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1. Introduction

The motion of particles in an ideal fluid in R3 is described by its velocity field u(x, t),
which satisfies the Euler equation

∂tu+(u·∇)u=−∇P, div u=0,
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for some pressure function P (x, t). Equivalently, the field u satisfies the equation

−∂tu+u×ω=∇B, div u=0,

where the field ω :=curlu is the vorticity and B :=P+ 1
2 |u|

2 is the Bernoulli function.
The trajectories (or integral curves) of the vorticity ω(x, t) for fixed t are usually called
vortex lines. A solution u to the Euler equation is called steady when it does not depend
on time.

A domain in R3 that is the union of vortex lines and whose boundary is an embedded
torus is a (closed) vortex tube. The analysis of thin vortex tubes, in a sense to be specified
below, for solutions to the Euler equation has attracted considerable attention. A long-
standing problem in this direction is Lord Kelvin’s conjecture [28] that knotted and linked
thin vortex tubes can arise in steady solutions to the Euler equation. This conjecture was
motivated by results due to Helmholtz on the time-dependent case, which hinge on the
mechanism of vorticity transport, and Maxwell’s observations of what he called “water
twists”.

Kelvin’s conjecture is basically a question on the existence of knotted invariant tori in
steady solutions of the Euler equation. There is a considerable body of literature devoted
to the analysis of topological and geometrical structures that appear in fluid flows, which
has led to significant results e.g. on particle trajectories and vortex lines [2], [12], [21], [10],
[25], on the relationship between the Euler equation and the group of volume-preserving
diffeomorphisms [2], [9], [19], [6], and on the connection of the helicity with the energy
functional and the asymptotic linking number [3], [15], [16], [29]. However, Kelvin’s
conjecture remains wide open, and indeed has been included as a major open problem
in topological fluid mechanics in the surveys [27] and [23].

There is strong numerical evidence of the existence of thin vortex tubes, both in the
case of steady and time-dependent fluid flows. As a matter of fact, thin vortex tubes have
long played a key role in the construction and numerical exploration of possible blow-up
scenarios for the Euler equation, which in turn has led to rigorous results such as [7] and
[8]. A particularly influential scenario in this direction is [26], which discusses how an
initial condition with a certain set of linked thin vortex tubes might lead to singularity
formation in finite time. As a side remark, let us point out that thin vortex tubes of
complicated knot topologies have been recently constructed experimentally in the fluid
mechanics laboratory at the University of Chicago [20].

Our aim in this paper is to prove that there exist steady solutions to the Euler
equation in R3 having thin vortex tubes of any link and knot type. The steady solutions
we construct are Beltrami fields, that is, they satisfy the equation

curlu=λu
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in R3 for some non-zero real constant λ. As any Beltrami field satisfies the equation
∆u=−λ2u in R3, it is apparent that the solutions we construct are real-analytic but
do not have finite energy (i.e., u is not in L2(R3)). However, our construction yields
solutions with optimal decay at infinity in the class of Beltrami fields, which fall off as
|u(x)|<C/|x|. In particular, they are in Lp(R3) for all p>3.

The motivation to consider the class of Beltrami solutions to the Euler equation to
address the existence of linked vortex tubes comes from Arnold’s structure theorem [4,
Theorem II.1.2]. Under mild technical assumptions, this theorem ensures that the vortex
lines of a steady solution to the Euler equation whose velocity field is not everywhere
collinear with its vorticity are nicely stacked in a rigid structure akin to those appearing
in the study of integrable Hamiltonian systems. Heuristically, this structure should
somehow restrict the way the vortex lines are arranged; partial results in this direction
have been shown in [11], where it is proved that under appropriate (strong) hypotheses
the vortex lines of steady solutions with non-collinear velocity and vorticity can only be
of certain knot types. In contrast, using Beltrami fields we have recently managed to
produce steady solutions of the Euler equation with a set of vortex lines diffeomorphic
to any locally finite link [10].

Before stating the main result we need some definitions. We will say that a bounded
domain of R3 is a (closed) tube if its boundary is a smoothly embedded torus. Therefore,
a vortex tube is a tube whose boundary is the union of vortex lines (or, equivalently, its
boundary is an invariant torus of the vorticity field). A convenient way of constructing
thin tubes is as metric neighborhoods of curves. Indeed, if γ⊂R3 is a closed curve, we
will denote by

Tε(γ) := {x∈R3 : dist(x, γ)<ε} (1.1)

the tube of core γ and thickness ε. We are interested in the case where ε is a small positive
number, which corresponds to the case of thin tubes. Obviously any finite collection of
disjoint tubes in R3 can be isotoped to a collection of thin tubes of this form.

Let us consider a finite collection of (possibly knotted and linked) disjoint thin tubes,
constructed using metric neighborhoods of curves as above. Our main result in this paper
is that, if the thickness of the tubes is small enough, this collection can be transformed
by a Cm-small diffeomorphism into a union of vortex tubes of a Beltrami field in R3.
Furthermore, the structure of the vortex lines inside each vortex tube is extremely rich:
Firstly, the boundary of each vortex tube is far from being the only invariant torus of the
flow, as the set of invariant tori has positive Lebesgue measure. Secondly, between any
pair of these invariant tori there are infinitely many periodic vortex lines. Thirdly, there
is a periodic vortex line which is close to the core of the initial tube and diffeomorphic
to it. More precisely, we have the following statement, where (as always henceforth)
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all the diffeomorphisms are assumed smooth, and all curves and surfaces are smoothly
embedded in R3. It should be emphasized that the thinness of the tubes is crucially used
in the proof of the theorem.

Theorem 1.1. Let γ1, ..., γN be N pairwise disjoint (possibly knotted and linked)
closed curves in R3. For small enough ε, one can transform the collection of pairwise
disjoint thin tubes Tε(γ1), ..., Tε(γN ) by a diffeomorphism Φ of R3, arbitrarily close to the
identity in any Cm norm, so that Φ[Tε(γ1)], ...,Φ[Tε(γN )] are vortex tubes of a Beltrami
field u, which satisfies the equation curlu=λu in R3 for some non-zero constant λ.

Moreover, the field u decays at infinity as |Dju(x)|<Cj/|x| for all j and has the
following properties in each vortex tube Φ[Tε(γi)]:

(i) In the interior of Φ[Tε(γi)] there are uncountably many nested tori invariant
under the Beltrami field u. On each of these invariant tori, the field u is ergodic.

(ii) The set of invariant tori has positive Lebesgue measure in a small neighborhood
of the boundary ∂Φ[Tε(γi)].

(iii) In the region bounded by any pair of these invariant tori there are infinitely
many closed vortex lines, not necessarily of the same knot type as the curve γi.

(iv) The image of the core curve γi under the diffeomorphism Φ is a periodic vortex
line of u.

An important property of the structure of the vortex lines inside each vortex tube,
as described above, is that it is stable in the following sense: on the one hand, it is robust
under small perturbations of the field u, meaning that the trajectories of any field which
is close enough to u in a sufficiently high Ck norm have the same structure. On the other
hand, the boundary of each vortex tube ∂Φ[Tε(γi)] is Lyapunov stable under the flow of
the Beltrami field u. It should be noticed too that from property (iv) in Theorem 1.1
we recover the main theorem of [10] for finite links and improve it by ensuring that
the solution falls off at infinity (while in [10] we had no control at all on the growth
of the solution at infinity). Besides, the proof of Theorem 1.1 shows that the vortex
lines Φ(γi) are elliptic trajectories, and therefore linearly stable, while the vortex lines
we constructed in [10] were hyperbolic, and thus unstable.

After establishing his structure theorem, Arnold conjectured [2] that, contrary to
what happens in the non-collinear case, Beltrami fields could present vortex lines of the
same topological complexity as the trajectories of any divergence-free vector field. By
Kolmogorov–Arnold–Moser (KAM) theory, typically these trajectories give rise to a set of
invariant tori with positive measure and chaotic regions with homoclinic tangles between
these tori. Theorem 1.1 is fully consistent with this picture, and proves the existence of
the aforementioned positive-measure set of invariant tori.
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The paper is organized as follows. In §2 we will discuss the strategy of the proof of
Theorem 1.1. This section, which serves as a guide to the paper, also allows us to explain
the key difficulties that appear in the proof of this result but not in that of [10], which
require the introduction of new techniques and ideas, and make this paper considerably
more involved. In §3 we introduce some objects associated with the geometry of a
thin tube that will be used throughout the paper. In §4 we prove some estimates for
the Laplacian in a thin tube with Neumann boundary conditions. These estimates are
used in §5 to study harmonic fields in thin tubes. In §6 we construct Beltrami fields
in thin tubes with prescribed harmonic part. These fields are analyzed further in §7,
where we prove a KAM theorem for Beltrami fields in generic thin tubes. A Runge-type
approximation theorem by global Beltrami fields tending to zero at infinity is presented
in §8. With all these ingredients, in §9 we prove Theorem 1.1. The paper concludes with
an easy application to the Navier–Stokes equation, which we present in §10.

2. Strategy of the proof and guide to the paper

To prove Theorem 1.1, our basic goal is to establish the existence of a Beltrami field u,
satisfying the equation

curlu=λu

in R3 for some non-zero constant λ and falling off at infinity, such that the field u has
a set of N invariant tori diffeomorphic to the surfaces {∂Tε(γi)}N

i=1, with {γi}N
i=1 being

a set of prescribed (possibly knotted and linked) closed curves. We recall that Tε(γi) is
a metric neighborhood of the curve γi of small thickness ε, as defined in equation (1.1).
By deforming them a little if necessary, we may assume without loss of generality that
the curves γi are analytic.

The basic idea behind the proof of Theorem 1.1 is carried out in three interrelated
stages. Firstly, we construct a local Beltrami field v, which satisfies the Beltrami equation
in a neighborhood of each closed tube Tε(γi) and has a set of invariant tori given by
∂Tε(γ1), ..., ∂Tε(γN ). Secondly, we prove that these invariant tori are “robust”, meaning
that suitably small perturbations of the local Beltrami field v still have a set of invariant
tori diffeomorphic to ∂Tε(γ1), ..., ∂Tε(γN ). To conclude, we show that the local Beltrami
field v can be approximated in any Ck norm by a global Beltrami field u, which satisfies
the Beltrami equation in the whole space R3 and falls off at infinity in an optimal way.
The robustness of the invariant tori of the local Beltrami field ensure that u has a set
of vortex tubes diffeomorphic to the initial configuration of thin tubes, and that in fact
this diffeomorphism can be taken close to the identity in a Cm norm.
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However, the implementation of this basic idea turns out to be extremely subtle. To
understand why, one can start by noticing that the robustness of the invariant tori of
the local Beltrami field relies on a KAM-type argument. To apply this KAM argument,
we need a small perturbation parameter and some control on the dynamics of the local
Beltrami field in a neighborhood of each invariant torus, which is required in order to
show that the local Beltrami field is equivalent to a Diophantine rotation on the torus
and satisfies a suitable non-degeneracy condition.

To construct local Beltrami fields in a neighborhood of the tori ∂Tε(γi) with con-
trolled behavior on these surfaces, it is natural to use some variant of the Cauchy–
Kovalevsky theorem for the curl operator with Cauchy data on the tori (e.g. [10, Theo-
rem 3.1]). This would lead to a local Beltrami field defined in a small neighborhood Ωi of
each torus ∂Tε(γi). Unfortunately, the Runge-type approximation theorem we prove in
this paper does not allow us to approximate a local Beltrami field defined in Ω1∪...∪ΩN

by a global Beltrami field, since the complement R3\(Ω1∪...∪ΩN ) has compact connected
components. As is well known, this is not just a technical issue, but a fundamental ob-
struction in any Runge-type theorem.

Therefore, to construct the local Beltrami field v we will not consider a Cauchy
problem but a boundary value problem for the curl operator in each tube. This leads to
a vector field that satisfies the Beltrami equation

curl v=λv

in a neighborhood of the tubes (because the boundaries are analytic), which allows
us to apply our Runge-type approximation theorem. In this boundary value problem
one can prescribe the normal component of v at each boundary ∂Tε(γi), so that by
setting it to zero we can ensure that each boundary is an invariant torus of the local
Beltrami field. However, we have no control on the tangential component of v on each
torus, so in principle the local Beltrami field does not necessarily satisfy the dynamical
conditions our KAM-type theorem requires for the invariant tori to be preserved under
small perturbations.

To overcome this difficulty we resort to a careful analysis of harmonic fields in
thin tubes. Indeed, we show that in the above boundary value problem for the local
Beltrami field, one can also prescribe its harmonic part (that is, the L2 projection of v
into the space of harmonic fields with tangency boundary conditions), and for small λ
one expects the local Beltrami field to behave essentially as if it were harmonic. Hence,
we exploit the small parameter ε (that is, the thickness of the tubes) to extract detailed
analytic information about harmonic fields through energy estimates, and then utilize
this knowledge to compute the dynamical properties of the local Beltrami field that are
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required in the KAM-type theorem under the assumption that the Beltrami parameter
λ is suitably small (in fact, of order ε3). A key ingredient in the computation of these
dynamical properties is a set of energy estimates for the local Beltrami field and all
its derivatives that are optimal with respect to the geometry of the tubes, i.e., the
parameter ε.

The local Beltrami field can now be approximated in any Ck norm by a global
Beltrami field u that falls off at infinity as C/|x| using a Runge-type theorem. When
using the KAM argument to guarantee that u still has a set of invariant tori diffeomorphic
to {∂Tε(γi)}N

i=1, one has to face the problem that the local Beltrami field is in fact a small
perturbation of a field that does not satisfy the non-degeneracy condition (equivalent to
a rotation of the disk with constant frequency), which requires a fine analysis of the
terms controlled by each small parameter: the thickness ε, the Beltrami constant λ and
the error in the Runge-type approximation.

We shall next present a sketch of the proof of Theorem 1.1, where we explain the
different intermediate results that are needed in the demonstration and their interrela-
tions. This short sketch is also intended to serve as a guide to the paper. For the sake
of clarity, we will divide the proof into three stages.

Stage 1. Construction of the local Beltrami field. The local Beltrami field v
is obtained as the unique solution to a certain boundary value problem for the Beltrami
equation. Our goal is to estimate various analytic properties of this field, and for this it
is natural to introduce coordinates adapted to a Frenet frame in each tube Tε≡Tε(γi),
which essentially correspond to an arc-length parametrization of the curve γi and to
rectangular coordinates in a transverse section of the tube. Thus we consider an angular
coordinate α, taking values in S1

` :=R/`Z (with ` being the length of the curve γi), and
rectangular coordinates y=(y1, y2) taking values in the unit 2-disk D2. Details are given
in §3.

To extract information about the local Beltrami field, a useful tool is the boundary
value problem for the Laplacian on scalar functions with zero mean and zero Neumann
boundary conditions in the thin tube Tε:

∆ψ= % in Tε, ∂νψ|∂Tε =0,
∫
Tε

ψ dx=0.

When written in the natural coordinates (α, y), we obtain a boundary value problem in
the domain S1

`×D2, with the coefficients of the Laplacian in these coordinates depending
on the geometry of the tube strongly through its thickness ε and the curvature and
torsion of the core curve γi.
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It is clear that we have the Hk estimate

‖ψ‖Hk(Tε) 6Cε,k‖%‖Hk−2(Tε).

However this estimate, where the constant Cε,k depends on ε in an undetermined way, is
far from being enough to compute the dynamical quantities for the local Beltrami field
that are needed in the KAM-type theorem. Therefore, in §4 we prove energy estimates
for the function ψ and its derivatives that are optimal with respect to the parameter ε.
In particular, in order to be able to compute the desired dynamical quantities for the
local Beltrami field later on, it is crucial to distinguish between estimates for derivatives
of ψ with respect to the “slow” variable α and the “fast” variable y. The estimates for
the function ψ and its derivatives that we will need are stated in Theorem 4.11.

These estimates are immediately put to work in §5 to derive a perturbative expres-
sion for the harmonic field in each thin tube Tε for small ε. (Of course, the problem
degenerates for ε=0 and the asymptotic results we prove do not correspond to a Taylor
expansion.) We will use the notation h for the harmonic field in Tε, which is unique up
to a multiplicative constant. In fact, we need to compute h up to corrections that are
suitably small for small ε; as before, different powers of ε are required for the slow and
fast components of the field. To first order, the harmonic field can be written in the
coordinates (α, y) as

h= ∂α+τ(α)(y1∂2−y2∂1)+O(ε), (2.1)

where τ stands for the torsion of each curve γi and O(ε) denotes some vector field whose
components in these coordinates are bounded by a multiple of ε in the Ck(S1

`×D2) norm.
By equation (2.1), the field h is anO(ε) perturbation of the rotation of constant frequency
given by the total torsion

∫ `

0
τ(α) dα. From the point of view of KAM theory, this is a

very degenerate case, so it is not hard to guess that one needs to compute h (at least) up
to order O(ε3), as we do in Theorem 5.1. As a matter of fact, we will see later on that the
non-degeneracy condition that appears in the KAM theorem is that a certain quantity,
called the normal torsion, must be non-zero, and that it actually vanishes modulo terms
of order O(ε2), which justifies why we need good estimates for h.

In §6 we show that, for any non-zero constant λ that is small enough (say, smaller
than some fixed ε-independent constant), there is a unique vector field that is tangent
to the boundary of each tube Tε, satisfies the equation

curl v=λv (2.2)

in the tube and whose harmonic part (i.e., the L2 projection on the space of harmonic
fields) is h. (This is, of course, different to what happens in the case of compact manifolds
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without boundary, where Beltrami fields are always orthogonal to harmonic fields.) We
also prove estimates that measure how the field v becomes close to h in the Ck norm
for small ε and λ. The key result is Theorem 6.8, which will be crucial in verifying the
conditions in the KAM argument for the preservation of invariant tori.

Stage 2. Preservation of the invariant tori. In Stage 1, for small enough ε

and λ, we have constructed a local Beltrami field v, which satisfies equation (2.2) in a
neighborhood of

⋃N
i=1 Tε(γi) and has a set of invariant tori given by ∂Tε(γi). Furthermore,

the estimates we have proved provide a very convenient expression for the local Beltrami
field, up to terms that are of order ε3 (when λ=ε3) in a suitable sense.

In §7 we analyze the robustness of the invariant tori using the Poincaré map Π
defined by the local Beltrami field at a transverse section of each tube. In each tube, Π is
then a diffeomorphism of the disk that preserves a certain measure, while the intersection
of each invariant torus with the transverse section is an invariant circle of the Poincaré
map. The persistence of the invariant tori will rely on a KAM theorem for the Poincaré
map (Theorem 7.6) that applies to individual invariant circles.

To apply the KAM theorem, one has to verify that the rotation number of Π on the
invariant circle is Diophantine and that Π satisfies a non-degeneracy condition (namely,
that its normal torsion is non-zero). Computing these dynamical quantities using the
estimates for the local Beltrami field is non-trivial. On the one hand, the rotation number
depends on the behavior of the trajectories for arbitrarily large times, so a delicate
treatment is required in order to uniformly control the effect of the O(ε2) terms in the
vector field. On the other hand, the normal torsion, which is required to be non-zero,
turns out to be zero modulo O(ε2), since the Poincaré map is a small perturbation of a
constant-frequency rotation of the disk, which is a highly degenerate case from the point
of view of KAM theory.

The estimates proved at Stage 1 are tailored to permit us to overcome these diffi-
culties, yielding expressions for the rotation number ωΠ and the normal torsion NΠ that
depend on the geometry of each curve γi through its curvature � and torsion τ (see
Theorems 7.4 and 7.8):

ωΠ =
∫ `

0

τ(α) dα+O(ε2),

NΠ =−5πε2

8

∫ `

0

�(α)2τ(α) dα+O(ε3).

