i6 r. (6.2)
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Recalling (5.4), (5.8), (5.10) and multiplying (9.1) by

r∏
i=1

(((α′i)
p�ζa

′
i)s/q

ν

)δi ,

we obtain

∑
λ̂∈Λ̂

(I)

%(I)(λ̂)Π(I)(t)Θ(q−Is; t)

r∏
i=1

(((α′i)
p�ζa

′
i)s/q

ν

)µ
′
i−(µ

(I)
i )′+δi = 0 (6.3)

for all 06s6qS(I) and |t|6ηT (I); here we recall (4.17) and that µ=λB and µ(I)=λ(I)B.

Now we take

P(Y0, ..., Yr) =
∑

λ̂∈Λ̂
(I)

%(I)(λ̂)∆(q−IY0+λ−1;D−1+1)λ0+1
r∏
i=1

Y
µ′i−(µ

(I)
i )′+δi

i . (6.4)

Note that %(I)(λ̂), λ̂∈Λ̂
(I)

, are not all zero. So P(Y0, ..., Yr) is a non-zero polynomial

with degree in Yi at most Di (06i6r), where

D0 = (D−1+1)(D0+1) and Di = 2qν−IDi (16 i6 r). (6.5)

Take

S = qS(I), T = ηT (I) and ϑi = ((α′i)
p�ζa

′
i)1/qν (16 i6 r). (6.6)

Observe that ϑ1, ..., ϑr are multiplicatively independent, since so are α′1, ..., α
′
r (see §2).

Recall that ∂∗0 =∂0=∂/∂Y0 and ∂∗1 , ..., ∂
∗
n−1 are the differential operators specified in §2,

and that

∂∗j

r∏
i=1

Y
µ′i−(µ

(I)
i )′+δi

i = γj

r∏
i=1

Y
µ′i−(µ

(I)
i )′+δi

i (16 j <n), (6.7)

where γj is given by (see (4.17) and (5.6))

γj = γ
(I)
j +

r∑
i=1

(
bn
∂Li
∂zj
−bj

∂Li
∂zn

)
δi (16 j <n). (6.8)

By [34, Lemma 2.6], we obtain from (6.3), (6.4) and (6.6)–(6.8)

(∂∗0 )t0(∂∗1)t1 ... (∂∗r−1)tr−1P(s, ϑs1, ..., ϑ
s
r) = 0 for all 06 s6S and |t|6 T . (6.9)

Now Proposition 3.1♣ holds with ∂∗1 , ..., ∂
∗
r−1 in place of ∂1, ..., ∂r−1 (see §2). Put

S0 =

⌊
S
3

⌋
, Si =

⌊
2S
3r

⌋
(16 i6 r), Ti =

⌊
T
r+1

⌋
(06 i6 r). (6.10)
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Then S0>S1=...=Sr since r>2, T0=...=Tr, S0+...+Sr6S and T0+...+Tr6T .

We note that

qη2(r+1)< 1, (6.11)

since qη2(r+1)<qe−2c5<1, by the fact that c5>
1
2 log q (see Table 3.1). Recalling that

I=I∗, we see that (5.14) and (6.11) imply that

η−(r+1)I > (qηr+1)I > exp(3(max{g1, ep, fp log p}+ν log q)). (6.12)

Now we prove

Tr+r6D0, (6.13)

which implies (3.2)♣. By (3.26) and (6.5), we have

D0

r
>

(D−1+1)D̃0

r
>
D̃0

r
>
g5

r
> 4,

where the third inequality follows from the definition of g5 in (3.16), using PARI/GP.

Further, by (3.1), (3.5), (3.7), (6.5), (6.6), (6.10), (6.12) and the definition of h in §3.1,

we have
D′
T∇

>e
c3
c4

(r+1)g0(epθ̌)(e
4(r+1)d)2> 4

(see Tables 3.1 and 3.2). This completes the proof of (6.13).

By (3.7), (3.8), (6.5), (6.12) and using that dσi>2/log3 3d if d>1 (see Voutier [28])

and that dσi>log 2 if d=1, we obtain

D0>Di (16 i6 r). (6.14)

Now we verify (3.1)♣.

(i) m=0. By (6.14), it suffices to show that (S0+1)(T0+1)>D0. By (3.5), (3.7),

(3.26), (6.5), (6.6) and (6.10), we have

(S0+1)(T0+1)>
1

c1

q2η

3ϑ̂

SD

epfp log p

and

D0 = (D1+1)(D0+1)6

(
1+

1

g5

)
1

c1c4

SD

d

1

fp log p
.

Thus (3.1)♣ with m=0 follows from (3.22) (30).

(ii) 16m<r. By (3.5), (3.7), (3.8), (3.26), (6.5), (6.6), (6.10) and ηm+1>ηr>e−c5

we have

(Sm+1)

(
Tm+m+1

m+1

)
>

2qe−c5η(r+1)Im

(m+1)! 3r

(
q

c1θepfp log p

)m+1

SDm+1
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and for any 16i1<...<im6r,

D0Di1 ...Dim 6

(
1+

1

g5

)
1

c1c4

SDm+1(2qν−I)m

(c1c2rp�)m(dm+1σi1 ... σim)fp log p
.

Applying [14, Theorem 3] for a lower bound of dm+1σi1 ... σim and using

(qηr+1)Im> (e4(r+1)d)2mpfpmq3νm

(see (6.12)), we obtain (3.1)♣ with 16m<r.

(iii) m=r. By (3.4), (3.5), (3.7), (3.8), (3.26), (6.5), (6.6), (6.10) and

max

{
pfp

δ(a′)(fp log p)r
,
er

rr
fp log p

}
6

pfp

(fp log p)r−1
, (6.15)

we have

(Sr+1)

(
Tr+r

r

)
>η(r+1)I(r−1) 2qe−c5

r! 3r

(
q

c1θepfp log p

)r
SDr

and

D0D1 ...Dm6 (2qν−I)rq−u
(

1+
1

g5

)
(1+ε)

(
2+

1

g2

)
c0log∗d

×pfpfp log p
(r+1)r

r!

(
q

c1θepfp log p

)r
SDr.

Now by η−(r+1)I>p3fp (see (6.12)) and

(qηr+1)Ir > (e4(r+1)d)3rq3νr,

(3.1)♣ with m=r follows.

