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1. Introduction and statement of results

For any smooth compact manifoldW, the diffeomorphism group Diff(W ) has a classifying
space BDiff(W ). This classifies smooth fibre bundles with fibre W, in the sense that for
a smooth manifold B, there is a natural bijection between the set of isomorphism classes
of smooth fibre bundles π:E!B with fibre W and the set [B,BDiff(W )] of homotopy
classes of maps. The cohomology groups Hk(BDiff(W )) therefore give characteristic
classes of such bundles, and it is desirable to understand as much as possible about
these cohomology groups. The difficulty of this question depends highly on W : it is
essentially completely understood when the dimension of W is 0 or 1, and much effort has
been devoted to understanding the case where the dimension of W is 2. Mumford [Mu]
formulated a conjecture about the case where W=Σg is an oriented surface of genus g,
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in the limit g!∞. If we let Diff(Σg, D
2) denote the diffeomorphism group which fixes

some chosen disc D2⊂Σg, Mumford’s conjecture predicted an isomorphism

lim←−H
∗(BDiff(Σg, D

2); Q)∼= Q[κ1, κ2, κ3, ... ]

for certain classes κi∈H2i(BDiff(Σg, D
2)). Mumford’s conjecture was finally proved by

Madsen and Weiss [MW] in a strengthened form.
The goal of the present paper is to prove analogues of the Madsen–Weiss theorem and

Mumford’s conjecture for manifolds of higher dimension. We have results for manifolds
of any even dimension greater than 4. As an interesting special case of our results, we
completely determine the stable rational cohomology ring

lim←−H
∗(BDiff(Wg, D

2n); Q),

where Wg=#g(Sn×Sn)=g(Sn×Sn) denotes the connected sum of g copies of Sn×Sn.
To state our result, we recall that for each characteristic class of oriented 2n-dimensional
vector bundles c∈H2n+k(BSO(2n)), we can define the associated generalised Mumford–
Morita–Miller class of a smooth fibre bundle π:E!B with oriented 2n-dimensional
fibres as

κc(E) =π!(c(TπE))∈Hk(B),

where TπE is the fibrewise tangent bundle of π (when π is a submersion of smooth
manifolds, this is simply the kernel of Dπ:TE!π∗TB). When the fibre is taken to be
Wg, there is a corresponding universal class κc∈Hk(BDiff(Wg, D

2n)) which for k>0 is
compatible with increasing g.

Theorem 1.1. Let 2n>4 and let B⊂H∗(BSO(2n); Q) be the set of monomials in
the classes e, pn−1, pn−2, ..., pd(n+1)/4e of total degree greater than 2n. Then the natural
map

Q[κc : c∈B]−! lim←−H
∗(BDiff(Wg, D

2n); Q)

is an isomorphism.

The strengthened form of Mumford’s conjecture proved by Madsen and Weiss states
that a certain map

hocolim
g!∞

BDiff(Σg, D
2)−!Ω∞

0 MTSO(2)

induces an isomorphism in integral homology. We will prove a similar homotopy-theoretic
strengthening of Theorem 1.1, which also applies to more general manifolds.

1.1. Definitions and recollections

To state the main results in their general form, we recall the following definitions.
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1.1.1. Classifying spaces

We shall use the following model for the classifying space BDiff(W,∂W ) of the topo-
logical group of diffeomorphisms of a compact manifold W, restricting to the iden-
tity on a neighbourhood of ∂W . We first pick an embedding ∂W ↪!{0}×R∞ and let
Emb∂(W, (−∞, 0]×R∞) denote the space of all extensions to an embedding of W (re-
quired to be standard on a collar neighbourhood of ∂W ). We then let

BDiff(W,∂W ) =Emb∂(W, (−∞, 0]×R∞)/Diff(W,∂W )

be the orbit space. If W is closed and A⊂W is a compact codimension-0 submanifold, we
write BDiff(W,A)=BDiff(W \int(A), ∂A). The construction of BDiff(W,∂W ) has the
following naturality property: any inclusion W⊂W ′ of a codimension-0 submanifold in-
duces a continuous map BDiff(W,∂W )!BDiff(W ′, ∂W ′), well defined up to homotopy.
(On the point-set level it depends on a choice of embedding of the cobordism W ′\int(W )
into [0, 1]×R∞.) For example, a choice of inclusion Wg\int(D2n)!Wg+1 induces a map
BDiff(Wg, D

2n)!BDiff(Wg+1, D
2n); these define the inverse system in Theorem 1.1.

1.1.2. Thom spectra

For any space B and any map θ:B!BO(d), where BO(d)=Grd(R∞), there is a Thom
spectrum MTθ=B−θ constructed in the following way: First, we let

B(Rn) = θ−1(Grd(Rn)).

The Grassmannian Grd(Rn) carries an (n−d)-dimensional vector bundle γ⊥n , the orthog-
onal complement of the tautological bundle. Then the nth space of the spectrum MTθ
is the Thom space B(Rn)θ∗γ⊥n . The associated infinite loop space is the direct limit

Ω∞ MTθ=colim
n!∞

Ωn(B(Rn)θ∗γ⊥n ),

and we shall write Ω∞
0 MTθ for the basepoint component. The rational cohomology of

this space is easy to describe; in the case where the bundle classified by θ is oriented, it is
as follows: for each c∈Hd+k(B), there is a corresponding “generalised Mumford–Morita–
Miller class” κc∈Hk(Ω∞ MTθ), and H∗(Ω∞

0 MTθ; Q) is the free graded-commutative
algebra on the classes κc, where c runs through a basis for the vector space H>d(B; Q).
We describe the general case in §2.5.
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1.1.3. Moore–Postnikov towers

Let us first recall that a topological space X is said to be n-connected, for an integer
n>−1, if any map Sk!X admits an extension to Dk+1!X for −16k6n. For non-
empty X this is equivalent to the vanishing of πk(X,x) for 06k6n and all x∈X. A
map f :X!Y is n-connected if all its homotopy fibres are (n−1)-connected. If n>0 and
π0(X)!π0(Y ) is surjective, this is equivalent to the vanishing of the relative homotopy
groups πk(Mf , X, x) for all k6n and all x∈X. Here Mf denotes the mapping cylinder
of f ; henceforth we shall write πk(Y,X, x) for πk(Mf , X, x) when the map f is clear. If
A⊂X is a subspace, we shall say that the pair (X,A) is n-connected if the inclusion map
A!X is n-connected.

Similarly, a space X is said to be n-co-connected (or an (n−1)-type) if any map
Sk!X admits an extension to Dk+1 for k>n, and a map X!Y is n-co-connected if all
homotopy fibres are n-co-connected.

It is well known (cf. [H, Theorem 4.71]) that for any map f :A!X of spaces and any
n>0, there is a factorisation f :A

g−!B h−!X with the property that g is n-connected and
h is n-co-connected, and moreover such a factorisation is unique up to weak homotopy
equivalence. This is the nth stage of the Moore–Postnikov tower for the map A!X.
It will be important for us that this factorisation can be made strictly functorial in the
map f :A!X, and we briefly recall one way of achieving this. Define factorisations
f=hk �gk:A!Bk!X for k>n by setting Bn=A and inductively letting Bk+1 be the
relative CW complex obtained from Bk by attaching one (k+1)-cell for each commutative
square of the form

Sk //

��

Dk+1

��

Bk
hk // X.

Then hk:Bk!X extends canonically to hk+1:Bk+1!X, and we may let B=
⋃

k>nB
k.

In the case where A={x} is a point, B=X〈n〉!X is the n-connective cover of the
based space (X,x), characterised by the property that πi(X〈n〉, x)=0 for 06i6n, and
that πi(X〈n〉, x)!πi(X,x) is an isomorphism for i>n. (Some authors write X〈n+1〉 for
what we denote X〈n〉.)

1.2. Connected sums of copies of Sn×Sn

We can now state our homotopy-theoretic version of Theorem 1.1, generalising Madsen–
Weiss’ theorem to dimension 2n (recall that we assume 2n>4 throughout). As before,
we write Wg=#g(Sn×Sn)=g(Sn×Sn) for the connected sum of g copies of Sn×Sn.
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If we pick a disc D2n⊂Wg, there is a classifying space BDiff(Wg, D
2n) and there

are maps BDiff(Wg, D
2n)!BDiff(Wg+1, D

2n) induced by taking connected sum with
one more copy of Sn×Sn. Let θn:BO(2n)〈n〉!BO(2n) be the n-connective cover, and
MTθn be the associated Thom spectrum. Let us also say that a continuous map is a
homology equivalence if it induces an isomorphism in integral homology (and hence for
homology or cohomology with coefficients in any spectrum, at least after replacing both
spaces by weakly equivalent CW complexes).

Theorem 1.2. Let 2n>4. There is a homology equivalence

hocolim
g!∞

BDiff(Wg, D
2n)−!Ω∞

0 MTθn.

More generally, if W is any (n−1)-connected closed 2n-manifold which is parallelisable
in the complement of a point, there is a homology equivalence

hocolim
g!∞

BDiff(W#Wg, D
2n)−!Ω∞

0 MTθn.

It is easy to deduce Theorem 1.1 from Theorem 1.2. In [GRW2] we proved that the
maps BDiff(Wg, D

2n)!BDiff(Wg+1, D
2n) induce isomorphisms in integral homology up

to degree
⌊

1
2 (g−4)

⌋
(cf. also [BM]). Thus, Theorem 1.2 also determines the homology

and cohomology of BDiff(Wg, D
2n) in this range.

1.3. The moduli space of highly connected null-bordisms

The determination, in Theorems 1.1 and 1.2, of the stable homology and cohomology of
the space BDiff(W#g(Sn×Sn), D2n) is a special case of Theorem 1.8 below, in which
we determine the stable homology of BDiff(W ) for more general manifolds W . We also
consider manifolds equipped with an additional tangential structure, defined as follows.

Definition 1.3. Let θ:B!BO(2n) be a map. A θ-structure on a 2n-dimensional
manifold W is a bundle map `:TW!θ∗γ, i.e. a fibrewise linear isomorphism. Such a
pair (W, `) will be called a θ-manifold. A θ-structure on a (2n−1)-dimensional manifold
M is a bundle map ε1⊕TM!θ∗γ. If ` is a θ-structure on W, the induced structure
on ∂W is obtained by composing with a certain isomorphism ε1⊕T (∂W )!TW |∂W . In
fact, there are two such isomorphisms: One comes from a collar [0, 1)×∂W!W of ∂W .
Differentiating this gives an isomorphism ε1⊕T (∂W )!TW |∂W , and the resulting θ-
structure on ∂W will be called the incoming restriction. Another comes from a collar
(−1, 0]×∂W!W ; this is the outgoing restriction. WhenW is a cobordism, i.e. a compact
manifold together with a partition ∂W=∂inWq∂outW of its boundary, we will generally
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use the incoming restriction to induce a θ-structure on the incoming boundary of W and
the outgoing restriction on the outgoing boundary.

Let `0:TW |∂W!θ∗γ be a θ-structure on ∂W, and Bun∂(TW, θ∗γ; `0) denote the
space of all bundle maps `:TW!θ∗γ which restrict to `0 over ∂W, equipped with the
compact-open topology. The group Diff(W,∂W ) of diffeomorphisms of W which restrict
to the identity near ∂W acts on Bun∂(TW, θ∗γ; `0) by precomposing a bundle map with
the differential of a diffeomorphism.

The most general case of our theorem concerns the moduli space of highly connected
null-bordisms, defined as follows.

Definition 1.4. Let P⊂R∞ be a closed (2n−1)-dimensional manifold with θ-structure
`P : ε1⊕TP!θ∗γ. A null-bordism is a pair (W, `W ), where W⊂(−∞, 0]×R∞ is a com-
pact manifold with ∂W={0}×P and (−ε, 0]×P⊂W for some ε>0, and `W :TW!θ∗γ
is a θ-structure satisfying `W |∂W =`P . A null-bordism (W, `W ) is highly connected if
(W,P ) is (n−1)-connected, and the moduli space of highly connected null-bordisms is the
set N θ(P, `P ) of all highly connected null-bordisms of (P, `P ). It is topologised as∐

W

(Emb∂(W, (−∞, 0]×R∞)×Bun∂(TW, θ∗γ; `P ))/Diff(W,∂W ), (1.1)

where the disjoint union is over compact manifolds W with ∂W=P for which (W,P ) is
(n−1)-connected, one of each diffeomorphism class.

If K⊂[0, 1]×R∞ is a cobordism with collared boundary ∂K=({0}×P0)∪({1}×P1)
we say that K is highly connected if each pair (K, {i}×Pi) is (n−1)-connected. If K is
equipped with a θ-structure `K restricting to `0 and `1 on the boundaries, then there is an
induced map N θ(P0, `0)!N θ(P1, `1) defined by taking union with K and subtracting 1
from the first coordinate. (If (W,P0) is (n−1)-connected then (W∪K,K) is too, and it
follows from the long exact sequence of the triple (W∪K,K,P1) that (W∪K,P1) is also
(n−1)-connected.)

This moduli space classifies smooth families of null-bordisms of P , in the sense that
if B is a smooth manifold without boundary, there is a natural bijection between the set
of homotopy classes [B,N θ(P, `P )] and the set of equivalence classes of triples (π, ϕ, `),
where π:E!B is a proper submersion (i.e. smooth fibre bundle), ϕ is a diffeomorphism
∂E∼=B×P over B, such that (E, ∂E) is (n−1)-connected, and ` is a θ-structure on the
fibrewise tangent bundle TπE=Ker(Dπ) restricting to `P on the boundary of each fibre.

Let us also introduce notation for each of the disjoint summands in (1.1).

Definition 1.5. Let W be a compact 2n-dimensional manifold, and `0:TW |∂W!θ∗γ
be a θ-structure on ∂W . We shall write

BDiffθ(W ; `0) = (EDiff(W,∂W )×Bun∂(TW, θ∗γ; `0))/Diff(W,∂W )
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for the homotopy orbit space of the action of Diff(W,∂W ) on Bun∂(TW, θ∗γ; `0). If
`:TW!θ∗γ is a particular extension, we shall write BDiffθ(W ; `0)`⊂BDiffθ(W ; `0) for
the path component containing `.

Using the model EDiff(W,∂W )=Emb∂(W, (−∞, 0]×R∞), we have the homeomor-
phism

N θ(P, `P ) =
∐
W

BDiffθ(W ; `P ).

Definition 1.6. A tangential structure θ:B!BO(2n) is called spherical if any θ-
structure on the lower hemisphere ∂−D2n+1⊂∂D2n+1 extends to some θ-structure on
the whole sphere. (If B is path connected, this is equivalent to the sphere S2n admitting
a θ-structure.)

Most of the usual structures, for example SO, Spin, Spinc, etc. are spherical, but
some are not, e.g. framings. Theorem 1.8 below determines the homology of N θ(P, `P )
after stabilising with cobordisms in the (P, `P )-variable. The following definition makes
the stabilisation procedure precise.

Definition 1.7. Let θ:B!BO(2n) be spherical, and K⊂[0,∞)×R∞ be a submani-
fold with θ-structure `K . For A⊂[0,∞), we let (K|A, `K |A) denote the pair

(K∩x−1
1 (A), `K |K∩x−1

1 (A)),

which will again be a θ-manifold when A is an interval whose endpoints are regular values
of x1:K![0,∞). We shall assume that each natural number n is a regular value of x1.
If M⊂R∞ is the manifold such that K|n={n}×M we also impose the existence of a
cylindrical collar, i.e. an open neighbourhood U⊂[0,∞) of n such that K|U =U×M .

(i) Let W⊂[0, 1]×R∞ be a cobordism with θ-structure `W , and suppose that
(W |0, `W |0)=(K|0, `K |0). We say that (K, `K) absorbs (W, `W ) if there exists an em-
bedding j:W!K which is the identity on W |0=K|0, such that `K �Dj:TW!θ∗γ is
homotopic to `W relative to W |0. That K|[i,∞) absorbs a θ-bordism W⊂[i, i+1]×R∞ is
defined similarly.

(ii) We say that (K, `K) is a universal θ-end if for each integer i>0, K|[i,i+1] is a
highly connected cobordism and K|[i,∞) absorbs W for any highly connected cobordism
W⊂[i, i+1]×R∞ with θ-structure `W such that (W |i, `W |i)=(K|i, `K |i).

For example, in dimension 2 with θ=IdBO(2), we can construct a universal θ-
end by letting each K|[i,i+1] be diffeomorphic to RP 2 with two discs removed. For
θ=θn:BO(2n)〈n〉!BO(2n), a universal θ-end can be constructed by letting eachK|[i,i+1]

be diffeomorphic to Sn×Sn with two discs removed. In many other cases, a universal
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θ-end K can be constructed as the infinite iteration of a single self-bordism K|[0,1]. In
particular, this will be the case in the examples in §1.5 below.

As we shall see, universal θ-ends are unique up to isomorphism in the following
sense. If (K, `K) and (K ′, `′K) are two universal θ-ends with K|0=K ′|0, then there exists
a diffeomorphism K!K ′ preserving θ-structure up to homotopy, relative to K|0. More
generally, given a highly connected cobordism (W, `W ) from K|0 to K ′|0, there exists a
similar diffeomorphism from K to W∪K ′.

Theorem 1.8. Let 2n>4 and let θ:B!BO(2n) be spherical. Let (K, `K) be a
universal θ-end with N θ(K|0, `K |0) 6=∅. Then there is a homology equivalence

hocolim
i!∞

N θ(K|i, `K |i)−!Ω∞ MTθ′,

where

θ′:B′−!B
θ−−!BO(2n)

is the n-th stage of the Moore–Postnikov tower for `K :K!B.

The property of being a universal θ-end can often be checked in practice, using the
following addendum, as it is essentially a homotopical property.

Addendum 1.9. Let θ:B!BO(2n) be spherical, let K⊂[0,∞)×R∞ be a subman-
ifold such that K|[i,i+1] is a highly connected cobordism for each integer i, and let `K
be a θ-structure on K. Then (K, `K) is a universal θ-end if and only if the following
conditions hold :

(i) For each integer i, the map πn(K|[i,∞))!πn(B) is surjective, for all basepoints
in K.

(ii) For each integer i, the map πn−1(K|[i,∞))!πn−1(B) is injective, for all base-
points in K.

(iii) For each integer i, each path component of K|[i,∞) contains a submanifold
diffeomorphic to (Sn×Sn)\int(D2n), which in addition has null-homotopic structure map
to B.

Remark 1.10. The maps in all the theorems above are induced by the Pontryagin–
Thom construction. We shall briefly explain this in the setting of Theorem 1.8, after
replacing N θ(P, `P ) by a weakly equivalent space, and refer the reader to [MT, §2.3]
for further details. First we say that a submanifold W⊂(−∞, 0]×Rq−1 with collared
boundary is fatly embedded if the canonical map from the normal bundle νW to Rq

restricts to an embedding of the disc bundle into (−∞, 0]×Rq−1. In that case the
Pontryagin–Thom collapse construction gives a continuous map from [−∞, 0]∧Sq−1 to
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the Thom space of νW . Secondly we replace θ′:B′!BO(2n) by a fibration, and rede-
fine N θ(P, `P ) as a space of pairs (W, `′W ), where W⊂(−∞, 0]×R∞ is a fatly embedded
submanifold, collared near ∂W={0}×P , and `′W :W!B′ is a continuous map such that
θ′�`′W :W!BO(2n)=Gr2n(R∞) is equal to the Gauss map and whose restriction to ∂W
is equal to a specified map `′P :P!B′ lifting `P . There is a forgetful map from the
space of such pairs to the space in Definition 1.4, and standard homotopy-theoretic
methods imply that it is a weak equivalence (see Corollary 7.17). If P⊂Rq−1⊂R∞, the
Pontryagin–Thom construction (composed with `′P ) gives a point

α(P, `′P )∈Ωq−1(B′(Rq)(θ
′)∗γ⊥q )⊂Ω∞−1 MTθ′,

and if (W, `′W )∈N θ(P, `P ) has W⊂(−∞, 0]×Rq−1, it gives a path

α(W, `′W ): [−∞, 0]−!Ωq−1(B′(Rq)(θ
′)∗γ⊥q )⊂Ω∞−1 MTθ′,

starting at the basepoint and ending at α(P, `P ). If we write Ω∅,P Ω∞−1 MTθ′ for the
space of all such paths, then this construction determines a map

α:N θ(P, `P )−!Ω∅,P Ω∞−1 MTθ′.

The non-compact manifold K⊂[0,∞)×R∞ admits a homotopically unique θ′-structure
`′K lifting its θ-structure and extending the canonical θ′-structure on P=K|0. The
Pontryagin–Thom construction applied to each cobordism K|[i,i+1] then gives a path
α(K|[i,i+1], `

′
K |[i,i+1]): [0, 1]!Ω∞−1 MTθ′ from α(K|i, `′K |i) to α(K|i+1, `

′
K |i+1). The

maps α then give a map of direct systems, which on direct limits is

hocolim
i!∞

N θ(K|i, `K |i)−!hocolim
i!∞

Ω∅,K|iΩ
∞−1 MTθ′.

Finally, the maps in the direct system on the right-hand side are all homotopy equiv-
alences, so the direct limit is equivalent to its zeroth term, and a choice of path from
α(K|0, `′K |0) to ∅ identifies the zeroth term with Ω∞ MTθ′.

Remark 1.11. It is often useful to consider the homology equivalence in Theorem 1.8
one path component at a time, so we spell out the resulting statement using the notation
of Definition 1.5. Any path component of the infinite loop space Ω∞ MTθ′ is homotopy
equivalent to the basepoint component Ω∞

0 MTθ′. On the left-hand side of the homology
equivalence, the path component of an element (W, `W )∈N θ(K|0, `K |0) is the homotopy
colimit of the spaces

BDiffθ(W∪K|[0,i]; `i)`W∪`K |[0,i]
.
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Conversely, given any triple (W,K, `), where K⊂[0,∞)×R∞ is a non-compact sub-
manifold such that the subset K|[i,i+1]⊂K is a highly connected cobordism for each
integer i>0, W⊂(−∞, 0]×R∞ is a compact manifold with collared boundary ∂W=K|0
such that (W,∂W ) is (n−1)-connected, and `:T (W∪K)!θ∗γ is a bundle map, the
Pontryagin–Thom construction described in Remark 1.10 provides a map

hocolim
i!∞

BDiffθ(W∪K|[0,i]; `i)`−!Ω∞
0 MTθ′, (1.2)

where θ′:B′!B θ−!BO(2n) is obtained from the nth Moore–Postnikov stage of the un-
derlying map W∪K!B. If it is the case that K is a universal θ′-end then `′K :K!B′

is n-connected (cf. Addendum 1.9), so θ′ is also obtained from the nth Moore–Postnikov
stage of `K :K!B, and so by Theorem 1.8 the map (1.2) is a homology isomorphism. In
particular, Theorem 1.2 can be deduced this way: If we let each K|[i,i+1] be diffeomorphic
to ([0, 1]×S2n−1)#(Sn×Sn) and let θ=IdBO(2n), then θ′=θn:BO(2n)〈n〉!BO(2n), and
K is a universal θn -end. Similarly, all examples in §1.5 below arise in this way.

Let us also remark that the homotopy colimit (1.2) may be replaced by the strict
colimit BDiffθ

c(W∪K; `), defined by

BDiffθ
c(W∪K; `) = (EDiffc(W∪K)×Bunc(T (W∪K), θ∗γ; `))/Diffc(W∪K),

where Diffc(W∪K) is the topological group of compactly supported diffeomorphisms
of the non-compact manifold W∪K, and Bunc(T (W∪K), θ∗γ; `) is the space of bundle
maps which agree outside of a compact subset of W∪K with `.

1.4. Algebraic localisation

There is one final algebraic version of our main theorem. Fix P , a closed (2n−1)-manifold
with θ-structure `P : ε1⊕TP!θ∗γ. As explained in Definition 1.4, a cobordism (K, `K)
from (P, `P ) to itself with K⊂[0, 1]×R∞, which is (n−1)-connected with respect to both
boundaries, gives a self-map of N θ(P, `P ) defined by W 7!(W∪PK)−e1. We shall write
K0 for the set of isomorphism classes of such (K, `K), where we identify (K, `K) with
(K ′, `K′) if there is a diffeomorphism ϕ:K!K ′ which is the identity near ∂K such that
ϕ∗`K′ is homotopic to `K relative to ∂K. It is clear that the homotopy class of the
self-map of N θ(P, `P ) induced by (K, `K) depends only on the isomorphism class of
(K, `K), and we get an action of the non-commutative monoid K0 on H∗(N θ(P, `P )).
Our theorem determines the algebraic localisation

H∗(N θ(P, `P ))[K−1]
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at a certain commutative submonoid K⊂K0 which we now describe.
We say that a θ-cobordism K:P;P has support in a closed subset A⊂P if it

contains [0, 1]×(P \A):P \A;P \A as a sub-cobordism with the product θ-structure.
We let K⊂K0 consist of those elements which admit a representative with support in a
regular neighbourhood of a simplicial complex of dimension at most n−1 inside P , and
prove the following lemma.

Lemma 1.12. The subset K⊂K0 is a commutative submonoid.

We may localise the Z[K]-module H∗(N θ(P, `P )) at any submonoid L⊂K. The
content of Theorem 1.13 below is an isomorphism

H∗(N θ(P, `P ))[L−1]∼=H∗(Ω∞ MTθ′)

under certain conditions, where θ′:B′!B θ−!BO(2n) is the (n−1)-st stage of the Moore–
Postnikov tower for `P :P!B. (Note that in Theorem 1.8 we used the nth stage instead.)
To describe the isomorphism explicitly, recall that in Remark 1.10 we described a map

N θ(P, `P )−!Ω∞ MTθ′,

compatible with gluing highly connected cobordisms of (P, `P ) equipped with θ′-struc-
tures, and hence the induced map

H∗(N θ(P, `P ))−!H∗(Ω∞ MTθ′) (1.3)

is a map of Z[K′]-modules, where the monoid K′ is defined like K but using θ′ instead
of θ. An obstruction-theoretic argument, which we explain in more detail in §7.6, shows
that the natural map K′!K is a bijection, so (1.3) is naturally a homomorphism of
Z[K]-modules.

Theorem 1.13. Let 2n>4 and let θ:B!BO(2n) be spherical. Let P be a closed
(2n−1)-manifold with θ-structure `P : ε1⊕TP!θ∗γ, such that N θ(P, `P ) is non-empty.
Then the morphism (1.3) induces an isomorphism

H∗(N θ(P, `P ))[K−1]−!H∗(Ω∞ MTθ′).

Furthermore, localisation at a submonoid L⊂K agrees with localisation at K, pro-
vided L satisfies the following conditions:

(i) The group πn(B) is generated by the subgroups Im(πn(K)!πn(B)), K∈L.
(ii) The subgroup of πn−1(P ) generated by Ker(πn−1(P )!πn−1(K)), K∈L, con-

tains Ker(πn−1(P )!πn−1(B)).
(iii) There is an element of L containing a submanifold diffeomorphic to

(Sn×Sn)\int(D2n).
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(There is a bijection π0(P )=π0(K), and if P is not connected, conditions (i)–(iii)
are required to hold for each path component of P .)

Applying the functor HomZ[K](−,Q) to both sides of the isomorphism in the theorem
identifies the subring of H∗(N θ(P, `P ); Q) consisting of K-invariants with

H∗(Ω∞
0 MTθ′; Q).

Observing that these classes are also invariant under the larger monoid K0, we deduce
the isomorphism

H∗(N θ(P, `P ); Q)K0 ∼=H∗(Ω∞
0 MTθ′; Q).

The left-hand side can be interpreted as characteristic classes of certain bundles, invariant
under fibrewise gluing of trivial bundles.

1.5. Examples and applications

Recall that the connective cover BO(d)〈k〉 is BSO(d) if k=1, BSpin(d) if k=2, 3, and
is often called BString(d) if k=4, 5, 6, 7. We will write MTSO(d), MTSpin(d) and
MTString(d) for the corresponding Thom spectra. As special cases of Theorem 1.8 we
have the following maps, which become homology equivalences in the limit g!∞. All
are deduced from Theorem 1.8 and Addendum 1.9 as in Remark 1.11, with θ=IdBO(2n):

BDiff(g(S3×S3), D6)−!Ω∞
0 MTSpin(6),

BDiff(g(HP 2#HP 2
), D8)−!Ω∞

0 MTSpin(8),

BDiff(g(S4×S4), D8)−!Ω∞
0 MTString(8),

BDiff(g(S5×S5), D10)−!Ω∞
0 MTString(10),

BDiff(g(S6×S6), D12)−!Ω∞
0 MTString(12),

BDiff(g(S7×S7), D14)−!Ω∞
0 MTString(14),

BDiff(g(OP 2#OP 2
), D16)−!Ω∞

0 MTString(16).

A slightly different type of example is given by BDiff(CP 3#g(S3×S3), U), where
U⊂CP 3 is a tubular neighbourhood of CP 1. In this case the stable homology is that of
Ω∞

0 MTSpinc(6), where BSpinc(6) is the homotopy fibre of the map

βw2:BSO(6)−!K(Z, 3).

An example where we need a more complicated stabilisation (not induced by con-
nected sum) comes from RP 6. The map RP 6!BO(6) lifts canonically to a 3-connected
map RP 6!BPin−(6), where θ:BPin−(6)!BO(6) is the homotopy fibre of

w2+w2
1:BO(6)−!K(Z/2Z, 2).
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The standard self-indexing Morse function f : RP 6![0, 6] given by

f(x0; ... ;x6) =
6∑

i=0

ix2
i

has one critical point of each index, and we let W=f−1([0, 2.5])∼=RP 2×D4. Cutting
out a parallel copy of W gives a θ-bordism K̃∼=f−1([2.5, 3.5]) from ∂W=RP 2×S3 to
−∂W (i.e. RP 2×S3 equipped with the opposite θ-structure). Hence K0=K̃ �(−K̃) is a
cobordism from ∂W to itself, and we let K be the infinite iteration. In this situation we
get a stable homology equivalence

BDiff((RP 2×D4)∪∂ gK0, ∂)−!Ω∞
0 MTPin−(6).

Another interesting special case concerning the manifolds Wg=#g(Sn×Sn) is the
following. Let (Y, y) be a pointed space, and consider the homotopy orbit space

Sn
g (Y, y) = (EDiff(Wg, D

2n)×Map((Wg, D
2n), (Y, y)))/Diff(Wg, D

2n).

We can determine the stable homology of these spaces using a Pontryagin–Thom map∐
g>0

Sn
g (Y, y)−!Ω∞(Y 〈n−1〉+∧MTθn), (1.4)

defined as in Remark 1.10. Any map f : (Sn, Dn)!(Y, y) may be composed with the
projection to the first coordinate Sn×Sn!Sn to give a map (W1, D

2n∪D2n)!(Y, y),
representing an element [Wf ]∈K, and we let L⊂K be the submonoid generated by the
[Wf ]. It is easy to check that L satisfies the conditions of Theorem 1.13 for the tangential
structure Y 〈n−1〉×BO(2n)〈n〉!BO(2n). This shows that (1.4) induces a map from the
stabilised homology( ⊕

g>0

H∗(Sn
g (Y, y))

)
[L−1]−!H∗(Ω∞(Y 〈n−1〉+∧MTθn)) (1.5)

which is an isomorphism, after restricting to appropriate path components. This result
is a generalisation of the result of Cohen and Madsen [CM], who proved the special case
where 2n=2 and Y is simply connected. (The case 2n=2 was generalised to non-simply
connected Y in [GRW1].)

As a final application, in [GRW3] we deduce a generalisation of the detection result of
Ebert [E1]. We will prove that for any abelian group k and any non-zero cohomology class
c∈H∗(Ω∞

0 MTSO(2n); k), there exists a bundle π:E!B of smooth oriented manifolds,
such that the characteristic class associated with c is non-vanishing in H∗(B; k). (The
case k=Q was proved by Ebert.)



stable moduli spaces of high-dimensional manifolds 271

1.6. Cobordism categories and outline of proof

Finally, let us say a few words about our method of proof, which follows the strategy
in [GRW1] and [GMTW]. A central object is the cobordism category Cθ(RN ), whose
morphisms are cobordisms W⊂[0, t]×RN of dimension 2n and whose objects are closed
(2n−1)-dimensional manifolds M⊂RN , both equipped with θ-structures.

Remark 1.14. The applications described above use only the case where morphisms
are even-dimensional. Many of our results about cobordism categories are valid for odd-
dimensional cobordisms as well, but we do not know an interpretation in terms of stable
homology in that case. In fact, Ebert [E2] has shown that there are non-trivial classes
in H∗(Ω∞

0 MTSO(2n+1); Q) which are trivial when restricted to any BDiff+(M,∂M).
Thus there can be no analogue of e.g. Theorem 1.8, expressing H∗(Ω∞

0 MTSO(2n+1))
as a direct limit of H∗(BDiff(W∪K|[0,i],K|i))’s. It is an interesting question to find an
odd-dimensional analogue of our results.

In the limit N!∞, the main result of [GMTW] gives a weak equivalence

ΩBCθ 'Ω∞ MTθ. (1.6)

As in [GRW1], our strategy will be to find subcategories C⊂Cθ, as small as possible, such
that the inclusion induces a weak equivalence ΩBC!ΩBCθ. The proof of Theorem 1.8
will consist of applying a version of the “group-completion” theorem to a very small
subcategory of Cθ. Let us briefly describe the conditions we impose on objects and
morphisms of this subcategory.

Let L be a (2n−1)-manifold with boundary which admits a handle structure with no
handles of index n or larger, and let `L be a θ-structure whose underlying map L!B is
(n−1)-connected. Then we pick a (collared) embedding L!(−∞, 0]×R∞, and consider
the subcategory Cθ,L⊂Cθ where objects M⊂R×R∞ satisfy M∩((−∞, 0]×R∞)=L and
morphisms W⊂[0, t]×R×R∞ satisfy W∩([0, t]×(−∞, 0]×R∞)=[0, t]×L. For both ob-
jects and morphisms, these identities are required to hold as θ-manifolds. In §2 we prove
that the inclusion map induces a weak equivalence

BCθ,L−!BCθ. (1.7)

Secondly, we filter Cθ,L by connectivity of morphisms: for −16κ6n−1, the subcat-
egory Cκ

θ,L has the same objects as Cθ,L, but a morphism W from M0 to M1 is required
to satisfy that the inclusion M1!W is κ-connected. In §3 we prove that the inclusion
map induces a weak equivalence

BCκ
θ,L−!BCθ,L. (1.8)
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(In the case where κ=0, this is the “positive boundary subcategory”, and this case was
proved in [GMTW].)

Thirdly, we filter Cκ
θ,L by connectivity of objects: for −16l6min{n−2, κ}, the sub-

category Cκ,l
θ,L⊂Cκ

θ,L is the full subcategory on those objects where the structure map
M!B induces an injection πi(M)!πi(B) for all i6l and all basepoints, or equivalently
the inclusion L!M is l-connected. In §4 we prove that the inclusion map induces a weak
equivalence

BCκ,l
θ,L−!BCκ

θ,L. (1.9)

(In the case where l=0 and B is connected, this is the full subcategory on objects which
are path connected, and this case was proved in [GRW1].)

We have now reduced to Cn−1,n−2
θ,L , the full subcategory on those objects for which

the inclusion L!M is (n−2)-connected. In the fourth and final step of the filtration we
let C denote the full subcategory on those objects M which can be obtained from L by
attaching handles of index at least n. (This is equivalent to the condition that M \int(L)
is diffeomorphic to a handlebody with handles of index at most n−1, which if n>3 is in
turn equivalent to the inclusion L!M being (n−1)-connected.) In §5 we prove that the
inclusion map induces a weak equivalence

ΩBC −!ΩBCn−1,n−2
θ,L (1.10)

provided that θ is spherical.
Now, given a closed (2n−1)-manifold P with θ-structure `P , we will show how to

obtain a θ-manifold L as described above, such that the space N θ(P, `P ) occurs as a
space of morphisms in the category C. The weak equivalences (1.6)–(1.10) establish the
homotopy equivalence

ΩBC 'Ω∞ MTθ,

and the proof of Theorem 1.8 in this case will be completed by applying a suitable version
of the “group-completion” theorem to the map N θ(P, `P )!ΩBC.