These expressions allow us to prove the main result in Stage 2, which is that for
“generic” curves γi the hypotheses of the aforementioned KAM theorem are satisfied, so
that the invariant tori of the local Beltrami field v are robust: if u is a divergence-free
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vector field in a neighborhood of the tubes that is close enough to v in a suitable sense
(e.g., in a high enough Ck norm), then u also has an invariant tube diffeomorphic to
each Tε(γi), and moreover the corresponding diffeomorphisms can be taken close to the
identity. This is proved in Theorem 7.10.

Stage 3. Approximation by a global Beltrami field. In §8 we prove a Runge-
type approximation theorem for Beltrami fields that decay at infinity (Theorem 8.3).
More precisely, we will show that the local Beltrami field v, considered in the previous
stages and defined in a neighborhood of the thin tubes Tε(γi), can be approximated in
any Ck norm by a Beltrami field u that falls off at infinity as |Dju(x)|<Cj/|x|. This
decay is optimal for the class of Beltrami fields.

The proof of this theorem consists of two steps. In the first step we use functional-
analytic methods to approximate the field field v by an auxiliary vector field w that
satisfies the elliptic equation ∆w=−λ2w in a large ball of R3 that contains all the tubes.
In the second step, we define the approximating global Beltrami field u in terms of a
truncation of a suitable series representation of the field w, ensuring that u has the
desired fall-off at infinity.

Completion of the proof of the main theorem. In §9 we use all previous results
to complete the proof of Theorem 1.1. Indeed, from the robustness of the invariant tori
of the local Beltrami field, it immediately follows that the global Beltrami field u has a
set of thin vortex tubes equivalent through a Cm-small diffeomorphism Φ to {Tε(γi)}N

i=1,
provided ε is small enough. More precisely, what is proved is that there is some constant
ε0, which depends only (albeit in a rather non-trivial way) on the geometry of the curves
γi and on the allowed smallness for the diffeomorphism Φ, so that the statement of the
theorem holds for any thickness ε6ε0.

The remaining properties of the vortex lines stated in Theorem 1.1 are established
in this section too, using results derived throughout the paper. In particular, we show
that near the curve γi there is an elliptic periodic trajectory of the field u. As a side
remark, notice that this elliptic periodic trajectory is obviously linearly stable, but is not
granted a priori to be Lyapunov stable. Therefore, as shown by the counterexample of
Anosov and Katok (cf. e.g. [13]), it is not guaranteed that there are invariant tori of the
field in a neighborhood of the elliptic trajectory. A careful (and non-trivial) analysis of
the dynamics near the elliptic trajectory for small ε and λ would be required to prove
the existence of these tori.

Before beginning with the technical part of the paper, it is convenient to provide
a short comparison between the proof of Theorem 1.1 and that of the main theorem in
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reference [10], where we showed that there are steady solutions to the Euler equation
with a set of vortex lines diffeomorphic to any given link. In this reference, the proof was
also based on the construction of a local Beltrami field with a “robust” set of periodic
trajectories, which was then approximated by a global Beltrami field. However, the
implementation of this basic principle is totally different.

To begin with, the robustness of periodic trajectories in [10] relies on the hyperbolic
permanence theorem (which is essentially an application of the implicit function theo-
rem) instead of a considerably more sophisticated KAM argument. To construct a local
Beltrami field with prescribed periodic trajectories γi that are hyperbolic, as required
by the permanence theorem, it is enough to prove a suitable analog of the Cauchy–
Kovalevsky theorem for the curl operator: indeed, since the field is divergence-free, it
is enough to assume that the field used as Cauchy datum is exponentially contracting
into the curve γi on the Cauchy surface to obtain a local Beltrami field that has γi as a
hyperbolic periodic trajectory. All this is in strong contrast to the case of vortex tubes,
where the construction of the local solution with a robust set of prescribed invariant tori
requires the analysis of the boundary value problem and the KAM argument described
in Stages 1 and 2 (§§4–7).

The approximation theorem we use in this paper is also different from the one
employed in [10]. The reason for this is that in [10] we had no control on the growth of the
global Beltrami field at infinity, even in the case of connected links. On the contrary, the
approximation theorem we prove in this paper (Theorem 8.3) yields Beltrami fields with
optimal fall-off at infinity. The proof of these approximation theorems is considerably
different: the old theorem is based on an iterative scheme that uses a theorem by Lax
and Malgrange and works for the curl operator in any Riemannian 3-manifold, while the
new one is based on different principles and takes advantage of the geometry of Euclidean
3-space to ensure that the global Beltrami field falls off at infinity.

Notice that the main theorem in [10] applies to locally finite sets of curves, while
in Theorem 1.1 in this paper we can only take finite sets of curves γ1, ..., γN . Some
comments in this regard are made in Remark 9.2.

3. Geometry of thin tubes

In this section we introduce some notation, including a coordinate system, that will be
used throughout the paper to describe functions and vector fields defined on thin tubes.
These tubes will be characterized in terms of the curve that sits on its core and its
thickness ε, which is a parameter that will be everywhere assumed to be suitably small.

Let us start with a closed analytic non-self-intersecting curve with an arc-length
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parametrization γ: S1
`!R3, with S1

` :=R/`Z (throughout the paper, when the period is
2π we will simply write S1≡S1

2π). This amounts to saying that the tangent field γ̇ has
unit norm and ` is the length of the curve. We will abuse the notation and denote also
by γ the curve parameterized by the above map (i.e., the image set γ(S1

`)).
Let us denote by Tε≡Tε(γ) the metric neighborhood with thickness ε of the curve γ,

that is,
Tε := {x∈R3 : dist(x, γ)<ε}.

This is a thin tube having the curve γ as its core. It is standard that, for small ε, the
boundary ∂Tε is analytic. The normal bundle of the curve γ being trivial [22], one can
associate with each α∈S1

` two orthogonal unit vectors ej(α) in R3 perpendicular to the
curve at the point γ(α). For convenience, we will make the assumption that the curvature
of the curve γ does not vanish, which allows us to take e1(α) and e2(α) as the normal
and binormal vectors at the point γ(α). It is well known that the assumption that the
curvature does not vanish is satisfied for generic curves [5, p. 184] (roughly speaking,
“generic” refers to an open and dense set, with respect to a reasonable Ck topology, in
the space of smooth curves in R3).

Using the vector fields ej(α) and denoting by D2 the 2-dimensional unit disk, we
can introduce analytic coordinates (α, y)∈S1

`×D2 in the tube Tε via the diffeomorphism

(α, y) 7−! γ(α)+εy1e1(α)+εy2e2(α).

In the coordinates (α, y), a short computation using the Frenet formulas shows that the
Euclidean metric in the tube reads as

ds2 =Adα2+2ε2τ(y2 dy1−y1 dy2) dα+ε2(dy2
1+dy2

2), (3.1)

where �≡�(α) and τ≡τ(α) respectively denote the curvature and torsion of the curve,

A := (1−ε�y1)2+(ετ)2|y|2, (3.2)

and |y| stands for the Euclidean norm of y=(y1, y2). As is customary, we will denote by
gij and gij the components of the metric tensor and its inverse, respectively.

We will sometimes take polar coordinates r∈(0, 1), θ∈S1 :=R/2πZ in the disk D2,
which are defined so that

y1 = r cos θ and y2 = r sin θ.

The metric then reads

ds2 =Adα2−2ε2τr2 dθ dα+ε2 dr2+ε2r2 dθ2, (3.3)
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where we, with a slight abuse of notation, still call A the expression of (3.2) in these
coordinates, i.e.,

A := (1−ε�r cos θ)2+(ετr)2. (3.4)

Notice that the coordinate r is simply the distance to the curve γ. For future reference,
we record that the volume measure is written in these coordinates as

dV :=B dαdy=Br dα dr dθ (3.5)

up to a factor of ε2, where dy :=dy1 dy2 and

B := 1−ε�y1 =1−ε�r cos θ. (3.6)

4. Estimates for the Neumann Laplacian in thin tubes

In this section we will derive some estimates for the Laplace equation ∆ψ=% in the thin
tube Tε with zero Neumann boundary conditions. As we will see, to gain control on the
function ψ it is convenient to attack this equation in the coordinates (α, y)∈S1

`×D2 that
we introduced in §3, in terms of which the Laplace equation can be written as

∆ψ= % in S1
`×D2, ∂νψ=0 on S1

`×∂D2, (4.1a)

where the Laplacian ∆ is now interpreted as an ε-dependent differential operator in the
variables (α, y) or (α, r, θ). In order to ensure the existence of solutions to this equation,
we suppose that

∫
% dV =0, which allows us to uniquely determine the solution ψ by

demanding that it also has zero mean:∫
ψ dα dy=0. (4.1b)

(Here and in what follows, we omit the domain of integration when it is the whole domain
S1

`×D2. We could have used the measure dV in the above formula too, but this choice
is slightly more convenient.) For future reference, we record here the expression of ∆ in
the variables (α, r, θ):

∆ψ=
1
ε2

(
ψrr+

1
r
ψr+

A

r2B2
ψθθ

)
+

1
B2

ψαα+
2τ
B2

ψαθ+
τ ′−εr(�τ ′−�′τ) cos θ

B3
ψθ

+
1
ε

(
� sin θ(B2−(ετr)2)

rB3
ψθ−

� cos θ
B

ψr

)
+
εr(�′ cos θ−τ� sin θ)

B3
ψα.

(4.2)

As usual, we denote partial derivatives by subscripts when there is not risk of confusion.
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Given a subset Ω⊂S1
`×D2, we will use the notation

‖ψ‖Ω :=
(∫

Ω

ψ2 dα dy

)1/2

for the L2(Ω)-norm of the function ψ, omitting the subscript when Ω is the whole domain
S1

`×D2. In this section we will use the notation

‖ψ‖2
Ḣ1

ε
:= ‖∂αψ‖2+

‖Dyψ‖2

ε2
(4.3)

for a homogeneous Sobolev norm in which the derivatives associated with the “small
directions” of the thin tube are weighted with an appropriate ε-dependent factor. The
usual Hk norm of the function ψ(α, y) will be denoted by ‖ψ‖Hk .

In what follows, we will assume that ψ is a solution of the Laplace equation (4.1)
with zero mean and zero Neumann boundary conditions, which ensures that∫

gij∂iψ∂jϕdV =−
∫
%ϕ dV (4.4)

for any ϕ∈H1(S1
`×D2). As usual, the scripts i and j range over the set of coordinates

{α, y1, y2}, and summation over repeated indices is understood. It is important to notice
that, for any function ϕ, ∫

gij∂iϕ∂jϕdV =(1+O(ε))‖ϕ‖2
Ḣ1

ε
, (4.5)

so that the Ḣ1
ε norm is essentially a more convenient way of dealing with the natural

Ḣ1 norm associated with the metric. We will use this identity many times in this section
without further comment.

The structure of this section is the following. We will start by estimating the L2

norm of the derivatives of the function ψ with respect to the “slow” variable α (§4.1).
The proof of these estimates is standard. We recall that the reason why α is called
the slow variable is that it parameterizes the “large” direction of the thin tube Tε, as
opposed to the “fast” variable y, which is obtained by rescaling the small section of the
tube. Estimates for the derivatives of ψ with respect to the “fast” variable y with optimal
dependence in the small parameter ε are presented in §4.2. They are more complicated
to obtain, basically because one has to consider an auxiliary function in order to get rid
of the contributions to ψ that only depend on the slow variable. The resulting estimates
for ψ, which we will often use in forthcoming sections, will be stated in §4.3.
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4.1. Estimates for derivatives with respect to the “slow” variable

In this subsection we will prove Hk estimates for the derivatives of the function ψ with
respect to the “slow” variable α (cf. Proposition 4.3). We will begin with the following
proposition, where we estimate the L2 and Ḣ1

ε norms of the function ψ. As is customary,
throughout this article we will use the letter C to denote ε-independent constants that
may vary from line to line.

Proposition 4.1. The function ψ satisfies the estimate

‖ψ‖+‖ψ‖Ḣ1
ε
6C‖%‖.

Proof. By the expression of the metric in the coordinates (α, y), it is clear that for
small enough ε one has∫

gij∂iψ ∂jψ dV > (1+O(ε))
∫ (

ψ2
α+

|Dyψ|2

ε2

)
dα dy>

1
2

∫
(ψ2

α+|Dyψ|2) dα dy.

The rightmost term in the inequality is bounded from below by 1
2µ1‖ψ‖2, where µ1 stands

for the first non-zero Neumann eigenvalue of the flat solid torus:

µ1 := inf
{∫

(ϕ2
α+|Dyϕ|2) dα dy :ϕ∈C∞(S1

`×D2),
∫
ϕdαdy=0 and ‖ϕ‖=1

}
> 0.

Hence we infer that
‖ψ‖6C‖ψ‖Ḣ1

ε
(4.6)

for some C>0.
To conclude, we can now use the weak formulation of the equation (4.4) with ϕ=ψ

and the Cauchy–Schwarz inequality to derive that

‖ψ‖2
Ḣ1

ε
6 (1+O(ε))

∫
gij∂iψ ∂jψ dV 6 (1+O(ε))‖%‖‖ψ‖6C‖%‖‖ψ‖Ḣ1

ε
.

The proposition then follows from this inequality and the estimate (4.6).

In the following lemma we record an elementary inequality that will be of use several
times in this section.

Lemma 4.2. Let Dl
α,y denote the tensor of l-th order derivatives with respect to the

variables (α, y). For any well-behaved (e.g., smooth) functions ϕ, ϕ̃, χ and χ̃ on S1
`×D2,

one has∫
|Dl

α,y(Bgij)∂iϕ∂jϕ̃ χχ̃| dα dy6 εCl

(∫
gij∂iϕ∂jϕχdV

)1/2(∫
gij∂iϕ̃ ∂jϕ̃ χ̃ dV

)1/2

.

In particular, ∫
|Dl

α,y(Bgij)∂iϕ∂jϕ̃| dα dy6Clε‖ϕ‖Ḣ1
ε
‖ϕ̃‖Ḣ1

ε
.



76 a. enciso and d. peralta-salas

Proof. This is an immediate consequence of the expression for the metric and the
function B in the coordinates (α, y) (see equation (3.1)) and the Cauchy–Schwarz in-
equality.

We are now ready to prove the estimates for the derivatives of ψ with respect to the
slow variable α that we will need in this paper.

Proposition 4.3. The k-th partial derivative of the function ψ with respect to the
angle α satisfies

‖∂k+1
α ψ‖Ḣ1

ε
6Ck‖%‖Hk ,

where k is any non-negative integer.

Proof. Let us take ϕ=ψαα in equation (4.4) and integrate by parts to get∫
gij∂iψα ∂jψα dV =

∫
%ψαα dV −

∫
∂α(Bgij) ∂iψ ∂jψα dα dy.

The left-hand side is bounded from below by (1+O(ε))‖ψα‖2Ḣ1
ε

, while from the definition

of the norm Ḣ1
ε and Lemma 4.2 it stems that∣∣∣∣∫ %ψαα dV

∣∣∣∣ 6 (1+O(ε))‖%‖‖ψα‖Ḣ1
ε
,∣∣∣∣∫ ∂α(Bgij) ∂iψ ∂jψα dα dy

∣∣∣∣ 6Cε‖ψ‖Ḣ1
ε
‖ψα‖Ḣ1

ε
.

Using Proposition 4.1 to estimate ‖ψ‖Ḣ1
ε

in terms of ‖%‖, we infer that

‖ψα‖2Ḣ1
ε
6C‖%‖‖ψα‖Ḣ1

ε
,

which readily implies the desired bound for k=0. When k is a positive integer, the proof
is totally analogous and can be obtained by induction on k using ϕ=∂2k+2

α ψ, the only
difference being that one needs to estimate the term

∫
%ϕ dV as

∣∣∣∣∫ %∂2k+2
α ψ dV

∣∣∣∣ 6C‖%‖Hk

k+1∑
j=1

‖∂j
αψ‖Ḣ1

ε
6C‖%‖2Hk +C‖%‖Hk‖∂k+1

α ψ‖Ḣ1
ε

by the induction hypothesis.

4.2. Estimates for the “fast” variables

To estimate the derivates with respect to the “fast” variable y in an optimal way, it is
crucial to ensure that the terms that only depend on α are not considered when estimating
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the norms of the function. A convenient way of doing this is by considering the auxiliary
function

ψ̄(α, y) :=ψ(α, y)− 1
π

∫
D2
ψ(α, y′) dy′, (4.7)

which is obtained from ψ by subtracting its average in the fast variable. It should be
emphasized that, if we were not to subtract this average, the estimates we would obtain
would not be strong enough for our needs in later sections. The key estimate in this
subsection is Theorem 4.8.

An immediate observation is that, of course

Dj
y∂

k
αψ=Dj

y∂
k
αψ̄ (4.8)

whenever the number j of derivatives we take with respect to y is greater than zero, and
that ψ̄ has zero mean: ∫

ψ̄ dα dy=0.

Moreover, the function ψ̄ satisfies the equation

∆ψ̄= %̄ in S1
`×D2, ∂νψ̄=0 on S1

`×∂D2,

with

%̄(α, y) := %(α, y)− 1
π

∆
∫

D2
ψ(α, y′) dy′.

The estimates for ψ we derive in the previous section guarantee that the norm of %̄
can be bounded by a multiple of the norm of the initial source term %.

Proposition 4.4. The Hk norm of %̄ is bounded by

‖%̄‖Hk 6Ck‖%‖Hk .

Proof. Observe that the action of the Laplacian (which we compute in the coordi-
nates (α, y)) on the function ψ(α, y′) is

∆ψ(α, y′) = (1+O(ε))∂2
αψ(α, y′)+O(ε)∂αψ(α, y′),

where O(εn) here stands for an ε-dependent quantity Q(α, y) bounded as

‖Q‖Hk 6Ckε
n
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for all k. Therefore, one finds that

‖Dj
y∂

k
α%̄‖=

∥∥∥∥Dj
y∂

k
α%−

1
π
Dj

y∂
k
α∆

∫
D2
ψ(α, y′) dy′

∥∥∥∥
=

∥∥∥∥Dj
y∂

k
α%−

1
π

∫
D2
∂k+2

α ψ(α, y′) dy′+
k+2∑
l=1

∫
D2
O(ε)∂l

αψ(α, y′) dy′
∥∥∥∥

6 ‖Dj
y∂

k
α%‖+(1+Cε)‖∂k+2

α ψ‖+Cε
k+1∑
l=1

‖∂l
αψ‖

6C‖%‖Hk ,

where in the last step we have used Propositions 4.1 and 4.3. The claim then follows.

To derive energy estimates for ψ, we will use that one obviously has∫
gij∂iψ̄ ∂jϕdV =−

∫
%̄ϕ dV (4.9)

for all ϕ∈H1(S1
`×D2). Our first result will be an estimate for the L2 norm of ψ̄ and

Dyψ̄. While we can readily derive a bound for these quantities using Proposition 4.1,
the estimates we prove here are much sharper for small ε. This will be crucial in the
derivation of optimal estimates for ψ.

Proposition 4.5. The function ψ̄ satisfies the H1 estimates

‖ψ̄‖+‖Dyψ̄‖6Cε2‖%‖ and ‖∂αψ̄‖6Cε‖%‖.

