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1. Introduction

When D is an elliptic operator on a manifold M preserved by a compact group K of
symmetry, one can understand the aim of “geometric invariant theory” as the realization
of the space of K-invariant solutions of D as the space of solutions of an elliptic operator
on a “geometric quotient” My of M.

The by now classical case is concerned with a K-action on a compact complex man-
ifold M: we may consider the Dolbeault operator D acting on sections of a holomorphic
line bundle L. When L is ample Guillemin—Sternberg [13] proved that the K-invariant
solutions of D can be realized on Mumford’s GIT quotient My:=®;'(0)/K: here &, is
the moment map associated with the K-action on the line bundle L. This result was
extended to other cohomology groups by Teleman in [32] (see also [31]).

In our article, we show that the same construction can be generalized to the differ-
entiable case if properly reformulated. We consider a compact connected Lie group K
with Lie algebra ¢ acting on a compact, oriented and even-dimensional manifold M. In
this introduction we assume for simplicity that M carries a K-invariant spin structure:
the corresponding Dirac operator plays the role of the Dolbeault operator.

For any line bundle L we consider the Dirac operator D:=Dj, twisted by L. It acts
on sections of the Clifford bundle S=8,in®L on M, where Sgpiy is the spinor bundle of
M. We are concerned with the equivariant index of D, that we denote by Qx(M,S),
and we also say that Qx(M,S) is the space of virtual solutions of D. It belongs to
the Grothendieck group of representations of K. More generally, we can consider any
irreducible equivariant Clifford module S over M, when M admits a spin® structure.

An important example is when M is a compact complex manifold, K a compact
group of holomorphic transformations of M, L a holomorphic K-equivariant line bundle
on M, not necessarily ample, and D the Dolbeault operator acting on sections on the
Clifford bundle S of L-valued differential forms of type (0, ¢q). Then

dim¢ M
Ok (M,S8)= Z (_1)qH07q(MﬂL)‘

q=0
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Our aim is to show that the virtual space of K-invariant solutions of the twisted
Dirac operator D can be identified to the space of virtual solutions of a twisted Dirac
operator on a “geometric quotient” My of M, constructed with the help of a moment
map. To formulate a clean result in the context of Dirac operators is not obvious. Let
us first state the vanishing theorem (surprisingly difficult to prove) which will allow us
to do so.

We use Duflo’s notion of admissible coadjoint orbits (see §3) to produce unitary
irreducible representations of K. There is a map Qig’in associating with an admissible
coadjoint orbit P a virtual representation st()in(P) of K. By this correspondence, reg-
ular admissible coadjoint orbits parameterize the set K of classes of unitary irreducible
representations of K. The coadjoint orbit of g is regular admissible and parameterizes
the trivial representation of K. However, if r is the rank of [¢, €], there are 2" admissible
orbits P such that Qi?in(P) is the trivial representation of K. We will say that such an
orbit P is an ancestor of the trivial representation.

For b a subalgebra of £ we denote by (h) the conjugacy class of h. If £€t*, we
denote by £ its infinitesimal stabilizer. The set H¢ of conjugacy classes of the algebras
£¢, £ running in €%, is a finite set. Indeed the complexified Lie algebras of £¢ varies over
the Levi subalgebras of ¢c. For (h)eH, we say that a coadjoint orbit K¢ is of type (h)
if ¢¢ belongs to the conjugacy class (). The semi-simple part of € is [t¢, &¢].

Let (£ar) be the generic infinitesimal stabilizer of the K-action on M. We prove the

following result.

THEOREM 1.1. If ([tar,Ear]) is not equal to some ([h,h]), for hEHe, then for any
K -equivariant line bundle L, Qx (M,S)=0.

We may thus assume that there exists (h)€He such that ([€ar, €ar])=([h,b]): this
class is unique and is denoted by (has). This condition on the K-action is always satisfied
in the Hamiltonian setting [21], but not always in the spin setting (see the case of spheres
in Example 4.23).

Consider our line bundle L. The choice of a Hermitian connection V determines a
moment map

DM — 8

by the relation £(X)—Vx,, =i(®r, X), for all Xet.
We now describe the geometric quotient My. Let us first state the result, when the
infinitesimal stabilizer (¢ys) is abelian. The corresponding (hys) is the conjugacy class of

Cartan subalgebras, and we consider

My=®,"(Ko)/K,
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where K is the regular admissible orbit that parametrizes the trivial representation. In
the general case, we define Oy =|JP to be the union of the ancestors of the trivial rep-
resentation which are of type (has). Thus Oy is a union of a finite number of admissible
coadjoint orbits, a number that might be greater than 1 (see the example in §6.3). We
then consider

My=o,"(On)/K.

Then, we define by a desingularization procedure, a virtual vector space Q*P*(My),
which coincides when M, is smooth to the space of virtual solutions of a twisted Dirac

operator on My. We prove the following theorem.

THEOREM 1.2.
[Qk (M, 8)F = QP (My).

This is an equality of dimensions. This equality also holds in the Grothendieck group
of irreducible representations of G, if G is a compact group of symmetry commuting with
the action of K.

Thus our space My plays the role of the geometric quotient in this purely differen-
tiable setting. The space My may vary dramatically with the choice of the connextion
V, but not its quantized space Q*P"(Mj).

Let us recall that we did not make any assumption on the line bundle L. So this
equality is true for any line bundle L, and any choice of K-invariant connection V on L. In
particular, the curvature of V might be always degenerate, whatever choice of connection.
In §6, we raise a question on existence of “best connections”.

Let us recall the previous results on this subject. After their work [13] Guillemin—
Sternberg formulated the conjecture “Quantization commutes with reduction” denoted
by [@, R]=0. This conjecture was proved in full generality by Meinrenken—Sjamaar [24],
following partial results notably by [12], [34], [35], [18], [23]. Later, other proofs by
analytic or topological methods were given by [33], [26].

After the remarkable results of Meinrenken—Sjamaar [24], it was tempting to find
in what way we can extend their results to the general spin® situation. In this general
context, our manifold M is not necessarily complex, nor even almost-complex. So the only
elliptic operators which make sense in this case are twisted Dirac operators. We restrict
ourselves to line bundles, the case of vector bundles being obtained by pushforward of
index of line bundles.

When M is a spin® manifold, with an action of S!, a partial answer to the question
of quantization commutes with reduction in the spin setting has been obtained by [10],
[11], [30]. The case of toric manifolds and non ample line bundles has been treated
in [19]. These interesting examples (we give an example due to Karshon-Tolman in
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86) motivated us to search for a general result. However, to formulate what should be
the result in the general non-abelian case was not immediately clear to us, although a
posteriori very natural. We really had to use (in the case where the generic stabilizer is
non-abelian) non regular admissible orbits.

Let us also say that, due to the inevitable p-shift in the spin context, our theo-
rem does not imply immediately the [@Q), R]=0 theorem of the Hamiltonian case. Both
theorems are somewhat magical, but each one on its own. We will come back to the
comparison between these two formulations in future work devoted to the special case of
almost complex manifolds.

Recently, using analytic methods adapted from those of Braverman, Ma, Tian and
Zhang [33], [6], [22], [7], Hochs-Mathai [16] and Hochs-Song [17] have extended our
theorem to other natural settings where the group and/or the manifold are not compact.
Note that in their works, the authors have to use our result in the compact setting to

obtain these extensions.

1.1. Description of the results

We now give a detailed description of the theorem proved in this article.

Let M be a compact connected manifold. We assume that M is even-dimensional and
oriented. We consider a spin® structure on M, and denote by S the corresponding spinor
bundle. Let K be a compact connected Lie group acting on M and S, and we denote by
D:T(M,S8")—T'(M,S") the corresponding K-equivariant spin® Dirac operator.

Our aim is to describe the space of K-invariant solutions, or more generally, the
equivariant index of D, denoted by Ok (M,S). It belongs to the Grothendieck group of
representations of K:

Qk(M,S)=> m(r) .
meK

Consider the determinant line bundle det(S) of the spin® structure. This is a K-
equivariant complex line bundle on M. The choice of a K-invariant Hermitian metric

and of a K-invariant Hermitian connection V on det(S) determines a moment map
bg: M — .

If M is spin and S=Sspin® L, then det(S)=L%? and ®s is equal to the moment map ¥,
associated with a connection on L.

We start to explain our result on the geometric description of m(7) in the torus
case. The general case reduces (in spirit) to this case, using an appropriate slice for the
K-action on M.
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Let K=T be a torus acting effectively on M. In contrast to the symplectic case,
the image ®s(M) might not be convex. Let ACt* be the lattice of weights. If peA,
we denote by C,, the corresponding 1-dimensional representation of 7. The equivariant
index Qr(M,S) decomposes as Qr(M,S)=3_, ., m, C,.

The topological space M, u:@gl(u) /T, which may not be connected, is an orbifold
provided with a spin®-structure when p in t* is a regular value of ®s. In this case we
define the integer QP'"(M,,) as the index of the corresponding spin® Dirac operator on
the orbifold M,,. We can define Q*P™"(M,,) even if 4 is a singular value. Postponing this
definition, our result states that

m, =Q¥"(M,), forall ue€A. (1.1)

Here is the definition of Q*P™(M,,) (see §5.1). We approach u by a regular value
p+e, and we define Q%P"(M,,) as the index of a spin® Dirac operator on the orbifold
M, ., and this is independent of the choice of ¢ sufficiently close. Remark here that p
has to be an interior point of ®s(M) in order for Q**'"(M,,) to be non zero, as otherwise
we can take g+ not in the image. In a forthcoming article, we will give a more detailed
description of the function u— QP (M,,) in terms of locally quasi-polynomial functions
on t*.

The identity (1.1) was obtained by Karshon—Tolman [19] when M is a toric manifold,
by Grossberg—Karshon [11] when M is a locally toric space, and by Cannas da Silva—
Karshon-Tolman [30] when dim T'=1. In Figure 1, we draw the picture of the function
p QP (M) for the Hirzebruch surface, and a non ample line bundle on it (we give
the details of this example due to Karshon—Tolman in the last section). The image of ®
is the union of the two large triangles in red and blue. The multiplicities are 1 on the
integral points of the interior of the red triangle, and —1 on the integral points of the
interior of the blue triangle.

Now consider the general case of a compact connected Lie group K acting on
M and S. So we may assume that ([¢nr, €ar])=([0as, bar]) for (has) EHe, as otherwise
Qr(M,S)=0.

We say that a coadjoint orbit P C* is admissible if P carries a spin®-bundle Sp
such that the corresponding moment map is the inclusion P—£*. We denote simply by

*PI" (D) the element Qx (P, Sp)e R(K). It is either zero or an irreducible representation
of K, and the map

spin

Or— 7o :=Qx (0)

defines a bijection between the regular admissible orbits and the dual K. When O is a
regular admissible orbit, an admissible coadjoint orbit P is called an ancestor of O (or a
K-ancestor of mp) if Q™ (P)=mo.
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Figure 1. T-multiplicities for non ample bundle on Hirzebruch surface.

Denote by A((har)) the set of admissible orbits of type (har). If PeA((har)), we
can define the spin® index Q*P'"(Mp)€Z of the reduced space Mp=&3'(P)/K (by a
deformation procedure if Mp is not smooth).

We obtain the following theorem which is the main result of the paper.
THEOREM 1.3. Assume that ([err,r])=([0ar, Dar]) for (har) €He.
The multiplicity of the representation o in Qi (M,S) is equal to

Z Qspin (]\473)7

P

where the sum runs over the ancestors of O of type (har). In other words,

Qk(M,S)= > QP(Mp)Q"(P).
PeA((har))

When we consider the orbit Ko, the multiplicity of the representation mg, in
Qx(M,S) is the space of K-invariant virtual solutions of D and Theorem 1.3 implies
Theorem 1.2.

It may be useful to rephrase this theorem by describing the parametrization of

admissible orbits by parameters belonging to the closed Weyl chamber t,. Let
A>o = Amt;o

be the set of dominant weights, and let o be the half-sum of the positive roots.
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The set of regular admissible orbits is indexed by the set Axo+p: if AeAxo+o,
the coadjoint orbit K\ is regular admissible and 7 is the representation with highest
weight A—p.

Denote by F the set of the relative interiors of the faces of t5,. Thus t5 =[],z 0.
The face t{ is the open face in F.

Let o€ F. The stabilizer K¢ of a point {€o depends only of 0. We denote it by
K,, and by £, its Lie algebra. We choose on £, the system of positive roots compatible
with t5,, and let 0%> be the corresponding . When pu€o, the coadjoint orbit Ky is
admissible if and only if A=p— o+ 0%~ €A.

The map F—He, o (8,), is surjective but not injective. We denote by F(M) the
set of faces of t£, such that (¢;)=(hn).

Using the above parameters, we may rephrase Theorem 1.3 as follows.

THEOREM 1.4. Assume that ([ear, €r])=([Dar, Dar]) with (har)€He. Let AeAso+0
and let my€Z be the multiplicity of the representation wxy in Qx(M,S). We have

my= Y QP(Mg(gre)): (1.2)
oceF (M)
A—oKoco
More explicitly, the sum (1.2) is taken over the faces o of the Weyl chamber such
that

([ear, tar]) = ([0, &5]),  ®(M)No#@, Ae{o+o%}). (1.3)

In §6.3, we give an example of a SU(3)-manifold M with generic stabilizer SU(2),
and a spin® bundle S, where several o contribute to the multiplicity of a representation
Tk in Qi (M,S). On Figure 2, the picture of the decomposition of Q (M, S) is given in
terms of the representations Q2™ (P) associated with the SU(2)-ancestors P. All reduced
spaces are points, but the multiplicity QP™(Mp) are equal to —1, following from the
orientation rule. On the picture, the links between admissible regular orbits O and their
ancestors P are indicated by segments. We see that the trivial representation of K has
two ancestors Py and Ps of type (h), so that the multiplicity of the trivial representation
is equal to

QP (Mp, )+ QP (Mp,) = 2,

and comes from two different faces of the Weyl chamber.

1.2. Strategy

The moment map ®s permits us to define the Kirwan vector field »xs on M: at me M,
s is the tangent vector obtained by the infinitesimal action of —®g(m) at me M. Our
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Figure 2. K-multiplicities and ancestors.

proof is based on a localization procedure using the vector field »s. Before going into
the details, let us recall the genealogy of the method.

In [2], Atiyah and Bott calculate the cohomology of moduli spaces of vector bundles
over Riemann surfaces by using a stratification defined by the Yang-Mills functional.
This functional turns to the be the square of a moment map (in a infinite-dimensional
setting). Their approach was developped by Kirwan in [20] to relate the cohomology
of the Mumford GIT quotient with the equivariant cohomology of the initial manifold.
Recall that in the symplectic setting the Kirwan vector field is the Hamiltonian vector
field of the square of the moment map.

In [36], Witten proposed a non-abelian localisation procedure on the zero set of the
Kirwan vector field for the integration of equivariant classes. This wonderful idea had
a great influence in many other contexts. For example, Tian and Zhang [33] gives an
analytical proof of the [@Q, R]=0 theorem by deforming & la Witten the Dolbeault-Dirac
operator with the Kirwan vector field.

