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Introduction

0.1. Background and motivation

For a closed, connected, oriented surface S of genus g>1, the Hitchin component Hitn(S)

is a preferred component of the character variety

XPSLn(R)(S) = {homomorphisms %:π1(S)!PSLn(R)}//PSLn(R)

consisting of group homomorphisms %:π1(S)!PSLn(R) from the fundamental group

π1(S) to the Lie group PSLn(R) (equal to the special linear group SLn(R) if n is odd,

and to SLn(R)/{± Id} if n is even), where PSLn(R) acts on these homomorphisms by

conjugation. The quotient should normally be taken in the sense of geometric invariant

theory [34], but this subtlety is irrelevant here, as this quotient construction coincides

with the usual topological quotient on the Hitchin component. The “character variety”

terminology is justified by the fact that, by [37], the class of %:π1(S)!PSLn(R) in

XPSLn(R)(S) is determined by the character π1(S)!R associating the trace Tr %(γ)∈R
with γ∈π1(S) (defined up to sign when n is even). In particular, we will refer to the

elements of XPSLn(R)(S) as characters.

When n=2, the Lie group PSL2(R) is also the orientation-preserving isometry group

of the hyperbolic plane H2, and the Hitchin component Hit2(S) of XPSL2(R)(S) consists
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of all characters represented by injective homomorphisms %:π1(S)!PSL2(R) whose im-

age %(π1(S)) is discrete in PSL2(R) and for which the natural homotopy equivalence

S!H2/%(π1(S)) has degree 1. The Hitchin component Hit2(S) is in this case called

the Teichmüller component, and can also be described as the space of isotopy classes of

hyperbolic metrics on S.

When n>2, there is a preferred homomorphism PSL2(R)!PSLn(R) coming from

the unique n-dimensional representation of SL2(R) (or, equivalently, from the natural

action of SL2(R) on the vector space R[X,Y ]n−1
∼=Rn of homogeneous polynomials of

degree n−1 in two variables). This provides a natural map XPSL2(R)(S)!XPSLn(R)(S),

and the Hitchin component Hitn(S) is the component of XPSLn(R)(S) that contains the

image of Hit2(S)⊂XPSL2(R)(S). The terminology is motivated by the following funda-

mental result by Hitchin [23], who was the first to single out this component.

Theorem 0.1. (Hitchin) The Hitchin component Hitn(S) is diffeomorphic to

R2(g−1)(n2−1).

A Hitchin character is an element of the Hitchin component Hitn(S), and a Hitchin

homomorphism is a homomorphism %:π1(S)!PSLn(R) representing a Hitchin character.

We will use the same letter to represent the Hitchin homomorphism %:π1(S)!PSLn(R)

and the corresponding Hitchin character %∈Hitn(S).

About 15 years after [23], Labourie [27] showed that Hitchin homomorphisms satisfy

many important geometric and dynamical properties, and in particular are injective with

discrete image; see also [18].

Hitchin’s construction of the parametrization of Hitn(S) given by Theorem 0.1 is

based on geometric analysis techniques that provide little information on the geometry

of the Hitchin homomorphisms themselves; see [30], [28], [29] for different geometric an-

alytic parametrizations when n=3. The current article is devoted to developing another

parametrization of the Hitchin component Hitn(S) which is much more geometric, and

has the additional advantage of being well-behaved with respect to the data of a geodesic

lamination. Geodesic laminations were introduced by Thurston in order to develop a

continuous calculus for simple closed curves on the surface S, and provide very powerful

tools for many topological and geometric problems in dimensions 2 and 3. See §9 and §10

for two simple applications of our parametrization, one to the dynamics of the action of

a pseudo-Anosov homomorphism of S on the Hitchin component, and another one to the

length functions defined by a Hitchin character on Thurston’s space ML(S) of measured

laminations on S.

In fact, our construction is a natural extension of Thurston’s parametrization of the

Teichmüller component by shearing coordinates [42], [5]. It draws its inspiration from
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this classical case where n=2, but also from work of Fock–Goncharov [18] on a variant of

the Hitchin component where the surface S has punctures, and where these punctures are

endowed with additional information. As in the classical case where n=2, the situation

is conceptually and analytically much more complicated for a closed surface than in the

case considered in [18]. The major contributions of the article are to adapt the analysis of

[42], [5] to the case where n>2. As a consequence, many of the arguments are new even

for the case n=2: this includes the slithering map of §5.1, the explicit reconstruction of

a character from its shearing invariants in §6.2, and the estimates of §8.2 relating growth

rates to positivity.

The companion article [9] is devoted to a special case of our parametrization, when

the geodesic lamination has only finitely many leaves. The situation is much simpler

in that case, and in particular the arguments of [9] tend to be very combinatorial in

nature. The current article has a much more analytic flavor. It is also more conceptual,

and provides a homological interpretation of some of the invariants and phenomena that

were developed in a purely computational way in [9]. And of course the framework of

general geodesic laminations, possibly with uncountably many leaves, considered in this

article is better suited for applications.

The article [16] was developed, to a large extent, as a first step towards the more

general results of the current paper. It investigates all deformations of a Hitchin character

%∈Hitn(S) that respect its triangle invariants, as discussed in the next section.

0.2. Main results

We can now be more specific. Let λ be a maximal geodesic lamination in S. See §2 for

precise definitions. What we need to know here is just that, for an arbitrary auxiliary

metric of negative curvature on the surface, λ is decomposed as a union of disjoint

geodesic leaves, and that its complement S\λ consists of 4(g−1) infinite triangles with

geodesic boundary. Some maximal geodesic laminations, such as the ones considered in

[9], have only a finite number of leaves, but generic examples have uncountably many

leaves.

Given a Hitchin character %∈Hitn(S), the rich dynamical structure for % discovered

by Labourie [27] associates with each triangle component Tj of S\λ a triple (E,F,G)

of three flags of Rn, well defined modulo the action of PGLn(R). In addition, Fock and

Goncharov [18] prove that this flag triple (E,F,G) is positive, in a sense discussed in §1.5,

and is determined by 1
2 (n−1)(n−2) invariants τ%abc(E,F,G)∈R. Since S\λ has 4(g−1)

components, these flag triple invariants can be collected into a single triangle invariant

τ%∈R2(g−1)(n−1)(n−2).
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The really new feature introduced in this article describes how to glue these flag

triples across the (possibly uncountably many) leaves of the lamination, and simultane-

ously involves analytic and combinatorial arguments. The analytic part of this analysis is

based on the slithering map constructed in §5.1, which is a higher-dimensional analogue

of the horocyclic foliation that is at the basis of the case n=2 [42], [5]. This slithering

map enables us to control the gluing by elements of the homology of a train-track neigh-

borhood U for λ, which we now briefly describe. The precise definition of train-track

neighborhoods can be found in §4.2 (and is familiar to experts); at this point, it suffices

to say that U is obtained from S by removing 4(g−1) disjoint disks, one in each com-

ponent of S\λ. In addition, the boundary ∂U is decomposed into a horizontal boundary

∂hU and a vertical boundary ∂vU in such a way that, for each component T of S\λ,

the intersection T∩∂U is a hexagon made up of three arc components of ∂hU running

parallel to the sides of T and three arc components of ∂vU facing the spikes of T .

The geodesic lamination λ has a well-defined 2-fold orientation cover λ̂, whose leaves

are continuously oriented, and the covering map λ̂!λ uniquely extends to a 2-fold cover

Û!U . In particular, λ̂ is a geodesic lamination in the surface Û . Also, as the components

of S\λ are infinite triangles, λ is non-orientable and it follows that λ̂ and Û are connected.

Our new invariant for a Hitchin character %∈Hitn(S) is a certain shearing class

[σ%]∈H1(Û , ∂vÛ ;Rn−1). This shearing class has the property that ι∗([σ
%])=−[σ%], for

the covering involution ι of the cover Û!U and for the involution x 7!x̄ of Rn−1 that

associates x̄=(xn−1, xn−2, ..., x1) with x=(x1, x2, ..., xn−1). In particular, [σ%] can also

be interpreted as a twisted homology class [σ%]∈H1(U, ∂vU ; R̃n−1) valued in a suitable

coefficient bundle R̃n−1 over U with fiber Rn−1.

The triangle invariant τ% and the shearing class [σ%] satisfy two types of constraints.

The first constraint is a homological equality.

Proposition 0.2. (Shearing cycle boundary condition) The homological boundary

∂[σ%]∈H0(∂vÛ ;Rn−1) of the shearing class [σ%]∈H1(Û , ∂vÛ ;Rn−1) of a Hitchin charac-

ter %∈Hitn(S) is completely determined by the triangle invariant τ%∈R2(g−1)(n−1)(n−2),

by an explicit linear formula given in Lemma 5.14 and Proposition 5.15.

The second constraint is a positivity property, proved as Corollary 7.13 in §7.2.

