
Acta Math., 213 (2014), 137–198

DOI: 10.1007/s11511-014-0118-1

c© 2014 by Institut Mittag-Leffler. All rights reserved

Rigidity around Poisson submanifolds

by

Ioan Mărcuţ
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Introduction

Recall that a Poisson structure on a manifold M is a Lie bracket {· , ·} on the space
C∞(M) of smooth functions on M which acts as a derivation in each entry, that is

{f, gh}= {f, g}h+{f, h}g, f, g, h∈C∞(M).

A Poisson structure can also be given by a bivector π∈X2(M) satisfying [π, π]=0 for the
Schouten bracket. The Lie bracket is related to π by the formula

〈π, df∧dg〉= {f, g}, f, g ∈C∞(M).

The Hamiltonian vector field of a function f∈C∞(M) is

Xf = {f, ·} ∈X(M).

These vector fields span an involutive singular distribution on M , which integrates to
a partition of M into regularly immersed submanifolds called symplectic leaves. These
leaves are symplectic manifolds, the symplectic structure on the leaf S is given by

ωS :=π|−1
S ∈Ω2(S).

The zero-dimensional symplectic leaves are the points x∈M where π vanishes. At
such a fixed point x, the cotangent space gx=T ∗xM carries a Lie algebra structure, called
the isotropy Lie algebra at x, with bracket given by

[dxf, dxg] := dx{f, g}, f, g ∈C∞(M).

Conversely, starting from a Lie algebra (g, [ · , · ]) there is an associated Poisson structure
πg on the vector space g∗, called the linear Poisson structure, defined by

{f, g}ξ := 〈ξ, [dξf, dξg]〉, f, g ∈C∞(g∗).

So, at a fixed point x, the tangent space TxM=g∗x carries a canonical Poisson structure
πgx which plays the role of the first-order approximation of (M,π) around x in the realm
of Poisson geometry. We recall Conn’s linearization theorem [2].
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Conn’s theorem. Let (M,π) be a Poisson manifold and x∈M be a fixed point
of π. If the isotropy Lie algebra gx is semisimple of compact type, then a neighborhood
of x in (M,π) is Poisson-diffeomorphic to a neighborhood of the origin in (g∗x, πgx).

Conn’s proof is analytic, it uses the fast convergence method of Nash and Moser. A
new proof of Conn’s theorem, which uses Poisson-geometric techniques, is now available
in [6]. This geometric proof was adapted to the case of general symplectic leaves [7], and
the outcome will be explained in the sequel.

Recall that the cotangent bundle of a Poisson manifold (M,π) is canonically a Lie
algebroid (T ∗M, [ · , · ]π, π]) with anchor given by the map

π]:T ∗M −!TM,

α 7−!π(α, ·), α∈T ∗M,

and the Lie bracket given by the expression

[α, β]π =Lπ](α)(β)−Lπ](β)(α)−dπ(α, β), α, β ∈Γ(T ∗M).

Generalizing the isotropy algebra from the case of fixed points, one associates with
a symplectic leaf (S, ωS) a transitive Lie algebroid AS :=T ∗M |S over S, which is the
restriction of T ∗M to S, and is called the restricted Lie algebroid.

Conversely, using the data of a transitive Lie algebroid (A, [ · , · ], %) over a symplectic
manifold (S, ωS), Vorobjev constructed in [23] a Poisson manifold (N(A), πA) which
serves as the first-order local model of a Poisson structure around a symplectic leaf. The
space N(A) is an open set in g(A)∗, where g(A):=ker(%) is the isotropy bundle. The
Poisson manifold (N(A), πA) has (S, ωS) (viewed as the zero section) as a symplectic
leaf, and A can be recovered as the transitive Lie algebroid corresponding to this leaf:
A∼=AS . The construction depends on the choice of a linear left inverse to the inclusion
g(A)⊂A, but, up to isomorphisms around S, the outcome does not depend on this choice
(see §1.2 for more details).

In this setting, we recall the following normal form result (Theorem 1 in [7]).

Theorem. (The normal form theorem from [7]) Let (M,π) be a Poisson manifold,
with (S, ωS) a compact symplectic leaf. If the restricted Lie algebroid AS :=T ∗M |S is inte-
grable and the 1-connected Lie groupoid integrating it is compact and its s-fibers have van-
ishing de Rham cohomology in degree 2, then a neighborhood of S in (M,π) is Poisson-
diffeomorphic to a neighborhood of the zero section in the local model (N(AS), πAS

).

In the case of fixed points this is equivalent to Conn’s result.
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The original goal of this research was to reprove this theorem with methods similar
to those of Conn’s original approach. The main incentive for this is that Conn’s analytic
techniques are apparently more powerful than the geometric ones from [7]; in particular,
as suggested to the author by Crainic, an analytic proof should imply rigidity of the
Poisson structure. This is indeed the case, and the precise rigidity property that we
obtain is the following:

Definition. A Poisson structure π on M is called Cp-C1-rigid around the compact
submanifold N⊂M , if there are small enough open neighborhoods U of N , such that,
for all open sets O with N⊂O⊂
O⊂U , there exist

• an open neighborhood VO⊂X2(U) of π|U in the compact-open Cp-topology;
• a function π̃ 7!ψπ̃, which associates with a Poisson structure π̃∈VO a map

ψπ̃: 
O!M which extends to an embedding of a neighborhood of 
O,
such that ψπ̃ is a Poisson diffeomorphism

ψπ̃: (O, π|O) ∼−−! (ψπ̃(O), π̃|ψπ̃(O)),

and ψ is continuous at π̃=π (with ψπ=Id
O), with respect to the Cp-topology on the
space of Poisson structures and the C1-topology on C∞(
O,M).

We prove the following improvement of [7], which also includes rigidity.

Theorem 1. Let (M,π) be a Poisson manifold and (S, ωS) be a compact symplectic
leaf. If the Lie algebroid AS :=T ∗M |S is integrable by a compact Lie groupoid whose
s-fibers have vanishing de Rham cohomology in degree 2, then

(a) in a neighborhood of S, π is Poisson diffeomorphic to its local model around S;
(b) π is Cp-C1-rigid around S.

Already in the case of fixed points, the first part of this theorem gives a slight
generalization of Conn’s result, which cannot be obtained by an immediate adaptation
of the arguments in [6] and [7]. Namely, a Lie algebra is integrable by a compact group
with vanishing second de Rham cohomology if and only if it is compact and its center
is at most 1-dimensional (see Lemma 2.3). The case when the center is trivial is Conn’s
result, and the 1-dimensional case is a consequence of a result of Monnier and Zung on
smooth Levi decomposition of Poisson manifolds [20].

However, the main advantage of the approach of this paper over [7] is that it allows
for a rigidity theorem around an arbitrary Poisson submanifold. Recall that a subman-
ifold N of (M,π) such that π is tangent to N is called a Poisson submanifold. The
symplectic leaves are the simplest type of Poisson submanifolds. The main result of this
paper is the following rigidity theorem for integrable Poisson manifolds.
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Theorem 2. Let (M,π) be a Poisson manifold for which the Lie algebroid T ∗M

is integrable by a Hausdorff Lie groupoid whose s-fibers are compact and their de Rham
cohomology vanishes in degree 2. For every compact Poisson submanifold N of M we
have that

(a) π is Cp-C1-rigid around N ;
(b) up to isomorphism, π is determined around N by its first-order jet at N .

We prove Theorem 1 by applying part (b) of this result to the local model.
In both theorems, p has the (most probably not optimal) value

p=7
(⌊

1
2 dimM

⌋
+5

)
.

In part (b) of Theorem 2 we prove that every Poisson structure π̃, defined around
N , that satisfies j1π|N=j1π̃|N is isomorphic to π around N by a diffeomorphism which
is the identity on N up to first order.

The structure encoded by the first-order jet of π at N can be organized as an
extension of Lie algebroids (see [15, Remark 2.2])

0−! ν∗N −!T ∗M |N −!T ∗N −! 0, (1)

where ν∗N⊂T ∗M |N is the conormal bundle and T ∗N is the cotangent Lie algebroid of the
Poisson manifold (N,π|N ). With this, Theorem 1 follows easily from Theorem 2: if S :=N
is a compact symplectic leaf, then the Poisson structures (M,π) and (N(AS), πAS

) have
the same first-order jet around S (they induce the same exact sequence (1)); moreover,
the hypothesis of Theorem 1 implies that Theorem 2 can be applied to the local model
(N(AS), πAS

) (see Lemma 1.3).
One might try to follow the same line of reasoning and use Theorem 2 to prove

a normal form theorem around Poisson submanifolds. Unfortunately, around general
Poisson submanifolds, a first order local model does not seem to exist. Actually, there
are Lie algebroid extensions as in (1) which do not arise as the first jet of Poisson
structures (see [15, Example 2.3]). Nevertheless, one can use Theorem 2 to prove normal
form results around particular classes of Poisson submanifolds.

The paper is organized as follows. In section §1, after recalling some properties
of Lie groupoids and Lie algebroids, we describe in detail the local model around a leaf
and a symplectic groupoid integrating it. We end the section by proving that Theo-
rem 2 implies Theorem 1. §2 is an extended introduction to the paper, we give a list
of applications, examples and connections with related literature. In §3 we prove Theo-
rem 2 by using the Nash–Moser method. The appendices contain three general results
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on Lie groupoids: existence of invariant tubular neighborhoods, integrability of the ad-
joint representation on a proper ideal, and the tame vanishing lemma. This last result
provides tame homotopy operators for Lie algebroid cohomology with coefficients and,
when combined with the Nash–Moser techniques, it is a very useful tool for handling
similar geometric problems (see the appendix in [16]).

About the proof. The proof of the rigidity theorem is inspired mainly by Conn’s
paper [2]. Conn uses a technique due to Nash and Moser to construct a sequence of
changes of coordinates in which π converges to the linear Poisson structure πgx . At
every step the new coordinates are found by solving some equations which are regarded
as belonging to the complex computing the Poisson cohomology of πgx . To account for
the “loss of derivatives” phenomenon during this procedure he uses smoothing operators.
Finally, he proves uniform convergence of these changes of coordinates and of their higher
derivatives on some ball around x.

Conn’s proof has been formalized in [18] and [20] into an abstract Nash–Moser
normal form theorem. It is likely that part (a) of our Theorem 2 could be proven using
[18, Theorem 6.8]. Due to some technical issues (see Remark 2), we cannot apply this
result to conclude neither part (b) of our Theorem 2 nor the normal form Theorem 1,
therefore we follow a direct approach.

We also simplified Conn’s argument by giving coordinate-free statements and work-
ing with flows of vector fields. For the expert: we gave up on the polynomial-type
inequalities using instead only inequalities which assert tameness of certain maps, i.e.
we work in Hamilton’s category of tame Fréchet spaces. Our proof deviates the most
from Conn’s when constructing the homotopy operators. Conn recognizes the Poisson
cohomology of πgx

as the Chevalley–Eilenberg cohomology of gx with coefficients in the
Fréchet space of smooth functions. By passing to the Lie group action on the corre-
sponding Sobolev spaces, he proves existence of tame (in the sense of Hamilton [12])
homotopy operators for this complex. We, on the other hand, regard this cohomology as
Lie algebroid cohomology, and prove a general tame vanishing result for the cohomology
of Lie algebroids integrable by groupoids with compact s-fibers. This is done by further
identifying this complex with the invariant part of the de Rham complex of s-foliated
forms on the Lie groupoid, and by using the fiberwise inverse of the Laplace–Beltrami
operator in order to construct the homotopy operators.

Acknowledgments. This project is part of my Ph.D. thesis and was proposed by my
advisor Marius Crainic. I would like to thank him for his constant help and support
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throughout my work. Many thanks as well to Eva Miranda, Florian Schätz and Ivan
Struchiner for useful discussions. The referee’s suggestions improved upon the initial
version. This research was supported by the ERC Starting Grant no. 279729.

1. Proof of the normal form theorem (Theorem 2 ⇒ Theorem 1)

In this section, we first recall some basic properties of Lie algebroids and Lie groupoids,
next we describe the local model around a symplectic leaf from three different perspec-
tives, and we conclude by showing that Theorem 1 is a consequence of Theorem 2.

1.1. Lie groupoids and Lie algebroids

We recall here some standard results about Lie groupoids and Lie algebroids, for def-
initions and other basic properties we recommend [13] and [19]. To fix notation, the
anchor of a Lie algebroid A!M will be denoted by %, the source and target maps of a
Lie groupoid G⇒M by s and t, respectively, and the unit map by u.

A Lie groupoid G⇒M has an associated Lie algebroid A(G) over M ; as a vector
bundle, A(G) is the restriction to M (i.e. pull-back by u) of the subbundle T sG of TG
consisting of vectors tangent to the s-fibers. The anchor is given by the differential
of t. The Lie bracket comes from the identification between sections of A(G) and right-
invariant vector fields on G.

A Lie algebroid (A, [ · , · ], %) is integrable if it is isomorphic to the Lie algebroid
A(G) of a Lie groupoid G⇒M . Not every Lie algebroid is integrable (see [3]). If a
Lie algebroid is integrable, then, as for Lie algebras, there exists, up to isomorphism, a
unique Lie groupoid with 1-connected s-fibers integrating it.

A Lie algebroid A!M is transitive if % is surjective. A Lie groupoid is transitive
if the map (s, t):G!M×M is a surjective submersion. If G is transitive then also A(G)
is transitive. Conversely, if A!M is transitive and M is connected, then every Lie
groupoid integrating it is transitive as well.

Out of a principal bundle q:P!S with structure group G one can construct a
transitive Lie groupoid G(P ), called the gauge groupoid of P , as

G(P ) :=P×GP //
// S,

with structure maps given by

s([p1, p2]) := q(p2), t([p1, p2]) := q(p1) and [p1, p2][p2, p3] := [p1, p3].
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The Lie algebroid of G(P ) is TP/G, where the Lie bracket is obtained by identifying
sections of TP/G with G-invariant vector fields on P . Conversely, every transitive Lie
groupoid G is the gauge groupoid of a principal bundle: the bundle is any s-fiber of G and
the structure group is the isotropy group. So, a transitive Lie algebroid A is integrable
if and only if there exists a principal G-bundle P such that A is isomorphic to TP/G.

A symplectic groupoid (G, ω)⇒M is a Lie groupoid G⇒M endowed with a symplectic
structure ω∈Ω2(G) for which the graph of the multiplication is a Lagrangian submanifold:

{(g1, g2, g3) : g1g2 = g3}⊂ (G×G× �G,pr∗1(ω)+pr∗2(ω)−pr∗3(ω)).

This condition has several consequences. It implies that the base carries a Poisson struc-
ture π such that the source map is Poisson and the target map is anti-Poisson; and
moreover, that G integrates the cotangent Lie algebroid T ∗M of π. Conversely, if for
a given Poisson manifold (M,π) the Lie algebroid T ∗M is integrable, then the s-fiber
1-connected integration of T ∗M is canonically a symplectic groupoid [14].

1.2. The local model

Consider a Poisson manifold (M,π) and let (S, ωS) be an embedded symplectic leaf. The
local model of π around S, constructed first by Vorobjev in [23], is a Poisson structure
defined on some open neighborhood of S in M , which plays the role of a first-order
approximation of π around S.

The local model depends (up to diffeomorphisms around S that fix S) only on the
first jet of π at S, denoted by j1π|S . Consider the transitive Lie algebroid

AS :=T ∗M |S

associated with S. Note that the anchor of AS is given by the inverse of the symplectic
structure ωS , and that the isotropy bundle of AS is the conormal bundle ν∗S⊂AS . In fact,
j1π|S encodes precisely the Lie algebroid structure on AS (see [16, Proposition 4.1.13]).

Proposition 1.1. Let π1 and π2 be two Poisson structures defined around S, such
that S is a symplectic leaf for both. Then π1 and π2 induce the same Lie algebroid
structure on AS=T ∗M |S if and only if j1π1|S=j1π2|S.

We give three different descriptions of the local model, each of them bringing different
insight into the construction. All three constructions avoid the explicit use of Vorobjev
triples, by using instead Dirac geometric techniques. For the proofs of the claims made
here, we refer the reader to [16, §4.1 and §4.2].
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Description 1

Our first approach to the local model is a Dirac geometric interpretation of the lineariza-
tion procedure from [5]; and it is very useful for explicit computations of the local model.
Consider a tubular neighborhood

Ψ: νS −!M

of S in M , where νS :=TM |S/TS is the normal bundle to S. Set E :=Ψ(νS), denote by
µt:E!E the map corresponding to multiplication by t∈R on νS , and by p:E!S the
corresponding projection map. Consider the path of Poisson structures

πt := tµ∗t (π
(t−1)p∗(ωS)), t∈ (0, 1], (2)

where, for a closed 2-form β, πβ denotes the gauge transform of π by β (i.e. the leaves
of πβ are the leaves of π, but the symplectic structures on them differ by the restrictions
of β). In fact, πt is well defined on the entire E only as a Dirac structure (see [1] for the
basics of Dirac geometry), which is given by

Lt := tµ∗t (L
(t−1)p∗(ωS)
π )⊂TE⊕T ∗E,

where Lπ is the Dirac structure corresponding to π, and, for a Dirac structure L and
λ∈R\{0}, we denote by λL the Dirac structure {λX+ξ :X+ξ∈L}. Now Lt extends
smoothly at t=0, and we let L0 :=limt!0 Lt. On the other hand, we have that Lt has
(S, ωS) as a (pre)symplectic leaf, for all t∈R, and therefore there is an open neighborhood
U of S such that Lt corresponds to a Poisson structure πt on U for all t∈[0, 1]. The limit
Poisson structure

π0 := lim
t!0

πt,

defined on U , is the local model of π around S. We also have that

j1πt|S = j1π|S , t∈R,

and in particular, by Proposition 1.1, the local model π0 induces the same Lie algebroid
structure on AS=T ∗M |S .