In this paper we use a K-theoretic analogue of the Witten non-abelian localization
procedure. Let us briefly explain the main lines of this powerful tool which was initiated
in [34], [35], [26] and developed in [28]. We use a topological deformation of the symbol of
the Dirac operator D by pushing the zero section of T*M inside T*M using the Kirwan
vector field »s.

In Witten non-abelian localization formula, computation of integrals of equivariant
cohomology classes on M reduces to the study of contributions coming from a neigh-
borhood of Zg, the set of zeros of the invariant vector field »s. Our K-theoretical
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non-abelian localization formula allows us to compute the index Qg (M,S) as a sum
of equivariant indices of transversally elliptic operators associated with connected com-
ponents Z of Zs. We are able to identify them to some basic transversally elliptic
symbols whose indices were computed by Atiyah—Singer (see [1]). Although these indices
are infinite-dimensional representations, they are easier to understand than the original
finite-dimensional representation Q (M,S). The main difficulty is in estimating which
components Z contributes to the K-invariant part. We are able to do so, using a mirac-
ulous estimate on distance between admissible coadjoint orbits proved in [29]. As shown
by the final result, we have (in contrast to the Hamiltonian setting) to take in account
several components and to identify their contributions.

1.3. Outline of the article

Let us explain the contents of the different sections of the article, and their main use in
the final proof.

e In §2, we give the definition of the index of a spin“-bundle.

e In §3, we describe the canonical spin®-bundle on admissible coadjoint orbits (see
(3.12)). For a K-admissible coadjoint orbit P, we determine the regular admissible orbit
O such that if QP (P) is not zero, then Q2™ (P)=no (Proposition 3.6).

In Proposition 3.14, we state the “magical inequality” that will be used over and
over again in this article.

e In §4, we define the Witten deformation and recall some of its properties (proved in
[26], [28]). Tt allows us to reduce the computation of Q (M,S) to indices gz of simpler
transversally elliptic operators defined in neighborhoods of connected components of
ZSZ{J{SZO}.

We introduce a function ds: Zs—R. If dg takes strictly positive value on some
component Z of Zs, then the K-invariant part of the (virtual) representation ¢y is equal
to zero (Proposition 4.17). This is a very important technical proposition.

If O is an admissible regular coadjoint orbit, the shifting trick leads us to study
the manifold M x O* with spin“-bundle S®Sp+. We want to select the component Z of
Z 5080 S0 that [gz]® is not zero.

Here is where we discover that, for Qx (M, S) to be non zero, it is necessary that
the semi-simple part of the generic stabilizer (£3s) of the action of K on M is equal to
the semi-simple part of a Levi subalgebra (h) of €. It follows that such a component Z is
described rather simply as an induced manifold K x g (Y xo(h)), where Y is a H/[H, H]
manifold, and o(h) is the [H, H]-orbit of the corresponding ol*/:¥] element. Then we use
the fact that the quantization of the orbit of o is the trivial representation. In fact, to
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determine the contributing components Z, we study a function do: Zsgs,. —R relating
the representation of K,, on T,,M and the norm of ®s(m). Here K,, is the stabilizer
of meM. Tt relies on the “magical inequality” (Proposition 3.14) on distance of regular
weights to faces of the Weyl chamber proved in [29].

e In §5, we explain how to define indices on singular reduced spaces. The main
theorem is their invariance under small deformation. We then have done all the work
needed to be able to prove the main theorem.

e The last section is dedicated to some simple examples intended to show several
features of our theory.
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Notation

Throughout the paper:

e K denotes a compact connected Lie group with Lie algebra €.

e T is a maximal torus in K with Lie algebra t.

o ACt* is the weight lattice of T: every element u€A defines a 1-dimensional T-
representation, denoted C,, where t=exp(X) acts by th =i X))

e We fix a K-invariant inner product (-,-) on £. This allows us to identify ¢ and ¢*
when needed.

We denote by (-,-) the natural duality between ¢ and €*.

e We denote by R(K) the representation ring of K: an element F€R(K) can be
represented as finite sum F :Zue & my7,, with m, €Z. The multiplicity of the trivial
representation is denoted by [E]X.

e We denote by E(K ) the space of Z-valued functions on K. An element E Eﬁ(K )
can be represented as an infinite sum E:Zueff m(p)V,,, with m(p)€Z.

e If H is a closed subgroup of K, the induction map IndX: R(H)— R(K) is the dual
of the restriction morphism R(K)— R(H).

e When K acts on a set X, the stabilizer subgroup of x€ X is denoted by

K, ={keK:kxc=x}.

The Lie algebra of K, is denoted by ¢€,.



148 P.-E. PARADAN AND M. VERGNE

e An element €t is called regular if K¢ is a maximal torus of K.

e When K acts on a manifold M, we denote
d _
Xy (m):= T tzoe Xom

the vector field generated by —X €€. Sometimes we will also use the notation
XM(m) = —X-m.

The set of zeros of the vector field X,/ is denoted M.

e If V is a complex (ungraded) vector space, then the exterior space
AV=AN"VaAN V

will be Z/27 graded in even and odd elements.
o If E1=E{®FE; and E;=FE]®E; are two Z/2Z graded vector spaces (or vector
bundles), the tensor product Fy® Es is Z/27Z-graded with

(E1QFEs)"=E{QE;®E{®F;, and (E\®F2) =F] QFE;®E{QFE;.

Similarly, the spaces End(FE;) are Z/27Z graded. The action of End(F;)®End(E;) on
E,®F5 obeys the usual sign rules: for example, if f€End(F>)", v1€F; and vy € Eq,
then f(v1Qug)=—v1® fus.

e If F is a vector space and M a manifold, we denote by [E] the trivial vector bundle
on M with fiber E.

2. Spin® equivariant index
2.1. Spin® modules

Let V be an oriented Euclidean space of even dimension n=2¢. We denote by Cl(V) its

Clifford algebra. If eq, ..., €, is an oriented orthonormal frame of V', we define the element
e:=(i)%; ...en € CUV)®C

that depends only of the orientation. We have e2=1 and ev=—ve for any veV.

If F is a complex Cl(V)-module, the Clifford map is denoted cg: C1(V)—End(E).
We see then that the order-2 element eg:=cg(e) defines a Z/2Z-graduation on E by
defining E*:=ker(Idg Feg). Moreover, the maps cg(v): E—E for v€V interchange the
subspaces ET and E~. This graduation will be called the canonical graduation of the
Clifford module E.

We follow the conventions of [4]. Recall the following fundamental fact.
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PRrOPOSITION 2.1. Let V' be an even-dimensional Euclidean space.
o There exists a complex Cl(V)-module S such that the Clifford morphism

cs: Cl(V) — End(S)

induces an isomorphism of complex algebra Cl(V)Q@C~End(S).
e The Clifford module S is unique up to isomorphism. We call it the spinor CL(V)-
module.

o Any complex Cl(V)-module E has the following decomposition
EZS(X)hOHlCl(V) (S, E), (24)

where homey vy (S, E) is the vector space spanned by the CI(V')-complex linear maps from
S to E. If V is oriented and the Clifford modules S and E carry their canonical grading,
then (2.4) is an isomorphism of graded Clifford C1(V')-modules.

Let V=V;®V; be an orthogonal decomposition of even-dimensional Euclidean spaces.
We choose an orientation o(V;) on V;. There is a one-to-one correspondence between
the graded Cl(V3)-modules and the graded Cl(V')-modules defined as follows. Let S; be
the spinor module for C1(V;). If W is a Cl(V3)-module, the vector space E:=S5;@W is a
Cl(V)-module with the Clifford map defined by

CE(U1 EB’UQ) ‘=Cg, (’Ul)®IdW +eg, ®Cw(1)2).

Here v; €V, and €5, €End(S;) defines the canonical graduation of S;. Conversely, if F is
a graded Cl(V')-module, the vector space W:=homcy,)(S1, £) formed by the complex
linear maps f: 51— E commuting with the action of Cl(V7) has a natural structure of
Cl(V3) graded module and E~S; @W.

If we fix an orientation o(V') on V, it fixes an orientation o(V2) on V; by the relation
o(V)=o0(V1)o(Vz). Then the Clifford modules E and W carries their canonical Z/27Z
graduation, and F~S51 W becomes an identity of graded Clifford modules.

FEzxzample 2.2. Let H be a Euclidean vector space equipped with a complex structure
JeO(H): we consider the complex vector space A\; H. Denote by m(v) the exterior

* satisfies

multiplication by v. The action ¢ of H on A ; H given by c(v)=m(v)—m(v)
c(v)?=—||v[]*Id. Thus, A ; H, equipped with the action ¢, is a realization of the spinor
module for H. Note that the group U(J) of unitary transformations of H acts naturally
on A\ ; H. If one choose the orientation on H induced by the complex structure, one sees

that the canonical grading is (A ; H)*=A7 H.
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Suppose now that we have another complex structure J'€ O(H): the vector space
N, H is another spinor module for H. We denote by 5:;/ the ratio between the orienta-

tions defined by J and J’. One can check that
NH=~e] C o\ H, (2.5)
J! J

as a graded Cl(H)-module and also as a graded U(J')NU(J)-module. Here C, is the 1-
dimensional representation of U(J")NU(J) associated with the unique character x defined
by the relation y(g)?=det ; (g) dets(g)~!, for all ge U(J')NU(J).

Example 2.3. When V=Q®Q, with @ being a Euclidean space, we can identify V'
with Q¢ by (z,y)—x®iy. Thus Sg:=A Qc is a realization of the spinor module for V.
It carries a natural action of the orthogonal group O(Q) acting diagonally. If @) carries a
complex structure J€O(Q), we can consider the spin modules A ; @ and A_; Q for Q.
We have then the isomorphism Sg~/A ; Q®A_; Q of graded Cl(V)-modules (it is also

an isomorphism of U(J)-modules).

2.2. Spin® structures

Consider now the case of a Euclidean vector bundle V—M of even rank. Let C1(V)—M
be the associated Clifford algebra bundle. A complex vector bundle £€—M is a Cl(V)-
module if there is a bundle algebra morphism cg: C1(V)—End(€).

Definition 2.4. Let S—M be a Cl(V)-module such that the map cgs induces an
isomorphism Cl(V)®@rC—End(S). Then we say that S is a spin®~-bundle for V.

As in the linear case, an orientation on the vector bundle V determines a Z/27Z
grading of the vector bundle S (called the canonical graduation) such that for any veV,,,
the linear map(') cs(m,v): S|y —S|m is odd.

Ezample 2.5. When H— M is a Hermitian vector bundle, the complex vector bundle
/\ H is a spin® bundle for H. If one choose the orientation of the vector bundle H induced

by the complex structure, one sees that the canonical grading is (A H)*=A" H.

We assume that the vector bundle V is oriented, and we consider two spin®-bundles

S and S’ for V, both with their canonical grading. We have the following identity of

graded spin-bundles: §'~S®Lg s/, where Ls s/ is a complex line bundle on M defined
by the relation

Ls.s :==homci1 (S, S’). (2.6)

() The map cs(m,-): V|m — End(S|m) will also be denoted by €S| -
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Definition 2.6. Let V— M be a Euclidean vector bundle of even rank. The determi-
nant line bundle of a spin®-bundle S on V is the line bundle det(S)— M defined by the
relation

det(S) = homcl(y) (5, S),
where S is the C1(V)-module with opposite complex structure.

FEzxzample 2.7. When H— M is a Hermitian vector bundle, the determinant line bun-
dle of the spin®-bundle A H is det(H):=A\""* H.

If S and S’ are two spin®-bundles for V, we see that
det(8') = det(S) O LG %, -

Assume that V=V;@®Vs is an orthogonal sum of Euclidean vector bundles of even
rank. We assume that V; is oriented, and let S; be a spin®-bundle for V; that we equip
with its canonical grading. If £ is a Clifford bundle for V, then we have the following
isomorphism(?)

ExS1QW, (2.7)

where W:=homcyy,)(S1,€) is a Clifford bundle for V,. If V is oriented, it fixes an
orientation o(Va2) on V, by the relation o(V)=o0(V1)o(V2). Then the Clifford modules
& and W carry their canonical Z/27Z grading, and (2.7) becomes an identity of graded
Clifford modules.

In the particular situation when S is a spin®-bundle for V, then S~8; ®Ss, where
Sz:=homg)(y,)(81,S) is a spin“-bundle for V,. At the level of determinant line bundles,
we obtain det(S)=det(S;)®det(Ss).

Let us end this section by recalling the notion of spin-structure and spin®-structure.
Let V—M be an oriented Euclidean vector bundle of rank n, and let Pgo(V) be its
orthogonal frame bundle: it is a principal SO,, bundle over M.

Let us consider the spinor group spin,, which is the double cover of the group SO,,.
The group spin,, is a subgroup of the group spin;, which covers SO,, with fiber U(1).

A spin structure on V is a spin,, -principal bundle Pgpi, (V) over M together with a
spin,,-equivariant map Pgpin(V)—=Pso (V).

We assume now that V is of even rank n=2¢. Let S, be the irreducible complex
spin representation of spin,. Recall that S,,=S; ®S; inherits a canonical Clifford ac-
tion ¢: R" —End(S,,), which is spin,,-equivariant, and which interchanges the graduation:
c(v):S§—S;. The spinor bundle attached to the spin-structure Pgyi, (V) is

S:= Pspin(v) Xspinn S’n

(%) The proof is identical to the linear case explained earlier.
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A spin®-bundle for V determines a spin® structure, that is a principal bundle over M
with structure group spin;,. When V admits a spin-structure, any spin®-bundle for V is
of the form S;,=S8pin ®L where Sqpin is the spinor bundle attached to the spin-structure
and L is a line bundle on M. Then the determinant line bundle for S;, is L®2.

2.3. Moment maps and Kirwan vector field

In this section, we consider the case of a Riemannian manifold M acted on by a compact
Lie group K. Let S— M be a spin®~-bundle on M. If the K-action lifts to the spin®-bundle
S in such a way that the bundle map cs: CI(TM)—End(S) commutes with the K-action,
we say that S defines a K-equivariant spin®-bundle on M. In this case, the K-action
lifts also to the determinant line bundle det(S). The choice of an invariant Hermitian
connection V on det(S) determines an equivariant map ®g: M —£* and a 2-form Qg on
M by means of the Kostant relations

L(X)-Vx,, =2i(®s, X) and V?=-2iQs (2.8)

for every X ct. Here £(X) denotes the infinitesimal action on the sections of det(S).
We will say that ®s is the moment map for S (it depends however of the choice of a
connection).

Via the equivariant Bianchi formula, (2.8) induce the relations
L(XM)QS:—d<(I)S,X> and dgszo (29)

for every X et.
In particular the function m—(®s(m), X) is locally constant on M.

Remark 2.8. Let bet and meM?, the set of zeros of by;. We consider the linear
actions L£(b)|s,, and L(b)|det(s),, on the fibers at m of the spin®bundle S and the line
bundle det(S). Kostant relations imply £(b)|qet(s),, =2i{®s(m),b). The irreducibility of
S implies that

L(b)ls,, =i{Ps(m),b)Ids

m

Furthermore, the function m+ (®s(m),b) is locally constant on M?.