Proof. Choosing ϕ=ψ̄ in equation (4.9) and in view of the expression of the coeffi-
cients of the metric (3.1), one immediately obtains that

‖ψ̄‖2
Ḣ1

ε
6 (1+O(ε))‖%̄‖‖ψ̄‖. (4.10)

Since ψ̄(α, ·) has zero mean in the disk D2 for any fixed α, by Poincaré’s inequality there
is a positive constant C, independent of ε and α (namely, the first non-zero Neumann
eigenvalue of the disk), such that∫

D2
|Dyψ̄(α, y)|2 dy>C

∫
D2
ψ̄(α, y)2 dy.

Integrating this inequality in α, the H1 norm of ψ̄ can be estimated as

‖ψ̄‖2
Ḣ1

ε
>

1
ε2

∫
|Dyψ̄(α, y)|2 dy dα>

C

ε2
‖ψ̄‖2.

Together with equation (4.10), this yields ‖ψ̄‖6Cε2‖%̄‖ and ‖ψ̄‖Ḣ1
ε
6Cε‖%̄‖, so the claim

follows directly from Proposition 4.4.
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It is particularly easy to derive preliminary estimates (which will be instrumental in
the proof of Proposition 4.7) for the derivatives of ψ̄ with respect to α due to Proposi-
tion 4.3. Notice that these bounds will be substantially improved later on.

Proposition 4.6. The derivative of ψ̄ with respect to α satisfies

‖Dy∂
k+1
α ψ̄‖6Cε‖%‖Hk and ‖∂k+2

α ψ̄‖6Ck‖%‖Hk

for any non-negative integer k.

Proof. The claim is an immediate consequence of the definition of ψ̄ (cf. equa-
tion (4.7)) and Proposition 4.3, since obviously the L2(S1

`×D2) norm of the function

∂j
α

∫
D2
ψ(α, y′) dy′

is bounded from above by C‖∂j
αψ‖, which was in turn estimated in the aforementioned

proposition.

We are ready to show that the second derivatives of ψ̄ with respect to the fast
variable y are bounded by a factor of order ε2. The proof of these estimates makes
essential use of Propositions 4.5 and 4.6.

Proposition 4.7. The second derivatives of the function ψ̄ with respect to the fast
coordinates are bounded by

‖D2
yψ̄‖6Cε2‖%‖.

Proof. We will denote by D2
R the 2-dimensional disk of radius R, R being a fixed real

smaller than 1. Let us start by proving interior estimates. For this, we will denote by ∂a

the derivative along a y -direction (that is, ∂1 or ∂2), and consider a smooth function χ(|y|)
equal to 1 for |y|<R and equal to zero in a neighborhood of ∂D2. Taking ϕ=∂a(χ2∂aψ̄) in
equation (4.9) (here and in what follows we will not sum over the index a) and integrating
by parts, one readily obtains

I2 :=
∫
gij∂i∂aψ̄ ∂j∂aψ̄ χ

2 dV = I1−I2−I3, (4.11)

where

I1 :=
∫
%̄∂a(χ2∂aψ̄) dV,

I2 :=
∫
∂a(Bgij) ∂iψ̄ ∂j(χ2∂aψ̄) dα dy,

I3 :=
∫
∂aψ̄ g

ij∂j(χ2) ∂i∂aψ̄ dV.
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Let us estimate these integrals. The first one can easily be controlled using the Cauchy–
Schwarz inequality and Propositions 4.4 and 4.5:

|I1|6
∣∣∣∣∫ %̄χ2∂2

aψ̄ dV

∣∣∣∣+∣∣∣∣∫ %̄∂a(χ2)∂aψ̄ dV

∣∣∣∣
6C‖%̄‖(‖χ∂2

aψ̄‖+‖∂aψ̄‖) 6Cε‖%‖I+Cε2‖%‖2.

The integral I2 can be controlled using an analogous argument, Lemma 4.2 and Jensen’s
inequality. This leads to the estimate

|I2|6
∣∣∣∣∫ ∂a(Bgij)χ2∂iψ̄ ∂j∂aψ̄ dα dy

∣∣∣∣+∣∣∣∣∫ ∂a(Bgij)∂iψ̄ ∂j(χ2) ∂aψ̄ dα dy

∣∣∣∣
6Cε‖ψ̄‖Ḣ1

ε
I+C‖∂aψ̄‖

(∫
(∂a(Bgij)∂iψ̄ ∂jχ)2 dα dy

)1/2

6Cε2‖%‖I+Cε2‖%‖
∫
|∂a(Bgij)∂iψ̄ ∂jχ| dα dy

6Cε2‖%‖I+Cε3‖%‖‖ψ̄‖Ḣ1
ε
‖χ‖Ḣ1

ε

6Cε2‖%‖I+Cε3‖%‖2,

where in the fifth line we have used that ‖χ‖Ḣ1
ε
=‖Dyχ‖/ε=C/ε. A similar argument

shows that
|I3|6C‖∂aψ̄‖‖χ‖Ḣ1

ε
I 6Cε‖%‖I.

Feeding these bounds into equation (4.11), we obtain

I2 6Cε‖%‖I+Cε2‖%‖2,

so that I6Cε‖%‖. From the definition of the function χ and the identity (4.5) it then
follows that

‖D2
yψ̄‖S1

`×D2
R

6Cε2‖%‖, (4.12)

which is the desired interior estimate.
To prove the estimates up to the boundary, we begin by showing that the Ḣ1

ε norm
of

∂θψ̄≡ y1∂2ψ̄−y2∂1ψ̄

is bounded in terms of ‖%‖. For this, we will find it convenient to take a smooth function
χ(|y|), equal to 1 for |y|>R and vanishing in a neighborhood of the origin, and use polar
coordinates throughout without further notice. If we now take ϕ=χ2ψ̄θθ in equation (4.4)
and integrate by parts, we readily find that∫

gij∂iψ̄θ ∂jψ̄θ χ
2 dV

=
∫
%̄ψ̄θθχ

2 dV −
∫
∂θ(Bgij) ∂iψ̄ ∂j(χ2ψ̄θ) dα dy−

∫
gij∂iψ̄θ ψ̄θ∂j(χ2) dV,
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where the indices i and j now range over the set {r, θ, α}. Notice that the reason we
are now using polar coordinates is that ∂θ does not commute with the derivatives with
respect to (y1, y2). Arguing as above, one finds that∫

gij∂iψ̄θ ∂jψ̄θ χ
2 dV 6Cε‖%‖,

which ensures that
‖ψ̄θθ‖S1

`×AR
+‖ψ̄rθ‖S1

`×AR
6Cε2‖%‖, (4.13)

where AR :=D2\D2
R is the annulus of inner radius R.

To estimate the derivative ψ̄rr, it now suffices to isolate this quantity in the equation
∆ψ̄=%̄. From the expression of the Laplacian in these coordinates (4.2) it is apparent
that for r>R one can write ψ̄rr as

ε−2ψ̄rr−%̄=O(ε−2)(|ψ̄θθ|+|ψ̄r|)+O(ε−1)ψ̄θ+O(1)(|ψ̄αθ|+|ψ̄αα|+|ψ̄α|).

From Propositions 4.5–4.7 and the estimates (4.13), it then follows that

‖ψ̄rr‖S1
`×AR

6Cε2‖%‖.

This yields the desired boundary estimates, completing the proof of the proposition.

The results we have established so far show that the derivatives of ψ̄ can be bounded
in terms of the source % as

‖ψ̄‖+‖Dyψ̄‖+‖D2
yψ̄‖6Cε2‖%‖, (4.14a)

‖∂αψ̄‖+‖Dy∂αψ̄‖6Cε‖%‖, (4.14b)

‖∂2
αψ̄‖6C‖%‖. (4.14c)

However, having in mind the applications in the forthcoming sections, we would rather
have estimates where the right-hand side always has a factor of ε2.

In the following theorem we show that this can be achieved by replacing the L2 norm
of % by its H1 norm (thus using estimates that are weaker in terms of the gain of
derivatives), and provide a generalization for higher derivatives. It is worth emphasizing
that both the estimates (4.14) and those in the following theorem are optimal with respect
to its dependence on the small parameter ε, as can be checked easily.

Theorem 4.8. For any non-negative integers j and k we have the bound

‖Dj
y∂

k
αψ̄‖6Cjkε

2‖%‖HJ+k ,

where J :=max{j−2, 0}.



82 a. enciso and d. peralta-salas

Proof. The proof proceeds by induction on J+k, that is, on the number of derivatives
in the right-hand side of the inequality. The case J+k=0 follows from Propositions 4.5
and 4.7. To avoid cumbersome notation that might obscure the argument, we will sketch
the procedure for the case J+k=1, where one has to estimate ∂αψ̄ andDy∂αψ̄ (improving
the bounds in Propositions 4.5 and 4.6), D2

y∂αψ̄ and D3
yψ̄. Once this case has been

worked out in detail, it is straightforward to prove the general result using an induction
argument.

Let us begin by estimating the quantities having derivatives with respect to α,
that is, ∂αψ̄, Dy∂αψ̄ and D2

y∂αψ̄. An easy computation using the expression of the
Laplacian (4.2) shows that the commutator

% :=∆(∂αψ̄)−∂α(∆ψ̄)

can be written as

%=O(ε−1)D2
yψ̄+O(ε)ψ̄αα+O(1)Dy∂αψ̄+O(ε−1)Dyψ̄+O(ε)ψ̄α.

Now from the H2 estimates proved in Propositions 4.5–4.7, one obtains that the L2 norm
of the commutator is bounded by

‖%‖6Cε‖%‖.

The function ∂αψ̄ obviously satisfies the zero-mean condition∫
D2
∂αψ̄(α, y′) dy′=0, (4.15a)

the boundary condition
∂ν(∂αψ̄) = 0 (4.15b)

on S1
`×∂D2, and the equation

∆(∂αψ̄) = ∂α%̄+%. (4.15c)

As the L2 norm of the right-hand side is bounded by C‖%‖H1 , an immediate application
of Propositions 4.5 and 4.7 (applied to the boundary problem (4.15) rather than to (4.1))
shows that

‖ψ̄α‖+‖Dyψ̄α‖+‖D2
yψ̄α‖6Cε2‖%‖H1 .

To estimate D3
yψ̄ we will argue essentially as in the proof of Proposition 4.7. One

starts by proving interior estimates, which are obtained by feeding the test function

ϕ := ∂2
a(χ2∂2

aψ̄)
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into the identity (4.9). As before, χ(y) is a smooth function which vanishes in a neighbor-
hood of ∂D2 and is identically equal to 1 in a disk of radius R and the script a (which is
not summed) denotes any y direction. In order to get boundary estimates, one can start
by noticing that the same argument as we have used above to control derivatives with
respect to α also works for ∂θψ̄≡y1∂2ψ̄−y2∂1ψ̄. Indeed, the L2 norm of the commutator

%̃ :=∆(∂θψ̄)−∂θ(∆ψ̄)

is also bounded by Cε‖%‖ as a consequence of Propositions 4.5–4.7, and besides ∂θψ̄

satisfies the boundary value problem

∆(∂θψ̄) = ∂θ%̄+%̃ in S1
`×D2, ∂ν∂θψ̄=0 on S1

`×∂D2,

∫
D2
∂θψ̄(α, y′) dy′=0.

It then follows that the L2 norm of the derivatives D2
y∂θψ̄ are bounded by Cε2‖%‖H1 .

Hence one can now differentiate the equation ∆ψ̄=%̄ with respect to r and isolate ∂3
r ψ̄

to show that the norm ‖∂3
r ψ̄‖S1

`×AR
in a neighborhood of the boundary is bounded by

Cε2‖%‖H1 , as claimed.
This proves the induction hypotheses for J+k=1. For higher values of J+k, the

idea is exactly the same. Derivatives with respect to α (or θ) are dealt with by taking
derivatives directly in the equation and invoking the induction hypotheses. To estimate
the highest derivative with respect to r, one combines interior estimates with the test
function

ϕ= ∂J+k+1
a (χ2∂J+k+1

a ψ̄)

with the direct isolation of ∂J+k+2
r ψ̄ in the equation ∂J+k

r (∆ψ̄−%̄)=0.

4.3. Pointwise estimates

Taking into account that Dyψ̄=Dyψ, we can combine the results in the previous two
subsections to obtain Hk estimates for ψ in which the derivatives with respect to the
fast and slow variables are controlled in terms of different (and optimal) powers of ε. To
begin with, we can put together Propositions 4.3 and 4.6 and Theorem 4.8 to arrive at
the following bounds.

Theorem 4.9. The functions ψ and ψ̄ satisfy the Hk estimate

‖ψ‖Hk+2 6Ck‖%‖Hk and ‖ψ̄‖Hk 6Ckε
2‖%‖Hk

for any non-negative integer k.
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Remark 4.10. It is not hard to prove that these estimates are optimal with respect
to the dependence on ε. To have a rough idea of why this is true, the reader might want
to consider the problem

ψαα+
∆yψ

ε2
= % in S1

`×D2, ∂νψ=0 on S1
`×∂D2,

∫
ψ dα dy=0, (4.16)

which can be understood as a simplified version of the problem (4.1). Here and in what
follows, ∆yψ :=∂2

1ψ+∂2
2ψ stands for the standard Laplacian in the variables y.

For future reference, it is convenient to invoke the Sobolev embedding theorem and
record the following estimate for the Ck norm of the function ψ.

Theorem 4.11. The function ψ satisfies the Ck estimates

‖ψ‖Ck 6Ck‖%‖Hk and ‖Dyψ‖Ck 6Ckε
2‖%‖Hk+3

for any non-negative integer k.

Proof. This follows immediately from Theorem 4.9 upon noticing that Dyψ̄=Dyψ

and using the Sobolev inequality ‖ϕ‖Ck 6C‖ϕ‖Hk+2 .

Remark 4.12. It is clear that the same bounds we have proved for the function ψ hold
true if we assume that ψ solves the model problem (4.16) instead of ∆ψ=%. In particular,
for future reference we record here that this function also satisfies the estimates

‖ψ‖Hk+2 +
‖D2

yψ‖Hk

ε2
6Ck‖%‖Hk and ‖Dyψ‖Hk 6Ckε

2‖%‖Hk . (4.17)

5. Harmonic fields in thin tubes

In this section we use the estimates proved in §4 to compute the harmonic field in a thin
tube up to terms that are suitably bounded for small ε.

We recall that a vector field h in the tube Tε is harmonic if it is divergence-free,
irrotational, and tangent to the boundary. The vector space of all harmonic fields in the
tube will be denoted by

H(Tε) := {h∈C∞(Ω,R3) : div h=0, curlh=0 and h·ν=0}. (5.1)

It is standard that the space H(Tε) is 1-dimensional, as it is isomorphic to the first
cohomology group of the tube with real coefficients.

Let us consider the vector field in S1
`×D2 defined by

h0 :=B−2(∂α+τ∂θ). (5.2)
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It can be readily checked that h0 is irrotational (with respect to the metric (3.3)) and
tangent to the boundary.

By the Hodge decomposition [14], there is a function ψ such that

h :=h0+∇ψ (5.3)

is harmonic. Clearly this is the only harmonic vector field in S1
`×D2 up to a multiplicative

constant. By ∇ψ we are denoting the gradient of the function ψ with respect to the
metric (3.3), that is,

∇ψ=
ψα+τψθ

B2
∂α+

ψr

ε2
∂r+

Aψθ+ε2r2τψα

(εrB)2
∂θ. (5.4)

The fact that the field h is divergence-free implies that ψ solves the Neumann boundary
value problem

∆ψ= % in S1
`×D2, ∂νψ=0 on S1

`×∂D2,

where
% := εB−3r(τ� sin θ−�′ cos θ) (5.5)

is minus the divergence of h0 (and, as such, satisfies
∫
% dV =0). We will also assume

that
∫
ψ dα dy=0 in order to determine ψ uniquely.

In the following two sections we will need some estimates for the harmonic field h

(or, equivalently, for the function ψ) that depend on the particular form of the source
term %. These estimates are obtained in the following theorem, where we calculate, up
to some controllable error, some derivatives of the function ψ that we will use later on.
To simplify the notation, we will write O(εn) for any function χ satisfying the bound
‖χ‖Ck 6Ckε

n for all k (and also for numbers whose absolute value is smaller than Cεn,
but the meaning should be clear from the context).

Theorem 5.1. Consider the functions

ϕ0 := 1
8ε

3(r3−3r)(τ� sin θ−�′ cos θ), (5.6)

ϕ1 := 13
96ε

4(r4−2r2)(τ�2 sin 2θ−��′ cos 2θ), (5.7)

which are obviously of order O(ε3) and O(ε4), respectively. Then ψ is related to these
functions through the estimates

ψ=O(ε2),

Dyψ=Dyϕ0+O(ε4),

∂θψ= ∂θϕ0+∂θϕ1+O(ε5).
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Proof. Let %0 :=εr(τ� sin θ−�′ cos θ). It is easy to see that the function ϕ0(α, y) is
the only solution to the problem

∆yϕ0 = ε2%0 in S1
`×D2, ∂rϕ0|r=1 =0,

∫
D2
ϕ0 dy=0,

for any value of the angle α.
Consider now the function ψ1 :=ψ−ϕ0, which obviously has zero normal derivative

on S1
`×∂D2 and has zero mean because so do ψ and ϕ0. The Laplacian of ψ1 is given by

∆ψ1 = %−∆ϕ0 =(%−%0)+
(

∆yϕ0

ε2
−∆ϕ0

)
.

Using equation (5.5), the first term in brackets can easily be shown to be

%−%0 =3ε2�r2 cos θ (τ� sin θ−�′ cos θ)+O(ε3),

while the second can easily be dealt with using the formula (4.2) for the Laplacian:

∆yϕ0

ε2
−∆ϕ0 =

�

ε

(
cos θ ∂rϕ0−

sin θ ∂θϕ0

r

)
+O(ε3).

Using the definition of ϕ0, this yields

∆ψ1 = %1+%2+O(ε3),

with

%1 := 13
8 ε

2
�r2(�τ sin 2θ−�′ cos 2θ) and %2 := 1

8ε
2(3−14r2)��′

of order O(ε2), so the estimates we proved in Theorem 4.11 then ensure that

ψ1 =O(ε2) and Dyψ1 =O(ε4).

This shows that ψ=O(ε2) and Dyψ=Dyϕ0+O(ε4).
To calculate Dyψ up to O(ε5) we will consider two auxiliary functions ϕ1 and ϕ2.

The function ϕ1(α, y) is the solution to the problem

∆yϕ1 = ε2%1 in S1
`×D2, ∂rϕ1|r=1 =0,

∫
D2
ϕ1 dy=0.

The existence and uniqueness of the solution are standard given that the right-hand side
satisfies ∫

D2
%1 dy=0
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for all α. In fact, the solution can be computed in closed form using separation of
variables, which readily yields the formula for ϕ1 given in the statement (equation (5.7)).

The function ϕ2 is the solution to the problem

∂2
αϕ2+

∆yϕ2

ε2
= %2 in S1

`×D2, ∂rϕ2|r=1 =0,
∫
ϕ2 dα dy=0.

Again, the existence and uniqueness of solutions is standard because the right-hand side
satisfies the zero-mean condition ∫

%2 dα dy=0.

(The reason why we are including derivatives with respect to α in the definition of ϕ2 but
not in that of ϕ1 is that the source term %2 has zero mean when averaged with respect
to α and y but not when averaged in y only.) Obviously ϕ2 does not depend on θ.