Different choices of tubular neighborhoods of S give rise to local models that are
isomorphic around S by diffeomorphisms that fix S.

Note also that the Dirac-geometric nature of this construction allows one to define in
a similar fashion the local model of a Dirac structure around an embedded presymplectic
leaf; the outcome is a Dirac structure which is globally defined on E.
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Description 2

The second description comes closest to Vorobjev’s original construction [23]. The con-
struction uses the data encoded by the first jet of a Poisson structure at a leaf: a sym-
plectic manifold (S, ωS) and a transitive Lie algebroid (A, [ · , · ]A, %) over S. Similar to the
linear Poisson structure on the dual of a Lie algebra, the dual vector bundle A∗ carries
a linear Poisson structure πlin(A), with Poisson bracket determined by

{p∗(f), p∗(g)}=0, {α̃, p∗(g)}= p∗(L%(α)g) and {α̃, β̃}= [α̃, β ]A,

for all f, g∈C∞(S) and all α, β∈Γ(A), where p:A∗!S denotes the projection, and α̃, β̃∈
C∞(A∗) denote the corresponding fiberwise linear functions on A∗. Consider the gauge
transform of πlin(A) by p∗(ωS):

π
p∗(ωS)
lin (A).

A priori, this gauge transform is defined only as a Dirac structure on A∗, but because of
the particular structure of the linear Poisson structure, πp

∗(ωS)
lin (A) is in fact a well-defined

Poisson structure on A∗.
Let g(A):=ker(%)⊂A be the isotropy bundle. Consider a linear spitting σ:A!g(A)

of the short exact sequence

0−! g(A)−!A
%−−!TS−! 0. (3)

Using the dual of σ, we regard g(A)∗ as a subbundle of A∗. An open neighborhood
N(A) of S in g(A)∗ is a Poisson transversal for πp

∗(ωS)
lin (A) (also called a cosymplectic

submanifold in the literature), i.e. for each symplectic leaf (L, ωL) of πp
∗(ωS)

lin (A), we have
that N(A) is transverse to L, and that L∩N(A) is a symplectic submanifold of L. This
property allows one to pull back π

p∗(ωS)
lin (A) to a Poisson structure πA on N(A): the

leaves of πA are (L∩N(A), ωL|L∩N(A)), where, as before, (L, ωL) is a leaf of πp
∗(ωS)

lin (A).
The Poisson manifold

(N(A), πA)

represents the second description of the local model. Also, (S, ωS), identified with the
zero section, is a symplectic leaf of πA and the induced transitive Lie algebroid AS is
isomorphic to A via the maps

AS =T ∗g(A)∗|S ∼=T ∗S⊕g(A)
(ω−1,]

S +σ)
−−−−−−−−!A.

Different choices of the splitting σ give rise to local models that are isomorphic
around S by diffeomorphisms that fix S.
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We now describe an isomorphism between the two Poisson manifolds resulting from
the two descriptions of the local model. Let (S, ωS) be an embedded symplectic leaf of the
Poisson manifold (M,π). Consider a tubular neighborhood of S, denoted by Ψ: νS!M ,
and let π0 be the corresponding local model from the first description. Note that the Lie
algebroid AS :=T ∗M |S has isotropy bundle g(A)=ν∗S , and that the dual of the differential
of Ψ along S gives a splitting of the anchor for AS :

σ := (dΨ|S)∗:AS −! ν∗S .

Consider the local model πAS
on a neighborhood of S in νS=g(A)∗, constructed with

the aid of σ. The map Ψ gives a Poisson diffeomorphism in a neighborhood of S between
the two descriptions of the local model:

Ψ∗(πAS
) =π0.

We remark that, in general, the submanifold g(A)∗⊂A∗ is not Poisson transverse
everywhere. Nevertheless, one can always pull back the Poisson structure πp

∗(ωS)
lin (A) to a

globally defined Dirac structure on g(A)∗, which is Poisson on N(A). Actually, also this
second construction works in the Dirac setting; and the outcome is a second description
of the local model of a Dirac structure around a presymplectic leaf.

Description 3

The third description works only when the restricted Lie algebroid is integrable, and as
remarked by Vorobjev in [23], the resulting Poisson manifold appeared already in the
work of Montgomery [21]. The construction is standard in symplectic geometry as it
represents the local form of a Hamiltonian space around the zero set of the moment map
(see e.g. [11]).

The starting data is an integrable transitive Lie algebroid A over a symplectic man-
ifold (S, ωS). Since A is transitive, it is isomorphic to TP/G for a principal G-bundle
P!S. So, the relevant first-order data becomes a principal G-bundle p:P!S over a
symplectic manifold (S, ωS). Let θ∈Ω1(P, g) be a principal connection on P , where g

denotes the Lie algebra of G. Consider the following closed 2-form on P×g∗, which is
invariant under the diagonal action of G:

Ω = p∗(ωS)−d〈µ|θ〉, where µ(p, ξ) := ξ.

The open set Σ, where Ω is non-degenerate, is G-invariant and contains P×{0}. The
action of G is Hamiltonian with G-equivariant moment map µ: Σ!g∗. The local model
is obtained as the quotient Poisson manifold

(N(P ), πP ) := (Σ,Ω)/G,
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where N(P ):=Σ/G is an open neighborhood of the zero section in the associated coad-
joint bundle P [g∗]:=(P×g∗)/G. The resulting Poisson structure πP has (S, ωS) (re-
garded as (P×{0})/G) as a symplectic leaf, and its restricted Lie algebroid T ∗N(P )|S
is isomorphic to TP/G.

To relate this construction to the second, note that the isotropy bundle of A=TP/G
can be identified with the quotient g(A)=(P×g)/G, and so g(A)∗=P [g∗]. Also, note that
there is a natural one-to-one correspondence between

• connection 1-forms θ∈Ω1(P, g) on P , and
• linear splittings σ:A!g(A) of the sequence (3).
Now, under these isomorphisms and this correspondence, the Poisson manifold

(N(P ), πP ), constructed with the aid of θ, and the Poisson manifold (N(A), πA), con-
structed using the corresponding σ, coincide.

The Poisson manifold (N(P ), πP ) is integrable, and we describe below a symplectic
groupoid integrating it. Since this result fits into a more general framework, we state the
following lemma, which is a direct consequence of results in [9].

Lemma 1.2. Let (Σ,Ω) be a symplectic manifold endowed with a proper, free Hamil-
tonian action of a Lie group G, and equivariant moment map µ: Σ!g∗. Then the Poisson
manifold Σ/G is integrable, a symplectic Lie groupoid integrating it is

(Σ×µΣ)/G //
// Σ/G,

and the symplectic structure pulls back to Σ×µΣ as (s∗(Ω)−t∗(Ω))|Σ×µΣ.

Proof. Consider the symplectic groupoid Σ×Σ⇒Σ, with symplectic structure

s∗(Ω)−t∗(Ω).

Then G acts on Σ×Σ by symplectic groupoid automorphism with equivariant moment
map J :=s∗µ−t∗µ, which is also a groupoid 1-cocycle. By [9, Proposition 4.6], the
Marsden–Weinstein reduction

(Σ×Σ)//G=J−1(0)/G

is a symplectic groupoid integrating the Poisson manifold Σ/G. In our case J−1(0)=
Σ×µΣ, and the symplectic form pulls back to Σ×µΣ as s∗(Ω)−t∗(Ω)|Σ×µΣ

In our setting, the lemma shows that the groupoid integrating the local model
(N(P ), πP ) is just the restriction to N(P ) of the action groupoid

G := (P×P×g∗)/G //
// P [g∗],
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corresponding to the representation of P×GP on P [g∗]. If P is compact, note that
N(P ) contains arbitrarily small open sets of the form P [V ]:=(P×V )/G, where V is
a G-invariant neighborhood of 0 in g∗. These neighborhoods are G -invariant, and the
restriction of G to P [V ] is (P×P×V )/G. In particular, all its s-fibers are diffeomorphic
to P . This proves the following result.

Proposition 1.3. The local model (N(P ), πP ) associated with a principal bundle P
over a symplectic manifold (S, ωS) is integrable by a Hausdorff symplectic Lie groupoid.
If P is compact, then there are arbitrarily small invariant open neighborhoods U of S,
such that all s-fibers over points in U are diffeomorphic to P .

1.3. Proof of Theorem 2 ⇒ Theorem 1

Consider a tubular neighborhood Ψ: νS!M of S in M , and denote by π0 the resulting
local model constructed using the first description. So π0 is a Poisson structure on some
open neighborhood of S, which coincides with π up to first order. On the other hand, π0 is
isomorphic around S to the local model πAS

corresponding to the transitive Lie algebroid
AS :=T ∗M |S . By assumption, AS is integrable, and so there is a principal G-bundle
P!S such that AS∼=TP/G. Moreover, we can choose P to be compact with vanishing
second de Rham cohomology. By Proposition 1.3, for arbitrary small open neighborhoods
U of S in N(P ), we have that (U, πP |U ) satisfies the assumption of Theorem 2. Since πP
is isomorphic to πAS

around S, and also πAS
is isomorphic to π0 around S, we conclude

that S has arbitrary small neighborhoods U in M for which (U, π0|U ) also satisfies the
hypothesis of Theorem 2. By part (a), π0 is Cp-C1-rigid around S, and by part (b), π0

and π are Poisson diffeomorphic around S. Thus π is also Cp-C1-rigid around S.

2. Remarks, examples and applications

In this section we give a list of examples and applications for our two theorems and we
also show some links with other results from the literature.

2.1. A global conflict

Theorem 2 does not exclude the case when the Poisson submanifold S is the total
space M . In conclusion, a compact Poisson manifold (M,π) for which T ∗M is integrable
by a compact Lie groupoid whose s-fibers have trivial second de Rham cohomology is
globally rigid. Nevertheless, this result is useless, since no such Poisson manifolds exist
in dimension greater than 1. In the case when the groupoid has 1-connected s-fibers,
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this conflict was pointed out in [4], and we explain below the general case. In symplec-
tic geometry, this non-rigidity phenomenon is expressed by the fact that, on a compact
symplectic manifold (M,ω), the symplectic structure allows the smooth deformation tω,
for t>0, which is non-trivial because the symplectic volume changes.

Proposition 2.1. Consider a compact connected Poisson manifold (M,π) for which
T ∗M is integrable by a compact Lie groupoid G whose s-fibers have trivial second de Rham
cohomology. Then M is at most 1-dimensional.

In the proof of the proposition we will use the volume-function vh given below.

Lemma 2.2. Consider the setting of Proposition 2.1. The set M reg where π has
maximal rank is open and dense. Every regular symplectic leaf (S, ωS)⊂M reg has a
finite holonomy group, which we denote by Hol(S), and a finite symplectic volume, which
we denote by Vol(S). The function

vh:M −!R,

x 7−!
{

Vol(Sx)|Hol(Sx)|, if x∈M reg,
0, if x /∈M reg,

where Sx denotes the symplectic leaf through x, is continuous.

Proof of Proposition 2.1. By Lemma C.1 in the appendix, the second Poisson co-
homology of (M,π) vanishes. In particular, the class [π] is trivial, so there exists a
vector field X such that LX(π)=π. This implies that the flow of X gives a Poisson
diffeomorphism

ϕtX : (M,π) ∼−−! (M, e−tπ). (4)

This and the Poisson geometric description of vh imply that vh �ϕtX=etk vh, where 2k
denotes the maximal rank of π. By Lemma 2.2, vh is bounded, and hence π=0. If π=0,
then G!M is a bundle of tori, so by the cohomological condition its fibers are at most
1-dimensional. Hence M is at most 1-dimensional as well.

Proof of Lemma 2.2. Clearly, M reg is open. To show that M reg is dense, by con-
nectedness of M , it suffices to show that its closure M reg is open. This follows from the
following property of π, which we prove below: every leaf has a saturated neighborhood
U , such that U reg (i.e. the regular part of (U, π|U )) is dense in U .

Let (S, ωS) be a symplectic leaf of M . Since G|S integrates AS , by Theorem 1, the
local model holds around S. So, for a compact, connected principal G-bundle P , we have
that (M,π) is Poisson isomorphic around S to an open set around S in

(N(P ), πP ) = (Σ,Ω)/G,
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where Σ⊂P×g∗, Ω=p∗(ωS)−d〈µ|θ〉, θ is a principal connection on P , and µ: Σ!g∗,
where µ(p, ξ)=ξ, is an equivariant moment for the action of G. The symplectic leaves of
πP are of the form

(Oξ, ωξ), Oξ :=P×G(G·ξ), ξ ∈ g∗,

and hence they are the base of the principal Gξ-bundle

pξ:P×{ξ}−!Oξ,

where Gξ is the stabilizer of ξ, and the symplectic structure is determined by

p∗ξ(ωξ) =Ω|P×{ξ}. (5)

This last equation follows from the fact that the action is Hamiltonian, and therefore,
the symplectic leaves are canonically isomorphic to the reduced spaces

µ−1(ξ)//Gξ =(P×{ξ})//Gξ.

We will show that vh extends to a continuous map on P×Gg∗. Let T be a maximal
torus in G and let t be its Lie algebra. By compactness of G, we can consider an invariant
metric on g. This metric allows us to regard t∗ as a subspace in g∗ (i.e. the orthogonal
to t�), and it gives an isomorphism between the adjoint and the coadjoint representation
which sends t to t∗. For the adjoint representation it is well know (see e.g. [8]) that every
orbit hits t, and hence also every orbit of the coadjoint action hits t∗. An element ξ∈t∗

is regular if gξ=t, where gξ is the Lie algebra of Gξ. Denote by t∗reg the set of regular
elements. Then t∗reg is open and dense in t∗ and it coincides with the set of elements ξ
for which Gξ/T is finite (see e.g. [8]). Thus, for ξ∈t∗, a leaf Oξ has maximal dimension
if and only if ξ∈t∗reg, and hence the regular part of πP equals

N(P )reg =(P×GG·t∗reg)∩N(P ).

This implies also the claims made about M reg at the beginning of the proof.
Now, we fix ξ∈t∗reg. By [8, Theorem 3.7.1] we have that (G�)ξ=T . Therefore also

(Gξ)�=T . Since P is connected, the last terms in the long exact sequence in homotopy
associated with pξ are

...−!π1(Oξ)
Θ−−!π0(Gξ)−! 1. (6)

Thus we obtain a surjective group homomorphism Θ:π1(Oξ)!Gξ/T . Explicitly, let
[q, ξ]∈Oξ and γ(t) be a closed loop at this point. Consider a lift γ̃(t) of γ to P , with
γ̃(0)=q. Since pξ(γ̃(1), ξ)=[q, ξ], it follows that γ̃(1)=qg, for some g∈Gξ. The map in
(6) is given by Θ(γ)=[g]∈Gξ/T .
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Next, we compute the holonomy group of Oξ. Notice first that

Tξ(G·ξ) = g�ξ = t�⊂ g∗∼=Tξg
∗,

and, since t∗=(t�)⊥, it follows that ξ+t∗ is transverse at ξ to the coadjoint orbit. Hence
also the submanifold

T := {q}×(ξ+t∗)⊂P×Gg∗

is transverse to Oξ at [q, ξ]. Let γ be a loop in Oξ based at [q, ξ], and γ̃ be a lift to P .
Observe that, for η∈t∗, the path

t 7−! [γ̃(t), ξ+η]∈P×Gg∗

stays in the leafOξ+η, and therefore the map [q, ξ+η] 7![γ̃(1), ξ+η] is the holonomy action
of γ on T . Writing γ̃(1)=qg, for g∈Gξ, it follows that the holonomy of γ corresponds to
the action of g=Θ(γ) on t∗. This and the surjectivity of Θ imply that

Hol(Oξ)∼=Gξ/ZG(T ), (7)

where ZG(T ) denotes the set of elements in G which commute with all elements in T . In
particular, the holonomy groups are finite.

Since every coadjoint orbit hits t∗, it follows that the map P×t∗!P×Gg∗ is onto.
As this map is T -invariant, the induced map

pr: (P/T )×t∗−!P×Gg∗

is smooth and onto. Clearly, pr is a proper map. Therefore, to show that vh is continuous,
it suffices to show that vh �pr extends continuously. Note that, for ξ∈t∗reg, the map pr
restricts to a |Gξ/T |-covering projection of the leaf

p̄ξ: (P/T )×{ξ}−!P/Gξ ∼=Oξ.