Remark 2.9. Notice that

e The closed equivariant form Qg —(®g, X) represents half of the equivariant first
Chern class of the line bundle det(S).

e In general, the closed 2-form s is not symplectic. Furthermore, if we take any
(real valued) invariant 1-form A on M, V+iA is another connection on det(S). The
corresponding curvature and moment map will be modified in Qs—1dA and ®s—1 P4,
where ® 4: M —¥¢* is defined by the relation (@4, X)=—1(X)A.
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Let @: M —¢ be a K equivariant map. We define the K-invariant vector field ¢ on
M by
#3(m):=—D(m)-m, (2.10)

and we call it the Kirwan vector field associated with ®. The set where »xg vanishes is
a K-invariant subset that we denote by Zg C M.

We identify £ to £ by our choice of K-invariant scalar product and we will have
a particular interest in the equivariant map ®g: M —€*~¢ associated with the spin®-
bundle S. In this case we may denote the K-invariant vector field s, simply by s

(even if it depends of the choice of a connection):
xs(m):=—Pg(m)-m,

and we denote Zp, by Zs.

As ®gs is a moment map, we have the following basic description (see [26] and [28]).

LEMMA 2.10. If the manifold M is compact, the set ®s(Zs) is a finite collection of
coadjoint orbits. For any coadjoint orbit O=K 3, we have

ZsnN®S'(0) =K (M nd5'(3)).
Here we have identified S€t* to an element in ¥ still denoted by .

Remark 2.11. A small computation gives d||®s||*=—t(5s5)Qs, hence the zeros of

xs are critical points of || ®s]|%.

Remark 2.12. From the previous remark, we notice that any f in the image ®s(Zs)
is such that [|3]|? is a critical value of the map ||®s||*>. Although the map ®s, as well as
the set, Zs vary when we vary the connection, we see that the image ®s(Zs) is contained

in a finite set of coadjoint orbits that does not depend of the connection (see [28]).

Figure 3 describes the set ®s(Zs) for the action of the diagonal torus of K=SU(3)
on the orbit Kp equipped with its canonical spin®-bundle.

2.4. Equivariant index

Assume in this section that the Riemannian K-manifold M is compact, even-dimensional,
oriented, and equipped with a K-equivariant spin®-bundle S— M. The orientation in-
duces a decomposition S=S8*®S~, and the corresponding spin® Dirac operator is a
first-order elliptic operator Dg:T'(M,S*)—T'(M,S7) [4], [9]. Its principal symbol is the
bundle map o(M,S) el (T* M, hom(p*S*,p*S~)) defined by the relation

U(Ma S) (m7 V) :CS\m (17) :S|:rn —>S|’;L
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Figure 3. The set ®s5(Zs).

Here veT*M+—veTM is the identification defined by the Riemannian structure.
If W—M is a complex K-vector bundle, we can define similarly the twisted Dirac
operator DY :I'(M,ST@W)—=T'(M, S @W).

Definition 2.13. Let S— M be an equivariant spin®-bundle. We denote
e by Ok (M,S)eR(K) the equivariant index of the operator Dg,
e by Qx(M,S@W)ER(K) the equivariant index of the operator DY’.

Let A(M)(X) be the equivariant A-genus class of M: it is an equivariant analytic
function from a neighborhood of 0€t with value in the algebra of differential forms on M.
Berline-Vergne equivariant index formula [4, Theorem 8.2] asserts that

; \(dim M) /2 , X
Qx (M, S)(eX) = () / e H2s=(®s: X)) A(M)(X) (2.11)
2 M
for X €€ small enough. Here we write Qx (M, S)(e) for the trace of the element eX € K
in the virtual representation Qi (M,S) of K. It shows in particular that Qg (M,S)€
R(K) is a topological invariant: it only depends of the class of the equivariant form

Qs—(Ps, X), which represents half of the first equivariant Chern class of the line bundle
det(S).

Ezample 2.14. We consider the simplest case of the theory. Let M:=P(C) be the
projective space of (complex) dimension 1. We write an element of M as [z, z2] in homo-
geneous coordinates. Consider the (ample) line bundle £—P!, dual of the tautological
bundle. Let S(n) be the spin®-bundle A\ TM®L®™. The character Qp(M,S(n)) is
equal to H°(P*, O(n))—H' (P!, O(n)), where O(n) is the sheaf of holomorphic section of
L8, Then, for n>0,

Qr(M,S(n) =Yt~
k=0

Here T={teC:|t|=1} acts on [21, 22] Via t-[21, 22]=[t 121, 22].
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3. Coadjoint orbits

In this section, we describe spin®-bundles on admissible coadjoint orbits of K and the
equivariant indices of the associated Dirac operators.

For any £€t*, the stabilizer K¢ is a connected subgroup of K with same rank. We
denote by £¢ its Lie algebra. Let H¢ be the set of conjugacy classes of the reductive
algebras £¢,{ct*. It contains the conjugacy class formed by the Cartan sub-algebras,
and it contains also £ (stabilizer of 0).

We denote by Se the set of conjugacy classes of the semi-simple parts [h, h] of the
elements (h) €He. The map (h)—([h, h]) induces a bijection between H and S (see [29]).

We group the coadjoint orbits according to the conjugacy class (h)€He of the stabi-
lizer, and we consider the Dixmier sheet E’(kh) of orbits K¢ with € conjugated to h. The
connected Lie subgroup with Lie algebra b is denoted H, that is if h=¢&, then H=K,.
We write h=3®[h, h], where 3 is the center and [h, b] is the semi-simple part of h. Thus
h*=3*®[bh, h]*, and 3* is the set of elements in h* vanishing on the semi-simple part of
h. We write E=hD[3, €], so we embed h* in € as an H-invariant subspace, that is we
consider an element £€h* also as an element of £ vanishing on [3,€]. Let 35 be the set
of £€3*, such that &=h. We see then that the Dixmier sheet th) is equal to K -3{.

3.1. Admissible coadjoint orbits

We first define the g-orbit. Let T be a Cartan subgroup of K. Then t* is embedded in
£* as the subspace of T-invariant elements. Choose a system of positive roots A* Ct*,
and let o€ :% Y aso @ The definition of 0" requires the choice of a Cartan subgroup T
and of a positive root system. However a different choice leads to a conjugate element.

Thus we can make the following definition.

Definition 3.1. We denote by o(€) the coadjoint orbit of o €&*. We call o(t) the
p-orbit.

If K is abelian, then o(t) is {0}.

The notion of admissible coadjoint orbit is defined in [8] for any real Lie group G.
When K is a compact connected Lie group, we adopt the following equivalent definition:
a coadjoint orbit O C¥* is admissible if O carries a K-equivariant spin®-bundle Sp, such
that the associated K-equivariant moment map is the injection O €* (by equivariance
the moment map is unique). If K¢ is an admissible orbit, we also say that the element
£ is admissible. An admissible coadjoint orbit O is oriented by its symplectic structure,

spin

and we denote by QX" (0):=Qk (0, Sp) the corresponding equivariant spin® index.
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We have (&, [€, €])=0. The quotient space q=%/t¢ is equipped with the symplectic
form Q¢(X,Y):=(£,[X,Y]), and with a unique K¢-invariant complex structure J¢ such
that Q¢(-, J¢+) is a scalar product. We denote by q* the complex K¢-module (8/8, J¢),
and by Tr(gg:End(qg)%(C the complex trace.

Any element X €, defines a complex linear map ad(X): q*—q°.

Definition 3.2. For any {€€*, we denote Q(S)GEZ the element defined by
1
(0(§), X) = %Trfgad(X), X et

We extend p(&) to an element of ¢*, that we still denote by o(§).

If i0: €, —iR is the differential of a character of K¢, we denote by Cg the corre-
sponding 1-dimensional representation of K¢, and by [Cg]=K xk, Cy the corresponding
line bundle over the coadjoint orbit K& C#*. The condition that K¢ is admissible means
that there exists a spin®-bundle S on K¢ such that det(S)=[Cq¢] (2i needs to be the
differential of a character of K¢).

Linia 33, (1) (0(€), [te, be]) =0.
(2) The coadjoint orbit K& is admissible if and only if i(§—o(€)) is the differential

of a 1-dimensional representation of K.

Proof. Consider the character kr>detqe (k) of K. Its differential is 2ip(§). Thus

(0(8), [te, t])=0.

We can equip K{~K /K, with the spin°-bundle S¢:=K X, /\ q¢ with determinant
line bundle det(S¢) =[Cy,(¢)]. Any other K-equivariant spin“~-bundle on K¢ is of the form
Se®[Cy], where i0 is the differential of a character of K¢. Then det(S;®[Cy])=[Cy¢] if
and only if £€—p(£)=6. The lemma then follows. O

In particular the orbit o() is admissible. Indeed if £=0® then &—(¢)=0.
An admissible coadjoint orbit P=K¢ is then equipped with the spin®-bundle

+
Spi=Kxx (/\ a€9Ce (o) )- (3.12)
Its spin® equivariant index is
(P) =Indfs, (A a*@Ce_oqe)). (3.13)

See [28].
The following proposition is well known (see [29]).
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PROPOSITION 3.4. @ The map O—7p:= S]?in(O) defines a bijection between the
set of reqular admissible orbits and K.

?(’in(o(é)) is the trivial representation of K.

We now describe the representation Qi?in (P) attached to any admissible orbit P in

terms of regular admissible orbits.

Definition 3.5. With any coadjoint orbit PC#*, we associate the coadjoint orbit
s(P)C¥* which is defined as follows: if P=Kp, take s(P)=K¢ with {epu+o(€,). We call
s(P) the shift of the orbit P.

If P is regular, s(P)=P. If P={0}, then s(P)=o0(¥).
The following proposition summarises the results concerning the quantization of

admissible orbits.

PROPOSITION 3.6. ([29]) Let P be an admissible orbit.

o P*:=—P is also admissible and Q2™ (P*)=Q2™ (P)*.

o If s(P) is regular, then s(P) is also admissible.

o Conversely, if O is regular and admissible, and P is such that s(P)=0, then P
is admissible.

e The following hold:

— If 5(P) is not regular, then Q2™ (P)=0.

— If s(P) is regqular, then QE™(P)=QE™ (s(P))=my(p)-

It is important to understand what are the admissible orbits P such that s(P) is

equal to a fixed regular admissible orbit O.

Definition 3.7. e For a conjugacy class (h)€He, we denote by A((h)) the set of
admissible orbits belonging to the Dixmier sheet ?(kh)'
o If P,OCt* are K-orbits, P is called an (h)-ancestor of O if PCtf, and s(P)=0.

We make the choice of a connected Lie subgroup H with Lie algebra h and write
h=3®[h, h]. We denote by 3; the set of elements £€3* such that Kc=H. The orbit o(h)
(the g-orbit for H) is contained in [, h]*.

An orbit P is an (h)-ancestor of an orbit O, if and only if there exists p €3 such that
P=Kpand O=K\ for A€ u+o(h). The following fact that is proved in [29, Theorem 4.4]

will be needed in the next sections.

LEMMA 3.8. Let P be a (h)-ancestor of a regular admissible orbit O. Take pePN3h
and Nep+o(h). Then the form A—o(\) is equal to p—o(p)€3* and corresponds(?) to
the differential of a character of H.

(3) Modulo the “” factor.
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Figure 4. H-admissible orbits.

Given a regular admissible orbit O, there might be several (h)-ancestors to O. There
might also be several classes of conjugacy (h) such that O admits an (h)-ancestor P. For
example, let O=0(t). Then, for any hEH, the orbit K (o —o?) is an (h)-ancestor to
O. Here we have chosen a Cartan subgroup 7' contained in H, H=K; and a positive

root system such that ¢ is dominant to define o and o .

Ezample 3.9. Consider the group K=SU(3) and let (h) be the centralizer class of a
subregular element fe¢* with centralizer H=S(U(2)xU(1)).

We consider the Cartan subalgebra of diagonal matrices and choose a Weyl chamber.
Let wi and ws be the two fundamental weights. Let o1 and oy be the half-lines R<ow;
and Rsowsz. The set A((h)) is equal to the collection of orbits K- (4(1+2n)wi), n€Z
(see Figure 4).

As —w; is conjugated to wo, we see that the set A((h)) is equal to the collection of
orbits K- (%(1+2n)wi), n€Zsxg, 1=1,2. Here we have chosen the representatives in the
chosen closed Weyl chamber.

One has s(K-(3(142n)w;)) =K (0" +(n—1)w;). Thus the shifted orbit is a regular
orbit if and only if n>>0. For n=1, both admissible orbits K- 3w; and K- (—3w;) =K 2w,
are (h)-ancestors to the orbit K o =o(¥).

Both admissible orbits P;=K-3w; and P,=K-Sws are such that Qsll()in(ﬂ):().

In Figure 5, we draw the link between H-admissible orbits and their respective shifts.
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Figure 5. H-admissible orbits and their shifts.

3.2. Magical inequality

We often will use complex structures and normalized traces on real vector spaces defined

by the following procedure.

Definition 3.10. Let N be a real vector space and b: N — N a linear transformation,
such that —b? is diagonalizable with non-negative eigenvalues.

e We define the diagonalizable transformation |b|=+v/—b2 of N.

e We define the complex structure J,=b|b|~* on N/ker(b).

e We denote by nTrN|b\:%Tr]§,|b|, that is half of the trace of the action of |b| in

the real vector space N. We call nTr|b| the normalized trace of b.

If N has a Hermitian structure invariant by b, %'I‘I‘]}%‘M is equal to the complex trace
of |b| considered as a Hermitian endomorphism of N. The interest of our notation is that
we do not need complex structures to define nTr y|b|.

If N is a Euclidean space and b a skew-symmetric transformation of N, then —b? is
diagonalizable with non-negative eigenvalues. By definition of .J;, the transformation b
of N determines a complex diagonalizable transformation of N/ ker(b), and the list of its
complex eigenvalues is [iaq, ..., iag] where the aj are strictly positive real numbers. We
have nTrN|b|:Zi:1 ay =0.

Recall our identification €=¢* with the help of a scalar product. When S€t*, denote
by b the corresponding element of £. We have defined a complex structure Jsz on €/¢s.
On the other hand, b defines an invertible transformation of ¢/€3. It can be checked that
Jg=Jy. If we choose a Cartan subalgebra containing b, then nTre|b|=3" -, [(a, b)|.

For further use, we include a lemma. Let us consider £, the complexified space of £.

Consider the complex space A fc.
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LEMMA 3.11. Let bet. Let x€R be an eigenvalue for the action of b/i in N ftc.
Then x>=—nTr|b|.

Proof. Indeed, consider a Cartan subalgebra t containing b, the system of roots A
and an order such that (a, b) >0 for all a>0. An eigenvalue z on A £¢ is thus of the form
> acicala, b). Thus we see that the lowest eigenvalue is — (@, b)=-—nTre[b]. O

Assume now that N'—M is a real vector bundle equipped with an action of a
compact Lie group K. For any bet, and any meM such that by/(m)=0, we may
which is induced by b on the fibers N|,,. It is easy
to check that (£(b)], )? is diagonalizable with eigenvalues which are negative or equal to
zero. We denote by [L(0)|m|=+—(L(D)],,)?.

consider the linear action L£(b)

‘m,

Definition 3.12. We denote by nTry,, |b] ::%’I‘rﬁfm |L£(b)|m| that is half of the trace
of the real endomorphism [£(b)|m| on N|n,. We call nTr s, |b] the normalized trace of
the action of b on N,,.