We can now estimate ψ2 :=ψ1−ϕ1−ϕ2 using the same argument as we used with ψ1.
We start by noticing that, by construction, ∂rψ2=0 when r=1 and the integral∫

S1
`×D2

ψ2 dα dy

is zero. The Laplacian of ψ2 is

∆ψ2 = %1+%2−∆ϕ1−∆ϕ2+O(ε3)

=
(

∆yϕ1

ε2
−∆ϕ1

)
+

(
∂2

αϕ2+
∆yϕ2

ε2
−∆ϕ2

)
+O(ε3) =O(ε3).

To pass to the third line we have used the expression of the Laplacian in polar coordinates
(equation (4.2)) and of ϕ1, as well as the estimates for ϕ2 that stem from Theorem 4.11
and Remark 4.12. Another application of Theorem 4.11 shows that Dyψ2=O(ε5). Since
∂θϕ2=0 and

ψ=ϕ0+ϕ1+ϕ2+ψ2,

the theorem follows.

6. Beltrami fields with prescribed harmonic part

Our goal in this section is to construct a Beltrami field v in the thin tube Tε, tangent to
the boundary, whose harmonic part is a fixed harmonic field h. We will be particularly
interested in the way the Beltrami field v is related to the harmonic field h as the
parameter λ tends to zero, since in the next section it will be crucial to have good
estimates for this relation in order to compute some dynamical quantities of the field v.
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This section is divided into three parts. In §6.1 we prove an existence result for a
boundary value problem for the curl operator in tubes in which we can prescribe the
harmonic part of the solution (Corollary 6.3). In §6.2 we will provide estimates for an
auxiliary vector equation with constant coefficients (Proposition 6.6), which are used in
§6.3 to prove the desired estimates, optimal in ε, for the boundary value problem under
consideration (Theorem 6.8).

6.1. An existence result for the curl operator

Let us begin by making precise what we understand by the harmonic part of a vector
field w in the thin tube Tε that is tangent to the boundary. We will define its harmonic
part to be the vector field

Pw :=
h

‖h‖2L2(Tε)

∫
Tε

h·w dx,

that is, its projection to the space of harmonic vector fields H(Tε), as introduced in
equation (5.1). In this subsection, we will denote by

‖v‖2Hk(Tε) :=
k∑

j=0

∫
Tε

|Djv|2 dx

the usual Hk norm of a vector field in the tube Tε⊂R3 and write L2(Tε) for H0(Tε).
Throughout, we will use the notation Cε for positive constants, possibly not uniformly
bounded in the small parameter ε, that may vary from line to line.

In the following proposition we present the basic existence result that we will use
to show the existence of Beltrami fields with prescribed harmonic part. The result is
probably known to some experts but we have not found it in the literature. The proof
relies on a duality argument for a suitable energy functional and the Fredholm alternative
theorem.

Proposition 6.1. Let f be an L2 vector field in Tε which is divergence-free. There
is a countable subset of the real line without accumulation points such that, if the constant
λ does not belong to it, then the equation

curlw−λw= f, divw=0, (6.1)

has a unique H1 solution w that is tangent to the boundary ∂Tε and has zero harmonic
part.
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Proof. Let us consider the Hilbert spaces of vector fields

F := {F ∈L2(Tε,R3) : divF =0},

W := {w∈H1(Tε,R3) :w is tangent to ∂Tε},

where the tangency condition is to be understood in terms of traces. It is well known [14]
that, because of the tangency condition imposed on W, the H1 norm is equivalent to the
norm

‖w‖2W := ‖curlw‖2L2(Tε)+‖divw‖2L2(Tε)+‖Pw‖
2
L2(Tε)

in the sense that, for all w∈W,

‖w‖W
Cε

6 ‖w‖H1(Tε) 6Cε‖w‖W .

Consider the scalar product E:W×W!R associated with the norm ‖ · ‖W , given
by

E[w, u] :=
∫
Tε

(curlw·curlu+divw div u+Pw·Pu) dx.

By the Riesz representation theorem, for any L2 vector field F there is a unique wF ∈W
such that

E[wF , u] =
∫
Tε

F ·curlu dx (6.2)

for all u∈W.
We claim that, for any F∈F , condition (6.2) is equivalent to demanding that wF

be an H1 solution to the equation

curlwF =F, divwF =0, (6.3)

in the tube Tε, that is tangent to the boundary and has zero harmonic part. One side of
the implication is obvious, so we only need to prove that if wF satisfies condition (6.2)
with F∈F , then it solves equation (6.3).

For this, let us take suitable choices of the field u in equation (6.2). Letting u=PwF

be the harmonic part of wF , we obtain that PwF is zero. To see that divwF is zero too,
it suffices to take u=∇ψ, with ψ being the solution to the boundary value problem

∆ψ=divwF in Tε, ∂νψ|∂Tε =0,
∫
Tε

ψ dx=0.

Notice that, in order to show that the solution exists and ∇ψ belongs to the space W,
we need to use that wF is in H1 and is tangent to the boundary.
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Since PwF and divwF are zero, condition (6.2) can then be written as∫
Tε

curlG·u dx+
∫

∂Tε

(G×ν)·u dσ=0 (6.4)

for all u∈W, where
G := curlwF−F

and dσ denotes the induced surface measure on the boundary. Letting u vary over the
space of smooth vector fields of compact support in Tε, we immediately infer that G
must be irrotational. Now that we know that the first term in (6.4) is always zero, we
can take an arbitrary field u tangent to the boundary to derive that G×ν must be zero,
so that G is divergence-free, irrotational and orthogonal to the boundary. By the Hodge
decomposition theorem, this ensures that the field G is identically zero. Hence we have
proved that wF is the only solution to the problem (6.3). Notice that, as an immediate
consequence of the equivalence of the H1 norm to ‖ · ‖W on W,

‖wF ‖H1(Tε) 6Cε‖F‖L2(Tε) (6.5)

for some constant that depends on ε but not on F .
Let us consider the operator K mapping a field F∈F to its solution wF , which

we regard as a linear map K:F!F whose image lies in W. It is standard in view of
the estimate (6.5) that the operator K is compact, so by the Fredholm alternative the
equation

Kw− 1
λ
w= f̃ (6.6)

has a unique solution for each f̃∈F and any constant 1/λ that does not belong to the
spectrum of the adjoint operator K∗. This spectrum is a bounded countable set that
only accumulates at zero.

Let w be the only solution to equation (6.6) with f̃=−Kf/λ, for an arbitrary field f
in F . Since w=K(λw+f) belongs to the image of K, from the above discussion it stems
that the field w is tangent to the boundary, divergence-free and has zero harmonic part,
and by the definition of K satisfies curlw=λw+f . The proposition then follows.

Remark 6.2. The proof of the proposition shows that the values of λ for which there
is not a unique solution to the equation (6.1) are given by the reciprocal of the eigenvalues
of the compact operator K∗ that we defined in the proof.

As a direct application of the previous proposition, we derive the following corollary,
which gives the existence result for Beltrami fields with prescribed harmonic part that
we will use later on. Of course, it is apparent that this corollary is totally different from
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the results that one has on compact manifolds without boundary, where the Beltrami
equation has no solutions but for λ belonging to a countable set and these solutions (i.e.,
the eigenfunctions of curl) are necessarily orthogonal to harmonic fields.

Corollary 6.3. For any constant λ not belonging to a certain ε-dependent count-
able set without accumulation points, there is a unique solution to the equation

curl v=λv, div v=0,

in the tube Tε that is tangent to the boundary and whose harmonic part is Pv=h.

Proof. It follows immediately from Proposition 6.1 by taking v=h+w, with w being
the only solution to equation (6.1) with f=λh.

6.2. Estimates for an equation with constant coefficients

In this section we will prove estimates for a curl-type equation with constant coefficients
on the domain S1

`×D2. This equation with constant coefficients is closely related to the
Beltrami equation on the thin tube Tε and will be used subsequently to estimate the
difference between the Beltrami field v and its harmonic part h. As before, the natural
coordinates on the domain S1

`×D2 will be denoted by (α, y), and we will consider polar
coordinates (α, r, θ) where convenient.

Vector fields on S1
`×D2 are regarded as functionsW : S1

`×D2!R3, whose components
are denoted by

W =(Wα,W1,W2).

We will sometimes write Wy :=(W1,W2). On these vector fields we will consider the
action of the differential operators

DivW := ∂αWα+∂1W1+∂2W2,

CurlεW :=
(
∂1W2−∂2W1,

∂2Wα

ε2
−∂αW2, ∂αW1−

∂1Wα

ε2

)
,

and we will say that a vector field W is tangent to the boundary if y ·Wy=0 (in the
sense of traces) on the torus |y|=1. Obviously, Div and Curlε are related to the standard
divergence and curl operators through a rescaling, but for our purposes these forms of
the operators are more convenient.

We will also consider the functional Q that maps each field W to the real number

Q[W ] :=
∫
Wα dα dy.
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This is obviously related to the projection onto the space of “harmonic fields” associated
with the operators Div and Curlε, which is spanned by the constant field (1, 0, 0), so
when Q[W ]=0 we will simply say that the harmonic part of Q[v] is zero. All integrals
are taken over S1

`×D2 unless otherwise stated. To control the behavior of the vector
fields, in addition to the usual Hk norms we will consider the norms

‖W‖2Hk
ε

:= ‖Wα‖2Hk +ε2‖Wy‖2Hk . (6.7)

These norms should not be confused with the norm ‖ · ‖Ḣ1
ε

that we considered for scalar
functions in §4. We will simply write ‖ · ‖ε for the corresponding L2

ε norm (k=0), and
reserve the notation ‖ · ‖ for the usual L2 norm, where factors of ε do not appear.

In the following proposition we compute the lowest eigenvalue of a self-adjoint oper-
ator associated with Curlε to show how the L2

ε norm of a vector field W can be controlled
using that of CurlεW .

Proposition 6.4. Let W be an H1 vector field on S1
`×D2 with DivW=0 that is

tangent to the boundary and has zero harmonic part. Then

‖CurlεW‖ε >
C‖W‖ε

ε
.

Proof. It is an easy consequence of [31] that Curlε defines an unbounded self-adjoint
operator on the Hilbert space

H := {W ∈L2(S1
`×D2,R3) : DivW =0,Q[W ] = 0 and W is tangent to the boundary},

endowed with the scalar product associated with the norm ‖ · ‖ε. The domain of this
operator consists of the H1 vector fields in H such that CurlεW is also in H. Hence, to
prove the proposition it is enough to see that the eigenvalues of this operator, in absolute
value, satisfy |µ|>C/ε.

Exploiting the symmetry of the equations (that is, rotation of the angles α and θ),
it is not hard to see that the eigenvalue equation

CurlεW =µW,

with W divergence-free, tangent to the boundary and with zero harmonic part, can be
solved in closed form. Indeed, the symmetry ensures that the eigenfunctions can be
chosen of the form (here, and in similar formulas, i denotes the imaginary unit)

W = einα+imθ(v1(r)eα+v2(r)er+v3(r)eθ),
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where n and m are integers, vj(r) are functions of the radial variable and the unit vectors
eα, er and eθ are defined in the obvious way:

eα := (1, 0, 0), er := (0, cos θ, sin θ) and eθ := (0,− sin θ, cos θ).

Using this expression, a tedious but straightforward computation shows that the eigen-
values with the smallest absolute value are ±j(1)1 /ε, where j(1)1 denotes the first positive
zero of the Bessel function J1.

In the proof of the main result of this subsection we will need the following identity.

Lemma 6.5. Let W be a vector field tangent to the boundary of S1
`×D2. Then

ε2‖∂αWy‖2+‖DyWy‖2+‖∂αWα‖2+ε−2‖DyWα‖2

= ‖DivW‖2+‖CurlεW‖2ε−
∫

S1
`×∂D2

|Wy|2 dα dθ,

where we are writing dα dθ for the induced surface measure on S1
`×∂D2.

Proof. One can easily check that

‖DivW‖2+‖CurlεW‖2ε = ‖∂αWα‖2+
2∑

i=1

(
ε2‖∂αWi‖2+

‖∂iWα‖2

ε2

)
+

2∑
i,j=1

‖∂iWj‖2+S,

where
S :=

∑
i,j∈{α,1,2}

∫
(∂iWi ∂jWj−∂jWi ∂iWj) dα dy.

We can now integrate by parts to write

S=−
2∑

i,j=1

∫
S1

`×∂D2
(yjWi∂iWj +yjWα∂αWj) dα dθ

=
2∑

i,j=1

∫
S1

`×∂D2
Wj∂i(yjWi) dα dθ=

2∑
i=1

∫
S1

`×∂D2
W 2

i dα dθ.

To pass to the second identity we have used that y ·Wy is zero on the boundary, so the
second summand in the first integrand vanishes, and taken advantage of the fact that W
is tangent to the boundary to integrate by parts a second time.

In the following proposition, which is the main result in this subsection, we prove
an estimate for the operators Div and Curlε that is “optimal” with respect to the small
parameter ε. In the proof of this version of the inequalities we will also derive another
one in which the right-hand side has one derivative less than the left-hand side, as is
customary. However, the estimate we will need later on is the former, which is why it is
the one that appears in the statement. It is not hard to check that the dependence on ε
of both estimates is sharp.
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Proposition 6.6. Let W be any vector field in S1
`×D2 that is tangent to the bound-

ary and satisfies the equation

CurlεW =F, DivW = %,

for a scalar function % and a vector field F . Then

‖Wα‖Hk +‖DyWα‖Hk 6Ck(ε‖F‖Hk
ε
+‖%‖Hk +|Q[W ]|),

‖∂αWα‖Hk 6Ck(‖F‖Hk
ε
+‖%‖Hk),

‖Wy‖Hk +ε‖∂αWy‖Hk +‖DyWy‖Hk 6Ck(‖F‖Hk
ε
+‖%‖Hk +|Q[W ]|)

for constants that depend on k but not on ε.

Proof. We can write the field W as the sum of three fields:

W =V +
(
∂αψ,

∂1ψ

ε2
,
∂2ψ

ε2

)
+

(
Q[W ]
|S1

`×D2|
, 0, 0

)
. (6.8)

The scalar function ψ that appears in the second vector field is defined as the only
solution to the Neumann boundary value problem

∂2
αψ+

∆yψ

ε2
= % in S1

`×D2, ∂νψ|S1
`×∂D2 =0,

∫
S1

`×D2
ψ dα dy=0, (6.9)

and it should be noticed that the third vector field (which corresponds to the harmonic
part of W ) is constant. As a consequence of these definitions and the properties of W ,
the field V is tangent to the boundary, has zero harmonic part (Q[V ]=0) and satisfies
the equation

Curlε V =F, Div V =0. (6.10)

The Hk estimates stated in Remark 4.12 (equation (4.17)), applied to the boundary
problem (6.9), provide suitable control of the second field that appears in equation (6.8)
(that is, the “gradient” part) and its derivatives, as they show that

‖∂αψ‖Hk +‖∂2
αψ‖Hk +

‖Dy∂αψ‖Hk

ε
6C‖%‖Hk ,

‖Dyψ‖Hk

ε2
+
‖Dy∂αψ‖Hk

ε
+
‖D2

yψ‖Hk

ε2
6C‖%‖Hk .

The third field in equation (6.8) is trivial to control as it is constant. Therefore, to prove
the proposition it is enough to derive suitable estimates for the field V .
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Hence, our goal is to show that the vector field V satisfies

‖Vα‖Hk +‖DyVα‖Hk 6Cε‖F‖Hk
ε
, (6.11a)

‖∂αVα‖Hk 6C‖F‖Hk
ε
, (6.11b)

‖Vy‖Hk +ε‖∂αVy‖Hk +‖DyVy‖Hk 6C‖F‖Hk
ε
. (6.11c)

For this we start by noticing that, when applied to equation (6.10), the L2 estimate
proved in Proposition 6.4 yields ‖V ‖ε6Cε‖F‖ε, or equivalently

‖Vα‖6Cε‖F‖ε and ‖Vy‖6C‖F‖ε. (6.12)

To prove the inequalities (6.11), we start by using estimates for boundary traces and
interpolation to control the term

S :=
∫

S1
`×∂D2

|Vy|2 = ‖Vy‖2L2(S1
`×∂D2) 6C‖Vy‖2L2(S1

`)×H1/2(D2) 6C‖Vy‖(‖Vy‖+‖DyVy‖)

that appears in Lemma 6.5. Together with the L2 estimate (6.12), we can then apply
Lemma 6.5 to the field V to infer that

‖∂αVα‖6C‖F‖ε, ‖DyVα‖6Cε‖F‖ε,

‖∂αVy‖6
C

ε
‖F‖ε, ‖DyVy‖6C‖F‖ε.

This proves the estimate (6.11) for k=0.
The derivation of higher-order estimates from these inequalities is standard. To

show the basic ideas, let us sketch the proof of the k=1 estimates. Interior estimates
are obtained by considering the identity shown in Lemma 6.5 for the vector field ∂i(χV ),
where i=1, 2 and χ is a smooth function, compactly supported in S1

`×D2 and equal to
one in the region |y|< 1

2 . Besides, it is easy to estimate derivatives of V with respect to α
because the field ∂j

αV is still tangent to the boundary, divergence-free, has zero harmonic
part and satisfies the equation

Curlε(∂j
αV ) = ∂j

αF.

Analogous properties can also be shown for the globally defined field

∂θV +(0, V2,−V1),

with the angular derivative ∂θ :=y1∂2−y2∂1, so the same argument can be applied for this
field. Since the second summand is obviously controlled by the previous estimates, this
yields good H1 estimates for ∂θV . To get estimates for the field V up to the boundary,
it now suffices to control the radial derivative ∂rV in the region |y|> 1

2 , and this can be
readily done by writing the equation (6.10) in polar coordinates, taking its derivative
with respect to r and isolating the terms having two radial derivatives. This process can
be readily iterated to get the desired Hk estimates. The details, which can easily be
filled in using these comments, are omitted.
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6.3. Estimates for Beltrami fields in thin tubes

In this subsection we establish some estimates for Beltrami fields defined on the tube Tε.
The point of these estimates will be to control the difference between a Beltrami field v
and its harmonic part h in terms of the Beltrami parameter λ, while ensuring that the
dependence on ε of these estimates is optimal. As we did in §4 (but not §6.1), we will
identify Tε with S1

`×D2 through the coordinates (α, y).
Given a vector field v in the tube, we will consider its components (vα, v1, v2), defined

through the relation
v= vα∂α+v1∂1+v2∂2.

We will use these coordinates to define the norms Hk
ε , just as in equation (6.7), of vector

fields in Tε, using the obvious formula

‖v‖2Hk
ε

:= ‖vα‖2Hk +ε2‖vy‖2Hk .

Here the Sobolev norms in the right-hand side denote the usual scalar norms and we are
using the notation vy :=(v1, v2). It should be noticed that these norms reflect to some
extent the effect of the metric on the way vectors are measured; in particular, the L2

norm defined by the above formula is obviously equivalent through constants that do not
depend on ε to the perhaps more appealing expression∫

g(v, v) dV,

where g denotes the expression of the Euclidean metric in these coordinates and dV is
the normalized volume (cf. equations (3.1) and (3.5)).

We will begin with the following result, whose proof hinges on the analogous esti-
mates proved for an equation with constant coefficients that we established in Proposi-
tion 6.6.

Proposition 6.7. Suppose that the vector field w is tangent to the boundary, has
zero harmonic part (Pw=0) and satisfies the equation

curlw= f, divw=0, (6.13)

in Tε. Then
‖w‖Hk

ε
6Ckε‖f‖Hk

ε
.