The weak equivalences (1.8)–(1.10) are established using a parameterised surgery
procedure, and the proof depends on the contractibility of certain spaces of surgery data.
Contractibility is proved in a similar way in all three cases, and we defer this to §6.
Finally, in §7 we explain how to use a version of the group-completion theorem to prove
Theorem 1.8 and tie things together.

§3–§6 contain the main technical steps, but on a first reading it is possible to skip
to §7 after reading §2, to see the overall structure of the argument. The reader mainly
interested in Theorems 1.1 and 1.2 can take

θ= θn:BO(2n)〈n〉−!BO(2n)
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and L∼=D2n−1 in the above outline and throughout the paper. Considering only this
special case would not significantly simplify the main technical steps in §3–§6, but the
group-completion arguments in §7 do simplify, and we incorporate a separate discussion
of this case in §7.1.

2. Definitions and recollections

2.1. Tangential structures

Throughout this paper, an important role will be played by the notion of a tangential
structure on manifolds. This will be important even for the proof of theorems which
do not explicitly mention tangential structures on manifolds. However, for the proofs of
Theorems 1.1 and 1.2, the structure θ=θn:BO(2n)〈n〉!BO(2n) suffices.

Definition 2.1. A tangential structure is a map θ:B!BO(d). A θ-structure on a
d-manifold W is a bundle map (i.e. fibrewise linear isomorphism) `:TW!θ∗γ. A θ-
manifold is a pair (W, `). More generally, a θ-structure on a k-manifold M (with k6d)
is a bundle map `: εd−k⊕TM!θ∗γ.

Given vector bundles U and V of the same dimension, but not necessarily over the
same space, we write Bun(U, V ) for the subspace of map(U, V ) (with the compact-open
topology) consisting of the bundle maps. Thus, Bun(TW, θ∗γ) is the space of θ-structures
on W .

2.2. Spaces of manifolds

We recall the definition and main properties of spaces of submanifolds, from [GRW1].
Fix a tangential structure θ:B!BO(d).

Definition 2.2. For an open subset U⊂Rn, we denote by Ψθ(U) the set of pairs
(Md, `) where Md⊂U is a smooth d-dimensional submanifold that is closed as a topo-
logical subspace, and ` is a θ-structure on M .

We denote by Ψθd−m
(U) the set of pairs (M, `) where M⊂U is a smooth (d−m)-

dimensional submanifold that is closed as a topological subspace, and ` is a θ-structure
on M , i.e. a bundle map εm⊕TM!θ∗γ.

In [GRW1, §2] we have defined a topology on these sets so that U 7!Ψθd−m
(U) defines

a continuous sheaf of topological spaces on the site of open subsets of Rn. We will not
give full details of the topology again here, but remind the reader that the topology is
“compact-open” in flavour: disregarding tangential structures, points nearby to M are
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those which near some large compact subset K⊂U look like small normal deformations
of M . In particular, a typical neighbourhood of the empty manifold ∅∈Ψθ(U) consists
of all those manifolds in U disjoint from some compact K.

Definition 2.3. We define ψθ(n, k)⊂Ψθ(Rn) to be the subspace consisting of those
θ-manifolds (M, `) such that M⊂Rk×(−1, 1)n−k. We make the analogous definition of
ψθd−m

(n, k).

2.3. Semi-simplicial spaces and non-unital categories

Let ∆ denote the category of finite non-empty totally ordered sets and monotone maps,
the simplicial indexing category. Let ∆inj⊂∆ denote the subcategory with the same
objects but only injective monotone maps as morphisms. For a category C, a simplicial
object in C is a contravariant functor X:∆!C, and a semi-simplicial object in C is
a contravariant functor X:∆inj!C. A map of (semi-)simplicial objects is a natural
transformation of functors.

We call a semi-simplicial object in the category of topological spaces a semi-simplicial
space. More concretely, it consists of a space Xn=X(0<1<...<n) for each n>0, and face
maps di:Xn!Xn−1 defined for i=0, ..., n satisfying the simplicial identities didj =dj−1di

for i<j. We often denote a semi-simplicial space byX�, where we treat � as a place-holder
for the simplicial degree.

The geometric realisation of a semi-simplicial space X� is defined to be

|X�|=
∐
n>0

(Xn×∆n)/∼,

where ∆n denotes the standard topological n-simplex and the equivalence relation is
generated by (di(x), y)∼(x, di(y)), where di:∆n!∆n+1 is the inclusion of the ith face.
This space is given the quotient topology. We shall need to make reference to specific
points in geometric realisations: a point y∈|X�| is uniquely written as y=(x, t) with
x∈Xp and t∈int(∆p).

The k-skeleton of |X�| is

|X�|(k) =
k∐

n=0

(Xn×∆n)/∼

with the quotient topology, and one easily checks that |X�|=
⋃

k>0 |X�|(k) with the direct
limit topology. A useful consequence of this is the following: a map from a compact space
to |X�| factors through a finite skeleton (since we do not have degeneracies, it suffices
to prove this for the terminal semi-simplicial space, where it is clear). We recall the
following result (cf. e.g. [S2, Proposition A.1 (ii)]).
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Lemma 2.4. If X�!Y� is a map of semi-simplicial spaces such that each Xn!Yn

is a weak homotopy equivalence, then |X�|!|Y�| is too.

Remark 2.5. The term semi-simplicial object we have defined above is not quite
standard (though is gaining popularity) and deserves some justification. Our justifi-
cation is that it agrees with Eilenberg and Zilber’s original usage of “semi-simplicial
complex” [EZ]. Another is that the alternative used in the literature is ∆-space, but as
∆ is the indexing category for full simplicial objects this seems counterintuitive.

A non-unital topological category C consists of a pair of spaces (O,M) of objects and
morphisms, equipped with source and target maps s, t:M!O. We letM×tOsM denote
the fibre product made with the maps t and s, and require in addition a composition
map µ:M×tOsM!M which satisfies the evident associativity requirement.

A non-unital topological category C has a semi-simplicial nerve, generalising the
simplicial nerve of a topological category [S1]. Define N�C by N0C=O and

NkC=M×tOsM×tOs ...×tOsM, k > 0,

being the space of k-tuples of composable morphisms, and let the face maps be given by
composing and forgetting morphisms, as in the simplicial nerve of a topological category.
We define the classifying space of a non-unital topological category by

BC= |N�C|.

2.4. Definition of the cobordism categories

For convenience in the rest of the paper, we introduce the following notation. All of
our constructions will take place inside R×RN , and we write x1: R×RN!R for the
projection to the first coordinate. Given a manifold W⊂R×RN and a set A⊂R, we
write

W |A =W∩x−1
1 (A),

if it is a manifold, and we also write `|A for the restriction of a θ-structure ` on W to
this manifold.

Our definition of the cobordism category of θ-manifolds is similar to that of [GRW1]
(the only difference is that here will we only define a non-unital category); it follows that
of [GMTW] in spirit, but is different in some technical points. (These slight variations
all have equivalent classifying spaces.) We use the spaces of manifolds of §2.2 in order to
describe the point-set topology of these categories.
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Definition 2.6. For each ε>0 we let the non-unital topological category Cθ(RN )ε

have space of objects ψθd−1(N, 0). The space of morphisms from (M0, `0) to (M1, `1) is
the subspace of those (t, (W, `))∈R×ψθ(N+1, 1) such that t>0 and

W |(−∞,ε) =(R×M0)|(−∞,ε) ∈Ψθ((−∞, ε)×RN )

and

W |(t−ε,∞) =(R×M1)|(t−ε,∞) ∈Ψθ((t−ε,∞)×RN ).

Here R×Mi denotes the θ-manifold with underlying manifold R×Mi⊂R×RN and θ-
structure

T (R×Mi)−! ε1⊕TMi
`i−−! θ∗γ.

Composition in this category is defined by

(t′,W ′)�(t,W ) = (t+t′,W |(−∞,t]∪(W ′+te1)|[t,∞)),

where W ′+te1 denotes the manifold W ′ translated by t in the first coordinate. We
topologise the total space of morphisms as a subspace of (0,∞)×ψθ(N+1, 1).

If ε<ε′ there is an inclusion Cθ(RN )ε′⊂Cθ(RN )ε, and we define Cθ(RN ) to be the
colimit over all ε>0.

Note that a morphism (t, (W, `)) in this category is uniquely determined by the
restriction (t, (W |[0,t], `|[0,t])). We often think of morphisms in this category as being
given by such restricted manifolds, but the topology on the space of morphisms is best
described as we did above.

As explained in the introduction, we will also require a version of this category where
the objects and morphisms contain a fixed codimension-zero submanifold. In order to
define this, we let

L⊂
(
− 1

2 , 0
]
×(−1, 1)N−1

be a compact (d−1)-manifold which near {0}×RN−1 agrees with (−1, 0]×∂L. Further-
more, we let `|L: ε1⊕TL!θ∗γ be a θ-structure on L. Near ∂L we require that the
structure is a product (i.e. that translation in the collar direction preserves the struc-
ture). Such an `|L makes R×L into a θ-manifold with boundary, and we make the
following definition.

Definition 2.7. The topological subcategory Cθ,L(RN )⊂Cθ(RN ) has space of objects
those (M, `) such that

M∩((−∞, 0]×RN−1) =L
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as θ-manifolds. It has space of morphisms from (M0, `0) to (M1, `1) given by those
(t, (W, `)) such that

W∩(R×(−∞, 0]×RN−1) = R×L

as θ-manifolds.

Remark 2.8. The category Cθ,L(RN ) does not really depend on L, but only on ∂L.
It is sometimes convenient to think of the interior of L as being cut out, so that objects
in the category are manifolds with boundary ∂L and morphisms are cobordisms between
manifolds with boundary which are trivial along the boundary.

If we take L=Dd−1, then the category Cθ,L(RN ) is equivalent to the category of
“manifolds with basepoint” defined in [GRW1, Definition 4.2]. That case is sufficient for
the proofs of Theorems 1.1 and 1.2.

The subject of our main technical theorem, from which we shall show how to obtain
results on diffeomorphism groups in §7, is certain subcategories of Cθ,L(RN ) where we
require the morphisms to have certain connectivities relative to their outgoing boundaries,
and objects to be those (M, `M ) whose Gauss map M!B (i.e. the map underlying
`M : ε1⊕TM!θ∗γ) has a certain injectivity range on homotopy groups.

Definition 2.9. For an integer κ>−1, the topological subcategory

Cκ
θ,L(RN )⊂Cθ,L(RN )

has the same space of objects. It has space of morphisms from (M0, `0) to (M1, `1)
given by those (t, (W, `)) such that the pair (W |[0,t],W |t) is κ-connected. Thus this is
the subcategory on those morphisms which are κ-connected relative to their outgoing
boundary.

The category C0θ is the “positive boundary category” as in [GMTW], where each
path component of a cobordism is required to have non-empty outgoing boundary.

Definition 2.10. For an integer l>−1, the topological subcategory

Cκ,l
θ,L(RN )⊂Cκ

θ,L(RN )

is the full subcategory on those objects (M, `) such that the map

`∗:πi(M)−!πi(B)

is injective for all i6l and all basepoints. (In our main application in §7, the map L!B
will be (l+1)-connected. In that case the requirement is equivalent to (M,L) being
l-connected.)
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For our final definition we specialise to even dimensions.

Definition 2.11. Let d=2n and A⊂π0(Ob(Cn−1,n−2
θ,L (RN ))) be a collection of path

components of the space of objects. The topological subcategory

Cn−1,A
θ,L (RN )⊂Cn−1,n−2

θ,L (RN )

is the full subcategory on the subspace of those objects in A.

For N=∞, we shall often denote Cθ(R∞)=colimN Cθ(RN ) by Cθ, and similarly with
any decorations.

2.5. The homotopy type of the cobordism category

The main theorem of [GMTW] identifies the homotopy type ΩBCθ in terms of the infinite
loop space of a certain Thom spectrum MTθ.

Recall from the introduction that given a map θ:B!BO(d)=Grd(R∞) we let

B(Rn) = θ−1(Grd(Rn))

and define γ⊥n!Grd(Rn) to be the orthogonal complement of the tautological bundle.
The canonical map B(Rn)!B(Rn+1) pulls back θ∗γ⊥n+1 to θ∗γ⊥n ⊕ε1 and hence we obtain
pointed maps

B(Rn)θ∗γ⊥n ∧S1−!B(Rn+1)θ∗γ⊥n+1

of Thom spaces, which form a spectrum MTθ. Its associated infinite loop space is

Ω∞ MTθ=colim
n!∞

Ωn(B(Rn)θ∗γ⊥n ).

Theorem 2.12. (Galatius–Madsen–Tillmann–Weiss [GMTW]) There is a canonical
map

ΩBCθ −!Ω∞ MTθ

which is a weak homotopy equivalence.

We write Ω∞
0 MTθ for the basepoint component of Ω∞ MTθ, and now describe the

rational cohomology of this space. The map B
θ−−!BO(d) det−−!BO(1) on fundamental

groups defines a character w1:π1(B)!Z×, and we write H∗(B; Qw1) for the rational
cohomology of B with local coefficients given by this character. For each n there are
evaluation maps

ev: ΣnΩn(B(Rn)θ∗γ⊥n )−!B(Rn)θ∗γ⊥n ,
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and so we can define the dashed map in the diagram

H∗+d(B(Rn); Qw1) //_____

Thom iso.

H∗(Ωn(B(Rn)θ∗γ⊥n ); Q)

suspension iso.

H̃∗+n(B(Rn)θ∗γ⊥n ; Q)
ev∗ // H̃∗+n(ΣnΩn(B(Rn)θ∗γ⊥n ); Q)

by commutativity. Taking limits and restricting to the basepoint component, we obtain
a map

σ:H∗+d(B; Qw1)−!H∗(Ω∞
0 MTθ; Q)

(there is no lim1 contribution as we are working over a field). The right-hand side is
a graded-commutative algebra, so σ extends to the free graded-commutative algebra on
the part of H∗+d(B; Qw1) of degree >0,

Λ(H∗+d>0(B; Qw1))−!H∗(Ω∞
0 MTθ; Q).

This is an isomorphism of graded-commutative algebras.

2.6. Poset models

A key step in the proofs of [GMTW] and [GRW1] identifying the infinite loop space BCθ
is to first identify this classifying space with the classifying space of a certain topological
poset. The result holds for all variations of the cobordism category mentioned above; we
prove the general result in Proposition 2.14 below.

Definition 2.13. Let
Dθ ⊂R×R>0×ψθ(N+1, 1)

denote the subspace of tuples (t, ε, (W, `)) such that [t−ε, t+ε] consists of regular values
for x1:W!R. Define a partial order on Dθ by

(t, ε, (W, `))< (t′, ε′, (W ′, `′))

if and only if (W, `)=(W ′, `′) and t+ε<t′−ε.
Define the full subposet Dθ,L⊂Dθ to consist of those tuples (t, ε, (W, `)) such that

W∩(R×(−∞, 0]×RN−1)=R×L as θ-manifolds.
If C⊂Cθ,L(RN ) is a subcategory which consists of entire path components of the

object and morphism spaces of Cθ,L(RN ), let DC
θ,L⊂Dθ,L be the smallest subposet con-

sisting of entire path components of the object and morphism spaces of Dθ,L which con-
tains those tuples (t, ε, (W, `)) such that W |t∈Ob(C), and those morphisms (t, ε, (W, `))<
(t′, ε′, (W ′, `′)) with W |[t,t′]∈Mor(C).
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Proposition 2.14. Let C⊂Cθ,L(RN ) be a subcategory which consists of entire path
components of the object and morphism spaces of Cθ,L(RN ). Then there is a weak ho-
motopy equivalence

BC 'BDC
θ,L.

Proof. We introduce an auxiliary topological poset DC,⊥
θ,L which maps to both DC

θ,L

and C. It is the subposet of DC
θ,L consisting of (t, ε, (W, `)) such that (W, `) is a product

over (t−ε, t+ε). This condition means that if we write W |t={t}×M and give M the
inherited θ-structure, then

W |(t−ε,t+ε) =(t−ε, t+ε)×M

as θ-manifolds. Then there is a zig-zag of functors

DC
θ,L −D

C,⊥
θ,L −! C,

where the first arrow is the inclusion of the subposet and the second is the functor that
sends a morphism (a<b,W, `) to the manifold (W |[a,b]−ae1) extended cylindrically in
(−∞, 0]×RN and [b−a,∞)×RN . This induces a zig-zag diagram

NkD
C
θ,L −NkD

C,⊥
θ,L −!NkC,

and we prove that both maps are weak equivalences for all k in the same way as in
[GRW1, Theorem 3.9].

Applying the above construction to the categories Cκ,l
θ,L(RN ) we obtain topological

posets Dκ,l
θ,L(RN ) and weak homotopy equivalences

BCκ,l
θ,L(RN )'BDκ,l

θ,L(RN ). (2.1)

Similarly, when we specialise to the case d=2n and let A⊂π0(Ob(Cn−1,n−2
θ,L (RN ))) be a

collection of path components of objects, we obtain weak homotopy equivalences

BCn−1,A
θ,L (RN )'BDn−1,A

θ,L (RN ). (2.2)

2.7. The homotopy type of Cθ,L(RN)

In [GRW1, Theorems 3.9 and 3.10] we proved that there is a weak homotopy equivalence
BDθ(RN )'ψθ(N+1, 1), which combined with Proposition 2.14 gives

BCθ(RN )'BDθ(RN )'ψθ(N+1, 1). (2.3)

(Strictly speaking, in that paper we worked with a version of Dθ(RN ) where ε=0, but
the obvious map induces a levelwise weak equivalence of nerves.) For the purposes of
this paper we require a slightly stronger version of this result, taking into account the
submanifold L.
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Proposition 2.15. There are weak homotopy equivalences

BCθ,L(RN )'BDθ,L(RN )'ψθ,L(N+1, 1),

where ψθ,L(N+1, 1)⊂ψθ(N+1, 1) is the subspace consisting of those (W, `) such that
W∩(R×(−∞, 0]×RN−1)=R×L as θ-manifolds.

Proof. The proof of [GRW1, Theorem 3.10] applies verbatim.

Proposition 2.16. The inclusion

i:ψθ,L(N+1, 1)−!ψθ(N+1, 1)

is a weak homotopy equivalence.

Proof. This is similar to [GRW1, Lemma 4.6], which is essentially the case L=Dd−1.
It requires careful analysis of θ-structures, so let us, for this proof only, denote the θd−1-
structure on L by `L: ε1⊕TL!θ∗γ. We first want to construct the double D(L) of L as
a θd−1-manifold, and a canonical θ-null-bordism of it. Recall that L is a submanifold of(
− 1

2 , 0
]
×(−1, 1)N−1 which we identify with

{0}×
(
− 1

2 , 0
]
×(−1, 1)N−1⊂ (−1, 0]×

(
− 1

2 , 0
]
×(−1, 1)N−1.

Let V ⊂(−1, 0]×
(
− 1

2 ,
1
2

)
×(−1, 1)N−1 denote the subset swept out by rotating L around

(0, 0) in the half-plane (−1, 0]×(−1, 1). Since L was collared, this subset is a d-dimen-
sional submanifold with boundary, and L lies in its boundary. We define D(L)=∂V, and
L̄=D(L)\int(L). The inclusion L↪!V is a homotopy equivalence, so there is a unique
extension up to homotopy

ε1⊕TL
`L //

��

θ∗γ

TV,

=={
{

{
{

{

where the vertical map sends ε1 to the outwards pointing vector. This restricts to a
θ-structure on D(L), and hence on L̄, and V gives a θ-cobordism V : ∅;D(L).

Similarly, we can rotate L in the half-plane [0, 1)×(−1, 1) around the point
(
0,− 1

2

)
to obtain a submanifold of [0, 1]×[−1, 0]×(−1, 1)N−1, extending to a θ-cobordism U⊂
[0, 1]×[−1, 0]×(−1, 1)N−1, ending at {1}×[−1, 0]×∂L and starting at {0}×(L∪(L̄−e1)),
where L̄−e1⊂

[
−1, 1

2

)
×(−1, 1)N−1 denotes the parallel translate of L̄.

The θ-manifolds U and V give us the tools we need. D(L) is a submanifold of(
− 1

2 ,
1
2

)
×(−1, 1)N−1, so we have a θ-manifold R×D(L)⊂R×

(
− 1

2 ,
1
2

)
×(−1, 1)N−1. We

define a map
r:ψθ(N+1, 1)−!ψθ,L(N+1, 1),
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V
L

L̄

L

L̄

L

U

Figure 1. Adding and removing L.

which given (W, `)⊂R×(−1, 1)×(−1, 1)N−1 applies the unique increasing affine diffeo-
morphism (−1, 1)∼=

(
1
2 , 1

)
to its second coordinate, and then takes the (disjoint) union

with R×D(L).
The composition i�r is homotopic to the identity as the θ-null-bordism V of D(L)

may be used to push the cylinder R×D(L) off to the right. A similar argument, pushing
U to the left, proves that the composition r�i is homotopic to the identity. Figure 1
shows how.

Combining this proposition with Proposition 2.15 and the homotopy equivalence (2.3)
gives the following corollary.

Corollary 2.17. For any pair (L, `L) as in Definition 2.7, the inclusion

BCθ,L(RN )−!BCθ(RN )

is a weak homotopy equivalence.

2.8. A more flexible model

From the poset models of §2.6 we construct the semi-simplicial spaces

Dκ,l
θ,L(RN )� =N�D

κ,l
θ,L(RN ).

The remarks of §2.6 and Proposition 2.15 show that the geometric realisations of these
semi-simplicial spaces are models for the classifying spaces of the categories Cκ,l

θ,L(RN )
in which we are interested. The benefit of working with these semi-simplicial spaces
instead of the cobordism categories is that we can often make constructions which are
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not functorial, yet give well-defined maps between geometric realisations of the semi-
simplicial spaces involved.

To make this technique easier to apply, we will define an auxiliary semi-simplicial
space Xκ,l

�
. (The space also depends on θ, N and L, but we suppress these from the

notation.) We will prove that its geometric realisation is weakly equivalent to BCκ,l
θ,L(RN ),

but it will be easier to construct a simplicial map into Xκ,l
�

than into N�Cκ,l
θ,L(RN ) or

Dκ,l
θ,L(RN )�. We will also write Xκ

�
for Xκ,−1

�
.

Definition 2.18. Let θ:B!BO(d), N and L be as before, and let κ, l>−1 be in-
tegers. Define Xκ,l

�
to be the semi-simplicial space with p-simplices consisting of cer-

tain tuples (a, ε, (W, `)) such that a=(a0, ..., ap)∈Rp+1, ε=(ε0, ..., εp)∈(R>0)p+1, and
(W, `)∈Ψθ((a0−ε0, ap+εp)×RN ), satisfying

(i) W⊂(a0−ε0, ap+εp)×(−1, 1)N ;
(ii) W and (a0−ε0, ap+εp)×L agree as θ-manifolds on the subspace x−1

2 (−∞, 0];
(iii) ai−1+εi−1<ai−εi for all i=1, ..., p;
(iv) for each pair of regular values t0<t1∈

⋃p
i=1(ai−εi, ai+εi), the cobordismW |[t0,t1]

is κ-connected relative to its outgoing boundary;
(v) for each regular value t∈(ai−εi, ai+εi), the map

πj(W |t)−!πj(B),

induced by `|t, is injective for all basepoints and all j6l.
We topologise this set as a subspace of Rp+1×(R>0)p+1×Ψθ((−1, 1)×RN ), where

we use the standard affine diffeomorphism (−1, 1)∼=(a0−ε0, ap+εp) to identify the sets
Ψθ((a0−ε0, ap+εp)×RN ) and Ψθ((−1, 1)×RN ). The jth face map is given by forgetting
aj and εj , and if j=0, composing with the restriction map

Ψθ((a0−ε0, ap+εp)×RN )−!Ψθ((a1−ε1, ap+εp)×RN ),

and similarly if j=p.
There are semi-simplicial maps Dκ,l

θ,L(RN )�!Xκ,l
�

, which on p-simplices are given
by sending (a, ε, (W, `)) with (W, `)∈Ψθ(R×RN ) to the same thing restricted down to
Ψθ((a0−ε0, ap+εp)×RN ).

The semi-simplicial space Xκ,l
�

is easier to map into (by a semi-simplicial map) than
Dκ,l

θ,L(RN )� for two reasons. Firstly, we do not require that the intervals (ai−εi, ai+εi)
consist entirely of regular values: instead we allow critical values, and conditions (iv)
and (v) ensure that the critical values do not affect the essential properties of the space.
Secondly, we discard those parts of the manifold outside of (a0−ε0, ap+εp), and so do
not need to worry about controlling parts of the manifold outside of the region.
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Definition 2.19. In the case d=2n, with A⊂π0(Ob(Cn−1,n−2
θ,L (RN ))) being a collec-

tion of path components of objects, we make the entirely analogous definition of Xn−1,A
�

.
Precisely, in Definition 2.18 we replace condition (v) by

(v′) for each regular value t∈(ai−εi, ai+εi), the θd−1-manifold (W |t, `|t) lies in A.

The following is our main result concerning these models, and together with (2.1) and
(2.2) provides weak homotopy equivalences BCκ,l

θ,L(RN )'|Xκ,l
�
| and, in the case d=2n,

BCn−1,A
θ,L (RN )'|Xn−1,A

�
|.

Proposition 2.20. Let κ and l satisfy the inequalities in Definition 2.18. The
semi-simplicial map Dκ,l

θ,L(RN )�!Xκ,l
�

, and when d=2n also Dn−1,A
θ,L (RN )�!Xn−1,A

�
,

induce weak homotopy equivalences after geometric realisation.

Proof. For the proof we introduce an auxiliary semi-simplicial space �Xκ,l
�

. Its p-
simplices are those tuples

(a, ε, (W, `))∈Rp+1×(R>0)p+1×ψθ(N+1, 1)

satisfying the conditions of Definition 2.18, except that the interval (a0−ε0, ap+εp) is
replaced by R in (i) and (ii). We can regard Dκ,l

θ,L(RN )� as a subspace of �Xκ,l
�

and write
r for the inclusion, and we have a factorisation

Dκ,l
θ,L(RN )�

r−!�Xκ,l
�
−!Xκ,l

�
.

The map �Xκ,l
�
!Xκ,l

�
is a weak homotopy equivalence in each simplicial degree, by meth-

ods similar to [GRW1, Theorem 3.9]. Briefly, in simplicial degree p choose—continuously
in the data (a0, ap, ε0, εp)—diffeomorphisms (a0−ε0, ap+εp)∼=R which are the identity
on [a0, ap]. Using this family of diffeomorphisms to stretch gives a map Xκ,l

p !�Xκ,l
p ,

which is homotopy inverse to the restriction map �Xκ,l
p !Xκ,l

p .
To show that the first map r induces a weak homotopy equivalence on geometric

realisation, we use a technique which we shall use many times in this paper. That is, we
consider a commutative diagram

∂Dn
f̂

//

��

|Dκ,l
θ,L(RN )�|� _

|r|

��

Dn
f

//

F

=={
{

{
{

{
{

{
|�Xκ,l

�
|

and show that the pair of maps (f, f̂) may be changed by a homotopy of such maps to
a new pair which admits a dashed diagonal map making both triangles commute. This
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shows that |r| is a weak homotopy equivalence, as claimed. Let us take the opportunity
to point out that |r| is a continuous injection because it is the geometric realisation of a
levelwise continuous injection, but it does not follow that |r| is a homeomorphism onto
its image, even though r has this property levelwise.

For each x∈Dn the point f(x) is a tuple (t, a, ε, (W (x), `)), where t∈int(∆p) and
(a, ε, (W (x), `))∈�Xκ,l

p , and we may choose a pair (ax, εx) such that

[ax−εx, ax+εx]⊂
p⋃

i=0

(ai−εi, ai+εi)\{ai}

and that [ax−εx, ax+εx] consists of regular values of x1:W (x)!R. By properness of
x1:W (x)!R, there is a neighbourhood Ux3x for which [ax−εx, ax+εx] still consists of
regular values. The Ux’s cover Dn and we let {Uj}j∈J be a finite subcover. We may
suppose that aj 6=ak, as otherwise we may change the cover by letting U ′

j =Uj∪Uk with
(aj)′=aj =ak and (εj)′=min{εj , εk}. Once the aj are distinct, we may shrink the εj so
that the intervals [aj +εj , aj−εj ] are pairwise disjoint, and so that no ai lies in such an
interval.

As the intervals [aj +εj , aj−εj ] are chosen to consist of regular values, the data
{(Uj , a

j , εj)}j∈J , together with a choice of partition of unity subordinate to the cover by
the Uj ’s, determine a map F ′:Dn!|D−1,−1

θ,L (RN )�| with the same underlying family of θ-
manifolds. As [aj−εj , aj +εj ]⊂

⋃p
i=0(ai−εi, ai+εi), this new family satisfies conditions

(iv) and (v) of Definition 2.18 (as the old family did) so F ′ actually lifts further to
a map F :Dn!|Dκ,l

θ,L(RN )�|. There is a homotopy H from |r|�F to f as follows: on
underlying θ-manifolds it is constant, but on the interval data we first use the straight-
line homotopy from the data {(aj , εj)}j∈J to the data {(ai, ε)}pi=0, where we choose
ε6mini εi small enough so that [ai−ε, ai+ε] is disjoint from the [aj−εj , aj +εj ]. This
straight-line homotopy is in the barycentric coordinates: as the intervals are all disjoint,
the join of the simplices they describe also lies in |Dκ,l

θ,L(RN )�|, and so there is a canonical
straight line between them. Then we use the obvious homotopy from the data {(ai, ε)}pi=0

to the data {(ai, εi)}pi=0 that stretches the ε’s. The same construction gives a homotopy
Ĥ from F |∂Dn to f̂ such that |r|�Ĥ=H|∂Dn , which is the data we required.

The case when d=2n and A is chosen is identical.

3. Surgery on morphisms

In this section we wish to study the filtration

Cκ
θ,L(RN )⊂ ...⊂C1θ,L(RN )⊂C0θ,L(RN )⊂C−1

θ,L(RN ) = Cθ,L(RN )
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and in particular establish the following theorem. The reader mainly interested in The-
orems 1.1 and 1.2 can take d=2n, θ=θn:BO(2n)〈n〉!BO(2n), L∼=D2n−1 and N=∞
(but the proof does not simplify much in this special case).

Theorem 3.1. Suppose that the following conditions are satisfied :
(i) 2κ6d−2;
(ii) κ+1+d<N+1;
(iii) L admits a handle decomposition only using handles of index at most d−κ−2.
Then the map

BCκ
θ,L(RN )−!BCκ−1

θ,L (RN )

is a weak homotopy equivalence.

The proof of Theorem 3.1 consists of performing surgery on morphisms, in order to
make them more highly connected relative to their outgoing boundary. Making this idea
into a proof has two main ingredients. Firstly, we construct for each morphism in Cκ−1

θ,L a
contractible space of surgery data. The space is defined in Definition 3.2, and the precise
statement is Theorem 3.4. Secondly, we implement the surgery described by the surgery
data, using a standard one-parameter family of manifolds defined in §3.2.

In order to motivate some of the more technical constructions, let us first give an
informal account of this technique. For simplicity, we suppose that N=∞, L=∅ and
κ=0. We first discuss a technique which works when there are no tangential structures
to keep track of, and then explain a small modification which makes it work for any
tangential structure.

We first apply the equivalence (2.1) to reduce the problem to studying the map

BD0−!BD−1

of classifying spaces of posets. Let

σ=(t0, t1; a0, a1; ε0, ε1;W )∈BD−1

be a point on a 1-simplex (for example), where (t0, t1)∈∆1 are the barycentric coor-
dinates. We will describe a way of producing a path from its image in |X−1

�
| into the

subset |X0
�
|. The proof of Theorem 3.1 will be a systematic, parameterised version of this

construction. If the cobordism W |[a0,a1] is already 0-connected relative to its outgoing
boundary, then the image of σ in |X−1

�
| already lies in the subset |X0

�
|, and we are done.

If not, we may choose a finite set of distinct points

{fα: ∗!W |[a0,a1]}α∈Λ
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a0

a1

Figure 2. An element of N1D−1 which is not in N1D0, together with surgery data.

such that the pair
(
W |[a0,a1], (W |a1)∪

⋃
α∈Λ fα(∗)

)
is 0-connected. We then choose tubu-

lar neighbourhoods of these points to obtain codimension-0 embeddings

f̂α: {−1}×Rd−!W |[a0,a1],

which we can extend to embeddings

eα: [−2, 0]×Rd−!R×R∞

sending {−2}×Rd into (−∞, a0−ε0)×R∞ and {0}×Rd into (a1+ε1,∞)×R∞. As the
original points fα(∗) were distinct, we may suppose that the embeddings eα are disjoint
from each other, and only intersect W in {−1}×Rd. In Figure 2 we have shown a typical
example of the case d=2: The original bordism is not 0-connected relative to its outgoing
boundary, but we have chosen the eα’s and depicted the images eα({−1}×Rd) as the
shaded discs. (One of the discs in the figure is redundant; it will be important that we
allow such redundant surgery data.)

Now on each eα([−2, 0]×Rd) we do the surgery move shown in Figure 3, a move
similar in spirit, though much simpler, than that described in [GMTW, §6.2]. More
precisely, Figure 3 describes a continuous 1-parameter family of d-manifolds

Pt⊂ [−2, 1]×Rd, t∈ [0, 1],

depicted (for d=2) by its values at times t=0, 1
4 ,

2
4 ,

3
4 , 1. The family comes equipped with

functions to R, depicted in the figure as the height function (projection onto the vertical
axis), such that under the embedding eα the height a0−ε0 corresponds to the bottom of
the pictures in Figure 3 and the height a1+ε1 corresponds to the dashed line in the figure,
and anything above the dashed line will actually end up being forgotten in a moment.
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Figure 3. The simple move for surgery on morphisms.

(We find it useful to depict it anyway, in order to better explain the surgery move: The
manifold at time 1 is obtained from the manifold at time 0 by performing connected sum,
alias zero-surgery.) The family starts at the manifold P0=S0×Rd, and we may cut out
each eα([−2, 0]×Rd) from W and glue in the part of Pt below the dashed line, to obtain
a one-parameter family of manifolds Wt, each equipped with a height function Wt!R,
with W0=W . The values {a0, a1} do not remain regular throughout this move, so this
does not describe a path in the space BD−1. However, it does describe a path in the
space |X−1

�
|. Furthermore, at the end of the move we obtain a manifold W1=�W such

that (�W |[a0,a1],
�W |a1) is 0-connected, and hence a point in |X0

�
|. By Proposition 2.20,

this proves that π0(BD0)!π0(BD−1) is surjective, as required.

This surgery move generalises easily to the case when N is finite (but sufficiently
large), L 6=∅ and κ>0 (the analogue of the surgery move will start with Sκ×Rd−κ and
end with Rκ+1×Sd−κ−1, equipped with appropriate height functions). However, it does
not generalise well to the case of arbitrary tangential structures (to understand how it can
fail, we suggest that the reader attempt to impose a family of framings to the family of
2-manifolds in Figure 3). One way to fix this would be to use the surgery move described
in [GMTW, §6.2], but that does not seem to generalise to κ>0. Instead we modify the
surgery move in Figure 3 as shown in Figure 4.

The refined surgery move still begins with S0×Rd, but it ends with (R1×Sd−1)\{p1}
for a point p1∈R1×Sd−1. The height function is modified so that it goes to −∞ (or at
least below a0−ε0) at p1. As we shall see (in the proof of Proposition 3.6, where we
also explain the analogous process for κ>0) there is a canonical way of extending any
tangential structure on {−1}×Rd to the resulting one-parameter family of manifolds.
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Figure 4. The refined move for surgery on morphisms.