Because the leaves of the orientation cover λ̂ are oriented, a famous construction by Ruelle

and Sullivan [38] interprets every transverse measure µ for λ̂ as a 1-dimensional de Rham

current in Û . In particular, such a transverse measure µ determines a homology class

[µ]∈H1(Û ;R). See also Proposition 4.2 for a more explicit description of this homology

class [µ].
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Proposition 0.3. (Positive intersection condition) For every transverse measure µ

for the orientation cover λ̂, the algebraic intersection vector [µ]·[σ%]∈Rn−1 of the homol-

ogy class [µ]∈H1(Û ;R) with the shearing class [σ%]∈H1(Û , ∂vÛ ;Rn−1) of %∈Hitn(S) is

positive, in the sense that all its coordinates are positive.

The shearing cycle boundary and positive intersection conditions restrict the pair

(τ%, [σ%]) to a convex polyhedral cone P in R2(g−1)(n−1)(n−2)×H1(Û , ∂vÛ ;Rn−1), with

finitely many faces. The main result of the article, proved as Theorem 8.13 in §8.3, shows

that these are the only restrictions on the triangle and shearing invariants, and that these

provide a parametrization of the Hitchin component Hitn(S).

Theorem 0.4. (Parametrization of the Hitchin component) The map Hitn(S)!P,

which to a Hitchin character %∈Hitn(S) assigns the pair (τ%, [σ%]) formed by its trian-

gle invariant τ%∈R2(g−1)(n−1)(n−2) and its shearing class [σ%]∈H1(Û , ∂vÛ ;Rn−1), is a

homeomorphism.

When n=2, all triangle invariants are trivial and the shearing class [σ%] is closed.

The above theorem is just a rephrasing of the parametrization of the Teichmüller space

T(S) by the shearing coordinates defined by λ, as developed in [42] and [5].

The shearing cycle boundary condition provides some unexpected constraints on

the triangle invariants of Hitchin characters, as well as on their shearing classes. The

following two statements are abbreviated expressions of more specific computations given

in §8.4. These restrictions are somewhat surprising when one considers the relatively large

dimension 2(g−1)(n2−1) of Hitn(S).

Proposition 0.5. An element τ∈R2(g−1)(n−1)(n−2) is the triangle invariant τ% of

a Hitchin character %∈Hitn(S) if and only if it belongs to a certain explicit subspace of

codimension
⌊

1
2 (n−1)

⌋
of R2(g−1)(n−1)(n−2).

We already saw that shearing cycles have a simple symmetry property under the

covering involution ι of Û , and therefore they belong to the twisted homology space

H1(U, ∂vU ; R̃n−1), consisting of those α∈H1(Û , ∂vÛ ;Rn−1) such that ι∗(α)=−�α. The

dimension of this twisted homology space H1(U, ∂vU ; R̃n−1) is computed in (the proof

of) Proposition 4.7, and is equal to 18(g−1)(n−1).

Proposition 0.6. A twisted relative homology class [σ]∈H1(U, ∂vU ; R̃n−1) is the

shearing class [σ%] of a Hitchin character %∈Hitn(S) if and only if it belongs to a certain

open convex polyhedral cone, bounded by finitely many faces, in an explicit linear subspace

of H1(U, ∂vU ; R̃n−1) of codimension 24(g−1) if n>3, of codimension 20(g−1) if n=3,

and of codimension 12(g−1) if n=2.
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At first, the relative homology space H1(Û , ∂vÛ ;Rn−1) of a train-track neighborhood

U , and its twisted version H1(U, ∂vU ; R̃n−1), may not appear very natural. In fact,

although we decided to privilege this more familiar point of view in this introduction,

H1(Û , ∂vÛ ;Rn−1) occurs as a space Z(λ̂, slits;Rn−1) of tangent cycles for the orientation

cover λ̂ relative to its slits, where the slits of λ̂ are lifts of the spikes of the complement

S\λ; Proposition 4.5 then provides an isomorphism

Z(λ̂, slits;Rn−1)∼=H1(Û , ∂vÛ ;Rn−1).

A relative tangent cycle α∈Z(λ̂, slits;Rn−1) assigns a vector α(k)∈Rn−1 to each arc k

transverse to λ̂, in a quasi-additive way: If k is split into two subarcs k1 and k2, then α(k)

is equal to the sum of α(k1), α(k2) and of a correction factor depending on the slit of λ̂

facing the point k1∩k2 along which k was split. In particular, Z(λ̂, slits;Rn−1) depends

only on the maximal geodesic lamination λ, and not on the train-track neighborhood U .

For the above isomorphism, the twisted homology space

H1(U, ∂vU ; R̃n−1)⊂H1(Û , ∂vÛ ;Rn−1)

corresponds to those α∈Z(λ̂, slits;Rn−1) such that α(ι(k))=�α(k) for every arc k trans-

verse to λ̂, and for the covering involution ι; in particular, H1(U, ∂vU ; R̃n−1) is also

independent of the choice of U .

The lack of additivity of a relative tangent cycle α∈Z(λ̂, slits;Rn−1) has a nice

expression in terms of the boundary map ∂:H1(Û , ∂vÛ ;Rn−1)!H0(∂vÛ ;Rn−1), and is at

the basis of the shearing cycle boundary condition of Proposition 0.2. In the classical case

where n=2, all triangle invariants are trivial, and the shearing cycle boundary condition

says that the shearing class [σ%]∈H1(Û , ∂vÛ ;Rn−1) has boundary equal to zero, and in

particular that the corresponding tangent cycle [σ%]∈Z(λ̂, slits;R) is additive with no

correction factors; such objects were called “transverse cocycles” in [7] and [5].

This point of view enables us to shed some light on the positive intersection condition

of Proposition 0.3. Given a Hitchin character %∈Hitn(S), Labourie [27] shows that

for every non-trivial γ∈π1(S) the matrix %(γ)∈PSLn(R) is diagonalizable, and that its

eigenvalues m%
a(γ) can be ordered in such a way that |m%

1(γ)|>|m%
2(γ)|>...>|m%

n(γ)|. If

we define `%(γ)∈Rn−1 by the property that its ath coordinate is

`%a(γ) = log
|m%

a(γ)|
|m%

a+1(γ)|
,

the second author showed in [15] that this formula admits a continuous linear extension

`%:CH(S)!Rn−1 to the space CH(S) of Hölder geodesic currents of S, a topological
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vector space that contains all conjugacy classes of π1(S) in a natural way; this continuous

extension `%:CH(S)!Rn−1 is unique on the subspaces of CH(S) that are of interest to

us in this paper (see Remark 7.3).

A tangent cycle α∈Z(λ̂;R), namely a relative tangent cycle α∈Z(λ̂, slits;R) with

no correction factor, defines a Hölder geodesic current α∈CH(S) (see [7]), and we can

restrict the length function of [15] to `%:Z(λ̂;R)!Rn−1.

The following result, proved as Theorem 7.5 in §7.2, relates the length vector `%(α)∈
Rn−1 to the shearing class [σ%]∈Z(λ̂, slits;Rn−1)∼=H1(Û , ∂vÛ ;Rn−1).

Theorem 0.7. (Length and intersection formula) If [σ%]∈Z(λ̂, slits;Rn−1)∼=
H1(Û , ∂vÛ ;Rn−1) is the shearing cycle of a Hitchin character %∈Hitn(S), and if α∈
Z(λ̂;R)∼=H1(Û ;R) is a tangent cycle for the orientation cover λ̂, then the length vector

`%(α) = [α]·[σ%]∈Rn−1

is equal to the algebraic intersection vector of the homology classes [α]∈H1(Û ;R) and

[σ%]∈H1(Û , ∂vÛ ;Rn−1) in the train-track neighborhood Û of λ̂.

This is the natural extension of the formula which, in the classical case n=2, relates

shearing coordinates and lengths of tangent cycles through Thurston’s symplectic form

[5, §3].

In the special case where the tangent cycle α∈Z(λ;R) is defined by a transverse

measure µ for λ̂, Theorem 0.7 establishes an equivalence between the positive intersection

condition of Proposition 0.3 and the property that all coordinates of the vector `%(µ) are

positive. In this version, this positivity property is an immediate consequence of the

Anosov property that is central to [27] (see Proposition 7.4).

The article concludes, in §9 and §10, with two brief applications of Theorems 0.4

and 0.7. The first one is concerned with the dynamics of the action of a pseudo-Anosov

diffeomorphism ϕ:S!S on the Hitchin component Hitn(S); applying the parametriza-

tion of Theorem 0.4 to the case of a maximal geodesic lamination λ containing the stable

lamination of ϕ shows that the dynamics of the action of ϕ on Hitn(S) are concentrated on

submanifolds of Hitn(S) of relatively large codimension. The second application consid-

ers the restriction of the length function `%:CH(S)!Rn−1 to Thurston’s space ML(S) of

measured laminations on S; a consequence of Theorem 0.7 is that, at each α∈ML(S), the

tangent map Tα`
%:TαML(S)!Rn−1 is linear on each of the (possibly infinitely many)

linear faces that naturally decompose TαML(S) for the piecewise linear structure of

ML(S). In particular, Tα`
% is linear at those generic α∈ML(S) where TαML(S) admits

a vector space structure (with a single face).