Proof. In the notation of §6.2, let us consider the vector field W : S1
`×D2!R3 given

by
W := (Awα+ε2τ(y2w1−y1w2), w1+τy2wα, w2−τy1wα),
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where we recall that A is the function defined in equation (3.2). It can be checked that W
is given by the components (in the coordinates (α, y)) of the 1-form dual to w up to a
rescaling of the y components by a factor of ε−2. It is worth noticing that, as the field
w is tangent to the boundary of the tube Tε, a simple computation using the definition
of W shows that the field W is tangent to the boundary S1

`×∂D2, that is, y ·Wy=0 on
|y|=1. Moreover, the components of the field w on the tube can be recovered from those
of W through the relations

wα =
Wα+ε2τ(y1W2−y2W1)

B2
, (6.14a)

w1 =W1−
τy2[Wα+ε2τ(y1W2−y2W1)]

B2
, (6.14b)

w2 =W2+
τy1[Wα+ε2τ(y1W2−y2W1)]

B2
, (6.14c)

where the function B was defined in equation (3.6).
Using the notation

B1 :=
B

B2+ε2τ2y2
2

and B2 :=
B

B2+ε2τ2y2
1

,

we will also consider the field F : S1
`×D2!R3 and the function %W : S1

`×D2!R defined
by

F :=
(
Afα+ε2τ(y2f1−y1f2)

B
,
f1+τy2fα

B1
,
f2−τy1fα

B2

)
,

%W := ∂α

[
Wα

(
1− 1

B

)]
+∂1

[
W1

(
1− 1

B1

)]
+∂2

[
W2

(
1− 1

B2

)]
.

Notice that, by the definition of the functions A and B, we trivially have

‖F‖Hk
ε

6C‖f‖Hk
ε
, (6.15)

‖%W ‖Hk 6Cε(‖W‖Hk +‖∂αWα‖Hk +‖DyWy‖Hk). (6.16)

A straightforward computation shows that equation (6.13) can be written in terms
of the field W as

CurlεW =F, DivW = %W . (6.17)

To derive estimates forW, we start by analyzingQ[W ]. To this end, we recall (cf. e.g. [31])
that if dσ denotes the induced surface measure on the disk

{(α, y) :α=α0}⊂Tε,
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the fact that the field w has zero harmonic part (Pw=0) is equivalent to the assertion
that

0 =
∫
{α=α0}

g(w, ν) dσ=
∫

D2
Bwα|α=α0 dy

for each angle α0. Since A−B is of order ε, using the above equality one can estimate

|Q[W ]|=
∣∣∣∣∫ Wα dα dy

∣∣∣∣
=

∣∣∣∣∫ (Awα+ε2τ(y2w1−y1w2)) dα dy
∣∣∣∣

=
∣∣∣∣∫ ((A−B)wα+ε2τ(y2w1−y1w2)) dα dy

∣∣∣∣
6Cε‖wα‖+Cε2‖wy‖

6Cε‖Wα‖+Cε2‖Wy‖,

(6.18)

where to derive the last inequality we have used the expression of the components of w
in terms of those of W given in equation (6.14).

We are now ready to derive some estimates for the vector field W . Since W is
tangent to S1

`×∂D2, we can apply Proposition 6.6 to equation (6.17) to obtain

‖Wα‖Hk 6C(ε‖F‖Hk
ε
+‖%W ‖Hk +|Q[W ]|), (6.19a)

‖∂αWα‖Hk 6C(‖F‖Hk
ε
+‖%W ‖Hk), (6.19b)

‖Wy‖Hk +‖DyWy‖Hk 6C(‖F‖Hk
ε
+‖%W ‖Hk +|Q[W ]|). (6.19c)

Going back to equation (6.16), this yields

‖%W ‖Hk 6Cε(‖F‖Hk
ε
+‖Wα‖Hk +‖Wy‖Hk).

Plugging this inequality and the bound (6.18) for Q[W ] into equation (6.19), we imme-
diately get

‖Wα‖Hk 6Cε(‖F‖Hk
ε
+‖Wα‖Hk +‖Wy‖Hk),

‖Wy‖Hk 6C(‖F‖Hk
ε
+ε‖Wα‖Hk +ε‖Wy‖Hk).

From these estimates one readily infers that, for small ε,

‖Wα‖Hk +ε‖Wy‖Hk 6Cε‖F‖Hk
ε
.

In view of the formulas (6.14), ‖w‖Hk
ε
6C‖W‖Hk

ε
, so the proposition follows from the

bound (6.15) for the Hk
ε norm of F .
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We are now ready to prove the main result in this section, which estimates the
difference between a Beltrami field in the tube and its harmonic part in terms of the
Beltrami parameter λ.

Theorem 6.8. Let λ be any non-zero real constant that is smaller in absolute value
than some fixed positive constant Λ. For small enough ε, the problem

curl v=λv

has a unique solution in the tube Tε that is tangent to the boundary and whose harmonic
part Pv is the harmonic field h. Moreover, the difference between the field v and the
harmonic field is bounded pointwise by

‖vα−hα‖Ck(S1
`×D2)+ε‖vy−hy‖Ck(S1

`×D2) 6Ck,Λε|λ|,

where the constant only depends on k and Λ.

Proof. Let us write w:=v−h, so that the field w is tangent to the boundary, has
zero harmonic part and satisfies the equation

curlw=λw+λh, divw=0. (6.20)

We proved in Proposition 6.1 and Remark 6.2 that this equation has a unique solution
if and only if 1/λ is not an eigenvalue of the operator K∗ introduced in the proof of the
aforementioned proposition. As λ is real, this is equivalent to 1/λ being eigenvalue of
the operator K, which means that there is a divergence-free L2 field u such that

Ku=
u

λ
.

Suppose that 1/λ is an eigenvalue of K. By the properties of K proved in Propo-
sition 6.1, this means that the non-zero vector field Ku is tangent to the boundary, has
zero harmonic part and satisfies

curl(Ku) =λKu, div(Ku) = 0.

Applying the estimate proved in Proposition 6.7 to this equation, we get

‖Ku‖L2
ε
6Cε|λ| ‖Ku‖L2

ε
,

which means that
|λ|> C

ε
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for some positive constant that does not depend on ε.
Therefore the problem (6.20) has a unique solution for all |λ|6Λ, provided ε is small

enough. Moreover, when applied to equation (6.20), Proposition 6.7 ensures that

‖w‖Hk
ε

6Ckε|λ|(‖w‖Hk
ε
+‖h‖Hk

ε
),

which yields
‖w‖Hk

ε
6Ckε|λ| ‖h‖Hk

ε

provided that ε is smaller than some constant of the form C/Λ. Since the Hk
ε norm of

the harmonic field is bounded uniformly in ε as

‖h‖Hk
ε

6Ck

due to equation (5.3) and the estimates in Theorem 5.1, we obtain

‖w‖Hk
ε

6Ckε|λ|.

Cs pointwise estimates for w are immediately obtained from this bound by taking k=s+2
and using Sobolev embeddings.

7. A KAM theorem for Beltrami fields with small λ

Let us consider the harmonic field h in the tube Tε, as introduced in equation (5.3). As
before, we will assume that the thickness ε is small. By Theorem 6.8, for any λ smaller
in absolute value than some fixed ε-independent constant, there is a unique solution v

to the Beltrami equation
curl v=λv

in Tε that is tangent to the boundary and whose harmonic part is h. We are interested
in the case where the Beltrami constant λ is suitably small. For simplicity of notation,
throughout this section we will take λ:=ε3 (although we could have taken any non-zero
constant λ=O(ε3)) and refer to the vector field v corresponding to this choice of λ as
the local Beltrami field.

Our objective in this section is to study some fine dynamical properties of the local
Beltrami field v. More precisely, we will show that for small values of ε and “most”
core curves γ, the boundary of the tube Tε is an invariant torus of the field v that is
preserved (i.e., there is a small perturbation of ∂Tε that is still invariant) under suitably
small perturbations of v. For this, we will see that the key point is the analysis of
the harmonic field h, which is close to the local Beltrami field v as a consequence of the
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estimates proved in Theorem 6.8 and the fact that the Beltrami parameter λ=ε3 is small.
At this point, it is worth emphasizing that, to some extent, the proofs of the dynamical
properties that we study in this section ultimately depend on the estimates derived in
§4. In particular, if the dependence on ε of these estimates were worse, we would not
be able to check the non-degeneracy conditions of the KAM theorem we prove in this
section.

This section is divided into four parts. In §7.1 we consider the trajectories of the
local Beltrami field, after a rescaling of the field (which does not alter their geometric
structure), and calculate these trajectories perturbatively in a suitable range of time
(Proposition 7.1). In §7.2 and §7.3 we use these perturbative expressions to compute
the rotation number and normal torsion of the Poincaré map of the local Beltrami field
(Theorems 7.4 and 7.8), which are the quantities that control the stability of the torus
in the KAM theorem that we establish in §7.4 (Theorem 7.10).

7.1. Trajectories of the local Beltrami field

In this subsection we aim to compute the trajectories of the local Beltrami field v per-
turbatively in the small parameter ε. From Theorem 6.8 and the fact that the Beltrami
parameter is λ=ε3, it follows that the local Beltrami field v is close to the harmonic field
in the sense that

‖vα−hα‖Ck(S1
`×D2)<Ckε

4 and ‖vy−hy‖Ck(S1
`×D2)<Ckε

3. (7.1)

Since the harmonic field can be written as h=h0+∇ψ (with h0 and ∇ψ respectively
given by (5.2) and (5.4)), from the estimates for ψ proved in Theorem 5.1 we infer that

vα =B−2(1+ψα+τψθ)+O(ε4) = 1+O(ε).

In particular, as vα does not vanish for small ε, we can consider the analytic vector field

X :=
v

vα
. (7.2)

We will use this vector field to study the geometric structure of the trajectories of the
local Beltrami field, since both fields have the same unparameterized trajectories and
the vector field X presents certain computational advantages, as we shall see in the
next subsection. Before we go on, and identifying the tube Tε with S1

`×D2 through the
coordinates (α, y), let us note that the field X is well defined in a small neighborhood of
S1

`×D2 because so is the local Beltrami field v.
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The trajectories of X are given by the parametrization (α(s), r(s), θ(s)), where these
functions satisfy the system of ordinary differential equations (ODEs)

α̇=1, (7.3a)

ṙ=
B2ψr

ε2(1+ψα+τψθ)
+O(ε3), (7.3b)

θ̇=
τ+(εr)−2Aψθ+τψα

1+ψα+τψθ
+O(ε3). (7.3c)

These equations can be read off from the definition of the field X and its connection
with the harmonic field (equation (7.1)) and formulas (5.3) and (5.4) for the harmonic
field and the gradient of ψ. The point of the trajectory not only depends on the “flow
parameter” s, but also on the initial conditions (α0, r0, θ0) at s=0. Without loss of
generality, in this section we will always take α0=0, and make the dependence of the
trajectory on (r0, θ0) explicit by writing

(α(s; r0, θ0), r(s; r0, θ0), θ(s; r0, θ0))

when appropriate.
Throughout, it will be convenient to denote by θ not only the angular coordinate in

S1, but also its lift to the real line. It should be noticed that the formulas we will give
below are actually valid for the lifted coordinate too, which will be of use in §7.2.

In the following lemma we will compute the trajectory of the field X at time s∈[0, `]
up to a controllable error. We will assume that r0 is bounded away from 0 so that the
trajectory cannot reach the coordinate singularity {r=0} (i.e. {(α, r, θ):r=0}, by abuse
of notation) at any time s∈[0, `]. This is convenient in view of the terms 1/r2 that appear
in the equations and is not a restriction for the applications that we have in mind, as
we will be only concerned with initial conditions near the invariant torus {r=1}. For
simplicity, in this lemma we will abuse the notation and denote by O(εj) a quantity
Q(r0, θ0, s) that is uniformly bounded as

|∂k
r0
∂l

θ0
Q(r0, θ0, s)|<Cklε

j

for r0 in any fixed compact set of the interval (0, 1] (which is the domain where polar
coordinates define a diffeomorphism), θ0∈S1 and s∈[0, `], provided ε is small enough.

Proposition 7.1. Consider the solution to the system (7.3) with initial condition
(0, r0, θ0) and r0>0. At time s∈[0, `], this solution is given by

α(s; r0, θ0) = s,

r(s; r0, θ0) = r0+O(ε),

θ(s; r0, θ0) = θ(0)(s)+εθ(1)(s)+ε2θ(2)(s)+O(ε3),
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where each quantity θ(j)(s)≡θ(j)(s; r0, θ0) is of order O(1) and given by

θ(0)(s) := θ0+
∫ s

0

τ(s̄) ds̄,

θ(1)(s) :=
r20−3
8r0

[�(s) sin θ(0)(s)−�(0) sin θ0],

θ(2)(s) :=
12−5r20

32

∫ s

0

�(s̄)2τ(s̄) ds̄+
3(r40+2r20−3)�(s)�(0)

64r20
cos θ0 sin θ(0)(s)

− (3−r20)2�(s)�(0)
64r20

sin θ0 cos θ(0)(s)+
(27−50r20+25r40)�(s)2

384r20
sin 2θ(0)(s)

+
(27+14r20−31r40)�(0)2

384r20
sin 2θ0.

Proof. Converting the ODEs (7.3) into integral equations, one has, for s∈[0, `],

α(s; r0, θ0) = s, (7.4a)

r(s; r0, θ0) = r0+
∫ s

0

B2ψr

ε2(1+ψα+τψθ)
ds̄+O(ε3), (7.4b)

θ(s; r0, θ0) = θ0+
∫ s

0

τ+(εr)−2Aψθ+τψα

1+ψα+τψθ
ds̄+O(ε3). (7.4c)

In these equations all the functions under the integral signs are evaluated along the
trajectories, i.e., at the point

α= s̄, r= r(s̄; r0, θ0), θ= θ(s̄; r0, θ0). (7.5)

Let us solve the equations perturbatively. We start by noticing that, as a consequence
of the bounds for ψ derived in Theorem 5.1 (and its connection with the functions ϕ0

and ϕ1 introduced in this theorem), the integrands can be expanded in ε as

τ+(εr)−2Aψθ+τψα

1+ψα+τψθ
=

(
τ+

Aψθ

ε2r2
+τψα

)
(1−ψα+O(ε3))= τ+

Aψθ

ε2r2
+O(ε3), (7.6)

B2ψr

ε2(1+ψα+τψθ)
=
∂rϕ0

ε2
+O(ε2). (7.7)

Since r0>0 and s∈[0, `] (which allows us to control the effect of the denominator 1/r2

for small enough ε), we immediately infer from equations (7.4b) and (7.4c) that

r(s; r0, θ0) = r0+O(ε) and θ(s; r0, θ0) = θ(0)(s)+O(ε). (7.8)

Of course, we define each function θ(j)(s) as in the statement of the proposition.
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Now that we have the zeroth-order expression of the trajectories, we will next com-
pute them up to second-order corrections. For convenience we will use the notation

R0(r) := 1
2 (r3−3r) and R1(r) := 13

96 (r4−2r2)

for the dependence of ϕ0 and ϕ1 on r, respectively. We start with the analysis of the
radial coordinate of the trajectories. Using again equation (7.7) and the zeroth-order
estimates for the trajectories (7.8), we derive that

r(s; r0, θ0) = r0+
∫ s

0

[
∂rϕ0(s̄, r0+O(ε), θ(0)(s̄)+O(ε))

ε2
+O(ε2)

]
ds̄+O(ε3)

= r0+
∫ s

0

∂rϕ0(s̄, r0, θ(0)(s̄))
ε2

ds̄+O(ε2)

= r0+εR′0(r0)
∫ s

0

[τ(s̄)�(s̄) sin θ(0)(s̄)−�′(s̄) cos θ(0)(s̄)] ds̄+O(ε2)

= r0−εR′0(r0)
∫ s

0

d

ds̄
(�(s̄) cos θ(0)(s̄)) ds̄+O(ε2)

= r0+εr(1)(s)+O(ε2),

(7.9)

where
r(1)(s) := 3

8 (1−r20)[�(s) cos θ(0)(s)−�(0) cos θ0].

To pass to the second line we have used the mean-value theorem and the obvious Ck

bound ϕ0=O(ε3), and to complete the calculation we have just plugged in the formulas
for ϕ0 (equation (5.6)) and the definition of θ(0)(s). In a totally analogous manner we
can compute θ(s; r0, θ0), up to O(ε2),

θ(s; r0, θ0) = θ(0)(s)+
∫ s

0

[
Aψθ

(εr)2
+O(ε3)

]∣∣∣∣
(s,r0+O(ε),θ(0)(s)+O(ε))

ds̄+O(ε3)

= θ(0)(s)+
∫ s

0

∂θϕ0(s̄, r0, θ(0)(s))
(εr0)2

ds̄+O(ε2)

= θ(0)(s)+
εR0(r0)
r20

∫ s

0

[τ(s̄)�(s̄) cos θ(0)(s̄)+�
′(s̄) sin θ(0)(s̄)] ds̄

= θ(0)(s)+εθ(1)(s)+O(ε2).

(7.10)

To complete the proof we need to calculate θ(s; r0, θ0) up to O(ε3). The procedure
is as above but the computations are more tedious. We start by noticing that the term
Aψθ that appears in the integrand (7.6) can be written as

Aψθ = ∂θϕ0+(∂θϕ1−2ε�r cos θ ∂θϕ0)+O(ε5), (7.11)
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where we have used the estimates we established in Theorem 5.1 (recall that ϕ1 was
introduced in equation (5.7)). Notice that the first summand is of order O(ε3), while the
term in brackets is of order O(ε4).

We can now use the integral equation (7.4c) for the trajectories, the expansion (7.6)
for the integrand (together with (7.11)), and the expression for the trajectories up to
second-order terms (equations (7.9) and (7.10)) to get

θ(s; r0, θ0) = θ(0)(s)+
∫ s

0

∂θϕ0

ε2r2

∣∣∣∣
(s̄,r0+εr(1)+O(ε2),θ(0)+εθ(1)+O(ε2))

ds̄

+
∫ s

0

∂θϕ1−2ε�r cos θ ∂θϕ0

ε2r2

∣∣∣∣
(s̄,r0+εr(1)+O(ε2),θ(0)+εθ(1)+O(ε2))

ds̄+O(ε3).

For simplicity of notation, we omit the argument s̄ when there is no risk of confusion.
An elementary Taylor expansion and the mean-value theorem show that the first integral
(let us call it I1) is given by

I1 =
∫ s

0

[
∂θϕ0

ε2r2
+∂r

(
∂θϕ0

εr2

)
r(1)(s̄)+

∂2
θϕ0

εr2
θ(1)(s̄)

]∣∣∣∣
(s̄,r0,θ(0))

ds̄+O(ε3)

= εθ(1)(s)+
∫ s

0

[
∂r

(
∂θϕ0

εr2

)
r(1)(s̄)+

∂2
θϕ0

εr2
θ(1)(s̄)

]∣∣∣∣
(s̄,r0,θ(0))

ds̄+O(ε3).

The second integral, which we call I2, can be immediately simplified using the mean-value
theorem, finding that

I2 =
∫ s

0

∂θϕ1−2ε�r cos θ ∂θϕ0

ε2r2

∣∣∣∣
(s̄,r0,θ(0))

ds̄+O(ε3).