Having verified (3.1)♣ and (3.2)♣, we can now apply Proposition 3.1♣ with ai=σi

(16i6r). Thus there exist an integer % with 16%<r and a set of linearly independent

linear forms L1, ...,L% in Z1, ..., Zr over Z such that B1Z1+...+BrZr is in the module

generated by L1, ...,L% over Q and, on defining

Ri =

r∑
j=1

∣∣∣∣ ∂Li∂Zj

∣∣∣∣σj (16 i6 %), (6.16)

we have at least one of (3.3)♣ and (3.4)♣, whence (3.4)♣ always holds, since (3.3)♣

implies (3.4)♣ by (6.10) and (6.13). Now

L′i :=Li(L1, ..., Lr) (16 i6 %) (6.17)
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are linear forms in z0, z1, ..., zn over Z having the following two properties:

(i) The %+1 linear forms L′0=z0, L′1, ...,L′% are linearly independent and

L=B0L′0+B′1L′1+...+B′%L′%

for some rationals B′1, ..., B
′
%, not all zero, since {L1, ...,L%} is a set of linearly independent

linear forms in Z1, ..., Zr over Z and B1Z1+...+BrZr is in the module generated by

L1, ...,L% over Q.

(ii) We have h0(α′′i )6Ri (16i6%) for α′′i =el
′′
i with l′′i =L′i(l0, l1, ..., ln) (16i6%),

since l′′i =Li(l′1, ..., l′r) (by (2.7) and (6.17)), whence, by (2.6), (2.7) and (6.16),

h0(α′′i )6
r∑
j=1

∣∣∣∣ ∂Li∂Zj

∣∣∣∣h0(α′j)6Ri (16 i6 %).

Further (2.8) and (6.16) give

n∑
j=1

∣∣∣∣∂L′i∂zj

∣∣∣∣h0(αj)6
n∑
j=1

r∑
k=1

∣∣∣∣ ∂Li∂Zk

∣∣∣∣ ∣∣∣∣∂Lk∂zj

∣∣∣∣h0(αj)6
r∑

k=1

∣∣∣∣ ∂Li∂Zk

∣∣∣∣σk =Ri (16 i6 %).

We note that the set a′′={α′′1 , ..., α′′%} is multiplicatively independent, since l0, l
′′
1 , ..., l

′′
%

are linearly independent. Further we see that α′′1 , ..., α
′′
% are p-adic units in K. Thus

δ(a′′) is well defined in the sense of (1.6). Let ψ1(%) be defined by (2.10) with r replaced

by % and a′ replaced by a′′. We shall prove that (3.4)♣ implies that

R1 ...R%6ψ1(%)h0(α1) ... h0(αn), (6.18)

whence the basic hypothesis in §2 holds with % in place of r. By the minimal choice of r,

we have a contradiction and this establishes Proposition 3.1 when I∗6I1.

Now, by (3.4)♣, (2.9), (2.10), (3.4), (3.5), (3.7), (3.8), (3.26), (6.5), (6.6), (6.10),

er>rr/r!, C(%)6%! r% (see §3♣), qη%(1−1/g2)>1 and (6.15) with r replaced by % and a′

replaced by a′′, in order to prove (6.18), it suffices to show that

η−(r+1)I(qηr+1)I%> 1.5
c0
qu

(1+ε)

(
2+

1

g2

)(
1+

1

g5

)
×(2eqν)%r(r+1)%(%+1)(%!)2(log∗d)pfpfp log p.

(6.19)

It is readily verified that (qηr+1)I%>(e4(r+1)d)3%q3ν% and η−(r+1)I>p3fp (see (6.12))

imply (6.19). This proves Proposition 3.1 when I∗6I1.
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7. The second main inductive argument

In this section we treat the case when

I∗>I1 (7.1)

and complete the proof of Proposition 3.1.

Recalling (5.15) (the definition of I1) and (5.74) (the definition of r1), we define

I2 =

⌊
3(max{g1, ep, fp log p}+ν log q)−I1 log qηr+1

log q

⌋
+1 and I3 = I1+I2. (7.2)

The second main inductive argument. Under (7.1) and the hypothesis of the first

main inductive argument, for every I∈Z with I16I6I3 there exist Λ(I)⊆Zr, x(I)∈Rr,
ε(I)∈Z satisfying (5.1) and %(I)(λ̂)∈OK , λ̂∈Λ̂

(I)
, not all zero, satisfying (4.26) with %

replaced by %(I), such that

ϕ(I)(s; t) = 0 for all |s|6 q[qr1S(I1)] and |t|6 ηr1+1T (I1). (7.3)

In this section we always keep (5.19).

We remark here that the proof given in [37, §2] is valid also for M=0. Therefore

Lemmas 2.1 and 2.2 in [37] with M=0 are true, which are important for the proofs of

Lemmas 7.1 and 7.2 below.

Lemma 7.1. Suppose that I is in Z with I16I6I3−1, for which the second main

inductive argument holds. Then we have

ϕ(I)

(
s

q
; t

)
= 0 for all |s|6 q[qr1S(I1)] and |t|6 ηr1+1T (I1). (7.4)

Proof. The conclusion (7.4) for s with q |s follows from (7.3). Now we consider s

with (s, q)=1. Note that, by (5.74),

ηr1+1T (I1) c5
r+1

< 1.

So we apply [37, Lemma 2.1], to each function in (5.25) with |t|6ηr1+1T (I1), with

R= q[qr1S(I1)] and M = 0. (7.5)

By Lemma 5.1, (7.3) and the definition of h in §3.1, which implies that ordp bn6h/log p,

we see that [37, (2,3)] holds for each F (I)(z; t) in (5.25) with |t|6ηr1+1T (I1) whenever

U+(D−1+1)(D0+1)

(
θ+

1

p−1

)
> (2R+1)θ+

h+ν log q

log p
. (7.6)
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By (3.5), (3.9), (3.23), (3.25), (5.74) and (7.5), we obtain

(2R+1)θ6
c5
r+1

ηr1T (I1)(2R+1)θ6
c5
c1

U

qr
ηr1
(

2qr1+1+
r+1

c5ηr1+1g2g4

)
. (7.7)

By (3.1), (3.5), (3.9) and (3.25), we have

h+ν log q

log p
6
T

g4

h+ν log q

log p
6

U

qr+1c1c3epθ̌g4

. (7.8)

Thus

c1 > 2c5η
r1qr1+1−r+

1

qrg4

(
r+1

ηg2
+

1

qc3epθ̌

)
,

which is by (5.75) a consequence of (3.22) (5), implies (7.6), and hence implies [37, (2.3)].