Thus, using also (7), we have that

Vol((P/T )×{ξ}, p̄∗ξ (ωξ))= |Gξ/T |Vol(Oξ, ωξ) =
|Gξ/T |

|Gξ/ZG(T )|
vh(Oξ)

= |ZG(T )/T | vh(Oξ).

Hence it suffices to show that the map

t∗ 3 ξ 7−!Vol((P/T )×{ξ}, p̄∗ξ (ωξ)) (8)
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is continuous. By (5), we have that the pull-back of p̄∗ξ(ωξ) to P×{ξ} is given by

Ω|P×{ξ} = p∗(ωS)−〈ξ, dθ〉,

in particular it depends smoothly on ξ. Hence also p̄∗ξ (ωξ) depends smoothly on ξ, and
so the map (8) is continuous. To conclude the proof, we have to check that this map
vanishes for ξ /∈t∗reg. For such ξ, since dim(Gξ/T )>0, we have that

2l=dim(Oξ) =dim(P/Gξ)<dim(P/T ) = 2k.

This finishes the proof, since ∧k
p̄∗ξ (ωξ) = p̄∗ξ

(∧k
ωξ

)
=0.

2.2. Cp-C1-rigidity and isotopies

In the definition of Cp-C1-rigid, we may assume that the maps ψπ̃ are isotopic to the
inclusion Id
O of 
O inM , through a path of maps in C∞(
O,M) that extend to embeddings
on some neighborhood of 
O. This follows from the Cp-C1-continuity of ψ and the fact
that Id
O has a path-connected C1-neighborhood in C∞(
O,M) consisting of such maps.

2.3. A comparison with the local normal form theorem from [7]

Part (a) of Theorem 1 is a slight improvement of the normal form result from [7]. Both
theorems require the same conditions on a Lie groupoid, for us this groupoid could be
any integration of AS , but in [7] it has to be the s-fiber 1-connected integration. In
§2.4, resp. §2.7, we will study two extreme examples which already reveal the wider
applicability of Theorem 1: the case of fixed points and the case of regular Poisson
structures whose underling foliation is simple.

2.4. The case of fixed points

Consider a Poisson manifold (M,π) and let x∈M be a fixed point of π. In a chart
centered at x, we write

π=
∑
i,j

1
2
πi,j(x)

∂

∂xi
∧ ∂

∂xj
, with πi,j(0)= 0. (9)

The local model of π around 0 is given by its first jet at 0,∑
i,j,k

1
2
∂πi,j
∂xk

(0)xk
∂

∂xi
∧ ∂

∂xj
.
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The coefficients

Cki,j :=
∂πi,j
∂xk

(0)

are the structure constants of the isotropy Lie algebra gx (see the introduction). To apply
Theorem 1 in this setting, we need that gx be integrable by a compact Lie group with
vanishing second de Rham cohomology. Such Lie algebras have the following structure.

Lemma 2.3. A Lie algebra g is integrable by a compact Lie group with vanishing
second de Rham cohomology if and only if it is of the form

g= k or g= k⊕R,

where k is a semisimple Lie algebra of compact type.

Proof. It is well known that a compact Lie algebra g (i.e. a Lie algebra that is
integrable by a compact Lie group) decomposes as a product g=k⊕z, where k=[g, g] is
semisimple of compact type and z is the center of g. Hence, the Eilenberg–Chevalley
complex of g is the tensor product of the respective complexes of k and z. Therefore,
by the Künneth formula, H�(g)∼=H�(k)⊗H�(z). Since k is semisimple, by Whitehead’s
lemma, H1(k)=0 and H2(k)=0, and since z is abelian, H�(z)=

∧
�

z∗. Thus, we obtain
that

H2(g)∼=
∧2

z∗. (10)

Consider now any compact connected integration G of g. The cohomology of G
can be computed using left-invariant differential forms, and therefore H�(G)∼=H�(g). By
(10), we obtain that H2(G)=0 is equivalent to dim(z)61.

So, for fixed points, Theorem 1 gives the following consequence.

Corollary 2.4. Let (M,π) be a Poisson manifold with a fixed point x for which
the isotropy Lie algebra gx is compact and its center is at most 1-dimensional. Then π

is rigid around x, and an open set around x is Poisson diffeomorphic to a neighborhood
of 0 in the linear Poisson manifold (g∗x, πgx).

The linearization result in the semisimple case is Conn’s theorem [2] and the case
when the isotropy has a 1-dimensional center is a consequence of the smooth Levi de-
composition theorem of Monnier and Zung [20].

This fits into Weinstein’s notion of a non-degenerate Lie algebra [24]. Recall that a
Lie algebra g is non-degenerate if every Poisson structure which has isotropy Lie algebra
g at a fixed point x, is Poisson-diffeomorphic around x to the linear Poisson structure
(g∗, πg) around 0.
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A Lie algebra g, for which πg is rigid around 0, is necessarily non-degenerate. To
see this, consider a Poisson bivector π given in local coordinates by (9), and whose
linearization at 0 is πg. The path of Poisson bivectors πt from the first description of the
local model (2) satisfies π1=π and π0=πg, and for t>0 is given by

πt := tµ∗t (π) =
∑
i,j

1
2t
πi,j(tx)

∂

∂xi
∧ ∂

∂xj
,

where µt denotes multiplication by t>0. If πg is rigid around 0, then, for some r>0 and
some t>0, there is a Poisson isomorphism

ψ: (Br, πt)
∼−−! (ψ(Br), πg).

Now ξ :=ψ(0) is a fixed point of πg, which is the same as an element in (g/[g, g])∗. It is
easy to see that translation by ξ is a Poisson isomorphism of πg, and thus, replacing ψ
by ψ−ξ, we may assume that ψ(0)=0. Linearity of πg implies that µ∗t (πg)=πg/t, and
therefore

π=
1
t
µ∗1/t(πt) =

1
t
µ∗1/t(ψ

∗(πg))=µ∗1/t�ψ
∗
�µ∗t (πg).

Hence, π is linearizable by the map

µt�ψ�µ1/t: (Btr, π)−! (tψ(Br), πg),

which maps 0 to 0. This shows that g is non-degenerate.

2.5. The Poisson sphere in g∗

Let g be a semisimple Lie algebra of compact type and let G be the compact, 1-connected
Lie group integrating it. The linear Poisson structure (g∗, πg) is integrable by the sym-
plectic groupoid (T ∗G,ωcan)⇒g∗, with source and target maps given by left and right
trivialization. All s-fibers of T ∗G are diffeomorphic to G and, since H2(G)=0, we can
apply Theorem 2 to any compact Poisson submanifold of g∗. An example of such a
submanifold is the sphere S(g∗)⊂g∗ with respect to some invariant metric. We obtain
the following result, whose formal version appeared in [15] and served as an inspiration.

Proposition 2.5. Let g be a semisimple Lie algebra of compact type and denote
by S(g∗)⊂g∗ the unit sphere centered at the origin with respect to some invariant inner
product. Then πg is Cp-C1-rigid around S(g∗) and, up to isomorphism, it is determined
around S(g∗) by its first-order jet.
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Using this rigidity result, one can describe an open set around πS :=πg|S(g∗) in the
moduli space of all Poisson structures on the sphere S(g∗). More precisely, any Poisson
structure on S(g∗) that is Cp-close to πS is Poisson diffeomorphic to one of the type
fπS, where f is a positive Casimir function. If the metric is Aut(g)-invariant, then two
structures of this type f1πS and f2πS are isomorphic if and only if f1=f2�χ∗ for some
outer automorphism χ of the Lie algebra g. The details are given in [17].

2.6. Relation with stability of symplectic leaves

Recall from [5] that a symplectic leaf (S, ωS) of a Poisson manifold (M,π) is Cp-strongly
stable if for every open set U containing S there exists an open neighborhood V⊂X2(U)
of π|U with respect to the compact-open Cp-topology, such that every Poisson structure
in V has a leaf symplectomorphic to (S, ωS). Recall also the following result.

Theorem. ([5, Theorem 2.2]) If S is compact and the Lie algebroid AS :=T ∗M |S
satisfies H2(AS)=0, then S is a strongly stable leaf.

If π is Cp-C1-rigid around S, then S is a strongly stable leaf. Also, the hypotheses
of our Theorem 1 imply those of [5, Theorem 2.2]. To see this, let P!S be a principal
G-bundle for which AS∼=TP/G. Then

H�(AS)∼=H�(Ω(P )G).

If G is compact then, by averaging primitives, one easily shows that the inclusion
Ω�(P )G⊂Ω�(P ) induces an injection H�(Ω(P )G)!H�(P ). So H2(P )=0 implies that
H2(AS)=0.

On the other hand, H2(AS)=0 does not imply rigidity, counterexamples can be
found even for fixed points. Weinstein [25] proves that a non-compact semisimple Lie
algebra g of real rank at least 2 is degenerate, so πg is not rigid (see §2.4). However, 0 is
a stable point for πg, because by Whitehead’s lemma H2(g)=0.

According to [5, Theorem 2.3], the condition H2(AS)=0 is also necessary for strong
stability of the symplectic leaf (S, ωS) for Poisson structures of “first order”, i.e. for
Poisson structures which are isomorphic to their local model around S. So, for this type
of Poisson structures, H2(AS)=0 is also necessary for rigidity.

For regular Poisson structures whose underlying foliation is simple, we will prove
below that the hypotheses of Theorem 1 and of [5, Theorem 2.2] are equivalent.
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2.7. Simple symplectic foliations

We will now discuss rigidity and linearization of regular Poisson structures π on S×Rn

with symplectic leaves (
S×{y}, ωy :=π|−1

S×{y}
)
, y ∈Rn,

where {ωy}y∈Rn is a smooth family of symplectic forms on S. Let (S, ωS) be the sym-
plectic leaf for y=0. To construct the local model around S, we use the first description.
The path of Poisson structures πt from (2), for t 6=0, corresponds to the family of 2-forms
on S,

ωty :=ωS+
ωty−ωS

t
.

Therefore, the local model around S corresponds to the family of 2-forms

j1S(ω)y :=ωS+δSωy,

where δSωy is the “vertical derivative” of ω at S, that is

δSωy :=
d

dε
ωεy

∣∣∣∣
ε=0

= y1ω1+...+ynωn.

The local model is defined on an open set U⊂S×Rn containing S, such that j1S(ω)y is
non-degenerate along U∩(S×{y}). Using the splitting T ∗(S×Rn)|S=T ∗S×Rn and the
isomorphism of ω]S :TS ∼−−!T ∗S, we identify AS∼=TS×Rn. Under this identification, the
Lie bracket becomes

[(X, f1, ..., fn), (Y, g1, ..., gn)]

= ([X,Y ], X(g1)−Y (f1)+ω1(X,Y ), ..., X(gn)−Y (fn)+ωn(X,Y )).
(11)

The conditions in Theorem 1 become more computable in this case.

Lemma 2.6. If S is compact, then the following are equivalent :
(a) AS is integrable by a compact principal bundle P , with H2(P )=0;
(b) H2(AS)=0;
(c) the cohomological variation [δSω]: Rn!H2(S), y 7![δSωy], satisfies the following

properties:
(c1) it is surjective;
(c2) its kernel is at most 1-dimensional ;
(c3) the map H1(S)⊗Rn!H3(S), η⊗y 7!η∧[δSωy], is injective.

Proof. The complex computing H�(AS) can be identified with

Ωk(AS) :=
⊕
p+q=k

Ωp(S)⊗
∧q

Rn,
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endowed with the differential

dAS
(α⊗w) = (dα)⊗w+(−1)p+1α∧δSω(w),

for α∈Ωp(S) and w∈
∧q Rn, where the map

δSω:
∧q

Rn−!Ω2(S)⊗
∧q−1

Rn

is induced by the vertical derivative of ω:

δSω(y1∧...∧yq) =
q∑
i=1

(−1)i−1δSωyi⊗y1∧...∧yi−1∧yi+1∧...∧yq.

Consider the filtration F pΩ�(AS):=Ωp(S)∧Ω�−p(AS) of this complex, and the corre-
sponding spectral sequence (for general constructions of spectral sequences for computing
Lie algebroid cohomology see, e.g., [13]). We have that

Ep,q2 =Hp(S)⊗
∧q

Rn⇒Hp+q(AS),

and the differentials on the second page E2 are given by

[δSω]:Hp(S)⊗
∧q

Rn−!Hp+2(S)⊗
∧q−1

Rn,

[α]⊗w 7−! (−1)p+1[α∧δSω(w)].

In total degree 2, the cohomology of E2 is given by

E2,0
3 := coker([δSω]: Rn!H2(S)),

E1,1
3 := ker([δSω]:H1(S)⊗Rn!H3(S)),

E0,2
3 := ker

(
[δSω]:

∧2
Rn!H2(S)⊗Rn

)
.

We claim that the last group is also given by

E0,2
3 =

∧2
ker([δSω]: Rn!H2(S)). (12)

This is based on a simple result from linear algebra: namely, if A:V!W is a linear map
between finite-dimensional vector spaces, then the kernel of the map∧2

V −!W⊗V,

v1∧v2 7−!A(v1)⊗v2−A(v2)⊗v1,
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is given by
∧2 ker(A).

Next, we claim that the cohomology can be read from the third page:

H2(AS) =E2,0
3 ⊕E1,1

3 ⊕E0,2
3 . (13)

Since E2,0
3 =E2,0

∞ and E1,1
3 =E1,1

∞ , this is equivalent to the edge morphism eF :E0,2
∞ !E

0,2
3

being an isomorphism, or to surjectivity of the map

H2(AS)−!E0,2
3 ,

[α] 7−! [α0,2],
(14)

where α0,2 denotes the component in
∧2 Rn of the closed form α∈Ω2(AS). By (12), it

suffices to show that every element of the form v∧w, with [δSωv]=[δSωw]=0 is in the
range of this map. Writing δSωv=dη and δSωw=dθ, for η, θ∈Ω1(S), one easily checks
that

ξ := (η∧θ, η⊗w−θ⊗v, v∧w)∈Ω2(AS)

is closed. Thus, the map in (14) maps [ξ] to v∧w, which proves that it is surjective.
Hence (13) holds.

The three conditions in (c) are equivalent to the vanishing of the three components
of E2

3 . So, by (13), (b) and (c) are equivalent.
The fact that (a) implies (b) was explained in §2.6.
We prove now that (b) and (c) imply (a). Part (c1) implies that, by taking a different

basis of Rn, we may assume that [ω1], ..., [ωn]∈H2(S,Z). Let P!S be a principal Tn

bundle with connection form (θ1, ..., θn) and curvature form (−ω1, ...,−ωn). We claim
that the Lie algebroid TP/Tn is isomorphic to AS . A section of TP/Tn is the same as
a Tn-invariant vector field on P , and as such, it can be decomposed uniquely as

X̃+
n∑
i=1

fi∂θi ,

where X̃ is the horizontal lift of a vector field X on S, f1, ..., fn are smooth functions on
S, and ∂θi is the unique vertical vector field on P which satisfies

θj(∂θi) = δi,j .

Using (11) for the bracket on AS and that dθi=−p∗(ωi), it is straightforward to check
that the map

TP/Tn ∼−!AS ,

X̃+
∑

fi∂θi 7−! (X, f1, ..., fn),
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is a Lie algebroid isomorphism. Since Tn is compact and connected, using averaging, one
shows that the complexes

(Ω�(P )T
n

, d) and (Ω�(P ), d)

are quasi-isomorphic; in particularH2(P )∼=H2(AS). By (b), H2(P )=0, and so P satisfies
the conditions from (a). This finishes the proof.

So, in the case of simple foliations, Theorem 1 becomes the following result.

Corollary 2.7. Let {ωy∈Ω2(S)}y∈Rn be a smooth family of symplectic structures
on a compact manifold S. If the cohomological variation at 0,

[δSω]: Rn−!H2(S),

satisfies the conditions from Lemma 2.6, then the Poisson manifold with leaves

(S×Rn, {ω−1
y }y∈Rn)

is isomorphic to its local model at S×{0}, and is Cp-C1-rigid around this leaf.

For simple symplectic foliations Lemma 2.6 shows that the condition in Theorem 1
is equivalent to the vanishing of H2(AS). This is precisely the assumption of the stability
result from [5, Theorem 2.2]. In [5], it is also proven that under this assumption there
exists a smoothly parameterized family of symplectic leaves near S that are symplecto-
morphic to (S, ωS). To describe the parameter space, consider the cohomology H�(AS ;S)
of the quotient complex (here we use the notation from the proof of Lemma 2.6)

Ω�(AS ;S) := Ω�(AS)/Ω�(S),

and consider the canonical map induced by the quotient map

Φ:H�(AS)−!H�(AS ;S).

Theorem 2.2 in [5] states that every Poisson structure near π has a family of symplectic
leaves symplectomorphic to (S, ωS), which is smoothly parameterized by the image of
the map

Φ:H1(AS)−!H1(AS ;S).