It should be possible to place the results of this article in a broader perspective,

by replacing the Lie group PSLn(R) with another split real algebraic group G. Indeed,
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many properties of the Hitchin component remain valid in this more general context

[23], [27], [18], [22]. In this extended framework, our triangle invariant τ% should then

associate with each component of S\λ a positive triple in the flag space B\G, where B

is a Borel subgroup of the Lie group and where B\G here denotes the left quotient. The

shearing class would be a relative homology class [σ%]∈H1(Û , ∂vÛ ; h) valued in the Cartan

algebra h of G, and equivariant with respect to the covering involution ι: Û!Û and to the

opposition involution of h multiplied by−1. The shearing cycle boundary condition would

then state that the boundary ∂[σ%]∈H0(∂vÛ ; h) is completely determined by the triangle

invariant τ%∈(B\G)4(g−1), while the positive intersection condition would require that

the algebraic intersection vector [µ]·[σ%]∈h belong to the principal Weyl chamber of h.

There are still a few missing technical steps in the existing literature to complete this

program in its full generality (and an additional stumbling block in the limited expertise

of the authors), but a large part of the extension to this more general context should

mostly be entailed by the use of the right vocabulary.
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1. Generic configurations of flags

Flags in Rn play a fundamental role in our construction of invariants of Hitchin characters.

This section is devoted to certain invariants of finite families of flags, borrowed from [18].

1.1. Flags

A flag in Rn is a family F of nested linear subspaces F (0)⊂F (1)⊂...⊂F (n−1)⊂F (n) of

Rn where each F (a) has dimension a.

A pair of flags (E,F ) is generic if every subspace E(a) of E is transverse to every

subspace F (b) of F . This is equivalent to the property that Rn=E(a)⊕F (n−a) for every a.

Similarly, a triple of flags (E,F,G) is generic if each triple of subspaces E(a), F (b)

and G(c), respectively in E, F and G, meets transversely in the sense that

dim(E(a)+F (b)+G(c)) = min{a+b+c, n}.
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(n, 0, 0)

(0, n, 0)

(0, 0, n)

Figure 1. The discrete triangle Θn, with a hexagon cycle.

Again, this is equivalent to the property that Rn=E(a)⊕F (b)⊕G(c) for every a, b and c

with a+b+c=n.

1.2. Wedge-product invariants of generic flag triples

Elementary linear algebra shows that, for any two generic flag pairs (E,F ) and (E′, F ′),

there is a linear isomorphism Rn!Rn sending E to E′ and F to F ′. However, the same

is not true for generic flag triples. Indeed, there is a whole moduli space of generic flag

triples modulo the action of GLn(R), and this moduli space can be parametrized by

invariants that we now describe. These invariants, originally introduced by Fock and

Goncharov [18], are expressed in terms of the exterior algebra Λ�(Rn) of Rn.

Consider the discrete triangle

Θn = {(a, b, c)∈Z3 : a+b+c=n and a, b, c> 0}

represented in Figure 1.

A function ϕ: Θn!Z is balanced if, for every a0, b0 and c0,∑
(a0,b,c)∈Θn

ϕ(a0, b, c) =
∑

(a,b0,c)∈Θn

ϕ(a, b0, c) =
∑

(a,b,c0)∈Θn

ϕ(a, b, c0) = 0,

namely if the sum of the ϕ(a, b, c) over each line parallel to one side of the triangle Θn is

equal to zero.

Such a balanced function ϕ defines an invariant of a generic flag triple (E,F,G) as

follows. For each a, b and c between 0 and n, the spaces Λa(E(a)), Λb(F (b)) and Λc(G(c))

are each isomorphic to R. Choose non-zero elements e(a)∈Λa(E(a)), f (b)∈Λb(F (b)) and

g(c)∈Λc(G(c)). We will use the same letters to denote their images e(a)∈Λa(Rn), f (b)∈
Λb(Rn) and g(c)∈Λc(Rn). We then define

Wϕ(E,F,G) =
∏

(a,b,c)∈Θn

(e(a)∧f (b)∧g(c))ϕ(a,b,c) ∈R,
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where we choose an isomorphism Λn(Rn)∼=R to interpret each term in the product as a

real number. The fact that the flag triple is generic guarantees that these numbers are

non-zero, while the property that ϕ is balanced is exactly what is needed to make sure that

this product is independent of the choices of the elements e(a)∈Λa(E(a)), f (b)∈Λb(F (b))

and g(c)∈Λc(G(c)) and of the isomorphism Λn(Rn)∼=R. We say that Wϕ is the wedge-

product invariant of generic flag triples associated with the balanced function ϕ: Θ!Z.

We now consider a fundamental special case. For a, b, c>1 with a+b+c=n, namely

for a point (a, b, c) in the interior of the triangle Θn, the (a, b, c)-hexagon cycle is the

balanced function ϕabc: Θn!Z defined by

ϕabc = δ(a+1,b,c−1)−δ(a−1,b,c+1)+δ(a,b−1,c+1)−δ(a,b+1,c−1)+δ(a−1,b+1,c)−δ(a+1,b−1,c),

where δ(a,b,c): Θn!Z denotes the Kronecker function such that

δ(a,b,c)(a
′, b′, c′) =

{
1, if (a, b, c) = (a′, b′, c′),

0, otherwise.

The terminology is explained by the fact that the support of ϕabc is a small hexagon in

the discrete triangle Θn, centered at the point (a, b, c); see Figure 1 for the case where

n=9 and (a, b, c)=(2, 3, 4). The wedge-product invariant associated with the hexagon

cycle ϕabc is the (a, b, c)-triple ratio

Tabc(E,F,G) =
e(a+1)∧f (b)∧g(c−1)

e(a−1)∧f (b)∧g(c+1)

e(a)∧f (b−1)∧g(c+1)

e(a)∧f (b+1)∧g(c−1)

e(a−1)∧f (b+1)∧g(c)

e(a+1)∧f (b−1)∧g(c)
.

Note that there is no triple ratio invariant when n=2, and exactly one triple ra-

tio T111(E,F,G) when n=3. See [18, §9.5] for a reduction of any triple ratio invari-

ant Tabc(E,F,G) to the 3–dimensional case, by consideration of the quotient space

Rn/(E(a−1)+F (b−1)+G(c−1))∼=R3, and its interpretation as a cross-ratio in the asso-

ciated projective plane.

Triple ratios have the following properties under permutation of the flags.

Lemma 1.1.

Tabc(E,F,G) =Tbca(F,G,E) =Tbac(F,E,G)−1.

Proof. The proof is elementary.

The natural action of the linear group GLn(R) on the flag variety Flag(Rn) descends

to an action of the projective linear group PGLn(R), quotient of GLn(R) by its center

(R\{0}) Idn consisting of all non-zero scalar multiples of the identity matrix. Note that

the projective special linear group PSLn(R) is equal to PGLn(R) if n is odd, and is an

index-2 subgroup of PGLn(R) otherwise.
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Proposition 1.2. Two generic flag triples (E,F,G) and (E′, F ′, G′) are equivalent

under the action of PGLn(R) if and only if Tabc(E,F,G)=Tabc(E
′, F ′, G′) for every

a, b, c>1 with a+b+c=n.

In addition, for any set of non-zero numbers tabc∈R\{0}, there exists a generic flag

triple (E,F,G) such that Tabc(E,F,G)=tabc for every a, b, c>1 with a+b+c=n.

Proof. See [18, §9].

In particular, the moduli space of generic flag triples (E,F,G) under the action of

PGLn(R) is homeomorphic to (R\{0})(n−1)(n−2)/2.

Corollary 1.4 below partially accounts for the important role played by the triple

ratios Tabc in Proposition 1.2. We will not really need this property, but it explains why

we will always be able to express in terms of triple ratios Tabc the various wedge-product

invariants that we will encounter in the paper.

Lemma 1.3. The hexagon cycles {ϕabc :a, b, c>1 with a+b+c=n} form a basis for

the free abelian group consisting of all balanced functions ϕ: Θn!Z.

Proof. The proof is elementary, by induction on n.

Corollary 1.4. Every wedge-product invariant can be uniquely expressed as a prod-

uct of integer powers of triple ratios.

Proof. This is an immediate consequence of Lemma 1.3.

1.3. Quadruple ratios

In addition to triple ratios, the following wedge-product invariants of generic flag triples

will play a very important role in this article.

For a=1, 2, ..., n−1, the a-th quadruple ratio of the generic flag triple (E,F,G) is

the wedge-product invariant

Qa(E,F,G) =
e(a−1)∧f (n−a)∧g(1)

e(a)∧f (n−a−1)∧g(1)

e(a)∧f (1)∧g(n−a−1)

e(a−1)∧f (1)∧g(n−a)

e(a+1)∧f (n−a−1)

e(a+1)∧g(n−a−1)

e(a)∧g(n−a)

e(a)∧f (n−a)
,

where, as usual, we consider arbitrary non-zero elements e(b)∈Λb(E(b)), f (b)∈Λb(F (b))

and g(b)∈Λb(G(b)), and where the ratios are computed in Λn(Rn)∼=R.