Further

2

(
1− 1

q

)
Rθ> 2

(
1− 1

q

)
Rθηr1+1T (I1) c5

r+1

> 2c5(q−1)ηr1+1

(
qr1− r+1

c5ηr1+1g2g4

)
U

c1qr
.

(7.9)

We also have

(2R+1)θ−2

(
1− 1

q

)
Rθ> 2Rθηr1+1T (I1) c5

(r+1)q

> 2c5

(
1− 1

g2

)
(qη)r1+1 U

c1qr+1

>

(
1+

1

g5

)
log q

c4g1

U

c1qr+1
,

(7.10)

where the third inequality follows from (3.22) (28).

Let K ′=K(θ
1/q
0 , θ

1/q
1 , ..., θ

1/q
r ) and recall (5.11)♣. By consecutively applying [11,

Chapter III, (2.28) (c)] r+1 times, we see that pOK′=P1P2 ...Pqr0 for some r0 with

06r06r+1, where Pj are distinct prime ideals of OK′ with ramification index and

residue class degree (over Q)

ePj = ep and fPj = qr+1−r0fp, j= 1, ..., qr0 .

Denote by | · |v′ an absolute value on K ′ normalized as in [6, §2], and by | · |v′j the one

corresponding to Pj , and let K ′Pj be the completion of K ′ with respect to | · |v′j . The

embedding of Kp into Cp (see §1.1) can be extended to an embedding of K ′Pj into Cp,
and we define for β∈K ′Pj , with β 6=0,

ord(j)
p β :=

1

ePjfPj log p
(− log |β|v′j ) =

1

qr+1−r0epfp log p
(− log |β|v′j ).
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We have ord(j)
p ϕ(I)(s/q; t)=ordp ϕ

(I)(s/q; t) (16j6qr0), since ϕ(I)(s/q; t)∈Kp(⊆K ′Pj ).
We now apply [37, Lemma 2.1] to each F (I)(z; t) in (5.25) with |t|6ηr1+1T (I1), and

by (7.6), (7.9), (7.10) and Lemma 5.1, we obtain, for all s∈Z,

qr0∑
j=1

ord(j)
p ϕ(I)

(
s

q
; t

)
+qr0(D−1+1)(D0+1)

(
θ+

1

p−1

)
−qr0∆(I)

= qr0
(

ordp ϕ
(I)

(
s

q
; t

)
+(D−1+1)(D0+1)

(
θ+

1

p−1

)
−∆(I)

)
>

U

c1qr+1−r0

(
2c5q(q−1)ηr1+1

(
qr1− r+1

c5ηr1+1g2g4

)
+

(
1+

1

g5

)
1

c4

log q

g1

)
.

(7.11)

Now we prove (7.4) for s with (s, q)=1. Suppose (7.4) were false, i.e., there exist s and

t such that

ϕ(I)

(
s

q
; t

)
6= 0, for |s|6 q[qr1S(I1)], with (s, q) = 1, and |t|6 ηr1+1T (I1). (7.12)

We proceed to deduce a contradiction. In the sequel, we fix these s and t.

For each λ̂=(λ−1, λ0,λ)∈Λ̂
(I)

, µ=λB, by Lemma 4.1, (4.3), (4.4), (4.12) and

α0=θ0, we have, with w
(I)
1 (λ̂)∈Z occurring in (5.34),

r∏
i=1

(((α′i)
p�ζa

′
i)1/qν )(µ′i−(µ

(I)
i )′)s/q =

r∏
i=1

((θ
1/q
i )p

�

ξdi)(λi−λ(I)
i )s

= (θ
1/q
0 )w

(I)
1 (λ̂)s

r∏
i=1

(θ
1/q
i )(λi−λ(I)

i )p�s

∈K(θ
1/q
0 , θ

1/q
1 , ..., θ1/q

r ) =K ′.

(7.13)

By [36, Lemma 1.3], for λ̂∈Λ̂
(I)

,

q(D0+1)((D−1+1)(I+1)+ordq((D−1+1)!))Θ(q−(I+1)s; t)Π(I)(t)∈Z.

By (1.3), (7.12) and (7.13), we have

ord(j)
p ϕ(I)

(
s

q
; t

)
= ord(j)

p ϕ′′ (j= 1, ..., qr0), (7.14)

where

ϕ′′=
∑

λ̂∈Λ̂
(I)

%(I)(λ̂)q(D0+1)((D−1+1)(I+1)+ordq((D−1+1)!))

×Θ(q−(I+1)s; t)Π(I)(t)(θ
1/q
0 )w

(I)
1 (λ̂)s

r∏
i=1

(θ
1/q
i )(λi−λ(I)

i )p�s

(7.15)
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is in K ′ and is non-zero. Then, by the product formula on K ′, we have

qr+1−r0epfp(log p)

qr0∑
j=1

ord(j)
p ϕ′′=−

qr0∑
j=1

log |ϕ′′|v′j =
∑′

log |ϕ′′|v′ , (7.16)

where
∑′

signifies the summation over all v′ 6=v′1, ..., v′qr0 . For λ̂=(λ−1, λ0,λ)∈Λ̂
(I)

,

µ=λB, we have, by (1.4), (4.16) and (4.17), with α′0=θ0=α0, and (5.1),

log

∣∣∣∣(θ1/q
0 )w

(I)
1 (λ̂)s

r∏
i=1

(θ
1/q
i )(λi−λ(I)

i )p�s

∣∣∣∣
v′

=
1

qν+1
log

∣∣∣∣ r∏
i=1

(α′i)
(µ′i−(µ

(I)
i )′)p�s

∣∣∣∣
v′

=
1

qν+1
log

( r∏
i=1

|(α′i)p
�s|µ

′
i+(x

(I)
i )′

v′

r∏
i=1

|(α′i)p
�s|−((µ

(I)
i )′+(x

(I)
i )′)

v′

)

6
1

qI+1

r∑
i=1

Di log max{1, |(α′i)p
�s|v′}−

1

q

r∑
i=1

(µ
(I)
i +x

(I)
i ) log |(α′i)p

�s|v′ .

Now log |(α′i)p
�s|v′j=0 (16j6qr0) by (2.11). So

∑′
log |(α′i)p

�s|v′=0 by the product

formula on K ′. Thus for s in (7.12), we have, by (2.6), (3.8) and (5.11)♣,∑′
log

∣∣∣∣(θ1/q
0 )w

(I)
1 (λ̂)s

r∏
i=1

(θ
1/q
i )(λi−λ(I)

i )p�s

∣∣∣∣
v′
6

qr+1+r1

qI−I1(qηr+1)I1
1

c1c2
SD.