Applying the same techniques as in the proof of Lemma 2.6, this map can be computed
as follows.
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Lemma 2.8. With the notation from the proof of Lemma 2.6, we have that

H1(AS)∼=H1(S)⊕ker([δSω]: Rn!H2(S)) and H1(AS ;S)∼= Rn.

Under these isomorphisms, the map Φ:H1(AS)!H1(AS ;S) becomes ([η], v) 7!v.

So, under the assumptions from Corollary 2.7, the space of leaves symplectomorphic
to (S, ωS) is parameterized by

ker([δSω]: Rn!H2(S)). (15)

Of course, using the local model, this can be checked directly. By Lemma 2.6, this space
is at most 1-dimensional. An example where the space (15) is indeed 1-dimensional,
can be constructed as follows: consider the 2-sphere S :=S2, endowed with a symplectic
structure ωS . Then the Poisson structure on S×R2 with symplectic foliation given by

(S×{(y1, y2)}, ey1ωS), (y1, y2)∈R2, (16)

satisfies the conditions of Lemma 2.6. Note that every leaf S×{(y1, y2)} is part of a
1-parameter family S×{(y1, y2+t)}, t∈R, of symplectomorphic leaves.

We remark that the Poisson structure in this example is isomorphic to the regular
part of the linear Poisson structure corresponding to the Lie algebra g=su(2)⊕R. In fact,
for a semisimple Lie algebra of compact type k, the linear Poisson structure πg of the
product g:=k⊕R is rigid (cf. Corollary 2.4), and the Poisson structure has a 1-parameter
family of isomorphisms that do not preserve leaves: the translation by elements in k�.
Thus, any leaf has a line of symplectomorphic leaves nearby.

In the case of simple symplectic foliations, we also have an improvement compared
to the result of [7]; the hypothesis in there can be restated as follows (cf. [16, Corol-
lary 4.1.22]):

• S is compact with finite fundamental group,
• the map p∗�[δSω]: Rn!H2(S̃) is an isomorphism,

where p: S̃!S is the universal cover of S. So, for example when S is simply connected,
the difference between the assumptions is that, in our case, the map [δSω] might still have
a 1-dimensional kernel, whereas in [7] it has to be injective. In particular, the example
(16) above falls out of the framework of [7].

3. Proof of Theorem 2

We start by preparing the setting needed for applying the Nash–Moser method: we
fix norms on the Fréchet spaces involved, we construct smoothing operators adapted
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to the problem and we recall the interpolation inequalities. Next, we prove a series of
inequalities which assert tameness of some natural operations such as: the Lie derivative,
the flow of a vector field, and the pull-back; and then we prove some inequalities for the
composition of local diffeomorphisms. We end the section with the proof of Theorem 2,
which is mostly inspired by Conn’s proof [2].

Remark 1. A usual convention when dealing with the Nash–Moser techniques (see
e.g. [12]), which we also adopt, is to denote all constants by the same symbol. In the
series of preliminary results below we work with “big enough” constants C and Cn, and
with “small enough” constants θ>0; these depend on the trivialization data for the vector
bundle E and on the smoothing operators. In the proof of Proposition 3.12, Cn depends
also on the Poisson structure π.

3.1. The ingredients of the tame category

We borrow the terminology from [12]. A Fréchet space F endowed with an increasing
family of seminorms {‖ · ‖n}n>0 generating its topology is called a graded Fréchet space.
A linear map T :F1!F2 between two graded Fréchet spaces is called tame of degree d
and base b, if it satisfies inequalities of the form

‖Tf‖n 6Cn‖f‖n+d for all n> b and f ∈F1.

Let E!N be a vector bundle over a compact manifold N and fix a metric on E.
For r>0, consider the closed tube in E of radius r,

Er := {v ∈E : |v|6 r}.

The space of multivector fields on Er, denoted by X�(Er), when endowed with Cn-
norms becomes a graded Fréchet space. We recall here the construction of such norms.
Fix a finite open cover of N by domains of charts {χi:Oi ∼−−!Rd}Ii=1 and vector bundle
isomorphisms

χ̃i:E|Oi

∼−−!Rd×RD

covering χi. We will assume that χ̃i(Er|Oi)=Rd×
Br and that the family

{Oδi :=χ−1
i (Bδ)}Ii=1

covers N for all δ>1. Moreover, we assume that the cover satisfies

if O3/2
i ∩O3/2

j 6= ∅ then O1
j ⊂O4

i . (17)
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This holds if χ−1
i |B4 :B4!Oi is the exponential corresponding to some metric on N , with

injectivity radius lager than 4.
For W∈X�(Er), denote its local expression in the chart χ̃i by

Wi(z) :=
∑

16i1<...<ip6d+D

W
i1,...,ip
i (z)

∂

∂zi1
∧...∧ ∂

∂zip
,

and let the Cn-norm of W be given by

‖W‖n,r := sup
i,i1,...,ip

{∣∣∣∣∂|α|∂zα
W

i1,...,ip
i (z)

∣∣∣∣ : z ∈B1×Br and 0 6 |α|6n

}
.

For s<r, the restriction maps are norm decreasing

X�(Er)3W 7−!W |s :=W |Es ∈X�(Es),
∥∥W |s

∥∥
n,s

6 ‖W‖n,r.

We will work also with the closed subspaces of multivector fields on Er whose first
jet vanishes along N , which we denote by

Xk(Er)(1) := {W ∈Xk(Er) : j1W |N =0}.

The main technical tool used in the Nash–Moser method are the smoothing opera-
tors. We will call a family {St:F!F}t>1 of linear operators on the graded Fréchet space
F smoothing operators of degree d>0, if there exist constants Cn,m>0 such that, for all
n,m>0 and f∈F , the following inequalities hold:

‖St(f)‖n+m 6 tm+dCn,m‖f‖n and ‖St(f)−f‖n 6 t−mCn,m‖f‖n+m+d. (18)

The construction of such operators is standard, but since we are dealing with a
Fréchet space for each r∈(0, 1], we give the explicit dependence of the constants Cn,m
from (18) on the parameter r.

Lemma 3.1. The family of graded Fréchet spaces {(Xk(Er), ‖ · ‖n,r)}r∈(0,1] has a
family of smoothing operators of degree d=0,

{Srt :Xk(Er)!Xk(Er)}t>1,0<r61,

which satisfy (18) with constants of the form Cn,m(r)=Cn,mr−(n+m+k).
Similarly, the family {(Xk(Er)(1), ‖ · ‖n,r)}r∈(0,1] has smoothing operators

{Sr,1t :Xk(Er)(1)!Xk(Er)(1)}t>1,0<r61,

of degree d=1 and constants Cn,m(r)=Cn,mr−(n+m+k+1).
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Proof. The existence of smoothing operators of degree zero on the Fréchet space of
sections of a vector bundle over a compact manifold (possibly with boundary) is standard
(see [12]). We fix such a family {St:Xk(E1)!Xk(E1)}t>1. Denote by

µ%:ER−!E%R,

v 7−! %v,

the rescaling operators. For r∈(0, 1], define Srt by conjugating St with µ∗r ,

Srt :=µ∗r−1 �St�µ
∗
r :X

k(Er)−!Xk(Er).

Using the straightforward inequality

‖µ∗%(W )‖n,R 6max{%−k, %n}‖W‖n,%R for all W ∈Xk(E%R),

we obtain that Srt satisfies (18) with Cn,m(r)=Cn,mr−(n+m+k).
To construct the operators Sr,1t , we first define a tame projection

P :Xk(Er)−!Xk(Er)(1).

Choose a smooth partition of unit {λi}Ii=1 on N subordinated to the cover {O1
i }Ii=1, and

let {λ̃i}Ii=1 be the pull-back to E. For W∈Xk(Er), denote its local representatives by
Wi :=χ̃i,∗(W |Er|Oi

)∈Xk(Rd×
Br). Define P as

P (W ) :=
I∑
i=1

λ̃iχ̃
−1
i,∗ (Wi−T 1

y (Wi)),

where T 1
y (Wi) is the degree-1 Taylor polynomial of Wi in the fiber direction

T 1
y (Wi)(x, y) :=Wi(x, 0)+

D∑
j=1

yj
∂Wi

∂yj
(x, 0).

If W∈Xk(Er)(1), then T 1
y (Wi)=0; so P is a projection. It is easy to check that P is tame

of degree 1, that is, there are constants Cn>0 such that

‖P (W )‖n,r 6Cn‖W‖n+1,r.

Define the smoothing operators on Xk(Er)(1) as

Sr,1t :=P �Srt :X
k(Er)(1)−!Xk(Er)(1).

Using tameness of P , the inequalities for Sr,1t are straightforward.
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The norms ‖ · ‖n,r satisfy the classical interpolation inequalities with constants which
are polynomials in r−1.

Lemma 3.2. The norms ‖ · ‖n,r satisfy

‖W‖l,r 6Cnr
k−l‖W‖(n−l)/(n−k)

k,r ‖W‖(l−k)(n−k)
n,r for r∈ (0, 1],

for all 06k6l6n, not all equal, and all W∈X�(Er).

Proof. By the interpolation inequalities from [2], it follows that these inequalities
hold for the Cn-norms on the spaces C∞(
B1×
Br). Applying these to the components of
the restrictions to the charts (Er|O1

i
, χ̃i) of a multivector field in X�(Er), we obtain the

interpolation inequalities on X�(Er).

3.2. Tameness of some natural operators

In this subsection we prove some tameness properties of the Lie bracket, the pull-back
and the flow of vector fields.

The tame Fréchet Lie algebra of multivector fields

We prove that
(X�(Er), [ · , · ], {‖ · ‖n,r}n>0)

is a tame Fréchet graded Lie algebra.

Lemma 3.3. The Schouten bracket on X�(Er) satisfies

‖[W,V ]‖n,r 6Cnr
−(n+1)(‖W‖0,r‖V ‖n+1,r+‖W‖n+1,r‖V ‖0,r) for all r∈ (0, 1].

Proof. By a local computation, the bracket satisfies inequalities of the form

‖[W,V ]‖n,r 6Cn
∑

i+j=n+1

‖W‖i,r‖V ‖j,r.

Using the interpolation inequalities, a term in this sum can be bounded by

‖W‖i,r‖V ‖j,r 6Cnr
−(n+1)(‖W‖0,r‖V ‖n+1,r)j/(n+1)(‖V ‖0,r‖W‖n+1,r)i/(n+1).

The following inequality, which will be used again later, implies the conclusion

xλy1−λ 6x+y for all x, y> 0 and all λ∈ [0, 1]. (19)
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The space of local diffeomorphisms

We now consider the space of smooth maps Er!E which are C1-close to the inclusion
Ir:Er ↪!E. We call a map ϕ:Er!E a local diffeomorphism, if it can be extended on
some open set to a diffeomorphism onto its image. Since Er is compact, this is equivalent
to injectivity of dϕ:TEr!TE. To be able to measure Cn-norms of such maps, we work
with the following open neighborhood of Ir in C∞(Er;E):

Ur := {ϕ:Er!E :ϕ(Er|
O1
i
)⊂E|Oi , 1 6 i6 I}.

Denote the local representatives of a map ϕ∈Ur by

ϕi: 
B1×
Br −!Rd×RD.

Define Cn-distances between maps ϕ,ψ∈Ur as

d(ϕ,ψ)n,r := sup
16i6I

{∣∣∣∣∂|α|∂zα
(ϕi−ψi)(z)

∣∣∣∣ : z ∈B1×Br and 0 6 |α|6n

}
.

To control compositions of maps, we will also need the following Cn-distances

d(ϕ,ψ)n,r,δ := sup
16i6I

{∣∣∣∣∂|α|∂zα
(ϕi−ψi)(z)

∣∣∣∣ : z ∈Bδ×Br and 0 6 |α|6n

}
,

which are well-defined only on the open set

Uδr := {χ∈Ur :χ(Er|
Oδ
i
)⊂E|Oi}.

Similarly, we define also on X�(Er) norms ‖ · ‖n,r,δ (these measure the Cn-norms in all
our local charts on Bδ×Br).

These norms and distances are equivalent.

Lemma 3.4. There exist Cn>0 such that, for all r∈(0, 1] and all δ∈[1, 4],

d(ϕ,ψ)n,r 6 d(ϕ,ψ)n,r,δ 6Cnd(ϕ,ψ)n,r for all ϕ,ψ ∈Uδr

and
‖W‖n,r 6 ‖W‖n,r,δ 6Cn‖W‖n,r for all W ∈X�(Er).

We also use the simplified notation

d(ψ)n,r := d(ψ, Ir)n,r and d(ψ)n,r,δ := d(ψ, Ir)n,r,δ.

The lemma below is used to check that compositions are defined.
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Lemma 3.5. There exists a constant θ>0 such that, for all r∈(0, 1], all ε∈(0, 1], all
δ∈[1, 4] and all ϕ∈Ur satisfying d(ϕ)0,r<εθ,

ϕ(Er|
Oδ
i
)⊂Er+ε|Oδ+ε

i
.

We now prove that Ir has a C1-neighborhood of local diffeomorphisms.

Lemma 3.6. There exists a constant θ>0 such that, for all r∈(0, 1], if ψ∈Ur sat-
isfies d(ψ)1,r<θ, then ψ is a local diffeomorphism.

Proof. By Lemma 3.5, if we shrink θ, we may assume that

ψ(Er|
O1
i
)⊂E|

O
3/2
i

and ψ(Er|
O4
i
)⊂E|Oi . (20)

In a local chart, we write ψ as

ψi := Id +gi: 
B4×
Br −!Rd×RD.

By Lemma 3.4, if we shrink θ, we may also assume that∣∣∣∣∂gi∂zj
(z)

∣∣∣∣< 1
2(d+D)

for all z ∈ 
B4×
Br. (21)

This ensures that Id+(dgi)z is close enough to Id so that it is invertible for all z∈
B1×
Br.
Thus, (dψ)p is invertible for all p∈Er.

We now check the injectivity of ψ. Let pi∈Er|O1
i

and pj∈Er|O1
j

be such that

ψ(pi) = q=ψ(pj).

Then, by (20), q∈E|
O

3/2
i
∩E|

O
3/2
j

, so, by the property (17), we know that O1
j⊂O4

i , and

hence pi, pj∈Er|O4
i
. Setting wi :=χ̃i(pi) and wj :=χ̃i(pj) we have that wi, wj∈
B4×
Br.

Since wi+gi(wi)=wj+gi(wj), using (21), we obtain that

|wi−wj |= |gi(wi)−gi(wj)|=
∣∣∣∣∫ 1

0

D+d∑
k=1

∂gi
∂zk

(twi+(1−t)wj)(wik−w
j
k) dt

∣∣∣∣ 6
1
2
|wi−wj |.

Thus wi=wj , and so pi=pj . This finishes the proof.

The composition satisfies the following tame inequalities.

Lemma 3.7. There are Cn>0 such that, for all 16δ6σ64 and all 0<s6r61, we
have that, if ϕ∈Us and ψ∈Ur satisfy

ϕ(Es|
Oδ
i
)⊂Er|Oσ

i
and ψ(Er|
Oσ

i
)⊂E|Oi for all 1 6 i6 I,

and d(ϕ)1,s<1, then the following inequalities hold :

d(ψ�ϕ)n,s,δ 6 d(ψ)n,r,σ+d(ϕ)n,s,δ+Cns−n(d(ψ)n,r,σd(ϕ)1,s,δ+d(ϕ)n,s,δd(ψ)1,r,σ),

d(ψ�ϕ,ψ)n,s,δ 6 d(ϕ)n,s,δ+Cns−n(d(ψ)n+1,r,σd(ϕ)1,s,δ+d(ϕ)n,s,δd(ψ)1,r,σ).
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Proof. Denote the local expressions of ϕ and ψ as

ϕi := Id +gi: 
Bδ×
Bs−!Bσ×Br,

ψi := Id +fi: 
Bσ×
Br −!Rd×RD.

Then, for all z∈
Bδ×
Bs, we can write

ψi(ϕi(z))−z= fi(z+gi(z))+gi(z).

By computing ∂|α|/∂zα of the right-hand side, for a multi-index α with |α|=n, we obtain
an expression of the form

∂|α|gi
∂zα

(z)+
∂|α|fi
∂zα

(ϕi(z))+
∑

β,γ1,...,γp

∂|β|fi
∂zβ

(ϕi(z))
∂|γ1|gj1i
∂zγ1

(z) ...
∂|γp|g

jp
i

∂zγp
(z),

where the multi-indices in the sum satisfy

1 6 p6n, 1 6 |β|, |γj |6n and |β|+
p∑
j=1

(|γj |−1) =n. (22)

The first two terms can be bounded by d(ψ)n,r,σ+d(ϕ)n,s,δ. For the last term we use the
interpolation inequalities to obtain that

‖fi‖|β|,r,σ 6Cns
1−|β|‖fi‖(n−|β|)/(n−1)

1,r,σ ‖fi‖(|β|−1)/(n−1)
n,r,σ ,

‖gi‖|γi|,s,δ 6Cns
1−|γi|‖gi‖(n−|γi|)/(n−1)

1,s,δ ‖gi‖(|γi|−1)/(n−1)
n,s,δ .