For any bet and pet* fixed by b, we may consider the action ad(b):¢,—¢, and the
corresponding normalized trace nTre, |ad(b)| denoted simply by nTre, |b].

Definition 3.13. A regular element A€* determines a closed positive Weyl chamber
C\C¥5. We say that X is very regular if A€ p(A)+C).

Notice that regular admissible elements are very regular.
The following “magical inequality”, that is proved in [29], will be a crucial tool
in §4.5.

PROPOSITION 3.14. (Magical inequality) Let bet and denote by B the corresponding
element in €. Let A and p be elements of ¥* fized by b. Assume that X\ is very regular
and that p—A=p. Then

181> > 3nTre, [b].

The equality holds if and only if one of the following equivalent statements holds:
(8) Aep+o(t,);
(b) peCy and A—o(N)=p—o(n).

3.3. Slices and induced spin®-bundles

We suppose here that M is a K-manifold and that ®: M —¢* is a K-equivariant map.
If O is a coadjoint orbit, a neighborhood of ®~1(0) in M can be identified with an
induced manifold, and the restriction of spin®~-bundles to a neighborhood of ®~1(0) can
be identified to an induced bundle. To this aim, let us recall the notion of slice [21].
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Definition 3.15. Let M be a K-manifold and me M with stabilizer subgroup K,,.
A submanifold Y CM containing m is a slice at m if Y is K,,-invariant, K'Y is a neigh-

borhood of m, and the map

Kxg,Y— M,
[k, y] — ky,

is an isomorphism onto KY.

Consider the coadjoint action of K on £*. Let us fix pc€* and H:=K,. Let C be

the connected component of the open subset
ho:={{eh": K CH} (3.14)

containing p. The map K x g C'— KC' is a diffeomorphism. Thus C is a slice at p for the
coadjoint action.

The following construction was used as a fundamental tool in the symplectic setting
[14].

PROPOSITION 3.16. Let ®: M —¢* be a K-invariant map. Let pc®*, and let C be
the slice at p defined previously.

e Vo=2"1(C) is a K,-invariant submanifold of M (perhaps empty).

e KC is an open neighborhood of ®~'(Kp) diffeomorphic to Kx g, Vo

The manifold Ve, when is not empty, is called the slice (of M) at pe€*. Note that

Yc can be disconnected.

Proof. Let us consider the H=K,, invariant orthogonal decompositions £=h@q and
t'=bh*Pq*: we denote {—[{]q+ the corresponding projection to q*.

A point € is in b (see (3.14)) if and only if the map X+>&oad(X) is an isomorphism
from q to q*. Thus, for any y€Yc, the linear map II,:=[-]4+oT,®: T, M —q* is onto.
Indeed, the tangent space to Ky projects onto the tangent space to K ®(y), which contains
[q, ®(y)]=q*. Thus we obtain that V¢ is a submanifold with tangent space ker(II,) and
furthermore TyM =T, Yc®q-y.

The rest of the assertions follow from the fact that C is a slice at p for the coadjoint

action. O

Suppose now that M is oriented and carries a K-equivariant spin®~-bundle S. Let us
explain how this data induces a spin®~-bundle on the slice V¢.
Any element £€hf determines a complex structure(*) Je=ad(¢) |ad(¢)| ™! on q:=¢/h

which depends only of the connected component C' of hjj containing &: thus we denote

(*) The element ¢ is viewed as an element of h through the identification £~*.
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by Jo the corresponding complex structure on q:=£/h. We denote by q¢ the complex
H-module (g, J¢), and o¢ the element of 3* defined by the relation

<QC7X>:2%_T1”§Cad(X), Xeh. (3.15)

Consider the H-manifold Yo and the open subset KYc~K xgYc of M. At the
level of tangent spaces we have TM |y, =[q]®TYc. We orient the manifold Y through
the relation o(M)=o0(Jc)o(Ye). The restriction of the spin®~-bundle S to the submanifold
Y permits to define the unique spin®-bundle Sy on Ve such that

Slye :/\qc®8y<:' (3.16)

This gives a bijection between the K-equivariant spin®-bundles on K X iy Vo and the H-
equivariant spin®-bundles on Ye. If the relation (3.16) holds, we say that Sy, is the
spin“-bundle induced by S. Notice that at the level of determinant line bundles we have

det(S) ‘yc =det (Syc ) ®(C2@c :

Let us consider the particular situation where the slice )¢ is a compact submanifold
of M. It is the case when M=K Xy )¢, and in this setting we have a simple formula
that relate the spin®-indices on M and on the slice V¢

QK(M,S):Indg(/\ qC®QH(yc,SyC)). (3.17)

See [28].

4. Computing the multiplicities
4.1. Transversally elliptic operators

In this subsection, we recall the basic definitions from the theory of transversally elliptic
symbols (or operators) defined by Atiyah and Singer in [1]. We refer to [5] and [27] for
more details.

Let M be a compact K-manifold with cotangent bundle T*M. Let p: T*M —M
be the projection. If £ is a vector bundle on M, we may denote still by £ the vector
bundle p*€ on the cotangent bundle T*M. If £ and £~ are K-equivariant complex
vector bundles over M, a K-equivariant morphism o€I'(T*M, hom(ET,E7)) is called
a symbol on M. For zeM, and veT M, thus o(z,v):EF—E, is a linear map from
EF to €,. The subset of all (x,v)eT*M, where the map o(z,v) is not invertible, is
called the characteristic set of o, and is denoted by Char(c). A symbol is elliptic if its
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characteristic set is compact. An elliptic symbol o on M defines an element [o] in the
equivariant K-theory of T*M with compact support, which is denoted by K% (T*M).
The index of ¢ is a virtual finite-dimensional representation of K, that we denote by
Index}! (0) € R(K).

Recall the notion of transversally elliptic symbol. Let T7. M be the following K-
invariant closed subset of T*M

WM ={(z,v)eT"M: (v, X -z)=0 for all X €¢}.

Its fiber over a point z€ M is formed by all the cotangent vectors v €T, M which vanish on
the tangent space to the orbit of x under K, in the point z. A symbol o is K-transversally
elliptic if the restriction of o to T} M is invertible outside a compact subset of T} M
(i.e. Char(o)NT%5 M is compact).

A K-transversally elliptic symbol o defines an element of K% (T% M), and the index
of o defines an clement Index} (o) of R(K) defined in [1].

We will use the following obvious remark. Let o €T'(T* M, hom(E*,£7)) be a transver-
sally elliptic symbol on M.

LEMMA 4.1. Assume that an element bEK acts trivially on M, and that £* are
K -equivariant vector bundles on M such that the subbundles [E*]° fized by b are equal
to {0}. Then [Index} (¢)]¥ =0

Proof. The space [Index} (¢)]¥ is constructed as the (virtual) subspace of invariant
C>-sections of the bundle £* which are solutions of a K-invariant pseudo-differential
operator on M with symbol o. But, as the action of b is trivial on the basis, and

[£%]°={0}, the space of b-invariant C'*°-sections of the bundle £* is reduced to zero. [

Any elliptic symbol is K-transversally elliptic, hence we have a restriction map
K% (T*M)—K% (T M), and a commutative diagram

K% (T*M) —— K% (T3 M) (4.18)
Index? l Jlndexff
R(K) —— R(K).
Using the ezcision property, one can easily show that the index map
Indexjc: K (T%U) — R(K)

is still defined when U/ is a K-invariant relatively compact open subset of a K-manifold
(see [26, §3.1]).

In the rest of this article, M will be a Riemannian manifold, and we denote by
veT*M —veTM the corresponding identification.
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4.2. The Witten deformation

In this section M is an oriented K-manifold of even dimension (not necessarily compact).
Let &:M —¥¢* be a K-equivariant map. Let »xg be the Kirwan vector field associated
with @ (see (2.10)). We denote by Zg the set of zeros of xg: clearly Zs contains the set
of fixed points of the action of K on M as well as ®~1(0)).

Definition 4.2. Let o(M,S)(m,v)=cs,, (V): S}, —S,, be the symbol of the Dirac
operator attached to the spin®-bundle S, and let ®: M —£* be an equivariant map. The
symbol o(M,S, @) pushed by the vector field g is the symbol defined by

o(M,S,®)(m,v)=cs, (1—x5(m)):S} —S,,

for any (m,v)eTM.
Similarly, if W— M is a K-equivariant vector bundle, we define

o(M,SW,®)(m,v)=0(M,S,®)(m,v)Idy,, .

Note that o(M,S, ®)(m,v) is invertible except if ?=2s¢5(m). If furthermore (m,v)
belongs to the subset T5 M of cotangent vectors orthogonal to the K-orbits, then v=0
and »g(m)=0. Indeed »g(m) is tangent to K -m, while & is orthogonal. So we note that
(m,v)eChar(o(M,S, ®s))NT5 M if and only if v=0 and 4 (m)=0.

For any K-invariant open subset & C M such that YN Zg is compact in M, we see that
the restriction o (M, S, ®)|y is a transversally elliptic symbol on U, and so its equivariant
index is a well-defined element in R(K).

Thus, we can define the following localized equivariant indices.

Definition 4.3. e A closed invariant subset ZC Zg is called a component if it is a
union of connected components of Zg.
o If ZC Zy is a compact component, and W is a K-equivariant vector bundle over M,

we denote by
Ox(M,8@W, Z,®) € R(K)

the equivariant index of o(M,SQW, ®)|,, where U is an invariant neighborhood of Z so
that UNZs=Z.

e If we make the Witten deformation with the map ®=®g, then we denote the term
Or(M,SOW, Z,®s) simply by Qg (M,S@W, Z).

By definition, Z= is a component and Qx (M,S@W, &, ®)=0.
When M is compact, it is clear that the classes of the symbols o(M,S,®) and
o(M,S) are equal in K9 (T3 M), thus we get the first form of the localization theorem.
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THEOREM 4.4. Assume that M is compact. If Zo=21]]...11Z, is a decomposition

into disjoint (compact) components, we have the following equality in E(K):

p
Ok (M, 8)=>_Qx(M,S,Z;, ).

i=1

Remark 4.5. Write ®s5(Zs)=]]; O; as a disjoint union of a finite set of coadjoint

orbits. Then we obtain the decomposition

QK(Mvs):ZQOja
J

with Qo=0Q (M,S,®5'(0)NZs). As in [26], this decomposition is the main tool of
our study. However, in this work, we will need to introduce a further refinement of this

decomposition.

Ezample 4.6. We return to our basic example (Example 2.14). Let p,=[1,0] and
p_=[0,1] be the fixed points of the T-action on M =P!(C). The determinant line bundle
of S(n) is L, =[C_;]®L®*"*+2 where [C_4] is the trivial line bundle equipped with the
representation t~! on C. We choose the moment map ®,, associated with a connection
on the determinant bundle (see more details in §6):

|21 1

@, ([21,22]) = (n+1)m*§-

Then, for n>0, Zs={p,}U{p-}U®,1(0), thus ¢, (Zs)={—3}U{0}U{n+1}. Remark
that Zs is smooth: it has three connected components, the two fixed points, and ®,,1(0)

a circle with free action of T'. Then we obtain the associated decomposition

Qr(M,8(n))=Q_1/2+Qo+Q1/2,

with
Q-1/2=— Z t*, Qo= Z " and Qyp=— Z t*.
k=-1 k=—o00 k=n+1

Example 4.7. Take the product N=P*(C)xP!(C), with spin bundle S=8(0)®S5(0),

moment map Py and we consider the diagonal action of T" with moment map
O (my1,ma) = Po(m1)+Po(m2).

As Q7 (PY(C),S(0)) is the trivial representation of T, Q7 (N, S) is still the trivial repre-
sentation of 7.
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Figure 6. The graph of Q_1+@1 and the graph of Qq.

We have ®(Zs)={—1}U{0}U{1}. In this case ®~1(£1)={(p+,p+)}, and ®~1(0) is
not smooth.

Consider the associated decomposition of

Qr(N,8)=Q_1+Qo+Q1.

We have
2 —00 0o
Q= 3 (=h=1*, Qo= 37 (k-1* and Qu=3" (k1"
k=—o0 k=—o0 k=2

We see that indeed Q_14+Qo+Q1=t". Figure 6 shows the corresponding multiplicity

functions.

4.3. Some properties of the localized index

In this subsection, we recall the properties of the localized index Qi (M, S, Z, @) that we

will use in this article.

4.3.1. Fixed point submanifolds and spin®-bundles

Let S be a K-equivariant spin®~-bundle over the tangent bundle TM of a K-manifold M
(equipped with an invariant Riemannian metric). The manifold M is oriented and the
Clifford bundle S is equipped with its canonical Z/2Z-grading. Let b€ be a non-zero K-
invariant element, and consider the submanifold M® where the vector field by; vanishes.

We have an orthogonal decomposition
TM|pyp =NOTMP.

The normal bundle N inherits a fibrewise linear endomorphism £(b) which is anti-

symmetric relatively to the metric.
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Definition 4.8. « We denote by A} the vector bundle A" over M? equipped with the
complex structure J,:=L(b)|L(b)| .

e We take on A the orientation o(N) induced by the complex structure —J,. On
M? we take the orientation o(M?®) defined by o(N)o(M®)=0(M).

For further use, we note the following positivity result which follows directly from
the definition of Jp.

LEMMA 4.9. Let meM?.

e The endomorphism L(b)/i: No|m —Np|m is C-linear, diagonalizable, with positive
etgenvalues.

o L(b)/i acts on the fibers of det(Ny)|m by multiplication by the positive number
nTry . [b].

Now we explain how spin® structures are induced on fixed point submanifolds.

PROPOSITION 4.10. Let det(S) be the determinant line bundle of the spin® bun-
dle S. There exists an equivariant spin®-bundle dy(S) on the tangent bundle TM® with

determinant line bundle equal to
det(dp(S)) :=det(S)|arp @det(Np). (4.19)
Proof. The restriction S|z is a spin®~-bundle over the tangent bundle
TM |y =NOTM®.

We denote N, the vector bundle N with the complex structure —J,. Let /\J\7b be the

spinor bundle on A with its canonical grading: since o(N)=0(—.J,) we have

o\t +
(AN) =\ M.
Since A\ N} is a graded spin®-bundle over N, we know that there exists an equivariant

spin® bundle d;(S) over the tangent bundle TM? (with its canonical grading) such that
S|y = \Npy@dy(S) (4.20)

is an isomorphism of graded Clifford modules. At the level of determinant line bundle,
we get det(S)| s =det(Ny)@det(d,(S)). The identity (4.19) then follows. O

Consider the linear action £(b)|q,(s) of b on the fibers of the spin“-bundle

dy(S) — M°.
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LEMMA 4.11. We have L(b)|a,(s)=taldq,(s), where
a(m) = (®s(m),b)+5nTr,, ar[b)

is a real-valued locally constant function on MP.