Note that Qa(E,G, F )=Qa(E,F,G)−1, but that this quadruple ratio usually does

not behave well under the other permutations of the flags E, F and G, as E plays a

special role in Qa(E,F,G).

For this wedge-product invariant, we can explicitly determine the formula predicted

by Corollary 1.4.
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Lemma 1.5. For a=1, 2, ..., n−1,

Qa(E,F,G) =
∏

b+c=n−a

Tabc(E,F,G),

where the product is over all integers b, c>1 with b+c=n−a. In particular,

Qn−1(E,F,G) = 1 and Qn−2(E,F,G) =T(n−2)11(E,F,G).

Proof. When computing the right-hand side of the equation, most of the terms

e(a′)∧f (b′)∧g(c′) cancel out and we are left with the eight terms of Qa(E,F,G).

1.4. Double ratios

We now consider quadruples (E,F,G,H) of flags E,F,G,H∈Flag(Rn). Such a flag

quadruple is generic if each quadruple of subspaces (E(a), F (b), G(c), H(d)) meets trans-

versely. As usual, we can restrict attention to the cases where a+b+c+d=n.

For 16a6n−1, the a-th double ratio of the generic flag quadruple (E,F,G,H) is

Da(E,F,G,H) =− e
(a)∧f (n−a−1)∧g(1)

e(a)∧f (n−a−1)∧h(1)

e(a−1)∧f (n−a)∧h(1)

e(a−1)∧f (n−a)∧g(1)
,

where we choose arbitrary non-zero elements e(a′)∈Λa
′
(E(a′)), f (b′)∈Λ1(F (b′)), g(1)∈

Λ1(G(1)) and h(1)∈Λ1(H(1)). As usual, Da(E,F,G,H) is independent of these choices.

The following statement gives a better feeling of what is actually measured by this

double ratio.

Lemma 1.6. For a generic flag quadruple (E,F,G,H), consider the decomposition

Rn=
⊕n

a=1 La, where La=E(a)∩F (n−a+1). For arbitrary non-zero vectors g∈G(1) and

h∈H(1), let ga, ha∈La be the respective projections of g and h to the line La parallel to

the other lines Lb with b 6=a. Then

Da(E,F,G,H) =− ga+1

ha+1

ha
ga
,

where the ratios gb/hb∈R are measured in the lines Lb.

Proof. This results from a simple computation.

When n=2, −D1(E,F,G,H) is the familiar cross-ratio of the lines E(1), F (1), G(1),

H(1) in R2. See [18, §9.5] for a reduction of any double ratio invariant Da(E,F,G,H) to

this 2-dimensional case, by consideration of the quotient space

Rn

E(a−1)+F (n−a−1)
∼=R2.
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Note that Da(E,F,G,H) does not really depend on the whole flags G and H, but

only on the lines G(1) and H(1). The following elementary properties indicate how it

behaves under transposition of E and F , or of G and H.

Lemma 1.7.

Da(E,F,H,G) =Da(E,F,G,H)−1

Da(F,E,G,H) =Dn−a(E,F,G,H)−1,

Da(E,F,G,K) =−Da(E,F,G,H)Da(E,F,H,K).

Proof. Again, the proof is elementary.

The minus sign in the definition of Da(E,F,G,H) is justified by the positivity

property of the next section, and in particular by Proposition 1.8.

1.5. Positivity

An ordered family of flags (E1, E2, ..., Em)∈Flag(Rn)m is positive if both the following

conditions hold:

(1) for every distinct i, j and k, and for every a, b, c>1 with a+b+c=n, the triple

ratio Tabc(Ei, Ej , Ek) is positive;

(2) for every distinct i, j, k and l with i<k<j<l or k<i<l<j, and for every

16a6n−1, the double ratio Da(Ei, Ej , Ek, El) is positive.

When n=2, the first condition is irrelevant. The second condition just means that,

up to reflection, the flags E1, E2, ..., Em∈Flag(R2)=RP1 occur in this order around the

projective line RP1.

Fock and Goncharov [18, §5] give a much more conceptual definition of positivity,

building on earlier work of Lusztig [31], [32]. In particular, they prove the following

result.

Proposition 1.8. ([18]) If the flag m-tuple (E1, E2, ..., Em) is positive, any flag

m-tuple obtained by dihedral permutation of the Ei is also positive.

Recall that a dihedral permutation is either a cyclic permutation, or the composition

of the order reversal (E1, E2, ..., Em) 7!(Em, Em−1, ..., E1) with a cyclic permutation.

2. Geodesic laminations

Geodesic laminations are a now very classical tool in 2-dimensional topology and ge-

ometry. They occur in many different contexts, for instance when one takes limits of
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sequences of simple closed curves. We state here a few basic definitions and facts, and

refer to [39], [14], [36], [8] for proofs and background.

To define geodesic laminations, one first chooses a metric m of negative curvature

on the surface S.

An m-geodesic lamination is a closed subset λ⊂S that can be decomposed as a

disjoint union of simple complete m-geodesics, called its leaves. Recall that a geodesic

is complete if it cannot be extended to a longer geodesic, and it is simple if it has no

transverse self-intersection point. The leaves of a geodesic lamination can be closed or

bi-infinite. A geodesic lamination can have finitely many leaves (as in the case considered

in [9]), or uncountably many leaves.

An m-geodesic lamination has measure zero, and in fact Hausdorff dimension 1 [1],

and its decomposition as a union of leaves is unique. The complement S\λ of an m-

geodesic lamination λ is a surface of finite topological type, bounded by finitely many

leaves of λ. The completion of S\λ for the path metric induced by m is a finite area

surface with geodesic boundary; it is the union of a compact part and of finitely many

spikes homeomorphic to [0, 1]×[0,∞[, where {0, 1}×[0,∞[ is contained in two leaves of λ.

The width of these spikes decreases exponentially in the sense that the parametrization

by [0, 1]×[0,∞[ can be chosen so that its restriction to each {x}×[0,∞[ has speed 1, and

so that the length of each arc [0, 1]×{t} decreases exponentially with t.

Because the leaves of λ are disjoint, every point of S has a neighborhood U homeo-

morphic to [0, 1]×[0, 1] for which the intersection U∩λ corresponds to K×[0, 1] for some

totally disconnected compact subset K⊂[0, 1]; beware that, in general, the homeomor-

phism cannot be made differentiable, only Hölder bicontinuous.

We will make heavy use of transverse arcs for λ. These are arcs differentiably

immersed in S that are transverse to the leaves of λ. In addition, we require that the

endpoints of such a transverse arc be disjoint from λ.

The notion of geodesic lamination is independent of the choice of the negatively

curved metric m in the sense that, if m′ is another negatively curved metric on S, there

is a natural one-to-one correspondence between m-geodesic laminations and m′-geodesic

laminations.

A geodesic lamination λ is maximal if it is not contained in any other geodesic

lamination. This is equivalent to the property that each component of its complement

S\λ is a triangle, bounded by three infinite leaves of λ and containing three spikes of S\λ.

If the surface S has genus g, an Euler characteristic argument shows that the number of

triangle components of the complement S\λ of a maximal geodesic lamination is equal

to 4(g−1).

Every geodesic lamination is contained in a maximal geodesic lamination.
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We can think of maximal geodesic laminations as some kind of triangulations of

the surface S, where the edges are geodesic and where the vertices have been pushed

to infinity. This point of view explains why maximal geodesic laminations are powerful

tools for many problems, such as the ones considered in the current article.

3. Triangle invariants

Let %:π1(S)!PSLn(R) be a Hitchin homomorphism. We will use a maximal geodesic

lamination λ to construct invariants of the corresponding character %∈Hitn(S).

3.1. The flag curve

The key to the definition of these invariants is the following construction of Labourie [27].

Let T 1S and T 1S̃ be the unit tangent bundles of the surface S and of its universal

cover S̃, respectively. For convenience, lift the homomorphism %:π1(S)!PSLn(R) to a

homomorphism %′:π1(S)!SLn(R). The fact that such a lift exists is classical when n=2,

and therefore also holds when %:π1(S)!PSLn(R) comes from a discrete representation

π1(S)!PSL2(R); the existence of the lift in the general case follows by connectedness of

the Hitchin component Hitn(S), and by homotopy invariance of the obstruction to lift.

We can then consider the twisted product

T 1S×%′Rn =
T 1S̃×Rn

π1(S)
,

where the fundamental group π1(S) acts on T 1S̃ by its usual action on the universal cover

S̃, and acts on Rn by %′. The natural projection T 1S×%′Rn!T 1S presents T 1S×%′Rn

as a vector bundle over T 1S with fiber Rn.