The integrals I1 and I2 can be computed in closed form after replacing the functions
ϕ0 and ϕ1 by their expressions, given in equations (5.6) and (5.7). For example,

I2 =J1+J2+O(ε3),

where

J1 :=
∫ s

0

∂θϕ1

ε2r2

∣∣∣∣
(s̄,r0,θ(0))

ds̄

=
ε2R1(r0)

r20

∫ s

0

[τ(s̄)�(s̄)2 cos 2θ(0)(s)+�(s̄)�′(s̄) sin 2θ(0)(s̄)] ds̄

=
ε2R1(r0)

2r20

∫ s

0

d

ds̄
(�(s̄)2 sin 2θ(0)(s̄)) ds̄

=
13ε2(r20−2)

96
[�(s)2 sin 2θ(0)(s)−�(0)2 sin 2θ0]
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and

J2 :=−2
∫ s

0

� cos θ ∂θϕ0

εr

∣∣∣∣
(s̄,r0,θ(0))

ds̄

=−2ε2R0(r0)
r0

∫ s

0

� cos θ(0)[τ� cos θ(0)+�
′ sin θ(0)] ds̄

=−ε
2R0(r0)
r0

∫ s

0

[
τ�2+

1
2
d

ds̄
(�2 sin 2θ(0))

]
ds̄

=
ε2(3−r20)

16

[
2

∫ s

0

τ�2 ds̄+�(s)2 sin 2θ(0)(s)−�(0)2 sin 2θ0

]
.

The other terms can be dealt with using analogous arguments, arriving at the formula
for θ(2)(s) that appears in the statement.

To conclude this subsection, we will show that the trajectories of the field X on the
invariant torus r=1 satisfy certain functional equation up to some controllable errors.
The reason why we need to consider this way of describing trajectories on the invariant
torus is that, in order to compute the rotation number later on, we will need to understand
the trajectories on the torus for arbitrarily large times. The expression for the trajectories
we obtained in Proposition 7.1 is not well suited for this purpose, while the functional
equation below turns out to be much more convenient. In order to describe the errors that
appear in the functional equation, in the following proposition we will use the notation
sO(εn) for any quantity Q(θ0, s) that is bounded as

|∂j
θ0
Q(θ0, s)|6Cj(1+|s|)εn and |∂s∂

j
θ0
Q(θ0, s)|6Cjε

n

for non-negative integer j (we could have considered higher derivatives with respect to s
too, but we will not need this feature).

Proposition 7.2. Consider the trajectories of the system of ODEs (7.3) with initial
condition (α0, r0, θ0)=(0, 1, θ0). The function θ(s)≡θ(s; 1, θ0) satisfies the approximate
functional equation

θ(s) = θ0+
∫ s

0

τ(s̄) ds̄− ε
4
[�(s) sin θ(s)−�(0) sin θ0]+sO(ε2).

Proof. The starting point is the differential equations for the trajectories (7.3) with
initial radius r0=1. It is obvious that the radial component of the trajectory is

r(s; 1, θ0) = 1,

which simply shows that the set {r=1} is an invariant torus. Therefore, equation (7.3c)
for θ(s) becomes

θ̇(s) =
τ+ε−2Aψθ+τψα

1+ψα+τψθ
+O(ε3) = τ+

ε−2Aψθ−τ2ψθ

1+ψα+τψθ
+O(ε3), (7.12)
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where the functions in the right-hand side are evaluated along the trajectories (s, 1, θ(s)).
Expanding the fraction that appears in the second identity using the estimates for ψ
proved in Theorem 5.1 we therefore arrive at

θ̇(s) = τ(s)+
∂θϕ0(s, 1, θ(s))

ε2
+O(ε2). (7.13)

Notice that the fraction is of order O(ε). Converting (7.12) into an integral equation, an
immediate consequence of this estimate is that

θ(s) = θ(0)(s)+
∫ s

0

∂θϕ0(s̄, 1, θ(s̄))
ε2

ds̄+sO(ε2).

This integral can be evaluated, modulo sO(ε2), using the formula (7.13) for the
derivative θ̇, the expression for ϕ0, and integration by parts, we obtain∫ s

0

∂θϕ0

ε2
ds̄=−ε

4

∫ s

0

[�τ cos θ+�
′ sin θ] ds̄=−ε

4

∫ s

0

[�(θ̇+O(ε)) cos θ+�
′ sin θ] ds̄

=−ε
4

∫ s

0

d

ds̄
(� sin θ) ds̄+sO(ε2) =−ε

4
[�(s) sin θ(s)−�(0) sin θ0]+sO(ε2).

Here, of course, all the integrands are evaluated at the point (s̄, 1, θ(s̄)).

7.2. Rotation number of the Poincaré map of the local Beltrami field

We will denote by φs the time-s flow of the field X, which maps each point (α0, r0, θ0)
to the trajectory of the ODEs (7.3) at time s that has the latter values as initial con-
ditions. Since the field X, introduced in equation (7.2), is tangent to the boundary of
the domain S1

`×D2, it is standard that the flow φs is a well-defined diffeomorphism of
S1

`×D2 for all values of s.
Let us now consider the Poincaré map of the field X, which is the tool we will use to

analyze the dynamical properties of the flow (and which coincides with that of the local
Beltrami field v). For this, we start by considering the section {α=α0}, which is clearly
transverse to the vector field X. The Poincaré map of this section, Πα0 : D2!D2, sends
each point (r0, θ0)∈D2 to the first point at which the trajectory φs(α0, r0, θ0) intersects
the section {α=α0} (with s>0). The reason why we are considering the field X is that
it is isochronous in the sense that this first return point is given by the time-` flow of X,
that is,

Πα0(r0, θ0) =φ`(α0, r0, θ0). (7.14)

We will omit the subscript when α0=0, and use Cartesian coordinates y in the disk when
convenient.
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One should notice that, since we are assuming that the curve γ is analytic, the
boundary of the tube Tε is also an analytic surface, so it is standard [24] that the field
v is analytic in a neighborhood of the closure Tε. This ensures that the Poincaré map is
also a well-defined analytic map in a neighborhood of the closed disk D2.

In the following proposition we will show that the Poincaré map of the Beltrami
field preserves a measure on the disk. For later convenience, we will state this result in
terms of the associated 2-form rather than the measure.

Proposition 7.3. The Poincaré map Π preserves the positive measure on the disk
corresponding to the 2-form

Λ :=GΛ(r, θ)r dr∧dθ

on the disk D2, with

GΛ(r, θ) :=Bvα|α=0 =1+ε�(0)r cos θ+O(ε2). (7.15)

Proof. That the function GΛ(y):=Bvα|α=0 has indeed the form given by the right-
hand side of (7.15) is an immediate consequence of the estimates for the function ψ

proved in Theorem 5.1 and equation (7.1). Given a Borel set B⊂D2 and a small positive
δ, let us denote by

µ(B) :=
∫
B

Λ

its area and let

Bδ := (−δ, δ)×B

be a small thickening of the set {0}×B in the closed domain S1
`×D2.

Since the divergence of v is zero, from the definition of X it stems that its flow
preserves the volume

dṼ := vα dV.

Clearly the Ṽ -volume of the set Bδ is

Ṽ (Bδ) :=
∫
Bδ

dṼ =
∫ δ

−δ

∫
B
Bvα dy dα

=2δ(1+O(δ))
∫
B
Bvα|α=0 dy=2δµ(B)+O(δ2).

(7.16)

Let us now observe that the image of the set Bδ under the time-` flow φ` is given by

φ`(Bδ) =
⋃

−δ<α<δ

{α}×Πα(B). (7.17)
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By the continuous dependence of the flow on the initial conditions and equation (7.14),
the Poincaré maps corresponding to different values of the angle α satisfy

‖Πα−Π‖C0(D2) 6Cδ

for |α|6δ, so we can use the decomposition (7.17) to show that the Ṽ -volume of φ`(Bδ)
is

Ṽ (φ`(Bδ))=
∫ δ

−δ

∫
Πα(B)

Bvα dy dα

=
∫ δ

−δ

(∫
Π(B)

Bvα|α=0 dy+O(δ)
)
dα=2δµ(Π(B))+O(δ2).

(7.18)

Equating the Ṽ -volumes of Bδ and φ`(Bδ), given by equations (7.16) and (7.18), and
considering small values of δ, we then obtain that

µ(B) =µ(Π(B)),

as claimed.

Since the local Beltrami field v is tangent to the boundary of the domain S1
`×D2, the

image of ∂D2 under the Poincaré map Π is also contained in ∂D2. Hence, the restriction
of Π to ∂D2 defines an analytic diffeomorphism of the circle, which will be denoted by

Π|∂D2 : ∂D2−! ∂D2.

Using the coordinate θ to identify the circle ∂D2 with R/2πZ, the latter circle diffeomor-
phism can be naturally lifted to a diffeomorphism of the real line that we will denote
by 	Π: R!R. As is well known, a basic tool in the study of circle diffeomorphisms is the
rotation number (or frequency) of the map, which is defined as

ωΠ := lim
n!∞

	Πn(θ0)−θ0
n

. (7.19)

Here 	Πn denotes the nth iterate of 	Π and θ0 is any real number. Since the Poincaré map
of a flow is homotopic to the identity, it is standard that the above limit exists and is
independent of the choice of θ0 [30].

We shall next compute the rotation number of the circle diffeomorphism Π|∂D2 using
the functional equation satisfied (up to controllable errors) by the trajectories of the field
X on the invariant torus. The reason is that, in order to compute the rotation number
to order O(ε2), we need to iterate the Poincaré map an arbitrarily large number of times,
which requires fine control of the growth of the errors for large times.

The following theorem asserts that the rotation number is given by the total torsion
not only modulo O(ε), as can be shown without relying on the functional equation, but
also modulo O(ε2). The fact that the O(ε) correction is zero will be important later on.



110 a. enciso and d. peralta-salas

Theorem 7.4. The rotation number of the circle diffeomorphism Π|∂D2 is

ωΠ =
∫ `

0

τ(α) dα+O(ε2).

Proof. By the definition of the flow, equation (7.19) simply asserts that

ωΠ := lim
n!∞

θ(n`)−θ0
n

,

where θ(n`)≡θ(n`; 1, θ0) denotes the angular component of the trajectory solving the
system (7.3) with initial condition (0, 1, θ0), evaluated at time n`. Since the curvature
�(α) and torsion τ(α) are `-periodic, Proposition 7.2 then ensures that

ωΠ = lim
n!∞

1
n

(∫ n`

0

τ ds− ε�(0)
4

[sin θ(n`)−sin θ0]+n`O(ε2)
)

=
∫ `

0

τ ds+O(ε2).

7.3. The non-degeneracy condition for the Poincaré map

In this subsection we will compute a quantity associated with the Poincaré map Π (some-
times called the normal torsion of the map) that was introduced to analyze the stability
of individual invariant tori of symplectic diffeomorphisms [18], [17]. As we shall see,
the assumption that the normal torsion is non-zero plays a role that is analogous to the
twist condition in the classical theorem by Arnold and Moser on perturbations of inte-
grable symplectic maps. As the name can be misleading, it is worth emphasizing that,
in principle, the normal torsion has nothing to do with the torsion of a curve.

Let us begin by introducing some notation. We will consider a domain D in the
plane that contains the closed unit disk D2 and a map Π̂:D!R2. (Eventually, we will
be interested in taking as Π̂ the Poincaré map Π introduced in the previous subsection.)
A closed curve Γ⊂D is invariant if its image Π̂(Γ) is contained in Γ. If Γ is an invariant
curve of Π̂, one says that Π̂|Γ is conjugate to a rotation of frequency ω through the
diffeomorphism Θ: S1!Γ if

Θ−1
�Π̂|Γ�Θ(ϑ) =ϑ+ω

for all ϑ in S1. When Γ=∂D2, we will abuse the notation and also denote by Θ the
diffeomorphism S1!S1 corresponding to the angular component of the above diffeo-
morphism S1!∂D2. (Therefore, in the case of ∂D2 the above diffeomorphism will read
as y=(cos Θ(ϑ), sinΘ(ϑ)) in Cartesian coordinates and (r, θ)=(1,Θ(ϑ)) in polar coordi-
nates.) From the context it will be clear which interpretation of Θ must be considered
in each case.
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Definition 7.5. Let Π̂: D2!D2 be a diffeomorphism of the disk that preserves the
measure defined by the 2-form G(r, θ)r dr∧dθ. We will denote the radial and angular
components of Π̂ by (Π̂r, Π̂θ), respectively. Assume that Π̂|∂D2 is a diffeomorphism of the
circle ∂D2!∂D2 that is conjugate to a rotation of frequency ω through a diffeomorphism
Θ, which we regard here as a map S1!S1. The normal torsion of the map Π̂ on the
invariant circle ∂D2 is the real number

NΠ̂ :=
∫ 2π

0

1
Θ′(ϑ+ω)Θ′(ϑ)

∂rΠ̂θ(1,Θ(ϑ))
G(1,Θ(ϑ))

dϑ.

The reason why we consider the above quantity is that it appears in a non-degeneracy
condition of a theorem by González-Enŕıquez and de la Llave [17]. In fact, the result [17,
Theorem 1] is much more general, and we will only need a concrete application that
we state next in a form that is particularly well suited for our purposes. The normal
torsion was also considered for the same purpose by Herman in [18] when G(r, θ)=1 and
Θ(ϑ)=ϑ. Before stating the theorem, let us recall that a number ω is Diophantine if
there exist a positive constant C and ν>1 such that∣∣∣ ω

2π
− p
k

∣∣∣ >
C

k1+ν
(7.20)

for any integers p and k with k>1.

Theorem 7.6. (González-Enŕıquez and de la Llave [17]) Consider a small neigh-
borhood D of the closed unit disk D2 in R2. Take an analytic map Π̂:D!R2 that is a
diffeomorphism onto its image preserving the measure G(r, θ)r dr dθ, with G analytic in
D. Suppose that the following two conditions hold :

(i) The circle ∂D2 is invariant, and Π̂|∂D2 is conjugate through an analytic diffeo-
morphism Θ: S1!∂D2 to a rotation whose frequency ω satisfies a Diophantine condition.

(ii) The normal torsion NΠ̂ of the map Π̂ on the invariant circle ∂D2 is non-zero.
Then for each δ>0 and positive integer m there are δ′>0 and an integer k such

that, if an analytic map Π̃:D!R2 preserving the same measure G(r, θ)r dr dθ satisfies

‖Π̂−Π̃‖Ck(D)<δ
′,

one can transform the circle ∂D2 by a diffeomorphism Ψ of R2 so that Ψ(∂D2) is an
invariant curve for the map Π̃. Moreover, the map Π̃|Ψ(∂D2) is also conjugate to a
rotation of frequency ω and the difference Ψ−id can be assumed to be supported in a
small neighborhood of ∂D2 and to satisfy

‖Ψ−id‖Cm <δ.
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Proof. The statement is simply a rewording of [17, Theorem 47], in the particular
case of planar maps and omitting some quantitative estimates that will not be needed
in the rest of the paper. The only point that requires more elaboration is to check what
the degeneracy condition looks like in the situation we are considering in this section.

For the benefit of the reader, let us give some details about how the statement is
derived from [17, Theorem 47], borrowing some notation from this reference without
further mention. The map Π̂ is obviously symplectic with respect to the analytic 2-form
Λ:=G(r, θ)r dr∧dθ. This 2-form is obviously exact, since Λ=dβ with the smooth 1-form
on D,

β :=
(∫ r

0

GΛ(r̄, θ)r̄ dr̄
)
dθ.

Moreover, the 1-forms Π̂∗β−β and Π̃∗β−β are exact because∫
∂D2

(Π̂∗β−β) =
∫

D2
(dΠ̂∗β−dβ) =

∫
(Π̂∗Λ−Λ) =0,

and analogously for Π̃.
As before, let us now regard Θ as a diffeomorphism of S1. Consider the embedding

K: S1!D given by
K(ϑ) := (cos Θ(ϑ), sinΘ(ϑ)),

which is analytic by hypothesis.
Therefore, the only hypothesis of [17, Theorem 47] that is not immediate is the non-

degeneracy condition. Let us take Cartesian components (y1, y2) in D and call (Π̂1, Π̂2)
the Cartesian components of the map Π̂. In the aforementioned reference, the condition
is that the average of the function

S(ϑ) :=P (ϑ+ω)·[DΠ̂(ϑ)J(ϑ)−1P (ϑ)]

be non-zero, where the dot denotes the Euclidean scalar product. Here

P (ϑ) := Θ′(ϑ)−1(− sinΘ(ϑ), cos Θ(ϑ)),

(DΠ̂)ij(ϑ) :=
∂Π̂i

∂yj
(K(ϑ))

is the Jacobian matrix of Π̂ and

J(ϑ) :=G(K(ϑ))
(

0 −1
1 0

)
.

Expressing the Cartesian components in polar coordinates,

Π̂1 =Π̂r cos Π̂θ and Π̂2 =Π̂r sin Π̂θ,
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we immediately obtain that

S(ϑ) =
∂rΠ̂r sin(Π̂θ−Θ(ϑ+ω))+Π̂r∂rΠ̂θ cos(Π̂θ−Θ(ϑ+ω))

GΘ′(ϑ)Θ′(ϑ+ω)
,

where the functions whose argument has not been specified are evaluated at K(ϑ). Since
Π̂r(K(ϑ))=1 because the circle ∂D2 is invariant and, by hypothesis, Π̂|∂D2 is conjugate
to the rotation of frequency ω through the diffeomorphism Θ (i.e.,

Π̂θ(K(ϑ))= Θ(ϑ+ω)

for all ϑ), we get

S(ϑ) =
1

Θ′(ϑ+ω)Θ′(ϑ)
∂rΠ̂θ(K(ϑ))
G(K(ϑ))

.

In view of the way we defined the normal torsion (cf. Definition 7.5), the statement then
follows immediately from [17, Theorem 47] after realizing that

Π̂(K(ϑ))=K(ϑ+ω).

In order to calculate the normal torsion of the Poincaré map Π, let us begin by
computing the diffeomorphism that conjugates Π|∂D2 to a rotation when its rotation
number satisfies a Diophantine condition.

Proposition 7.7. Suppose that the rotation number ωΠ of the Poincaré map of the
local Beltrami field is Diophantine. Then the circle diffeomorphism Π|∂D2 is conjugate to
a rotation of frequency ωΠ through an analytic diffeomorphism Θ: S1!∂D2 that satisfies

Θ(ϑ) =ϑ− 1
4ε�(0) sinϑ+O(ε2).

Proof. Since the rotation number ωΠ satisfies a Diophantine condition, the map
Π|∂D2 is conjugate to a rotation of frequency ωΠ through an analytic diffeomorphism
Θ [30, Theorem 1.3]. This diffeomorphism can be understood as a change of coordinates
θ0=Θ(ϑ).

Let us now compute the diffeomorphism Θ. Writing θ0=Θ(ϑ), the fact that Π̂|∂D2 is
conjugate to a rotation of frequency ωΠ through Θ means that the trajectory θ(`; 1,Θ(ϑ))
at time ` corresponds to Θ(ϑ+ωΠ), for any choice of ϑ. Using the equation for the
trajectory proved in Proposition 7.2 at time `, this means that Θ must satisfy the equation

Θ(ϑ+ωΠ) =Θ(ϑ)+ωΠ+ 1
4ε�(0)[sinΘ(ϑ)−sinΘ(ϑ+ωΠ)]+O(ε2). (7.21)

Here we have used the expression for ωΠ proved in Theorem 7.4 (which allows us to
replace

∫ `

0
τ ds̄=ωΠ+O(ε2)) and that the function � is `-periodic.
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To analyze this equation, let us write the O(ε2) term in the right-hand side of (7.21)
as R(ϑ). Let us identify ∂D2 with S1=R/2πZ through the angular coordinate θ0, so that
Θ is regarded as a diffeomorphism S1!S1. With a slight abuse of notation, let us still
denote by Θ its lift R!R. It is standard that this lift can be written as

Θ(ϑ) =ϑ+H(ϑ), (7.22)

where H(ϑ) is an analytic 2π-periodic function.
Let us consider the 2π-periodic function

F (ϑ) :=H(ϑ)+ 1
4ε�(0) sinΘ(ϑ). (7.23)

Equation (7.21) then reads as

F (ϑ+ωΠ) =F (ϑ)+R(ϑ), (7.24)

with R=O(ε2). Consider the Fourier series of the functions F and R,

F (ϑ) =
∞∑

k=−∞

F̂ke
ikϑ and R(ϑ) =

∞∑
k=−∞

R̂ke
ikϑ.