Multiplying all these, and using (22), the sum is bounded by

Cns
1−n‖gi‖p−1

1,s,δ(‖fi‖1,r,σ‖gi‖n,s,δ)(n−|β|)/(n−1)(‖fi‖n,r,σ‖gi‖1,s,δ)(|β|−1)/(n−1).

By Lemma 3.4, it follows that ‖gi‖1,s,δ<C, and dropping this term, the first part follows
using inequality (19).

For the second part write, for z∈
Bδ×
Bs,

ψi(ϕi(z))−ψi(z) = fi(z+gi(z))−fi(z)+gi(z).

We compute ∂|α|/∂zα of the right-hand side, for a multi-index α with |α|=n,

∂|α|fi
∂zα

(ϕi(z))−
∂|α|fi
∂zα

(z)+
∂|α|gi
∂zα

(z)+
∑

β,γ1,...,γp

∂|β|fi
∂zβ

(ϕi(z))
∂|γ1|gj1i
∂zγ1

(z) ...
∂|γp|g

jp
i

∂zγp
(z),

where the multi-indices in the sum satisfy (22). We bound the last term as before, and
the third by d(ϕ)n,s,δ. Writing the first two terms as

d+D∑
j=1

∫ 1

0

∂|α|+1fi
∂zj∂zα

(z+tgi(z))g
j
i (z) dt,

they are less than Cd(ψ)n+1,r,σd(ϕ)0,s,δ. Adding up, the result follows.
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We now give conditions for infinite compositions of maps to converge.

Lemma 3.8. There exists θ>0, such that for all sequences

{ϕk ∈Urk
}k>1, ϕk:Erk

−!Erk−1 ,

where 0<r<rk<rk−16r0<1, which satisfy

σ0 :=
∑
k>1

d(ϕk)0,rk
<θ and σn :=

∑
k>1

d(ϕk)n,rk
<∞ for all n> 1,

the sequence of maps
ψk :=ϕ1�...�ϕk:Erk

−!Er0

converges in all Cn-norms on Er to a map ψ:Er!Er0 , with ψ∈Ur. Moreover, there
are Cn>0 such that, if d(ϕk)1,rk

<1 for all k>1, then

d(ψ)n,r 6 eCnr
−nσnCnr

−nσn.

Proof. Consider the sequences of numbers

εk :=
d(ϕk)0,rk∑
l>1 d(ϕl)0,rl

and δk := 2−
k∑
l=1

εl.

We have that d(ϕk)0,rk
6εkθ. So, by Lemma 3.5, we may assume that

ϕk(Erk
|
O2

i
)⊂Erk−1 |Oi and ϕk

(
Erk

|

O

δk
i

)
⊂Erk−1 |Oδk−1

i

,

and this implies that
ψk−1

(
Erk−1 |
Oδk−1

i

)
⊂Er0 |Oi .

So we can apply Lemma 3.7 to the pair ψk−1 and ϕk for all k>k0. The first part of
Lemma 3.7 and Lemma 3.4 imply an inequality of the form

1+d(ψk)n,rk,δk
6 (1+d(ψk−1)n,rk−1,δk−1)(1+Cnr−nd(ϕk)n,rk

).

Iterating this inequality, we obtain that

1+d(ψk)n,rk,δk
6 (1+d(ψk0)n,rk0 ,δk0

)
k∏

l=k0+1

(1+Cnr−nd(ϕl)n,rl
)

6 (1+d(ψk0)n,rk0 ,δk0
)eCnr

−n ∑
l>k0

d(ϕl)n,rl

6 (1+d(ψk0)n,rk0 ,δk0
)eCnr

−nσn .
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The second part of Lemma 3.7 and Lemma 3.4 imply that

d(ψk, ψk−1)n,r 6 (1+d(ψk−1)n+1,rk−1,δk−1)Cnr
−nd(ϕk)n,rk,δk

6 (1+d(ψk0)n+1,rk0 ,δk0
)eCn+1r

−1−nσn+1Cnr
−nd(ϕk)n,rk

.

This shows that the sum
∑
k>1 d(ψk, ψk−1)n,r converges for all n, and hence the sequence

{ψk|Er}k>1 converges in all Cn-norms to a smooth function ψ:Er!Er0 .
If d(ϕk)1,rk

<1 for all k>1, then we can take k0=0. So, we obtain

1+d(ψk)n,rk,δk
6

k∏
l=1

(1+Cnr−nd(ϕl)n,rl
) 6 eCnr

−n ∑k
l=1 d(ϕl)n,rl 6 eCnr

−nσn .

Using the trivial inequality ex−16xex, for x>0, the result follows.

Tameness of the flow

The C0-norm of a vector field controls the size of the domain of its flow.

Lemma 3.9. There exists θ>0 such that for all 0<s<r61 and all X∈X1(Er) with
‖X‖0,r<(r−s)θ, we have that ϕtX , the flow of X, is defined for all t∈[0, 1] on Es and
belongs to Us,

ϕtX :Er−ε−!Er.

Proof. We denote the restriction of X to a chart by Xi∈X1(Rd×
Br). Consider
p∈
B1×
Bs. Let t∈(0, 1] be such that the flow of Xi is defined up to time t at p and such
that for all τ∈[0, t) it satisfies ϕτXi

(p)∈B2×Br. Then we have that

|ϕtXi
(p)−p|=

∣∣∣∣∫ t

0

d(ϕτXi
(p))

∣∣∣∣ 6
∫ t

0

|Xi(ϕτXi
(p))| dτ 6 ‖Xi‖0,r,2 6C‖X‖0,r,

where for the last step we used Lemma 3.4. Hence, if ‖X‖0,r<(r−s)/C, we have that
ϕtXi

(p)∈B2×Br, and this implies the result.

We now prove that the map which with a vector field associates its flow is tame (this
proof was inspired by the proof of [18, Lemma B.3]).

Lemma 3.10. There exists θ>0 such that for all 0<s<r61, and all X∈X1(Er)
with

‖X‖0,r < (r−s)θ and ‖X‖1,r <θ,

we have that ϕX :=ϕ1
X belongs to Us and satisfies

d(ϕX)0,s 6C0‖X‖0,r and d(ϕX)n,s 6 r1−nCn‖X‖n,r for all n> 1.
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Proof. By Lemma 3.9, for t∈[0, 1], we have that ϕtX∈Us, and by its proof that the
local representatives take values in B2×Br,

ϕtXi
:= Id +gi,t: 
B1×
Bs−!B2×Br.

We will prove, by induction on n, that gi,t satisfies inequalities of the form

‖gi,t‖n,s 6CnPn(X), (23)

where Pn(X) denotes the following polynomials in the norms of X:

P0(X) = ‖X‖0,r, P1(X) = ‖X‖1,r and Pn(X) =
∑

j1+...+jp=n−1

16jk6n−1

‖X‖j1+1,r ... ‖X‖jp+1,r.

Observe that (23) implies the conclusion, since by the interpolation inequalities and the
fact that ‖X‖1,r<θ61 we have that

‖X‖jk+1,r 6Cnr
−jk‖X‖1−jk/(n−1)

1,r ‖X‖jk/(n−1)
n,r 6Cnr

−jk‖X‖jk/(n−1)
n,r ,

and hence
Pn(X) 6Cnr

1−n‖X‖n,r.

The map gi,t satisfies the ordinary differential equation

dgi,t
dt

(z) =
dϕtXi

dt
(z) =Xi(ϕtXi

(z))=Xi(gi,t(z)+z).

Since gi,0=0, it follows that

gi,t(z) =
∫ t

0

Xi(z+gi,τ (z)) dτ. (24)

Using also Lemma 3.4, we obtain the result for n=0:

‖gi,t‖0,s 6 ‖X‖0,r,2 6C0‖X‖0,r.

We will use the following version of the Grönwall inequality: if u: [0, 1]!R is a continuous
map and there are positive constants A and B such that

u(t) 6A+B
∫ t

0

u(τ) dτ,

then u satisfies u(t)6AeB .
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Computing the partial derivative ∂/∂zj of equation (24), we obtain

∂gi,t
∂zj

(z) =
∫ t

0

(
∂Xi

∂zj
(z+gi,τ (z))+

D+d∑
k=1

∂Xi

∂zk
(z+gi,τ (z))

∂gki,τ
∂zj

(z)
)
dτ.

Therefore, using again Lemma 3.4, the function∣∣∣∣∂gi,t∂zj
(z)

∣∣∣∣
satisfies ∣∣∣∣∂gi,t∂zj

(z)
∣∣∣∣ 6C‖X‖1,r+(D+d)‖X‖1,r

∫ t

0

∣∣∣∣∂gi,τ∂zj
(z)

∣∣∣∣ dτ.
The case n=1 now follows by Grönwall’s inequality:∥∥∥∥∂gi,t∂zj

∥∥∥∥
0,s

6C‖X‖1,re
(D+d)‖X‖1,r 6C‖X‖1,r.

For a multi-index α, with |α|=n>2, applying ∂|α|/∂zα to (24), we obtain

∂|α|gi,t
∂zα

(z) =
∫ t

0

∑
26|β|6|α|

∂|β|Xi

∂zβ
(z+gi,τ (z))

∂|γ1|gi1i,τ
∂zγ1

(z) ...
∂|γp|g

ip
i,τ

∂zγp
(z) dτ

+
∫ t

0

D+d∑
j=1

∂Xi

∂zj
(z+gi,τ (z))

∂|α|gji,τ
∂zα

(z) dτ,

(25)

where the multi-indices satisfy

1 6 |γk|6n−1 and (|γ1|−1)+...+(|γp|−1)+|β|=n.

Since |γk|6n−1, we can apply induction to conclude that∥∥∥∥∂|γk|giki,τ
∂zγk

∥∥∥∥
0,s

6P|γk|(X).

So, the first part of the sum can be bounded by

Cn
∑

j0+...+jp=n−1

16jk6n−1

‖X‖j0+1,1Pj1+1(X) ... Pjp+1(X). (26)

It is easy to see that the polynomials Pk(X) satisfy

Pu+1(X)Pv+1(X) 6Cu,vPu+v+1(X). (27)

Therefore (26) can be bounded by CnPn(X). Using this in (25), we obtain∣∣∣∣∂|α|gi,t∂zα
(z)

∣∣∣∣ 6CnPn(X)+(D+d)‖X‖1,r

∫ t

0

∣∣∣∣∂|α|gi,τ∂zα
(z)

∣∣∣∣ dτ.
Applying Grönwall’s inequality again, we obtain the conclusion.
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We now show how to approximate pull-backs by flows of vector fields.

Lemma 3.11. There exists θ>0 such that, for all 0<s<r61 and all X∈X1(Er)
with ‖X‖0,r<(r−s)θ and ‖X‖1,r<θ, we have that

‖ϕ∗X(W )‖n,s 6Cnr
−n(‖W‖n,r+‖W‖0,r‖X‖n+1,r),∥∥ϕ∗X(W )−W |s

∥∥
n,s

6Cnr
−2n−1(‖X‖n+1,r‖W‖1,r+‖X‖1,r‖W‖n+1,r),∥∥ϕ∗X(W )−W |s−ϕ∗X([X,W ])

∥∥
n,s

6Cnr
−3(n+2)‖X‖0,r

×(‖X‖n+2,r‖W‖2,r+‖X‖2,r‖W‖n+2,r)

for all W∈X�(Er), where Cn>0 is a constant depending only on n.

Proof. As in the proof above, the local expression of ϕX is defined as

ϕXi =Id+gi: 
B1×
Bs−!B2×Br.

Let W∈X�(Er), and denote by Wi its local expression on Er|
Oi
2
,

Wi :=
∑

J={j1<...<jk}

W J
i (z)

∂

∂zj1
∧...∧ ∂

∂zjk
∈X�(
B2×
Br).

The local representative of ϕ∗X(W ) is given, for z∈
B1×
Bs, by

(ϕ∗XW )i =
∑
J

W J
i (z+gi(z))(Id+dzgi)−1 ∂

∂zj1
∧...∧(Id+dzgi)−1 ∂

∂zjk
.

By the Cramer rule, the matrix (Id+dzgi)−1 has entries of the form

Ψ
(
∂gli
∂zj

(z)
)

det(Id+dzgi)−1,

where Ψ is a polynomial in the variables Y lj , which we substitute by

∂gli
∂zj

(z).

Therefore, any coefficient of the local expression of ϕ∗X(W )i will be a sum of elements of
the form

W J
i (z+gi(z))Ψ

(
∂gli
∂zj

(z)
)

det(Id+dzgi)−k.

When computing ∂|α|/∂zα of such an expression, with |α|=n, using an inductive argu-
ment, one proves that the outcome is a sum of terms of the form

∂|β|W J
i

∂zβ
(z+gi(z))

∂|γ1|gv1i
∂zγ1

(z) ...
∂|γp|g

vp

i

∂zγp
(z) det(Id +dzgi)−M , (28)
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with coefficients depending only on α and on the multi-indices, which satisfy

p> 0, M > 0, |γj |> 1 and |β|+(|γ1|−1)+...+(|γp|−1) =n.

By Lemma 3.10, ‖gi‖1,s<Cθ, so, if we shrink θ, we find that

det(Id+dzgi)−1< 2 for all z ∈ 
B1×
Bs.

Using this, Lemma 3.4 for W and ∣∣∣∣∂gli∂zj
(z)

∣∣∣∣ 6C,

we bound (28) by
Cn

∑
j,j1,...,jp

‖W‖j,r‖gi‖j1+1,s ... ‖gi‖jp+1,s,

where the indices satisfy

j> 0, jk > 0 and j+j1+...+jp =n.

The term with p=0 can simply be bounded by Cn‖W‖n,r. For the other terms, we will
use the bound ‖gi‖jk+1,s6Pjk+1(X) from the proof of Lemma 3.10. The multiplicative
property (27) of the polynomials Pl(X) implies that

‖ϕ∗X(W )‖n,s 6Cn

n∑
j=0

‖W‖j,rPn−j+1(X).

Applying interpolation to Wj,r and to a term of Pn−j+1(X), we obtain

‖W‖j,r 6Cnr
−j‖W‖1−j/n

0,r ‖W‖j/nn,r ,

‖X‖jk+1,r 6Cnr
−jk‖X‖1−jk/n

1,r ‖X‖jk/nn+1,r 6Cnr
−jk‖X‖jk/nn+1,r.

Multiplying all these terms and using (19), we conclude the first part of the proof:

‖W‖j,r‖X‖j1+1,r ... ‖X‖jp+1,r 6Cnr
−n(‖W‖0,r‖X‖n+1,r)1−j/n‖W‖j/nn,r

6Cnr
−n(‖W‖n,r+‖W‖0,r‖X‖n+1,r).

For the second inequality, set

Wt :=ϕt∗X(W )−W |s ∈X�(Es).
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Then W0=0, W1=ϕ∗X(W )−W |s and

d

dt
Wt =ϕt∗X([X,W ]),

and therefore

ϕ∗X(W )−W |s =
∫ 1

0

ϕt∗X([X,W ]) dt.

By the first part, we obtain∥∥ϕ∗X(W )−W |s
∥∥
n,s

6Cnr
−n(‖[X,W ]‖n,r+‖[X,W ]‖0,r‖X‖n+1,r).

Using now Lemma 3.3 and that ‖X‖1,r6θ, we obtain the second part:∥∥ϕ∗X(W )−W |s
∥∥
n,s

6Cnr
−2n−1(‖X‖n+1,r‖W‖1,r+‖W‖1,r‖X‖n+1,r).

For the last inequality, set

Wt :=ϕt∗X(W )−W |s−tϕt∗X([X,W ]).

Then we have that W0=0, W1=ϕ∗X(W )−W |s−ϕ∗X([X,W ]) and

d

dt
Wt =−tϕt∗X([X, [X,W ]]),

and therefore

W1 =−
∫ 1

0

tϕt∗X([X, [X,W ]]) dt.

Using again the first part, it follows that

‖W1‖n,s 6Cnr
−n(‖[X, [X,W ]]‖n,r+‖[X, [X,W ]]‖0,r‖X‖n+1,r). (29)

Applying Lemma 3.3 twice, for all k6n, we obtain that

‖[X, [X,W ]]‖k,r 6Cn(r−(k+3)‖X‖k+1,r(‖X‖0,r‖W‖1,r+‖X‖1,r‖W‖0,r)

+r−(2k+3)‖X‖0,r(‖X‖0,r‖W‖k+2,r+‖X‖k+2,r‖W‖0,r))

6Cnr
−(2k+5)‖X‖0,r(‖W‖k+2,r‖X‖0,r+‖W‖2,r‖X‖k+2,r),

where we have used the interpolation inequality

‖X‖1,r‖X‖k+1,r 6Cnr
−(k+2)‖X‖0,r‖X‖k+2,r.