Bearing in mind that s and t are as in (7.12), we obtain, by (3.22) (19) and (3.22) (29),

log

(
e

(
2+

q−(I+1)|s|
D−1+1

))
6 log

(
e

(
2+

qr1S

(qηr+1)I1(D−1+1)

))
6 log

(
e

(
2+

qr1−1S

D−1+1

))
6 log

(
eqr1−1

(
2q+

c3qg0

(g0−1)fp log p
(r+1)d

))
6 g1+(r1−1) log q.

By (3.1), (3.5), (3.6), (5.74), we get

ηr1+1T (I1)(D−1+1)6
(r+1)SD

dc5g4c1c3epθ
.

Thus

log |q(D0+1)((D−1+1)(I+1)+ordq((D−1+1)!))Θ(q−(I+1)s; t)Π(I)(t)|

6

(
g9

epθ

r+1

c5g4
+g10

)
1

c1c3

SD

d
+

(
1+

1

g5

)(
1+

(I+r1+1/(q−1)) log q

max{g1, ep, fp log p}+ν log q

)
1

c1c4

SD

d
.
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Following the same line of argumentation as in the proof of Lemmas 8.2♣ and 8.3♣, we

see, by (7.11), that (7.12) implies that

L(r1, I)< 0, (7.17)

where

L(r1, I) = 2c5(q−1)(qη)r1+1− 2q(q−1)(r+1)

g2g4
−c1

(
g12+

(
1+

1

2(c02−1)

)
g8

)
− 1

c2

(
qr1

qI−I1(qηr+1)I1
+

1

2(c02−1)

(
1+

1

2g2+1

))
− 1

c3

(
1

epθ

(
g9
r+1

c5g4
+ĉ03

)
+

(
1+

1

c02−1

)
g10

)
− 1

c4

(
1+

1

g5

)(
1+

1

c02−1
+

(
θ+

1

p−1

)
ep
d

+
(I−1+r1+1/(q−1)) log q

max{g1, ep, fp log p}+ν log q

)
.

By I1>i1 (see (3.16) and (5.15)) and (3.22) (17), we see, on noting that I16I6I3−1 and

qηr1+1>qηr+1>1, that ∂L(x, I)/∂x>0 for 06x6r. Hence, (7.17) implies that

L(0, I)< 0. (7.18)

Further, d2L(0, y)/dy2<0 for I16y6I3−1. Thus (7.18) gives

min{L(0, I1),L(0, I3−1)}< 0, (7.19)

since the left-hand side of (7.19) is the minimum of L(0, y) on the interval I16y6I3−1.

By (5.18) and (7.1), we have

1

c2

1

(qηr+1)I1
+

1

c4

(
1+

1

g5

)
(I1+1/(q−1)−1) log q

max{g1, ep, fp log p}+ν log q

<
1

c2

q

(qηr+1)I1
+

1

c4

(
1+

1

g5

)
I1 log q

max{g1, ep, fp log p}+ν log q
6

7q

8c2

if p>2, whereas, if p=2, 7q/8c2 in the extreme right-hand side is replaced by the expres-

sion
13q

16c2
+

1

c4

(
1+

1

g5

)
5 log q

3 log qηr+1
.

Thus

f4<L(0, I1), (7.20)
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where f4 is given by (3.22). Now we treat L(0, I3−1). By (5.14), we have

(I∗−1) log qηr+1 6 3(max{g1, ep, fp log p}+ν log q)<I∗ log qηr+1. (7.21)

Thus, by (7.2),

log qI3−1−I1(qηr+1)I1 = (I2−1) log q+I1 log qηr+1

> 3(max{g1, ep, fp log p}+ν log q)−log q

> (I∗−1) log qηr+1−log q.

(7.22)

Further, by (7.1), (7.2) and (7.21),

(I3−2) log q= (I1−1) log q+(I2−1) log q

6 (I1−1) log q+3(max{g1, ep, fp log p}+ν log q)−I1 log qηr+1

< (I1−1) log q+(I∗−I1) log qηr+1

= (I∗−1) log q+(I∗−I1) log ηr+1

6 (I∗−1) log q+log ηr+1.

(7.23)

So, by (5.18), (6.11), (7.22) and (7.23), we obtain

1

c2

1

qI3−1−I1(qηr+1)I1
+

1

c4

(
1+

1

g5

)
(I3−2+1/(q−1)) log q

max{g1, ep, fp log p}+ν log q

<
1

c2

q

(qηr+1)I∗−1
+

1

c4

(
1+

1

g5

)
(I∗−1) log q+log ηr+1+(log q)/(q−1)

max{g1, ep, fp log p}+ν log q

6
7

8

q

c2
+

1

c4

(
1+

1

g5

)
log qηr+1

g1
,

(7.24)

if p>2, whereas, if p=2, the extremely right-hand side of (7.24) is replaced by the

expression
13

16

q

c2
+

1

c4

(
1+

1

g5

)
5

3

log q

log qηr+1
.

Now (7.24) implies that

f4<L(0, I3−1). (7.25)

Summing up, (7.19), (7.20) and (7.25) give f4<0, contradicting (3.22) (4). This proves

that (7.12) is impossible, whence (7.4) holds and Lemma 7.1 follows.

Lemma 7.2. For every I as in Lemma 7.1 there exist Λ(I+1)⊆Zr, x(I+1)∈Rr,
ε(I+1)∈Z satisfying (5.1) with I replaced by I+1, and %(I+1)(λ̂)∈OK , λ̂∈Λ̂

(I+1)
, not

all zero, satisfying (4.26) with % replaced by %(I+1), such that

ϕ(I+1)(s; t) = 0 for all |s|6 q[qr1S(I1)] and |t|6 ηr1+1T (I1). (7.26)
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Proof. The proof follows the pattern of that of Lemma 9.2♣ and Lemma 5.4, and

utilizes §3.3. We omit the details here.

By Lemma 5.5, the second main inductive argument is valid for I=I1. Now the

second main inductive argument follows by induction on I, utilizing Lemma 7.2.

Starting from (7.3) with I=I3, we carry out a group variety reduction and reach a

contradiction to the minimal choice of r in the basic hypothesis in §2 (this is very similar

to §6 and §10♣, so we omit the details here). This proves Proposition 3.1 when I∗>I1.