3.1. Surgery data

In order to implement the ideas discussed above, we will fatten the semi-simplicial space
Dκ

θ,L(RN )� up to a bi-semi-simplicial space Dκ
θ,L(RN )�,� which includes suitable surgery

data. The space Dκ
θ,L(RN )�,� is described in Definition 3.3 below, using the following

notation. Let V ⊂
V ⊂Rκ+1×Rd−κ be the subspaces

V =(−2, 0)×Rd and 
V = [−2, 0]×Rd,

and let h:
V![−2, 0]⊂R denote the projection to the first coordinate, which we call the
height function. Let ∂−Dκ+1⊂∂Dκ+1 denote the lower hemisphere (explicitly, it is given
by ∂−Dκ+1=∂Dκ+1∩h−1([−1, 0])). We shall also use the notation [p]∨=∆([p], [1]) when
[p]∈∆inj. The elements of [p]∨ are in bijection with {0, ..., p+1}, using the convention
that ϕ: [p]![1] corresponds to the number i with ϕ−1(1)={i, i+1, ..., p}. Finally, we fix
once and for all an infinite set Ω.

Definition 3.2. Let x=(a, ε, (W, `W ))∈Dκ−1
θ,L (RN )p and define Z0(x) to be the set of

triples (Λ, δ, e), where Λ⊂Ω is a finite set, δ: Λ![p]∨ is a function, and

e: Λ×
V ↪−!R×(0, 1)×(−1, 1)N−1

is an embedding, satisfying the following conditions:
(i) on every subset (x1�e|{λ}×
V )−1(ak−εk, ak+εk)⊂{λ}×
V , the height function

x1�e coincides with the height function h up to an affine transformation;
(ii) e sends Λ×h−1(0) into x−1

1 (ap+εp,∞);
(iii) for i>0, e sends δ−1(i)×h−1

(
− 3

2

)
into x−1

1 (ai−1+εi−1,∞);
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(iv) e sends Λ×h−1(−2) into x−1
1 (−∞, a0−ε0);

(v) e−1(W )=Λ×∂−Dκ+1×Rd−κ;
(vi) writing Di=e(δ−1(i)×∂−Dκ+1×{0}) for i∈[p]∨, the pair

(W |[ai−1,ai],W |ai∪Di|[ai−1,ai])

is κ-connected for each i∈{1, ..., p}.

A typical example of a surgery datum is (partially) depicted in Figure 2. In that
figure d=2 and κ=0, and only the image e(Λ×∂−Dκ+1×Rd−κ)⊂W is shown. Let us
explain the role that elements of Z0(x) will play in the proof of Theorem 3.1. In §3.3 we
shall describe a surgery process which to an element of Z0(x) associates a path from the
image of x under the forgetful map Dκ−1

θ,L (RN )p!Xκ−1
p to a point in the subspace Xκ

p ,
formalising the one-parameter family depicted in Figure 4 (the image of e is automatically
disjoint from L). Conflating the three different simplicial spaces modelling BCκ

θ,L(RN )
from §2.4, §2.6 and §2.8, we can thus think of an element of Z0(x) as a surgery datum for
making morphisms κ-connected relative to their outgoing boundary (they start out being
only (κ−1)-connected). To explain this in more detail, it is helpful to write Λi=δ−1(i)
for i∈[p]∨∼={0, ..., p+1}. For 0<i<p+1, the restriction of e to Λi×
V is then the surgery
data which will be used to make the bordism W |[ai−1,ai] κ-connected relative to its
outgoing boundary. (The embeddings associated with the outer values i=0 and i=p+1
play a more technical role; they will make the surgery construction compatible with face
maps in the p direction.)

In order to prove Theorem 3.1 we would like to have a contractible space of surgery
data, but Z0(x) is usually far from contractible (we only defined Z0(x) as a set, but it
would be disconnected in any reasonable topology). To fix that, we extend the definition
to a semi-simplicial set Z�(x) whose set of q -simplices is the subset Zq(x)⊂Z0(x)q+1 con-
sisting of (q+1)-tuples which are disjoint (i.e. the subsets Λ⊂Ω are disjoint and the maps
e have disjoint images). Allowing also x to vary gives rise to a bi-semi-simplicial space
Dκ

θ,L(RN )�,�, whose (p, q)-simplices are p-chains in the poset Dκ−1
θ,L (RN ) equipped with

(q+1)-tuply redundant surgery data. To fix notation we spell this out in the following
definition.

Definition 3.3. Let x=(a, ε, (W, `W ))∈Dκ−1
θ,L (RN )p and q>0, define Zq(x) to be the

set of triples (Λ, δ, e), where Λ⊂Ω is a finite set, δ: Λ![p]∨×[q] is a function, and

e: Λ×
V ↪−!R×(0, 1)×(−1, 1)N−1

is an embedding, subject to the requirement that for each j∈[q], the restriction of e
to δ−1([p]∨×{j})×
V defines an element of Z0(x). We shall write Λi,j =δ−1(i, j) and
ei,j =e|Λi,j×
V for i∈[p]∨ and j∈[q].
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We then define a bi-semi-simplicial space Dκ
θ,L(RN )�,� as a set by

Dκ
θ,L(RN )p,q = {(x, y) :x∈Dκ−1

θ,L (RN )p and y ∈Zq(x)}

topologised as a subspace of

Dκ−1
θ,L (RN )p×

( ∐
Λ⊂Ω

C∞(Λ×
V ,RN+1)
)(p+2)(q+1)

.

The space Dκ
θ,L(RN )p,q is functorial in [p]∈∆inj by composing each δj : Λj![p]∨ with the

induced map [p′]∨![p]∨ and functorial in [q]∈∆inj in the same way as Z�(x). Explicitly,
the face map di in the q direction forgets the embeddings e∗,i and in the p direction takes
the union of ei,∗ and ei+1,∗. We shall write Dκ

θ,L(RN )p,−1=Dκ−1
θ,L (RN )p, and there is an

augmentation map Dκ
θ,L(RN )p,q!Dκ

θ,L(RN )p,−1 which forgets all surgery data.

The main result concerning this bi-semi-simplicial space is the following, whose proof
we defer until §6.

Theorem 3.4. Under the assumptions of Theorem 3.1, the augmentation map

Dκ
θ,L(RN )�,�−!Dκ−1

θ,L (RN )�

induces a weak homotopy equivalence after geometric realisation.

In fact, we shall prove this theorem with condition (i) of Theorem 3.1 replaced
by the weaker condition 2κ6d−1. The stronger assumption 2κ6d−2 will be used in
Lemma 3.7.

3.2. The standard family

We will now construct a one-parameter family Pt, t∈[0, 1], of submanifolds of the space
V =(−2, 0)×Rd which formalises the family of manifolds depicted in Figure 4 (more
precisely, it corresponds to the part of Figure 4 which is below the dashed line). In
the process, we will also define a family P ′t formalising the family depicted in Figure 3.
(This simpler family would suffice for proving Theorem 3.1 in the case without tangential
structures; we shall not actually use the simpler family, but it is perhaps helpful to keep
in mind.) The manifolds P0 and P1 (and P ′1) shall be defined by intersecting V ⊂Rd+1

with submanifolds of the larger space Rd+1, denoted P̃0, P̃1, and P̃ ′1. (These larger
manifolds include the parts of Figures 3 and 4 above the dashed line.) For following the
construction, it might also be useful to have the case d=1 and κ=0 in mind, which is
depicted in Figure 5 (although these dimensions do not satisfy the inequality 2κ6d−2).
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First define the element P̃0∈Ψd(R×Rκ×Rd−κ) as

P̃0 = ∂Dκ+1×Rd−κ.

This manifold is depicted in Figure 5a (for d=1 and κ=0) and the first frame in Figures 3
and 4 (for d=2 and κ=0). We then choose a function ϕ: [0,∞)![0,∞) which is the
identity function on a neighbourhood of

[
1
2 ,∞

)
, takes value 1

4 near 0, and has ϕ′′>0.
The map defined by

g′: Rκ+1×∂Dd−κ−!Dκ+1×Rd−κ,

(x, y) 7−!
(

x

ϕ(|x|)
, ϕ(|x|)y

)
,

is an embedding with inverse (u, v) 7!(|v|u, v/|v|), and we shall write P̃ ′1 for its image,
which is depicted in Figure 5b (for d=1 and κ=0) and in the last frame of Figure 3 (for
d=2 and κ=0).

Finally, we define P̃1 by modifying the embedding g′ in the following way: The
subset P̃ ′1 agrees with the subset ∂Dκ+1×Rd−κ in a neighbourhood of the region defined
by |v|> 1

2 , and in particular it contains the (d−κ−1)-sphere defined by u=−e1 and
|v|= 1

2 , which we shall temporarily denote by S. This sphere is “level” in the sense that
the height function u1: P̃ ′1![−1, 1] takes the constant value −1 on S. We shall modify
the embedding g′ by “tilting” a small neighbourhood of S so that the height function on
the tilted sphere is instead the Morse function v1− 3

2 . The resulting subset

P̃1⊂ [−2, 1]×Dκ×Rd−κ

is depicted in the last frame of Figure 4 (in the case d=2 and κ=0) and in Figure 5c
(in the case d=1 and κ=0). To define P̃1 more precisely, we first pick a bump function
λ: R![0, 1] supported in a small neighbourhood of 0, increasing on (−∞, 0], decreasing
on [0,∞), and having λ−1(1)={0}, and define a bump function τ : Rκ+1×Rd−κ![0, 1]
supported in a small neighbourhood of S as the product

τ(u, v) =λ(u1+1)λ(u2) ... λ(uκ+1)λ(2|v|−1).

We choose λ with support in [−1, 1], and small enough that the support of τ will be
contained in the region where P̃ ′1 agrees with ∂Dκ+1×Rd−κ, and we shall verify presently
that the smooth function defined by

j:Dκ+1×Rd−κ−! [−2, 1]×Dκ×Rd−κ,

(u, v) 7−! (u, v)+(v1−1)τ(u, v)e1,
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(a) P̃0 (b) P̃ ′1 (c) P̃1Rκ+1

Rd−κ

− 1
2

1
2

− 1
2

1
2

(1) (2) (3)

(4) (5) (6)

Figure 5. (a)–(c) The submanifolds P̃0, P̃ ′1 and P̃1 of Rκ+1×Rd−κ in the case d=1 and κ=0.
(1)–(6) The path Pt of submanifolds of V .

is an embedding. We then let P̃1 be the image of the composition

g= j�g′: Rκ+1×∂Dd−κ−! [−2, 1]×Dκ×Rd−κ

and define
P0,P1 ∈Ψd(V )

by intersecting the manifolds P̃0 and P̃1 with the open set V =(−2, 0)×Rd.
To see that the function j is indeed an embedding, we first note that it is the

restriction of a function [−1, 1]×Rd!R×Rd defined by the same formula. Since the
extended function commutes with the projection to the Rd coordinates, it suffices to
prove that

u1 7−! j1(u1, u2, ..., uκ+1, v)

defines an embedding [−1, 1]!R for any (u2, ..., uκ+1, v)∈Rd, where j1 denotes the first
coordinate of j. We calculate

∂j1
∂u1

(u, v) = 1+λ′(u1+1)
(
(v1−1)λ(2|v|−1)

)
λ(u2) ... λ(uκ+1).

By the assumption on λ, we will have λ′(u1+1)60 as u1>−1. We can also conclude
that (v1−1)λ(2|v|−1)60, as λ(2|v|−1)=0 unless |v|61, in which case v1−160. Since
λ(u2) ... λ(uκ+1)>0, we conclude that ∂j1/∂u1>1.
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To construct Pt∈Ψd(V ) for intermediate values of t∈[0, 1], we first observe that P̃0

and P̃1 agree near the subset |v|>1. (And P̃ ′1 agrees with P̃0 near the larger subset
|v|> 1

2 .) Starting with the two submanifolds P̃0, P̃1⊂R×Rκ×Rd−κ, we then pull the
entire region {(u, v):|v|<1} downwards, much in the same fashion as we tilted the sphere
S, i.e. we compose with an ambient diffeomorphism which subtracts a non-negative
amount from the first coordinate. We pull far enough so that the region where the
submanifolds may disagree is moved completely outside of V . This will give two one-
parameter families of submanifolds which, upon restricting to V, give two paths in Ψd(V )
starting at P0 and P1 and ending at the same point in Ψd(V ). Concatenating one path
with the reverse of the other, we get the desired path from P0 to P1.

Spelling this pulling-down process out in a little more detail, we first choose a func-
tion %: [0,∞)![0,∞) taking the value 1 near [0, 1], the value 0 near [2,∞), and which is
strictly decreasing on %−1((0, 1)). We then define embeddings

Ht: R×Rκ×Rd−κ−!R×Rκ×Rd−κ,

(u, v) 7−! (u, v)−t%(|v|)e1,

which for all t restrict to the identity near the region defined by |v|>2. Define one-
parameter families of manifolds by

P0
t =V ∩Ht(P̃0) = (H−t|V )−1(P̃0),

P1
t =V ∩Ht(P̃1) = (H−t|V )−1(P̃1).

The second description shows that these are closed subsets of V and describe continuous
functions R!Ψd(V ). It is easy to see that we have P0

t =P1
t ∈Ψd(V ) for t>3, and we

then define the path Pt as the concatenation

P0 =P0
0

///o/o P0
3 =P1

3
///o/o P1

0 =P1

in Ψd(V ), reparameterised so that the path has length 1. We collect the most important
properties of this family in Proposition 3.6 below.

Remark 3.5. The one-parameter family of d-manifolds described above is in fact
strongly related to the more usual description of performing κ-surgery on a d-manifold,
which we briefly recall (see e.g. [Mi1, pp. 12 ff.]). Let Q(u, v)=−|u|2+|v|2, where as
usual (u, v)∈Rκ+1×Rd−κ. Then the inverse image Q−1(s) is a smooth d-manifold for
s 6=0, diffeomorphic to ∂Dκ+1×Rd−κ for s<0 and to Rκ+1×∂Dd−κ for s>0. The classical
description of a κ-surgery consists of cutting out a copy of Q−1(−3) from a d-manifold
and replacing it with Q−1(3). The trace of the surgery is a cobordism equipped with a
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u

v

p0

p1

Q−1(3)

Q−1(−3)

Figure 6. The image of the embedding P!Q−1([−3, 3]).

Morse function with a single critical point, interpolating between the original manifold
and the surgered one.

To explain the relation between this classical picture and the one-parameter fam-
ily we have defined above, we shall exhibit a continuous family of open embeddings
P0

t!Q−1(t−3) and P1
t!Q−1(3−t) gluing to a continuous family of embeddings Pt!

Q−1(6t−3). Indeed, for t∈[0, 3] the function (u, v) 7!Ht(u/|u|, v) defines a diffeomor-
phism from Q−1(t−3) to Ht(P̃0) which restricts to a diffeomorphism from an open subset
of Q−1(t−3) to P0

t . Similarly the function (u, v) 7!Ht�g(u, v/|v|) defines a diffeomor-
phism from Q−1(3−t) to Ht(P̃1) restricting to a diffeomorphism from an open subset
of Q−1(3−t) to P1

t . The inverses of these diffeomorphisms give the desired smooth
embeddings P0

t!Q−1(t−3) and P1
t!Q−1(3−t), which fit together at t=3.

The one-parameter family t 7!Pt has “total space” given by

P = {(t, x)∈ [0, 1]×V :x∈Pt},

and the above remarks give a continuous embedding P!Q−1([−3, 3]). Let us briefly
discuss the image of this embedding, which is depicted as the shaded area in Figure 6 in
the case d=1 and κ=0.

The point p1=
(
− 1

2 , 0,−
1
2

√
13, 0

)
has Q(p1)=3, and corresponds to the point in

P̃1 at the bottom of the tilted sphere, i.e. the global minimum of the height function
P̃1![−2, 1]. Since this bottom point is outside V, the point p1 is not in the image of
the embedding of P. Likewise, the pulled-down global minimum of the height function
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H3(P̃1)![−5, 1] corresponds to the point p0=
(
− 1

2 , 0,−
1
2 , 0

)
∈Q−1(0), and the entire

straight line from p0 to p1 is disjoint from the image of the embedding P!Q−1([−3, 3]).
Finally, the straight line from 0 to p0, which takes place inside Q−1(0), is also disjoint
from the embedding P. Thus we have obtained a homeomorphism from P to an open
subset of the set

Q=Q−1([−3, 3])\([0, p0]∪[p0, p1]), (3.1)

which is contractible.

Proposition 3.6. For d>2 and 2κ6d−1, the one-parameter family Pt∈Ψd(V ),
defined for t∈[0, 1], has the following properties:

(i) The height function, i.e. the restriction of h:V!(−2, 0) to Pt⊂V, has isolated
critical values.

(ii) P0=int(∂−Dκ+1)×Rd−κ, where ∂−Dκ+1=∂Dκ+1∩([−1, 0]×Rκ).
(iii) Independently of t∈[0, 1] we have

Pt\(Rκ+1×Bd−κ
3 (0))= int(∂−Dκ+1)×(Rd−κ\Bd−κ

3 (0)).

For ease of notation we write P∂
t for this closed subset of Pt.

(iv) For all t and each pair of regular values −2<a<b<0 of the height function, the
pair

(Pt|[a,b],Pt|b∪P∂
t |[a,b]) (3.2)

is κ-connected.
(v) For each pair of regular values −2<a<b<0 of the height function, the pair

(P1|[a,b],P1|b)

is κ-connected.
Furthermore, if P0 is equipped with a θ-structure ` we can upgrade this, continuously

in `, to a one-parameter family Pt(`)∈Ψθ(V ) starting from (P0, `) such that
(iii′) The path Pt(`) is constant as θ-manifolds near P∂

t .

Proof. We have seen properties (i)–(iii) during the construction (the statement
in (iii) would still be true with 3 replaced by 2, but we wish to emphasise the smaller
set). For property (iv) we consider two cases depending on the value of a. In the case
a>−1, the pair (3.2) is homotopy equivalent to the pair

(Pt|[a,b],Pt|b),

using e.g. the gradient flow trajectories of h to deform P∂
t |[a,b] back to P∂

t |b. In the case
a<−1 we consider the modified height function, defined using the coordinates (u, v)∈
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Rκ+1×Rd−κ as h̄(u, v)=h(u, v)+λ(|v|), where λ: [0,∞)![0,∞) is a smooth function
which is 0 on [0, 4] and restricts to a diffeomorphism (4,∞)!(0,∞). This modification
ensures that h̄ is a proper function on Pt. With this definition Pt∩h̄−1([a, b]) is contained
in Pt∩h−1([a, b]), and Pt∩h̄−1(b) is contained in Pt|b∪P∂

t |[a,b], which may be seen as
follows. Let (u, v)∈Pt∩h̄−1([a, b]): if |v|64 then h(u, v)=h̄(u, v)∈[a, b] and we are done;
if |v|>2 then (u, v) lies in the part of Pt that does not vary with t, i.e. ∂Dκ+1×Rd−κ, and
so h(u, v)=u1>−1>a by assumption, and b>h̄(u, v)>h(u, v) too. The same reasoning
treats Pt∩h̄−1(b).

We claim that the inclusion of pairs

(Pt∩h̄−1([a, b]),Pt∩h̄−1(b))−! (Pt|[a,b],Pt|b∪P∂
t |[a,b]) (3.3)

is a homotopy equivalence. To define a homotopy inverse, we first consider the continuous,
piecewise smooth function %t: [0,∞)!(0,∞) defined for t6b by

%t(s) = 1 for s∈ [0, 2],

%t(s) =
λ−1(b−t)

s
for s∈ [3,∞),

and by linear interpolation for s∈[2, 3]. Then the function (u, v) 7!(u, v%u1(|v|)) re-
stricts to a homotopy inverse of (3.3), where both homotopies are given by straight lines
in Rd+1.

In either case, the connectivity question is reduced to studying the inverse image of
an interval relative to its outgoing boundary and can be studied as in ordinary Morse
theory one critical level at a time. The proof of (iv) will be finished once we establish that
for each critical value of h̄:Pt!R in the interval (a, b), the function can be perturbed
in a neighbourhood of the critical set contained in h̄−1((a, b)) to a Morse function with
no more than one critical point, and of index at most d−κ−1. (In the case a>−1 we
have h=h̄ near any critical point of h, so it suffices to consider h̄.) It is easy to verify
that h̄:P0

t!R has at most two critical values in (−2, 0). One critical value moves with t
and is homotopically Morse of index 0 for 06t<1 and index κ for 1<t<3 (meaning that
the function can be perturbed to a Morse function with one critical point of that index).
The other is at −1 and can be cancelled (meaning that the function can be perturbed
to a non-singular function there). Since 2κ6d−1 and hence κ6d−κ−1, the index is at
most d−κ−1 as claimed. Similarly, one verifies that h̄:P1

t!R has at most two critical
values in (−2, 0), one of which is −1 and can be cancelled, the other of which moves with
t and is homotopically Morse of index d−κ−1.

Property (v) can be proved in a similar way. In the case a<−1<b the pair is
a relative (d−1)-cell, so it is (d−2)-connected and hence κ-connected (since d>2 and
2κ6d−1). In all other cases the inclusion Pt|b!Pt|[a,b] is a homotopy equivalence.



298 s. galatius and o. randal-williams

To establish the extra properties which can be obtained given a θ-structure ` on
P0=int(∂−Dκ+1)×Rd−κ, we again use the “total space” P={(t, x)∈[0, 1]×Rd+1 :x∈Pt}
and its identification with an open subset of the manifold Q of (3.1). The tangent
bundles TPt assemble to a d-dimensional vector bundle TvP!P which then becomes
identified with the restriction of the vector bundle TvQ=Ker(DQ:TQ!T [−3, 3]) and
since both P0 and Q are contractible, there is no obstruction to picking a vector bundle
map r:TvQ!TP0 which is the identity (with respect to the identifications) over P0

and each P∂
t =P∂

0 ⊂P0. We can then restrict r to rt:TPt!TP0 and let Pt(`) have the
θ-structure `�rt.

Let (a, ε, (W, `W ), e)∈Dκ
θ,L(RN )p,0, with e={ei,0}p+1

i=0 (where we omit the set Λ and
the function δ: Λ![p]∨ from the notation). We construct a one-parameter family of
θ-manifolds

Kt
e(W, `W )∈Ψθ((a0−ε0, ap+εp)×RN ), t∈ [0, 1],

by letting it be equal to W |(a0−ε0,ap+εp) outside of the images of the ei,0|Λi,j×V , and
on each ei,0({λ}×V ) we let it be given by ei,0({λ}×Pt(`W �Dei,0)). This gives a θ-
manifold, as, by the properties established above, Pt(`W �Dei,0) and P0(`W �Dei,0) agree
as θ-manifolds near the set (−2, 0)×Rκ×(Rd−κ\Bd−κ

3 (0)).

Lemma 3.7. Let 2κ6d−2. The tuple (a, ε,Kt
e(W, `W )) is an element of Xκ−1

p . If
t=1 or (W, `W )∈Dκ

θ,L(RN )p, then (a, ε,Kt
e(W, `W )) lies in the subspace Xκ

p ⊂Xκ−1
p .

Proof. We must verify conditions (i)–(v) of Definition 2.18 (with l=−1). Condition
(i) is true by definition, and certainly (ii) is satisfied as the embeddings ei,0 are disjoint
from R×L. For (iii) and (v) there is nothing to say.

For (iv), consider regular values a<b∈
⋃p

i=0(ai−εi, ai+εi) of the height function

x1:Wt =Kt
e(W, `W )−!R.

The cobordism Wt|[a,b] is obtained from W |[a,b] by cutting out embedded images of
cobordisms P0|[aλ,bλ] indexed by λ∈Λ=

∐p+1
i=0 Λi,0 and gluing in Pt|[aλ,bλ], where aλ<bλ

are regular values of the height function on P0 and Pt. If we denote by X the complement
of the embedded ei,0(int(∂−Dκ+1)×Bd−κ

3 (0)) in the manifold W |[a,b], there are homotopy
pushout squares

X|b //

��

Wt|b

��

X // Wt|b∪X
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and ∐
λ∈Λ(Pt|bλ

∪P∂
t |[aλ,bλ]) //

��

Wt|b∪X

��∐
λ∈Λ Pt|[aλ,bλ]

// Wt|[a,b].

The left-hand map of the second square is a disjoint union of the maps discussed in
property (iv) of Proposition 3.6, and so is κ-connected. As this square is a homotopy
pushout, the right-hand map is also κ-connected.

The pair (X,X|b) is obtained from the manifold pair (W |[a,b],W |b) by cutting out
embedded copies of (Dκ, ∂Dκ). By transversality we see that this does not change relative
homotopy groups in dimensions ∗6d−κ−2, which includes ∗6κ by our assumption that
2κ6d−2. In particular, suppose the pair (W |[a,b],W |b) is k-connected, with k6κ, then
the pair (X,X|b) is k-connected too. As the first square above is a homotopy pushout
square, the inclusion Wt|b!Wt|b∪X also has this connectivity. Hence the composition
Wt|b!Wt|b∪X!Wt|[a,b] has the same connectivity as W |b!W |[a,b], up to a maximum
of κ. This establishes that the tuple (a, ε,Kt

e(W, `W )) is an element of Xκ−1
p , and also

that it lies in Xκ
p if (W, `W ) lies in Dκ

θ,L(RN ). When t=1, there is a little more to say.

Step 1. Suppose a<b∈(ai−εi, ai+εi). Then (W |[a,b],W |b) is ∞-connected and so
(W1|[a,b],W1|b) is κ-connected, by the discussion above.

Step 2. Suppose a∈(ai−1−εi−1, ai−1+εi−1) and b∈(ai−εi, ai+εi). We now do the
surgeries for Λi,0⊂Λ first, giving a family of manifolds W̃t. We claim that the pair
(W̃1|[a,b], W̃1|b) is κ-connected. Once this is established, doing the remaining surgeries
to obtain W1 does not change this property, as we have seen above.

Recall from Definition 3.2 (vi) that the pair (W0|[a,b],W0|b∪Di,0|[a,b]) is κ-connected,
where

Di,0 = ei,0(Λi,0×∂−Dκ+1×{0})⊂W =W0.

If we write
D̃i,0 = ei,0(Λi,0×∂−Dκ+1×{v})⊂W =W0

for some v∈Rd−κ\Bd−κ
4 (0), then the pair (W0|[a,b],W0|b∪D̃i,0|[a,b]) is also κ-connected.

Now the subset D̃i,0⊂W is contained in ei,0(Λi,0×P∂
0 ), so we can regard D̃i,0 as a

subset of W̃t for all t∈[0, 1]. The same transversality argument as before now shows
that (X,X|b∪D̃i,0|[a,b]) is also κ-connected, and the same gluing argument shows that
(W̃t|[a,b], W̃t|b∪D̃i,0|[a,b]) is κ-connected for all t∈[0, 1]. When t=1, Proposition 3.6 (v)
shows that the inclusion D̃i,0|[a,b]!W̃1|[a,b] is homotopic relative to D̃i,0|b to a map into
W̃1|b, and hence (W̃1|[a,b], W̃1|b) is κ-connected.
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Step 3. For general a<b∈
⋃p

i=0(ai−εi, ai+εi), we may choose regular values in
each intermediate interval (aj−εj , aj +εj). By the previous case, this expresses W1|[a,b]

as a composition of cobordisms which are all κ-connected relative to their outgoing
boundaries, and hence the composition also has that property.

3.3. Proof of Theorem 3.1

We begin with the composition

|Dκ
θ,L(RN )�,�| −! |Dκ−1

θ,L (RN )�| −! |Xκ−1
�
|,

where the first map (induced by the augmentation) is a homotopy equivalence by Theo-
rem 3.4 and the second is a homotopy equivalence by Proposition 2.20. We will define a
homotopy

S : [0, 1]×|Dκ
θ,L(RN )�,�| −! |Xκ−1

�
|

starting from this map so that S (1,−) factors through |Xκ
�
|!|Xκ−1

�
|, which is a con-

tinuous injection. Furthermore, there is an injection

|Dκ
θ,L(RN )�| ↪−! |Dκ

θ,L(RN )�,0| ↪−! |Dκ
θ,L(RN )�,�|

using the empty collection of surgery data, and S will be constant on the image of this
injection. The existence of a homotopy with these properties establishes Theorem 3.1 as
follows: there is a diagram

|Dκ
θ,L(RN )�| //

��

|Xκ
�
|

��

|Dκ
θ,L(RN )�,�|

S (0,−)
//

S (1,−)

<<yyyyyyyyyyyyyy
|Xκ−1

�
|,

where the square commutes, the horizontal maps are weak homotopy equivalences, the
top triangle commutes exactly and the bottom triangle commutes up to the homotopy S .
Taking homotopy groups we see that the vertical maps are also weak equivalences. Under
the equivalence BCκ

θ,L(RN )'|Xκ
�
|, and similarly for κ−1, we obtain Theorem 3.1.

To define the surgery map S we will give a collection of maps

Sp,q: [0, 1]×Dκ
θ,L(RN )p,q×∆q −!Xκ−1

p
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compatible on their faces. The construction of the last section gives a one-parameter
family

Kr:Dκ
θ,L(RN )p,0−!Xκ−1

p ,

(a, ε,W, e) 7−! (a, ε,Kr
e(W )),

for r∈[0, 1], such that K1 lands in Xκ
p . When q=0, we set

Sp,0(r, (a, ε,W, e))= (a, ε,Kr
e(W ))∈Xκ−1

p .

More generally, for q>0 we have e={ei,j}, and for each j we get an element

(a, ε,W, e∗,j)∈Dκ
θ,L(RN )p,0.

We then set
Sp,q(r, (a, ε,W, e), s) = (a, ε,Ks̄qr

e∗,q
�...�Ks̄0r

e∗,0
(W )),

where s̄j =sj/maxk sk. Note that some s̄j is always equal to 1, so when r=1, some K1
e∗,j

is
applied to W making each morphism κ-connected relative to its outgoing boundary. The
remaining Ks̄k

e∗,k
do not change this property, by Lemma 3.7, and so the map Sp,q(1,−)

factors through the subspace Xκ
p .

The resulting map from
∐

q>0([0, 1]×Dκ
θ,L(RN )p,q×∆q) factors through a map

Sp: [0, 1]×|Dκ
θ,L(RN )p,�| −!Xκ−1

p ,

which together form a map of semi-simplicial spaces with geometric realisation

S : [0, 1]×|Dκ
θ,L(RN )�,�| −! |Xκ−1

�
|.

On the image of |Dκ
θ,L(RN )�|, the homotopy is constant as there is no surgery data. At

r=1 it factors through |Xκ
�
|. This finishes the proof of Theorem 3.1.

4. Surgery on objects below the middle dimension

In this section we wish to study the filtration

Cκ,l
θ,L(RN )⊂ ...⊂Cκ,1

θ,L(RN )⊂Cκ,0
θ,L(RN )⊂Cκ,−1

θ,L (RN ) = Cκ
θ,L(RN )

and in particular establish the following theorem. The reader mainly interested in
Theorems 1.1 and 1.2 can take d=2n, κ=n−1, l6n−2, θ=θn:BO(2n)〈n〉!BO(2n),
L∼=D2n−1, and N=∞ (but the proof does not simplify much in this special case).
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Theorem 4.1. Suppose that the following conditions are satisfied :
(i) 2(l+1)<d;
(ii) l6κ;
(iii) l6d−κ−2;
(iv) l+2+d<N+1;
(v) L admits a handle decomposition only using handles of index at most d−l−2;
(vi) the map `L:L!B is (l+1)-connected.
Then the map

BCκ,l
θ,L(RN )−!BCκ,l−1

θ,L (RN )

is a weak homotopy equivalence.

We remark that under the assumptions of Theorem 3.1, (iii) and (v) in the theorem
above are implied by (ii).

The proof will be similar in spirit to that of the last section, in so far as we will
define a contractible space of surgery data and describe a surgery move which compresses
BCκ,l−1

θ,L (RN ) into BCκ,l
θ,L(RN ). In the same way that the surgery move of the last section

was a refinement of that of [GMTW], the surgery move we use in this and the next
section is a refinement of that of [GRW1]. Let us first give an informal account of this
move, and for simplicity suppose that N=∞, that we have no tangential structure (i.e.
we consider θ=Id:BO(d)!BO(d)), that L=∅, and that d>2, l=0 and κ=0. We first
apply the equivalence (2.1) to reduce the problem to studying the map

BD0,0−!BD0,−1

of classifying spaces of posets. Let

σ=(t0, t1; a0, a1; ε0, ε1;W )∈BD0,−1

be a point on a 1-simplex (for example), and let us suppose thatW |a1 is already connected
(so π0(W |a1) injects into π0(BO(d))). We will describe a way of producing a path from
the image of this point in |X0,−1

�
| into the subset |X0,0

�
|.

If W |a0 is already connected, then the point σ already lies in |X0,0
�
| and there is

nothing to prove. Otherwise, let us choose disjoint embeddings

{fα:S0 ↪!W |a0}α∈Λ

such that if we perform 0-surgery along (thickenings of) all of these embeddings, the re-
sulting (d−1)-manifold is connected. As κ=0, the cobordism W |[a0,a1] is path connected
relative to its top, and so we can extend the fα to smooth maps

f̂α: (a0−ε0, a1+ε1)×S0−!W
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a0

a1

Figure 7. An element of N1D0,−1 which is not in N1D0,0, together with two pieces of surgery
data for the level a0.

such that the standard height function (i.e. the projection to (a0−ε0, a1+ε1)) and x1�f̂α

agree inside (x1�f̂α)−1
(⋃p

i=0(ai−εi, ai+εi)
)
. As we have supposed that d>2, we may

assume that these f̂α are mutually disjoint embeddings. By taking a tubular neighbour-
hood, we extend the f̂α to embeddings

êα: (a0−ε0, a1+ε1)×Rd−1×S0 ↪−!W

which are still mutually disjoint, and extend these further to disjoint embeddings

eα: (a0−ε0, a1+ε1)×Rd−1×D1 ↪−!R×R∞

such that e−1
α (W )=(a0−ε0, a1+ε1)×Rd−1×S0. It is clear that we can arrange the same

relationship between the standard height function on (a0−ε0, a1+ε1)×Rd−1×D1 and
the function x1�eα as we have over (a0−ε0, a1+ε1)×Rd−1×S0. In Figure 7 we have
shown a typical example (the picture has d=2, but the reader should imagine a slightly
larger d): the original manifold does not have path-connected level set at the level a0,
but we have chosen two eα’s and depicted the images eα((a0−ε0, a1+ε1)×Rd−1×S0) as
the shaded parts.

The surgery move is then given by gluing in the one-parameter family shown in
Figure 8 along each eα. The family depicted there (with d=2, but again the reader
should imagine a larger d) starts at the manifold (a0−ε0, a1+ε1)×Rd−1×S0, replaces it
with the trace of a 0-surgery on Rd−1×S0, sliding the critical value down from a1+ε1
to a0− 1

2ε0. This does not define a path in BD0,−1, as (a1−ε1, a1+ε1) will contain a
critical value at some points during the path. However, it does define a path in |X0,−1

�
|.

Furthermore, if we let �W be the manifold obtained at the end of the path, then �W |a0 is
obtained from W |a0 by doing 0-surgery along the data {êα|{a0}×Rd−1×S0}α∈Λ and so is
connected. Also, the manifold �W |a1 is obtained from W |a1 by doing 0-surgery along the
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a0

a1

Figure 8. The surgery move for surgery on objects below the middle dimension.

data {êα|{a1}×Rd−1×S0}α∈Λ, and as it was connected to start with (and d>2), it remains
connected. Hence (t0, t1; a0, a1; ε0, ε1;�W )∈|X0,0

�
|, as required.

This surgery move generalises well to l>0, to finite (but sufficiently large) N , and
to non-empty L, but to make it work with general tangential structures θ we must equip
the surgery data {eα}α∈Λ with extra data describing how to induce a θ-structure on the
surgered manifold. We will first give a definition of θ-surgery, then describe the standard
family, and finally go on to describe the semi-simplicial space of surgery data analogous
to that of §3.1.