Equation (7.24) then asserts that for any non-zero integer k the Fourier coefficients of F
and R are related through the identity

F̂k =
R̂k

eikωΠ−1
. (7.25)

We can obviously take F̂0=0; moreover, R̂0=0 because it is a necessary condition for the
existence of the diffeomorphism Θ.

Since ωΠ satisfies the Diophantine condition (7.20), for large integer values of k we
have the elementary inequality

|eikωΠ−1|>C|k|−ν ,

so that from equation (7.25) the Hm norm of F can be estimated by

‖F‖Hm 6C

( ∞∑
k=−∞

(1+k2)m|k|2ν |R̂k|2
)1/2

6C‖R‖Hm+ν 6Cmε
2

for any non-negative integer m. To derive the last inequality, which shows that F=O(ε2),
we have used that R=O(ε2). In view of equations (7.22) and (7.23), this ensures that

Θ(ϑ) =ϑ− 1
4ε�(0) sinΘ(ϑ)+O(ε2).

In turn, this readily leads to the expression for the diffeomorphism Θ provided in the
statement.
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We are ready to provide a closed formula for the normal torsion of the Poincaré
map, up to terms of order O(ε3). The leading term only depends on the geometry of the
curve (through its curvature and torsion) and, as is to be expected, not on the section of
S1

`×D2 we used to define the Poincaré map.

Theorem 7.8. Suppose that the rotation number ωΠ satisfies a Diophantine condi-
tion. Then the normal torsion of the Poincaré map of the local Beltrami field v on the
invariant circle ∂D2 is

NΠ =−5πε2

8

∫ `

0

�(α)2τ(α) dα+O(ε3).

Proof. By definition, the normal torsion is

NΠ :=
∫ 2π

0

1
Θ′(ϑ+ωΠ)Θ′(ϑ)

∂rΠθ(1,Θ(ϑ))
GΛ(1,Θ(ϑ))

dϑ,

where Πθ(r, θ) is the angular component of the Poincaré map, Θ(ϑ) is the diffeomorphism
defined in Proposition 7.7 (considered as a map S1!S1) and the function GΛ(r, θ) is given
by equation (7.15).

We have already computed all the terms we need to evaluate the integrand up to an
O(ε3) error. Indeed, from Propositions 7.1, 7.3 and 7.7 and Theorem 7.4 it stems that,
setting T :=

∫ `

0
τ(α) dα,

ωΠ =T+O(ε2),

Θ′(ϑ) = 1− 1
4ε�(0) cosϑ+O(ε2),

Θ′(ϑ+ωΠ) = 1− 1
4ε�(0) cos(ϑ+T )+O(ε2),

GΛ(1,Θ(ϑ))= 1+ε�(0) cosϑ+O(ε2)

∂Πθ

∂r
(1,Θ(ϑ))= ε

∂θ(1)

∂r0

(
`; 1, ϑ− ε�(0)

4
sinϑ

)
+ε2

∂θ(2)

∂r0
(`; 1, ϑ)+O(ε3),

the functions θ(j)(s; r0, θ0) being those in Proposition 7.1. Plugging these expressions
into the integral for the normal torsion and using trigonometric identities, one arrives at
the expression

NΠ =
∫ 2π

0

[
ε�(0)

2
(sin(ϑ+T )−sinϑ)− 5ε2

16

∫ 2π

0

�(α)2τ(α) dα

+
5�2ε2

48
sinT cos(2ϑ+T )+O(ε3)

]
dϑ

=−5πε2

8

∫ 2π

0

�
2τ dα+O(ε3),

as claimed.
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7.4. A KAM theorem for generic tubes

In this subsection we will use the previous results to prove a theorem on the preservation
of invariant tori for divergence-free vector fields that are close to the local Beltrami field
v for small enough ε. As we shall see, the hypotheses of the KAM theorem will hold
true as long as the core curve γ of the tube satisfies certain generic geometric conditions.
Details on the validity of these conditions are given below.

Since the local Beltrami field v is analytic in a neighborhood of the closure of the
tube, which we identify with S1

`×D2 via the coordinates (α, y), we may assume that v is
defined in some domain S1

`×D, with D being a neighborhood of the closed unit disk in
the plane. To measure the smallness of a field, we will use the norm ‖u‖Ck(S1

`×D), which
we define in terms of its components in the coordinates (α, y) as

‖u‖Ck(S1
`×D) := ‖uα‖Ck(S1

`×D)+‖uy‖Ck(S1
`×D).

We will sometimes find it convenient to refer to a domain bounded by an invariant
torus as an invariant tube of the field. We say that a field u is orbitally conjugate
to a rotation of frequency ω on an invariant torus Σ if there are global coordinates
(α̃, θ̃): Σ!S1×S1 in which the vector field is linear with frequency ω up to a multiplicative
factor, that is,

u|Σ =F (α̃, θ̃)(∂α̃+ω∂θ̃),

where F : S1×S1!R is a non-vanishing function.
In the following lemma we will show that, for a generic core curve γ, the rotation

number of the Poincaré map of the local Beltrami field is Diophantine and its normal
torsion is non-zero. To make precise what we understand by “generic”, we will say
that a certain property holds for a Cm-dense set of closed analytic curves if, given any
closed analytic curve γ in R3, one can deform it by a diffeomorphism Φ of R3, with
‖Φ−id‖Cm(R3) as small as one wishes, so that the curve Φ(γ) has the desired property.
Notice that this does not imply that the property holds for an open set of curves.

Lemma 7.9. Let m be any positive integer. The set of closed analytic curves for
which the Poincaré map of the local Beltrami field v has a Diophantine rotation number
ωΠ and non-zero normal torsion NΠ on the invariant circle ∂D2 is Cm-dense.

Proof. The result is not hard to prove using the expressions for the rotation number
and the normal torsion derived in Theorems 7.4 and 7.8,

ωΠ =
∫ `

0

τ dα+O(ε2) and NΠ =−5πε2

8

∫ `

0

�
2τ dα+O(ε3).
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A way of making things precise is the following. We will consider deformations of the
curve γ, labeled by a parameter δ. More concretely, let us denote by (T (α), N(α), B(α))
the Frenet trihedron of the curve γ at the point γ(α) (one should not mistake the binormal
vector B(α) for the function B that we introduced in equation (3.6), which will not be
used in this proof). Let F (α) be an analytic `-periodic function and consider the family
of curves Γ(α, δ) in R3 given by

Γ(α, δ) := γ(α)+δF (α)B(α).

If δ is close to zero, γδ≡Γ( · , δ) is a closed analytic curve. Notice that, for δ 6=0, α is
no longer an arc-length parametrization of γδ but, due to the properties of the binormal
field,

|Γ′|=1+O(δ2).

Here and in what follows, we denote by a prime (′) the derivatives with respect to α. In
particular, the length of γδ is `+O(δ2). We will label the geometric quantities associated
with the curve γδ with a subscript δ (e.g., �δ and τδ for its curvature and torsion).

The results we have presented in this section carry over immediately when one does
not only consider the tube Tε associated with the curve γ, but the family of tubes Tε(γδ).
The dependence of the various quantities on the small parameter δ is smooth and can
be controlled easily. A tedious but straightforward computation using the well-known
formulas for the curvature and torsion of a parameterized curve shows that

�
2
δ =�

2+2δ�(2F ′τ+Fτ ′)+O(δ2),

τδ = τ−δ
[
�F ′+

d

dα

(
F ′′−τ2F

�

)]
+O(δ2).

Since the length of γδ differs from ` by an O(δ2) term, one readily finds that the rotation
number of the Poincaré map Πδ associated with the harmonic field of the tube Tε(γδ) is

ωΠδ
=

∫ `

0

τδ(α) dα+O(ε2+δ2) =ωΠ+δ
∫ `

0

�
′(α)F (α) dα+O(ε2+δ2).

Similarly, the dependence of the normal torsion on δ can be shown to be

NΠδ
=NΠ−

5πδε2

8

∫ `

0

(2�′′′+3�2
�
′−6�ττ ′−6τ2

�
′)F dα+O(δ2+ε3).

We recall that, although the Poincaré map Πδ depends smoothly on the parameter δ, the
terms O(ε2+δ2) and O(δ2+ε3) are continuous, but possibly not differentiable, functions
of δ.
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Perturbing the curve γ a little if necessary to ensure that the functions �′ and

2�′′′+3�2
�
′−6�ττ ′−6τ2

�
′

are not identically zero, we deduce that the function F can be chosen so that the integrals∫ `

0

�
′F dα and

∫ `

0

(2�′′′+3�2
�
′−6�ττ ′−6τ2

�
′)F dα

are non-zero. For small enough ε this ensures that, as δ takes values in a small enough
interval (−δ0, δ0), the values taken by the continuous function ωΠδ

(resp. NΠδ
) cover

an interval centered at ωΠ (resp. NΠ) of radius Cδ0 (resp. Cε2δ0). Since Diophantine
numbers have full Lebesgue measure, this immediately implies that one can choose an
arbitrarily small δ such that the rotation number ωΠδ

satisfies a Diophantine condition
and the normal torsion NΠδ

is non-zero.

We can now show that, for a generic core curve γ and small enough ε, a suitably
small perturbation of the local Beltrami field still has an invariant torus that is close to
the original one.

Theorem 7.10. For any positive integer m there is a Cm-dense set of closed an-
alytic curves γ with the following KAM-type property : for any δ>0, there is another
positive integer k and some δ′>0 such that any analytic divergence-free vector field u

whose difference with the local Beltrami field v of the tube Tε≡Tε(γ) is bounded by

‖u−v‖Ck(S1
`×D)<δ

′ (7.26)

possesses an invariant tube. Furthermore, one can find a diffeomorphism Ψ of R3, with
‖Ψ−id‖Cm(R3)<δ and Ψ−id supported in a small neighborhood of the torus ∂Tε, such
that Ψ(Tε) is an invariant tube of u, and u is orbitally conjugate on the invariant torus
∂Ψ(Tε) to a Diophantine rotation.

Proof. By Lemma 7.9, we can deform the curve that lies at the core of the tube Tε

by a diffeomorphism of R3, arbitrarily close to the identity in the Cm norm, so that,
if we consider the local Beltrami field (which we still denote by v) associated with the
deformed tube, its rotation number ωΠ satisfies a Diophantine condition and its normal
torsion NΠ is non-zero. As before, we will identify this deformed tube with the domain
S1

`×D2 through adapted coordinates (α, y).
Consider the Poincaré map Π of the local Beltrami field v, which can be safely

considered as a diffeomorphism Π from D onto its image, with D being a neighborhood
of the closed unit disk D2. The Poincaré map of the field u, also defined on the section
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{α=0}, is another diffeomorphism of D onto its image that we will denote by Π̃. The
vector fields u and v being close by (7.26), it is apparent that

‖Π−Π̃‖Ck(D)<Cδ
′ (7.27)

as the Poincaré map is simply obtained by integrating the associated vector field along
a trajectory between two consecutive intersections with the section {α=0}. To avoid
cumbersome notation related to the intersection of the domains of auxiliary maps, wher-
ever appropriate we will assume that the Poincaré maps are defined in a domain slightly
larger than D without further mention. Obviously there is no loss of generality in this
assumption.

We have seen in Proposition 7.3 that the Poincaré map Π preserves the 2-form
Λ=GΛ(r, θ)r dr∧dθ, where

GΛ(r, θ) :=Bvα|α=0 =1+O(ε),

and vα denotes the α-component of the local Beltrami field v. Mimicking the proof of
this proposition, we immediately obtain that the Poincaré map Π̃ of the divergence-free
field u preserves the 2-form Λ̃:=GΛ̃(r, θ)r dr∧dθ, with

GΛ̃(r, θ) :=Buα|α=0.

Notice that uα does not vanish in {0}×D because the difference |uα−vα| is small and
the α-component of the local Beltrami field is close to 1.

Our next goal is to relate the above invariant 2-forms to apply Theorem 7.6. More
concretely, we will show that there is a Cm-small diffeomorphism Φ such that

Λ = Φ∗Λ̃, (7.28)

where Φ∗ is the pullback of the diffeomorphism. This will be done using Moser’s trick.
We start by noticing that the difference between these 2-forms is obviously exact, as

Λ−Λ̃ = dΓ

with the 1-form Γ given by

Γ :=
(∫ r

0

[GΛ(r̄, θ)−GΛ̃(r̄, θ)]r̄ dr̄
)
dθ.

Although we are making computations in polar coordinates, it is readily seen that all the
objects we are considering are well defined also at the origin, and therefore determine
smooth forms in the whole disk D.
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Consider the non-autonomous vector field of class C∞

Zs :=

∫ r

0
[GΛ(r̄, θ)−GΛ̃(r̄, θ)]r̄ dr̄

r[(1−s)GΛ(r, θ)+sGΛ̃(r, θ)]
∂r,

where s will be the flow parameter. It should be noticed that, by the assumptions on
the vector fields, the denominator behaves as r+O(r2) while the numerator is of order
O(r2). The field Zs satisfies the Cm bound

‖Zs‖Cm(D)<Cδ
′ (7.29)

for all s∈[0, 1] as a consequence of the estimate (7.26).
The time-s flow of the non-autonomous field Zs, which will be denoted by φs, is

given by the solution to the initial value problem

∂

∂s
φsx=Zs(φsx), φ0x=x.

Consider the s-dependent 2-form

Λs := (1−s)Λ+sΛ̃.

A simple computation shows that

∂

∂s
(φ∗sΛs) =φ∗s

(
∂

∂s
Λs+LZs

Λs

)
=φ∗s(Λ̃−Λ+diZsΛs) = 0, (7.30)

where LZs
denotes the Lie derivative along Zs and the last equality follows immediately

from the definition of Λs and the fact that the interior product of Zs with Λs is

iZs
Λs =Γ.

Thus, if we set Φ:=φ1, we obtain equation (7.28) from (7.30) and the definition of Λs.
Moreover,

‖Φ−id‖Cm(D)<Cδ
′ (7.31)

because Φ is the time-1 flow of the vector field Zs, whose Cm norm is controlled by
equation (7.29).

Let us now consider the map

Π̂ := Φ−1
�Π̃�Φ,

which is a diffeomorphism from a neighborhood of D2 (which we still take as D) onto its
image. We shall next relate the new map Π̂ to the Poincaré map Π. By the definition of
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Φ and the relation between the invariant 2-forms (7.28), the map Π̂ preserves the same
2-form Λ as the Poincaré map Π, and Π̂ is close to Π by (7.31):

‖Π−Π̂‖Cm(D)<Cδ
′. (7.32)

We are now ready to apply Theorem 7.6 with the maps Π and Π̂. Indeed, the
previous arguments and the way we have deformed the curve γ ensure that the following
statements hold true:

(i) The rotation number ωΠ satisfies a Diophantine condition, so the map Π|∂D2 is
analytically conjugate to a rotation of frequency ωΠ (cf. Proposition 7.7).

(ii) The normal torsion NΠ is non-zero.
(iii) The Ck norm of Π−Π̂ is at most Cδ′ by equation (7.32), with δ′ arbitrarily

small.
Hence Theorem 7.6 ensures that, for any given integer m, if the integer k is large

enough and δ′ is sufficiently small there is a diffeomorphism Ψ̂ of D with Ψ̂−id arbitrarily
small in the Cm(D) norm and supported in a neighborhood of ∂D2 such that the curve
Ψ̂(∂D2) is invariant under the map Π̂. Furthermore, the restriction of Π̂ to this invariant
curve, Π̂|Ψ̂(∂D2), also has rotation number ωΠ.

The definition of Π̂ then ensures that the curve Φ�Ψ̂(∂D2) is invariant under the
Poincaré map Π̃ of the field u. (As a side remark, notice that this invariant curve is
close to ∂D2 but, in principle, is not contained in the closure of D2, which is the reason
why we are considering a slightly larger disk D throughout the proof.) It is standard
that this is equivalent to saying that there is an invariant torus of u whose intersection
with the disk {α=0} is precisely the aforementioned curve. Since the Cm(D) norm of
the diffeomorphism Φ�Ψ̂ is arbitrarily small by the properties of Ψ̂ and equation (7.31),
one can take a diffeomorphism Ψ̄ of S1

`×D such that Ψ̄(S1
`×∂D2) is an invariant torus

of the field u and Ψ̄−id is small in the Cm norm and is supported in a neighborhood of
S1

`×D2. Indeed, this diffeomorphism can be defined as follows. Take the solution to the
system of ODEs

dr

dα
=
ur(α, r, θ)
uα(α, r, θ)

and
dθ

dα
=
uθ(α, r, θ)
uα(α, r, θ)

,

with the trajectory (r, θ) parametrized by the angle α and depending on the initial
conditions (r0, θ0). Consider the function ϕα mapping the initial conditions (r0, θ0) to
its time-α flow (r(α; r0, θ0), θ(α; r0, θ0)). Then it is easy to check that the diffeomorphism
Ψ̄ is given, in polar coordinates, by

Ψ̄(α, r, θ) := (α, ϕα�Φ�Ψ̂(r, θ)).

Actually, this formula simply asserts that the intersection of the invariant torus of the
field u with each section {α=α0}, understood as a curve in the disk D, is the image
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under ϕα0 of the invariant curve Φ�Ψ̂(∂D2) at {α=0}. Clearly the formula for Ψ̄ and
the estimates for the maps Φ and Ψ̂ imply that

‖Ψ̄−id‖Cm(S1
`×D) 6C‖Φ�Ψ̂−id‖Cm(D)

can be made arbitrarily small.
To complete the proof of the theorem, it suffices to recall that the map Π̂|Ψ̂(∂D2)

has rotation number ωΠ. This implies that the Poincaré map Π̃ of the vector field u,
restricted to the invariant curve Φ�Ψ̂(∂D2), also has rotation number ωΠ, which trivially
implies that the vector field u itself is orbitally conjugate to a rotation of frequency ωΠ

on the invariant torus Ψ̄(S1
`×∂D2). The existence of the diffeomorphism Ψ of R3 that

appears in the statement of the theorem is then immediate.

Remark 7.11. Ultimately, Theorem 7.10 is a result on the preservation of invariant
tori for small perturbations of the harmonic field h, rather than of the local Beltrami
field v. Indeed, if we had considered a Beltrami field with small but otherwise arbitrary
parameter λ (possibly 0), we would have found the same expressions for the rotation
number and normal torsion of its Poincaré map, the only change being that the error
terms would be O(ε2+|λ|) and O(ε3+|λ|), respectively.

We will conclude this section with a result on the persistence of another invariant
set: we will show that, for an open and dense set of core curves γ and small enough ε,
any divergence-free vector field that is a small perturbation of the local Beltrami field v
has an elliptic periodic trajectory close to the core curve γ. We recall that a periodic
trajectory is elliptic if the non-trivial eigenvalues of the associated monodromy matrix
all have unit modulus but are different from 1.