Recalling §6, the proof of Proposition 3.1 is now complete. By Lemma 3.2, Theorem I is

established.

8. The proof of Theorem 1

We first deduce a special case of Theorem 1 from Theorem I. Recall (1.19)–(1.23).

Lemma 8.1. Suppose that r=n>1. Then Theorem 1 holds.

Proof. The condition r=n implies that

b= a and Ω =h0(α1) ... h0(αn).

Using (1.9), (1.22) and applying [14, Theorem 3] for a lower bound of Ω, we get

C∗1 (n, d, p, b)Ω>
d

fp log p

c(1)

%
(a(1))n

nn(n+1)n+2

(n!)2
log e4(n+1)d, (8.1)

where % is given by (3.13). Thus

d

fp log p
log 2<C∗1 (n, d, p, b)Ω max{logB, fp log p} 1

7900
. (8.2)

We prove Lemma 8.1 for n=1 first. By the restated (in §2) [35, Lemma 1.4], we have

ordp(Ξ−1)6
d

fp log p

(
log 2B+|〈ᾱ1〉|

(
1+

1

p−1

)
eph0(α1)

)
.

By (8.1), we get

d

fp log p
logB<

1

3950
C∗1 (1, d, p, {α1})Ω max{logB, fp log p}.

Further, using (1.6) and (3.15), we obtain

d

fp log p
|〈ᾱ1〉|

(
1+

1

p−1

)
eph0(α1)<

1

28000
C∗1 (1, d, p, {α1})Ω max{logB, fp log p}.
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Thus Lemma 8.1 for n=1 follows. We now prove Lemma 8.1 for n>2. Without loss of

generality, we may assume (1.17). Let

h0(αk) = max{h0(α1), ..., h0(αn)}.

By [34, (2.6)], we have

ordp(Ξ−1)6
d

fp log p
(nBh0(αk)+log 2). (8.3)

By (8.2) and (8.3), we may assume that

B

logB
>

(
1− 1

7900

)
fp log p

nd
C∗1 (n, d, p, b)

Ω

h0(αk)
. (8.4)

Write W for the right-hand side of (8.4). Applying [14, Theorem 3] for a lower bound of

Ω/h0(αk), we obtain

W >

(
1− 1

7900

)
c(1)e

%
(a(1))n

(n+1)n+2(n−1)n−1

(n!)2
d log e4(n+1)d. (8.5)

Recalling a(1), c(1), a
(1)
0 , a

(1)
1 and a

(1)
2 given in §1.3, we see that

logW > a
(1)
0 n+ a

(1)
1 + log d> a

(1)
0 n+a

(1)
2 .

Thus (8.4) gives (see (1.11))

(n+1) logB> (n+1)(logW+ log logW )>G1(n, d).

This, together with (1.13)–(1.15) and Voutier [28, Corollary 1], yields

(n+1) max{logB, fp log p}>h(1).

Now, on noting (1.9) and (1.22), Theorem 1 follows from Theorem I when r=n>1.

Proof of Theorem 1. By Lemma 8.1, Theorem 1 holds for r=n and we may assume

that r<n.

In the remainder of the proof of Theorem 1, we assume that

h0(α1)6 ...6h0(αn). (8.6)

Thus h0(αn)>0, since r>1. There exist i1, ..., ir in Z with 16i1<...<ir6n such that

(i) b:={αi1 , ..., αir} is multiplicatively independent;

(ii) if i1>1 then each αi (16i<i1) is a root of unity;

(iii) for k=1, ..., r−1, αi is multiplicatively dependent on {αi1 , ..., αik} for all i with

ik6i<ik+1.
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Obviously

Ω = Ω(b) with b := {αi1 , ..., αir}. (8.7)

By applying [14, Theorem 3] for a lower bound of h0(αi1) ... h0(αir ) and using the in-

equalities (
n

�1(n+5)

)n−r
>
�
r−n
1 (n+5)

e5n
and

�
r
1r
r

r!er
>
�1

e
,

we get

C∗1 (n, d, p, b)Ω max{logB, fp log p}fp log p

d log 2

>
c(1)

�1

%e6 log 2

(
a(1)

�1

)n
en(n+1)n+2(n+5)

n!n
(log e4(n+1)d)fp log p> 2100.

(8.8)

By (8.3), with αk replaced by αn, (8.6) and (8.8), we may assume that

B

logB
>

(
1− 1

2100

)
fp log p

nd
C∗1 (n, d, p, b)

Ω

h0(αn)
. (8.9)

We consider three cases:

(1) ir<n. We apply [14, Theorem 3] for a lower bound of h0(αi1) ... h0(αir ).

(2) ir=n with r>2. We apply [14, Theorem 3] for a lower bound of

h0(αi1) ... h0(αir−1
).

(3) ir=n with r=1. We use (3.15).

We see that, in all three cases, (8.9) implies that

B

logB
> 50

(
a(1)

�1
e2

)n
d. (8.10)

We now prove Theorem 1 by induction on n, using Lemma 8.1. Suppose that

Theorem 1 holds for n−1 with n>2. We proceed to prove that Theorem 1 holds for n.

Note that (1.9) and (1.22) give

C∗1 (n, d, p, b)

C∗1 (n−1, d, p, b)
>
a(1)(n+1)n+2

(n−1)n−1n2

d

max{n, fp log p}
. (8.11)

Suppose now i1=1 (we treat the case i1>1 at the end of the proof). Let m be the

largest integer such that i1=1, ..., im=m. So 16m6r. If m<r, then im<m+1<im+1;

if m=r, then m+16n. Thus αm+1 is multiplicatively dependent on {α1, ..., αm}. There

exist j1, ..., jt in Z with 16j1<...<jt6m such that αj1 , ..., αjt , αm+1 are multiplicatively

dependent and any t numbers from αj1 , ..., αjt , αm+1 are multiplicatively independent.
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By [14, Corollary 3.2], there are non-zero rational integers k1, ..., kt, km+1 (km+1>0) such

that αk1j1 ... α
kt
jt
α
km+1

m+1 =1 and

max{|k1|, ..., |kt|, |km+1|}6 %

(
t!et

tt

)
dt+1(log∗d)

h0(αm+1)

h0(αj1)

t∏
τ=1

h0(αjτ )