4.1. θ-surgery

Consider a (d−1)-dimensional θ-manifold (M, `M ) and an embedding

e: Rd−l−1×Sl ↪−!M,

and let C be the d-dimensional cobordism obtained as the trace of the surgery along e.
Thus ∂inC=M and ∂outC=�M is the result of the surgery. The data of a θ-surgery
on M is an embedding e as above along with a θ-structure ` on C which agrees with
`M on M . This induces a θ-structure on �M . We will typically give the data of a θ-
surgery extending an embedding e by giving an extension of the θ-structure `M �De on
Rd−l−1×Sl to Rd−l−1×Dl+1.

Given just an embedding e0:Sl!M , the simultaneous choice of an extension to
Rd−l−1×Sl ↪!M and a θ-structure on the trace of the resulting surgery has the following
alternative description. The embedding e0 induces an embedding

e1 = I×e0: I×Sl−! I×M,
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where I=[0, 1]. We shall write A for the annulus A=Dl+1\int
(

1
2D

l+1
)

which we identify
with I×Sl using a diffeomorphism which identifies ∂Dl+1⊂A with {0}×Sl (for exam-
ple x 7!(2(1−|x|), x/|x|)). We have the following diagram of bundle maps and bundle
injections:

TDl+1|A //

��

T (I×Sl) � � De1 //

��

T (I×M)

��

`M // θ∗γ

��

A
∼= // I×Sl

e1 // I×M // B.

The composition is a bundle injection TDl+1|A!θ∗γ covering a map A!B, and we
claim the necessary data is an extension to a bundle injection TDl+1!θ∗γ. Indeed,
such a bundle injection determines a (d−l−1)-dimensional complement V!Dl+1 and a
bundle map TDl+1⊕V!θ∗γ, and V |A is canonically identified with the normal bundle
of e1. The disc bundle D(V ) is diffeomorphic to Dl+1×Dd−l−1 and hence the pushout
of the diagram

I×M D(V |A)oo // D(V )

is the trace of a surgery on M along a thickening of e0, but in this description it comes
with a canonical θ-structure.

An obstruction-theoretic argument shows that any extension of the underlying map
A!B to a map f :Dl+1!B may be lifted to an extension of the bundle injection if
2(l+1)6d, and that such a lift is unique up to homotopy when 2(l+1)<d. Indeed,
the problem is equivalent to injecting TDl+1 into f∗(θ∗γ) with given injection over
∂Dl+1, and since both bundles are trivial because Dl+1 is contractible, this is in turn
equivalent to extending a map ∂Dl+1!O(d)/O(d−l−1) to a map from Dl+1; since the
Stiefel manifold O(d)/O(d−l−1) is (d−l−2)-connected, this is possible for l6d−l−2
with homotopically unique extension for l<d−l−2. Thus any map

M∪e0D
l+1−!B

extending the map M!B underlying `M occurs as the trace of some θ-surgery on M ,
restricted to the core of the attached (l+1)-handle, provided l+16 1

2d.

4.2. The standard family

Let us construct the one-parameter family of manifolds depicted in Figure 8. Choose
a smooth function %: R!R which is the identity on

(
−∞, 1

2

)
, has nowhere negative

derivative, and has %(t)=1 for all t>1. We define

K = {(x, y)∈Rd−l×Rl+1 : |y|2 = %(|x|2−1)},
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a smooth d-dimensional submanifold, contained in Rd−l×Dl+1, which outside of the set
Bd−l√

2
(0)×Dl+1 is identically equal to Rd−l×Sl. Let

h=x1:K −!R

denote the first of the x coordinates, which is the height function we will consider on K.
This function has precisely two critical points, both non-degenerate: (−1, 0, ..., 0) of index
l+1 and (1, 0, ..., 0) of index d−l−1.

We now define a one-parameter family of d-dimensional submanifolds Pt inside
(−6,−2)×Rd−l−1×Dl+1 in the following way. Pick a smooth one-parameter family of
embeddings

λs: (−6,−2)−! (−6, 0),

such that λ0=Id, that λs|(−6,−5)=Id for all s, and that λ1(−4)=−1. Then we get an
embedding λt×IdRd : (−6,−2)×Rd!(−6, 0)×Rd and define

Pt =(λt×IdRd)−1(K)∈Ψd((−6,−2)×Rd−l−1×Rl+1).

It is easy to verify that Pt agrees with (−6,−2)×Rd−l−1×Sl outside of the region
(−5,−2)×Bd−l−1√

2
(0)×Dl+1, independently of t: if (s, x, y) is outside of this region, we

either have s6−5, so |λt(s)|2=|s|2>25, or |x|2>2, so in either case |λt(s)|2+|x|2−1>1
and hence

%(|λt(s)|2+|x|2−1) =1.

Therefore (λt(s), x, y)∈K if and only if |y|=1.
We shall also need a tangentially structured version of this construction, given a

structure `:TK|(−6,0)!θ∗γ. For this purpose, let ω: [0,∞)![0, 1] be a smooth function
such that ω(r)=0 for r>2 and ω(r)=1 for r6

√
2. We define a one-parameter family of

embeddings by

ψt: (−6,−2)×Rd−l−1×Rl+1−! (−6, 0)×Rd−l−1×Rl+1,

(s, x, y) 7−! (λtω(|x|)(s), x, y).

It is easy to see that we also have ψ−1
t (K)=(λt×IdRd)−1(K)=Pt for all t: the two

functions λt×IdRd and ψt agree on those (s, x, y) with |x|62 since ω(|x|)=1 there, and
outside this region both inverse images agree with (−6,−2)×Rd−l−1×Sl. We define
a θ-structure on Pt by pullback along ψt, which as ψt is independent of t outside of
(−6,−2)×Bd−l−1√

2
(0)×Dl+1 gives a constant family of θ-structures outside of this region.

This gives a family Pt(`)∈Ψθ((−6,−2)×Rd−l−1×Rl+1), and we record some important
properties in the following proposition. We will omit ` from the notation when it is
unimportant.
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Proposition 4.2. The elements

Pt(`)∈Ψθ((−6,−2)×Rd−l−1×Rl+1)

are θ-submanifolds of (−6,−2)×Rd−l−1×Dl+1 satisfying the following properties:
(i) P0(`)=K|(−6,−2)=(−6,−2)×Rd−l−1×Sl as θ-manifolds.
(ii) For all t, Pt(`) agrees with K|(−6,−2) as θ-manifolds outside of the region

(−5,−2)×Bd−l−1
2 (0)×Dl+1.

(iii) For all t and each pair of regular values −6<a<b<−2 of the height function
h:Pt!R, the pair

(Pt|[a,b],Pt|b)

is (d−l−2)-connected.
(iv) For each regular value a of h:Pt!(−6,−2), the manifold Pt|a is either iso-

morphic to P0|a or is obtained from it by l-surgery.
(v) The only critical value of h:P1!(−6,−2) is −4, and for a∈(−4,−2), P1|a is

obtained by l-surgery from P0|a=Rd−l−1×Sl along the standard embedding.
In (iv) and (v), the θ-structure on the surgered manifold is determined (up to ho-

motopy, cf. §4.1) by the θ-structure on K|(−6,0).

The precise meaning of the word isomorphic in (iv) above is the following: By (ii) we
know that the manifolds are equal outside (−5,−2)×Bd−l−1

2 (0)×Dl+1. Being isomorphic
means that the identity extends to a diffeomorphism which preserves θ-structures up to
a homotopy of bundle maps which is constant outside (−5,−2)×Bd−l−1

2 (0)×Dl+1.

Proof. (i) and (ii) follow easily from the properties of λt and ψt, and the fact that
K agrees with Rd−l×Sl outside Bd−l√

2
×Rl+1. It follows from the properties of ω that the

θ-structures agree outside Bd−l
2 ×Rl+1. For (iii), the height function Pt!(−6,−2) has

at most one critical point, which is non-degenerate of index l+1. If the critical value is
in (a, b), then the pair is (d−l−2)-connected, otherwise P|[a,b] deformation retracts to
P|b. The fact that the height function has at most one critical point, of index l+1, also
implies (iv) by definition of surgery (and θ-surgery, cf. §4.1). Finally, the property that
λ1(−4)=−1 and λ1(−5)=−5 implies that h:P1!(−6,−2) does have a critical point of
index l+1, with critical value −4, which proves (v).

4.3. Surgery data

We can now describe the semi-simplicial space of surgery data out of which we will
construct a “perform surgery” map. In the next section we will describe how to construct
this map.
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Before doing so, we choose once and for all, smoothly in the data (ai, εi, ap, εp),
increasing diffeomorphisms

ϕ=ϕ(ai, εi, ap, εp): (−6,−2)∼=(ai−εi, ap+εp) (4.1)

sending −4 to ai− 1
2εi and −5 to ai− 3

4εi.

Definition 4.3. Let x=(a, ε, (W, `W ))∈Dκ,l−1
θ,L (RN )p, and write Mi=W |ai . Define

the set Yq(x) to consist of tuples (Λ, δ, e, `), where Λ⊂Ω is a finite subset of the fixed
infinite set Ω, δ: Λ![p]×[q] is a function,

e: Λ×(−6,−2)×Rd−l−1×Dl+1 ↪−!R×(0, 1)×(−1, 1)N−1

is an embedding, and `:T (Λ×K|(−6,0))!θ∗γ is a bundle map, satisfying the conditions
below. We shall write Λi,j =δ−1(i, j) and

ei,j : Λi,j×(ai−εi, ap+εp)×Rd−l−1×Dl+1−!R×(0, 1)×(−1, 1)N−1

for the embedding obtained by restricting e and reparameterising using (4.1).
(i) e−1(W )=Λ×(−6,−2)×Rd−l−1×Sl. We let

∂e: Λ×(−6,−2)×Rd−l−1×Sl ↪−!W

denote the embedding restricted to the boundary.
(ii) For t∈

⋃p
k=0(ak−εk, ak+εk), we have (x1�ei,j)−1(t)=Λi,j×{t}×Rd−l−1×Dl+1.

(iii) The composition `W �D∂e:T (Λ×K|(−6,−2))!θ∗γ agrees with the restriction
of `.

If we let `i,j denote the restriction of ` to T (Λi,j×K|(−6,0)), the data (ei,j , `i,j) is
enough to perform θ-surgery on Mi (as K|(−6,0) contains the trace of an l-surgery on the
(d−1)-manifold K|−2), and we further insist that

(iv) For each j=0, ..., q and i=0, ..., p, the resulting θd−1-manifold �Mi has the prop-
erty that πk(�Mi)!πk(B) is injective for k6l.

For each x, Y�(x) is a semi-simplicial set in the same way as in Definition 3.2.

Note that the set Yq(x) consists of those (q+1)-tuples of elements of Y0(x) which
are disjoint. A typical example of a surgery datum is (partially) depicted in Figure 7.
The figure has p=1, q=0, d=2 and κ=l=0 (although this case does not satisfy the
requirement 2(l+1)<d, so the reader should imagine a larger value of d). Only the
image e(Λ×(−6,−2)×Rd−l−1×Sl)⊂W is shown.
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Definition 4.4. We define a bi-semi-simplicial space Dκ,l
θ,L(RN )�,� (augmented in the

second semi-simplicial direction) as a set by

Dκ,l
θ,L(RN )p,q = {(x, y) :x∈Dκ,l−1

θ,L (RN )p and y ∈Yq(x)},

and topologise it as a subspace of

Dκ,l−1
θ,L (RN )p×

( ∐
Λ⊂Ω

(C∞(Λ×V,RN+1)×Bun(T (Λ×K|(−6,0)), θ∗γ))
)(p+1)(q+1)

,

where V denotes the manifold (−6,−2)×Rd−l−1×Dl+1. Explicitly, the face map dk in
the q direction forgets the surgery data (ei,j , `i,j) with j=k, and the face map dk in the
p direction forgets both the surgery data (ei,j , `i,j) with i=k and the kth regular value.

The main result about this bi-semi-simplicial space of manifolds equipped with
surgery data is the following, whose proof we defer until §6.

Theorem 4.5. Under the assumptions of Theorem 4.1, the maps

|Dκ,l
θ,L(RN )�,0| −! |Dκ,l

θ,L(RN )�,�| −! |Dκ,l−1
θ,L (RN )�|

are weak homotopy equivalences, where the first map is the inclusion of 0-simplices and
the second is the augmentation, in the second simplicial direction.

In fact, we shall prove this theorem assuming the conditions of Theorem 4.1 except
(iii). That condition will be used in the proof of Lemma 4.6.

4.4. Proof of Theorem 4.1

We now go on to prove Theorem 4.1, so suppose that the conditions in the statement of
that theorem are satisfied: 2(l+1)<d, l6κ, l6d−κ−2, l+2+d<N , L admits a handle
decomposition using only handles of index at most d−l−2, and the map `L:L!B is
(l+1)-connected.

Let (a, ε, (W, `W ), e, `)∈Dκ,l
θ,L(RN )p,0. For each i=0, ..., p, we have an embedding

ei=ei,0 and a bundle map `i=`i,0, from which we shall construct a one-parameter fam-
ily of elements Kt

ei,`i
(W, `W )∈Ψθ((a0−ε0, ap+εp)×RN ), t∈[0, 1], as follows. Changing

the first coordinate of the manifolds Pt(`i) by composing with the reparametrisation
functions of (4.1), we get a family of manifolds


Pt(`i)∈Ψθ((ai−εi, ap+εp)×Rd−l−1×Rl+1)
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having all the properties of Proposition 4.2, where property (v) now holds for all values
in the interval

(
ai− 1

2εi, ap+εp

)
, as this is the image of the interval (−4,−2) under the

reparametrisation (4.1). Then for t∈[0, 1], let

Kt
ei,`i

(W, `W )∈Ψθ((a0−ε0, ap+εp)×RN )

be equal to W |(a0−ε0,ap+εp) outside the image of ei, and on

ei(Λi×(ai−εi, ap+εp)×Rd−l−1×Dl+1)

be given by ei(Λi×
Pt(`i)). This gives a θ-manifold, because Λi×
Pt(`i) and Λi×
P0(`i)
agree as θ-manifolds outside of

(
ai− 3

4εi, ap+εp

)
×Bd−l−1

2 (0)×Dl+1.
As the embeddings ei are all disjoint, this procedure can be iterated, and for a tuple

t=(t0, ..., tp)∈[0, 1]p+1 we let

Kt
e,`(W, `W ) =Ktp

ep,`p
�...�Kt0

e0,`0
(W, `W )∈Ψθ((a0−ε0, ap+εp)×RN ).

Lemma 4.6. Firstly, the tuple
(
a, 1

2ε,K
t
e,`(W, `W )

)
is an element of Xκ,l−1

p . Sec-
ondly, if ti=1—so the surgery for the regular value ai is fully done—then for any regular
value b of x1:Kt

e,`(W, `W )!R in the interval
(
ai− 1

2εi, ai+ 1
2εi

)
we have that

πj(Kt
e,`(W, `W )|b)−!πj(B)

is injective for j6l.

Proof. For the first part we must verify the conditions of Definition 2.18. Conditions
(i)–(iii) are immediate from the properties of (a, ε) that we start with and the disjointness
of the surgery data from R×L.

For condition (iv) we proceed exactly as in the proof of Lemma 3.7. For regular
values a<b∈

⋃p
i=0(ai−εi, ai+εi) of the height function x1:Kt

e,`(W, `W )!R, it follows
from Definition 4.3 (ii) that the manifold Kt

e,`(W, `W )|[a,b] is obtained from W |[a,b] by
cutting out embedded images of cobordisms P0|[aλ,bλ] and gluing in Pt|[aλ,bλ], where
aλ<bλ are regular values of the height function on P0 and Pt. By property (iii) of the
standard family, the pair (Pt|[aλ,bλ],Pt|bλ

), and hence the homotopy equivalent pair

(Pt|[aλ,bλ],Pt|bλ
∪([aλ, bλ]×(Rd−l−1\Bd−l−1

2 (0))×Sl)),

is (d−l−2)-connected, and so as we have supposed that l6d−κ−2 it is in particular
κ-connected. We now continue as in the proof of Lemma 3.7.
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For condition (v), let b∈
(
ai− 1

2εi, ai+ 1
2εi

)
be a regular value of the height function

on Kt
e,`(W, `W ), and define θd−1-manifolds

�M =Kt
e,`(W, `W )|b and M =W |b.

By Proposition 4.2 (iv), the θd−1-manifold �M is obtained from M by performing θ-l-
surgeries. Let C:M;�M be the θ-cobordism given by the trace of these surgeries. We
have the commutative diagram

πj(M) i //

""FF
FF

FF
FF

FF
πj(C)

��

πj(�M)ıoo

||xx
xx

xx
xx

xx

πj(B)

(4.2)

and C is obtained by attaching (l+1)-cells to M or by attaching (d−l−1)-cells to �M .
Hence i is surjective for j6l and ı̄ is bijective for j6d−l−3. The condition 2(l+1)6d
implies that l−16d−l−3, and the left-hand diagonal map is injective for j6l−1, so the
right-hand diagonal map is injective for j6l−1 too.

We now prove the second part, so suppose that ti=1. We construct the manifold
Kt

e,`(W, `W ) by first taking K1
ei,`i

(W, `W ) and then performing the remaining surgeries
to it. Let M̃=K1

ei,`i
(W, `W )|b, so that �M is obtained from M̃ by l-surgery.

We first show that πj(M̃)!πj(B) is injective for j6l. By property (iv) of the
complex of surgery data, (ei, `i) is enough surgery data on M=W |b to make the map on
πl injective after performing it. By property (v) of the standard family, as b>ai− 1

2εi

the manifold M̃ has all of this surgery done, and so πj(M̃)!πj(B) is injective for j6l.
By the previous argument, with M replaced by M̃ in (4.2), the remaining surgeries

do not change this injectivity property.

In the composition

|Dκ,l
θ,L(RN )�,�| −! |Dκ,l−1

θ,L (RN )�| −! |Xκ,l−1
�

|

both maps are homotopy equivalences by Theorem 4.5 and Proposition 2.20 respectively.
There is also an injection

|Dκ,l
θ,L(RN )�| −! |Dκ,l

θ,L(RN )�,0| −! |Dκ,l
θ,L(RN )�,�|

using the empty collection of surgery data, and the second map is a weak homotopy
equivalence by Theorem 4.5.
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Similarly to the last section, we now construct maps which implement the surgery
move. However, because a (p, 0)-simplex now contains a (p+1)-tuple of surgery data,
rather than a (p+2)-tuple as in the last section, the formal details are slightly different.
We define a map

Sp: [0, 1]p+1×Dκ,l
θ,L(RN )p,0−!Xκ,l−1

p ,

(t, (a, ε, (W, `W ), e, `)) 7−!
(
a, 1

2ε,K
t
e,`(W, `W )

)
,

which has the desired range by the first part of Lemma 4.6, and furthermore sends
(1, ..., 1)×Dκ,l

θ,L(RN )p,0 into Xκ,l
p . On the boundary of the cube, this map has further

distinguished properties: one is given by the second part of Lemma 4.6. The second is
that, by Proposition 4.2 (i), we have an equality K0

ei,`i
(W ′)=W ′ of θ-submanifolds of

(a0−ε0, ap+εp)×RN . Thus we obtain the formula

diSp(dit, x) =Sp−1(t, dix), (4.3)

where di: [0, 1]p![0, 1]p+1 adds a zero in the ith position, and the di are the face maps
of the semi-simplicial spaces Dκ,l

θ,L(RN )�,0 and Xκ,l−1
�

.
We wish to assemble the maps Sp to a homotopy S : [0, 1]×|Dκ,l

θ,L(RN )�,0|!|Xκ,l−1
�

|.
Hence we define λ, ψ:∆p![0, 1]p+1 by the formulæ

λi(t) =min{1, 2t̄i} and ψi(t) =max{0, 2t̄i−1}

for 06i6p, where again t̄i=ti/maxj tj , and a map H: [0, 1]×∆p![0, 1]p+1×∆p by

H(s, t) =
(
sλ(t),

ψ(t)∑p
j=0 ψj(t)

)
.

These may be used to form the composition

Fp: [0, 1]×Dκ,l
θ,L(RN )p,0×∆p H−−!Dκ,l

θ,L(RN )p,0×[0, 1]p+1×∆p Sp×∆p

−−−−−!Xκ,l−1
p ×∆p.

Lemma 4.7. These maps glue to a homotopy S : [0, 1]×|Dκ,l
θ,L(RN )�,0|!|Xκ,l−1

�
|.

Proof. The points Fp(s, x, dit) and Fp−1(s, dix, t) are identified under the usual face
maps among the Xκ,l−1

p ×∆p. This follows immediately from the formula (4.3) and the
observation that λ(dit)=di(λ(t)), ψ(dit)=di(ψ(t)) and

∑p
j=0 ψj(dit)=

∑p
j=0 ψj(t).

Proof of Theorem 4.1. We claim that the map S (1,−): |Dκ,l
θ,L(RN )�,0|!|Xκ,l−1

�
| fac-

tors through the continuous injection |Xκ,l
�
|!|Xκ,l−1

�
|. Informally, this is because the

functions λi and ψi have the property that either λi(t)=1 or ψi(t)=0. In the first case,
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the surgery on the ith critical level is performed completely (and the other surgeries do
not affect the connectivity at level ai). In the second case, the surgery is performed
incompletely, but as ψi(t)=0, the behaviour at ai is discarded. This pointwise argument
does not prove continuity of the factorisation, but that can be seen at the level of the
maps Fp, since the domain of Fp is covered by the 2p+1 closed sets obtained by requiring
for each i either λi(t)=1 or ψi(t)=0, on each of which the map Fp(1,−) composed with
Xκ,l−1

p ×∆p!|Xκ,l−1
�

| factors continuously through
∐

p′6p(X
κ,l
p′ ×∆p′)!|Xκ,l

�
|.

The homotopy S is constant when precomposed with |Dκ,l
θ,L(RN )�|!|Dκ,l

θ,L(RN )�,0|,
and by the argument in §3.3 we deduce the weak equivalence in Theorem 4.1.

5. Surgery on objects in the middle dimension

We now restrict our attention to even dimensions, and write d=2n. Given a collection
of path components A⊂π0(Ob(Cn−1,n−2

θ,L (RN ))), in Definition 2.11 we defined

Cn−1,A
θ,L (RN )⊂Cn−1,n−2

θ,L (RN )

to be the full subcategory on this collection of objects. To state our main theorem
concerning these subcategories, we first need two definitions.

Definition 5.1. The reflection of a morphism C=(t, (W, `))∈Cθ,L(RN ) is the mor-
phism

←−
C =(t, (

←−
W, ~`)) defined as follows. The underlying manifold

←−
W⊂[0, t]×RN is given

by the reflection of W in the hyperplane
{

1
2 t

}
×RN and the structure ~`:T

←−
W!θ∗(γ) is

defined by precomposing ` with the induced bundle map T
←−
W!TW . This construction

defines an isomorphism of topological categories

Cθ,L(RN )op−! Cθ, ~L(RN ).

In particular the reflection sends an object M to an object
←−
M with the same underly-

ing manifold, but the tangential structure is precomposed with the bundle endomorphism
(−1)⊕Id: ε1⊕TM!ε1⊕TM . This new object is not equal to the original M and the
reflection

←−
C of a morphism M;N is not a morphism N;M , but sometimes it will be

after some change of tangential structure.

Definition 5.2. We say a tangential structure θ is reversible if whenever there is a
morphism C:M;N in Cθ,L, there also exists a morphism C ′:N;M in this category,
whose underlying manifold is equal to that of the reflection

←−
C :
←−
N;

←−
M .

Although it seems that reversibility is a property of the pair (θ, L) rather than
just θ, in Proposition 5.7 we prove that it is equivalent to θ being spherical, as defined
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in §1 (i.e. the 2n-sphere admits a θ-structure extending any given structure on the lower
hemisphere). In particular, the definition of reversibility does not depend on L.

We can now state our main theorem concerning these subcategories, analogous to
Theorem 4.1 but in the middle dimension. The reader mainly interested in Theorems 1.1
and 1.2 can take θ=θn:BO(2n)〈n〉!BO(2n), L∼=D2n−1, N=∞, and A being the class
of objects which are either diffeomorphic to S2n−1 with its standard smooth structure
and θ-structure or are not θ-bordant to S2n−1. (Again, the proof does not simplify much
in this special case.)

Theorem 5.3. Suppose that
(i) 2n>6;
(ii) 3n<N ;
(iii) θ is reversible;
(iv) L admits a handle decomposition only using handles of index at most n−1;
(v) the map `L:L!B is (n−1)-connected ;
(vi) the natural map A!π0(BCn−1,n−2

θ,L (RN )) is surjective.
Then

BCn−1,A
θ,L (RN )−!BCn−1,n−2

θ,L (RN )

is a weak homotopy equivalence.

The surgery move that we will employ is similar to that of the last section, but
has a crucial difference. In the last section, when we performed the surgery move to
make ai be a good regular value, we glued a family of manifolds having the effect of
performing l-surgery on the level sets W |ai , but at the same time performing l-surgery
on all higher level sets. In §4, l< 1

2 (d−2)=n−1, and therefore performing l-surgery on a
(2n−1)-manifold which is l-connected preserves its l-connectedness. In this section, we
will need to change level sets by doing (n−1)-surgery on (2n−1)-manifolds, and this is
much more delicate. To explain why the approach of §4 needs modification, we refer to
Figure 8 in that section, depicting the case n=1: The level set at a1 is already connected
and we have picked surgery data for making the level set at a0 connected, but gluing in
the surgery move shown in Figure 8 would disconnect the level set at a1.

Instead we use a modified surgery move, which will let us perform (n−1)-surgery
on a level set W |a and leave all other level sets W |b unchanged, except when b is very
close to a. For n=1, this was done in [GRW1], and the construction there generalises to
higher n. Let us briefly recall and depict the case n=1.

Suppose that we have a point σ=(t0, t1; a0, a1; ε0, ε1;W )∈BD0,−1 on a 1-simplex,
and that the level set W |a1 is already path connected. We will describe a way to produce
a path from the image of this point in |X0,−1

�
| to the subset |X0,0

�
|. We start with the
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a1

a0

Figure 9. The surgery move on objects in the middle dimension in the case n=1 and l=0.
The pictures show a one-parameter family of 2-manifolds embedded in R4, depicted by their
projection to R3. The manifolds are embedded throughout the move: drawing only three
coordinates causes the apparent singularity. In the last frame we have indicated the level set
at a0 in light grey, to emphasise that it is modified by the surgery.

same surgery data as in §4, a collection of embeddings

{eα: (a0−ε0, a1+ε1)×R×D1 ↪!R×R∞}α∈Λ,

such that if surgery is performed along each {a0}×R×∂D1 ↪!W |a0 then the level set at
a0 becomes connected. Then we thicken the eα to embeddings

{ēα: R×(a0−ε0, a1+ε1)×R×D1 ↪!R×R∞}α∈Λ,

which intersect W only in {0}×(a0−ε0, a1+ε1)×R×S0. A typical example with n=1
of that part of the data lying in W is shown in Figure 7 in §4. Figure 9 depicts a one-
parameter family of manifolds starting with {0}×(a0−ε0, a1+ε1)×R×S0, shown in five
representative instants.

We now glue this family into the image of each ēα. This defines a path in the
space |X0,−1

�
|, and if the handle in Figure 9 at time 1 is “thin” enough (with respect to

the height function) so that it does not affect the level-set at a1, then the manifold �W

obtained at the end of the path has �W |a0 and �W |a1 both path connected and so lies in
|X0,0

�
|.
Let us also briefly explain our motivation for the additional coordinate direction we

added to ēα, and the singular-looking form of the one-parameter family in Figure 9. We
could have constructed a similar one-parameter family of 2-manifolds inside the space
(a0−ε0, a1+ε1)×R×D1 which slides down a tube of positive width (with respect to the
height function) until it arrives at height a0. However, during this family the centre of the
tube will at some point lie at height a1, so a1 will be a regular value inside (a1−ε1, a1+ε1)
whose level-set may well not be path connected. Thus, even if we started with σ∈|X0,0

�
|
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we may have left this subset. This does not affect the argument above, which showed
that |X0,0

�
|!|X0,−1

�
| is 0-connected, but becomes a problem when trying to show higher

connectivity: it is important that we always construct relative homotopies. To avoid
this problem, we use the family of Figure 9, where the tube has width zero while it
is moving through the level-set at a1: thus when the centre of the tube is at height
t∈(a1−ε1, a1+ε1), t is not regular and we impose no condition on its level set, whereas
the level set at t′ 6=t is unchanged up to diffeomorphism. The extra coordinate direction
added to ēα is necessary as we cannot make the tube have width zero and be embedded
in (a0−ε0, a1+ε1)×R×D1: we require an extra dimension.

In order to make sense of this surgery move in the presence of θ-structures, we must
again equip the one-parameter family of manifolds shown in Figure 9 with θ-structures
which start at a given structure, are constant near the vertical boundaries, and at the
end of the path the level sets above and below the handle should be isomorphic as θ-
manifolds to the level sets before the handle was added. This last property does not hold
in general: for example, if we equip the original manifold in Figure 9 with a framing,
one may easily see (using the Poincaré–Hopf theorem) that there is no framing on the
final manifold consistent with these requirements. As we will see, this problem goes away
when θ is assumed to be reversible. Let us first discuss the reversibility condition in more
detail.

5.1. Reversibility

Recall that a tangential structure θ:B!BO(d) is called spherical if any θ-structure on
a disc D⊂Sd extends to one on Sd. (When B is path connected, this is equivalent to the
d-sphere admitting any θ-structure at all.) Let us first discuss some related conditions
on tangential structures θ:B!BO(d).

Definition 5.4. A tangential structure θ:B!BO(d) is once-stable if there exists a
map θ̄: 
B!BO(d+1) and a commutative diagram

B //

θ

��


B

θ̄

��

BO(d) // BO(d+1)

(5.1)

which is homotopy cartesian, i.e. the induced map from B to the homotopy pullback is
a weak equivalence.

A tangential structure θ is weakly once-stable if there exists such a diagram which
is d-cartesian, i.e. the induced map from B to the homotopy pullback is d-connected.
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From the commutative diagram (5.1), there is a bundle map ε1⊕θ∗γ!θ̄∗γ. Hence
a θ-structure TW!θ∗γ on a d-manifold W induces a bundle map ε1⊕TW!θ̄∗γ. If θ
is weakly once-stable we may deduce the converse, that a bundle map ε1⊕TW!θ̄∗γ is
homotopic to one that arises from a θ-structure. More precisely, we have the following
useful lemma.

Lemma 5.5. Let θ:B!BO(d) be weakly once-stable. Let W be a d-manifold and let
`:TW |A!θ∗γ be a θ-structure defined on a closed submanifold A⊂W . Then ` extends to
a θ-structure TW!θ∗γ if and only if the bundle map ε1⊕TW |A!ε1⊕θ∗γ!θ̄∗γ extends
to a bundle map over all of W .

Proof. Without loss of generality, we may assume that θ and θ̄ are Serre fibrations.
Let us write s:BO(d)!BO(d+1) for the stabilisation map, and let us pick a classifying
map t:W!BO(d) for the tangent bundle. Tangential structures on TW then correspond
to lifts of t along some fibration, and tangential structures on ε1⊕TW correspond to lifts
of s�t along some fibration.

We write θ̃: B̃!BO(d) for the pullback of θ̄, so the commutative diagram (5.1) gives
a map i:B!B̃ over BO(d). A θ̄-structure on ε1⊕TW is then nothing but a θ̃-structure
on TW . By definition of being weakly once-stable, the map i is d-connected. Now, the
situation described in the statement is a lifting problem

A //

��

B

i

��

W //

??~
~

~
~

B̃,

which has a solution as (W,A) has cells of dimension at most d and i is d-connected.

Lemma 5.6. The tangential structure θ:B!BO(d) is weakly once-stable if and only
if it is spherical.

Proof. Given any bundle map `:TSd|D!θ∗γ we can of course extend the stabilised
map to ε1⊕TSd!ε1⊕θ∗γ, and if θ is weakly once-stable, the above lemma implies that
the θ-structure extends to all of Sd.

Conversely, given a spherical structure θ:B!BO(d) we define 
B in diagram (5.1) as
the dth Moore–Postnikov factorisation of the composite map s�θ:B!BO(d+1), where
we again write s:BO(d)!BO(d+1) for the stabilisation map. For each choice of base-
point in B, we may write F for the homotopy fibre of B!
B. The diagram then induces
a map from F to the homotopy fibre of s, which is weakly equivalent to Sd, and both
spaces are (d−1)-connected. The long exact sequence in homotopy groups gives rise to
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the diagram

πd+1(
B) // πd(F ) //

��

πd(B) //

��

πd(
B)� _

��

πd+1(BO(d+1)) // πd(Sd) //

<<z
z

z
z

z
z

πd(BO(d)) // πd(BO(d+1)).

The map Sd!BO(d) classifies the tangent bundle of Sd, and the assumption that θ be
spherical guarantees the existence of a dashed arrow in the diagram making the bottom
triangle commute. Now an easy diagram chase proves that πd(F )!πd(Sd) is surjective,
so F!Sd is d-connected. Since this holds for any basepoint in B (and the map from B

to the homotopy pullback obviously is 0-connected), the diagram (5.1) is d-cartesian as
claimed.

We now show that these conditions on θ are also equivalent to reversibility.

Proposition 5.7. The tangential structure θ is reversible if and only if it is spher-
ical.

Proof. If θ is reversible and a θ-structure on Dd is given, we think of Dd as a
morphism from the empty set to Sd−1. By assumption, a compatible θ-structure exists
on the disc, thought of as a morphism from Sd−1 to the empty set.

For the reverse direction we use Lemmas 5.5 and 5.6. Given a bordism

C =(t, (W, `)):M ///o/o N

we obtain a reflected bordism
←−
C =(t, (

←−
W, ~`)):

←−
N ///o/o ←−

M

as in Definition 5.1, and we wish to find a new tangential structure `′:T
←−
W!θ∗γ such

that C ′=(t, (
←−
W, `′)) is a morphism N;M in Cθ,L. Near the subset

A=({0}×N)∪([0, t]×L)∪({t}×M)⊂
←−
W,

we must define `′ as ~`�R, where the map R:T
←−
W |A!T

←−
W |A is the bundle automorphism

which changes sign in the first coordinate, and it suffices to prove that this bundle map
T
←−
W |A!θ∗γ extends to all of T

←−
W . By Lemmas 5.5 and 5.6 it is enough to extend

the stabilised map ε1⊕T
←−
W |A!ε1⊕θ∗γ, but this is now easy. Indeed, the first basis

vector gives a non-zero section of T
←−
W |A⊂ε1⊕T

←−
W |A, which may be extended to a non-

vanishing section V of ε1⊕T
←−
W . The bundle automorphism R′: ε1⊕T

←−
W!ε1⊕T

←−
W which

multiplies by −1 in the line field spanned by V and by +1 in its orthogonal complement
then extends ε1⊕R: ε1⊕T

←−
W |A!ε1⊕T

←−
W |A, and the composition (ε1⊕ ~`)�R′ gives the

required extension.
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One key property of reversible tangential structures is that they allow us to form
connected sums of θ-manifolds, which of course is not possible in general: the connected
sum of framed manifolds is not typically framable. In fact, more is true.

Proposition 5.8. Let (M, `M ) be a d-dimensional θ-manifold, and suppose that

e0:Sl ↪−!M

is an embedded sphere such that the map Sl!B induced by `M �e0 is null-homotopic.
Then, if θ is reversible and 2(l+1)6d+1, there is an extension of e0 to an embedding

e:Sl×Dd−l ↪−!M

such that the surgered manifold

�M =(M \int(e(Sl×Dd−l)))∪Sl×Sd−l−1 (Dl+1×Sd−l−1)

admits a θ-structure which agrees with `M on M \int(e(Sl×Dd−l)).