Proof. Due to Remark 2.8, we know that a(m) is equal to (®y(m),b), where P,
is a moment map attached to the line bundle det(d,(S)). Due to (4.19) we see that
(®y(m), b)=(Ps(m),b)+3nTry, |b|. Here we use that i nTry, [b] is equal to the com-
plex trace of L£(b): det(Ny)], —det(AN)]m, (see Lemma 4.9). The factor 3 is due to the
fact that ®s is the moment map of “half” the line bundle det(S) (see Remark 2.9).

Also, nTrr, ar[b|=nTr,, [b] as well as (®s(m),b) are locally constant on M°. [

The localization formula of Atiyah—Segal can be expressed in the following way (see
[28, §2.2]).

THEOREM 4.12. Let bet be a non-zero K-invariant element and assume that M is
compact. For any complexr K -vector bundle W— M, we have the following equalities in
E(K):

Qx (M, S@W) = Qk (M°,dy(S)@W|rp @Sym(N})).

Here Sym(N,) is the symmetric algebra of the complex vector bundle Ny.

4.3.2. The localization formula over a coadjoint orbit

Let ®: M —+¥* be an equivariant map. Let S€#*. We also consider § as an element of ¢
that we denote by the same symbol.

In this section we do not assume that the manifold M is compact but only that
Zs=K(MPN®~1(B)) is a compact component of Ze C M. The study of

Ok (M,8®@W, Zs, ®) € R(K)

is thus localized in a neighborhood of ®~!(K ), an induced manifold. Let us recall the
corresponding induction formula.

The restriction of ® to M? is a K p-equivariant map taking value in £3. The subset
Z’BzMﬂﬂ(I)’l(B) is a compact component of Zo|,, =Z$NMP. We may then define the

localized index
Ok, (MP,ds(S)@W|pss, Zy, | us) € R(Kp)

where dg(S) is the graded spin®-bundle on M# defined in Proposition 4.10.
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We consider the normal bundle N'—M?#? of M? in M. Recall that VN 3 denotes the
vector bundle N equipped with the complex Jg. The following formula is proved in [26]
and [28]:

Ok (M,S@W, Z, @)
—ndfS, (Que, (M7, d(S)@W|rso @Sym(Ns), Zh, o) @ A\ (¢/8s)c).
Remark 4.13. When K is abelian, this gives

Qr (M, SeW, o 1 (B)NM”, @)
= Qr(MP,ds(S)@W| s @Sym(Np), @~ H(B)NMP, ®|y5),

which shows that the Atiyah—Segal localization formula (4.12) still holds for the Witten

deformation.
Thus we obtain the following proposition.

PROPOSITION 4.14. Let S be a K -equivariant spin®-bundle over M, with its canoni-
cal grading. Let ®: M —¥* be an equivariant map. Let W— M be an equivariant complex
vector bundle. Assume that Zg=K(MPN®~1(B3)) is a compact component of ZeC M.
Then

K (4.21)

= [, (MP, s (S)@W]ps @Sym(Ns), 2 Blas)@ \(8/85)c]
This proposition will be used to obtain vanishing results, by studying the infinitesi-

mal action of 3 on the vector bundle dg(S)@W| s @Sym(Ng).
The formula (4.21) can be specialized to each connected component of M#. For a

connected component X C M? intersecting ®~1(3), we define the compact subset
Z5(X) = K(XN®~(8)) C Zg,

First we note that Qi (M, SQW, Zg, ®) is equal to the sum ) _ . Qi (M, S@W, Z3(X), @)
parameterized by the connected component of M? intersecting ®~'(3) (they are finite
in number).

We have a localization formula for each term Qi (M,S®W, Z3(X), ®) separately

(see [26] and [28]):
[QK(M78®W7 ZH(X)v (I))]K
K, (4.22)
= [0, (X, da(S) Ly e WIx@Sym(Ny) |, Z5(X), BLo) o A /ts)c]

where Zj(X)=XN®~(8)C Zj.
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4.3.3. Induction formula

For the Witten deformation, we proved in [28, §3.3] the following variation on the invari-
ance of the index under direct images.

Let H be a closed subgroup of K, and consider an H-invariant decomposition
t=hPg.

Let By be an open ball in q, centered at 0 and H-invariant. Let N’ be an H-manifold,
and consider N=K x i (BqxN'). Then N’ is a submanifold of N, and the normal bundle
of N"in N is isomorphic to the trivial bundle with fiber q&q. Let Sy be the spin® module
for q®q (we can take A qc as realization of S;). Thus, if £ is a K-equivariant graded
Clifford bundle on N, there exists an H-equivariant graded Clifford bundle £ on N’ such
that

Elnr =54 ®E'.

Let ®:N'—bh* be an H-equivariant map, and let ®: N —£* be a K-equivariant map.

We assume that these maps are linked by the following relations:

(I)|N’ :(I)Iv
O([1; X, n']) € b* if and only if X =0, (4.23)
(©([1; X,n']), X) >0,

for (X,n")eByxN'.
Under these conditions, we see that the critical sets Zo CN and Zg CN' are related
by Z@ZKXH({O}XZ¢,/).

PROPOSITION 4.15. ([28]) Let Z be a compact component of Zg and Z' its inter-

section with N'. Then Z' is a compact component of Zg and
Ok (N,E,Z,®) =Ind5 (Qu(N',E', Z', &')).

This leads to the relation [Qx (N,E,Z, @)K =[Qu(N', &', 7', ®")|H.

4.4. The function dg

Let M be a compact oriented even-dimensional K-manifold, equipped with a K-equivariant
spin® bundle S. Let ®s be the associated moment map on M, and »xs be the Kirwan

vector field. Let Zs be the vanishing set of g :

Zs={me M :®s5(m)-m=0}=|J(M'n®5"(0)).
6
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We now introduce a function ds: Zs —R which will localize our study of [Qx (M, S, Zs)]¥
to special components Z of Zg.
Define ds: Zs—R by the following relation

ds(m) = 0]+ 1nTrr, 0] —nTreld], with 6 =dg(m). (4.24)

LEMMA 4.16. e The function ds is a K-invariant locally constant function on Zg
that takes a finite number of values.

o The subsets Z3°={ds>0}, Z5°={ds=0} and Z5°={ds<0} are components
Of Zg.

Proof. The K-invariance of dg is immediate.

The image ®s(Zs) is equal to a finite union (J; O; of coadjoint orbits. For each
coadjoint orbit O=K 3, the set ZsN®5'(O) is equal to a finite disjoint union

Jr@ines'@).

J

where (X7) are the connected components of M” intersecting <I>§1 (8). Since the mapping
mi—nTrr, 10| is well defined and locally constant on M?, the map ds is constant on
each component K (X7N®5'(B)). This proves that ds is locally constant function that
takes a finite number of values.

The second point is a direct consequence of the first. O
We now prove the following fundamental fact.

PROPOSITION 4.17. Let Z§0 be the component of Zs where ds takes strictly positive
values. We have [Qi (M, S, Z3°)])K=0.

As Qg (M, S):QK(M,S,Z§0)+QK(M,S,Z§O)+QK(M,S,Z§O) by Theorem 4.4,

note first the following immediate corollary.

COROLLARY 4.18. If dgs takes non-negative values on Zs, we have
[Qk (M, S)|* =[Qx (M, S, Z5°)] .

We now prove Proposition 4.17.

Proof. Consider a coadjoint orbit K3 contained in ®5(Zs). Let X be a connected
component of M? and let Zj(X):=XN®~1(B). Let Z(X)=KZy(X). Let us show that
[QKk(M,S, Zs(X))]¥ =0 if ds is strictly positive on Zg(X).

As [Qk (M, S, Zz(X))]" is equal to

Qre, (X, ds(8) x Sym(Ny) | Z4(X). @5l ) e \/ts)c] . (425)
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by the localization formula (4.22), Lemma 4.1 tells us that the term [Q (M, S, Z5(X))|¥

vanishes if the fibers of the vector bundles
ds(8)|x @Sym? (W) @ /\ (£/8s)c

do not contain non-zero vector killed by the infinitesimal action £(f3).

We will prove this fact by showing that the infinitesimal action £(3)/i on the fibers of
the vector bundles dg(S)|x ®Sym? (V)| x @ A(E/€5)c have only strictly positive eigenval-
ues. We establish this by minorizing the possible eigenvalues: they are sums of eigenvalues
on each factor of the tensor product.

We have

=[|B8]I>+3nTrrar, |8 on da(S)|x,
Zﬁ(ﬁ) >0 on Sym’ (NVs)|x,
= —nTr|f] on A(E/Es)c.

In the first equality, we have used Lemma 4.11: the function m— (®g(m),3) is

constant on X, and as X contains a point projecting on 3,

S£(9)

1
= <||5|2+2nTFTM|X5|> Ida,(s))x -
ds(S)lx

In the second inequality, we used Lemma 4.9, so that the action of £(8)/i on the
graded piece Sym? (V) is strictly positive for >0 or equal to 0 for j=0.

In the last inequality, we have used Lemma 3.11.

If ds takes a strictly positive value on Zg(X), we see that £(8)/i>0 on

ds(S)|x@Sym’ (Ns) 2@ [\ (8/ts)c.

This forces (4.25) to be equal to zero. O

4.5. The Witten deformation on the product M x O*

In this section, M is a compact oriented even-dimensional K-manifold, equipped with a
K-equivariant spin® bundle S. Let ®s be the associated moment map on M. Our aim

is to compute geometrically the multiplicities of the equivariant index Qg (M, S).

4.5.1. Vanishing theorems

Let He be the set of conjugacy classes of the reductive algebras ¢, {€t*. We denote by
Se the set of conjugacy classes of the semi-simple parts [, h] of the elements (h) €He.
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Recall that an orbit P is an (h)-ancestor of O if P belongs to the Dixmier sheet
¢, and s(P)=0. Here s(P) is defined as follows: if P=Kyu with &,=b, then s(P)=
K(u+o(h)) (see Definition 3.5).

Recall that the map Q7 :=Q2™ (O) is a bijection between the regular admissible
orbits and K. If O is a regular admissible orbit, then O*:=—0 is also admissible and
o+ =(mo)*. If we apply the shifting trick, we see that the multiplicity of 7o in Qx (M, S)
is equal to

me = [Qk (M, S)@(10)* % = [Qx (M x 0*,S280-)|X. (4.26)

Let (£as) be the generic infinitesimal stabilizer of the K-action on M. In this section,

we prove the following vanishing results.

THEOREM 4.19. e If ([ar, ar])#([B, B]) for any (h) EHe, then

for any K -equivariant spin®-bundle S on M.
o Assume that ([ar, tar])=([h, b)) for (h)€He. Then

mOZO

if there is no (h)-ancestor P to O contained in ®s(M).

We consider the product M x O* equipped with the spin®-bundle S®Sp+. The
corresponding moment map is ®sgs,. (M, §)=Ps(m)+£. We use the simplified notation
Qo for Psgs,., #o for the corresponding Kirwan vector field on M x O*, Zp:={x0=0},
and do for the function dsgs,. on Zp. Theorem 4.19 will result from a careful analysis
of the function dp: Zop—R that was introduced in §4.4. Due to Proposition 4.17 and

Corollary 4.18, Theorem 4.19 is a direct consequence of the following theorem.

THEOREM 4.20. Let O be a regular admissible orbit.

e The function dp is non negative on Zo.

o If the function do is not strictly positive, then there exists a unique (h)EHe such
that the following conditions are satisfied:

(1) ([ear, €arl)=([0, b])-
(2) the orbit O has an (h)-ancestor P contained in s(M).

Proof. Let P=M xO* and let us compute the function dp on Zn. Let meM and
A€O. The point p=(m, —\)€Zo CP if and only ®»(p)-p=0. Let 8=Px(p). This means
that g stabilizes m and A, and if u=®s(m)ect*, then S=p—A.

We write T(,,, ) P=T,, M®T_,O" and, since O* is a regular orbit, we have

nTero* ,B|:IIFI‘I‘E|B|
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We consider a K,,-invariant decomposition T,,,M=¢t-m® E,,, where t¢-m~t/t,,, we
obtain nTrr_a|B|=nTrg,, |5|+nTr¢|3|—nTre, |3|. Thus,

do(p) =||8|I>+3nTrr,,, _, p|Bl—nTre|3] =8>+ 3nTry,, ar| | — $0nTre| B|
=6l +3nTrg,, |6| —3nTre,, |6 > || 6]+ 3nTrp,, |6] - 3nTre, | 5].
In the last inequality, we used &,,C#t, as u=®s(m). By Proposition 3.14, we have

(4.27)

8| = 4nTre, [8]>0 when S=p—A, as A is very regular (being regular and admissible),
and Bc€,NEy. Then the first point follows.

Assume now that there exists a point p=(m, —\) € Zp such that do(p)=0. It implies
then that ||3]|*=2nTr, || and nTrg,, |3|=0. The first equality implies, due to Proposi-
tion 3.14, that Ky is an admissible orbit such that s(Ku)=0, and that —5€o(h)C[bh, bh]*.
H|—

We write —3=p. Now we have to explain why the condition nTrg,, |0 0 implies

([ear, Ear])=([b, b]). Since ®s(m)=p, we have
(Ear) C (£m) C (h)- (4.28)

Consider the H-invariant slice Yz(bgl (U,) constructed in Proposition 3.16. The product
KY is an invariant neighborhood of m isomorphic to K xgY. The subspace F,, can
be taken as the subspace T,,Y CT,,M. Now the condition nTrg, |0 |=0 implies that
o acts trivially on the connected component Y,, of Y containing m. Elements X €[b, b
such that Xy, =0 form an ideal in [b, h]. Since the ideal generated by o in [h, b] is equal
to [h, ], we have proved that [b, ] acts trivially on Y;,. As KY,, is an open subset of
M, we get

(19.8])  (ear). (4.29)

With (4.28) and (4.29) we get ([€ar, €ar])=([h,b]). Finally we have proven that if do
vanishes at some point p, then ([€ar, €ar])=([b, b]) for some (h)E€He, and there exists an
admissible orbit KuCtj,N®s(M) such that s(Ku)=0. O

4.5.2. Geometric properties

We summarize here some of the geometric properties enjoyed by (M, ®), with =g,
when Qg (M,S) is not zero.

Let (h)€He. We choose a representative ). Let H be the corresponding group and
Nk (H) be the normalizer of H in K. Consider the decomposition h=[h, h] B3, where 3
is the center of h. Thus 3*Ch*. Consider the open set

bo={e€h™: k. Ch}

of h*. Let 35=b5N3" be the corresponding open subset of 3*.
We first note the following basic proposition.
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PROPOSITION 4.21. Let M be a K-manifold such that ([Ear,er])=([h,0]) and let
D: M —€ be an equivariant map. Then

o O(M)CKj* .

o Assume that Y:=®71(h%) is non-empty; then

(a) Y is a submanifold of M invariant by the action of Ni(H), and [H, H| acts
trivially on Y.

(b) The image ®(Y) is contained in 3.

(c) The open subset K'Y is diffeomorphic to K Xy, (i)Y

Proof. Let us prove the first item. Using our K-invariant inner product, we consider
® as a map ®: M —¢. The condition on the infinitesimal stabilizer (£3;) gives that M=
KMULH] 1f me M-H] | the term ®(m) belongs to the Lie algebra g of the centralizer
subgroup G:=Z ([H, H]). But one can easily prove that 3 is a Cartan subalgebra of g:
hence ®(m) is conjugated to an element of 3. This proves the first item.