6

{
1
8Bdh

(n)(αm+1), if m+1 =n,
1
8B, if m+1<n,

(8.12)

where % is given by (3.13) and the second inequality is deduced from (1.20), (1.21), (8.7)

and (8.9) by applying [14, Theorem 3]. Set

Ω′′=
∏
α∈b

h0(α)·
∏

α∈a′′\b

h(n−1)(α) with a′′= {α1, ..., αn}\{αm+1}. (8.13)

We may assume that Ξkm+1−1 6=0, since otherwise ordp(Ξ−1)6(d/fp log p) log 2 and

Theorem 1 holds trivially by (8.8). Now, by the inductive hypothesis and by (8.10) and

(8.12), we obtain

ordp(Ξ−1)6 ordp((αb11 ... αbnn )km+1−1)

= ordp

(
t∏

τ=1

α
bjτ km+1−bm+1kτ
jτ

·
∏

16i6n
i/∈{j1,...,jt,m+1}

α
bikm+1

i −1

)

<C∗1 (n−1, d, p, b)Ω′′max{log(B2 exp((4e)−1dh(n)(αm+1))), fp log p}

6C∗1 (n−1, d, p, b)Ω′′max{logB, fp log p}
(

2+
1

4e

dh(n)(αm+1)

max{n, fp log p}

)
,

(8.14)

where C∗1 (n−1, d, p, b) is replaced by 1
2100C

∗
1 (n−1, d, p, b) when r=1. By (1.20), (1.21),

(8.7) and (8.13), we have

Ω

Ω′′
>h(n)(αm+1)

(
n+4

n+5

)n−r−1

>h(n)(αm+1)

(
n+4

n+5

)n−2

. (8.15)

It can be verified that
(n+1)n+2

(n−1)n−1 n2

(
n+4

n+5

)n−2

> e(n+5) (8.16)

for n>2. By (1.20), (8.11) and (8.14)–(8.16) in order to prove Theorem 1 in the case

when i1=1, it suffices to show that

1

�1(n+5)

(
a(1)e(n+5)− 1

4e

)
> 2.
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The above inequality follows from the definition of a(1) and �1 in §1.3. Thus Theorem 1

is proved in the case when i1=1.

Finally, if i1>1, then α1 is a root of unity. We may assume that ΞwK−1 6=0, since

otherwise ordp(Ξ−1)6(d/fp log p) log 2 and Theorem 1 follows from (8.8). Now

ordp(Ξ−1)6 ordp(ΞwK−1) = ordp(αb2wK2 ... αbnwKn −1).

Note that Waldschmidt [29, p. 276] and (8.10) give wK64d log log 6d6B, whence

|biwK |6B2 (26 i6n).

Thus we can prove Theorem 1 similarly to the case when i1=1. The proof of Theorem 1

is complete.

9. Further remarks on the solution of the problem of Erdős

Our exposition here follows basically Stewart [25], with some modifications, in order to

be more streamlined with respect to the p-adic theory of logarithmic forms. Especially,

we shall analyze the role of [40] and the role of the present paper in the solution of this

problem.

Recall the definition of P (m) and the definition of Lucas numbers un and Lehmer

numbers ũn given in §1.1.

For any integer n>0 and any pair of complex numbers α and β, denote by

Φn(α, β) =
∏′

(α−ζjβ) (9.1)

the nth cyclotomic polynomial in α and β, where ζ is a primitive nth root of unity and∏′
signifies that j runs through a reduced set of residues (mod n). From (9.1), we deduce

that

αn−βn =
∏
d|n

Φd(α, β). (9.2)

By [24], we see that Φn(α, β)∈Z for n>2 if (α+β)2∈Z and αβ∈Z. Hence Lucas numbers

un (n>0) and Lehmer numbers ũn (n>0) are rational integers. From (9.2) and the fact

that Φ1(α, β)=α−β and Φ2(α, β)=α+β, we see that

P (un)>P (Φn(α, β)) and P (ũn)>P (Φn(α, β)) for n> 2. (9.3)

Let ω(m) denote the number of distinct prime divisors of m∈Z when m 6=0.
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Theorem. (Stewart [25, Theorem 1.1]) Let α and β be complex numbers such that

(α+β)2 and αβ are non-zero rational integers and α/β is not a root of unity. Then

there exists a positive number C, which is effectively computable in terms of ω(αβ) and

the discriminant of Q(α/β), such that, for all n>C,

P (Φn(α, β))>n exp

(
log n

104 log log n

)
. (9.4)

Clearly (9.3) and (9.4) prove the conjecture of Erdős from 1965 and its generaliza-

tions
P (un)

n
!∞ and

P (ũn)

n
!∞, respectively, as n!∞, (9.5)

to Lucas and Lehmer numbers.

Henceforth we shall always assume that

|α|> |β|.

As pointed out in [25], we may assume, without loss of generality, that

gcd((α+β)2, αβ) = 1. (9.6)

Denote by ϕ(n) Euler’s ϕ-function. By [25, Lemma 4.2], there exists an effectively

computable positive number c1 such that if n>c1 then

log |Φn(α, β)|> 1
2ϕ(n) log |α|. (9.7)

(Note that the proof of [25, Lemma 4.2] depends ultimately upon an estimate for a linear

form in two logarithms of algebraic numbers due to Baker [2], [3]; see [25, §4] for details.)

On the other hand,

log |Φn(α, β)|=
∑

p|Φn(α,β)

ordp Φn(α, β)·log p for n> 2. (9.8)

Observe that α2 and β2 are in the ring OQ(α/β) of algebraic integers in Q(α/β). Let p be

a prime ideal of OQ(α/β), lying above the prime number p. We now show two facts.

Fact 1. If n>2 and p|Φn(α, β), then ordp α
2=ordp β

2=ordp(α/β)=0.

Proof. If n is even, then αn−βn∈OQ(α/β). From p|Φn(α, β) and (9.2) we have

p|(αn−βn). Assume that ordp α
2 6=0, then we would have p|α2 and whence p|β2, con-

tradicting (9.6). Thus ordp α
2=0. Similarly, we get ordp β

2=0.

If n is odd, then from p|Φn(α, β) and (9.2) we have p|(αn+1−αβn+αnβ−βn+1)

(=ũn(α2−β2)∈OQ(α/β)). Assume that ordp α
2 6=0, then we would have p|α2 and p|αβ

(since p|(αβ)2) and whence p|β2, contradicting (9.6). Thus ordp α
2=0. Similarly we

obtain ordp(β2)=0.