The first term in (29) can be bounded using this inequality for k=n. For k=0, using
also that ‖X‖1,r6θ and the interpolation inequality

‖X‖2,r‖X‖n+1,r 6Cnr
−(n+1)‖X‖1,r‖X‖n+2,r,

we can bound the second term in (29), and this concludes the proof:

‖[X, [X,W ]]‖0,r‖X‖n+1,r 6Cnr
−(n+6)‖W‖2,r‖X‖0,r‖X‖n+2,r.
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3.3. An invariant tubular neighborhood and tame homotopy operators

We now start the proof of Theorem 2. We will use two results presented in the appendix:
existence of invariant tubular neighborhoods (Lemma A.1) and the tame vanishing lemma
(Lemma C.1).

Let (M,π) and N⊂M be as in the statement. Let G⇒M be a Lie groupoid inte-
grating T ∗M . By restricting to the connected components of the identities in the s-fibers
of G [19], we may assume that G has connected s-fibers.

By Lemma A.1, N has an invariant tubular neighborhood E∼=νN endowed with a
metric, such that the closed tubes Er :={v∈E :|v|6r}, for r>0, are also G -invariant. We
endow E with all the structure from §3.1.

Since E is invariant, the cotangent Lie algebroid of (E, π) is integrable by G|E , which
has compact s-fibers with vanishing H2. Therefore, by the tame vanishing lemma and
Corollaries C.2 and C.3 from the appendix, there are linear homotopy operators

X1(E) h1 −−X2(E) h2 −−X3(E),

with
[π, h1(V )]+h2([π, V ])=V for all V ∈X2(E),

which satisfy the following properties:
• they induce linear homotopy operators hr1 and hr2 on (Er, π|r);
• there are constants Cn>0 such that, for all r∈(0, 1],

‖hr1(X)‖n,r 6Cn‖X‖n+s,r and ‖hr2(Y )‖n,r 6Cn‖Y ‖n+s,r

for all X∈X2(Er) and all Y ∈X3(Er), where s=
⌊

1
2 dim(M)

⌋
+1;

• they induce homotopy operators on the subcomplex of vector fields vanishing
along N .

3.4. The Nash–Moser method

We fix radii 0<r<R<1. Let s be as in the previous subsection, and let

α := 2(s+5) and p := 7(s+4).

Then p is the integer from the statement of Theorem 2. Consider a second Poisson
structure π̃ defined on ER. With π̃ we associate the following inductive procedure.

Procedure P0. Consider
• the number

t(π̃) := ‖π−π̃‖−1/α
p,R ,
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• the sequences of numbers

ε0:= 1
4 (R−r), r0:=R, t0:= t(π̃),

εk+1:= ε
3/2
k , rk+1:= rk−εk, tk+1:= t

3/2
k ,

• the sequences of Poisson bivectors and vector fields

{πk ∈X2(Erk
)}k>0 and {Xk ∈X1(Erk

)}k>0,

defined inductively by

π0 := π̃, πk+1 :=ϕ∗Xk
(πk) and Xk :=Srk

tk
(hrk

1 (πk−π|rk
)), (30)

• the sequence of maps

ψk :=ϕX0 �...�ϕXk
:Erk+1 −!ER.

By our choice of ε0, observe that r<rk<R for all k>1:
∞∑
k=0

εk =
∞∑
k=0

ε
(3/2)k

0 <

∞∑
k=0

ε
1+k/2
0 =

ε0
1−√ε0

6R−r,

For procedure P0 to be well defined, we need that
(Ck) the time-one flow of Xk is defined as a map

ϕXk
:Erk+1 −!Erk

.

For part (b) of Theorem 2, we consider also the procedure P1, associated with π̃

such that j1π̃|N=j1π|N . We define procedure P1 the same as procedure P0, except that
in (30) we use the smoothing operators Srk,1

tk
.

To show that procedure P1 is well defined, in addition to (Ck), we need that

hrk
1 (πk−π|rk

)∈X1(Erk
)(1).

Since the operators hrk
1 preserve the space of tensors vanishing up to first order, it suffices

to show that j1(πk−π|rk
)|N=0. This is proven inductively: by hypothesis,

j1(π0−π|R)|N =0.

Assume that j1(πk−π|rk
)|N=0, for some k>0. Then, as before, also Xk∈X1(Erk

)(1).
Hence the first-order jet of ϕXk

along N is that of the identity, and so

j1(πk+1)|N = j1(πk)|N = j1(π)|N .

Therefore j1(πk+1−π|rk+1)|N=0.
Procedure P0 produces the map ψ from Theorem 2.
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Proposition 3.12. There exists δ>0 and an integer d>0 for which procedure P0

is well defined for every Poisson bivector π̃ satisfying

‖π̃−π‖p,R<δ(r(R−r))d. (31)

If, in addition, j1π|N=j1π̃|N , then P1 is also well defined for π̃. In both cases, the
resulting sequence ψk|r converges uniformly on Er with all its derivatives to a local
diffeomorphism ψ, which is a Poisson map

ψ: (Er, π|r)−! (ER, π̃),

which satisfies
d(ψ)1,r 6 ‖π−π̃‖1/α

p,R . (32)

In the case of P1, the map ψ is the identity along N up to first order.

Proof. We will prove the statement for the two procedures simultaneously. We
denote the used smoothing operators by Sk, that is, in P0 we let Sk :=Srk

tk
and in P1 we

let Sk :=S
rk,1
tk

. In both cases, these satisfy the inequalities

‖Sk(X)‖m,rk
6Cmr

−cmtl+1
k ‖X‖m−l,rk

,

‖Sk(X)−X‖m−l,rk
6Cmr

−cmt−lk ‖X‖m+1,rk
.

For the procedures to be well defined and to converge, we need that t0=t(π̃) is big
enough, more precisely it will have to satisfy a finite number of inequalities of the form

t0 = t(π̃)>C(r(R−r))−c. (33)

Taking π̃ such that it satisfies (31), it suffices to ask that δ is small enough and d is big
enough, such that a finite number of inequalities of the form

δ((R−r)r)d< 1
C

(r(R−r))c

hold, and then t0 will satisfy (33).
Also, since t0>4(R−r)−1=ε−1

0 , it follows that

tk >ε
−1
k for all k> 0.

We will prove inductively that the bivectors

Zk :=πk−π|rk
∈X2(Erk

)
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satisfy the inequalities

‖Zk‖s,rk
6 t−αk , (ak)

‖Zk‖p,rk
6 tαk . (bk)

Since t−α0 =‖Z0‖p,R, (a0) and (b0) hold. Assuming that (ak) and (bk) hold for some k>0,
we will show that condition (Ck) holds (i.e. the procedure is well defined up to step k)
and also that (ak+1) and (bk+1) hold.

First we give a bound for the norms of Xk in terms of the norms of Zk,

‖Xk‖m,rk
= ‖Sk(hrk

1 (Zk))‖m,rk
6Cmr

−cmt1+lk ‖hrk
1 (Zk)‖m−l,rk

6Cmr
−cmt1+lk ‖Zk‖m+s−l,rk

for all 0 6 l6m.
(34)

In particular, for m=l, we obtain

‖Xk‖m,rk
6Cmr

−cmt1+m−αk . (35)

As α>4 and tk>ε−1
k , this inequality implies that

‖Xk‖1,rk
6Cr−ct2−αk 6Cr−ct−1

0 t−1
k <Cr−ct−1

0 εk. (36)

Since t0>Cr−c/θ, we have that ‖Xk‖1,rk
6θεk, and so by Lemma 3.9 (Ck) holds. More-

over, Xk satisfies the inequalities from Lemmas 3.10 and 3.11.
We now deduce an inequality for all norms ‖Zk+1‖n,rk+1 , with n>s,

‖Zk+1‖n,rk+1 = ‖ϕ∗Xk
(Zk)+ϕ∗Xk

(π)−π‖n,rk+1

6Cnr
−cn(‖Zk‖n,rk

+‖Xk‖n+1,rk
‖Zk‖0,rk

+‖Xk‖n+1,rk
‖π‖n+1,rk

)

6Cnr
−cn(‖Zk‖n,rk

+‖Xk‖n+1,rk
)

6Cnr
−cnts+2

k ‖Zk‖n,rk
,

(37)

where we used Lemma 3.11, the inductive hypothesis and inequality (34) with m=n+1
and l=s+1. For n=p, using also that s+2+α6 3

2α−1, this gives (bk+1):

‖Zk+1‖p,rk+1 6Cr−cts+2+α
k 6Cr−ct

3α/2−1
k 6Cr−ct−1

0 tαk+1 6 tαk+1.

To prove (ak+1), we write Zk+1=Vk+ϕ∗Xk
(Uk), where

Vk :=ϕ∗Xk
(π)−π−ϕ∗Xk

([Xk, π]) and Uk :=Zk−[π,Xk].
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Using Lemma 3.11 and inequality (35), we bound the two terms by

‖Vk‖s,rk+1 6Cr−c‖π‖s+2,rk
‖Xk‖0,rk

‖Xk‖s+2,rk
6Cr−cts+4−2α

k , (38)

‖ϕ∗Xk
(Uk)‖s,rk+1 6Cr−c(‖Uk‖s,rk

+‖Uk‖0,rk
‖Xk‖s+1,rk

) (39)

6Cr−c(‖Uk‖s,rk
+ts+2−α

k ‖Uk‖0,rk
).

To compute the Cs-norm for Uk, we rewrite it as

Uk =Zk−[π,Xk] = [π, hrk
1 (Zk)]+hrk

2 ([π,Zk])−[π,Xk]

= [π, (I−Sk)hrk
1 (Zk)]− 1

2h
rk
2 ([Zk, Zk]).

By tameness of the Lie bracket, the first term can be bounded by

‖[π, (I−Sk)hrk
1 (Zk)]‖s,rk

6Cr−c‖(I−Sk)hrk
1 (Zk)‖s+1,rk

6Cr−ct2−p+2s
k ‖hrk

1 (Zk)‖p−s,rk

6Cr−ct2−p+2s
k ‖Zk‖p,rk

6Cr−ct2−p+2s+α
k

=Cr−ct
−3α/2−1
k ,

and using also the interpolation inequalities, for the second term we obtain∥∥ 1
2h

rk
2 ([Zk, Zk])

∥∥
s,rk

6C‖[Zk, Zk]‖2s,rk

6Cr−c‖Zk‖0,rk
‖Zk‖2s+1,rk

6Cr−ct−αk ‖Zk‖(p−(2s+1))/(p−s)
s,rk

‖Zk‖(s+1)/(p−s)
p,rk

6Cr−ct
−α(1+(p−(3s+2))/(p−s))
k .

Since −α(1+(p−(3s+2))/(p−s))6− 3
2α−1, these two inequalities imply that

‖Uk‖s,rk
6Cr−ct

−3α/2−1
k . (40)

Using (35), we bound the C0-norm of Uk by

‖Uk‖0,rk
6 ‖Zk‖0,rk

+‖[π,Xk]‖0,rk
6 t−αk +Cr−c‖Xk‖1,rk

6Cr−ct2−αk . (41)

By (38)–(41) and s+4−2α=− 3
2α−1, (ak+1) follows:

‖Zk+1‖s,rk+1 6Cr−c(ts+4−2α
k +t−3α/2−1

k ) 6Cr−ct
−3α/2−1
k 6

Cr−ct
−3α/2
k

t0
6 t−αk+1.



rigidity around poisson submanifolds 181

This finishes the induction.
Using (37), for every n>1, we find kn>0 such that

‖Zk+1‖n,rk+1 6 ts+3
k ‖Zk‖n,rk

for all k> kn.

Iterating this, we obtain

ts+3
k ‖Zk‖n,rk

6 (tktk−1 ... tkn)s+3‖Zkn‖n,rkn
.

On the other hand, we have that

tktk−1 ... tkn
= t

1+3/2+...+(3/2)k−kn

kn
6 t

2(3/2)k+1−kn

kn
= t3k.

Therefore, we obtain a bound valid for all k>kn,

‖Zk‖n,rk
6 t

2(s+3)
k ‖Zkn‖n,rkn

.

Consider now m>s and set n:=4m−3s. Applying the interpolation inequalities, for
k>kn, we obtain

‖Zk‖m,rk
6Cmr

−cm‖Zk‖(n−m)/(n−s)
s,rk

‖Zk‖(m−s)/(n−s)
n,rk

=Cmr
−cm‖Zk‖3/4

s,rk
‖Zk‖1/4

n,rk

6Cmr
−cmt

−3α/4+2(s+3)/4
k ‖Zkn‖1/4

n,rkn
=Cmr

−cmt
−(s+6)
k ‖Zkn‖1/4

n,rkn
.

Using also inequality (34), for l=s, we obtain

‖Xk‖m,rk
6Cmr

−cmts+1
k ‖Zk‖m,rk

6 t−5
k (Cmr−cm‖Zkn‖1/4

n,rkn
).

This shows that the series
∑
k>0 ‖Xk‖m,rk

converges for all m. By Lemma 3.10, also∑
k>0 d(ϕXk

)m,rk+1 converges for all m and, moreover, by (36), we have that

σ1 :=
∑
k>1

d(ϕXk
)1,rk+1 6Cr−c

∑
k>1

‖Xk‖1,rk
6Cr−ct−4

0

∑
k>1

εk 6 t−3
0 .

So, we may assume that σ16θ and d(ϕXk
)1,rk+1<1. Then, by applying Lemma 3.8, we

conclude that the sequence ψk|r converges uniformly in all Cn-norms to a map ψ:Er!ER
in Ur which satisfies

d(ψ)1,r 6 eCr
−cσ1Cr−cσ1 6 et

−2
0 t−2

0 6Ct−2
0 6 t−1

0 .

So (32) holds, and we can also assume that d(ψ)1,r<θ, which, by Lemma 3.6, implies
that ψ is a local diffeomorphism. Since ψk|r converges in the C1-topology to ψ and
ψ∗k(π̃)=(dψk)−1(π̃ψk

), it follows that ψ∗k(π̃)|r converges in the C0-topology to ψ∗(π̃). On
the other hand, Zk|r=ψ∗k(π̃)|r−π|r converges to 0 in the C0-norm, and hence ψ∗(π̃)=π|r.
So ψ is a Poisson map and a local diffeomorphism

ψ: (Er, π|r)−! (ER, π̃).

For procedure P1, as noted before the proposition, the first jet of ϕXk
is that of the

identity along N . This clearly holds also for ψk, and since ψk|r converges to ψ in the
C1-topology, also ψ is the identity along N up to first order.

We are now ready to finish the proof of Theorem 2.
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3.5. Proof of part (a) of Theorem 2

We have to check the properties from the definition of Cp-C1-rigidity. Consider U :=
int(E%), for some %∈(0, 1), and let O⊂U be an open set such that N⊂O⊂
O⊂U . Let
r<R be such that O⊂Er⊂ER⊂U . With d and δ from Proposition 3.12, we let

VO :=
{
W ∈X2(U) :

∥∥W |R−π|R
∥∥
p,R

<δ(r(R−r))d
}
.

For π̃∈VO, define ψπ̃ to be the restriction to 
O of the map ψ, obtained by applying
procedure P0 to π̃|R. Then ψ is a Poisson diffeomorphism (O, π|O)!(U, π̃), and by (32),
the assignment π̃ 7!ψ has the required continuity property.

3.6. Proof of part (b) of Theorem 2

Consider a Poisson structure π̃ on some neighborhood of N with j1π̃|N=j1π|N . First we
show that π and π̃ are formally Poisson diffeomorphic around N . By [15], this property
is controlled by the groups H2(AN ,Sk(ν∗N )). The Lie groupoid G|N⇒N integrates AN
and is s-connected. Since ν∗N⊂AN is an ideal, by Lemma B.1 below, the action of AN on
ν∗N (and hence also on Sk(ν∗N )) also integrates to G|N . Since G|N has compact s-fibers
with vanishing H2, the tame vanishing lemma implies that H2(AN ,Sk(ν∗N ))=0. So we
can apply [15, Theorem 1.1] to conclude that there exists a diffeomorphism ϕ between
open neighborhoods of N , which is the identity on N up to first order, and such that
j∞ϕ∗(π̃)|N=j∞π|N .

Let R∈(0, 1) be such that ϕ∗(π̃) is defined on ER. Using the Taylor expansion up
to order 2d+1 around N for the bivector π−ϕ∗(π̃) and its partial derivatives up to order
p, we find a constant M>0 such that∥∥ϕ∗(π̃)|r−π|r

∥∥
p,r

6Mr2d+1 for all 0<r<R.

If we take r<2−dδ/M , we obtain that
∥∥ϕ∗(π̃)|r−π|r

∥∥
p,r
<δ

(
r
(
r− 1

2r
))d. So, we can apply

Proposition 3.12, and procedure P1 produces a Poisson diffeomorphism

τ : (Er/2, π|r/2)−! (Er, ϕ∗(π̃)|r),

which is the identity up to first order along N . We obtain (b) with ψ=ϕ�τ .