Proposition 7.12. Suppose that the total torsion of the curve γ satisfies∫ `

0

τ(α) dα 6=nπ

for all integers n. Then for any δ>0, there exists some δ′>0 such that any divergence-
free vector field u in the tube Tε which is close to the local Beltrami field v in the sense
that

‖u−v‖Ck(S1
`×D2)<δ

′

also has an elliptic periodic trajectory diffeomorphic to the curve {y=0}. Moreover, the
corresponding diffeomorphism Ψ is bounded by

‖Ψ−id‖Ck(S1
`×D2)<δ

and is different from the identity only in a small neighborhood of the curve {y=0}.



existence of knotted vortex tubes in steady euler flows 123

Proof. From the expressions (5.2)–(5.4) for the harmonic field h, the estimates for
the function ψ proved in Theorem 5.1 and the connection between the local Beltrami
field and h (see equation (7.1)), we infer that the difference v−h̃0 can be estimated as

‖v−h̃0‖Ck(S1
`×D2)<Ckε,

with the vector field h̃0 defined as

h̃0 := ∂α+τ(α)(y1∂2−y2∂1).

It is clear that (α(s), y(s))=(s, 0) is an `-periodic trajectory of the field h̃0. Setting

T :=
∫ `

0

τ(α) dα,

an easy computation shows that the monodromy matrix of this trajectory for the field
h̃0 is  1 0 0

0 cosT − sinT
0 sinT cosT

 .

The non-trivial eigenvalues of this matrix are e±iT , and hence different from ±1 by the
hypotheses of the theorem, thus showing that {y=0} is an elliptic trajectory of h̃0.

It is then standard that any divergence-free field u that is close enough to h̃0 (say,
‖u−h̃0‖Ck(S1

`×D2)<δ1)) has an elliptic periodic trajectory given by the image of {y=0}
under a diffeomorphism Ψ with ‖Ψ−id‖Ck(S1

`×D2)<δ. There is no loss of generality in
assuming that Ψ−id is supported in a small neighborhood of {y=0}. Since

‖u−h̃0‖Ck(S1
`×D2)< ‖u−v‖Ck(S1

`×D2)+‖v−h̃0‖Ck(S1
`×D2)<δ

′+Ckε,

the theorem then follows by taking ε and δ′ small enough.

8. Approximation by Beltrami fields with decay

In this section we prove a result that allows us to approximate a field v that satisfies the
Beltrami equation

curl v=λv

on a neighborhood of a compact set S, by a global Beltrami field u, which satisfies

curlu=λu
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in the whole space R3 and falls off at infinity as 1/|x|. Throughout we will assume that
the complement R3\S is a connected set. It is not hard to see that this condition is
necessary.

It will be more convenient for us to work with an auxiliary elliptic equation instead
of considering the Beltrami equation directly. To this end, let us denote by

G(x) :=
cosλ|x|
4π|x|

the Green function of the operator ∆+λ2 in R3, which satisfies the distributional equation

∆G+λ2G=−δ0,

with the Dirac measure δ0 supported at 0. We will use the notation BR for the ball in
R3 centered at the origin and of radius R.

The following lemma, which shows how to “sweep” the singularities of the Green
function, will be used in the demonstration of the global approximation theorem. Its
proof is based on a duality argument and the Hahn–Banach theorem.

Lemma 8.1. Take R>0 and consider a domain U⊂R3\B2R and a compact set S⊂
BR whose complement R3\S is connected. Let us consider the vector field

v(x) :=
M∑

m=1

%mG(x−xm),

where {xm}M
m=1 is a finite set of points in BR\S and %m∈R3 are constant vectors. Then,

for any δ>0, there is a finite set of points {zj}J
j=1 in the domain U and constant vectors

cj∈R3 such that the finite linear combination

w(x) :=
J∑

j=1

cjG(x−zj) (8.1)

approximates the field v uniformly in S as

‖v−w‖C0(S)<δ.

Proof. Consider the space U of all vector fields that are linear combinations of the
form (8.1), where the points zj belong to the set U and the coefficients cj∈R3 are constant
vectors. Restricting these fields to the set S, U can be regarded as a subspace of the
Banach space C0(S,R3) of continuous vector fields on S.

By the Riesz–Markov theorem, the dual of C0(S,R3) is the space M(S,R3) of the
finite vector-valued Borel measures on R3 whose support is contained in the set S. Let
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us take any measure µ∈M(S,R3) such that
∫

R3 f ·dµ=0 for all f∈U . Let us now define
a field F∈L1

loc(R3,R3) as

F (x) :=
∫

R3
G(x−x̃) dµ(x̃),

so that F satisfies the equation

∆F+λ2F =−µ.

Notice that F is identically zero on the open set U by the definition of the measure µ,
that R3\S is connected and that F satisfies the elliptic equation

∆F+λ2F =0

in R3\S. Hence the unique continuation theorem ensures that the field F vanishes on
the complement of S. It then follows that the measure µ also annihilates any field of the
form %mG(x−xm) because, as the points xm do not belong to S,

0 =F (xm)·%m =
∫

R3
G(x−xm) %m ·dµ(x).

Therefore ∫
R3
v ·dµ=0,

which implies that v can be uniformly approximated on S by elements of the subspace
U as a consequence of the Hahn–Banach theorem. The lemma then follows.

As an intermediate step before proving the global approximation result for the Bel-
trami equation, we will establish the following proposition on the approximation of solu-
tions to the elliptic equation ∆v=−λ2v by solutions defined in a large ball. Throughout,
we will say that a differential equation holds in a closed set if it holds in a neighborhood
of this set.

Proposition 8.2. Let v be a vector field which satisfies the equation

∆v=−λ2v (8.2)

in a compact subset S of R3. Assume that its complement R3\S is connected and that
S is contained in the ball BR. Then for any δ>0 and any positive integer k there is a
vector field w satisfying the equation

∆w=−λ2w

in BR that approximates the field v in S as

‖v−w‖Ck(S)<δ. (8.3)

Here δ is any fixed positive constant.
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Proof. By hypothesis, there is an open subset Ω⊃S such that the field v satisfies
the equation (8.2) in Ω. We may assume that Ω is contained in the ball BR. Let us take
a smooth function χ: R3!R equal to 1 in a closed set S′⊂Ω, whose interior contains S,
and which is identically zero outside Ω. Defining a smooth extension ṽ of the field v to
Rn by setting ṽ :=χv, we obviously have

ṽ(x) =
∫

R3
G(x−x̃)%(x̃) dx̃ (8.4)

with %:=−∆ṽ−λ2ṽ.
The vector field % is necessarily supported in Ω\S′. Therefore, an easy continuity

argument ensures that one can approximate the integral (8.4) in the compact set S′ by
a finite Riemann sum of the form

v̂(x) :=
M∑

m=1

%mG(x−xm)

so that, for any constant δ′>0,

‖ṽ−v̂‖C0(S′)<δ
′.

Here %m are constant vectors in R3 and xm are points that lie in Ω\S′.
Let us take a domain U⊂R3\B2R. Lemma 8.1 asserts that there is a vector field of

the form

w(x) :=
J∑

j=1

cjG(x−zj)

such that
‖v̂−w‖C0(S′)<δ

′,

where {zj}J
j=1 is a finite set of points in U and cj∈R3 are constant vectors. Therefore,

‖v−w‖C0(S′)< 2δ′. (8.5)

To complete the proof of the proposition, notice that the field v satisfies

∆v+λ2v=0

in the set S′ (whose interior contains S) and w satisfies the same equation in the ball
B2R. By standard elliptic estimates, it follows that the C0 approximation (8.5) can be
promoted to the Ck bound

‖v−w‖Ck(S)<Ckδ
′.

Choosing δ′ small enough, the result follows.
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We are now ready to prove the global approximation theorem for the Beltrami
equation with solutions that decay at infinity. To construct these solutions, we will
truncate a suitable series representation for the fields in a large ball obtained using
Proposition 8.2 and act on them using a convenient differential operator.

Theorem 8.3. Let v be a vector field that satisfies the Beltrami equation

curl v=λv

in a compact set S⊂R3, where λ is a non-zero constant and the complement R3\S is
connected. Then there is a global Beltrami field u, satisfying the equation

curlu=λu

in R3, which falls off at infinity as |Dju(x)|<Cj/|x| and approximates the field v in the
Ck norm as

‖u−v‖Ck(S)<δ.

Here δ is any positive constant.

Proof. Let us assume that the compact set S is contained in the ball BR/2. As the
Beltrami field v satisfies the equation

∆v+λ2v=0

in S, by Proposition 8.2 there is a field w satisfying

∆w+λ2w=0 (8.6)

in the ball BR and such that
‖v−w‖Ck+2(S)<δ

′. (8.7)

Let us take spherical coordinates (r, θ, ϕ) in the ball BR. Writing the field w as a
series of spherical harmonics and using the equation (8.6) we immediately obtain that w
can be written as a series

w=
∞∑

l=0

l∑
m=−l

clmjl(λr)Ylm(θ, ϕ).

Here jl is the spherical Bessel function, Ylm are the spherical harmonics and clm∈R3 are
constant vectors. Therefore, given any δ′>0 there is an integer L such that the finite
sum

û :=
L∑

l=0

l∑
m=−l

clmjl(λr)Ylm(θ, ϕ)
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approximates the field w in L2 sense,

‖û−w‖L2(BR)<δ
′. (8.8)

By the properties of spherical Bessel functions, the vector field û satisfies the equation

∆û+λ2û=0 (8.9)

in R3 and falls off at infinity as |Dj û(x)|<Cj/|x|.
In view of equations (8.6) and (8.9), standard elliptic estimates allow us to pass from

the L2 bound (8.8) to the Ck+2 estimate

‖û−w‖Ck+2(BR/2)<Ckδ
′.

From this inequality and the bound (8.7) we infer

‖û−v‖Ck+2(S)<Cδ
′. (8.10)

Let us now set

u :=
curl curl û+λ curl û

2λ2
.

A simple computation shows that the vector field thus defined satisfies the Beltrami
equation

curlu=λu

in R3 and falls off as |Dju(x)|<Cj/|x| by the properties of û. Moreover,

‖u−v‖Ck(S) =
∥∥∥∥curl curl û+λ curl û

2λ2
−v

∥∥∥∥
Ck(S)

=
∥∥∥∥ (curl+λ) curl(û−v)

2λ2

∥∥∥∥
Ck(S)

6C‖û−v‖Ck+2(S)<Cδ
′,

as we wanted to prove.

Remark 8.4. The fall-off at infinity of the global Beltrami field u is obtained from
the truncation of the explicit series representation for the auxiliary field w. This is the
reason why Theorem 8.3 does not work in arbitrary open Riemannian 3-manifolds, unlike
the approximation theorem we used in [10]. Notice that the latter theorem does not yield
any control at infinity whatsoever for the global Beltrami fields.
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9. Proof of the main theorem

We are now ready to give the proof of Theorem 1.1. Let us begin by considering one of
the curves (say, γ1) in the statement of the theorem. By perturbing this curve with a
Cm-small diffeomorphism if necessary, we can assume that γ1 is an analytic curve whose
curvature � does not vanish anywhere [5, p. 184], and that its total torsion satisfies

∫ `

0

τ(α) dα 6=πk

for all integers k. As before, ` denotes the length of the curve γ1. It is worth emphasizing
that, as these conditions are open, they are obviously preserved if we deform the curve
γ1 with a diffeomorphism that is close enough to the identity in the Cm norm (m>3).

Let us consider the tube Tε(γ1) of core curve γ1 and thickness ε, and the correspond-
ing harmonic field h, given by the expression (5.3) in the coordinates (α, y) adapted to
the tube. Throughout we will assume that ε is small enough. By Theorem 6.8, we can
consider the associated local Beltrami field v1, which is given by the only solution to the
Beltrami equation with parameter λ=ε3,

curl v1 = ε3v1,

in the tube Tε(γ1), that is tangent to the boundary and whose harmonic part is the
field h. (Notice that in this section v1 will not stand for the component of a vector field
in the direction of the coordinate y1.) Since the boundary of the tube is analytic, it
is well known [24] that the local Beltrami field v1 is analytic in the closure of a small
neighborhood Ω1 of Tε(γ1).

Since the total torsion of the curve is not an integral multiple of π, Theorem 7.10 and
Proposition 7.12 ensure that, given any δ>0, we can deform the curve γ1 by a diffeomor-
phism of R3 arbitrarily close to the identity in the Cm norm so that any divergence-free
vector field u in Ω1 with

‖u−v1‖Ck(Ω1)<δ
′

has
• an invariant tube given by Ψ1[Tε(γ1)];
• an elliptic periodic trajectory given by Ψ̃1(γ1).
Moreover, on the invariant torus ∂Ψ1[Tε(γ1)], the field u is orbitally conjugate to a

Diophantine rotation, and therefore ergodic. Here Ψ1 and Ψ̃1 are diffeomorphisms of R3

with

‖Ψ1−id‖Cm(R3)+‖Ψ̃1−id‖Cm(R3)<δ
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and such that the differences Ψ1−id and Ψ̃1−id are supported on small neighborhoods
U1, Ũ1 of ∂Tε(γ1) and γ1, respectively. The constants k and δ′ depend on m, δ and on
the geometry of the curve γ1.

We can apply the same argument for each curve γi (16i6N), thereby obtaining
(for small enough ε) a collection of local Beltrami fields vi satisfying the equation

curl vi = ε3vi

in the closure of a neighborhood Ωi of the closed tube Tε(γi) and such that any divergence-
free vector field u in Ωi with ‖u−vi‖Ck(Ωi)<δ

′ has an invariant torus, where the field u

is ergodic, and an elliptic periodic trajectory. Furthermore, they are respectively given
by ∂Ψi[Tε(γi)] and Ψ̃i(γi), where Ψi and Ψ̃i are Cm-small diffeomorphisms of R3 with
Ψi−id and Ψ̃i−id supported in small neighborhoods Ui, Ũi of ∂Tε(γi) and γi, in each
case. We may assume that the complement

R3\(Ω1∪...∪ΩN )

is connected and that the sets 	Ωi are pairwise disjoint.
Let us define a vector field v in 	Ω1∪...∪	ΩN by setting it equal to the local Beltrami

field vi in each set 	Ωi. By Theorem 8.3, there is a Beltrami field u, which satisfies the
equation

curlu= ε3u

in R3, that falls off at infinity as |Dju(x)|<Cj/|x| and approximates the field v as

‖u−v‖Ck(Ω1∪...∪ΩN )<δ
′.

Therefore, if we define the diffeomorphism Φ of R3 as

Φ(x) :=


Ψi(x), if x∈Ui,
Ψ̃i(x), if x∈ Ũi,
x, otherwise,

it follows that, for each i, Φ[Tε(γi)] is a vortex tube of the Beltrami field u, and that Φ(γi)
is an elliptic periodic trajectory. Besides, the Beltrami field u is ergodic (and orbitally
conjugate to a Diophantine rotation) on each invariant torus ∂Φ[Tε(γi)].

The field u being orbitally conjugate to a Diophantine rotation on each invariant
torus ∂Φ[Tε(γi)], it follows [13] that this invariant torus is accumulated by a Cantor-like
set of invariant tori with positive Lebesgue measure. On these invariant tori, the field is
also orbitally conjugate to Diophantine rotations. The corresponding set of Diophantine
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frequencies is Cantor-like because the normal torsion NΠ is non-zero. Therefore, if we
consider the trajectories of the field u between two of these invariant tori (lying on
the same vortex tube Φ[Tε(γi)]), Angenent’s dichotomy [1] asserts that either there is a
horseshoe-type invariant set between them or there are invariant tori where the field is
conjugate to a rotation of rational frequency. In both cases, there are infinitely many
periodic trajectories between these tori. The theorem then follows.

Remark 9.1. It is worth giving some additional details about what we understand
by a thin tube. What we have proved is that for any set of smooth periodic curves
γ1, ..., γN , δ>0 and m∈N, there is a positive constant ε0, depending on δ, m and the
geometry of the curves, such that the statement of Theorem 1.1 holds true for any
thickness ε<ε0, the diffeomorphism Φ that maps the tubes Tε(γi) into vortex tubes
being bounded by ‖Φ−id‖Cm(R3)<δ. It should be noticed that both Theorem 1.1 and
its proof hold verbatim if one takes tubes Tε1(γ1), ..., TεN

(γN ) of different thickness, as
long as ε1, ..., εN are small enough (that is, smaller than the above constant ε0).

Remark 9.2. Contrary to what happened in the main theorem of [10], the proof of
Theorem 1.1 does not work in general (even if we drop the requirement that the field u

decays at infinity, replacing Theorem 8.3 by [10, Theorem 3.6]) if we substitute the finite
set of curves {γi}N

i=1 by an infinite set {γi}∞i=1 that is locally finite. The reason is that
the “maximal thickness” ε0(γi) associated with each curve γi individually does not need
to be bounded away from zero: since all the vector fields vi, defined in a neighborhood of
the tube Tεi

(γi) (whose thickness can vary from tube to tube), must satisfy the Beltrami
equation

curl vi =λvi

with the same constant λ for all i. Since this λ must be of order O[ε0(γi)3] for all i,
it is clear that the construction breaks down if the infimum of the positive quantities
{ε0(γi)}∞i=1 is 0. On the other hand, if this infimum is positive, we can apply the ap-
proximation theorem in [10, Theorem 3.6] to construct a global Beltrami field with all
the properties listed in the statement of Theorem 1.1 with the exception that its growth
at infinity is not controlled.

10. A comment about the Navier–Stokes equation

To conclude, we will present an easy application of Theorem 1.1 to the existence of
(time-dependent) solutions to the Navier–Stokes equation that have a prescribed set of
stationary (possibly knotted and linked) vortex tubes.
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For this, let us take the global Beltrami field u that we considered in §9. That is, u
satisfies the equation

curlu= ε3u

in R3, falls off at infinity as C/|x| and has a set of thin invariant tubes given by
{Φ[Tε(γi)]}N

i=1, where the diffeomorphism Φ is close to the identity and ε is a small
constant. Then the analytic time-dependent field

w(x, t) :=u(x)e−νε6t

is a solution of the Navier–Stokes equation

∂tw+(w·∇)w= ν∆w−∇P, divw=0,

in R3 with pressure P (x, t)=c− 1
2 |w(x, t)|2. As the vortex lines of w (which are the

trajectories of the vorticity curlw(x, t) for fixed t) coincide with those of u at all times,
up to a reparametrization, it follows that w is a solution to the Navier–Stokes equation
with the desired properties.
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Consejo Superior de Investigaciones Cient́ıficas
ES-28049 Madrid
Spain
dperalta@icmat.es

Received November 5, 2012
Received in revised form October 6, 2014

mailto:Alberto Enciso <aenciso@icmat.es>
mailto:Daniel Peralta-Salas <dperalta@icmat.es>

	Existence of knotted vortex tubesin steady Euler flows
	1 Introduction
	2 Strategy of the proof and guide to the paper
	3 Geometry of thin tubes
	4 Estimates for the Neumann Laplacian in thin tubes
	4.1 Estimates for derivatives with respect to the ``slow'' variable
	4.2 Estimates for the ``fast'' variables
	4.3 Pointwise estimates

	5 Harmonic fields in thin tubes
	6 Beltrami fields with prescribed harmonic part
	6.1 An existence result for the curl operator
	6.2 Estimates for an equation with constant coefficients
	6.3 Estimates for Beltrami fields in thin tubes

	7 A KAM theorem for Beltrami fields with small \lambda
	7.1 Trajectories of the local Beltrami field
	7.2 Rotation number of the Poincaré map of the local Beltrami field
	7.3 The non-degeneracy condition for the Poincaré map
	7.4 A KAM theorem for generic tubes

	8 Approximation by Beltrami fields with decay
	9 Proof of the main theorem
	10 A comment about the Navier--Stokes equation
	Acknowledgments
	References