Proof. As θ is reversible it is also weakly once-stable, so let θ̄: 
B!BO(d+1) be a
tangential structure exhibiting it as such, and ¯̀

M :M!B!
B be the induced θ̄-structure.
The composition ¯̀

M �e0:Sl!B!
B is null-homotopic, so we apply the discussion in §4.1
to the θ̄-manifold M and the embedding e0. As 2(l+1)6d+1, that discussion shows
that there is a framing of the normal bundle of e0, giving the embedding e, such that the
trace V :M;�M of the surgery along e has a θ̄-structure ¯̀

V such that ¯̀
V |�M agrees with

¯̀
M on M \int(Sl×Dd−l).

Thus the θ-structure `M restricted to M \int(Sl×Dd−l)⊂�M extends to a θ̄-structure
¯̀
V |�M on �M , so by the proof of Lemma 5.5 it also extends to a θ-structure, as claimed.

For tangential structures that are once-stable (not just weakly), we can say that for
a d-manifold W with a fixed θ-structure `0:TW |∂W!θ∗γ, the stabilisation map

Bun∂(TW, θ∗γ; `0)−!Bun∂(ε1⊕TW, θ̄∗γ; ε1⊕`0)

is a weak homotopy equivalence. (Weakly once-stable only implies that this map is 0-
connected.) We shall not make explicit use of this stronger condition in this paper, but
point out that most of the naturally occurring tangential structures are once-stable. In
particular, the following construction will be our main source of once-stable tangential
structures. LetW be a connected d-dimensional manifold and τ :W!BO(d) be its Gauss
map. For each k we have the kth Moore–Postnikov factorisations of τ ,

W
jk−−!BW (k)

pk−−−!BO(d).

Then θW (k)=pk is a tangential structure and jk gives a canonical θW (k)-structure on W .
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Lemma 5.9. The tangential structure θW (k):BW (k)!BO(d) is once-stable for any
k<d.

Proof. We let 
BW (k) denote the same Moore–Postnikov construction applied to the
composition W!BO(d)!BO(d+1). The claim then follows as BO(d)!BO(d+1) is
d-connected.

Remark 5.10. There do exist tangential structures which are reversible but not once-
stable, which justifies our emphasis on reversibility. An interesting example is the map
BU(3)!BO(6), which is reversible as S6 admits an almost-complex structure, but is not
once-stable: if it were pulled back from a fibration f : 
B!BO(7), one can easily use the
Serre spectral sequence to check that the kernel of the map f∗ on F2-cohomology would
be the ideal I=(w1, w3, w5)⊂H∗(BO(7); F2), but this is not closed under the action of
the Steenrod algebra as Sq4(w5)=w4w5+w3w6+w2w7 /∈I.

5.2. The standard family

We will prove Theorem 5.3 by performing (n−1)-surgery on objects until we reach an
object in A, just as in §4 we performed l-surgery on objects to make them l-connected
(relative to L). As in that section, the surgery shall be performed by gluing in a suitable
family of manifolds along certain families of embeddings, whose existence we shall prove
in §6. The standard family to be glued in is very similar to that in §4, and is depicted
for n=1 in Figure 9. The reader may compare that figure with Figure 8 to get a feeling
for the similarities and differences between the two constructions. In §4 we started with
a certain submanifold K⊂Rd−l×Rl+1. In this section, we shall use the same manifold,
with d=2n and l=n−1. Recall that we first chose a smooth function %: R!R which is
the identity on

(
−∞, 1

2

)
, has nowhere negative derivative, and %(t)=1 for all t>1, and

we let
K = {(x, y)∈Rn+1×Rn : |y|2 = %(|x|2−1)}.

The first coordinate restricts to a Morse function h=x1:K!R with exactly two critical
points: (−1, 0, ..., 0; 0) and (+1, 0, ..., 0; 0) both of index n.

In §4, we constructed from K a one-parameter family of manifolds

Pt⊂ (−6,−2)×Rd−l−1×Rl+1,

obtained from K by moving the lowest critical point downwards as t∈[0, 1] increases, as
in Figure 8. In this section we shall need a one-parameter family

Pt⊂R×(−6,−2)×Rn×Rn
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which we will construct from {0}×K by moving both critical points down as t∈[0, 1]
increases, and varying the distance between the corresponding critical values as shown
in Figure 9. As an intermediate step we construct a two-parameter family Pt,w where
w>0 controls the distance between the two critical values. In order for the manifold to
stay embedded in the limit w=0, we need the extra ambient dimension.

Let us first construct a one-parameter family of submanifolds Kw⊂R×Rn+1×Dn

such that K1={0}×K. Let µ: R![0, 1] be a smooth function such that µ−1(0)=[2,∞),
µ−1(1)=(−∞,

√
2 ] and µ′<0 on (

√
2, 2), and define a one-parameter family of embed-

dings

ϕw: Rn+1×Dn−!R×Rn+1×Dn,

(x, y) 7−! (x1(1−w)µ(|x|), x1(1−(1−w)µ(|x|)), x2, ..., xn+1, y).

We now let

Kw =ϕw(K)⊂R×Rn+1×Dn

for w∈[0, 1], and we remark that these manifolds are all diffeomorphic (to each other and
to K), as it is only the embedding that we are varying. The critical points of the height
function h:Kw!R correspond to the critical points of the function

hw:K −!R,

(x, y) 7−!x1(1−(1−w)µ(|x|)).

In the region K∩{(x, y):|x|262} the function µ is constantly 1, and hw=wx1. As long
as w>0, this function is Morse and has critical points (±1, 0, 0, ..., 0), with critical values
±w. The manifold K∩{(x, y):|x|2>2} is equal to {(x, y)∈Rn+1×Rn :|y|=1 and |x|2>2},
so in this region it makes sense to take the partial derivative of hw with respect to the
coordinate x1 and we calculate

∂hw

∂x1
=1−(1−w)

[
µ(|x|)+µ′(|x|) x

2
1

|x|

]
.

When |x|2>2 we have µ(|x|)<1 and µ′(|x|)60, so the square bracket is strictly smaller
than 1. Since 06(1−w)61 we see that ∂hw/∂x1>0, so hw has no critical points in
K∩{(x, y):|x|2>2}. To summarise, we have shown that for w>0 the critical points of
the height function h:Kw!R are ϕw(±1, 0, ..., 0), are Morse of index n, and lie at heights
±w. When w=0 the function h:K0!R is constantly 0 on the entire subset

ϕ0(K∩{(x, y) : |x|2 6 2})≈Sn×Dn,
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but has no other critical values.
We now define a two-parameter family of d-dimensional submanifolds Pt,w inside

R×(−6,−2)×Rn×Dn in much the same way as Pt was constructed from K in §4.1.
Apart from the extra width parameter, the main difference is that in this section we
will use a larger part of K, including both critical points. Pick a smooth one-parameter
family of embeddings λs: (−6,−2)!(−6, 2), such that λ0=Id, λs|(−6,−5)=Id for all s,
λ1(−4)=−1 and λ1(−3)=1. Then we get embeddings

IdR×λt×IdR2n : R×(−6,−2)×R2n−!R×(−6, 2)×R2n

and define

Pt,w =(IdR×λt×IdR2n)−1(Kw)∈Ψd(R×(−6,−2)×Rn×Rn).

As in §4.2, it is easy to verify that Pt,w agrees with {0}×(−6,−2)×Rn×Sn−1 outside of
(−2, 2)×(−5,−2)×Bn

2 (0)×Dn, independently of t and w.
We shall also need a tangentially structured version of this construction, given a

structure `:TK|(−6,2)!θ∗γ. For this purpose, let ω=µ: R![0, 1] be the function defined
above and define a one-parameter family of embeddings by

ψt: R×(−6,−2)×Rn×Rn−!R×(−6, 2)×Rn×Rn,

(s;x1, ..., xn+1; y) 7−! (s;λtω(|x|)(x1), x2, ..., xn+1; y).

As in §4.2, it is easy to see that we also have ψ−1
t (Kw)=(IdR×λt×IdR2n)−1(Kw)=Pt,w,

and we define a θ-structure on Pt,w by pullback along ψt. This gives a continuous two-
parameter family

Pt,w(`)∈Ψθ(R×(−6,−2)×Rn×Rn).

Let P : [0, 1]![0, 1]2 be the piecewise linear path with P (0)=(0, 0), P
(

1
2

)
=(1, 0) and

P (1)=(1, 1), and define a continuous one-parameter family

Pt(`) =PP (t)(`)∈Ψθ(R×(−6,−2)×Rn×Rn).

We will omit ` from the notation when it is unimportant. We record some important
properties of this family in Proposition 5.12 below, using the following definition.

Definition 5.11. Let `:TK!θ∗γ be a θ-structure on K. Recall that outside of
the region R×Bn

2 (0)×Dn the manifold K agrees with R×Rn×Sn−1. We say that ` is
extendible if the θ-structure `|R×(Rn\Bn

2 (0))×Sn−1 extends to a θ-structure on the whole
of R×Rn×Sn−1.
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Proposition 5.12. Suppose that ` is extendible. The elements

Pt(`)∈Ψθ(R×(−6,−2)×Rn×Rn)

are θ-submanifolds of R×(−6,−2)×Rn×Dn satisfying the following properties:
(i) P0(`)=K1|(−6,−2)={0}×(−6,−2)×Rn×Sn−1 as θ-manifolds.
(ii) For all t, Pt(`) agrees with K1|(−6,−2) as a θ-manifold, outside of the region

(−2, 2)×(−5,−2)×Bn
2 (0)×Dn.

(iii) For all t and each pair of regular values −6<a<b<−2 of the height function
h:Pt!R, the pair

(Pt|[a,b],Pt|b)

is (n−1)-connected.
(iv) If a is outside of (−4,−3) and is a regular value of h:Pt(`)!(−6,−2) then

the manifold Pt(`)|a is isomorphic to P0(`)|a={0}×{a}×Rn×Sn−1 as a θ-manifold. If
a is inside of (−4,−3) and is a regular value of h then the manifold Pt(`)|a is either
isomorphic to P0(`)|a as a θ-manifold, or is obtained from it by (n−1)-surgery along the
standard embedding.

(v) The critical values of h:P1(`)!(−6,−2) are −4 and −3. For a∈(−4,−3),
P1(`)|a is obtained by (n−1)-surgery from P0(`)|a={0}×Rn×Sn−1 along the standard
embedding.

In (iv) and (v), the θ-structure on the surgered manifold is determined (up to ho-
motopy) by the θ-structure ` on K|(−6,2).

The precise meaning of the word isomorphic in (iv) above is the following: By (ii) we
know that the manifolds are equal outside (−2, 2)×(−5,−2)×Bn

2 (0)×Dn. Being isomor-
phic means that the identity extends to a diffeomorphism which preserves θ-structures up
to a homotopy of bundle maps which is constant outside (−2, 2)×(−5,−2)×Bn

2 (0)×Dn.

Proof. Statements (i) and (ii) follow easily from the properties of λt and ψt, and the
fact that K agrees with Rn+1×Sn−1 outside Bn+1

2 (0)×Rn. For (iii), the Morse function
Pt,w!(−6,−2) has at most two critical points, both of index n. If a critical value
is in (a, b), then the pair is (n−1)-connected, otherwise it is ∞-connected as Pt,w|[a,b]

deformation retracts to Pt,w|b.
To see (iv) and (v), first suppose that t∈

[
0, 1

2

]
. Then P (t) has second coordi-

nate 0, so Pt(`) has width zero. The function K0!R has exactly one critical value, 0,
and therefore K0|a is diffeomorphic to {a}×Rn×Sn−1 for all regular values a, and ex-
tendibility implies that they are also isomorphic as θ-manifolds. If instead t∈

[
1
2 , 1

]
, then

P (t) has first coordinate 1, and so Pt(`) is obtained from some Kw using the embed-
ding IdR×λ1×IdR2n . The fact that the function Kw!R has exactly two critical points
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with value ±w implies that Kw|a is diffeomorphic to {a}×Rn×Sn−1 for regular values
a∈R\(−1, 1)⊂R\(−w,w) and extendibility implies that they are also isomorphic as θ-
manifolds. When w=1, for regular values a∈(−1, 1) we have that K1|a is obtained from
{a}×Rn×Sn−1 by (n−1)-surgery along the standard embedding.

5.3. Surgery data

We can now describe the semi-simplicial space of surgery data in the middle dimension.
It is similar to the space of surgery data below the middle dimension, but because the
standard family constructed in the previous section uses more of the manifold K, each
surgery datum will include a choice of θ-structure on more of K.

Before doing so, we choose once and for all, smoothly in the data (ai, εi, ap, εp),
increasing diffeomorphisms

ψ=ψ(ai, εi, ap, εp): (−6,−2)∼=(ai−εi, ap+εp) (5.2)

sending [−4,−3] linearly onto
[
ai− 1

2εi, ai+ 1
2εi

]
.

Definition 5.13. Let x=(a, ε, (W, `W ))∈Dn−1,n−2
θ,L (RN )p, and write Mi=W |ai . De-

fine the set Yq(x) to consist of tuples (Λ, δ, e, `), where Λ⊂Ω is a finite subset of the fixed
infinite set Ω, δ: Λ![p]×[q] is a function,

e: Λ×R×(−6,−2)×Rn×Dn ↪−!R×(0, 1)×(−1, 1)N−1

is an embedding, and ` is a bundle map T (Λ×K)!θ∗γ. (In Definition 4.3, it was only
defined on T (Λ×K|(−6,0)).) As in Definition 4.3, we write Λi,j =δ−1(i, j),

ei,j : Λi,j×(ai−εi, ai+εi)×Rn×Dn−!R×(0, 1)×(−1, 1)N−1

for the embedding obtained by restricting e and reparameterising using (5.2), and `i,j

for the restriction of ` to T (Λi,j×K|(−6,0)). This data is required to satisfy the following
conditions:

(i) e−1(W )=Λ×{0}×(−6,−2)×Rn×∂Dn. We let

∂e: Λ×{0}×(−6,−2)×Rn×∂Dn ↪−!W

denote the embedding restricted to the boundary.
(ii) For t∈

⋃p
k=0(ak−εk, ak+εk), we have (x1�ei,j)−1(t)=Λi,j×R×{t}×Rn×Dn.

(iii) The composition `W �D(∂e):T (Λ×K|(−6,−2))!θ∗γ agrees with the restriction
of `.

(iv) For each λ∈Λ, the restriction of ` to T ({λ}×K) is extendible.
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For each j, the data (ei,j , `i,j) is enough to perform θ-surgery on Mi (as K|(−6,0)

contains the trace of an (n−1)-surgery on the (d−1)-manifold K|−2), and we further
insist that

(v) The resulting θ-manifold �Mi lies in A.
For each x, Y�(x) is a semi-simplicial set.

A typical example of a surgery datum is (partially) depicted in Figure 7 in §4. The
figure has p=1, q=0 and n=1. Only the image e(Λ×{0}×(−6,−2)×Rn×∂Dn)⊂W is
shown.

Define a bi-semi-simplicial space Dn−1,A
θ,L (RN )�,� (augmented in the second semi-

simplicial direction) from this, as in Definition 4.4. The main result about this bi-semi-
simplicial space of manifolds equipped with surgery data is the following, whose proof
we defer until §6.

Theorem 5.14. Under the assumptions of Theorem 5.3, the maps

|Dn−1,A
θ,L (RN )�,0| −! |Dn−1,A

θ,L (RN )�,�| −! |Dn−1,n−2
θ,L (RN )�|

are weak homotopy equivalences, where the first map is the inclusion of 0-simplices and
the second is the augmentation, in the second simplicial direction.

5.4. Proof of Theorem 5.3

The proof of this theorem will be almost identical with that of Theorem 4.1. Thus,
suppose that the conditions in the statement of Theorem 5.3 are satisfied, and let
(a, ε, (W, `W ), e, `)∈Dn−1,A

θ,L (RN )p,0. For each i=0, ..., p, we have an embedding ei=ei,0

and a bundle map `i=`i,0, and precisely as in §4.4 we may construct a one-parameter
family of elements Kt

ei,`i
(W, `W )∈Ψθ((a0−ε0, ap+εp)×RN ) for t∈[0, 1]. From this, for

each tuple t=(t0, ..., tp)∈[0, 1]p+1 we may form the element

Kt
e,`(W, `W ) =Ktp

ep,`p
�...�Kt0

e0,`0
(W, `W )∈Ψθ((a0−ε0, ap+εp)×RN ).

To apply the same proof as that of Theorem 4.1, we need an analogue of Lemma 4.6 to
tell us how the manifold improves when we apply the various surgery operations.

Lemma 5.15. Firstly, the tuple
(
a, 1

2ε,K
t
e,`(W, `W )

)
is an element of Xn−1,n−2

p .
Secondly, if ti is 1—so the surgery for the regular value ai is fully done—then for each
regular value b∈

(
ai− 1

2εi, ai+ 1
2εi

)
of x1:Kt

e,`(W, `W )!R, the θ-manifold Kt
e,`(W, `W )|b

lies in A.
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Proof. For the first part we must verify the conditions of Definition 2.18. This part
of the argument of Lemma 4.6 applies equally well when κ=n−1 and l=n−1.

For the second part, we suppose ti=1. Let b∈
(
ai− 1

2εi, ai+ 1
2εi

)
be a regular value

of the height function on Kt
e,`(W, `W ) and define θ-manifolds

�M =Kt
e,`(W, `W )|b, M̃ =Kti

ei,`i
(W, `W )|b and M =W |b.

By Definition 5.13 (v), performing surgery on M using the data (ei, `i) gives a θ-manifold
in A. By Proposition 5.12 (v), Kti

ei,`i
(W, `W ) has this surgery done, so M̃ lies in A. Now

�M is obtained from M̃ by applying the remaining operations Ktj

ej ,`j
for j 6=i, but by

Proposition 5.12 (iv), applying each of these only changes M̃ up to isomorphism (because
b∈

(
ai− 1

2εi, ai+ 1
2εi

)
, so it is not in

(
aj− 1

2εj , aj + 1
2εj

)
), so �M lies in A.

As in §4.4 we define a map

Sp: [0, 1]p+1×Dn−1,A
θ,L (RN )p,0−!Xn−1,n−2

p ,

(t, (a, ε, (W, `W ), e, `)) 7−!
(
a, 1

2ε,K
t
e,`(W, `W )

)
,

which has the desired range by the first part of Lemma 5.15. The argument of §4.4 gives
maps

Fp: [0, 1]×Dn−1,A
θ,L (RN )p,0×∆p−!Xn−1,n−2

p ×∆p

gluing to a homotopy S : [0, 1]×|Dn−1,A
θ,L (RN )�,0|!|Xn−1,n−2

�
| which is constant on the

image of |Dn−1,A
θ,L (RN )�|↪!|Dn−1,A

θ,L (RN )�,0|. It also provides a factorisation of the map
S (1,−) through the continuous injection |Xn−1,A

�
|!|Xn−1,n−2

�
|. The argument in §3.3

then gives the weak equivalence in Theorem 5.3.

6. Contractibility of spaces of surgery data

In order to finish the proofs of the results of the last three sections, we must supply
proofs of Theorems 3.4, 4.5 and 5.14 concerning the bi-semi-simplicial spaces of manifolds
equipped with surgery data.

6.1. The first part of Theorems 4.5 and 5.14

Theorems 4.5 and 5.14 both assert that two maps are weak equivalences. In either
theorem, the proof for the first map will use that the second map is a weak equivalence,
but is otherwise simpler, so we first consider the maps

|Dκ,l
θ,L(RN )�,0| −! |Dκ,l

θ,L(RN )�,�| and |Dn−1,A
θ,L (RN )�,0| −! |Dn−1,A

θ,L (RN )�,�|.
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Proof (assuming the second part). The proof in both cases is the same, so let us
write D�,� for either Dκ,l

θ,L(RN )�,� or Dn−1,A
θ,L (RN )�,�. We define, for this proof only, a

bi-semi-simplicial space D′
�,� in the same way as D�,� except that the usual inequali-

ties ai+εi<ai+1−εi+1 and εi>0 are replaced by ai6ai+1 and εi>0 (so the intervals
[ai−εi, ai+εi] are allowed to overlap).

The inclusion D�,� ↪!D′
�,� is easily seen to be a levelwise weak homotopy equivalence,

by spreading the ai out and making the εi positive but small, so it is enough to work
with D′

�,� throughout and show that |D′
�,0|!|D′

�,�| is a weak homotopy equivalence.
To do so, we describe a retraction r: |D′

�,�|!|D′
�,0| which will be a weak homotopy

inverse to the inclusion. The map r only modifies the ai and barycentric coordinates,
and does not change the underlying manifold W∈ψθ(N+1, 1). There is a map

D′
p,q −!D′

(p+1)(q+1)−1,0

given by considering p+1 regular values, each equipped with q+1 pieces of surgery data,
as (p+1)(q+1) not-necessarily distinct regular values, each with a single piece of surgery
data. There is also a map

∆p×∆q −!∆(p+1)(q+1)−1⊂R(p+1)(q+1)

with (j+(q+1)i)-th coordinate given by (t, s) 7!sitj . Taking the product of these maps
gives

rp,q:D′
p,q×∆p×∆q −!D′

(p+1)(q+1)−1,0×∆(p+1)(q+1)−1

which glue together to give the map r: |D′
�,�|!|D′

�,0|. It is clear that r is a retraction
(i.e. left inverse to the inclusion), so the induced map on homotopy groups is surjective.
To see that it is injective, we use the map |D′

�,�|!|D′
�
| induced by the augmentation in

the second bi-semi-simplicial direction (by forgetting all surgery data). This is a weak
equivalence by the second part of Theorem 4.5 or 5.14 respectively, but it clearly factors
as

|D′
�,�|

r−−! |D′
�,0| −! |D′

�
|,

where the second map is again induced by the augmentation in the second bi-semi-
simplicial direction. Therefore r is also injective on homotopy groups, and hence a weak
homotopy equivalence.

6.2. A simplicial technique

In order to give the proofs of Theorems 3.4, 4.5 and 5.14, we need a technique for showing
that for certain augmented semi-simplicial spaces X�!X−1, the map |X�|!X−1 is a
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weak homotopy equivalence. The semi-simplicial spaces occurring in those theorems are
all of the following special type.

Definition 6.1. Let X�!X−1 be an augmented semi-simplicial space. We say it is
an augmented topological flag complex if

(i) the map Xn!X0×X−1 ...×X−1X0 to the (n+1)-fold fibre product—which takes
an n-simplex to its n+1 vertices—is a homeomorphism onto its image, which is an open
subset;

(ii) a tuple (v0, ..., vn)∈X0×X−1 ...×X−1X0 lies in Xn if and only if (vi, vj)∈X1 for
all i<j.

If elements v, w∈X0 lie in the same fibre over X−1 and (v, w)∈X1, we say that w
is orthogonal to v. (We do not require the relation to be symmetric, although in our
applications it will be.) If X−1=∗ we omit the adjective augmented.

The semi-simplicial space Z�(a, ε, (W, `W ))!∗ from Definition 3.2 and the semi-
simplicial spaces Y�(a, ε, (W, `W ))!∗ from Definitions 4.3 and 5.13 are topological flag
complexes. Furthermore we have that Dκ

θ,L(RN )p,�!Dκ−1
θ,L (RN )p from Definition 3.3,

Dκ,l
θ,L(RN )p,�!Dκ,l−1

θ,L (RN )p from Definition 4.4, and Dn−1,A
θ,L (RN )p,�!Dn−1,n−2

θ,L (RN )p

from §5.3 are all augmented topological flag complexes. In all cases this is immediate
from the definition: firstly, a p-simplex of these semi-simplicial spaces consists of (p+1)-
tuples of surgery data, which are all 0-simplices; secondly, the pieces of surgery data are
subject to the requirement that they are all disjoint, but disjointness is a property that
can be verified pairwise.

Theorem 6.2. Let X�!X−1 be an augmented topological flag complex. Suppose
that the following are true:

(i) The map ε:X0!X−1 has local lifts of any map from a disc, i.e. given a map
f :Dn!X−1, a point x∈Dn and a point p∈ε−1(f(x)), there is an open neighbourhood
U⊂Dn of x and a map F :U!X0 such that ε�F=f |U and F (x)=p.

(ii) ε:X0!X−1 is surjective.
(iii) For any p∈X−1 and any (non-empty) finite set {v1, ..., vn}⊂ε−1(p) there exists

a v∈ε−1(p) with (vi, v)∈X1 for all i.
Then |X�|!X−1 is a weak homotopy equivalence.

Condition (ii) can be viewed as the n=0 analogue of condition (iii), but we prefer
to keep the cases n=0 and n>0 separate.

Remark 6.3. To motivate the proof of this theorem, let us first consider the case
where X−1=∗ and each Xi is discrete, so |X�| has the structure of a ∆-complex. Then
any map f :Sn!|X�| may be homotoped to be simplicial, for some triangulation of Sn,
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and so hits finitely many vertices v1, ..., vk. By (iii) there exists a v∈X0 such that (vi, v)
is a 1-simplex for all i. But then the map f extends to the join

f ∗{v}:Sn∗{v}−! |X�|

and so f is null-homotopic.

The proof we give below follows this in spirit, although is necessarily more compli-
cated when the Xi carry a topology. To deal with the topology, we require the following
technical result.

Proposition 6.4. Let Y� be a semi-simplicial set, and X be a Hausdorff space. Let
Z�⊂Y�×X be a sub-semi-simplicial space which in each degree is an open subset. For
x∈X, let Z�(x)⊂Y� be the sub-semi-simplicial set defined by Z�∩(Y�×{x})=Z�(x)×{x}
and suppose that |Z�(x)| is contractible for all x∈X. Then the map π: |Z�|!X is a Serre
fibration with contractible fibres.

Proof. This follows from [GRW2, Proposition 2.7] and [We, Lemma 2.2].

Corollary 6.5. Let Ω be a set, X be a Hausdorff space, and let

P ⊂N×Ω×X

be a subset which is open (when N and Ω are given the discrete topology) and such that
the projection P!N×X is surjective. We give N×Ω×X the partial order defined by

(n, α, x)< (m,β, y) if and only if n<m and x= y,

and give the subspace P the induced order. Then the natural map π: |N�P |!X is a Serre
fibration with contractible fibres.

Proof. We apply Proposition 6.4 with Y�=N�(N×Ω) and Z�=N�P . For x∈X, the
semi-simplicial subset Z�(x)⊂N�(N×Ω) is contractible by the argument in Remark 6.3.

Since the topology on the realisation of a semi-simplicial space is a quotient topology,
there is no description of maps into it by a universal property. The following technical
lemma concerns this question, and is the final technical preliminary for the proof of
Theorem 6.2.

Lemma 6.6. Let X� be a semi-simplicial space and write points in the realisation |X�|
as (x; t) where x∈Xp and t=(t0, ..., tp)∈∆p. Write t̄=(t̄0, ..., t̄p) with t̄i=ti/maxj tj , and
let r: |X�|!|X�| be the map which in the t̄-coordinates replaces all t̄i by max{0, 2t̄i−1}.

(i) The map r is continuous and homotopic to the identity. If X� is augmented, the
homotopy is fibrewise over |X�|!X−1.
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For a∈(0, 1), let Ua⊂|X�| be the subset where no t̄i is equal to a.
(ii) The subsets Ua⊂|X�| are open and any infinite set of Ua’s form a cover of |X�|.
Finally, let ra:Ua!

∐
q>0(Xq×∆q) be the function defined for x∈Xp and t∈∆p by

ra(x; t)=(θ∗(x); θ∗(t)), where θ=θt,a: [q]![p] is the unique order-preserving monomor-
phism whose image is {i∈[p]: t̄i>a}, and θ∗:∆p!∆q is the function given in the t̄-
coordinates as (t̄0, ..., t̄p) 7!(t̄θ(0), ..., t̄θ(q)).

(iii) The function ra:Ua!
∐

q>0(Xq×∆q) is continuous (where Ua⊂|X�| is given
the subspace topology), and for a∈

(
0, 1

2

)
the diagram

Ua
ra //

incl

��

∐
q>0(Xq×∆q) quot

// |X�|

r

��

|X�| r
// |X�|

is commutative.

Proof. The map r is continuous because it is induced from a continuous map∐
p>0

(Xp×∆p)−!
∐
p>0

(Xp×∆p).

The obvious straight-line homotopy is continuous and fibrewise.
The subset Ua⊂|X�| is open in the quotient topology because its inverse image in

Xp×∆p is the intersection of the p+1 open sets defined by t̄i 6=a. The point (x; t)∈|X�|
will be in Ua except if a= t̄i for some i, so the set {a:(x; t) /∈Ua} is finite.

The commutativity of the diagram is easily verified on the set level, but the conti-
nuity of ra requires an argument. Let us write m:

∐
q>0(Xq×∆q)!|X�| for the quotient

map. Since |X�| has the quotient topology from m and Ua⊂|X�| is open, the subspace
topology on Ua⊂|X�| agrees with the quotient topology from m−1(Ua)!Ua and there-
fore it suffices to see that the composition ra�m:m−1(Ua)!

∐
q>0(Xq×∆q) is continuous.

This composition is in fact an idempotent self-map of m−1(Ua) locally given by face maps
Xq!Xp and projection maps in the t̄-coordinates, and therefore it is continuous.

Corollary 6.7. Let X� be an augmented topological flag complex with augmen-
tation ε, and let f0, f1:K!|X�| be two continuous maps with |ε|�f0=|ε|�f1. Suppose
that for each x∈K, the vertices of f1(x) are orthogonal to the vertices of f0(x), i.e. that
f0(x)=(x; s) and f1(x)=(y; t) with (x, y)∈Xp+q+1⊂Xp×Xq, s∈int(∆p) and t∈int(∆q).
Then f0 and f1 are homotopic, fibrewise over X−1.
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Proof. For each x∈K, there is an obvious straight line in Xp+q+1×∆p+q+1 which
maps to a path in |X�| from f0(x) to f1(x). These assemble to a canonical well-defined
function [0, 1]×K!|X�|, but it is not completely obvious whether this is continuous.

In the case where f0 and f1 admit factorisations as

K −!Xp×∆p−! |X�| and K −!Xq×∆q −! |X�|,

it is clear that this construction does give a continuous homotopy

[0, 1]×K −!Xp+q+1×∆p+q+1−! |X�|

using that Xp+q+1⊂Xp×Xq has the subspace topology. Since continuity may be checked
locally, we also get a canonical continuous homotopy when there are factorisations of f0
and f1 locally near each point in K. In the general case, Lemma 6.6 implies that r�f0 and
r�f1 admit such local factorisations, so we get homotopies f0'r�f0'r�f1'f1, fibrewise
over X−1.

Proof of Theorem 6.2. We begin with an element of the relative homotopy group of
the pair of spaces (X−1, |X�|),

∂Dk
f̂

//

��

|X�|

|ε|
��

Dk
f

//

<<x
x

x
x

X−1.

We will show that there exists a diagonal map making the lower triangle commute and
the upper triangle commute up to fibrewise homotopy.

We first explain how to construct a continuous map Dk!|X�| making the lower
triangle commute, ignoring the upper triangle for the moment. To do this we first pick an
infinite set Ω (topologised discretely) and note that it suffices to find open sets Pn⊂Ω×Dk

together with maps gn:Pn!X0 with the properties that the projection πn:Pn!Dk

is surjective, that ε�gn=f �πn, and that for all x∈Dk and n<m, any p∈π−1
n (x) and

q∈π−1
m (x) have (gn(p), gm(q))∈X1. Namely, given such (Pn, gn) we can let

P =
⋃
n>0

({n}×Pn)⊂N×Ω×Dk

and assemble the gn to a simplicial map g:N�P!X�, fitting into the diagram

∂Dk

��

f̂

))
|N�P | |g|

//

π

��

|X�|

|ε|
��

Dk Dk
f

// X−1.
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By Corollary 6.5, the map π: |N�P |!Dk is a Serre fibration with contractible fibres, so
we may pick a section s:Dk!|N�P |. Then the composition |g|�s:Dk!|X�| gives the
required map. Afterwards, we shall explain how to improve the construction in order to
have (|g|�s)|∂Dk be fibrewise homotopic to f̂ .

The (Pn, gn) will be constructed by an inductive procedure, for which it is useful
to construct a slightly stricter structure. If we write 
Pn⊂Ω×Dk for the closure, we will
demand an extension ḡn: 
Pn!X0 satisfying

(i) the projection π̄n: 
Pn!Dk is proper, and the restriction πn:Pn!Dk is surjective;
(ii) ε�ḡn=f �π̄n;
(iii) for all x∈Dk and n<m, any p∈π̄−1

n (x) and q∈π̄−1
m (x) have (ḡn(p), ḡm(q))∈X1.

The properness of π̄n is equivalent to the compactness of 
Pn, which in turn is equiv-
alent to the image of 
Pn in Ω being finite. For the construction, we first pick for each
x∈Dk an element gx(x)∈ε−1(f(x)) which is orthogonal to each element of the finite set⋃

i<n ḡi(π̄−1
i (x)), as is possible by assumption. Then, since ε has local lifts of any map

from a disc, we can extend to a map gx:Vx!X0 which is a lift of Dk!X−1, defined on
a neighbourhood Vx of x. The maps

ḡi×gx: 
Pi×DkVx−!X0×X−1X0

for i<n all send 
Pi×Dk {x} into the open subset X1, so by properness of π̄i we can ensure
that all these maps have image in X1, after perhaps shrinking the open set Vx. If we let
Ux⊂Vx be a smaller neighbourhood of x with 
Ux⊂Vx, then gx restricts to a continuous
map 
Ux!X0. The sets Ux give an open cover of Dk, and we let Ux1 , ..., Uxm be a finite
subcover. Finally, we pick distinct ω1, ..., ωm∈Ω, disjoint from the image of

⋃
i<n Pi!Ω

and let

Pn =
m⋃

i=1

({ωi}×Uxi
)⊂Ω×Dk

and define the map ḡn: 
Pn!X0 by ḡn(ωi, y)=gxi
(y). The sequence of (Pn, ḡn) thus

constructed will satisfy the properties (i)–(iii) above.

The construction of the lift |g|�s:Dk!|X�| so far has not used the given f̂ in any
way, so we cannot expect (|g|�s)|∂Dk and f̂ to be equal or even fibrewise homotopic.
We shall add an extra step preceding the above inductive construction of (
Pn, ḡn), in
order to fix this. The idea is quite simple: For each x∈∂Dk the point f̂(x) involves only
finitely many vertices. If we can arrange that the vertices of (|g|�s)(x) are orthogonal to
those of (r�f̂)(x), then Corollary 6.7 provides a fibrewise homotopy f̂'r�f̂'|g|�s, where
r: |X�|!|X�| is the function from Lemma 6.6. In the notation of that lemma we may cover
|X�| by the open sets Ua, a∈

(
0, 1

2

)
. Writing Ua=

∐
p>0 Ua,p with Ua,p=r−1

a (Xp×∆p),
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we may cover ∂Dk by the open sets f̂−1(Ua,p), each of which has a function ra�f̂ to
Xp×∆p. Projecting to Xp⊂Xp+1

0 and taking adjoints give functions

ga,p: f̂−1(Ua,p)×[p]−!X0,

with the property that if x∈f̂−1(Ua,p), then all the vertices of (r�f̂)(x) are contained in
ga,p({x}×[p]). By compactness we may find a finite open cover ∂Dk=

⋃
i∈I Vi such that

for all i∈I there exist ai and pi with 
Vi⊂f̂−1(Uai,pi). We may then let


P−1 =
∐
i∈I

(
Vi×[pi]),

let ḡ−1: 
P−1!X0 be given by the restrictions of the ga,p, and let π̄−1: 
P−1!∂Dk be given
by the inclusions 
Vi⊂∂Dk. (The resulting 
P−1 will not be a subset of Ω×Dk, but that
is unimportant, as long as we remember the maps ḡ−1 and π̄−1.) We then construct the
(
Pn, ḡn) as above, demanding that (iii) hold also for n=−1. Proceeding as above with

P =
⋃
n>0

({n}×Pn)⊂N×Ω×Dk,

the resulting map |g|�s|∂Dk and the map r�f̂ will satisfy the assumptions of Corollary 6.7:
for x∈∂Dk, all vertices of (r�f̂)(x) will be orthogonal to all vertices of (s�|g|)(x). There-
fore they are homotopic, fibrewise over X−1.