If Y is non-empty, the proof that it is a submanifold follows the same line than
the proof of Proposition 3.16. The set K) is a non-empty open set in M: so on ) we
have (€p7)=(%,) on a dense open subset ). The condition ([€ar, €ar])=([h, b]) implies that
dim[h, h]=diml¢,, £,] on ', but as &, Ctg(,) Ch, we conclude that [h, h]=[¢,, €,]CE, on V"
in other words [H, H] acts trivially on Y, and [h, h]=[¢,, ¢,] for any y€). Furthermore,
if E=®(y), then [h, b] acts trivially on €. So £ is in the center of b.

Let us prove that m: K X, ()Y — KDY is one-to-one. If y;=~kyo, we have §;=k&o
with &=®(y;), i=1,2. As ®(Y)C35, the stabilizers of & and &, are both equal to H. It
follows that k£ belongs to the normalizer of H. O

The following theorem results directly from Theorem 4.20 and Proposition 4.21.
Indeed, in the case where Qg (M,S)#{0}, then ([¢rr,€rs])=([b,b]) for some (h)EHe.
Furthermore, there exists at least a regular admissible orbit O such that me is non-zero,
and consequently there exists orbit P Cf, NPs(M).

THEOREM 4.22. Let M be a K-manifold and let S be an equivariant spin®-bundle
on M with moment map ®s. Assume that Qr (M,S)#{0}. Then

(1) There exists (h)€He such that ([ear,€rr])=([b,b]).

(2) If 3 is the center of b, then ®s(M)CK3* and the open set ®5'(K35) is non-
empty.

(3) The group [H, H] acts trivially on the submanifold Y=35" (35).

This condition (1) on the K-action is always satisfied in the Hamiltonian setting

[21], but not always in the spin setting as can be seen in the following example.

FEzxzample 4.23. For n>2, the sphere S™ admits a unique spin structure, equivariant
under the action of the group K:=spin(n+1). The generic stabilizer for the K-action is
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isomorphic to the group K, :=spin(n), and we see that (¢y7)=([€ars, ars]) is not equal to
(b, b)), for any (b)eHe.

In the next sections, we will restrict the submanifold ) to a connected component
C of h§. We work with the H-invariant submanifold yC::q>§1(C’)Cy: here the open
subset K¢ is diffeomorphic to K X g Y.

We follow the notations of §3.3. We denote by q¢ the vector space £/h equipped
with the complex structure Jo. There exists a unique H-equivariant spin®-bundle Sy,
on Yc such that

Slye ~ N\ a°@Sy.. (4.30)

At the level of determinant line bundles we have det(Sy,,)=det(S)|y, ®C_2,, and the
corresponding moment map satisfies the relation @y, =®s|y. —oc-

We know already that the subgroup [H, H| acts trivially on the submanifold V¢ (see
Theorem 4.22). Tt acts also trivially on the bundle Sy, since the moment map @y, takes
value in 3* (see Remark 2.8).

4.5.3. Localization on ZZ°

Let O be a regular admissible orbit. By Theorem 4.20 and Corollary 4.18, we know that
our object of study
mo = [Qx (M x 0", 8@S0-)]"

is equal to [Qx (M x 0%, S®So+, Z5°, ®o)] K.

Let us give a description of the subset Zgo of Zo CM xO*, where dp vanishes. We
denote by ¢: M x O* —¢* t* the map given by g(m,&)=(Ps(m), —&). If u belongs to a
coadjoint orbit P, and {€u+o(€,), then P is an ancestor to the orbit O of .

Definition 4.24. Let P be a coadjoint orbit.
e Define the following subset of £* ®E*:

R(P)={(1,€) : p € P and & € pto(t,)}.

e Define Z5=q Y (R(P))CM x O*.

PROPOSITION 4.25. Assume that M is a K-manifold with ([err,€r])=([b,b]). Let
S be a K-equivariant spin®-bundle over M with moment map ®s. Let O be a regular

admissible coadjoint. Then
z5"=| |78,
P
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where the disjoint union is over the set of (h)-ancestors to O. Furthermore, if P=Kpu

a (h)-ancestor to O, the set Z} is equal to

K(®5" (1) x {~pn+o(t,)}). (4.31)

Proof. In the proof of Theorem 4.20, we have seen that, if do(m,—A)=0, then the
element pu=®s(m) is such that (¢,)=(h) and A=p+p with f€o(t,). So Ku is an (h)
ancestor of O and g(m, —\)€| |p Z5. This proves the inclusion Z5°C| |, Z5.

Conversely, take now (m, —¢)€ 2} and define u=®s(m). So Ky is an (h) ancestor
of O and {é=p+ 3 with f€o(t,). By K-invariance, we may assume that p€3§, so mey.
We have T,,M=¢/¢t,,®T,,). So

do(m,—€) =||8]|*— gnTre

Bl+3nTrr,,y

Bl.

m

Since S€o(h)C[h, b] acts trivially on Y by Proposition 4.21, we have
a2 1 H
do(m, ~€)= o[>~ SnTre, o).

But as [h, h]CE, Ch, and then $nTre |0 |=1nTry|o” |=| o™ ||?, finally do(m, —£)=0.
If Ky is an ancestor of the regular admissible orbit O, then p+o(8,) is a K ,-orbit
contained in O. It follows that the set

25 ={(m,£) e Mx O : ®5(m) € P and —& € ®s(m)+0(bag(m))}

is equal to (4.31). O

At this stage we have proved that
me = Z mp, (4.32)
P

where the sum runs over the (h)-ancestor of O and

m% = [Qx (M x O, 8280+, Z5, ®0)|¥.

In the next section we will go into the computation of the terms m);. We finish this

section with the following important fact.

PROPOSITION 4.26. Each individual term m}, is independent of the choice of the

moment map Ps.
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Proof. Let ®%,t€[0,1] be a continuous family of moment maps for S. This gives a
family ®%,(m,&):=P%(m)+¢ for SRSe-.

Let s, be the Kirwan vector field associated with ®%,, and let Zo(t):={s,,=0}.
Recall that Z5°(t)=|]p Z5(t), where the union runs over the (h)-ancestors of O, and

25 () = K((26) ™' (1) x {—pu+o(t,)"}),

it P=Kupu.

We denote simply by o' the symbol o(M xO*, S®@Sp«, PL,). For any t€[0,1], we
consider the quantity Q2 (t)e R(K) which is the equivariant index of ot|u,, where Uy is
a (small) neighborhood of ZJ(t) such that U;NZo(t)=Z5(t).

Let us prove that the multiplicity m2 (¢)=[Q5(¢)]¥ is independent of ¢. It is suffi-
cient to prove that t+—[Q%(¢)]¥ is locally constant: let us show that it is constant in a
neighborhood of 0. We follow the same line of proof that the proof of the independence
of the connection of the local piece Qx (M, S, ®5'(O)NZs) of Qx(M,S) in [28].

Let Up be a neighborhood of Z[(0) such that

UoNZo(0)=Z5(0). (4.33)

The vector field 5% does not vanish on dUy: there exists >0 so that »{, does not vanish
on AU for t€0,¢]. The family o'|y,, t€[0, ] is then a homotopy of transversally elliptic
symbols: hence they have the same equivariant index.

LEMMA 4.27. For small t, we have
UonZ35°(t) =25 (t).

Indeed, by Proposition 4.25, Zgo(t) projects by the first projection ®%: M x O*—
M —¥* to a finite union of coadjoint orbits (the (h)-ancestors to ©), and Z5(0) projects
on P. So, for small ¢, UpNZ3°(t) is the subset ZJ(t) of ZZ5°(t) projecting on P.

So, for small ¢, we have the decomposition UyNZo(t)=2Z5(t)UZ;, where Z; is a

component contained in Zgo(t). Finally, for small ¢, we have
Q5(0) =Indexf (0° |y, ) = Indexx (0| 1y) = QB (t) + Qi (M x O*, S®@S0+, Zt, Phy).

As [Qk (M x O*, 8280, Zt, L)X =0 by Proposition 4.17, the proof of Proposition 4.26
is completed. O
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. P
4.5.4. Computation of mg,

In this section we compute
mg = [QK(MX 0*7 S®S@* , ZZ;, (I)(/))]K

for an (h)-ancestor P of O.

Let C be a connected component of hj that intersects the orbit P. With the help
of Proposition 4.15, we will reduce the computation of mg to a similar computation
where the group K acting on M is replaced with the torus Agy=H/[H, H] acting on the
slice V¢

Let us recall the geometric property of the orbits P and O that we need for our
computation. Let pePNC be such that P=Kp with K,=H. Let Aeu+o(h). Since
P is an ancestor of the regular admissible orbit O, we have O=K\ and the weight
A—o(N)=p—o(p)€3* defines a character of H (see Lemma 3.8).

Then Z} is equal to K(®5"(u)x {—p+o(h)*}). Here o(h) is the g-orbit for H, so
o(h)=o(h)* and QP (o(h)*) is the trivial representation of H.

Let Yo=®5'(C) be the slice relative to the connected component C (see §4.5.2).
Thus KY¢ is an open neighborhood of <I>§l(73) in M diffeomorphic with K xgYc. We
see that 4

Z5 C (K x g Vo) xO* 2 K x i (Vo x 0%,

where the isomorphism j is defined by ([k;y], [k'])—[k; (y, [k~1E])].
We consider the H-manifold N:=Y¢ xo(h)* and the K-manifold

N=Kxp(BgxN')=Kxpg(ByxYcxo(h)*),

where B, is a small open ball in ¢, centered at 0 and H-invariant.

Consider the map WU: (X, &)—rexp(X)(—p+E), from gxo(h)* into O*. For any €
o(h)*, its differential at (0,¢) is the isomorphism (X,Y)——pcad(X)—E€cad(Y) from
q®h/he into €/tc. Hence, when By is small enough, the map ¥ defines a diffeomorphism
between Bq xo(h)* into an H-invariant neighborhood of the H-orbit —u+o(h)*.

Hence a K-invariant neighborhood of Zg in M xO* is diffeomorphic to N. Under
this isomorphism, the equivariant map ®»=®s+ip+ defines a map ® on N. For k€ K,
XeBy, yeYe and £€o(h)*, we have

O([k; X, y,€]) = k(Ps(y) +exp(X) (—p+9))-
Under this isomorphism, the set Z}5 becomes

Z:=Kxyg ({04} x®5" (1) x0(h)*) C Zs.
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The map ®: N—¥*, when restricted to N’, is the H-equivariant map ®’: N’ —bh*
defined by ®'(y,&)=®s(y)—p+&. Furthermore, if By is small enough, ®([1;X,y,£])
belongs to h* if and only X=0. As X €q, we also see that

(@([1; X, ,8]), X) = (s (y), X)+(exp(X)(—p+E), X) = (Ps(y) —p+E, X) =0

for all (X,y,&)eBqxYc xo(h)*. Conditions (4.23) are satisfied. Then Proposition 4.15
tells us that
P _ 1ol ol ®N\H
mO_[QH(N SRR )] ’

where Z/:=ZNN'=®g" (1) x o(h)*.

Now we have to explain the nature of the spinor bundle &’ over N'=Y¢ xo(h)*. Let
So(p)+ be the canonical spin“-bundle of the orbit o(h)*. Let Sy, be the spin“-bundle on
Ve defined by (4.30).

PROPOSITION 4.28. We have §'=8] KRS, p)-, where S} =Sy ®C_, 4, is a
spin®-bundle on Y. The determinant line bundle of S is equal to det(S)|y, @C_ay,
and the corresponding moment map s @50 =Psly, —p.

The subgroup [H, H) acts trivially on (Yc,S3.).

Proof. Let X\ be an element of the H-orbit Op:=pu+o(h). The spinor bundle S~
on O*=(K\)* is
Kxg, (A_JAE/EA®C7)\+Q()\)).

We denote S the spinor bundle over OF defined by the relation So- |0z, ~ A q?®81.

If we use the identifications OF=(H\)*~o(h)*, we see that S; is equal to

HXH,\ (/\_th/h)\@(c_)\—i-g()\)) >~ (HXH)\ /\_th/b)\) ®C—>\+Q(A) ~ o(h)* ®(C—,u+g(,u)7

since A—o(A)=p—o(pn)€3* defines a character of H (see Lemma 3.8).

As the spinor bundle Sy is equal to the product A\ qC®A q¢ (see Example 2.3), we
know then that §'~Sy, K8 ~Sye &S @C_ s o(u-

The relation det(S}) ) =det(S)[y. ®C_3, comes from the fact that

det(Sy ) = det(S)|ye ©®C 20
and that oc=p(u). O
We consider now the H-manifold V¢ equipped with the spin®~-bundle S;fc. Let

Qu(Ye,S%.,,{0}) € R(H) (4.34)
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be the equivariant index localized on the compact component {®3_ =0}={®s=u}CVc.
Let Ay be the torus H/[H, H]. Since [H, H] acts trivially on (V¢, S} ), we may also
define the localized index Qa,, (Ve, ST, {0})€R(Ap).

We can now prove the main result of this section.

THEOREM 4.29. The multiplicity m2 is equal to

[Qn Ve, S5 {ONT =1Qa, (Ve S5, . {0}

Proof. Let Z':=®3" (1) xo(h)*. The character On(N',8', 2", ®)eR(H) is equal to
the equivariant index of o(N',S’, ®')|y;, where Y C N’ is an invariant open subset such
that UNZy=2'. For (y,&)eN'=Ycxo(h)* and (v,n)€T(, ¢ N’, the endomorphism
o(N', 8", ®")|(y.e)(v,n) is equal to

c1(v+(Ps(y) —p+8) y)@lds, . | He1@c2(n+(Ps(y) —p+E)-§).

Here c; acts on ngc\y, c2 acts on S,p)«|¢ and ;1 is the canonical grading operator on

ST,
Yely
Since o(h)* is compact, we can replace the term ca(n+(Ps(y)—p—+&)-£) simply by
ca2(n). As [H, HJ| acts trivially on Ve, and £€1b, b], the vector field yr— (Ps(y) —pu+E)-y
is equal to y+—(Ps(y)—p)-y. Thus our symbol is homotopic to the symbol

c1(v+(Ps(y) —p)-y)@1ds, ) [e+e1@ca(n).

This last expression is the product symbol of the H-transversally elliptic symbol
c1(v+(Ps(y)—p)-y) on Ve and of the elliptic symbol ca(n) on o(h)*. The equivariant
indices multiply under the product (as one is elliptic) ([1],[27]).

Now the H-equivariant index of cy(n) acting on Sy~ is the trivial representa-
tion of H. Thus we obtain our theorem. We also have to remark that the identity
[Qu(Ve, ST {0 =[Qay (Ve, ST, {0})]4# follows from the fact that [H, H] acts triv-
jally on (Ve,S3.). O

5. Multiplicities and reduced spaces

In this section, we interpret the multiplicity as an equivariant index on a reduced space.
Let O Ct* be a regular admissible orbit, and (h) €H, be such that ([h, b])=([€rr, tar])-
In the previous section, we have proved that the multiplicity of 7o in Qx (M, S) is equal

Z P
mep = mo7
P

to
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where the sum runs over the K-orbits P which are (h)-ancestors of O. Furthermore, we
have proved that m3=[Q,, (Yo, S5 . {0})]47.