Endow the surface S with an arbitrary metric of negative curvature. This defines a

circle at infinity ∂∞S̃ for the universal cover S̃, and a geodesic flow on the unit tangent

bundle T 1S. It is well known (see for instance [20], [11] and [19]) that these objects are

actually independent of the choice of the negatively curved metric, at least if we do not

care about the actual parametrization of the geodesic flow (which is the case here).

The geodesic flow (gt)t∈R of T 1S has a natural flat lift to a flow (Gt)t∈R on the total

space T 1S×%′Rn. The flatness property here just means that the flow (Gt)t∈R is the

projection of the flow (G̃t)t∈R on T 1S̃×Rn that acts by the geodesic flow (g̃t)t∈R of T 1S̃

on the first factor, and by the identity IdRn on the second factor.

Endow each fiber of the vector bundle T 1S×%′Rn!T 1S with a norm ‖ · ‖ depending

continuously on the corresponding point of T 1S.
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Theorem 3.1. (Labourie [27, Theorem 4.1]) If %:π1(S)!PSLn(R) is a Hitchin

homomorphism, the vector bundle T 1S×%′Rn!T 1S admits a unique decomposition as a

direct sum L1⊕L2⊕...⊕Ln of n line sub-bundles La!T
1S such that

(1) each line bundle La is invariant under the lift (Gt)t∈R of the geodesic flow ;

(2) for every a>b, there exist constants Aab, Bab>0 such that, for every va∈La and

vb∈Lb in the same fiber of T 1S×%′Rn and for every t>0,

‖Gt(vb)‖
‖vb‖

6Aab
‖Gt(va)‖
‖va‖

e−Babt.

The second property is clearly independent of the choice of the norm ‖ · ‖. It is

referred to as the Anosov property of the Hitchin homomorphism %. This relative property

does not say anything about whether the flow (Gt)t∈Rn expands or contracts the fibers

of any individual sub-bundle La, but states that, when a<b, the flow (Gt)t∈Rn contracts

the fibers of Lb much more than those of La. Writing this in a more intrinsic way, this

means that (Gt)t∈Rn induces on the line bundle Hom(La, Lb) a flow that is uniformly

contracting when a>b.

Lift the sub-bundles La of T 1S×%′Rn=(T 1S̃×Rn)/π1(S) to sub-bundles L̃a of

T 1S̃×Rn. Because the line sub-bundles La are invariant under the lift (Gt)t∈R of the

geodesic flow, the fiber of L̃a over x̃∈S̃ is of the form {x̃}×L̃a(g) for some line L̃a(g)⊂Rn

depending only on the orbit g of x̃ for the geodesic flow of T 1S̃.

The line L̃a(g)⊂Rn depends on the orbit g of the geodesic flow of T 1S̃ or, equiv-

alently, on the corresponding oriented geodesic g of S̃. The Anosov property has the

following relatively easy consequence. Define a flag E(g)∈Flag(Rn) by the property that

E(g)(a)=L̃1(g)⊕L̃2(g)⊕...⊕L̃a(g); then E(g) depends only on the positive endpoint of g.

More precisely, we have the following result.

Proposition 3.2. (Labourie [27, Theorem 4.1]) For a Hitchin homomorphism

%:π1(S)−!PSLn(R),

there exists a unique map F%: ∂∞S̃!Flag(Rn) such that

(1) F% is Hölder continuous for the visual metric of ∂∞S̃ and for an arbitrary

riemannian metric on Flag(Rn);

(2) for every oriented geodesic g of S̃ with positive endpoint x̃+∈∂∞S̃, the image

F%(x̃+) is equal to the flag E(g) defined above.

In addition, F% is %-equivariant in the sense that F%(γx̃)=%(γ)(F%(x̃)) for every

x̃∈∂∞S̃ and γ∈π1(S).
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By definition, this map F%: ∂∞S̃!Flag(Rn) is the flag curve of the Hitchin homo-

morphism %:π1(S)!PSLn(R). It is independent of the choice of the lift %′:π1(S)!

SLn(R) of %:π1(S)!PSLn(R), and of the negatively curved metric on S used to define

the geodesic flow of the unit tangent bundle T 1S.

Note that the line decomposition Rn=
⊕n

a=1 L̃a(g), associated by Theorem 3.1 with

an oriented geodesic g of S̃, is easily recovered from the flag curve F%: ∂∞S̃!Flag(Rn)

by the property that L̃a(g)=F%(x̃+)(a)∩F%(x̃−)(n−a+1) for the positive and negative end-

points x̃+, x̃−∈∂∞S̃ of g. The main content of Proposition 3.2 is that, for two oriented

geodesics g and g′ of S̃ that share the same positive endpoint x̃+∈∂∞S̃, the corresponding

line decompositions Rn=
⊕n

a=1 L̃a(g) and Rn=
⊕n

a=1 L̃a(g′) may be different but define

the same linear subspaces F%(x̃+)(a)=
⊕a

b=1 L̃b(g)=
⊕a

b=1 L̃b(g
′) for every a=1, 2, ..., n.

See also [21] for a nice exposition of Theorem 3.1 and Proposition 3.2.

The flag curve F% has the following important positivity property.

Theorem 3.3. (Fock–Goncharov [18, Theorem 1.15]) For every finite set of distinct

points x1, x2, ..., xk∈∂∞S̃ occurring in this order on the circle at infinity ∂∞S̃, the flag

k-tuple (F%(x1),F%(x2), ...,F%(xk)) is positive in the sense of §1.5.

3.2. Triangle invariants of Hitchin characters

We now define a first set of invariants for the Hitchin character represented by a homo-

morphism %:π1(S)!PSLn(R).

The complement of the maximal geodesic lamination λ consists of finitely many

infinite triangles T1, T2, ..., Tm, each with three spikes.

Consider such a triangle component T of S\λ, and select one of its spikes s. Lift T

to an ideal triangle T̃ in the universal cover S̃, and let s̃ be the spike of T̃ corresponding

to s. The spike s̃ uniquely determines a point of the circle at infinity ∂∞S̃, which we will

also denote by s̃.

Label the spikes of T as s, s′ and s′′ in counterclockwise order around T , and

let s̃, s̃′, s̃′′∈∂∞S̃ be the corresponding points of the circle at infinity. The flag triple

(F%(s̃),F%(s̃
′),F%(s̃

′′)), associated with s̃, s̃′, s̃′′∈∂∞S̃ by the flag curve

F%: ∂∞S̃−!Flag(Rn),

is positive by Theorem 3.3. We can therefore consider the logarithms

τ%abc(s) = log Tabc(F%(s̃),F%(s̃
′),F%(s̃

′′))

of its triple ratios, defined for every a, b, c>1 with a+b+c=n. By %-equivariance of the

flag curve F%, these triple ratio logarithms depend only on the triangle T and on the

spike s of T , and not on the choice of the lift T̃ .
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The following statement indicates how the invariant τ%abc(s)∈R changes if we choose

a different vertex of the triangle T .

Lemma 3.4. If s, s′ and s′′ are the three spikes of the component T of S\λ, indexed

counterclockwise around T , then

τ%abc(s) = τ%bca(s′) = τ%cab(s
′′).

Proof. This is an immediate consequence of Lemma 1.1.

By invariance of triple ratios under the action of PGLn(R) on Flag(Rn), it is imme-

diate that the triangle invariants τ%abc(s) depend only on the character %∈Hitn(S), and

not on the homomorphism %:π1(S)!PSLn(R) representing it.

Because of Lemma 3.4, we can think of the invariant τ%abc(s) as mainly associated

with the triangle component T of S\λ that has the spike s as a vertex, since choosing a

different vertex of T only affects the order in which the indices a, b and c are considered.

For this reason, we will refer to the τ%abc(s) as the triangle invariants of the Hitchin

character %∈Hitn(S).

Remark 3.5. The companion article [9] uses a clockwise labeling convention for the

vertices of a triangle. As a consequence, the triangle invariants of [9] are the opposite of

those introduced here.

4. Tangent cycles for a geodesic lamination

The second type of invariants associated with a Hitchin character %∈Hitn(S) are more

closely tied to the maximal geodesic lamination λ, and have a homological flavor. This

section is devoted to the definitions and basic properties of the corresponding objects.

Because of the scope of this article, we are restricting attention to maximal geo-

desic laminations. However, much of the discussion can be adapted to general geodesic

laminations.

4.1. Tangent cycles

Let λ̂ be the orientation cover of the geodesic lamination λ, consisting of all pairs (x, o),

where x∈λ and o is a continuous orientation of the leaves of λ near x. The map (x, o) 7!x
defines a 2-fold covering map λ̂!λ.

Intuitively, a tangent cycle for λ̂ is a certain real-valued local weight for the leaves of

λ̂, and defines a 1-dimensional de Rham current supported in λ̂ as in [38]. Tangent cycles

were called “transverse cocycles” in [7] and in subsequent papers, with the discrepancy



220 f. bonahon and g. dreyer

being explained by Poincaré duality. The change in terminology is motivated by the

relative tangent cycles that will be introduced in §4.4.