Remark 2. As mentioned already in the introduction, Conn’s proof has been for-
malized in [18] and [20] into an abstract Nash–Moser normal form theorem, and it is
likely that one could use [18, Theorem 6.8] to partially prove our rigidity result. Nev-
ertheless, the continuity assertion, which is important in applications (see [17]), is not a
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consequence of this result. There are also several technical reasons why we cannot apply
[18]: we need the size of the Cp-open set to depend polynomially on r−1 and (R−r)−1,
because we use a formal linearization argument (this dependence is not given in [18]); to
obtain diffeomorphisms which fix N , we work with vector fields which vanish along N
up to first order, and it is unlikely that this Fréchet space admits smoothing operators
of degree 0 (in [18] this is the overall assumption); for the inequalities in Lemma 3.7 we
need special norms for the embeddings (indexed also by “δ”), which are not considered
in [18].

Appendix A. Invariant tubular neighborhoods

In the proof of Theorem 2, we have used the following result.

Lemma A.1. Let G⇒M be a proper Lie groupoid with connected s-fibers and let
N⊂M be a compact invariant submanifold. There exists a tubular neighborhood E⊂M
(where E∼=TNM/TN) and a metric on E such that, for all r>0, the closed tube Er :=
{v∈E :|v|6r} is G -invariant.

This lemma follows from results in [22]; in particular we will use the following lemma.

Lemma A.2. ([22, Propositions 3.14 and 6.4]) On the base of a proper Lie groupoid
there exist Riemannian metrics such that every geodesic which emanates orthogonally
from an orbit stays orthogonal to any orbit it passes through. Such metrics are called
adapted.

Proof of Lemma A.1. Let g be an adapted metric on M and let E :=TN⊥⊂TNM
be the normal bundle. By rescaling g, we may assume that

(1) the exponential is defined on E2 and on int(E2) it is an open embedding;
(2) for all r∈(0, 1] we have that

exp(Er) = {p∈M : d(p,N) 6 r},

where d denotes the distance induced by the Riemannian structure.
Let v∈E1 with base point x, and denote by r :=|v|. We claim that the geodesic

γ(t):=exp(tv) at t=1 is normal to exp(∂Er) at γ(1):

Tγ(1) exp(∂Er) = γ̇(1)⊥.

Let Sr(x) be the sphere of radius r centered at x. By the Gauss lemma,

γ̇(1)⊥ =Tγ(1)Sr(x),
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and by (2), 
Br(x)⊂exp(Er), where 
Br(x) is the closed ball of radius r around x. Since

Br(x) and exp(Er) intersect at γ(1), their boundaries must be tangent at this point, and
this proves the claim.

By assumption, N is a union of orbits. Therefore the geodesics γ(t):=exp(tv), for
v∈E, start normal to the orbits of G, and thus, by the property of the metric, they
continue to be orthogonal to the orbits. Hence, by our claim, the orbits which intersect
exp(∂Er) are tangent to exp(∂Er). By connectivity of the orbits, exp(∂Er) is invariant,
for all r∈(0, 1). Define the embedding E↪!M by

v 7−! exp
(
λ(|v|)
|v|

v

)
,

where λ: [0,∞)![0, 1) is a diffeomorphism which is the identity on
[
0, 1

2

)
.

Appendix B. Integrating ideals

Representations of a Lie groupoid G can be differentiated to representations of its Lie
algebroid A but, in general, a representation of A does only integrate to a representation
of the s-fiber 1-connected groupoid of A, and not necessarily to one of G. In this subsec-
tion, we prove that representations of A on ideals can be integrated to representations of
any s-connected integration. This result was used in the proof of part (b) of Theorem 2.

Let (A, [ · , · ], %) be a Lie algebroid. We call a subbundle I⊂A an ideal of A, if
%(I)=0 and Γ(I) is an ideal of the Lie algebra Γ(A). Using the Leibniz rule, one easily
sees that, if I 6=A, then the second condition implies the first. An ideal I is naturally a
representation of A, with A-connection given by the Lie bracket

∇X(Y ) := [X,Y ], X ∈Γ(A) and Y ∈Γ(I).

Lemma B.1. Let G⇒M be a Hausdorff Lie groupoid with Lie algebroid A and let
I⊂A be an ideal. If the s-fibers of G are connected, then the representation of A on I

given by the Lie bracket integrates to G.

Proof. First observe that G acts on the possibly singular bundle of isotropy Lie
algebras ker(%)!M via the formula

g ·Y =
d

dε
(g exp(εY )g−1)

∣∣∣∣
ε=0

for Y ∈ ker(%)s(g). (42)

Let N(I)⊂G be the subgroupoid consisting of elements g which satisfy g ·Is(g)⊂It(g). We
will prove that N(I)=G and that the induced action of G on I differentiates to the Lie
bracket.
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Recall that a derivation on a vector bundle E!M (see [13, §3.4]) is a pair (D,V ),
where D is a linear operator on Γ(E) and V is a vector field on M , satisfying

D(fα) = fD(α)+V (f)α for all α∈Γ(E) and all f ∈C∞(M).

The flow of a derivation (D,V ), denoted by ϕtD, is a vector bundle map covering the
flow ϕtV of V , ϕtD:Ex!Eϕt

V (x) (whenever ϕtV (x) is defined), which is the solution to the
differential equation

d

dt
(ϕtD)∗(α) = (ϕtD)∗(Dα), ϕ0

D =IdE ,

where (ϕtD)∗(α)x=ϕ−tD (αϕt
V (x)).

For X∈Γ(A), denote by Ψt(X, g) the flow of the corresponding right-invariant vec-
tor field on G, and by ϕt(X,x) the flow of %(X) on M . Conjugation by Ψt(X) is an
automorphism of G covering ϕt(X), which we denote by

C(Ψt(X)):G −!G,

g 7−!Ψt(X, t(g))gΨt(X, s(g))−1.

Since C(Ψt(X)) sends the s-fiber over x to the s-fiber over ϕt(X,x), its differential at
the identity 1x gives an isomorphism

Ad(Ψt(X)):Ax−!Aϕt(X,x), Ad(Ψt(X))x := dC(Ψt(X))|Ax .

On ker(%)x, we recover the action (42) of g=Ψt(X,x). We have that

d

dt
(Ad(Ψt(X))∗Y )x

=
d

dt
Ad(Ψ−t(X,ϕt(X,x)))Yϕt(X,x)

=− d

ds
(Ad(Ψ−t(X,ϕt(X,x)))Ad(Ψs(X,ϕt−s(X,x)))Yϕt−s(X,x))

∣∣∣∣
s=0

=Ad(Ψ−t(X,ϕt(X,x)))[X,Y ]ϕt(X,x)

=Ad(Ψt(X))∗([X,Y ])x

(43)

for Y ∈Γ(A), where we have used the adjoint formulas from [13, Proposition 3.7.1]. This
shows that Ad(Ψt(X)) is the flow of the derivation ([X, · ], %(X)) on A. Since I is an
ideal, the derivation [X, · ] restricts to a derivation on I, and therefore I is invariant under
Ad(Ψt(X)). This proves that, for all Y ∈Ix,

Ad(Ψt(X,x))Y =Ψt(X,x)·Y ∈ I.
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So N(I) contains all the elements in G of the form Ψt(X,x). The set of such elements
contains an open neighborhood O of the unit section in G. Since the s-fibers of G are
connected, O generates G (see [13, Proposition 1.5.8]). Therefore N(I)=G and so (42)
defines an action of G on I.

Using that Ψ−t(X,ϕt(X,x))=Ψt(X,x)−1, equation (43) gives

d

dt
(Ψt(X,x)−1 ·Yϕt(X,x))

∣∣∣∣
t=0

= [X,Y ]x for all X ∈Γ(A) and all Y ∈Γ(I).

Thus, the action differentiates to the Lie bracket (see [13, Definition 3.6.8]).

Appendix C. The tame vanishing lemma

In this subsection we prove the tame vanishing lemma, an existence result for tame homo-
topy operators on the complex computing Lie algebroid cohomology with coefficients. In
the proof of Theorem 2, this lemma was applied to the Poisson complex. In combination
with the Nash–Moser techniques, the tame vanishing lemma is very useful when applied
to various geometric problems (see the appendix in [16]).

C.1. The weak C∞-topology

The compact-open Ck-topology on the space of sections of a vector bundle can be gen-
erated by a family of seminorms, and we recall here a construction of such seminorms,
generalizing the construction from §3. These seminorms will be used to express the
tameness property of the homotopy operators.

Let W!M be a vector bundle. Consider a locally finite open cover U :={Ui}i∈I
of M by relatively compact domains of coordinate charts {χi:Ui ∼−−!Rm}i∈I and choose
trivializations for W |Ui . Let O :={Oi}i∈I be a second open cover, with 
Oi being com-
pact and 
Oi⊂Ui. A section σ∈Γ(W ) can be represented in these charts by a family of
smooth functions {σi: Rm!Rk}i∈I , where k is the rank of W . For U⊂M , an open set
with compact closure, we have that 
U intersects only a finite number of the coordinate
charts Ui. Denote the set of such indices by IU⊂I. Define the nth norm of σ on U by

‖σ‖n,	U := sup
{∣∣∣∣∂|α|σi∂xα

(x)
∣∣∣∣ : |α|6n, x∈χi(U∩Oi) and i∈ IU

}
.

For a fixed n, the family of seminorms ‖ · ‖n,	U , with U being a relatively compact
open set in M , generate the compact-open Cn-topology on Γ(W ). The union of all these
topologies, for n>0, is the weak C∞-topology on Γ(W ). Observe that the seminorms
{‖ · ‖n,	U}n>0 induce norms on Γ(W |	U ).
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C.2. The statement of the tame vanishing lemma

Lemma C.1. (The tame vanishing lemma) Let G⇒M be a Hausdorff Lie groupoid
with Lie algebroid A and let V be a representation of G. If the s-fibers of G are compact
and their de Rham cohomology vanishes in degree p, then

Hp(A, V ) = 0.

Moreover, there exist linear homotopy operators

Ωp−1(A, V ) h1 −−−Ωp(A, V ) h2 −−−Ωp+1(A, V ),

with
d∇h1+h2d∇ =Id,

which satisfy
(1) (invariant locality) for every orbit O of A, they induce linear maps

Ωp−1(A|O, V |O)
h1,O −−−Ωp(A|O, V |O)

h2,O −−−Ωp+1(A|O, V |O),

such that, for all ω∈Ωp(A, V ) and all η∈Ωp+1(A, V ), we have that

h1,O(ω|O) = (h1ω)|O and h2,O(η|O) = (h2η)|O,

(2) (tameness) for every invariant open U⊂M , with 
U compact, there are constants
Cn,U>0 such that

‖h1(ω)‖n,	U 6Cn,U‖ω‖n+s,	U and ‖h2(η)‖n,	U 6Cn,U‖η‖n+s,	U

for all ω∈Ωp(A|	U , V |	U ) and all η∈Ωp+1(A|	U , V |	U ), where

s=
⌊

1
2 rank(A)

⌋
+1.

We also note the following consequences of the proof.

Corollary C.2. The constants Cn,U can be chosen so that they are uniform over
all invariant open subsets of U . More precisely, if V ⊂U is a second invariant open set,
then one can choose Cn,V :=Cn,U , assuming that the norms on 
U and 
V are computed
using the same charts and trivializations.

Corollary C.3. The homotopy operators preserve the order of vanishing around
orbits. More precisely, if O is an orbit of A, and ω∈Ωp(A, V ) is a form such that
jkω|O=0, then jkh1(ω)|O=0; and similarly for h2.
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C.3. The de Rham complex of a fiber bundle

To prove the tame vanishing lemma, we first construct tame homotopy operators for the
foliated de Rham complex of a fiber bundle. For this, we use a result on the family of
inverses of elliptic operators (Proposition C.7), which we prove at the end of the section.

Let π:B!M be a locally trivial fiber bundle whose fibers Bx :=π−1(x) are diffeo-
morphic to a compact, connected manifold F and let V!M be a vector bundle. The
space of vertical vectors on B will be denoted by TπB and the space of foliated forms
with values in π∗(V ) by Ω�(TπB, π∗(V )). An element ω∈Ω�(TπB, π∗(V )) is a smooth
family of forms on the fibers of π with values in V ,

ω= {ωx}x∈M , ωx ∈Ω�(Bx, Vx).

The fiberwise exterior derivative induces the differential

d⊗IV : Ω�(TπB, π∗(V ))−!Ω�+1(TπB, π∗(V )),

defined by
d⊗IV (ω)x := (d⊗IVx)(ωx), x∈M.

We construct the homotopy operators using Hodge theory. Let m be a metric on
TπB, or equivalently a smooth family of Riemannian metrics {mx}x∈M on the fibers of π.
Integration against the volume density gives an inner product on Ω�(Bx),

(η, θ) :=
∫
Bx

mx(η, θ)|dVol(mx)|, η, θ∈Ωq(Bx).

Let δx denote the formal adjoint of d with respect to this inner product

δx: Ω�+1(Bx)−!Ω�(Bx),

i.e. δx is the unique linear first order differential operator satisfying

(dη, θ) = (η, δxθ) for all η ∈Ω�(Bx) and all θ∈Ω�+1(Bx).

The Laplace–Beltrami operator associated to mx will be denoted by

∆x := dδx+δxd: Ω�(Bx)−!Ω�(Bx).

Both these operators induce linear differential operators on Ω�(TπB, π∗(V )),

δ⊗IV : Ω�+1(TπB, π∗(V ))−!Ω�(TπB, π∗(V )), δ⊗IV (ω)x := (δx⊗IVx)(ωx),

∆⊗IV : Ω�(TπB, π∗(V ))−!Ω�(TπB, π∗(V )), ∆⊗IV (ω)x := (∆x⊗IVx)(ωx).

By the Hodge theorem, if the fiber F of B has vanishing de Rham cohomology in
degree p, then ∆x is invertible in degree p.
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Lemma C.4. If Hp(F )=0 then the following hold :
(a) ∆⊗IV is invertible in degree p and its inverse is given by

G⊗IV : Ωp(TπB, π∗(V ))−!Ωp(TπB, π∗(V )),

(G⊗IV )(ω)x := (∆−1
x ⊗IVx)(ωx), x∈M ;

(b) the maps H1 :=(δ⊗IV )�(G⊗IV ) and H2 :=(G⊗IV )�(δ⊗IV ),

Ωp−1(TπB, π∗(V )) H1 −−−Ωp(TπB, π∗(V )) H2 −−−Ωp+1(TπB, π∗(V ))

are linear homotopy operators in degree p;
(c) H1 and H2 satisfy the following local-tameness property : for every relatively

compact open U⊂M there are constants Cn,U>0 such that

‖H1(η)‖n,B|
	U

6Cn,U‖η‖n+s,B|
	U

for all η ∈Ωp(TπB|	U , π∗(V |	U )),

‖H2(ω)‖n,B|
	U

6Cn,U‖ω‖n+s,B|
	U

for all ω ∈Ωp+1(TπB|	U , π∗(V |	U )),

where s=
⌊

1
2 dim(F )

⌋
+1.

Moreover, if U ′⊂U , then one can take Cn,U ′ :=Cn,U .

Proof. In a trivialization chart the operator ∆⊗IV is given by a smooth family of
Laplace–Beltrami operators

∆x: Ωp(F )k −!Ωp(F )k,

where k is the rank of V . These operators are elliptic and invertible, and therefore, by
Proposition C.7, ∆−1

x (ωx) is smooth in x, for every smooth family ωx∈Ωp(F )k. This
shows that G⊗IV maps smooth forms to smooth forms. Clearly G⊗IV is the inverse of
∆⊗IV , so we have proven (a).

For part (c), let U⊂M be a relatively compact open set. Applying part (2) of
Proposition C.7 to a family of coordinate charts which cover 
U , we find constants Dn,U

such that

‖G⊗IV (η)‖n,B|
	U

6Dn,U‖η‖n+s−1,B|
	U

for all η ∈Ωp(TπB|	U , π∗(V |	U )).

Moreover, the constants can be chosen so that they are decreasing in U . Since H1 and
H2 are defined as the composition of G⊗IV with a linear differential operator of degree
1, it follows that we can also find constants Cn,U such that the inequalities from (c) are
satisfied, and which are also decreasing in U .
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For part (b), using that δ2x=0, we obtain that ∆x commutes with dδx:

∆xdδx =(dδx+δxd)dδx = dδxdδx+δxd2δx = dδxdδx,

dδx∆x = dδx(dδx+δxd) = dδxdδx+dδ2xd= dδxdδx.

This implies that ∆⊗IV commutes with (d⊗IV )(δ⊗IV ), and thus G⊗IV commutes with
(d⊗IV )(δ⊗IV ). Using this, we obtain that H1 and H2 are homotopy operators:

I =(G⊗IV )(∆⊗IV )

= (G⊗IV )((d⊗IV )(δ⊗IV )+(δ⊗IV )(d⊗IV ))

= (d⊗IV )(δ⊗IV )(G⊗IV )+(G⊗IV )(δ⊗IV )(d⊗IV )

= (d⊗IV )H1+H2(d⊗IV ).