The aim of this section is to prove the following theorem.

THEOREM 5.1. The multiplicity mg is equal to the spin® index of the (possibly
singular) reduced space Mp:=®g'(P)/K.

However, our first task is to give a meaning to a Q**(Mp)€Z, even if Mp is

singular.

5.1. Spin® index on singular reduced spaces

We consider a connected oriented manifold N, equipped with a spin®-bundle S. We
assume that a torus G acts on the data (N,S). An invariant connection on the determi-
nant line bundle det(S) defines a moment map ®: N—g*. We do not assume that N is
compact, but we assume that the map @ is proper.(®) Thus, for any £€g*, the reduced
space Ng:=®~1(£)/G is compact.

The purpose of this subsection is to explain how we can define the spin®-index,
QPIn(N,)EZ, for any p in the weight lattice A of the torus G.

Let gy be the generic infinitesimal stabilizer of the G-action on N: the image of N
under the map @ lives in an affine space I(N) parallel to g3;. If £€I(N) is a regular
value of ®: N—I(N), the reduced space N¢ is a compact orbifold (as proved in [28]). We
can define spin®~-bundles on orbifolds, as well as spin®-indices.

We start with the following basic fact.

LEMMA 5.2. For any regular value {€I(N) of ®: N—I(N), the orbifold N¢ is ori-
ented and equipped with a family of spin®-bundles Sé‘ parameterized by pe ANI(N).

Proof. Let G be the subtorus with Lie algebra gy. Let G'=G/Gy. The dual of
the Lie algebra g’ of G’ admits a canonical identification with gx;.

We assume that ¢ is a regular value of ®: N—1(N): the fiber Z=®"1(¢) is a sub-
manifold equipped with a locally free action of G’. Let N¢:=Z/G’ be the corresponding
“reduced” space, and let m: Z— N¢ be the projection map. We can define the tangent
(orbi-)bundle TNg to Ne.

On Z, we obtain an exact sequence O—)TZ—)TN|Zwi)Zx(g’)*—)O7 and an
orthogonal decomposition TZ=Tq Z®g',, where g/, is the trivial bundle corresponding
to the subspace of TZ formed by the vector fields generated by the infinitesimal action

(5) ‘We will sometimes use a slightly different hypothesis: ® is proper as a map from N to an open
subset of g*.
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of g’. So TN|z admits the decomposition TN|z~Tq Z® g, ®[(g')*]. We rewrite this as
TN|; ~Te Z& (a4, (5.35)

with the convention g/, =7 x (¢’ ®iR) and Z x(¢g')*=Zx (¢’ ®R). Note that the bundle
T Z is naturally identified with 7*(TNg).

If we take on g¢ the orientation o(i) given by the complex structure, there exists a
unique orientation o(Ng) on N¢ such that o(IN)=o0(N¢)o(i).

Definition 5.3. Let 3‘5 be the spin“-bundle on the vector bundle Tg/Z — Z such that

S\Zz‘g{@[/\gfc].

The Kostant relation shows that, for any X €gy, the element e¥ acts on the fibers

W(v,X)

of 3‘5 as a multiplication by e , where v is any element of I(NN). Hence, for any

wEANI(N), the action of Gy on the tensor §£®[C—u] is trivial. We can then define a
spin“-bundle S{' on TN by the relation

Se®[C_,)=7"(SE). O

The proof of the following theorem is given in the next subsection.

THEOREM 5.4. For any peI(N)NA, consider the compact oriented orbifold N, .

associated with a generic(®) element e€gs;. Then the index
Q(N/H-E’ S;jJre)

is independent of the choice of a generic and small enough €.

Due to the previous theorem, one defines the spin®-index of singular reduced spaces

as follows.

Definition 5.5. If p€ A, the number Q*P*(NN,,) is defined by the following dichotomy:

0, if u¢ I(N),

Qspin(Nu): { " ) L. .
Q(Nyute,S)iie), if p€I(N) and € € gy is generic and small enough.

Remark 5.6. The invariant Q*P'™(N,,) €Z vanishes if ;1 does not belong to the relative
interior of ®(N) in the affine space I(N). It is due to the fact that we can then approach
u by elements p+¢e that are not in the image ® (V).

(6) So that pu+-e is a regular value of ®: N— I(N).
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Let us consider the particular case when p€I(N)NA is a regular value of &: N—I(N)
such that the reduced space N, is reduced to a point. Let m,€® (), and let TCG’
be the stabilizer subgroup of m, (I' is finite). In this case (5.35) becomes T, N~gg,
and o(NN,,) is the quotient between the orientation of N and those of g-. At the level of

graded spin®-bundles, we have
Slm, =~ O(Nu) /\ 9(/C®d6t(8) 711402»
where det(S) %3 is a 1-dimensional representation of I' such that

(det(S)[H2)®? = det(S)|m, -

m

In this case Definition 5.5 becomes

Q*P"(N,,) = o(N,) dim[det(S) |1/ 2®C_,|" € {~1,0,1}. (5.36)

5.2. Proof of Theorem 5.4

In this subsection we work with a fixed u€I(N)NA. For any ecg(N)*, we consider the
moment map ¢.=P—pu—e. We denote by s and s, the Kirwan vector fields attached
to the moment maps ®y and P, respectively.

We start with the fundamental lemma.

LEMMA 5.7. The map e—[Q¢(N,S,®-1(0),8.)®C_,]¢ is constant in a neighbor-

hood of zero.

Proof. Changing S to S®[C_,], we might as well take p=0.

Let 7>0 be smallest non-zero critical value of ||®]|, and let U:=®~ 1 ({£||¢[|<3r}).
Using Remark 2.11, we have UN{s=0}=®"1(0).

We describe now {.=0}N using a parametrization similar to those introduced in
[25, §6].

Let g;,7€1, be the finite collection of infinitesimal stabilizers for the G-action on the
compact set U. Let D be the subset of the collection of subspaces gi of g* such that
L) NN £g.

Note that D is reduced to I(N) if 0 is a regular value of ®: N—I(N). If A=g;
belongs to D, and e€I(N), write the orthogonal decomposition e=ea +8a with ea €A,
and fa€g;. Let

B.={fa=c—ean:AeD}

be the set of 3 so obtained.
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Figure 7. The point € and its projections ea.

We denote by Z. the zero set of the vector field sz associated with ®.. Thus, if ¢ is
sufficiently small (||e]|<3r),

Z.nu= | N ne ' (p). (5.37)
BeB.

With (5.37) in hands, we easily see that t€[0,1]—0(N,S, ®s.)|ys is a homotopy of

transversally elliptic symbols on ¢//. Hence they have the same index

(U, S,871(0),®) = Qe(U, S, Z.NU, &) = Y Qa(N,S, . (B)NN”, ).
BeB.:

The lemma will be proved if we check that [Qg(N,S, ®-1(8)XNN?, &.)]“=0 for any
non-zero € B..

We fix now a non-zero 5:=a€B.. The Atiyah—Segal localization formula for the
Witten deformation (Remark 4.13) gives

Qc(N, 8,071 (B)NNP, @.) = Qa(N?,dg(S)@Sym(Vy), @71 (8), )
= Y Qa(X,dg(S)|x@Sym(Vs)|x, B (8), @2),

XCN#B

where Vg—N # is the normal bundle of N? in N and the sum runs over the connected
components X of N? that intersect ®_1(B). Like in the proof of Proposition 4.17, we will
show that the term [Q¢(N,S, @71 (3)NN?, ®.)]¢ vanishes by looking to the infinitesimal
action of 3, denoted by L(f3), on the fibers of the vector bundle dg(S)|x ®Sym(Ng)|x.

Let ne®-1(B)NX: we have ®(n)=8+ec=cna, and therefore (®(n), 5)=(ea, Ba)=0.
Lemma 4.11 tell us that £(5)|a,(s)|» =ia1dq,(s)|., Where

a=(®(n),B)+inTrr, n|B8] = snTrry, |6l
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‘We obtain

1 { = 5Troy (18]),  on ds(S)|x,
i

< 2
-L(3) 0, on Sym(Ng)|x-

WV

So we have checked that £(8)/i>3Trr x|, (|8]) on ds(S)|x®Sym(N3)| -

Now we remark that 5 does not act trivially on N, since 8 belongs to the direction
of the subspace I(N)=gy: this forces Trry|,(|3]) to be strictly positive. Finally, we
see that £(3)/i>0 on dg(S)|x®Sym(N3)|x, and then

[Qc(X,ds(S)[x®@Sym(Vs)|x, .1 (8), )] =0.
The Lemma 5.7 is proved. O

The proof of Theorem 5.4 will be completed with the following lemma.

LEMMA 5.8. If p+e is a regular value of ®: N—I(N), the invariant
[QG<N7 S, (I)e_l(o)a ®6>®C*M]G

is equal to the index Q(N,ye,S).)-

We assume that p+-¢ is a regular value of ®: N—I(N): the fiber Z=®"!(u+e) is a
submanifold equipped with a locally free action of G'=G/Gy. Let N,y.:=Z/G’ be the
corresponding “reduced” space, and let m: Z— N, . be the projection map. We have the

decomposition
TN|z =7 (TNy4) Dlgc)- (5.38)

For any ve ANI(N), ¥, is the spinor bundle on N, . defined by the relation
S|z®C_, ~7*(S5,.)® {/\gd.

The following result is proved in [28, §2.3].

PROPOSITION 5.9. We have the following equality in E(G):

Qc(N, S, ®;1(0)a@8): Z Q(NM+5,SZ+E)(CV.
veANI(N)

In particular [Qc(N,S, @-1(0),®.)®C_,]¢ is equal to Q(Nyses Shiye)-
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5.3. [Q, R]=0

We come back to the setting of a compact K-manifold M, oriented and of even dimension,
that is equipped with a K-spinor bundle S. Let det(S) be its determinant bundle, and
let ®s be the moment map that is attached to an invariant connection on det(S). We
assume that there exists (h)€He such that ([ear, €rr])=([b, b]). Let 3 be the center of b.

We consider an admissible element p€3* such that K,=H: the coadjoint orbit
P:=Ky is admissible and contained in the Dixmier sheet Ez‘h). Let

Mp =05 (P)/K.

In order to define QP (Mp)€EZ, we proceed as follows.
We follow here the notation of §3.3. Let C be the connected component of

bo:={{eh™: K CH}

containing p. The slice JJC:<I>§1(C) is an H-submanifold of M equipped with an H-
spin® bundle Sy, : the associated moment map is @y, :=Ps|y, —oc, where ¢ is defined
by (3.15).

The element fi:=p—o(u)=p—oc belongs to the weight lattice A of the torus Ag:=
H/[H, H], and the reduced space Mk, is equal to

(Ve)p={Py. =i}/An.

By definition, we take QP (M ,,):=Q%"((Vc)), where the last term is computed
as explained in the previous section. More precisely, let us decompose V¢ into its con-
nected components Vi, ..., . For each j, let 3, C3 be the generic infinitesimal stabilizer
relative to the Ag-action on Y;. Then we take

QP (Mp) = QP ((Veo)a) i= Z QP (V)jite,)s (5.39)

J

where ;€ 5j‘ are generic and small enough.
With this definition of quantization of reduced spaces QP®(Mp), we obtain the
main theorem of this article, inspired by the [@, R]=0 theorem of Meinrenken—Sjamaar.
Let M be a K-manifold and S be a K-equivariant spin®-bundle over M. Let (h) €H,
such that ([€ar, tar])=([h, ]), and consider the set A((h)) of admissible orbits contained
in the Dixmier sheet E?h)‘

THEOREM 5.10.

(M, S)= > QF"(Mp) QL™ (P). (5.40)
PeA((h))
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We end this section by giving yet another criterium for the vanishing of Qx (M, S).
Consider the map ®s: M —t*. At each point mée M, the differential d,,, s defines a
linear map T,,, M —*. Let £ C€*. From the Kostant relations, we see that d,,®s takes

el
value in &;.

PROPOSITION 5.11. e Suppose that the group K is abelian and that (€3;)=0. Then
Qi (M,8)#0 only if the image of s contains an element of the weight lattice in its
interior.

e [For a general group action, we have Qg (M,S)#0 only if the subset
Cyr:={m € M :Tmage(d,, ®s) =t~}
has non-empty interior.

Proof. If the group K is abelian, and (£3;)=0, then the affine subspace I(M) is
equal to £*. The first point follows then from Remark 5.6.

Let us prove the second point. If Qi (M,S)#0, then QP (Mp)#£0 for an admis-
sible orbit P=Ku of type (h). If we consider the decomposition of the slice Vo= ;Y
in connected components, then, for some j, Q" ((Y;)z4<,)#0 (see (5.39)). Thus, due
to Remark 5.6, we know that the image of ®y. has non-empty interior in 3%, and there-
fore {yeyj:Image(dy(I)yj):gj-} has non-empty interior in );. By definition, 3; is the
infinitesimal stabilizer of the action of H/[H, H] on Y;. Thus, 3j‘ C3™ is equal to {%;- for
generic yeY;. It follows that Cy, :={y€);:Image(d,®y,)=t, } has non-empty interior
in ;. Finally, the set KCy, CCjs has non-empty interior in M. O

COROLLARY 5.12. If the K-action is non-trivial, we have Q (M,S)=0 if

(a) ®s is a constant map, or
(b) the 2-form Qs is exact.

Proof. If the K-action is non-trivial and ®s is constant, the set Cpy=MF is a
closed submanifold of M with empty interior. Due to Proposition 5.11, we must have
Qr(M,S)=0.

If Qs =da, by modifying the connection on det(S) by a, our moment map is constant,
and we conclude that Qx (M,S)=0 by the previous case. O

Note that Corollary 5.12 implies the well-known Atiyah—Hirzebruch vanishing theo-

rem in the spin case [3], as well as the variant of Hattori [15].

6. Examples: multiplicities and reduced spaces

In this last subsection, we give some simple examples in order to illustrate various features

of our result relating multiplicities and reduced spaces. An open question remains even
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for a toric manifold M equipped with a non ample line bundle L. The determinant line
bundle of the spinor bundle S:=A\TM®L is equal to det(S):=detc(TM)QL®?. A
connection V on det(S) determines a moment map ®v: M —t* and a curvature
1
Qv =V~

V25
The push-forward of 2y by ®v does not depend on the choice of the connection:
it is a signed measure, denoted by DH(M,S), and called the Duistermaat—Heckmann
measure. The support of DH(M, S), which is contained in & (M), is a union of convex
polytopes. Can we find V such that the image ®v (M) is exactly the support of the

Duistermaat—Heckman measure?

6.1. The reduced space might not be connected

We consider the simplest case of the theory. Let P':=P!(C) be the projective space of
(complex) dimension 1. Consider the (ample) line bundle £—P*, dual of the tautological
bundle. It is obtained as quotient of the trivial line bundle C2\ {(0,0)} x C on C2\ {(0,0)}
by the action wu-(21, 22, 2)=(uz1,uzs,uz) of C*. We consider the action of T=S! on
L—P! defined by t-[21, 22, 2]=[t 121, 29, 2].