Let U be a neighborhood of the geodesic lamination λ in S. If U is small enough

that it avoids at least one point of each component of S\λ, the cover λ̂!λ extends to a

2-fold cover Û!U for some surface Û .

A tangent cycle α for the geodesic lamination λ̂ is the assignment of a number

α(k)∈R to each arc k⊂Û transverse to λ̂ such that the the following conditions hold:

(1) α is finitely additive, in the sense that α(k)=α(k1)+α(k2) whenever the arc k

is split into two transverse arcs k1 and k2;

(2) α is invariant under homotopy respecting λ̂, in the sense that α(k)=α(k′) when-

ever the transverse arcs k and k′ are homotopic by a homotopy respecting λ̂.

To be more precise in the definitions, a transverse arc is a closed differentiable arc

embedded in the surface Û , whose boundary is disjoint from λ̂ and whose interior has

transverse intersection with the leaves of λ̂ that it meets. Such an arc is not assumed

to be oriented. Two transverse arcs k and k′ are homotopic respecting λ̂ if there is a

continuous homotopy H: [0, 1]×[0, 1]!Û , restricting to homeomorphisms [0, 1]×{0}!k
and [0, 1]×{1}!k′, such that H−1(λ̂)=K×[0, 1] for some closed subset K⊂[0, 1]. (Ex-

perts will know that in general H cannot be chosen differentiable, but this subtlety is

irrelevant here.)

It easily follows from the above two conditions that α(k)=0 for every arc k disjoint

from λ̂. As a consequence, the notion of tangent cycle is independent of the choice of the

neighborhood U .

A well-known example of tangent cycle are transverse measures for λ̂. These can

be defined as tangent cycles µ such that µ(k)>0 for every transverse arc k. Indeed, this

positivity property enhances the finite additivity condition (1) to countable additivity,

so that a positive tangent cycle defines on each transverse arc k a measure with support

k∩λ̂ that is invariant under homotopy respecting λ̂. See, for instance, [7, Proposition

18].

4.2. Train-track neighborhoods

To determine the space of tangent cycles for the geodesic lamination λ, we will use a

very specific type of neighborhood U for λ. Train tracks and train-track neighborhoods

are standard tools to work with geodesic laminations. See, for instance, [39] and [36]

for an introduction to these notions, with the warning that many slight variations in

conventions and terminology occur in the existing literature.

A (trivalent) train-track neighborhood for the geodesic lamination λ is a closed neigh-
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borhood U of λ which can be decomposed as a union of finitely many embedded rectangles

Ri such that the following conditions are satisfied:

(1) the boundary of each rectangle Ri∼=[0, 1]×[0, 1] is divided into a horizontal

boundary ∂hRi=[0, 1]×{0, 1} and a vertical boundary ∂vRi={0, 1}×[0, 1];

(2) each component of the intersection Ri∩Rj of two distinct rectangles Ri and Rj

is, up to swapping i and j, a component of ∂vRi contained in ∂vRj and containing one

of the endpoints of ∂vRj ;

(3) each of the four endpoints of ∂vRi is contained in some rectangle Rj different

from Ri;

(4) the leaves of λ are transverse to the arcs {x}×[0, 1] in each rectangle Ri∼=
[0, 1]×[0, 1];

(5) a fifth condition indicated below is satisfied.

By construction, the boundary ∂U of the train-track neighborhood U naturally splits

into two pieces. The horizontal boundary ∂hU is the union of the horizontal boundaries

∂hRi of all rectangles Ri. The vertical boundary consists of those points of ∂U that are

contained in the vertical boundary ∂vRi of some rectangle Ri.

We can now state the missing condition.

(5) no component of S\U is a disk with 0, 1 or 2 components of the vertical boundary

∂vU in its closure.

In particular, the arcs {x}×[0, 1] of each rectangleRi∼=[0, 1]×[0, 1] provide a foliation

of U , whose leaves are called the ties of the train-track neighborhood. A tie is generic if

it meets the boundary of U only at its endpoints. Otherwise, it is singular.

The origin of the train track terminology should become apparent when U is chosen

so that its ties are relatively short. See Figure 2. In particular, a singular tie is also

often called a switch, and the rectangles Ri are the branches of U . The branches of the

train-track neighborhood U correspond to the edges of the (1-dimensional) train track

associated with U , which explains our frequent use of the letter e to denote a branch.

The definitions are such that a singular tie t is adjacent to three branches Ri, Rj

and Rk, in such a way that t is equal to a component of the vertical boundary ∂vRi, and

is also the union of a component of ∂vRj , of a component of ∂vRk and of a component

of ∂vU . The rectangles Rj and Rk are not necessarily distinct.

Every geodesic lamination admits a train-track neighborhood; see for instance [39]

and [36].

The above definitions make sense for any geodesic lamination. When the geodesic

lamination λ is maximal, there is a crucial property of its train-track neighborhoods U

that we will use on a regular basis.
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λRi

Rj

Rk

Figure 2. A train-track neighborhood.

λ

S\U

U

∂vU

∂hU

Figure 3. Train-track neighborhoods and maximal geodesic laminations.

Proposition 4.1. Let U be a train-track neighborhood of the maximal geodesic lam-

ination λ. Then, every component T of the complement S\λ contains exactly one com-

ponent H=T \U of S\U ; this component H is a hexagon, namely a disk whose boundary

is the union of three components of the horizontal boundary ∂hU and three components

of the vertical boundary ∂vU . In addition, the foliation of T∩U by the ties of U is as

indicated in Figure 3.

Proof. Since λ is assumed to be maximal, its complement consists of infinite trian-

gles. The property is then easily proved by extending the foliation of U by its ties to a

foliation of S with saddle-type singularities, and by using an index computation on each

component of the complement S\λ.

Incidentally, another index argument applied to the whole surface S shows that the

complement S\U consists of 4(g−1) hexagons. In particular, this proves that the comple-

ment S\λ consists of 4(g−1) triangles. It also follows that the train-track neighborhood

U has 12(g−1) switches and 18(g−1) branches.
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4.3. Homological interpretation of tangent cycles

Train-track neighborhoods provide a convenient tool to perform computations in the

vector space C(λ̂;R) consisting of all tangent cycles for the orientation cover λ̂ of λ.

Let U be a train-track neighborhood of the maximal geodesic lamination λ. Using

Proposition 4.1, the orientation cover map λ̂!λ has a unique extension to a cover Û!U .

Note that λ̂ is a geodesic lamination in the surface Û , and that Û is a train-track neigh-

borhood of λ̂. Also, each component of Û \λ̂ is an annulus bounded on one side by a

chain of six leaves of λ̂, and on the other side by a dodecagon made up of six components

of the horizontal boundary ∂hÛ and six components of the vertical boundary ∂vÛ .

The leaves of the orientation cover λ̂ are canonically oriented (use the orientation o

near the point (x, o)∈λ̂). This enables us to orient each tie k of Û from left to right with

respect to this canonical orientation of the leaves of λ̂. Indeed, Proposition 4.1 guarantees

that, for each component d of k\λ̂, the left-to-right orientations of k at the endpoints

of d coincide; as a consequence, all leaves of λ̂ meeting k induce the same left-to-right

orientation for k.

Proposition 4.2. A tangent cycle α∈Z(λ̂;R) uniquely determines a homology class

[α]∈H1(Û ;R) by the property that

α(k) = [k]·[α]

for every generic tie k of the train-track neighborhood Û , where [k]·[α] is the algebraic

intersection number of [α]∈H1(Û ;R) with the relative homology class [k]∈H1(Û , ∂Û ;R)

defined by the tie k, endowed with the above left-to-right orientation.

In addition, the rule α 7![α] defines a linear isomorphism Z(λ̂;R)!H1(Û ;R).

Proof. Because the geodesic lamination λ is maximal, Proposition 4.1 shows that it

is tightly carried by the train track U , in the sense that each component of U \λ is an

annulus. It follows that λ̂ is tightly carried by Û . The result is then a consequence of [7,

Theorem 11].

Lemma 4.3. If the surface S has genus g,

C(λ̂;R)∼=H1(Û ;R)∼=R12g−11.

Proof. Since the complement S\λ consists of infinite triangles, the geodesic lami-

nation λ is non-orientable. This implies that λ̂ is connected, and therefore so is Û . By

definition of the Euler characteristic χ,

dimH1(Û ;R) =−χ(Û)+dimH0(Û ;R) =−χ(Û)+1 =−2χ(U)+1.

We observed that the complement of U in S consists of 4(g−1) hexagons. Therefore,

χ(U)=χ(S)−4(g−1)=−6(g−1). The result follows.
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4.4. Tangent cycles relative to the slits

We now relax the additivity condition for a tangent cycle.