6.3. Proof of Theorem 3.4

Recall that this theorem states that the augmentation

Dκ
θ,L(RN )�,�−!Dκ−1

θ,L (RN )�

induces a weak homotopy equivalence after geometric realisation, as long as the condi-
tions of Theorem 3.1 are satisfied. In fact, we only require the following weaker set of
conditions:

(i) 2κ6d−1;
(ii) κ+1+d<N+1;
(iii) L admits a handle decomposition only using handles of index at most d−κ−2.
We will use Theorem 6.2 to prove that for each p the augmentation map induces a

weak equivalence

|Dκ
θ,L(RN )p,�| −!Dκ−1

θ,L (RN )p.
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Theorem 6.2 does not apply directly to the augmentation Dκ
θ,L(RN )p,�!Dκ−1

θ,L (RN )p,
but we will show that it does apply after replacing with weakly equivalent spaces.

Recall that an element of Dκ
θ,L(RN )p,q consists of an element

(a, ε, (W, `W ))∈Dκ−1
θ,L (RN )p,

together with an element
(Λ, δ, e)∈Zq(a, ε, (W, `W )),

where Λ⊂Ω is a finite set equipped with a map δ: Λ![p]∨×[q]={0, ..., p+1}×{0, ..., q}
and e is an embedding e: Λ×
V ↪!R×(0, 1)×(−1, 1)N−1.

Definition 6.8. The core of 
V is the submanifold

C = [−2, 0]×Dκ×{0}⊂
V = [−2, 0]×Rκ×Rd−κ.

Let Z̃�(a, ε, (W, `W )) be the semi-simplicial space defined as in Definition 3.2 except that
instead of demanding that e: Λ×
V!R×(0, 1)×(−1, 1)N−1 be an embedding, we demand
only that it be a smooth map which restricts to an embedding of a neighbourhood of
Λ×C. We still require that e satisfy the numbered conditions listed in Definition 3.2.
Let D̃κ

θ,L(RN )�,�!Dκ−1
θ,L (RN )� be the augmented bi-semi-simplicial space defined as in

Definition 3.3, but using Z̃�(x) instead of Z�(x).

Proposition 6.9. The inclusion Dκ
θ,L(RN )�,� ↪!D̃κ

θ,L(RN )�,� induces a weak homo-
topy equivalence in each bidegree, and so on geometric realisation.

Proof. Choose an isotopy ht, t∈[0,∞), from the identity of Rd−κ which fixes {0}
throughout, and is such that ht(Rd−κ)⊂B1/t(0) for large t. Similarly, choose an isotopy
it, t∈[0,∞), from the identity of Rκ which fixes Dκ throughout, and is such that it(Rκ)⊂
B1+1/t(0) for large t. Combining these on the last two factors of 
V =[−2, 0]×Rκ×Rd−κ,
we obtain an isotopy of embeddings jt:
V!
V , t∈[0,∞), such that j0=Id, jt|C =IdC for
all t and jt(
V ) is contained in the (1/t)-neighbourhood of C for large t. It also has the
property that every jt preserves the submanifold int(∂−Dκ+1)×Rd−κ and fixes the height
function h:
V![−2, 0].

Precomposing the embedding e: Λ×
V!R×(0, 1)×(−1, 1)N−1 with the maps IdΛ×jt
induces a deformation

[0,∞)×Z̃q(a, ε, (W, `W ))−! Z̃q(a, ε, (W, `W ))

and in turn [0,∞)×D̃κ
θ,L(RN )p,q!D̃κ

θ,L(RN )p,q. Elements of Z̃q(a, ε, (W, `W )) have dis-
joint cores, so in a compact family K!D̃κ

θ,L(RN )p,q, there exists an ε>0 such that
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the ε-neighbourhoods of all cores are also disjoint. Composing with the deformation of
D̃κ

θ,L(RN )p,q, the map from K will eventually deform into Dκ
θ,L(RN )p,q. The deformation

of D̃κ
θ,L(RN )p,q we have constructed preserves the subspace Dκ

θ,L(RN )p,q, and hence the
relative homotopy groups vanish.

In order to prove Theorem 3.4, we will show that for each p the map

|D̃κ
θ,L(RN )p,�| −!Dκ−1

θ,L (RN )p

is a weak homotopy equivalence, by applying Theorem 6.2. Hence we must verify the
conditions of that theorem. First we establish condition (i).

Proposition 6.10. The map D̃κ
θ,L(RN )p,0!Dκ−1

θ,L (RN )p has local lifts of any map
from a disc.

Proof. Let f :Dk!Dκ−1
θ,L (RN )p be a continuous map, let x∈Dk be a point such that

f(x)=(a, ε, (W, `W )), and let (Λ, δ, e)∈Z̃0(a, ε, (W, `W )) be the data describing a lift of
f(x). Choose t0<a0−ε0 and t1>ap+εp which are regular values for the height function
x1:W!R, and such that (x1�e)(Λ×
V )⊂(t0, t1). There is an open neighbourhood U⊂Dk

of x such that the ti remain regular values of the height function on each manifold
underlying f(u) for u∈U .

The map U ↪!Dk f−!Dκ−1
θ,L (RN )p has graph Γ⊂U×RN . All fibres of the projection

π: Γ|[t0,t1]!U are diffeomorphic to the same manifold M=W |[t0,t1]. Sending a point in
U to its fibre defines a function

E:U −!Emb∂(M, [t0, t1]×(−1, 1)N )/Diff(M),

u 7−!π−1(u),

where Emb∂ denotes embeddings which send the boundary to the boundary, and the
definition of the topology on Ψθ(R×RN ) makes this continuous (manifolds near to a
point W∈ψθ(N+1, 1)⊂Ψθ(R×RN ) look like a section of the normal bundle of W inside
a compact set, e.g. inside [t0, t1]×[−1, 1]N ).

We now require two results on spaces of embeddings. Firstly, the map

Emb∂(M, [t0, t1]×(−1, 1)N )−!Emb∂(M, [t0, t1]×(−1, 1)N )/Diff(M)

is well known to be a principal Diff(M)-bundle, and has local sections (see e.g. [BiFi]).
Thus, after perhaps passing to a smaller open neighbourhood, which we will still call U ,
E has a lift Ẽ:U!Emb∂(M, [t0, t1]×(−1, 1)N ), and we will write h=Ẽ(x).

Secondly, we need the following modification of a technical theorem of Cerf [C, p. 293]
(the “first isotopy and extension theorem”), an especially elementary proof of which was
given by Lima [Li]. We follow Lima’s proof.
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Lemma 6.11. Let C⊂[t0, t1] be a closed subset and S⊂Emb∂(M, [t0, t1]×(−1, 1)N )
be the open subset of those embeddings e for which π1�e:M![t0, t1] has no critical values
inside C.

Given an h∈S, there is a neighbourhood U ′ of h in S and a continuous map

ϕ:U ′−!Diff([t0, t1]×(−1, 1)N )

such that ϕ(g)�h and g have the same image, and ϕ(g) is height-preserving over C, for
all g∈U ′.

Proof. Consider M to be a submanifold of [t0, t1]×(−1, 1)N via h. We choose a
tubular neighbourhood π:T!M of radius ε which over the boundary and x−1

1 (C) has
fibres contained in level sets of x1 (this is possible as C is closed and consists of regular
values). If g∈S is sufficiently close to h, it will have image in T and we may define an
element �ϕ(g)∈C∞(M,M) by

�ϕ(g)(x) =π(g(x)).

This is a diffeomorphism for g=h, and so there is a neighbourhood U ′′ of h in S where
this remains true. We get a function �ϕ:U ′′!Diff(M) and for each g∈U ′′ we define a new
embedding G=G(g):M![t0, t1]×(−1, 1)N by G=g�(�ϕ(g)−1). It has the same image as
g and has π(G(x))=x. Therefore x and G(x) have the same height when x∈x−1

1 (C).
Let λ be a bump function which is 1 on

[
0, 1

4ε
)

and 0 on
[
1
2ε,∞

)
. Now let

ϕ(g)(x) =x+λ(|x−π(x)|)(G(π(x))−π(x))

define a smooth self-map ϕ(g) of [t0, t1]×(−1, 1)N , which is the identity outside a compact
subset. For g=h it is the identity, and so there is a smaller neighbourhood U ′ of h in S
where it remains a diffeomorphism, since these form an open subset of the smooth maps.
We obtain a function ϕ:U ′!Diffc([t0, t1]×(−1, 1)N ).

By construction ϕ(g)�h(x)=ϕ(g)(x)=x+(G(x)−x)=G(x), so ϕ(g)�h has the same
image as g. Also, if x∈x−1

1 (C) then the vector G(π(x))−π(x) has no component in the
x1 direction, so x1(ϕ(g)(x))=x1(x) and ϕ(g) is height-function preserving over C.

We now continue with the proof of Proposition 6.10. Applying the above lemma
with C=

⋃p
i=0[ai−εi, ai+εi], we find that after possibly shrinking U there is a map

ϕ:U −!Diff([t0, t1]×(−1, 1)N )

taking values in diffeomorphisms which are height-preserving over C, such that the graph
Γ|[t0,t1]⊂U×[t0, t1]×(−1, 1)N is obtained from W |[t0,t1] by applying the family of diffeo-
morphisms ϕ.
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The element (Λ, δ, e)∈Z̃0(a, ε, (W, `W )) has surgery data

e: Λ×
V ↪−! [t0, t1]×(0, 1)×(−1, 1)N−1,

so we attempt to define a section F :U!D̃κ
θ,L(RN )p,0 by u 7!(f(u),Λ, δ, ϕ(u)�e). We must

verify that (Λ, δ, ϕ(u)�e) is indeed an element of Z̃0(f(u)) by checking the conditions of
Definition 3.2. Conditions (i)–(iv) hold as ϕ is height preserving over each [ai−εi, ai+εi].
Condition (v) holds by construction, as ϕ(u) is a diffeomorphism which carries M into
π−1(u). The truth or falsity of condition (vi) is locally constant in U , but it holds at
the point x so by replacing U with a smaller neighbourhood of x we may ensure that it
holds everywhere. Thus we have produced a lift, as required.

Next, we establish condition (iii) in Theorem 6.2.

Proposition 6.12. Fix a point (a, ε, (W, `W ))∈Dκ−1
θ,L (RN )p, and consider a non-

empty collection v1, ..., vk∈Z̃0(a, ε, (W, `W )) of pieces of surgery data (not necessarily
forming a (k−1)-simplex ). Then, if 2κ<d and κ+1+d<N+1, there exists a piece of
surgery data v∈Z̃0(a, ε, (W, `W )) such that each (vi, v) is a 1-simplex.

Proof. Each vj is given by a set Λj (which is a subset of the infinite set Ω), a
function δj : Λj![p]∨ and a map ej : Λj×
V!R×(0, 1)×(−1, 1)N−1, satisfying certain
properties. We first pick a set Λ which is disjoint from all Λj and a bijection ϕ: Λ!Λ1,
let δ=δ1�ϕ: Λ![p]∨, and then set

ẽ= e1�(ϕ×Id
V ): Λ×
V −!R×(0, 1)×(−1, 1)N−1.

This gives a new element of Z̃0(a, ε, (W, `W )), but it is of course not orthogonal to v1

(and not necessarily orthogonal to the other vj). We then perturb ẽ inside the class of
functions satisfying the requirements of Definition 3.2, to a new function

e: Λ×
V −!R×(0, 1)×(−1, 1)N−1

whose core is in general position with respect to the cores of the vj . More explicitly, ẽ
restricts to a map

Λ×∂−Dκ+1×Rd−κ−!W,

and we first perturb this so that Λ×∂−Dκ+1×{0} is transverse in W to the correspond-
ing part of the other embeddings, and remains disjoint from L, then we extend this
perturbation to a map e: Λ×
V!R×(0, 1)×(−1, 1)N−1 whose restriction to the interior
of C is transverse to the corresponding part of the other embeddings. In the first step we
make κ-dimensional manifolds transverse in a d-dimensional manifold, and in the second
we make (κ+1)-dimensional manifolds disjoint in an (N+1)-dimensional manifold. As
2κ<d and 2(κ+1)6κ+d+1<N+1, the new core will actually be disjoint from all other
cores, producing the required element v∈Z̃0(a, ε, (W, `W )).
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Finally, we establish condition (ii) of Theorem 6.2.

Proposition 6.13. The set Z̃0(a, ε, (W, `W )) of surgery data is non-empty as long
as 2κ<d, κ+1+d<N+1, and L admits a handle decomposition only using handles of
index at most d−κ−2.

Proof. For each i=1, ..., p we consider the pair (W |[ai−1,ai],W |ai). The bordism
W |[ai−1,ai] is homotopy equivalent to a relative CW complex (X ′,W |ai) with finitely
many relative cells (one for each critical point of a Morse function, for example). Since the
pair is (κ−1)-connected, we may use the cell trading lemma (cf. [G, Proposition 4.2.1])
to replace any relative cell of dimension k<κ by a (k+2)-cell, inductively obtaining a
homotopy-equivalent relative CW complex (X,W |ai) with the same (finite) total number
of cells, each of which now has dimension at least κ. Since 2κ<d, the homotopy equiva-
lence (X,W |ai)!(W |[ai−1,ai],W |ai) may be assumed to restrict to a smooth embedding
of the relative κ-cells. If we pick a subset Λi,0⊂Ω with one element for each relative
κ-cell (choosing disjoint sets for each i), we may therefore pick an embedding

êi,0: Λi,0×(Dκ, ∂Dκ)−! (W |[ai−1+εi−1,ai+εi],W |ai+εi),

which we may assume to be collared on [ai−εi, ai+εi], such that the pair

(W |[ai−1,ai],W |ai
∪Im(êi,0)|[ai−1,ai])

is κ-connected. Furthermore, R×L⊂W has a core of dimension at most d−κ−1, by our
assumption on the indices of handles of L, and so we may suppose that the embedding
êi,0 is disjoint from R×L. As 2κ<d, we may also suppose that the images of the êi,0 are
mutually disjoint.

The embedding

êi,0|Λi,0×∂Dκ : Λi,0×∂Dκ×{0}−!W |ai+εi ⊂W |[ai+εi,ai+1+εi+1]

extends to an embedding of Λi,0×∂Dκ×[0, 1], where the set Λi,0×∂Dκ×{1} is sent into
W |ai+1+εi+1 and is collared on the ε-neighbourhoods of both boundaries. This may
be seen as follows: to extend êi,0|Λi,0×∂Dκ to a continuous map having this property
is possible as πκ−1(W |[ai,ai+1],W |ai+1)=0, but this may then be perturbed to be an
embedding as 2κ<d. As above, this may be made disjoint from R×L, and they can be
made mutually disjoint.

We may glue the two embeddings together. Using a suitable diffeomorphism

Dκ≈Dκ∪(∂Dκ×[0, 1]),
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this gives a new embedding of Λi,0×Dκ. Continuing in this way, we obtain an extension
of êi,0 to an embedding

ẽi,0: Λi,0×(Dκ, ∂Dκ)−! (W |[ai−1+εi−1,ap+εp],W |ap+εp)

which is disjoint from R×L, and which are mutually disjoint. Identifying Dκ with
the disc ∂−Dκ+1⊂[−1, 0]×Rκ+1 gives a height function Dκ![−1, 0] and if we pick the
diffeomorphisms Dκ≈Dκ∪(∂Dκ×[0, 1]) carefully, we can arrange it so that on each
ẽ−1
i,0 (W |(ak−εk,ak+εk)), the embedding ẽi,0 is height-function preserving up to an affine

transformation.
We now want to extend the ẽi,0 from Λi,0×(∂−Dκ+1×{0})⊂Λi,0×
V to the whole

of Λi,0×
V so that it satisfies the conditions of Definition 3.2. Since κ+1+d<N+1,
there is no trouble with extending the maps ẽi,0 to disjoint maps ei,0 from Λi,0×
V to
R×(0, 1)×(−1, 1)N−1 satisfying conditions (i)–(v) of Definition 3.2: we first extend each
ẽi,0 to an embedding of [−2, 0]×Rκ×{0} (which is possible as 2(κ+1)<d+κ+1<N+1),
then make this intersect W only in ∂−Dκ+1 (which is possible as κ+1+d<N+1), and
finally thicken it up by Rd−κ (which is possible as ∂−Dκ+1 and [−2, 0]×Rκ×{0} are both
contractible). Property (vi) is ensured by the way we chose êi,0.

Then, we let Λ=
∐p+1

i=0 Λi,0, δ: Λ![p]∨ be given by δ(Λi,0)=i∈[p]∨, and e=
∐p+1

i=0 ei,0.
The data (Λ, δ, e) thus lies in Z̃0(a, ε, (W, `W )).

6.4. Proof of Theorem 4.5

We have already proved the first part of this theorem in §6.1. Recall that the second
part states that the augmentation map

Dκ,l
θ,L(RN )�,�−!Dκ,l−1

θ,L (RN )�

induces a weak homotopy equivalence after geometric realisation, as long as the condi-
tions of Theorem 4.1 are satisfied. In fact, we only require the following weaker set of
conditions:

(i) 2(l+1)<d;
(ii) l6κ;
(iii) l+2+d<N+1;
(iv) L admits a handle decomposition only using handles of index at most d−l−2;
(v) the map `L:L!B is (l+1)-connected.
We will proceed as in the previous section. Recall that each point of Dκ,l

θ,L(RN )p,0

lying over (a, ε, (W, `W ))∈Dκ,l−1
θ,L (RN )p is a tuple (Λ, δ, e, `), where Λ⊂Ω is a subset,
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δ: Λ![p]×[0] is a function,

e: Λ×(−6,−2)×Rd−l−1×Dl+1 ↪−!R×(0, 1)×(−1, 1)N−1

is an embedding, and `:T (Λ×K|(−6,0))!θ∗γ is a bundle map (where K is defined in
§4.2). Let us define

C =(−6,−2)×{0}×Dl+1⊂ (−6,−2)×Rd−l−1×Dl+1

and call it the core. Shrinking in the Rd−l−1 direction gives an isotopy from the identity
map of (−6,−2)×Rd−l−1×Dl+1 into any neighbourhood of its core.

Definition 6.14. Let Ỹ�(a, ε, (W, `W )) be the semi-simplicial space defined as in Def-
inition 4.3, except that we only ask for e to be a smooth map which restricts to an
embedding on a neighbourhood of Λ×C⊂Λ×(−6,−2)×Rd−l−1×Dl+1. Note that con-
dition (iv) still makes sense: although the surgery data is no longer disjoint, it is still
disjoint when restricted to a small enough neighbourhood of each core.

Let D̃κ,l
θ,L(RN )�,�!Dκ,l−1

θ,L (RN )� be the augmented bi-semi-simplicial space defined
as in Definition 4.4, but using Ỹ�(a, ε, (W, `W )) instead of Y�(a, ε, (W, `W )).

We have the following analogue of Proposition 6.9, although the proof is slightly
more complicated in this case, due to the tangential structures on the surgery data.

Proposition 6.15. The inclusion Dκ,l
θ,L(RN )�,� ↪!D̃κ,l

θ,L(RN )�,� induces a weak ho-
motopy equivalence in each bidegree, and so on geometric realisation.

Proof. This is very similar to Proposition 6.9. We pick an isotopy of maps

%t: Rd−l−1−!Rd−l−1, t∈ [0,∞),

which starts at the identity, has %t(0)=0 for all t, and has image in the ball of radius
1/t for all t. Applying %t in the Rd−l−1 direction gives an isotopy of self-embeddings of
Λ×(−6,−2)×Rd−l−1×Dl+1. Similarly, we can get an isotopy of self-embeddings of the
manifold K|(−6,0) from §4.2, which applies %t in the Rd−l−1 direction on h−1((−6,−2]),
is the identity on h−1((−

√
2, 0)), and interpolates inbetween. Precomposing with these

isotopies gives a homotopy of self-maps of D̃κ,l
θ,L(RN )�,�, which eventually deforms any

compact space into Dκ,l
θ,L(RN )�,�.

Therefore it is enough to show that for each p, the augmentation map

D̃κ,l
θ,L(RN )p,�−!Dκ,l−1

θ,L (RN )p

which forgets all surgery data induces a weak homotopy equivalence after geometric
realisation, which we do by establishing the conditions of Theorem 6.2. The proofs that
conditions (i) and (iii) hold are very similar to the analogous case in §6.3, so we consider
those first.
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Proposition 6.16. The map D̃κ,l
θ,L(RN )p,0!Dκ,l−1

θ,L (RN )p has local lifts of any map
from a disc.

Proof. This is exactly as in the proof of Proposition 6.10.

Proposition 6.17. Fix a point (a, ε, (W, `W ))∈Dκ,l−1
θ,L (RN )p, and let v1, ..., vk∈

Ỹ0(a, ε, (W, `W )) be a non-empty collection of pieces of surgery data. Then, if 2(l+1)<d
and l+2+d<N+1, there exists a piece of surgery data v∈Ỹ0(a, ε, (W, `W )) such that
each (vi, v) is a 1-simplex.

Proof. This is essentially the same as Proposition 6.12: first we let v=v1, then
we perturb it to have its cores transverse to the cores of all the vj . We first do the
perturbation on the part of the cores inside W. On the boundary the cores are (l+1)-
dimensional, so they are disjoint when they are transverse as 2(l+1)<d. We now make
sure the cores intersect W only on their boundary, which is possible as l+2+d<N+1.
We finally make sure that the cores are also disjoint on their interiors, which is possible
as

(l+2)+(l+2) 6 (l+2)+d<N+1.

All these perturbations need to preserve the condition that the embedding be level-
preserving near the critical levels (condition (ii) of Definition 4.3), but that is not a
problem.

Finally, we establish condition (ii).

Proposition 6.18. The set Ỹ0(a, ε, (W, `W )) is non-empty as long as 2(l+1)<d,
l6κ, l+2+d<N+1, L admits a handle decomposition only using handles of index at
most d−l−2, and the map `L:L!B is (l+1)-connected.

Proof. Writing Mi=W |ai
, we consider the map `:Mi!B, which by assumption is

l-connected. We first argue that ` factors as Mi⊂X!B, where (X,Mi) is a relative
CW complex with no relative cells of dimension less than l+1, finitely many relative
cells of dimension l+1, as well as (arbitrarily many) higher cells, and X!B is a weak
equivalence. This is a purely homotopy-theoretic question, and we may replace L and
Mi by finite CW complexes, and B by a CW complex obtained from L by attaching
cells of dimension at least l+2. The mapping cylinder of a cellular approximation to `
is then a CW complex with finite (l+1)-skeleton. Mi is a subcomplex, and as in the
proof of Proposition 6.13 the cell-trading lemma implies that the mapping cylinder may
be replaced by a relative CW complex (X,Mi) as claimed.

Picking a bijection between the set of relative (l+1)-cells of (X,Mi) and a subset
Λi⊂Ω, the attaching maps of the cells assemble to a map

gi: Λi×Sl−!Mi,
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which may be assumed to be an embedding since 2l<d−1. We are now in the situation
of §4.1 and hence the relative (l+1)-skeleton

X l+1 =Mi∪gi (Λi×Dl+1)

occurs as the core of the (l+1)-handles in the trace of a (multiple) θ-surgery along an
embedding

fi|ai
: Λi×{ai}×Rd−l−1×Sl ↪−!Mi

extending gi. The trace of this surgery is a θ-cobordism Ci from Mi to a θ-manifold
�Mi. The relative cells of (X l+1,Mi) are the cores of the handles in Ci, and the structure
map `Ci :Ci!B restricts to the (l+1)-connected map X l+1!B, so `Ci is also (l+1)-
connected. The pair (Ci,�Mi) is (d−l−2)-connected and hence (l+1)-connected, since
we assume 2(l+1)<d. It follows that the structure map �Mi!B is also (l+1)-connected
and in particular induces an injection in homotopy groups up to degree l. The sets
Λi⊂Ω may be assumed to be disjoint and the maps fi|ai may be assumed to have image
disjoint from L, as L only has handles of index less than d−l−1. To produce an element
of Ỹ0(a, ε, (W, `W )) it remains to extend the surgery data fi|ai to the rest of the manifold
Λi×(ai−εi, ap+εp)×Rd−l−1×Dl+1.

Since (l+1)+(d−1)<N , the map fi|ai extends to an embedding

ei|ai : Λi×{ai}×Rd−l−1×Dl+1 ↪−! {ai}×(0, 1)×(−1, 1)N−1

which intersects W |ai
precisely on the boundary. This embedding may be further ex-

tended to an embedding

Λi×(ai−εi, ai+εi)×Rd−l−1×Dl+1 ↪−! (ai−εi, ai+εi)×(0, 1)×(−1, 1)N−1

using just the cylindrical structure of W over (ai−εi, ai+εi), but we wish to extend it
to an embedding of Λi×(ai−εi, ap+εp)×Rd−l−1×Dl+1, which is cylindrical over each
(aj−εj , aj +εj) and intersects W precisely on the boundary. We will do this by extending
it step-by-step over each interval [aj , aj+1]: if it is defined up to aj we have an embedding

ei|aj
: Λi×{aj}×Rd−l−1×Dl+1 ↪−! {aj}×(0, 1)×(−1, 1)N−1,

and as the pair (W |[aj ,aj+1],W |aj+1) is κ-connected and l6κ, on the boundary this
extends to a smooth map

fi|[aj ,aj+1]: Λi×[aj , aj+1]×Rd−l−1×Sl−!W |[aj ,aj+1]
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sending Λi×{aj+1}×Rd−l−1×Sl toW |aj+1 . The core Λi×[aj , aj+1]×{0}×Sl has dimen-
sion l+1< 1

2d, so by a general-position argument fi|[aj ,aj+1] can be isotoped to an embed-
ding. Similarly, we may arrange that it is cylindrical near the necessary ε-neighbourhoods
of the ends and has image disjoint from [aj , aj+1]×L. Finally, as l+2+d<N+1 we may
extend fi|[aj ,aj+1] to an embedding

ei|[aj ,aj+1]: Λi×[aj , aj+1]×Rd−l−1×Dl+1 ↪−! [aj , aj+1]×(0, 1)×(−1, 1)N−1

which is cylindrical over each (aj−εj , aj +εj) and intersectsW precisely on the boundary.
In total we obtain an embedding

ei: Λi×(ai−εi, ap+εp)×Rd−l−1×Dl+1 ↪−! (ai−εi, ap+εp)×(0, 1)×(−1, 1)N−1

which is cylindrical over each (aj−εj , aj +εj) and intersectsW precisely on the boundary.
Furthermore, by doing the above in increasing order of i, we can ensure that the different
ei have disjoint cores: while constructing ei we make sure that its core stays disjoint from
those of the ej for all j<i, which is possible as 2(l+1)<d and 2(l+2)<N+1.

We let Λ=
∐p

i=0 Λi, δ: Λ![p]×[0] be given by δ(Λi)=(i, 0), and e be given by∐p
i=0 ei, reparameterised using the ϕ(ai, εi, ap, εp). Then the data (Λ, δ, e) gives the em-

bedding part of the data of an element of Ỹ0(a, ε, (W, `W )), and the bundle part comes
from the θ-structures `Ci above.

6.5. Proof of Theorem 5.14

Recall that the statement of the theorem is as follows. We work in dimension 2n, and fix
a tangential structure θ which is reversible (cf. Definition 5.2), a (2n−1)-manifold with
boundary L equipped with θ-structure, and a collection A⊂π0(Ob(Cn−1,n−2

θ,L (RN ))) of
objects. This allows us to define the augmented bi-semi-simplicial space

Dn−1,A
θ,L (RN )�,�−!Dn−1,n−2

θ,L (RN )�

of surgery data, and the second part of Theorem 5.14 states that if the conditions of
Theorem 5.3 are satisfied, then the induced map on geometric realisation is a weak
homotopy equivalence. (We have already proved the first part of Theorem 5.14 in §6.1.)
We recall that these conditions are

(i) 2n>6;
(ii) 3n<N ;
(iii) θ is reversible;
(iv) L admits a handle decomposition only using handles of index at most n−1;
(v) `L:L!B is (n−1)-connected;
(vi) the natural map A!π0(BCn−1,n−2

θ,L (RN )) is surjective.
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Note that the penultimate condition implies that for any object M the map M!B
induced by the tangential structure induces a surjection on homotopy groups in degrees
less than n.

In many respects the proof of this theorem is very similar to what we did in §6.4, but
in that section we often used the inequality 2(l+1)<d so that pairs of transverse (l+1)-
dimensional submanifolds of a d-manifold are automatically disjoint. In Theorem 5.14,
d=2n and the analogue of l is n−1 so this observation fails. Instead, we will use a version
of the Whitney trick to separate n-dimensional submanifolds of our 2n-manifolds; this
accounts for the restriction 2n>6 in the statement of the theorem.

We proceed precisely as in Definition 6.14 by for (a, ε, (W, `W ))∈Dn−1,n−2
θ,L (RN )p

letting Ỹ�(a, ε, (W, `W )) be the analogue of Y�(a, ε, (W, `W )) from Definition 5.13, where
instead of asking that e be an embedding, we only ask for it to be a smooth map which
restricts to an embedding on a neighbourhood of Λ×C. We use this to define the bi-semi-
simplicial space D̃n−1,A

θ,L (RN )�,�, and by the same argument as in the proof of Proposi-
tion 6.15, the inclusion

Dn−1,A
θ,L (RN )�,� ↪−! D̃n−1,A

θ,L (RN )�,�

is a weak homotopy equivalence in each bidegree. We are now left to verify the conditions
of Theorem 6.2 for the augmented semi-simplicial spaces

D̃n−1,A
θ,L (RN )p,�−!Dn−1,n−2

θ,L (RN )p.

That the map on 0-simplices has local lifts of any map from a disc is proved as in the
previous two sections.

Proposition 6.19. Fix a point (a, ε, (W, `W ))∈Dn−1,n−2
θ,L (RN )p, and consider a

non-empty collection v1, ..., vk∈Ỹ0(a, ε, (W, `W )) of pieces of surgery data. Then if 2n>6
and 3n<N there exists a piece of surgery data v∈Ỹ0(a, ε, (W, `W )) such that each (vi, v)
is a 1-simplex.

Proof. Let us write vj =(Λj , δj , ej , `j). First we let v=v1, then we perturb it to a
nearby embedding which has its cores transverse to the cores of all the vj . We first
do the perturbation on the part of the cores inside W . On the boundary the cores
are n-dimensional, so when they are transverse they intersect in a finite set of points.
We now make sure the cores intersect W only on their boundary, which is possible as
(n+1)+2n<N+1. We finally make sure that the cores are also disjoint on their interiors,
which is possible as 2(n+1)<N+1.

We are left with surgery data v whose core is disjoint from the cores of vj away from
W, and on W intersects the other cores transversely. It has a finite number of transverse
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intersections with all the other cores in W, so it is enough to give a procedure which
reduces the number of intersections by 1. We will use the following technique similar
to the Whitney trick, which for later use we call the half Whitney trick (similar to the
piping of [Wa, p. 40]). Let x be such an intersection point, between v and some vj . More
precisely, suppose it is a point of intersection of the cylinders

ei(Λi×(−6,−2)×{0}×Sn−1) and ej
k(Λj

k×(−6,−2)×{0}×Sn−1).

Claim 6.20. Let T⊂R2 denote the triangle {(x, y):|x|−16y60} and U be a small
open neighbourhood of it, e.g. defined by |x|−1−ε<y<ε. There is a half Whitney disc
w:U ↪!W such that

(i) w is disjoint from R×L;
(ii) w|[−1,1]×{0} is a path in W |ap which on its interior is disjoint from all the cores;
(iii) the inverse image of the first cylinder is the line on ∂T from (0,−1) to (−1, 0);

the inverse image of the second cylinder is the line from (0,−1) to (1, 0);
(iv) the height functions x1�w and y:T!R agree up to an affine transformation

inside each (x1�w)−1(aj−εj , aj +εj).

Given such a disc, we can extend it to a standard neighbourhood

w(U)×Rn−1×Rn−1⊂W

as in the proof of [Mi2, Theorem 6.6]. Note that the argument is easier in this case as
we are cancelling intersection points against the boundary instead of against each other,
and so no framing problems arise. We can further extend this to a neighbourhood

w(U)×Rn−1×Rn−1×RN+1−2n⊂R×(0, 1)×RN−1.

There is a compactly supported vector field on U which is ∂/∂x on T , and we extend it
using bump functions in the euclidean directions to this open subset of R×(0, 1)×RN−1.
The flow associated with this vector field gives a one-parameter family of diffeomorphisms
ϕt, and flowing ei using ϕt will eventually lead to a new ei whose core has one fewer
intersection point with the other cores (at least inside W |(a0−ε0,ap], but we can then use
the cylindrical structure of W |(ap−εp,ap+εp) to remove any intersections above ap). It will
still satisfy condition (ii) of Definition 5.13 by property (iv) above. If the vector field is
chosen carefully (i.e. in the kernel of dx1 near inverse images of ai), it will also satisfy
(ii), and the other conditions are clear.

It remains to prove the claim. If it were not for property (iv) the argument is
clear: choose an embedded path from x in each cylinder up to W |ap . Together these
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give an element of π1(W |[ai,ap],W |ap) which is 0 as κ=n−1>2, and so this extends to
a continuous map w|T :T!W which gives these two paths along the lower part of its
boundary and lies in W |ap in the top part of its boundary. As 2·2<2n, this map may
be perturbed to be an embedding into W, still enjoying these two properties. Finally, as
2+n<2n, w|T can be made disjoint from the other cores on its interior. This may now
be extended to a map on U , enjoying properties (ii) and (iii).

To obtain property (iv) as well, we instead build up the embedding w|T in pieces
inside each W |[aj ,aj+1], which is possible as each π1(W |[aj ,aj+1],W |aj+1) is 0.

In the proof of Proposition 6.18, it was easy to see that for an object M∈Cκ,l−1
θ,L (RN )

there exists a piece of θ-surgery data e: Λ×Rd−l−1×Sl ↪!M such that the resulting man-
ifold �M has πl(�M)!πl(B) injective, and thus satisfies condition (iv) of Definition 4.3.
In the present situation we have M∈Cn−1,n−2

θ,L (RN ) and require surgery data so that
�M∈A, to satisfy condition (v) of Definition 5.13. This is rather more difficult, and we
first describe how to accomplish this step.

Lemma 6.21. Let M∈Cn−1,n−2
θ,L (RN ) be an object, and suppose that θ is reversible,

2n>6, 3n<N , L has a handle structure with only handles of index at most n−1, the map
`L:L!B is (n−1)-connected, and A contains an object in the same path component of
BCn−1,n−2

θ,L (RN ) as M . Then there is a piece of θ-surgery data, given by an embedding
e: Λ×Rd−l−1×Sl ↪!M disjoint from L and a compatible bundle map

T (Λ×Rd−l−1×Dl+1)−! θ∗γ,

such that the resulting surgered manifold �M lies in A.

Proof. Part of this proof is very similar to [Kr, pp. 722–724]. We shall assume in
this proof that B is path connected, the general case then follows by considering one
path component at a time. Then all objects and morphisms of Cn−1,n−2

θ,L (RN ) are path-
connected manifolds, so relative connectivity may be verified using relative homotopy
groups with any basepoint.