Now ordp(α/β)=0 follows from 2 ordp(α/β)=ordp(α2/β2)=0. This completes the

proof of Fact 1.
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Fact 2. If n>2 and p|Φn(α, β), then ordp Φn(α, β)6ordp((α/β)n−1).

Proof. If n is even, then (9.2) and Fact 1 give

ordp Φn(α, β)6 ordp(αn−βn) = ordp
αn−βn

βn
= ordp

((
α

β

)n
−1

)
.

If n is odd, then (9.2) and Fact 1 give

ordp Φn(α, β)6 ordp
αn−βn

(α−β)βn−1
= ordp

(α/β)n−1

α/β−1
6 ordp

((
α

β

)n
−1

)
.

This completes the proof of Fact 2.

By (9.7), (9.8) and Fact 2, we obtain, for n>c2=max{c1, 2},

1
2ϕ(n) log |α|6

∑
p|Φn(α,β)

ordp

((
α

β

)n
−1

)
log p. (9.9)

The strategy to prove [25, Theorem 1.1] is to apply [25, Lemma 4.3] to (essentially)

our inequality (9.9) and then to combine [25, Lemmas 2.1 and 2.3] to finish the proof.

We see that [25, Lemma 4.3] is one of the core results of [25].

We now state [25, Lemma 4.3] and give some remarks on its proof. Suppose that α

and β are complex numbers such that (α+β)2 and αβ are non-zero rational integers and

such that α/β is not a root of unity and |α|>|β|.

Lemma. (Stewart [25, Lemma 4.3]) Let n>1 be an integer, p be a prime with p -αβ
and p be a prime ideal of OQ(α/β), lying above p, which does not ramify. There ex-

ists a positive number C, which is effectively computable in terms of ω(αβ) and the

discriminant of Q(α/β), such that if p>C then

ordp

((
α

β

)n
−1

)
<p exp

(
− log p

51.9 log log p

)
log |α| log n. (9.10)

We may assume henceforth, without loss of generality, that (9.6) is satisfied. Note

that α/β is a zero of

αβx2−((α+β)2−2αβ)x+αβ ∈Z[x].

As such α/β is rational with the absolute logarithmic Weil height h0(α/β) satisfying

log 26h0

(
α

β

)
=

1

2
h0

(
α2

β2

)
6 log |α|,

or α/β is algebraic of degree 2 with

(log 6)−3<h0

(
α

β

)
=

1

2

(
log |αβ|+log

∣∣∣∣αβ
∣∣∣∣)= log |α|,
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where the lower bound (log 6)−3 follows from [28, Corollary 1]. In the latter case, there

exist m∈Z and d∈Z, with d 6=1 square-free, such that

(α2−β2)2 =m2d and Q
(
α

β

)
=Q(

√
d). (9.11)

Observe that if [Q(α/β):Q]=[Q(
√
d):Q]=2 and p>2 is a prime, then p is ramified

if and only if p|d. A prime p>2 with p -d splits completely in Q(α/β) if the Legendre

symbol (d/p) takes value 1 and is inert in Q(α/β) otherwise (see [12, p. 498]).

We consider the following cases:

(i) [Q(α/β) :Q] = 1;

(ii) [Q(α/β) :Q] = 2, with sub-cases (ii.1) (d/p) = 1 and (ii.2) (d/p) =−1;
(9.12)

and assert that [40, Theorem 1] together with Stewart’s device (see §1.1) is already

sufficient for proving (9.10) with 51.9 replaced by 118.4 (or any number >16e2) in case

(i) and for proving (9.10) with 51.9 replaced by 236.8 (or any number >32e2) in case

(ii.1). However, [40] does not suffice to obtain any inequality of the quality (with respect

to the dependence on p) as in (9.10) in case (ii.2).

Now we verify the above assertion. Recall that log∗x=log max{x, e} for any x>0.

We first deduce from [40, Theorem 1] the following lemma.

Lemma 9.1. Let K be a number field with d=[K :Q], p>5 be a prime and p be a

prime ideal of OK lying above p with ramification index ep=1 and residue class degree

fp. We assume that

ord2(pfp−1) = 1 or ζ4 ∈K, (9.13)

and suppose that α1, ..., αn are multiplicatively independent p-adic units in K, b1, ..., bn

are rational integers, not all zero, and that B is a real number satisfying

B>max{|b1|, ..., |bn|, 3}.

Then

ordp(αb11 ... αbnn −1)<C3(n, d, p)h0(α1) ... h0(αn) logB,

where

C3(n, d, p) = 359(n+1)3/2

(
8e
p−1

p−2

)n
dn+2(log∗d)(log e4(n+1)d)

pfp

fp log p

(
n

fp log p

)n
.

Remark 9.2. Note that (9.13) is just (1.5)♣ for the case q=2, i.e., p>2.
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Proof. We apply [40, Theorem 1] for cases (III) and (IV) (see (1.35)♣). Note that

for case (III), by (9.13), we have d>2 and u>2, and for case (IV) we have u>1. Observe

that

max{log e4(n+1)d, ep, fp log p}

6 (log e4(n+1)d)(fp log p) max{(fp log p)−1, (log 2e4d)−1}.
(9.14)

By a formula for Γ(x) given in Whittaker and Watson [30, p. 253], we see that

(n+1)n+2

n!
6

1√
2π

en+1(n+1)3/2. (9.15)

Now Lemma 9.1 follows from [40, Theorem 1] at once.

We now discuss case (i). We may assume p -6αβ and write p=pZ. If p≡3 (mod 4),

then ord2(pfp−1)=1. Thus we may work in Q, using Lemma 9.1 with K=Q and, at the

end, obtain (9.10) with 51.9 replaced by 59.2. We omit the details here. If p≡1 (mod 4),

then in order to satisfy (9.13), we have to work in K=Q(ζ4)=Q(
√
−1). Let P be a prime

ideal of OK lying above p=pZ. Then eP=fP=1, since (−1/p)=1. Our assumption

p -6αβ implies that p>5 and ordP(α/β)=0. Following [25], we introduce

k=

⌊
log p

118.35 log log p

⌋
and see that k>2 when p>c3. For j>2, let pj be the (j−1)-th smallest prime such that

pj - pαβ. (9.16)

We write
α

β
=α1p2 ... pk (9.17)

and obtain

ordp

((
α

β

)n
−1

)
= ordP

((
α

β

)n
−1

)
= ordP(αn1p

n
2 ... p

n
k−1). (9.18)

From (9.16), p -6αβ and the fact that α/β is not a root of unity, we see that α1, p2, ..., pk

are multiplicatively independent P-adic units in K. An application of Lemma 9.1 to

(9.18) gives

ordp

((
α

β

)n
−1

)
<C3(k, 2,P)h0(α1) log p2 ... log pk ·2 log n.