Let U be a neighborhood of λ in S that avoids at least one point of each component

of S\λ. For instance, U can be a train-track neighborhood of λ. Extend the orientation

cover λ̂!λ to a 2-fold cover Û!U . The complement Û \λ̂ has a certain number of

infinite spikes, in fact 24(g−1) spikes because the complement S\λ consists of 4(g−1)

infinite triangles and because each spike of S\λ lifts to two spikes of Û \λ̂. In particular,

the spikes of Û \λ̂ are really independent of the choice of the neighborhood U . For this

reason, we will also refer to the spikes of Û \λ̂ as the slits of λ̂.

We need to restrict our attention to a special class of transverse arcs for λ̂. An arc

k⊂Û is tightly transverse to the geodesic lamination λ̂ if it is transverse to λ̂, if it has

non-empty intersection with λ̂ and if, for every component d of k\λ̂, one of the following

holds:

• d contains one of the endpoints of k;

• d separates one of the spikes of Û \λ̂ from the rest of Û \λ̂.

A fundamental example arises when U is a train-track neighborhood of the maximal

geodesic lamination λ, so that its lift Û is a train-track neighborhood of λ̂. It then follows

from Proposition 4.1 that every tie of Û is tightly transverse to λ̂.

The slits of λ̂, namely the spikes of Û \λ̂, come in two types because of the canonical

orientation of the leaves of the orientation cover λ̂: the positive slits s where the two

leaves of λ̂ that are adjacent to s are oriented towards s for the canonical orientation

of λ̂, and the negative slits where these two leaves are oriented away from s. Define the

sign ε of the slit s of Û \λ̂ by

ε(s) =

{
+1, if s is positive,

−1, if s is negative.

For mnemonic purposes, it may be useful to observe that our positive/negative

terminology is compatible with the boundary orientation coming from orientation of the

leaves of λ̂. A positive slit corresponds to the positive endpoints of the two leaves of λ̂

that are adjacent to it, whereas a negative slit corresponds to their negative endpoints.

An R-valued tangent cycle relative to the slits for λ̂ assigns a number α(k)∈R to

each arc k⊂Û tightly transverse to λ̂ in such a way that

• α is, as before, invariant under homotopy respecting λ̂ in the sense that α(k)=

α(k′) whenever the transverse arcs k and k′ are homotopic by a homotopy that keeps

each point of k∩λ̂ in the same leaf of λ̂;

• α is quasi-additive in the following sense: there is a number ∂α(s)∈R associated
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with each slit s of λ̂ such that

α(k) =α(k1)+α(k2)−ε(s)∂α(s)

whenever the arc k⊂Û is tightly transverse to λ̂, the arcs k1 and k2 are obtained by

splitting k at a point x∈k\λ̂ contained in a component d of k\λ̂ that is disjoint from ∂k,

s is the spike separated from the rest of Û \λ̂ by the component d, and ε(s)=±1 is its

sign as defined above.

The function ∂α: {slits of λ̂}!R is the boundary of the relative cycle α. We could

have combined ∂α with the sign ε to create a single function {slits of λ̂}!R, but the

current convention simplifies the homological interpretation of relative tangent cycles

that is given in Proposition 4.5 below. This homological interpretation will also explain

the boundary terminology.

We let Z(λ̂, slits;R) denote the space of tangent cycles relative to the slits for λ̂.

Using the quasi-additivity property, one easily shows that the notion of tangent cycle

relative to the slits is independent of the choice of the neighborhood U of λ.

These relative tangent cycles generalize the tangent cycles of §4.1, as indicated by

the following statement.

Lemma 4.4. There is a natural correspondence between the set Z(λ̂;R) of tangent

cycles for λ̂ and the set {α∈Z(λ̂, slits;R):∂α=0} of tangent cycles relative to the slits

with boundary zero.

Proof. A relative tangent cycle with boundary equal to zero is additive. So the only

point that requires some discussion is the fact that relative tangent cycles are restricted

to arcs tightly transverse to λ̂, whereas the definition of tangent cycles involves all arcs

transverse to λ̂. In particular, a transverse arc k is allowed to backtrack so that a

component d of k\λ̂ has both endpoints on the same leaf of λ̂, or to cut a component of

Û \λ̂ diagonally so that the endpoints of a component d of k\λ̂ sit on leaves of λ̂ that are

not asymptotic to each other; both possibilities are forbidden for tightly transverse arcs.

However, every arc k transverse to λ̂ can be split into the union of finitely many arcs

k1, k2, ..., kl that are tightly transverse to λ̂. It easily follows that every relative tangent

cycle α∈Z(λ̂, slits;R) with ∂α=0 uniquely extends to a tangent cycle, by the property

that α(k)=
∑l
i=1 α(ki) for every transverse arc k split as above into finitely many tightly

transverse arcs ki. Indeed, the additivity property guarantees that this α(k) does not

depend on the decomposition of k into tightly transverse arcs.
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4.5. Homological interpretation of tangent cycles relative to the slits

We now focus on a train-track neighborhood U of the maximal geodesic laminations λ. As

before, let λ̂ be the orientation cover of λ, and extend the covering map λ̂!λ to a cover

Û!U . The canonical orientation of the leaves of λ̂ provides a left-to-right orientation

for the ties of Û .

By Proposition 4.1, there is a one-to-one correspondence between the slits of λ̂ and

the components of the vertical boundary ∂vÛ . Indeed, each component c of ∂vÛ faces

a unique spike s of U \λ̂ (that is, a slit of λ̂) in the sense that, if k is the singular tie of

Û that contains c and if d is the component of k\λ̂ that contains c, then d separates s

from the rest of Û \λ̂; see Figure 3.

For a relative tangent cycle α∈Z(λ̂, slits;R), the boundary ∂α: {slits of λ̂}!R there-

fore assigns a real-valued weight to each component of ∂vÛ , and therefore can be inter-

preted as an element of H0(∂vÛ ;R).

Proposition 4.5. Let U be a train-track neighborhood of the maximal geodesic lam-

ination λ, and let Û be its lift to a train-track neighborhood of the orientation cover λ̂.

A tangent cycle α∈Z(λ̂, slits;R) relative to the slits of λ̂ uniquely determines a relative

homology class [α]∈H1(Û , ∂vÛ ;R) by the property that

α(k) = [k]·[α]

for every generic tie k of the train-track neighborhood Û , where [k]·[α] is the algebraic

intersection number of [α]∈H1(Û , ∂vÛ ;R) with the relative homology class

[k]∈H1(Û , ∂hÛ ;R)

defined by the tie k, endowed with the above left-to-right orientation.

In addition, the rule α 7![α] defines a linear isomorphism

Z(λ̂, slits;R)∼=H1(Û , ∂vÛ ;R),

for which the boundary ∂α: {slits of λ̂}!R of the relative tangent cycle α corresponds

to the image of [α]∈H1(Û , ∂vÛ ;R) under the boundary homomorphism

∂:H1(Û , ∂vÛ ;R)−!H0(∂vÛ ;R).

Proof. We split the proof into a few steps to improve readability.

Step 1. Construct a linear map ϕ:Z(λ̂, slits;R)!H1(Û , ∂vÛ ;R).
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Pick a generic tie ke in each branch e of Û . An easy homological computation (for

instance using a Mayer–Vietoris-type argument) shows that, as e ranges over all branches

of Û , the relative homology classes [ke] form a basis for H1(Û , ∂hÛ ;R).

If we are given a relative tangent cycle α∈Z(λ̂, slits;R), the map [ke] 7!α(ke) there-

fore extends to a linear map H1(Û , ∂hÛ ;R)!R. By Poincaré–Lefschetz duality and since

the boundary ∂Û is the union of ∂hÛ and ∂vÛ , there consequently exists a unique class

[α]∈H1(Û , ∂vÛ ;R) such that α(ke)=[ke]·[α] for every branch e.

An arbitrary generic tie k of Û is contained in a branch e. Therefore, [k]=[ke] in

H1(Û , ∂hÛ ;R), and α(k)=α(ke) by invariance of α under homotopy respecting λ̂. This

proves that α(k)=[k]·[α] for every generic tie k of Û . As a consequence, [α] satisfies the

identity indicated in the statement of Proposition 4.5.

This provides a map ϕ:Z(λ̂, slits;R)!H1(Û , ∂vÛ ;R), associating the above class

[α]∈H1(Û , ∂vÛ ;R) with α∈Z(λ̂, slits;R).

Step 2. Construct a linear map ψ:H1(Û , ∂vÛ ;R)!Z(λ̂, slits;R).

We first associate a homology class [k]∈H1(Û , ∂hÛ ;R) with each arc k that is tightly

transverse to λ̂.

A key observation is that the canonical orientation of λ̂ specifies a natural orientation

for k. Indeed, the definition of tight transversality implies that, if the arc k is tightly

transverse to λ̂, the canonical orientations of the leaves of λ̂ passing through the endpoints

of a component d of k\λ̂ induce the same left-to-right orientation for k. As a consequence,

all leaves of λ̂ define the same left-to-right orientation for k. We orient k with this

orientation.