C.4. Proof of the tame vanishing lemma

Let G⇒M be as in the statement. By passing to the connected components of the
identities in the s-fibers [19], we may assume that G is s-connected. Then s:G!M is a
locally trivial fiber bundle with compact fibers whose cohomology vanishes in degree p.
We will apply Lemma C.4 to the complex of s-foliated forms with coefficients in s∗(V ),

(Ω�(T sG, s∗(V )), d⊗IV ).

Recall that the right translation by an arrow g∈G is the diffeomorphism between
the s-fibers above y=t(g) and above x=s(g), given by

rg:Gy ∼−!Gx,

h 7−!hg.

A form ω∈Ω�(T sG, s∗(V )) is invariant if it satisfies

(r∗g⊗g)(ωhg) =ωh for all h, g ∈G with s(h) = t(g),

where r∗g⊗g is the linear isomorphism η 7!g ·η�drg. Denote the space of invariant V -
valued forms on G by Ω�(T sG, s∗(V ))G .

It is well known that forms on A with values in V are in one-to-one correspondence
with invariant V -valued forms on G; this correspondence is given by

J : Ω�(A, V )−!Ω�(T sG, s∗(V )), J(η)g := (r∗g−1⊗g−1)(ηt(g)).
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The map J is also a chain map, and thus it induces an isomorphism of complexes (see
[26, Theorem 1.2] and also [16, §2.3.2] for coefficients)

J : (Ω�(A, V ), d∇) ∼−−! (Ω�(T sG, s∗(V ))G , d⊗IV ). (44)

A left inverse for J (i.e. a map P such that P �J=Id) is given by

P : Ω�(T sG, s∗(V ))−!Ω�(A, V ), P (ω)x :=ωu(x).

Let 〈· , ·〉 be an inner product on A. Using right translations, we extend 〈· , ·〉 to an
invariant metric m on T sG,

m(X,Y )g := 〈drg−1X, drg−1Y 〉t(g) for all X,Y ∈T sgG.

Invariance of m implies that the right translation by an arrow g:x!y is an isometry
between the s-fibers

rg: (Gy,my)
∼−−! (Gx,mx).

The corresponding operators from §C.3 are also invariant.

Lemma C.5. The operators δ⊗IV , ∆⊗IV , H1 and H2, corresponding to m, send
invariant forms to invariant forms.

Proof. Since right translations are isometries and the operators δz are invariant
under isometries we have that r∗g �δx=δy �r∗g , for all arrows g:x!y.

For η∈Ω�(T sG, s∗(V ))G we have that

(r∗g⊗g)(δ⊗IV (η))|Gx =(r∗g �δx⊗g)(η|Gx) = (δy �r∗g⊗g)(η|Gx)

= (δy⊗IVy
)(r∗g⊗g)(η|Gx) = (δy⊗IVy )(η|Gy ) = (δ⊗IV )(η)|Gy .

This shows that δ⊗IV (η)∈Ω�(T sG, s∗(V ))G . The other operators are constructed in
terms of δ⊗IV and d⊗IV , and thus they also preserve Ω�(T sG, s∗(V ))G .

This lemma and the isomorphism (44) imply that the maps

Ωp−1(A, V ) h1 −−−Ωp(A, V ) h2 −−−Ωp+1(A, V ),

defined by
h1 :=P �H1�J and h2 :=P �H2�J,

are linear homotopy operators for the Lie algebroid complex in degree p.
For part (1) of the tame vanishing lemma, let ω∈Ωp(A, V ) and O⊂M be an orbit

of A. Since G is s-connected we have that s−1(O)=t−1(O)=G|O. Clearly J(ω)|s−1(O)

depends only on ω|O. By the construction of H1, for all x∈O we have that

h1(ω)x =H1(J(ω))1x =(δx�∆−1
x ⊗IVx)(J(ω)|s−1(x))1x .

Thus h1(ω)|O depends only on ω|O. The same argument applies also to h2.
Before checking part (2), we give a simple lemma.
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Lemma C.6. Consider a vector bundle map A:F1!F2 between two vector bundles
F1!M1 and F2!M2, covering a map f :M1!M2. If A is fiberwise invertible and f is
proper, then the pull-back map

A∗: Γ(F2)−!Γ(F1), A(σ)x :=A−1
x (σf(x)),

satisfies the following tameness inequalities: for every open U⊂M2, with 
U compact,
there are constants Cn,U>0 such that

‖A∗(σ)‖
n,f−1(U)

6Cn,U‖σ‖n,U for all σ ∈Γ(F2|	U ).

Moreover,
(a) if U ′⊂U is open, and one uses the same charts when computing the norms, then

one can choose Cn,U ′ :=Cn,U ;
(b) if N⊂M2 is a submanifold and σ∈Γ(F2) satisfies jk(σ)|N=0, then its pull-back

satisfies jk(A∗(σ))|f−1(N)=0.

Proof. Since A is fiberwise invertible, we can assume that F1=f∗(F2) and A∗=f∗.
By choosing a vector bundle F ′ such that F2⊕F ′ is trivial, we reduce the problem to the
case when F2 is the trivial line bundle. So, we have to check that f∗:C∞(M2)!C∞(M1)
has the desired properties. But this is straightforward: we just cover both f−1(U) and

U by charts, and apply the chain rule. The constants Cn,U are the Cn-norms of f over
f−1(U), and therefore are getting smaller if U gets smaller. This implies (a). For part
(b), just observe that jkf(x)(σ)=0 implies jkx(σ�f)=0.

Part (2) of the tame vanishing lemma follows by Lemma C.4 (c) and by applying
Lemma C.6 to J and P . Corollary C.2 follows from Lemma C.6 (a) and Lemma C.4 (c).
To prove Corollary C.3, consider a form ω with jkω|O=0, for an orbit O. Then, by
Lemma C.6 (b), it follows that J(ω) vanishes up to order k along t−1(O)=G|O. By
construction, we have that H1 is C∞(M) linear, and therefore also H1(J(ω)) vanishes
up to order k along G|O; and again, by Lemma C.6 (b), h1(ω)=u∗(H1(J(ω))) vanishes
along O=u−1(G|O) up to order k.

C.5. The inverse of a family of elliptic operators

This subsection is devoted to proving the following result.

Proposition C.7. Consider a smooth family of linear differential operators

Px: Γ(V )−!Γ(W ), x∈Rm,
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between sections of vector bundles V and W over a compact base F . If Px is elliptic of
degree d>1 and invertible for all x∈Rm, then

(1) the family of inverses {Qx :=P−1
x }x∈Rm induces a linear operator

Q: Γ(p∗(W ))−!Γ(p∗(V )),

{ωx}x∈Rm 7−! {Qxωx}x∈Rm ,

where p∗(V ):=V ×Rm!F×Rm and p∗(W ):=W×Rm!F×Rm;
(2) Q is locally tame, in the sense that for all bounded open sets U⊂Rm, there exist

constants Cn,U>0 such that the inequalities

‖Q(ω)‖n,F×	U 6Cn,U‖ω‖n+s−1,F×	U for all ω ∈Γ(p∗(W )|F×	U ),

hold, with s=
⌊

1
2 dim(F )

⌋
+1. If U ′⊂U , then one can take Cn,U ′ :=Cn,U .

Fixing Cn-norms ‖ · ‖n on Γ(V ), we induce seminorms on Γ(p∗(V )),

‖ω‖n,F×	U := sup
06k+|α|6n

sup
x∈U

∥∥∥∥∂|α|ωx∂xα

∥∥∥∥
k

,

where ω∈Γ(p∗(V )) is regarded as a smooth family ω={ωx∈Γ(V )}x∈Rm . Similarly, fixing
norms on Γ(W ), we define also norms on Γ(p∗(W )).

Endow Γ(V ) and Γ(W ) also with Sobolev norms, denoted by {| · |n}n>0. Loosely
speaking, |ω|n measures the L2-norm of ω and its partial derivatives up to order n (for a
precise definition, see e.g. [10]). Denote by Hn(Γ(V )) and by Hn(Γ(W )) the completion
of Γ(V ), respectively of Γ(W ), with respect to the Sobolev norm | · |n.

We will use the standard inequalities between the Sobolev and the Cn-norms, which
follow from the Sobolev embedding theorem:

‖ω‖n 6Cn|ω|n+s and |ω|n 6Cn‖ω‖n, (45)

for all ω∈Γ(V ) (resp. Γ(W )), where s=
⌊

1
2 dim(F )

⌋
+1 and Cn>0 are constants.

Since Px is of order d, it induces continuous linear maps between the Sobolev spaces,
denoted by

[Px]n:Hn+d(Γ(V ))−!Hn(Γ(W )).

These maps are invertible.

Lemma C.8. If a degree-d elliptic differential operator

P : Γ(V )−!Γ(W )

is invertible, then for every n>0 the induced map

[P ]n:Hn+d(Γ(V ))−!Hn(Γ(W ))

is also invertible and its inverse is induced by the inverse of P .
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Proof. Since P is elliptic, it is invertible modulo smoothing operators (see [10,
Lemma 1.3.5]), i.e. there exists a pseudo-differential operator

Ψ: Γ(W )−!Γ(V ),

of degree −d such that ΨP−Id=K1 and PΨ−Id=K2, where K1 and K2 are smoothing
operators. Since Ψ is of degree −d, it induces continuous maps

[Ψ]n:Hn(Γ(W ))−!Hn+d(Γ(V )),

and since K1 and K2 are smoothing operators, they induce continuous maps

[K1]n:Hn(Γ(V ))−!Γ(V ) and [K2]n:Hn(Γ(W ))−!Γ(W ).

We now show that [P ]n is a bijection.

Injectivity. For η∈Hn+d(Γ(V )), with [P ]nη=0, we have that

η=(Id−[Ψ]n[P ]n)η=−[K1]nη ∈Γ(V ),

and hence [P ]nη=Pη. By the injectivity of P , we have that η=0.

Surjectivity. For θ∈Hn(Γ(W )), we have that

([P ]n[Ψ]n−Id)θ= [K2]nθ∈Γ(W ),

and, since P is onto, [K2]nθ=Pη for some η∈Γ(V ). So θ is in the range of [P ]n,

θ= [P ]n([Ψ]nθ−η).

The inverse of a bounded operator between Banach spaces is bounded, and therefore
[P ]−1

n is continuous. Since on smooth sections [P ]−1
n coincides with P−1, and since the

space of smooth sections is dense in all Sobolev spaces, it follows that P−1 induces a
continuous map Hn(Γ(W ))!Hn+d(Γ(V )), and that this map is [P ]−1

n .

For two Banach spaces B1 and B2, denote by Lin(B1, B2) the Banach space of
bounded linear maps between them, and by Iso(B1, B2) the open subset consisting of
invertible maps. The following proves that the family [Px]n is smooth.

Lemma C.9. Let {Px}x∈Rm be a smooth family of linear differential operators of
order d between the sections of vector bundles V and W, both over a compact manifold F .
Then the map induced by P from Rm to the space of bounded linear operators between
the Sobolev spaces

Rm 3x 7−! [Px]n ∈Lin(Hn+d(Γ(V )),Hn(Γ(W )))

is smooth and its derivatives are induced by the derivatives of Px.
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Proof. Linear differential operators of degree d from V to W are sections of the
vector bundle Hom(Jd(V );W )=Jd(V )∗⊗W , where Jd(V )!F is the dth jet bundle of
V . Therefore, P can be viewed as a smooth section of the pull-back bundle

p∗(Hom(Jd(V );W )) := Hom(Jd(V );W )×Rm−!F×Rm.

Since F is compact, by choosing a partition of unity on F with supports inside some
open sets on which V and W trivialize, one can write any section of p∗(Hom(Jd(V );W ))
as a linear combination of sections of Hom(Jd(V );W ) with coefficients in C∞(Rm×F ).
Hence, there are constant differential operators Pi and functions fi∈C∞(Rm×F ), for
i=1, 2, ..., N , such that

Px =
N∑
i=1

fi(x)Pi.

So it suffices to prove that for f∈C∞(Rm×F ), multiplication with f(x) induces a smooth
map

Rm 3x 7−! [f(x) Id]n ∈Lin(Hn(Γ(W )),Hn(Γ(W ))).

First, it is easy to see that for any smooth function g∈C∞(Rm×F ) and every compact
K⊂Rm, there are constants Cn(g,K) such that |g(x)σ|n6Cn(g,K)|σ|n for all x∈K and
σ∈Hn(Γ(W )); or equivalently that the operator norm satisfies |[g(x) Id]n|op6Cn(g,K)
for x∈K.

Consider f∈C∞(Rm×F ), let x̄∈Rm and K be a closed ball centered at x̄. Using
the Taylor expansion of f at x̄, write

f(x)−f(x̄) =
m∑
i=1

(xi−x̄i)T ix̄(x),

and

f(x)−f(x̄)−
m∑
i=1

(xi−x̄i)
∂f

∂xi
(x̄) =

∑
16i6j6m

(xi−x̄i)(xj−x̄j)T i,jx̄ (x),

where T ix̄, T
i,j
x̄ ∈C∞(Rm×F ). Thus, for all x∈K, we have that

|[f(x) Id]n−[f(x̄) Id]n|op 6 |x−x̄|
m∑
i=1

Cn(T ix̄,K),

∣∣∣∣[f(x) Id]n−[f(x̄) Id]n−
m∑
i=1

(xi−x̄i)
[
∂f

∂xi
(x̄) Id

]
n

∣∣∣∣
op

6 |x−x̄|2
∑

16i6j6m

Cn(T
i,j
x̄ ,K).

The first inequality implies that the map x 7![f(x) Id]n is C0 and the second that it is
C1, with partial derivatives given by

∂

∂xi
[f Id]n =

[
∂f

∂xi
Id

]
n

.

The statement now follows inductively.
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Proof of Proposition C.7

By Lemma C.8, Qx=P−1
x induces continuous operators

[Qx]n:Hn(Γ(W ))−!Hn+d(Γ(V )).

We claim that the following map is smooth

Rm 3x 7−! [Qx]n ∈Lin(Hn(Γ(W )),Hn+d(Γ(V ))).

This follows by Lemmas C.8 and C.9, since we can write

[Qx]n = [P−1
x ]n = [Px]−1

n = ι([Px]n),

where ι is the (smooth) inversion map

ι: Iso(Hn+d(Γ(V )),Hn(Γ(W )))−! Iso(Hn(Γ(W )),Hn+d(Γ(V ))).

Let ω={ωx}x∈Rm∈Γ(p∗(W )). By our claim and Lemma C.9, it follows that

x 7−! [Qx]n[ωx]n = [Qxωx]n+d ∈Hn+d(Γ(V ))

is a smooth map. On the other hand, the Sobolev inequalities (45) show that the inclusion
Γ(V )!Γn(V ), where Γn(V ) is the space of sections of V of class Cn (endowed with the
norm ‖ · ‖n), extends to a continuous map

Hn+s(Γ(V ))−!Γn(V ).

Since also evaluation evp: Γn(V )!Vp at p∈F is continuous, it follows that the map

x 7−!Qxωx(p)∈Vp

is smooth. This is enough to conclude the smoothness of the family {Qxωx}x∈Rm , so
Q(ω)∈Γ(p∗(V )). This finishes the proof of the first part.

For the second part, let U⊂Rm be an open set with 
U compact. Since the map
x 7![Qx]n is smooth, it follows that

Dn,m,U := sup
x∈U

sup
|α|6m

∣∣∣∣ ∂|α|∂xα
[Qx]n

∣∣∣∣
op

<∞, (46)

where | · |op denotes the operator norm. Let ω={ωx}x∈	U be an element of Γ(p∗(W )|F×	U ).
By Lemma C.9, also the map x 7![ωx]n∈Hn(Γ(W )) is smooth and for all multi-indices γ,

∂|γ|

∂xγ
[ωx]n =

[
∂|γ|

∂xγ
ωx

]
n

.
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Let k and α be such that |α|+k6n. Using (45) and (46), we obtain∥∥∥∥ ∂|α|∂xα
(Qxωx)

∥∥∥∥
k

6

∥∥∥∥ ∂|α|∂xα
(Qxωx)

∥∥∥∥
k+d−1

6Ck+d−1

∣∣∣∣ ∂|α|∂xα
(Qxωx)

∣∣∣∣
k+s+d−1

6Ck+d−1

∑
β+γ=α

(
α

β γ

)∣∣∣∣ ∂|β|∂xβ
Qx

∂|γ|

∂xγ
ωx

∣∣∣∣
k+s+d−1

6Ck+d−1

∑
β+γ=α

(
α

β γ

)
Dk+s−1,|β|,U

∣∣∣∣ ∂|γ|∂xγ
ωx

∣∣∣∣
k+s−1

6Ck+d−1Ck+s−1

∑
β+γ=α

(
α

β γ

)
Dk+s−1,|β|,U

∥∥∥∥ ∂|γ|∂xγ
ωx

∥∥∥∥
k+s−1

6Cn,U‖ω‖n+s−1,F×	U .

This proves the second part

‖Q(ω)‖n,F×	U 6Cn,U‖ω‖n+s−1,F×	U .

The constants Dn,m,U are clearly decreasing in U , and hence for U ′⊂U we also have that
Cn,U ′6Cn,U . This finishes the proof of Proposition C.7.
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