We first claim that if there is a morphism W :M0;M1∈Cn−1,n−2
θ,L (RN ), then there

is another, W ′ say, with the property that (W ′,M0) is also (n−1)-connected. (By defi-
nition, (W ′,M1) is (n−1)-connected.) In fact, we claim that it is possible to do surgery
along a finite set of embeddings of Sn−1×Dn+1 into the interior of W (and disjoint
from L), such that the resulting cobordism W ′ is (n−1)-connected with respect to both
boundaries. Let us first point out that doing any such (n−1)-surgery does not change
the property that πk(W,M1)=0 for k6n−1: up to homotopy it amounts to cutting
out a manifold of codimension n+1 and then attaching cells of dimension n and 2n.
We have assumed that L!B is (n−1)-connected so πk(M0)!πk(B) is surjective for
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k6n−1. Since M0∈Cn−1,n−2
θ,L , it is an isomorphism for k6n−2 and similarly for M1. As

πk(M1)!πk(W ) is an isomorphism for k6n−2, we conclude that πk(M0)!πk(W ) is an
isomorphism for k6n−2, but it need not be surjective for k=n−1. In fact, the long exact
sequence in homotopy groups identifies the cokernel with πn−1(W,M0)∼=Hn−1(W̃ , M̃0).
The fact that πn−1(M0)!πn−1(B) is surjective implies that the composition

Ker(πn−1(W )!πn−1(B))−!πn−1(W )−!πn−1(W,M0)

is still surjective. By the Hurewicz theorem, πn−1(W,M0)∼=Hn−1(W̃ , M̃0) is finitely
generated as a module over π1, and we have proved that there exist finitely many elements

αi ∈Ker(πn−1(W )!πn−1(B))

which generate the cokernel of πn−1(M0)!πn−1(W ). These elements may be represented
by disjoint embedded spheres in the interior of W, and as L has a handle structure with
only handles of index at most n−1 they can be made disjoint from L. By Proposition 5.8
these embedded spheres can be framed so that the result W ′ of performing surgery
on them has a θ-structure which agrees with the old one on the boundary and on L.
Both pairs (W ′,M0) and (W ′,M1) are now (n−1)-connected, so this gives the required
cobordism.

We now return to the proof of the lemma. There is a zig-zag of morphisms in the
category Cn−1,n−2

θ,L (RN ) from M to an object of A, as A was assumed to hit the path
component of M . By the above discussion we can suppose that it is a zig-zag of θ-
cobordisms which are (n−1)-connected relative to both ends. Then, by reversibility, we
can reverse the backwards-pointing arrows and obtain a single morphism

(C, `C): (M, `M ) ///o/o (A, `A)∈Cn−1,n−2
θ,L (RN ),

which is (n−1)-connected relative to both ends, so A∈A and π∗(C,A)=π∗(C,M)=0 for
∗6n−1.

If such a cobordism C admits a Morse function with only critical points of index n,
then the descending manifolds of the critical points, and `C restricted to them, gives the
required θ-surgery data. It remains to produce such a Morse function.

If π1(L)=0 then all of the manifolds appearing above are also simply connected,
and we deduce by Poincaré duality and the universal coefficient theorem that H∗(C,M)
is concentrated in degree n and is free abelian. We can choose a self-indexing Morse
function on C and as in the proof of the h-cobordism theorem we can first modify it to
have no critical points of index 0 or 1 [Mi2, Theorem 8.1], do the same to the negative
of the Morse function to remove critical points of index 2n and 2n−1, and finally by
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the basis theorem [Mi2, Theorem 7.6] we can diagonalise the differentials in the Morse
homology complex, and so modify the Morse function to only have critical points of
index n.

When π1(L) 6=0 we must go to a little more trouble, and use techniques from the
proof of the s-cobordism theorem. As these are less well known, we go into more detail,
but recommend [Lü] and [Ke] for details of that argument. As above, pick a self-indexing
Morse function on C and let us write

π=π1(L) =π1(M) =π1(C) =π1(A)

for the common fundamental group, and Z[π] for its integral group ring.
When M↪!C is 1-connected, [Mi2, Theorem 8.1] is still true: we may modify the

Morse function to have no critical points of index 0 or 1, and as above do the same on the
opposite Morse function to eliminate critical points of index 2n and 2n−1. The cores of
the handles given by this Morse function on the universal cover give a cell complex with
cellular chain complex C∗(C̃, M̃), and C∗(C̃, Ã) for the opposite Morse function. These
are chain complexes of based free Z[π]-modules, and geometric Poincaré duality gives an
isomorphism

C∗(C̃, M̃)∼=HomZ[π](C2n−∗(C̃, Ã),Z[π])

of chain complexes, by sending basis elements to their “dual” basis elements (we use the
convention of [Wa, Chapter 2] to interchange right and left Z[π]-module structures; when
C is not orientable, this involves the orientation character).

We calculate 0=π∗(C,A)=π∗(C̃, Ã)=H∗(C̃, Ã; Z) for ∗6n−1. As the chain complex
C∗(C̃, Ã) is one of free Z[π]-modules we have a universal coefficient spectral sequence [Le,
Theorem 2.3],

Extq
Z[π](Hp(C̃, Ã),Z[π])⇒Hp+q(HomZ[π](C∗(C̃, Ã),Z[π]))∼=H2n−p−q(C̃, M̃ ; Z),

and so the chain complex C∗(C̃, M̃) is acyclic in degrees ∗>n+1. Furthermore, we also
have 0=π∗(C,M)=π∗(C̃, M̃)=H∗(C̃, M̃ ; Z) for ∗6n−1, so the homology of C∗(C̃, M̃)
is concentrated in degree n. By the usual modification technique, we can use handle
exchanges to modify the Morse function to only have critical points of index n and n−1.
We are left with a short exact sequence of Z[π]-modules

0−!Hn(C̃, M̃ ; Z)−!Cn(C̃, M̃) ∂n−−−!Cn−1(C̃, M̃)−! 0.

The rightmost term is a free Z[π]-module and so this sequence is split: in particular,
Hn(C̃, M̃ ; Z) is stably free as a Z[π]-module. If Hn(C̃, M̃ ; Z) is not actually free as a Z[π]-
module, there cannot exist a Morse function on C with only critical points of index n. In
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this case we replace C by C#g(Sn×Sn) for g sufficiently large (this manifold admits a θ-
structure: Sn×Dn is parallelisable, so admits a θ-structure, and hence by reversibility its
double Sn×Sn does too; the connected sum is then formed by applying Proposition 5.8
to the embedding S0!Cq(Sn×Sn) sending one point to C and one to Sn×Sn, which
satisfies the hypotheses as B is path connected). This has the effect of adding on a large
free Z[π]-module to Hn(C̃, M̃ ; Z), so we may assume that this homology group is now
free, and pick a basis for it.

Choosing a splitting of the short exact sequence above, we obtain an isomorphism

Cn(C̃, M̃)∼=Hn(C̃, M̃ ; Z)⊕Cn−1(C̃, M̃) (6.1)

of based free Z[π]-modules, and so an element of K1(Z[π]). However, the basis we chose
for Hn(C̃, M̃ ; Z) was not geometrically meaningful and we are free to change it. After
possibly stabilising C further, it is possible to choose a basis for which (6.1) represents
the zero class in K1(Z[π]), and hence in the Whitehead group Wh(π) too (note that
further stabilisation may even be required if C is an h-cobordism). We may then use
the modification lemma to rearrange the index-n critical points of the Morse function so
that ∂n:Cn(C̃, M̃)!Cn−1(C̃, M̃) is simply projection onto the first few basis elements:
this allows us to cancel all the critical points of index n−1.

Proposition 6.22. Ỹ0(a, ε, (W, `W )) is non-empty as long as 3n<N , 2n>6, θ is
reversible, L admits a handle structure with only handles of index at most n−1, `L:L!B
is (n−1)-connected, and the natural map A!π0(BCn−1,n−2

θ,L (RN )) is surjective.

Proof. Let d=2n and l=n−1. We follow the proof of Proposition 6.18, with a few
changes. As in that proof, the first step is to produce for each W |ai the θ-surgery
data fi|ai . The method described in that proposition no longer works, and we use
Lemma 6.21 to produce the necessary data instead. From this point up to constructing
the maps ei|(ai−εi,ai+εi) there is no difference, and the argument given in the proof of
Proposition 6.18 goes through.

It remains to explain how given an embedding ei|aj we can extend it to ei|[aj ,aj+1].
We proceed in the same way: we have the embedding

fi|aj
: Λi×{aj}×Rn×Sn−1 ↪−!W |aj

disjoint from L, which extends to a continuous map

fi|[aj ,aj+1]: Λi×[aj , aj+1]×Rn×Sn−1−!W |[aj ,aj+1]

as (W |[aj ,aj+1],W |aj+1) is (n−1)-connected by assumption. We can again make this
be a self-transverse immersion of the core, but this no longer implies that the core is
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embedded: it will have isolated points of self-intersection. As 2n>6 we can remove these
using the half Whitney trick, as in the proof of Proposition 6.19. The core may still
intersect the core of [aj , aj+1]×L, as they are both of dimension n inside a 2n-manifold,
but we can again use the half Whitney trick to separate them. Given fi|[aj ,aj+1] which
is an embedding of the core and whose core is disjoint from that of [aj , aj+1]×L, we can
shrink in the Rn direction and isotope it to get an embedding disjoint from [aj , aj+1]×L,
and then extend this to ei|[aj ,aj+1] as in the proof of Proposition 6.18.

This gives the required embeddings ei, which are then combined as in the proof
of Proposition 6.18 to get (Λ, δ, e), the embedding part of the data of an element of
Ỹ0(a, ε, (W, `W )). The remaining bundle part of the data consists of an extendible (cf.
Definition 5.11) θ-structure ` on Λ×K which agrees with `W �D(∂e) on Λ×K|(−6,−2),
and is such that the effect of the θ-surgery described by this data (i.e. the restriction of
` to K|(−6,0]) lies in A. We will describe a construction which for each λ∈Λ produces a
θ-structure `λ on K⊂Rn+1×Rn; these are then combined in the obvious way.

Firstly, there is a unique θ-structure on the subspace

K|(−6,−2) =((−6,−2)×Rn)×Sn−1, (6.2)

such that the embedding ∂e preserves θ-structures (i.e. satisfies requirement (iii) of Def-
inition 5.13). Secondly, the manifold K|(−6,0]⊂Rn+1×Rn is obtained from K|(−6,−2) by
attaching an n-handle. To extend the θ-structure over this n-handle requires a null-
homotopy of the map Sn−1!B induced by the θ-structure on (6.2), and this is provided
as part of the θ-surgery data in Lemma 6.21. Finally, we need to prove that this structure
extends to a θ-structure over all of K, which is furthermore extendible. To see this, let
us write X⊂Rn+1×Rn for the union

X =K∪(Rn+1×Sn−1).

This subset is not a manifold, but the union (taken inside T (Rn+1×Rn)) of the vector
bundles TK and T (Rn+1×Sn−1) is a vector bundle over X which we shall denote TX,
and it suffices to extend the bundle map T (K|(−6,0])!θ∗γ to a bundle map TX!θ∗γ:
the restriction to TK will then be extendible. But TK is naturally identified with a
subbundle of the trivial bundle T (Rn+1×Rn)|X with trivial one-dimensional complement
and therefore we get a trivialisation ε1⊕TX∼=ε2n+1. Since K|(−6,0] is contractible, there
is then no problem with extending the stabilised bundle map ε1⊕T (K|(−6,0])!ε1⊕θ∗γ
to a bundle map ε1⊕TX!ε1⊕θ∗γ. By Lemma 5.5, we may therefore also extend the
unstabilised T (K|(−6,0])!θ∗γ to a bundle map TX!θ∗γ as desired. (The argument in
Lemma 5.5 still applies even though X is not a manifold; it is still a CW complex of
dimension d=2n which is all we used in the proof.)
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7. Proofs of the main theorems

In this section, we use the results of §§3–6 to prove the theorems stated in §1. As
explained in Remark 1.11, Theorem 1.2 follows from Theorem 1.8, which we prove in
full detail in §§7.2–7.5 below. Nevertheless, we shall first outline in some detail how to
deduce Theorem 1.2 directly from the results in §§3–6, in the hope of putting the general
case in a useful perspective. As in [GRW1], the parameterised surgery results of the
previous sections allow us to prove a general theorem about the direct limit of moduli
spaces of manifolds, independent of homological stability results.

In the following we shall work entirely in even dimension d=2n>4 and always set
N=∞. (Suitably interpreted, all results hold for sufficiently large finite N , but we shall
not pursue this here.)

7.1. Outline of the proof of Theorem 1.2

To apply the theorems in §3 and §4, we must specify a structure θ:B!BO(2n) and a
(2n−1)-dimensional manifold L with θ-structure `L: ε1⊕TL!θ∗γ. For the purpose of
deducing Theorem 1.2, we let θ=θn:BO(2n)〈n〉!BO(2n) be the n-connective cover,
and let L⊂(−1, 0]×RN be a (2n−1)-manifold with collared boundary, diffeomorphic to
D2n−1. Now, the inclusion functors induce weak equivalences

BCn−1,n−2
θn,L 'BCn−1

θn,L'BCθn,L'ψθn,L(∞, 1)'ψθn(∞, 1)'Ω∞−1 MTθn,

obtained by applying Theorem 4.1 n−1 times, Theorem 3.1 n times, Proposition 2.15
and Proposition 2.16, respectively, composed with the weak homotopy equivalence

ψθn(∞, 1)'Ω∞−1 MTθn

from [GRW1, Theorem 3.12].
To apply the result of §5, we must specify a subset A⊂π0(Ob(Cn−1,n−2

θn,L )). There is a
unique path component of Ob(Cn−1,n−2

θn,L ) consisting of manifolds diffeomorphic to S2n−1

(with its standard smooth structure). Letting A consist of this path component, Cn−1,A
θn,L

is the full subcategory of Cn−1,n−2
θn,L on the objects in A. It is clear that θn is spherical

and hence reversible (cf. Proposition 5.7), that L∼=D2n−1 admits a handle decomposition
using only handles of index less than n (since a single 0-handle suffices), and that the map
`L :D2n−1!BO(2n)〈n〉 is (n−1)-connected (it is even n-connected). Theorem 5.3 would
give the weak equivalence BCn−1,A

θn,L 'BCn−1,n−2
θn,L , except that that theorem requires A

to contain at least one object from each path component of BCn−1,n−2
θn,L , which may not

hold here. Therefore we let Ā⊂π0(Ob(Cn−1,n−2
θn,L )) be the union of A and the set of path
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components of objects which map to a path component of BCn−1,n−2
θn,L disjoint from that

of A. Theorem 5.3 does apply to Ā and gives the weak equivalences

BCn−1,Ā
θn,L 'BCn−1,n−2

θn,L 'Ω∞−1 MTθn.

By definition, the inclusion BCn−1,A
θn,L ⊂BCn−1,Ā

θn,L is just the inclusion of a path component,
and hence becomes a homeomorphism after taking the based loop space, so we get the
weak equivalence

ΩBCn−1,A
θn,L 'Ω∞ MTθn.

The category Cn−1,A
θn,L is not quite a monoid, since it contains multiple objects (namely all

those manifolds diffeomorphic to S2n−1), but the space of objects is path connected, and
we letM be the endomorphism monoid of some chosen object. By an argument similar
to the proof of Lemma 6.11, the map NpCn−1,A

θn,L !(N0Cn−1,A
θn,L )p+1 is a fibre bundle and

hence a Serre fibration with fibre NpM. Then the Bousfield–Friedlander theorem ([BoFr,
Theorem B.4] or the earlier special case [Ma, Theorem 12.7]) implies that the inclusion
BM!BCn−1,A

θn,L is a weak equivalence (this can also be seen more geometrically as in
[GRW1, Proposition 4.26]). Altogether, we obtain a weak equivalence ΩBM'Ω∞ MTθn.

The monoidM is described up to homotopy as

M'
∐
W

BDiff(W,D),

where W ranges over (n−1)-connected closed 2n-manifolds admitting a θn -structure,
and D⊂W is a submanifold equipped with a diffeomorphism D∼=D2n. (Admitting a θn -
structure is equivalent to being parallelisable over the n-skeleton. Since the pair (W,D)
is (n−1)-connected, the space of θn -structures is contractible when it is non-empty, cf.
Lemma 7.16.) In this description, the monoid structure corresponds to connected sum
and therefore M is homotopy commutative. The classical “group-completion” theorem
(cf. [McDS]) then gives an isomorphism in homology

H∗(M)[π0M−1]
∼=−−!H∗(Ω∞ MTθn),

where the left-hand side denotes the ring H∗(M) localised by inverting the multiplica-
tive subset π0M. Finally, we claim that the localisation on the left-hand side may be
calculated by inverting only the element of π0M corresponding to T=Sn×Sn. To see
this, we use that if W is an element of M, then there is another element �W with the
same underlying manifold, but where the identification D2n∼=D⊂W is changed by an
orientation-reversing diffeomorphism. Then the connected sum W#�W may be identified
with ∂((W \int(D))×[0, 1]), which we claim is diffeomorphic to the connected sum of
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b copies of T , where b=rank(Hn(W )). This can be seen by picking a minimal Morse
function on the bounding manifold (W \int(D))×[0, 1]. (It has homology Z in degree 0
and Zb in degree n and is parallelisable; cancelling critical points in a Morse function as
in [Mi2, §7 and §8] proves that (W \int(D))×[0, 1] is diffeomorphic to the boundary con-
nected sum of b copies of Sn×Dn+1.) Therefore the element [W ]∈π0M is invertible in
the ring H∗(M)[T−1], with inverse [T ]−b[�W ]. The localisation by inverting the element
[T ] may be calculated as a direct limit, and hence we have the homology equivalence

hocolim(M ·T−−!M ·T−−! ... )−!Ω∞ MTθn,

which upon restricting to the appropriate path component gives Theorem 1.2.

We now embark on the detailed proof of Theorem 1.8, which will occupy §7.2–§7.5,
as follows. Suppose given a spherical tangential structure θ:B!BO(2n), a (2n−1)-
manifold L which admits a handle structure with handles of index less than n, and a
θ-structure `L: ε1⊕TL!θ∗γ such that the underlying map L!B is (n−1)-connected.
In this situation the results of §3–6 apply, and will be summarised in §7.2 below as
a weak equivalence between Ω∞ MTθ and the loop space of the classifying space of a
category C. Then in §7.4 we apply a version of the “group-completion” theorem to relate
the homology of ΩBC to the homology of morphism spaces of C, suitably localised using
the theory of universal θ-ends developed in §7.3. In §7.5 we explain how to apply these
results to prove Theorem 1.8. Finally, in §7.6 we explain how to deduce the results about
algebraic localisation from Theorem 1.8.

7.2. The category C

Suppose that 2n>4, let θ:B!BO(2n) be a spherical tangential structure, and L be
a (2n−1)-dimensional manifold with boundary which admits a handle structure using
handles of index at most n−1. Let `L be a θ-structure on L, and suppose that the
underlying map L!B is (n−1)-connected.

Picking a collared embedding L↪!
(
− 1

2 , 0
]
×(−1, 1)∞−1, we have defined a cate-

gory Cn−1,n−2
θ,L . Finally, let A⊂π0(Ob(Cn−1,n−2

θ,L )) be the set of objects (M, `) for which
M \int(L) is diffeomorphic to a handlebody with handles of index at most n−1. In
Definition 2.11 we have defined

Cn−1,A
θ,L ⊂Cn−1,n−2

θ,L

as the full subcategory on those objects contained in A.
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Definition 7.1. A morphism in Cθ,L is a manifold W⊂[0, t]×(−1, 1)∞ with

W∩x−1
2 ((−∞, 0])= [0, t]×L

(equality as θ-manifolds). Write

W � =W \([0, t]×int(L))

for morphisms and similarly
M � =M \int(L)

for objects. Morphisms or objects X∈Cθ,L are then completely determined by X�. We
shall consider the category C defined by

Ob(C) = {M � :M ∈Ob(Cn−1,A
θ,L )},

Mor(C) = {W � :W ∈Mor(Cn−1,A
θ,L )},

made into a topological category by insisting that the functor Cn−1,A
θ,L !C given byX 7!X�

is an isomorphism of topological categories.

Whether or not the θ-manifolds M � and W � define an object and a morphism of
C seems to depend on the manifolds M=M �∪L and W=W �∪([0, t]×L). However, the
following lemma gives an intrinsic characterisation in terms of M � and W � alone. Let us
first point out that the blanket assumption that L!B be (n−1)-connected is equivalent
to ∂L!B being (n−1)-connected, as follows from the long exact sequence in homotopy
groups for the triple ∂L!L!B and the assumption that (L, ∂L) is (n−1)-connected.

Lemma 7.2. (i) An object M∈Cθ,L is in Cn−1,A
θ,L if and only if the manifold M � can

be obtained from its boundary by attaching handles of index at least n.
(ii) A morphism W∈Cθ,L whose source M and target N are objects of Cn−1,A

θ,L is
in Cn−1,A

θ,L if and only if the pair (W �, N �) is (n−1)-connected. This in turn happens if
and only if (W �, ∂W �) is (n−1)-connected.

(iii) For a morphism W∈Cn−1,A
θ,L from M to N , the pairs (W,M) and (W �,M �)

are also (n−1)-connected.

Proof. Part (i) is true by definition of A.
For the first part of (ii) we first note that if (W �, N �) is (n−1)-connected then

(W �∪N�N,N) is also (n−1)-connected, and W deformation retracts to W �∪N�N . For
the other direction, assume that (W,N) is (n−1)-connected and write π=π1(W ) with
respect to some basepoint. We then have isomorphisms

H∗(W,N ; Z[π])∼=H∗(W �∪N,N ; Z[π])∼=H∗(W �, N �; Z[π]),
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where the first isomorphism follows from the deformation retraction and the second
from excision. It follows that H∗(W �, N �; Z[π]) vanishes in degrees n−1 and below.
Since (L, ∂L) is (n−1)-connected, the inclusions N �!N and W �!W �∪N'W are also
(n−1)-connected. As n>3, the spaces N �, N , W � and W �∪N have isomorphic π0 and
π1 for any basepoint in N �. Therefore the inclusion N �!W � induces an isomorphism on
π0 and on π1 with any basepoint, and the inclusion of universal covers at any basepoint
is (n−1)-connected.

For the second part of (ii), we use that the inclusion ∂L!M � is (n−1)-connected
and therefore N �!∂W �'N �∪∂LM

� is too. Then the long exact sequence in homotopy
groups for the triple N �!∂W �!W � implies that (W �, N �) is (n−1)-connected if and
only if (W �, ∂W �) is.

For (iii), both inclusions ∂L!N � and N �!W � are (n−1)-connected. The com-
position is homotopic to ∂L!M �!W �, so it follows from the long exact sequence in
homotopy groups of this triple that (W �,M �) is also (n−1)-connected. The connectivity
of (W,M) follows as in (ii).

Our work in §3–§6 determines the homotopy type of the space ΩBC, as follows.
(We emphasise again that in this section L!B is assumed to be (n−1)-connected and
θ:B!BO(2n) is assumed to be spherical.)

Theorem 7.3. There is a weak equivalence

ΩBC 'Ω∞ MTθ,

where loops are based at any object P �∈Ob(C), and MTθ is the Thom spectrum associated
with θ:B!BO(2n).

Proof. This is identical with the argument given in §7.1. Briefly, we define the set Ā
to be the union of A and all objects not in a path component of BCn−1,n−2

θ,L containing
an element of A, and use the string of weak equivalences

BCn−1,Ā
θ,L 'BCn−1,n−2

θ,L 'BCn−1
θ,L 'BCθ,L'ψθ,L(∞, 1)'ψθ(∞, 1)'Ω∞−1 MTθ

as well as the homeomorphism BC∼=BCn−1,A
θ,L , and the fact that the inclusion

BCn−1,A
θ,L −!BCn−1,Ā

θ,L

is a homeomorphism onto the path components it hits.

The relevance of the category C to Theorem 1.8 is evident from Proposition 7.5
below.



356 s. galatius and o. randal-williams

Definition 7.4. Recall from the proof of Proposition 2.16 that we constructed a θ-
manifold D(L) which is diffeomorphic to the double of L. This contains L⊂D(L) with
its standard θ-structure, and we write L̄ for the θ-manifold D(L)\int(L). As L has a
handle structure with handles of index at most n−1, D(L) can be obtained from L by
attaching handles of index at least n. We extend the embedding of L to an embedding
D(L)!(−1, 1)∞ to get objects D(L)∈Cn−1,A

θ,L and D(L)�=L̄∈C.

Proposition 7.5. For any object P∈Cn−1,A
θ,L , there is a weak equivalence

ϕP : C(L̄, P �)−!N θ(P, `P )

such that if K:P;P ′ is a morphism in Cn−1,A
θ,L , then the diagram

C(L̄, P �) K�

�−
//

ϕP

��

C(L̄, (P ′)�)

ϕP ′

��

N θ(P, `P )
K�−

// N θ(P ′, `P ′)

commutes, i.e. ϕP is a natural transformation of functors Cn−1,A
θ,L !Top.

Proof. We define the map ϕP as the composition

ϕP : C(L̄, P �)∼= Cn−1,A
θ,L (D(L), P ) −�V−−−−! Cn−1

θ (∅, P ) '−−!N θ(P, `P ),

where V : ∅;D(L) is the θ-cobordism constructed in the proof of Proposition 2.16 and
the last map is (t,W ) 7!W−te1. It is clear that the square commutes, so it remains
to show that ϕP is a homotopy equivalence. Both its source C(L̄, P �) and its target
N θ(P, `P ) can be described as

∐
W

(Emb∂(W,R∞)×Bun∂(TW, θ∗γ))/Diff∂(W ),

where W runs over 2n-dimensional manifolds with boundary L̄∪P � which are (n−1)-
connected relative to their boundary (in the source, this uses Lemma 7.2 (ii)), but the
boundary conditions imposed on the embeddings and the bundle maps are different. Up
to homotopy, the map ϕP glues an invertible bordism between the two boundary con-
ditions. (More precisely, on the homotopy equivalent subspace of C(L̄, P �) consisting of
morphisms (t,W ) with t=1, we glue V ∪{0}×L([0, 1]×L), which after smoothing corners
is equivalent to gluing a trivial cobordism.)
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7.3. Universal θ-ends and the proof of Addendum 1.9

Let θ:B!BO(2n) be spherical. Recall from Definition 1.7 that a universal θ-end is a
submanifoldK⊂[0,∞)×R∞ with θ-structure `K such that x1:K![0,∞) has the natural
numbers as regular values. We insist that

(i) Each K|[i,i+1] is a highly connected cobordism, i.e. is (n−1)-connected relative
to either end.

(ii) For each highly connected θ-cobordism W :K|i;P , there is an embedding
j:W ↪!K|[i,∞), and a homotopy `K �Dj'`W , both relative to K|i.

We wish to have the notion of universal θ-end available to us in the cobordism
category C. Let K|0,K|1, ... be a sequence of objects in C, and K|[i−1,i]:K|i−1!K|i be
a sequence of morphisms in C. For integers 06a<b, let us write

K|[a,b] =K|[b−1,b]�K|[b−2,b−1]�...�K|[a,a+1]

for the composition of the morphisms from K|a to K|b. There are natural inclusions
K|[0,a]⊂K|[0,a+1]⊂... and we let K denote the union: a non-compact smooth manifold
with θ-structure. The symbol K|[a,b] is not ambiguous, and we can also make sense of
K|[a,∞)=

⋃
b>aK|[a,b].

Definition 7.6. Say that a non-compact manifold K of the above form is a universal
θ-end in C if, in the notation just introduced, properties (i) and (ii) above hold, where
in (ii) we require W to be a morphism in C.

Let us remark that it would be natural to impose a slightly stronger condition in
(ii), namely that the embedding and the homotopy be relative to the slightly larger
set K|i∪([0, t]×∂L), when W⊂[0, t]×[0, 1)×(−1, 1)∞. In fact the two conditions are
equivalent, as the inclusion K|i!K|i∪([0, t]×∂L) is isotopic to a diffeomorphism (after
unbending the corner of K|i∪([0, t]×∂L)).

Proposition 7.8 below proves a version of Addendum 1.9 for universal θ-ends in C.
Before giving the proof, we make some preparations.

Lemma 7.7. Let W :N;M be a highly connected cobordism between closed mani-
folds. There exist cobordisms F :M;M and G:N;N such that F �W and W �G both
admit handle structures using only handles of index n. Similarly, if W is a morphism
in the category C, then F and G can be taken to be morphisms in this category, with the
same conclusion (in this case, attaching handles along embeddings Sn−1×Dn ↪!int(N)).

Proof. The pairs (W,M) and (W,N) are both (n−1)-connected, either by assump-
tion or by Lemma 7.2. If we let F and G be sufficiently large multiples of

([0, 1]×M)#(Sn×Sn) and ([0, 1]×N)#(Sn×Sn),
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respectively, then, by the method used in the proof of Lemma 6.21, both F �W and W �G

admit the required handle decompositions.

Proposition 7.8. Let K|[i,i+1] be a sequence of composable morphisms in C and
let K=

⋃
i>1K|[0,i] be the infinite composition. Then (K, `K) is a universal θ-end in C

if and only if the following conditions hold :
(i) For each integer i, the map πn(K|[i,∞))!πn(B) is surjective, for all basepoints

in K.
(ii) For each integer i, the map πn−1(K|[i,∞))!πn−1(B) is injective, for all base-

points in K.
(iii) For each integer i, each path component of K|[i,∞) contains a submanifold

diffeomorphic to (Sn×Sn)\int(D2n), which in addition has null-homotopic structure map
to B.

Proof. To prove the “if” direction, we must show that for each integer i and each
highly connected cobordism W :K|i;P with θ-structure `W , there is an embedding
j:W ↪!K|[i,∞) and a homotopy `K �Dj'`W , all relative to K|i.

By Lemma 7.7, for any such W there is a cobordism F :P;P so that W �F admits a
handle structure with handles of index n only, so it suffices to consider the case where W
consists of a single n-handle relative toK|i, attached along some embedding of Sn−1×Dn

into K|i. We need to find an extension of this embedding into K|[i,∞) (with the correct
homotopy class of θ-structure). The map Sn−1×Dn!K|i!K|[i,∞) is null-homotopic by
assumption (ii): it is certainly null-homotopic when composed with K|[i,∞)!B, because
that composition is equal to the composition Sn−1×Dn!Ki!W!B. Thus there is a
continuous map f :W!K|[i,∞) relative to K|i. Furthermore, as πn(K|[i,∞))!πn(B) is
surjective by assumption (i), we can change f by adding on elements of πn(K|[i,∞)) so
that

W
f−−!K|[i,∞)

`K−−!B

is homotopic relative to K|i to `W . The θ-structures on W and K now give bundle
isomorphisms

TW ∼= `∗W θ∗γ∼= f∗`∗Kθ
∗γ and TK|[i,∞)

∼= `∗Kθ
∗γ,

and hence an isomorphism TW∼=f∗TK|[i,∞) relative to K|i, i.e. f :W!K is covered by
a bundle map TW!TK, which near K|i is the derivative of the embedding. By Smale–
Hirsch theory, we may therefore homotope f :W!K|[i,∞) to an immersion, without
changing it near K|i.

Finally, we explain how to replace the immersion f :W!K|[i,∞) by an embedding.
It suffices to make f an embedding near a core (Dn, ∂Dn)⊂(W,K|i) of the n-handle,
and we shall write f̂ :Dn!K|[i,∞) for the restriction of f . After changing f by a small
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Figure 10. Disjoint discs inside (Dn×Dn)\((Sn×Sn)\int(D2n)).

isotopy, we may assume that all self-intersections of f̂ are transverse. We shall explain
how to remove one self-intersection point of f̂ , changing the homotopy class of f in the
process. Around a self-intersection point, choose a coordinate Rn×Rn ↪!K|[i,∞) so that
Rn×{0} and {0}×Rn give local coordinates around the two preimages of the double
point. By assumption (iii) we can find an embedded (Sn×Sn)\int(D2n)⊂K|[i,∞) with
null-homotopic map to B. We can also assume it is disjoint from the image of f̂ , since
Dn is compact. Then we choose an embedded path from this (Sn×Sn)\int(D2n) to the
patch Rn×Rn disjoint from the image of f̂ , and thicken it up: inside this we have a
subset diffeomorphic to the boundary connected sum

(Dn×Dn)\((Sn×Sn)\int(D2n)), (7.1)

which the image of f̂ intersects in Dn∨Dn=(Dn×{0})∪({0}×Dn). This situation is
depicted (for n=1) in the first picture in Figure 10. Inside this subset there is a pair
of disjointly embedded discs which are equal to the standard pair near the boundary,
as shown in the second picture of Figure 10. (The construction in the figure works for
any n. More formally a manifold diffeomorphic, but not equal, to (7.1) may be obtained
by performing the connected sum of Dn×Dn and Sn×Sn at the origin (0, 0)∈Dn×Dn

in a way that identifies neighbourhoods of the wedge points in

Dn∨Dn⊂Dn×Dn and Sn∨Sn⊂Sn×Sn.

The resulting manifold has the disjoint discs

D1 =(Dn×{0})#(Sn×{∗}) and D2 =({0}×Dn)#({∗}×Sn)

and is diffeomorphic (relative to (∂Dn×{0})q({0}×∂Dn)) to (7.1) where the connected
sum is performed away from Dn∨Dn⊂Dn×Dn. The second picture in Figure 10 shows
the image of D1 and D2 under such a diffeomorphism.)
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We can modify f̂ by redefining it to have these discs as image instead. This reduces
by 1 the number of geometric self-intersections of f̂ , and up to homotopy we have added
an element of πn((Sn×Sn)\int(D2n)) to the homotopy class of f̂ . As

(Sn×Sn)\int(D2n)−!K|[i,∞)−!B

was null-homotopic, we have not changed the homotopy class of f̂ in B.
After finitely many steps, we have changed f̂ to an embedding. The corresponding

embedding f :W!K|[i,∞) (obtained by thickening f̂ up again) is homotopic to the orig-
inal one after composing with `K :K|[i,∞)!B, so `K �f'`W relative to K|i. Hence the
induced θ-structure on W is homotopic to the given one relative to K|i.

To prove the “only if” direction, we must prove that any universal θ-end (K, `K)
satisfies the three conditions. It is clear that (iii) is necessary: For any i we can let
W be the boundary connected sum of the cylinder [i, i+1]×K|i and the (parallelisable)
manifold (Sn×Sn)\int(D2n) equipped with a trivial θ-structure. Universality implies
that this admits an embedding into K|[i,∞), and hence (Sn×Sn)\int(D2n) does too.

For property (i), it suffices to prove that for any i and any α∈πn(B), there exists a
morphism Wα∈C(K|i, P ) for some P , with α∈Im(πn(Wα)!πn(B)). To construct such
a manifold, we may represent α by a map Sn!B and lift the composition

θ�α:Sn−!B−!BO(2n)

to a map f :Sn!BO(n). If we let D!Sn be the disc bundle of the vector bundle
classified by f , the tangent bundle of D is classified by θ�α, and therefore admits a
θ-structure whose underlying map Sn'D!B represents α. We can then let Wα be the
boundary connected sum of [i, i+1]×K|i and D.

Finally, for property (ii), we use that each K|[j,j+1] is a highly connected cobordism
to see that πn−1(K|i)!πn−1(K|[i,∞)) is surjective. It therefore suffices to prove that for
any α∈Ker(πn−1(K|i)!πn−1(B)), there exists a morphism Wα∈C(K|i, P ) for some P ,
with α∈Ker(πn−1(K|i)!πn−1(Wα)). We may represent α by an embedding Sn−1!K|i.
Since the composition Sn−1!K|i!B!BO(2n) is trivial, the normal bundle of the
embedding is stably trivial and hence trivial, so we may extend to an embedding

f :Sn−1×Dn−!K|i.

The underlying manifold of the morphismWα is then defined as the trace of surgery along
f , and a θ-structure is constructed from a choice of null-homotopy of Sn−1!K|i!B.

Proof of Addendum 1.9. The assumptions of the addendum are exactly as in Propo-
sition 7.8, and the same argument applies.
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The following three propositions establish further useful properties of universal θ-
ends. The first proposition gives a refinement of property (ii), which lets us exert more
control on the behaviour of the embedding j which is provided by (ii). Propositions 7.10
and 7.11 give strong existence and uniqueness properties for universal θ-ends (and uni-
versal θ-ends in C), which essentially say that a universal θ-end (K, `K) is determined
up to diffeomorphism (respecting θ-structures) by (K|0, `K |0).

Proposition 7.9. If (K, `K) is a universal θ-end (or a universal θ-end in C) then
it also satisfies

(ii′) For each highly connected θ-cobordism W :K|i;P , there is a k�i, an em-
bedding j:W ↪!K|[i,k], and a homotopy `K �Dj'`W , both relative to K|i, such that the
complement of j(W ) is a cobordism Z:P;K|k which is highly connected.