Taking advantage of the fact that fP=1, this ultimately leads to (9.10) with 51.9 replaced

by 118.4 in case (i) (see [25] for more details).
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We observe that along with the strategy of [25, §5] (namely to apply (9.10) with

51.9 replaced by 118.4 to our inequality (9.9) and then to combine [25, Lemmas 2.1 and

2.3] to finish the proof), Lemma 9.1, a consequence of [40, Theorem 1], together with

Stewart’s device yields (9.4) with 104 replaced by 237 in case (i), thereby proving the

conjecture of Erdős from 1965.

We should emphasize here the following point. Recall that the second major im-

provement achieved in [40] (see p. 192♣), which is based on Loher and Masser [14], is

that the product of absolute logarithmic Weil heights

h0(α1) ... h0(αn)

appears in the main theorem of [40] (see (1.17)♣), in place of the product of the modified

heights

h′(α1) ... h′(αn) with h′(αj) = max

{
h0(αj),

fp log p

d

}
in [37] and [38]. It is this improvement which makes Stewart’s device work. By the way,

we notice that the constant 118.4 can be replaced by 51.9 on the basis of the present

paper.

Now we discuss case (ii.1). We may assume that

p - 6dαβ (9.19)

with d as in (9.11). Then p>5 and from (d/p)=1 we deduce that ep=fp=1. If p≡3

(mod 4) then ord2(pfp−1)=1 and we can apply Lemma 9.1 with K=Q(α/β) to obtain

(9.10) with 51.9 replaced by 118.4. We omit the details here. If p≡1 (mod 4), then in

order to satisfy (9.13), we have to work in K=Q(α/β)(ζ4). We need only to consider

the worst situation when ζ4 /∈Q(α/β) and [K :Q]=4. Let P be a prime ideal of OK lying

above p. By the lemma in the appendix of [35], we have eP=ep=1 and fP=fp=1.

Similar to our discussion in case (i), we introduce

k=

⌊
log p

236.7 log log p

⌋
and keep (9.16) and (9.17), and we have (9.18) again. Observe that α1, p2, ..., pk are

multiplicatively independent P-adic units in K. An application of Lemma 9.1 with

K=Q(α/β)(ζ4) to (9.18) gives

ordp

((
α

β

)n
−1

)
<C3(k, 4,P)h0(α1)(log p2) ... (log pk)2 log n.

Taking advantage of the fact that fP=1, this ultimately leads to (9.10) with 51.9 replaced

by 236.8 in case (ii.1) (see [25] for more details).
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Next, we discuss case (ii.2). We may assume (9.19) with d as in (9.11). Then p>5

and from (d/p)=−1 we deduce that ep=1 and fp=2. In order to satisfy (9.13), we have

to work in K=Q(α/β)(ζ4), since now ord2(pfp−1)>3. Let P be a prime ideal of OK
lying above p. By the lemma in the appendix of [35], we have eP=ep=1 and fP=fp=2.

It is evident that [40, Theorem 1] (see Lemma 9.1) together with Stewart’s device can

just give an upper bound for ordp((α/β)n−1) similar to (9.10), but with p2 in place of p.

Applied to (9.9), this cannot yield any lower bound for P (Φn(α, β)) that would give (9.5)

in case (ii) where [Q(α/β):Q]=2.

Here the second refinement described in §1.1 establishes the basis to overcome this

serious problem. While Stewart deduces for this purpose [25, Lemma 3.1] from our main

theorem, we deduce Lemma 9.3 below, building on our Theorem 1 with r=n (see (1.19)).

Note that the deduction of Theorem 1 with r=n from our main theorem utilizes the

Liouville theorem (see the proof of Lemma 8.1), whence, generally speaking, Lemma 9.3

is sharper than [25, Lemma 3.1].

Lemma 9.3. Let K be a number field with d=[K :Q] and α0 be given by (1.4). Let

p>5 be a prime and p be a prime ideal of OK lying above p with ramification index ep=1

and residue class degree fp. Suppose that α1, ..., αn are multiplicatively independent p-

adic units in K, b1, ..., bn are rational integers, not all zero, and B is a real number

satisfying

B>max{|b1|, ..., |bn|, 5}.

Then

ordp(αb11 ... αbnn −1)<C4(n, d, p, a)h0(α1) ... h0(αn) logB,

where

C4(n, d, p, a) = 376(n+1)3/2

(
7e
p−1

p−2

)n
dn+2(log∗d) log e4(n+1)d

×max

{
pfp

δ(a)

(
n

fp log p

)n
, enfp log p

}
.

Remark 9.4. Observe that we do not assume (9.13). This is the benefit of the

first refinement (see §1.1). Note also that (1.7) with q=2 implies that α1, ..., αn are

multiplicatively independent.

Proof. We apply Theorem 1 with r=n and we may take

c(1) = 1794 and a(1) = 7
p−1

p−2
,

since we are in case (III) of §1.3. Using (9.14), (9.15), 2u>2 and

max{logB, fp log p}6 fp log p

log 5
logB,

Lemma 9.3 follows directly from Theorem 1 with r=n.
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Next, we reformulate [25, Lemma 2.2] for making applications more transparent.

Lemma 9.5. Let d 6=1 be a square-free rational integer and K=Q(
√
d). Let θ∈OK

have degree 2 and let θ′ denote the algebraic conjugate of θ over Q. Suppose that p is a

prime satisfying

p - 2dN(θ) and

(
d

p

)
=−1,

where N(θ)=θθ′ denotes the norm of θ for K/Q. Let p be a prime ideal of OK lying

above p and �K be the residue class field of K at p. Then the order of the residue class

γ̄ of γ=θ/θ′ in �K∗ divides p+1.

In [25] Stewart found the way, through his Lemmas 2.2 and 2.4, to apply successfully

his Lemma 3.1, thereby proving his Lemma 4.3 for case (ii). We have carefully worked

out a proof of his Lemma 4.3 for case (ii), where we use Lemma 9.3 in place of his

Lemma 3.1 and Lemma 9.5 in place of his Lemma 2.2. In order to reduce the size of the

present paper, we skip the proof. This completes our exposition.
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