Let S(n) be the spin®-bundle A\ TP'®@ L®". The character Qr(M,S(n)) is equal to
HO(P',O(n))—HY(P!,O(n)), where O(n) is the sheaf of holomorphic sections of £&".
Note that the holomorphic line bundle £&" is not ample if n<0. We have

o Op(M,S(n))=->;1,,,t" when n<-2,

o Qr(M,S(~1))=0,

o Or(M,8(n))="1_,t" when n>0.

The determinant line bundle of S(n) is L,, =[C_1]® £L®?" 2 where [C_1] is the trivial
line bundle equipped with the representation ¢t~ on C.

Remark that P! is homogeneous under U(2), so there exists a unique U (2)-invariant
connection on LL,,. The corresponding moment map ®s(,) is such that

2
ooy (o 22 = ()5 (6.41)

The image I, =®s,) (M) is

e the interval [—%,n—}—%} when n >0,

e a point {—% when n=-—1,

e the interval [n—|—%, —%} when n<—2.

It is in agreement with our theorem. Indeed all characters occurring in Q7 (M, S(n))
are the integral points in the relative interior of I,,, and all reduced spaces are points.
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Figure 8. The graph of ®.

If we consider simply the action of T' on P!, the choice of connection may vary. In
fact, given any smooth function f on R, we can define a connection V/ on L,, such that

the corresponding moment map is

o/ ([1, 22]) = Py ([21 2’2])+f< |21 ]2 > |21|2|22]2 |
S(n) ) (n) ) 1212|222 ) (212 +|22?)2

Let Qé(n) be one half of the curvature of (L,,V/); then the Duistermaat—Heckman

measure (@é(n))*ﬂé( is independent of the choice of the connection V7 and is equal to

the characteristic funré)tion of I,,.

Take, for example, n=4 and the constant function f(z)=-15. the corresponding
moment map is
BN 21?22?11

D([z1,22]) =5 —15 2
([1, 22]) 2P 22 (2242222 2

Figure 8 is the graph of ® in terms of

_ =P
|21+ 222

varying between 0 and 1. We see that the image of ® is the interval [f%, %], but the
19

image of the signed measure is still [75, 5}: so for this choice of connection the image

of @ is larger than the support of the Duistermaat—-Heckman measure.

Above the integral points in [—22, —1], the reduced space is not connected, it con-

sists of two points giving opposite contributions to the index. So our theorem holds.
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6.2. The image of the moment map might be non-convex
Let M be the Hirzebruch surface. Represent M as the quotient of «=(C?\{(0,0)})x
(C2\{(0,0)}) by the free action of C*xC* acting by

(u,v)-(21, 22, 23, 24) = (uz1, Uz, UVZ3, V24,

and we denote by [z1, 22, 23, 24] €M the equivalence class of (z1, 29, 23,24). The map
7 (21, 22, 23, 24]—>[21, 22] is a fibration of M on P;(C) with fiber P;(C).

Consider the line bundle L(ny,n2) obtained as quotient of the trivial line bundle
UXC on U by the action

(u,v)- (21, 22, 23, 24, 2) = (w21, Uz2, UV23, V24, " V™2 2)

for (u,v)eC*xC*. The line bundle L(n1,ns) is ample if and only if ny >ns>0.

We have a canonical action of the group K:=U(2) on M: g-[Zy, Zs|=[9Z1, Z5] for
Z1, Z5€C?\{(0,0)} and the line bundle L(n1,n2) with action g-[Z1, Zs,2]=[gZ1, Za, 2]
is K-equivariant.

We are interested in the (virtual) K-module
HO(MvO(nlanQ))_Hl(M7O(nlanQ))+H2(Ma O(n17n2))7

where O(ny,ns) be the sheaf of holomorphic sections of L(ny,ns).

In this case, it is in fact possible to compute directly individual cohomology groups
HY(M,O(n1,n2)). However, we will describe here only results on the alternate sum and
relate them to the moment map.

Let T=U(1)xU(1) be the maximal torus of K. The set

Y= {[Zlv 22,23, 24] eEM:z :O}
is a T-invariant complex submanifold of M (with trivial action of (¢1,1)). The map

Y — PY(C),

—1
[05 22,23, 24] — [ZQ 23, Z4]7
is a T-equivariant isomorphism and the map

KxY —s M,

(9,9)— 9y,

factorizes through an isomorphism K x7Y ~M. Thus M is an induced manifold.
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For any (a,b)€Z?, we denote by C,; the 1-dimensional representation of 7' asso-
ciated with the character (ti,ts)>t{t5. We denote by {e},e5} the canonical basis of
t*~R?. The Weyl chamber is t§,={ze} +yes:2>y}. The elements e} and 5 are conju-
gated by the Weyl group.

Note that the line bundle L(n1,ns2), when restricted to Y ~P!(C), is isomorphic to
LE2Q[Co,—p,].

We consider the line bundle L,,=L(3,2) obtained from the reduction of the trivial
line bundle A* C* with natural action of C*xC*. We denote Spr:=AsTM (resp. Sy :=
Ac TY) the spin®-bundle associated with the complex structure on M (resp. Y).

We denote by ¢: Y —[0, 1] the map defined by

e
|a1[?+|az/?

v(y)

if y>~ay, as].

PROPOSITION 6.1. e Let S(ni,ng) be the spin bundle Spy@L(ny,ng) on M. Its

determinant line bundle is
Lnl,ng - [Cdet} ®Lx®L(2n1a 277‘2)7
where [Caet] = M is the trivial U(2)-equivariant line bundle associated with the character
det: U(2)—C*.
o There exists a connection on Ly, », such that the corresponding moment map

Dy o KXY =¥ is defined by

Py s ([, 9]) = (= (m1+3) +(na+1)p(y)) k-es+ 5 (el +e3).

Proof. For the second point, we construct a U(2)-invariant connection on L,,, ,, by

choosing the T-invariant connection on (L, »,)|y having moment map
(—(n1+3) +(n2+1)p(y))es+ 1 (e +e3)
under the T-action (see equation (6.41)). O
From Proposition 6.1, it is not difficult to describe the “Kirwan set”

A(ny,ng) = Image(@nl,nz)ﬂt’;o

for all cases of n; and no. It depends of the signs of nﬁ—%, ng+1, nl—n2+%, that is,

as we are working with integers, the signs of n1+1, no+1 and ny —ny. We concentrate



EQUIVARIANT DIRAC OPERATORS 193

in the case where n1+1>0 and nao+1>0 (other cases are similarly treated). Then, we
have two cases:

e If ny>no, then the Kirwan set A(ny,ns) is the interval
[(n1—n2)+3,n1+35] (—e5)+ 3 (€] +e3).
e If ny>nq, then the Kirwan set A(ny,ns) is the union of the intervals
[0,no—n1—%]ef+3(ef+eb)

and
[0,n1+32](—e3)+3(e] +e3).

If n1 >n9 >0, the curvature of the corresponding connection on
Ln17n2 = L(27’L1 —|—37 2712 +2)

(which is an ample line bundle) is non-degenerate, thus the image is a convex subset of
5o (in agreement with Kirwan convexity theorem), while for ny>n; the image set is not
convex.

The character Qk(nq,n2):=Qxr (M,S(n1,n3)) is equal to the (virtual) K-module
HO(M,0O(ny,n2))—HY(M,O(ny,n2))+H?*(M,O(ny,n3)), where O(ny,ns) is the sheaf
of holomorphic sections of L(ny, ng).

Let Aso={(A1,A2); A\1 =2} be the set of dominant weights for U(2). We index the
representations of U(2) by o+A>g. Here QZ(%, —%), and Ay and A are integers. We

then have

T(1)2,—k—1/2) =S*(C?),

where S*(C?) is the space of complex polynomials on C? homogeneous of degree k.
If ny>0, we know that Qr(Y, Sy ®L®"2)=3"2 t5. From the induction formula
(3.17) (or direct computation via Cech cohomology!) we obtain the following:

e If ny >no, then

ny

Ok (ni,n2) = Z T(1/2,~k—1/2)-

k=n1—n2
e If ny>nq, then

na—mniy -2

ni
QK(nlﬂw):Zﬂu/g,—k—uz)* Z T(k+3/2,1/2)-
k=0 k=0
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Figure 9. K-Multiplicities for Qk (8, 5).

Figure 10. K-multiplicities for Qx (3, 6).

Let us check how our theorem works in these cases. First, we notice that we are in a
multiplicity free case: all the non-empty reduced spaces are points.

e Consider the case where ni>ny. We see that the parameter (3, —k—3) belongs
to the relative interior of the interval A(nq,ng) if and only if ny —ns<k<ny.

e Consider the case where ny>n;. We see that the parameter (%, —k—%) belongs
to the relative interior of [—n1—3,0]e5+3(ej+e3) if and only if k<n;. Similarly, the
parameter (k4 32, 3) belongs to the relative interior of [0,n2—n1—3]ef+5(ef +e3) if and
only if k<n,—nq—2.

In Figures 9 and 10, we draw the Kirwan subsets of t5 corresponding to the values
(n1,n2)=(8,5) and (n1,n2)=(3,6). The points on the red line represents the admissible
points occurring with multiplicity 1 in Qg (n1,n2). The points on the blue line represents
the admissible points occurring with multiplicity —1 in Qg (n1,n2).

Consider now M as a T-manifold. Let <I>,Th7n2: M —t* be the moment map relative
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Figure 11. T-multiplicities for Qr(8,5).

Figure 12. T-multiplicities for Qp(3,6).

to the action of T which is the composition of ®,, ,,: M —£* with the projection £* —t*.
Thus, the image of ®!  is the convex hull of A(ny,n2) and its symmetric image with
respect to the diagonal.

Consider first the case where (n1,m2)=(8,5). Thus our determinant bundle Lg 5 is
ample. The image of the moment map <I>§5: M —+t* is drawn in Figure 11. It is a convex
polytope with vertices (—37 %), (%, —3), (%, —9) and (—97 %), the images of the four fixed
points [1,0,1,0], [1,0,0,1], [0,1,1,0] and [0,1,0,1].

We now concentrate on the case (n1,n2)=(3,6). The line bundle L:=Lg3¢ is not
ample, so that its curvature )y, is degenerate, and the Liouville form Sp=QpAQL is a
signed measure on M. Let us draw the Duistermaat—Heckman measure (®r,). /L, a signed
measure on t*. In red the measure is with value 1, in blue the measure is with value —1

(see Figure 12).
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We also verify that our theorem is true. Indeed, the representation Qr(3,6) is
I T T e N e e e R Y 7S s o

The A€Z? such that t* occurs in Q7(3,6) are the integral points in the interior of the
image of @, (M): they have multiplicity £1, and the reduced spaces are points.

In this case, we verify thus that the image of the moment map is exactly the support
of the Duitermaat—Heckman measure, however, we do not know if (even in the toric case,

and non-ample lines bundles) we can always find a connection with this property.

6.3. The multiplicity of the trivial representation comes from two reduced

spaces

Consider C* with its canonical basis {e, ...,e4}. Let K~SU(3) be the subgroup of SU(4)
that fixes ey.
Let T=S(U(1)xU(1)xU(1)) be the maximal torus of K with Lie algebra

t:{($17x2,],‘3) X1 +T2+x3 :0}

and Weyl chamber t*}O::{El 265283:861+8+E3=0}. We choose the fundamental roots
wy and ws so that K, =S(U(2)xU(1)) and K,,=S(U(1)xU(2)). Recall that wq,ws
generates the weight lattice ACt* so that A>o=Nw;+Nw,. Also note that o=wj+ws.
For any A€A>¢+p, we denote by 7, the irreducible representation of K with highest
weight A—p.

Let X={0CL;CLyCC*:dim L;=i} be the homogeneous partial flag manifold under
the action of SU(4). We have two lines bundles over X: £y(x)=L; and Lo(x)=La/L4
for x=(L1, L2).

Our object of study is the complex submanifold
M = {(L17L2) € X:CeyC LQ}

The group K acts on M, and the generic stabilizer of the action is [K,, , K., ]~SU(2).

We consider the family of lines bundles
E(a, b):ﬁ(lg)alj\/[(@ﬁé@ibhw, (a,b)ENQ.

Let Spr:=/A¢ TM be the spin®~-bundle associated with the complex structure on M. We

compute the characters

Qk(a,b):=Q(M,Sn®L(a,b)) € R(K).
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Again,
dim M

QK(C% b) = Z (_1)iHi(M’ O(ﬁ(a’ b)))

i=0
We notice that K, corresponds to the subgroup of K that fixes the line Ces. The
set Y:={(L1, L2)€X:La=Ce3PCe4} is a K, -invariant complex submanifold of M such
that the map K xY > (k,y)—>kyeM factorizes through an isomorphism K x g, Y ~M.
Notice that [K,, K.,] acts trivially on Y.
If we take a>4 and b>1, we get that

b—1 a—4
Ok(a,b)=— Z 7Tkw1+g_z Tjwa+e- (6.42)
k=0 7=0

In particular, the multiplicity of 7, (the trivial representation) in Qg (a,b) is equal to
—2.
We now verify the formula (5.40) in our case. The spin®-bundle Sy is equal to

Skw, @K % Ko, Sy. The corresponding determinant line bundle det(Sys) satisfies
det(Syr) = K Xk, Cauw, ®K X, det(Sy) =K x g, Cauy @LY 2.
Hence, for the spin®-bundle Sy ® L(a, b), we have
det(Snr@ L(a, b)) =det(Sar) ©L(a,0)®? = K x i, Caprayn, @LT Y.

The line bundle det(Sy; ®L(a, b)) is equipped with a natural holomorphic and Hermitian
connection V. To compute the corresponding moment map ®, : M —£*, we notice that
L1=KXf,, L~! where £L—P! is the prequantum line bundle over P; (equipped with
the Fubini-Study symplectic form). If we let ¢: Y ~P!—[0, 1] be the function defined by

1

S P P

we see that
Pap([k, y]) =Kk[((b+1)—(a+b—1)p(y))w1]

for [k,y]€ M. In this case, the Kirwan set Do,p(M)NLL, is the non-convex set
[0, b4+1]wi U[0, a —2)ws.

We know (see Exemple 3.9) that the set A((£,,)) is equal to the collection of orbits
K(3(142n)w;), n€N, i=1,2, and we have Qf (K (3w;))=0 and Qk (K (3(3+2k)w;))=
Thw;+o0 When £>0.
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If we apply (5.40), we see that mx,, 4, occurs in Qg (a,b) only if 3(3+2k)<b+1:
so k€{0,...,b—1}. Similarly mju,4, occurs in Qk(a,b) only if 1(3+2j)<a—2: thus
j€{0,...,a—4}. For all these cases the corresponding reduced spaces are points and one
could check that the corresponding quantizations are all equal to —1 (see (5.36)).

In these cases, two orbits P;=K (%wi), 1=1, 2, are the ancestors of the trivial repre-

sentation in A((,,)), and the multiplicity of the trivial representation in
Ok (M,Sm®L(a,b))

is equal to
Qspin (MPI ) +Qspin(MP2 ) =-2.
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