Proof. Let us treat the case of a universal θ-end; working in C can be done in the
same way. As W is (n−1)-connected relative to either end, Lemma 7.7 applies, and
for sufficiently large g, the manifold W ′=W#g(Sn×Sn)=(([0, 1]×P )#g(Sn×Sn))�W
admits a handle structure relative to K|i using handles of index n only.

By universality, there is an embedding of θ-manifolds j′:W ′ ↪!K|[i,k′] relative to
K|i. We wish to modify this embedding, and increase k′, so that if

{eα: (Dn×Dn, Dn×Sn−1) ↪! (W ′,K|i)}α∈I

denotes the collection of relative n-handles of W ′, there exist embedded spheres

{fβ :Sn ↪!K|[i,k′]}β∈I

so that

eα({0}×Dn) t fβ(Sn) =
{

∅, if α 6=β,
{∗}, if α=β.

This will be done by inductively modifying j′ on the image of eα, one α at a time. For
each α, the composition j′�eα:Dn×Dn!W ′!K|[i,k′] may be extended to an embed-
ding Rn×(Dn, ∂Dn)!(K|[i,k′],K|i) and by property (iii) of Proposition 7.8 this may be
further extended to an embedding

c: (Rn×Dn)\((Sn×Sn)\int(D2n))−!K|[i,∞),

disjoint from the other handles and any fβ already constructed, such that the structure
map to B is null-homotopic on the embedded (Sn×Sn)\int(D2n). Then the image
j′(eα(Dn×Dn)) is contained in the image of c, and it is depicted in the first part of
Figure 11.
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Figure 11. Modifying j′ on a handle of W ′.

Just as in the proof of Proposition 7.8 and Figure 10, we may then change the
map j′ on the image of eα as indicated in the second part of Figure 11: The image of
the handle under the modified j′ is the shaded strip in the figure. Its homotopy class
is changed by adding one of the summands in Sn∨Sn⊂(Sn×Sn)\int(D2n)⊂K|[i,∞).
Because the structure map K!B is null-homotopic on this Sn∨Sn, we have not changed
the homotopy class of the composition W ′!K|[i,∞)!B. We can then use the inclusion
of the other summand Sn!Sn∨Sn!K|[i,∞) as fβ , shown as the small transverse sphere
in Figure 11.

We denote by j′:W ′ ↪!K|[i,k] this improved embedding, and by Z ′ the complement
of the interior of the image of j′. We now prove that the cobordism Z ′ is highly con-
nected. This can be verified one path component at a time, so we may assume that
Z ′ is path connected and pick a basepoint. The cobordism W ′ is itself highly con-
nected, and since n>3, composing with W ′ from either side will preserve fundamental
groups. Therefore K|i, W ′, P , Z ′, K|[i,k] and K|k all have the same fundamental group,
which we denote by π. The Z[π]-module Hn(W ′,K|i; Z[π]) is free with basis [eα], so
Hom(Hn(W ′,K|i; Z[π]),Z[π]) is free on the dual basis elements [eα]∨. The intersection
pairing gives a map

Hn(K|[i,k]; Z[π])−!Hom(Hn(W ′,K|i; Z[π]),Z[π]),

which by construction sends [fα] to [eα]∨, and so is surjective. This map can be factored
as

Hn(K|[i,k]) // Hn(K|[i,k],K|k)
ϕ

// Hn(K|[i,k], Z
′) EDBC

F@GA
∼= // Hn(W ′, P )

∼= // Hn(W ′,K|i)
∼= // Hom(Hn(W ′,K|i),Z[π]),

where all homology and cohomology is with coefficients in Z[π]. The third map in the
composition is an isomorphism by excision, the fourth by Poincaré duality (where we
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again use the conventions of [Wa, Chapter 2] to interchange left and right Z[π]-modules
using the orientation character). The fifth is an isomorphism because (W ′,K|i) is (n−1)-
connected so the higher Ext terms in the universal coefficients spectral sequence (cf. [Le,
Theorem 2.3]) vanish. Therefore the map ϕ is surjective and it follows from the long exact
sequence in Z[π]-homology for the triple (K|[i,k], Z

′,K|k) that Hn−1(Z ′,K|k; Z[π])=0.
The same long exact sequence shows the vanishing of H∗(Z ′,K|k; Z[π]) in lower degrees,
and hence (Z ′,K|k) is (n−1)-connected.

That the pair (Z ′, P ) is (n−1)-connected follows by the long exact sequence for
Z[π]-homology of the triple (K|[i,k],W

′,K|i) and excision (Z ′, P )∼(K|[i,k],W
′). Finally,

we note that if Z denotes the complement of the image of j=j′|W , then we have

Z =Z ′�(([0, 1]×P )#g(Sn×Sn))

so it is also a highly connected cobordism.

Proposition 7.10. Let (K, `K) and (K ′, `K′) be universal θ-ends, and suppose we
are given a highly connected θ-cobordism W :K|0;K ′|0. Then there is a diffeomorphism
ϕ:W∪K′|0K

′∼=K, and a homotopy `K �Dϕ'`W∪K′ , both relative to K|0. Furthermore,
there is a weak homotopy equivalence

hocolim
i!∞

N θ(K|i, `K |i)'hocolim
i!∞

N θ(K ′|i, `K′ |i).

Proof. By replacing K ′ with W∪K′|0K
′, we may as well assume that K|0=K ′|0 as

θ-manifolds, and that W is the trivial cobordism. As K ′ is a universal θ-end, we may find
an embedding of θ-manifolds j1:K|[0,1] ↪!K ′|[0,k′1]

relative to K|0, and by Proposition 7.9
we may suppose its complement Z1:K|1;K ′|k′1 is highly connected. Now, as K is a
universal θ-end, we may find an embedding of θ-manifolds j′1:Z1 ↪!K|[1,k1] relative to
K|1, again with highly connected complement Z2:K ′|k′1 ;K|k1 . Together, j−1

1 and j′1
give an embedding of θ-manifolds K ′|[0,k′1]

↪!K|[0,k1]. Continuing in this way, we produce
the required diffeomorphism ϕ and homotopy.

For the second part, note that we have constructed a direct system

N θ(K|0)
K|[0,1]�−−−−−−−!N θ(K|1)

Z1�−−−−−!N θ(K ′|k′1)
Z2�−−−−−!N θ(K|k1)−! ...

which contains cofinal subsystems which are also cofinal in either of the direct systems
used to form the homotopy colimits in the statement.

Proposition 7.11. Let πn(B) be countable. Then for any object (M, `M )∈C there
is a universal θ-end (K, `K) in C with (K|0, `K |0)=(M, `M ). Moreover, K∪([0,∞)×L)
is then a universal θ-end.



364 s. galatius and o. randal-williams

Proof. In the proof of Proposition 7.8 we saw that for each

α∈Ker(πn−1(M)!πn−1(B)),

there exists a morphism Wα∈C(M,P ) with α∈Ker(πn−1(M)!πn−1(Wα)), and for each
element α∈πn(B), there exists a morphism Wα∈C(M,P ) with α∈Im(πn(Wα)!πn(B)).
A priori, the target P depends on α, but as θ has been assumed to be spherical, it
is reversible (by Proposition 5.7), and we may find another morphism P;M ; after
composing, we may assume that M=P so we have endomorphisms Wα∈C(M,M). We
then construct a universal θ-end in C by letting K|i=M for each integer i>0 and letting
each K|[i,i+1] be of the form Wαi#(Sn×Sn), where the αi form a sequence of elements
of πn(B)∪Ker(πn−1(M)!πn−1(B)) in which each element occurs infinitely often. (This
is possible because πn(B) is assumed to be countable and πn−1(M) is automatically
countable.) It then follows from Proposition 7.8 that K is a universal θ-end in C.

It is obvious that gluing [0,∞)×L to a universal θ-end in C gives a universal θ-end,
since the homotopical properties in Proposition 7.8 are clearly preserved.

Corollary 7.12. Let (K, `K) be a universal θ-end for which P=(K|0, `K |0) is an
object of Cn−1,A

θ,L . Then we may isotope the proper embedding K![0,∞)×(−1, 1)∞ and
homotope the bundle map `K :TK!θ∗γ, both relative to K|0, after which K is of the
form K�∪([0,∞)×L) where K� is a universal θ-end in C.

Proof. By Proposition 7.8, the structure map `K :K!B induces a surjection on πn.
Since K is a manifold, πn(K), and hence πn(B), is countable, so there exists a universal
θ-end in C, by Proposition 7.11. Denoting this by K�, the θ-manifold K�∪([0,∞)×L) is
a universal θ-end, and hence by Proposition 7.10 is isomorphic to the original K.

7.4. Group completion

Let us return to the category C of §7.2. Assigning to a morphism W∈C(P0, P1) the
corresponding 1-simplex in the nerve of C gives a continuous map C(P0, P1)!ΩP0,P1BC,
analogous to the mapM!ΩBM in the outline in §7.1. As in that section, the effect in
homology can be studied by a version of the “group-completion” theorem. The classical
group-completion theorem concerns a topological monoid M , and says that the map
H∗(M)!H∗(ΩBM) is an algebraic localisation at the multiplicative subset π0(M)⊂
H∗(M). The group-completion theorem holds under the assumption that this localisation
admits a calculus of right fractions, cf. [McDS]. A similar result holds for topological
categories, and here implies that H∗(ΩBC) is a suitable direct limit of H∗(C(P0, P1)),
generalising the localisation in the monoid case. As in the monoid case, some assumption
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is needed in order to apply the group-completion theorem: Lemma 7.15 below can be
seen as a multi-object version of admitting a calculus of right fractions.

Theorem 7.13. Let

K|0
K|[0,1]−−−−−!K|1

K|[1,2]−−−−−!K|2
K|[2,3]−−−−−!K|3

K|[3,4]−−−−−! ...

be a sequence of composable morphisms in C such that K is a universal θ-end in the
category C and C(L̄,K|0) 6=∅. Then there is a map

hocolim
i!∞

C(L̄,K|i)−!ΩBC

which is a homology equivalence.

The proof will be based on Proposition 7.14 below. Let Fi: Cop!Top denote the
representable functor C(−,K|i), in the sense of [GMTW, Proposition 7.1] and the dis-
cussion preceding it. Let F∞: Cop!Top denote the (objectwise) homotopy colimit of
the natural transformations Fi!Fi+1 given by right composition with K|[i,i+1]. The
following proposition is the key ingredient for proving Theorem 7.13.

Proposition 7.14. The functor F∞ sends each morphism in C to a homology equiv-
alence.

Proof. By Lemma 7.7, it suffices to prove that F∞ sends any cobordism admitting
a handle structure with a single n-handle to a homology isomorphism: indeed, in the
notation of that lemma, for any cobordism W, the functor F∞ sends both W �F and
G�W to homology isomorphisms, but then it must send W to one as well. We therefore
consider a cobordism W∈C(N,M) admitting a handle structure with a single n-handle.
The cobordism W gives a map of direct systems

C(M,K|0) //

−�W

��

C(M,K|1) //

−�W

��

C(M,K|2) //

−�W

��

C(M,K|3) //

−�W

��

...

C(N,K|0) // C(N,K|1) // C(N,K|2) // C(N,K|3) // ... .

Taking homotopy colimits of the rows gives a map F∞(M)!F∞(N), and Lemma 7.15
below implies that the induced map on homology is a bijection, finishing the proof of
Proposition 7.14.

Proof of Theorem 7.13. We will apply [GMTW, Proposition 7.1] to the functor F∞.
Each of the maps N0(C#K|i)=N0(CoFi)!N0(C) is a fibre bundle by an argument similar
to the proof of Lemma 6.11 and hence a Serre fibration. Using that F∞=hocolimi!∞ Fi
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sends all morphisms to homology equivalences, it follows as in [GMTW, Proposition 7.1]
that the square

F∞(L̄) //

��

B(CoF∞)

��

{L̄} // BC

is homology cartesian and so the induced map from F∞(L̄) to the homotopy fibre of
B(CoF∞)!BC is a homology equivalence. Since B(CoF∞)'hocolimi!∞B(CoFi) is con-
tractible, this homotopy fibre is equivalent to ΩBC establishing Theorem 7.13.

(As stated, [GMTW, Proposition 7.1] requires hocolimi!∞N0(CoFi)!N0C to be a
Serre fibration, and it is not clear that the telescope of a direct system of Serre fibrations
over the same base is again a Serre fibration. Such a telescope is however easily seen to
have the weak covering homotopy property, i.e. the WCHP of [D, Definition 5.1], for CW
complexes. This property is closed under pullback and implies quasifibration, which is
sufficient here.)

Lemma 7.15. Let W :N;M be a cobordism which is obtained by attaching a single
n-handle to N . For each i there is a k>i such that the commutative square

C(M,K|i)
K|[i,k]�−

//

−�W

��

C(M,K|k)

−�W

��

C(N,K|i)

::u
u

u
u

u
u

u
u

u
u K|[i,k]�−

// C(N,K|k)

(7.2)

admits a dashed map making the top triangle commute up to homotopy, and a (possibly
different) dashed map making the bottom triangle commute up to homotopy.

Proof. The objects M and N in C are submanifolds of [0, 1)×R∞ (with θ-structure),
and the morphism W∈C(N,M) is a submanifold of [0, t]×[0, 1)×R∞. Rotating W in
the first two coordinate directions gives a submanifold

�W ⊂ [0, t]×(−1, 0]×R∞

with incoming boundary {0}×�M and outgoing boundary {t}×�N . As in the proof of
Proposition 2.16, the θ-structure on M extends to a θ-structure on the closed manifold
�M∪M⊂(−1, 1)×R∞, giving an object 〈M,M〉∈Cn−1

θ with a canonical null-bordism

V ∈Cn−1
θ (∅, 〈M,M〉).
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(a) N M K|i

W

VN

[0, t]×�N [0, s]×�N

�N �N �N

(b) M K|i K|i

[0, t]×K|i
VM

[0, s]×�M �W

�M �M �N

Figure 12. Schematic description of the two compositions in the diagram, along the top (a)
and along the bottom (b). The unlabelled cobordism represents a point in C(M, K|i), of
length s, and VX denotes the canonical null-bordism of �X∪X.

Similarly, we have objects 〈M,K|i〉=�M∪K|i and 〈N,K|i〉=�N∪K|i, and the submanifold
�W∪([0, t]×K|i)⊂[0, t]×(−1, 1)×R∞ inherits a θ-structure from W, giving an element of
Cn−1

θ (〈M,K|i〉, 〈N,K|i〉) which we shall denote 〈W,K|i〉. We now consider a diagram

C(M,K|i)
−�W

//

'

��

C(N,K|i)

'

��

N θ(〈M,K|i〉)
〈W,K|i〉�−

// N θ(〈N,K|i〉)

similar to the diagram in Proposition 7.5. The vertical maps are defined as in that
proposition, but with L and L̄ replaced by �M and M (or �N and N for the right column),
and are therefore weak equivalences by the same argument. The two compositions from
the top left corner to the bottom right corner of the diagram are induced by gluing
isomorphic θ-manifolds with equal boundary, and are therefore homotopic; Figure 12
gives a schematic view of the manifolds involved.

The diagram of solid arrows in (7.2) may now be replaced by

N θ(〈M,K|i〉)
〈M,K|[i,k]〉�−

//

〈W,K|i〉�−

��

N θ(〈M,K|k〉)

〈W,K|k〉�−

��

N θ(〈N,K|i〉)
〈N,K|[i,k]〉�−

// N θ(〈N,K|k〉),

where 〈M,K|[i,k]〉=([i, k]×�M)∪K|[i,k]⊂[i, k]×(−1, 1)×R∞, and similarly for 〈N,K|[i,k]〉.
Let us first show that there is a dashed map making the top triangle commute

up to homotopy, for some k�i. We wish to find an embedding (of θ-manifolds) of
〈W,K|i〉 into 〈M,K|[i,k]〉 relative to 〈M,K|i〉, with complement being a θ-cobordism
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Z: 〈N,K|i〉;〈M,K|k〉. If we can ensure that (Z, 〈M,K|k〉) is (n−1)-connected, then
gluing on Z gives a map

Z �−:N θ(〈N,K|i〉)−!N θ(〈M,K|k〉)

making the top triangle commute (as 〈W,K|i〉�Z∼=〈M,K|[i,k]〉 as θ-manifolds), as re-
quired.

By definition of the category C, �M is obtained from its boundary, ∂L, by attaching
handles of index at least n. Thus, by transversality, the attaching map for the n-handle of
�W relative to �M may be assumed to have image in a collar neighbourhood [−ε, 0]×∂L⊂
�M . Thus 〈W,K|i〉 may be obtained from 〈M,K|i〉 by attaching a single n-handle along

f :Sn−1×Dn ↪−! [0, ε]×∂L⊂K|i,

so up to diffeomorphism (relative to its incoming boundary) the cobordism 〈W,K|i〉 is of
the form 〈M,W ′〉 for some cobordism W ′:K|i;X in C. As K|[i,∞) is a universal θ-end
in the category C, there exists an embedding of θ-manifolds j′:W ′ ↪!K|[i,k] relative to
K|i, for some k�i, and by Proposition 7.9 we may assume that its complement Z ′ is
highly connected. Gluing M back in, we obtain an embedding j: 〈W,K|i〉↪!〈M,K|[i,k]〉
relative to 〈M,K|i〉 whose complement Z∼=〈M,Z ′〉 is highly connected, as required.

To produce the dashed map making the bottom triangle commute up to homotopy,
we must produce an embedding relative to 〈N,K|k〉 of 〈W,K|k〉 into 〈N,K|[i,k]〉, for
some suitably large k, with an appropriate connectivity condition on its complement. As
we shall explain, this reduces to the same embedding problem as for the upper triangle.
We have collar neighbourhoods [−ε, 0]×∂L⊂�N and [0, ε]×∂L⊂K|i, and as above, we
can suppose �W is obtained from �N by attaching a single n-handle along a map

f0:Sn−1×Dn ↪−! [−ε, 0]×∂L⊂�N.

We now consider �N to lie inside

([i−ε, i]×(�N∪K|i))∪K|[i,∞),

where we may extend f0 inside [i−ε, i]×[−ε, ε]×∂L to an embedding f[0,1] of [0, 1]×
Sn−1×Dn so that f1=f[0,1]|{1}×Sn−1×Dn is an embedding into {i}×[0, ε]×∂L⊂K|i.
Since K|[i,∞) is a universal θ-end in C, we may extend the embedding f1 to an embedding
of the handle {1}×Dn×Dn into K|[i,k] for some k�i, having θ-structure homotopic to
the one given on the n-handle of W, and as in the first part of the proof of Proposition 7.9
we can ensure that there is an embedded n-sphere in K|[i,k] intersecting the core of this
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handle transversely in precisely one point. Choosing a further extension f[−1,0] of f0 to
an embedding [−1, 0]×Sn−1×Dn ↪![i, k]×�N which sends {−1}×Sn−1×Dn to {k}×�N ,
we altogether obtain an embedding

(([−1, 1]×Sn−1)∪({1}×Dn))×Dn−! ([i−ε, i]×(�N∪K|i))∪K|[i,k]∪([i, k]×�N).

The source of this map is diffeomorphic to a tubular neighbourhood of the n-handle in
W, and the target is diffeomorphic relative to K|k∪�N=〈N,K|k〉 to K|[i,k]∪([i, k]×�N)=
〈N,K|[i,k]〉, so this induces an embedding

e: 〈W,K|k〉 ↪−! 〈N,K|[i,k]〉

relative to 〈N,K|k〉, with complement Z being a cobordism from 〈N,K|i〉 to 〈M,K|k〉.
It remains to show that Z is a highly connected cobordism. As usual, all manifolds

in sight have the same fundamental group, π, and we proceed as in the second part of
the proof of Proposition 7.9. We have ensured that the map

Hn(〈N,K|[i,k]〉, 〈N,K|i〉; Z[π])−!Hn(〈N,K|[i,k]〉, Z ′; Z[π])∼= Z[π]

in the long exact sequence for the triple (〈N,K|[i,k]〉, Z ′, 〈N,K|i〉) is surjective, as under
excision, Poincaré duality, and universal coefficients it corresponds to the map

Hn(〈N,K|[i,k]〉, 〈N,K|i〉; Z[π])−!Hn(W,N ; Z[π])∨∼= Z[π]

sending a cycle to the functional represented by intersection with that cycle, and we
made sure that there was a sphere in 〈N,K|[i,k]〉 intersecting the core of the embedded
n-handle of (W,N) transversely in one point. It then follows from the long exact sequence
for the triple (〈N,K|[i,k]〉, Z ′, 〈N,K|i〉) that (Z ′, 〈N,K|i〉) is (n−1)-connected. The long
exact sequence for the triple (〈N,K|[i,k]〉, 〈W,K|k〉, 〈N,K|k〉) and excision

(〈N,K|[i,k]〉, 〈W,K|k〉)∼ (Z ′, 〈M,K|k〉)

shows that (Z ′, 〈M,K|k〉) is also (n−1)-connected.

The argument above can not be improved to show that F∞ sends each morphism
in C to a weak homotopy equivalence, since the dashed maps we constructed in no sense
preserve basepoints. The case n=0 gives rise to the following example from [McDS]: we
have F∞(∅)'Z×BΣ∞ and the morphism 1: ∅;∅ given by a single point induces the
shift map on Σ∞, that is, the map induced by the self-embedding given by {1, 2, ... }∼=
{2, 3, ... }↪!{1, 2, ... }. This is not surjective, so the map is not a homotopy equivalence;
it is however a homology equivalence, by the argument we have presented.
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7.5. Proof of Theorem 1.8

We revert to the situation of Theorem 1.8: We are given a spherical θ:B!BO(2n) and
a universal θ-end (K, `K) with N θ(K|0, `K |0) 6=∅. In order to apply the results of the
previous sections, we shall produce a new structure θ′:B′!BO(2n) and a θ′-manifold L
whose structure map L!B′ is (n−1)-connected.

Let θ′:B′!B θ−−!BO(2n) be obtained as the nth stage of the Moore–Postnikov
tower of `K :K!B, and `′K be the θ′-structure on K given by the Moore–Postnikov
factorisation.

Lemma 7.16. Let W be a manifold with boundary ∂W, and suppose that (W,∂0W )
is (n−1)-connected, for a collection of boundary components ∂0W⊂∂W . Let θ:B!
BO(2n) and θ′:B′!BO(2n) be two tangential structures and f :B′!B be a fibrewise
map whose homotopy fibres are (n−2)-types. If `′∂0W is a θ′-structure on ∂0W with
underlying θ-structure `∂0W , then

Bun∂(TW, (θ′)∗γ; `′∂0W )−!Bun∂(TW, θ∗γ; `∂0W ) (7.3)

is a weak homotopy equivalence.

Proof. As the homotopy fibres of f :B′!B are (n−2)-types and (W,∂0W ) is (n−1)-
connected, the space of lifts

∂0W
`′∂0W

//
� _

��

B′

f

��

W
`W //

=={
{

{
{

{
{

B

is contractible, for each θ-structure `W on W restricting to `∂0W on the boundary. But
this space of lifts is easily identified with the homotopy fibre of the map (7.3) over the
point `W .

By Proposition 7.8, the map K!B induces an injection in πn−1 and a surjection in
πn, so the nth and (n−1)-st stages of the Moore–Postnikov tower actually agree, and in
particular the homotopy fibres of B′!B are (n−2)-types. The following results allow
us to work with θ′-manifolds instead of θ-manifolds for many purposes.

Corollary 7.17. The natural map induces a weak equivalence

N θ′(K|i, `′K |i)
'−−!N θ(K|i, `K |i).

Proof. This follows from Lemma 7.16 in the case ∂0W=∂W by forming the homo-
topy orbit space by the action of Diff(W,∂W ) and taking disjoint union over all W with
∂W=K|i for which (W,∂W ) is (n−1)-connected.
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Lemma 7.18. The θ′-manifold (K, `′K) is a universal θ′-end.

Proof. We verify the conditions of Definition 1.7. The cobordismsK|[i−1,i] are highly
connected, as we have assumed thatK is a universal θ-end. If (W :K|i;P, `′W ) is a highly
connected θ′-cobordism, with underlying θ-structure `W , then by assumption there is an
embedding j:W!K|[i,∞) and a homotopy `K �Dj'`W , all relative to K|i, but then by
Lemma 7.16 there is also a homotopy `′K �Dj'`′W relative to K|i.

Proof of Theorem 1.8. Recall that the theorem asserts a homology equivalence be-
tween the homotopy colimit of the direct system

N θ(K|0, `K |0)
K|[0,1]−−−−−!N θ(K|1, `K |1)

K|[1,2]−−−−−!N θ(K|2, `K |2)
K|[2,3]−−−−−! ... (7.4)

and the infinite loop space Ω∞ MTθ′. By Corollary 7.17 and Lemma 7.18, it suffices
to prove the theorem in the case θ=θ′, i.e. when `K :K!B is n-connected. In order to
apply Theorem 7.13, we first need to define a θ-manifold L (in order to have the category
C defined). To do so, we pick a self-indexing Morse function f :K|0![0, 2n−1] and let
L=f−1

([
0, n− 1

2

])
. Then the inclusions L!K|0 andK|0!K are both (n−1)-connected,

so the structure map L!B is (n−1)-connected and we have defined the category C,
satisfying Theorem 7.13. By Proposition 7.10 we may replace (K, `K) with any other
universal θ-end without changing the homotopy type of the homotopy colimit (7.4), as
long as K|0 is unchanged, and by Corollary 7.12 there exists a universal θ-end of the
form K�∪([0,∞)×L), where K� is a universal θ-end in C. Now, by Proposition 7.5 the
direct system (7.4) is homotopy equivalent to

C(L̄,K|�0)
K|�[0,1]−−−−−! C(L̄,K|�1)

K|�[1,2]−−−−−! C(L,K|�2)
K|�[2,3]−−−−−! ... .

By Theorem 7.13, the homotopy colimit is homology equivalent to ΩBC, which in turn
is weakly equivalent to Ω∞ MTθ=Ω∞ MTθ′, by Theorem 7.3.

7.6. Proofs of Lemma 1.12 and Theorem 1.13

Let us first show that K⊂K0 is a submonoid, and that it is commutative. Recall that
K0 was the set of isomorphism classes of highly connected cobordisms K⊂[0, 1]×R∞

with θ-structure, starting and ending at (P, `P ), and that K is the subset admitting rep-
resentatives containing [0, 1]×(P \A) with product θ-structure, where A⊂P is a closed
regular neighbourhood of a simplicial complex of dimension at most n−1 inside P . Let
K0,K1:P;P be two such cobordisms and letKi have support in Ai, a regular neighbour-
hood of a simplicial complex Xi of dimension at most n−1. As P is (2n−1)-dimensional,
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we can perturb the Xi to be disjoint and then shrink the Ai so they are disjoint. But
if K0 and K1 have support in the disjoint sets A0 and A1, then K0�K1 has support in
A0qA1 which is a regular neighbourhood of X0qX1 which is again a simplicial com-
plex of dimension at most n−1. Furthermore K0�K1 is isomorphic to the θ-bordism
K01 which is supported in A0qA1 and agrees with Ki on [0, 1]×Ai, and this in turn is
isomorphic to K1�K0, so K is commutative.

Recall that we have a monoid map K′!K, where K′ is defined like K, but using θ′

instead of θ, where θ′:B′!B θ−−!BO(2n) was defined by letting `P :P!B′!B be the
(n−1)-st stage of the Moore–Postnikov tower. We saw in Corollary 7.17 that the map
N θ′(P, `′P )!N θ(P, `P ) is a weak equivalence, and we claim that an obstruction-theoretic
argument similar to that of Lemma 7.16 shows that K′!K is an isomorphism. Explicitly,
[0, 1]×P has a canonical lift of its θ-structure to a θ′-structure. If an element of K is
represented by a cobordism K supported in A⊂P , it contains the subset

({0}×P )∪([0, 1]×(P \A))∪({1}×P )

which has a canonical θ′-structure. Because A is a regular neighbourhood of a simplicial
complex of dimension at most n−1, the manifold K is obtained up to homotopy from
this subset by attaching cells of dimension at least n, so up to homotopy there is a unique
extension of the lift. This shows that K′!K is a bijection.

Before embarking on the proof of Theorem 1.13, we establish the following useful
strengthening of assumption (iii) of that theorem.

Lemma 7.19. Let [W ]∈K be such that each path component of W contains a sub-
manifold diffeomorphic to (Sn×Sn)\int(D2n). Then each path component of 3W, that
is, the composition W �W �W, contains such a submanifold which in addition has null-
homotopic structure map to B.

Proof. Let us suppose that W is path connected: otherwise we repeat the argument
below for each path component. Finding an embedded (Sn×Sn)\int(D2n) is equivalent
to finding two embedded n-spheres with trivial normal bundles, which intersect trans-
versely at a single point. By assumption, this holds for W so we have

(Sn×Sn)\int(D2n) ↪−!W
`W−−−!B,

which in πn induces a homomorphism Z⊕Z=πn((Sn×Sn)\int(D2n))!πn(B), sending
the basis elements to x, y∈πn(B).

In a separate copy of W we have a framed embedding

Sn×{∗}
reflection∼= Sn×{∗} ↪−! (Sn×Sn)\int(D2n) ↪−!W
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which in πn(B) gives the element −x. Thus in 2W, the connected sum of this embedded
framed sphere and the original one gives an embedded framed sphere with null-homotopic
map to B. Using the third copy of W we can fix the remaining sphere, without changing
the property that the two spheres intersect transversely in one point.

We shall first prove Theorem 1.13 under an additional countability hypothesis,
namely we prove the following result.

Proposition 7.20. Let θ, (P, `P ) and K be as in Theorem 1.13, and let L⊂K be a
submonoid satisfying conditions (i)–(iii) of that theorem. Assume in addition that L is
countable. Then the induced morphism

H∗(N θ(P, `P ))[L−1]−!H∗(Ω∞ MTθ′)

is an isomorphism.

Proof. By countability of L, we may pick a sequence of θ-manifolds (K|[i,i+1], `i)
which are self-bordisms of (P, `P ) representing elements of L, in a way that each element
of L is represented infinitely often. We then let K be the infinite composition of the
K|[i,i+1], and deduce from Addendum 1.9 that (K, `K) is a universal θ-end. (That
property (iii) of the addendum is satisfied follows from assumption (iii) and Lemma 7.19.)
Then Theorem 1.8 gives a homology equivalence

hocolimN θ(P, `P )−!Ω∞ MTθ′′,

where the homotopy colimit is over composition with the K|[i,i+1], and the map

θ′′:B′′−!B
θ−−!BO(2n)

is constructed from the Moore–Postnikov n-stage of `K . Obstruction theory provides
a map B′!B′′ over B and under P , and combining Addendum 1.9 and the (n−1)-
connectedness of (K,P ) shows that this map is a weak homotopy equivalence, so

MTθ′′'MTθ′.

Taking homology turns the homotopy colimit into a colimit of the Z[L]-module
H∗(N θ(P, `P )) over multiplying with elements of L, each element occurring infinitely
many times. But that precisely calculates the localisation at L, as L is commutative so
the localisation may be computed by right fractions.

The proposition above proves Theorem 1.13 in the case where K is countable. (To
apply Proposition 7.20 with L=K, we need to check that conditions (i)–(iii) hold. This
is proved using the manifolds Wα from the proof of Proposition 7.8.) We will deduce the
general case by a colimit argument, based on the following result.
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Corollary 7.21. Let θ, (P, `P ) and K be as in Theorem 1.13, and let L⊂K be
a submonoid satisfying conditions (ii) and (iii) of that theorem, but not necessarily (i).
Assume in addition that L is countable. Then the induced morphism

H∗(N θL(P, `LP ))[L−1]−!H∗(Ω∞ MTθL) (7.5)

is an isomorphism, where θL:BL!BO(2n) is obtained as the n-th Moore–Postnikov
factorisation of a certain map `:XL!B, defined as follows. Each self-bordism (L, `L)
representing an element of L has incoming boundary P⊂K, and we let XL be obtained
by gluing every such L along their common incoming boundary ; the structure maps `L
then glue to the map `:XL!B.

Proof. We will explain how this is an instance of Proposition 7.20, with θ replaced
by θL. The map `P :P!B lifts canonically to `LP :P!BL, by restricting the first map in
the factorisation XL!BL!B, but for the statement to make sense we should explain
how to regard L as a submonoid of KL, where KL is defined like K, but with θL in place
of θ. In fact, the same obstruction-theoretic argument as we used in the beginning of
§7.6 to show bijectivity of K′!K will show that the natural map KL!K is injective and
that the image contains L: by the assumption on support of representatives of elements
of K and KL, we will only ever need to lift structure maps over cells of dimension n or
higher; the space of relative lifts over an n-cell is either contractible or empty, and over
higher cells it is always contractible.

As each element of L may canonically be given the structure of a self θ′-cobordism
of (P, `′P ), the two relevant Moore–Postnikov factorisations fit into the following diagram

XL // BL

��

// B

P

OO

// B′ // B,

where the top row is an nth stage factorisation and the bottom row is an (n−1)-st
stage. The inclusion P!XL is (n−1)-connected, and it follows formally that the map
BL!B′ induces an injection in homotopy groups except possibly πn−1 and a surjection
in homotopy groups except possibly πn. But the assumed property (ii) ensures that in
fact πn−1(BL)!πn−1(B′) is an isomorphism, and thus π∗(BL)!π∗(B′) is injective in
degree n and an isomorphism in all other degrees. In πn, we claim that

Im(πn(XL)!πn(B′))= Im
( ⊕

[K]∈L

πn(K)!πn(B′)
)
. (7.6)
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Indeed, both sides are subgroups of πn(B′) containing the image of πn(P )!πn(B′), so
it suffices to prove that the subgroups have the same image in πn(B′, P ), but this follows
from the homotopy excision isomorphism⊕

[K]∈L

πn(K,P ) ∼−−!πn(XL, P ),

which may be proved using the Blakers–Massey theorem.
The equality (7.6) shows that the monoid L⊂KL satisfies the assumption (i) of

Proposition 7.20 with respect to θL, and by construction it also satisfies (ii) and (iii). In
the conclusion from the proposition we should put the (n−1)-st Moore–Postnikov stage
of P!BL, but this map is already (n−1)-connected so the factorisation is equivalent to
P!BL=BL.

Proof of Theorem 1.13. Let L⊂K satisfy the conditions of Theorem 1.13. Then for
each countable submonoid L′⊂L, there are maps BL′!B from Corollary 7.21, and if
L′′⊂L′ is a submonoid we also have a factorisation BL′′!BL′!B, as our description of
BL is strictly functorial in the monoid L (using a functorial model for Moore–Postnikov
factorisation, cf. §1.1.3). Therefore we may form the colimit of the isomorphisms (7.5)
over the poset of countable submonoids L′⊂L.

Using the manifolds Wα constructed in the proof of Proposition 7.8 and the observa-
tion that the poset of countable submonoids is filtered, it is easy to see that the natural
map from the homotopy colimit of the BL′ to B′ is a weak equivalence, and hence the
homotopy colimit of the Ω∞ MTθL′ is Ω∞ MTθ′. If we can prove that the homotopy
colimit of the spaces N θL′ (P, `L

′

P ) is N θ′(P, `′P )'N θ(P, `P ), Theorem 1.13 will therefore
follow as the direct limit of the isomorphism (7.5).

We saw in Lemma 7.16 that the map N θ′(P, `′P )!N θ(P, `P ) is a weak equiva-
lence. A similar obstruction-theoretic argument as in that lemma shows that the map
N θL′ (P, `L

′

P )!N θ(P, `P ) induces an injection on π0 and a weak equivalence of each path
component. Namely, N θL′ (P, `L

′

P ) is up to homotopy a disjoint union of path components
of N θ(P, `P ); the component containing (W, `W ) is included precisely when `W admits a
lift to a θL′ -structure. Up to homotopy, the system of spaces N θL′ (P, `L

′

P ) therefore just
consists of including more and more components of N θ(P, `P ), including all of them in
the colimit.
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