We now extend the tightly transverse arc k to an arc k′⊂Û with ∂k′⊂∂hÛ . There is a

natural one-to-one correspondence between the components of the horizontal boundary

∂hÛ and the boundary leaves of λ̂ (namely those which are in the boundary of Û \λ̂,

counting isolated leaves twice); indeed, Proposition 4.1 shows that all ties originating

from a component of ∂hÛ leave Û \λ̂ on the same boundary leaf of λ̂. For each component

d of k\λ̂ containing an endpoint of k, we can extend d to an arc d′⊂Û \λ̂ going from

a boundary leaf l of λ̂ to the component of ∂hÛ that faces l in the component of Û \λ̂
containing d, in the homotopy class specified by the arcs in ties of Û that connect l to

∂hÛ . Performing this operation for each of the two components d of k\λ̂ that contain an

endpoint of k, we have extended k to an oriented arc k′⊃k whose boundary is contained

in ∂hÛ . There are many possible choices for k′ but all give the same relative homology

class in H1(Û , ∂hÛ ;R), which we denote by [k].

Given a relative homology class c∈H1(Û , ∂vÛ ;R), we can consider, for every arc k

tightly transverse to λ̂, the algebraic intersection number

αc(k) = [k]·c∈R



228 f. bonahon and g. dreyer

λ̂

k1

k2

kss

The positive slit case.

λ̂

k1

k2

kss

The negative slit case.

Figure 4. Splitting a tightly transverse arc.

of c with the homology class [k]∈H1(Û , ∂hÛ ;R) associated with k as above. We want to

show that this defines a relative tangent cycle Z(λ̂, slits;R).

The invariance of αc(k) under homotopy of k respecting λ̂ is immediate.

We need to check the quasi-additivity property. Let the arc k⊂Û be tightly trans-

verse to λ̂, let k1 and k2 be obtained by splitting k at a point x∈k\λ̂ contained in a

component d of k\λ̂ that is disjoint from ∂k, and let s be the spike separated from the

rest of Û \λ̂ by the component d. Let ks be the component of ∂vÛ that faces the slit s.

Orient ks by the boundary orientation of ∂Û .

Then, by the definition of the relative homology classes [k], [k1], [k2]∈H1(Û , ∂hÛ ;R),

including the left-to-right choice of orientation for k, one has

[k] = [k1]+[k2]+ε(s)[ks]∈H1(Û , ∂hÛ ;R),

where ε(s)=±1 is the sign of the slit s. See Figure 4. Taking intersection numbers with

c∈H1(Û , ∂vÛ ;R), it follows that

αc(k) =αc(k1)+αc(k2)+ε(s)[ks]·c.

This proves that αc is a tangent cycle for λ̂ relative to its slits, with boundary ∂αc

defined by the property that ∂αc(s)=−[ks]·c for every slit s. The minus sign comes from

our convention in the definition of quasi-additivity for relative tangent cycles in §4.4.

We define ψ:H1(Û , ∂vÛ ;R)!Z(λ̂, slits;R) by the property that ψ(c)=αc for every

c∈H1(Û , ∂vÛ ;R).

Step 3. For every c∈H1(Û , ∂vÛ ;R) and every slit s of λ̂, ∂ψ(c)(s)∈R is the weight

associated by ∂c∈H0(∂vÛ ;R) with the component ks of ∂vÛ facing s.

This is just a rephrasing of the property that ∂αc(s)=−[ks]·c.

Step 4. The maps

ϕ:Z(λ̂, slits;R)−!H1(Û , ∂vÛ ;R) and ψ:H1(Û , ∂vÛ ;R)−!Z(λ̂, slits;R)

are inverse of each other.
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Pick a generic tie ke in each branch e of Û . By construction, the image c=ϕ(α) of

α∈Z(λ̂, slits;R) is defined by the property that α(ke)=[ke]·c for every branch e. Con-

versely, for every c∈H1(Û , ∂vÛ ;R), α=ψ(c) is characterized by the fact that α(k)=[k]·c
for every arc k tightly transverse to λ̂.

In particular, [ke]·ϕ(ψ(c))=[ke]·c for every branch e, and it follows that ϕ(ψ(c))=c

in H1(Û , ∂vÛ ;R) by Poincaré–Lefschetz duality, since the [ke] generate H1(Û , ∂hÛ ;R).

This proves that ϕ�ψ is equal to the identity.

Conversely, for a relative tangent cycle α∈Z(λ̂, slits;R), the same argument shows

that ψ(ϕ(α))(ke)=α(ke) for every branch e of Û . For a slit s, let ks be the component of

∂vÛ that faces s, let e be the branch of Û that contains ks, and let e1 and e2 be the other

two branches that touch ks. Then, by quasi-additivity of α and ψ(ϕ(α))∈Z(λ̂, slits;R),

ε(s)∂α(s) =α(ke1)+α(ke2)−α(ke) =ψ(ϕ(α))(ke1)+ψ(ϕ(α))(ke2)−ψ(ϕ(α))(ke)

= ε(s)∂ψ(ϕ(α))(s).

This proves that ψ(ϕ(α))−α has boundary zero, and is therefore a tangent cycle by

Lemma 4.4. Since ψ(ϕ(α))(ke)−α(ke)=0 for every branch e of Û , it follows from Propo-

sition 4.2 that ψ(ϕ(α))−α=0.

This proves that ψ�ϕ is the identity, and completes the proof of Proposition 4.5.

4.6. Twisted relative tangent cycles

So far, we have considered relative tangent cycles valued in R. In our analysis of Hitchin

characters, we will encounter relative tangent cycles that are valued in Rn−1 and behave

in a very specific manner with respect to the involution ι: Û!Û that exchanges the two

sheets of the cover Û!U .

More precisely, an Rn−1-valued tangent cycle for λ̂ relative to its slits associates

a vector α(k)∈Rn−1 with each arc k tightly transverse to λ̂, in such a way that α is

invariant under homotopy respecting λ̂ and is quasi-additive with respect to a boundary

function ∂α: {slits of λ̂}!Rn−1.

A twisted tangent cycle for λ relative to its slits and valued in R̂n−1 is an Rn−1-

valued relative tangent cycle α for λ̂ such that, for every tightly transverse arc k,

α(ι(k)) =�α(k),

where x 7!x̄ is the involution of Rn−1 that reverses the order of the coordinates, namely

that associates x̄=(xn−1, xn−2, ..., x1) to x=(x1, x2, ..., xn−1)∈Rn−1. Let

Z(λ, slits; R̂n−1) = {α∈Z(λ̂, slits;Rn−1) :α(ι(k)) =�α(k) for all k}



230 f. bonahon and g. dreyer

denote the space of these twisted relative tangent cycles.

The terminology and notation is justified by the fact that these twisted relative

tangent cycles can be interpreted as tangent cycles for the geodesic lamination λ, relative

to the slits of λ, and valued in the twisted coefficient bundle R̂n−1=(Û×Rn−1)/Z2 over U ,

where Z2 acts by ι on Û and by x 7!x̄ on Rn−1.

We can similarly define the space of twisted tangent cycles

Z(λ; R̂n−1) = {α∈Z(λ̂;Rn−1) :α(ι(k)) =�α(k) for all k}= {α∈Z(λ, slits; R̂n−1) : ∂α= 0},

where the second equality comes from Lemma 4.4.

To compute the dimensions of Z(λ; R̂n−1) and Z(λ, slits; R̂n−1), we use a version of

Propositions 4.2 and 4.5 that gives a homological interpretation of twisted tangent cycles.

Because the orientation of arcs is irrelevant for relative tangent cycles but does matter

in homology, we need to consider a different coefficient bundle R̃n−1=(Û×Rn−1)/Z2,

where Z2 still acts by the covering involution ι on Û but now acts on Rn−1 by x 7!−x̄.

More precisely, because ι reverses the orientation of λ̂, the map

ϕ:Z(λ̂, slits;R)−!H1(Û , ∂vÛ ;R)

of the proof of Proposition 4.5 conjugates the action of ι on Z(λ̂, slits;R) to −ι∗, where

ι∗:H1(Û , ∂vÛ ;R)!H1(Û , ∂vÛ ;R) is the homomorphism induced by ι. Therefore, the

tensor product ϕ⊗IdRn−1 sends Z(λ, slits; R̂n−1) to {c∈H1(Û , ∂vÛ ;Rn−1); ι∗(c)=−c̄},
which is naturally identified to H1(U, ∂vU ; R̃n−1). This provides a natural isomorphism

Z(λ, slits; R̂n−1)∼=H1(U, ∂vU ; R̃n−1), which also induces an isomorphism

Z(λ; R̂n−1)∼=H1(U ; R̃n−1).

Proposition 4.6. The above construction provides natural isomorphisms

Z(λ, slits; R̂n−1)∼=H1(U, ∂vU ; R̃n−1),

Z(λ; R̂n−1)∼=H1(U ; R̃n−1).

Proof. This follows from the above discussion.

Proposition 4.7. The vector spaces Z(λ; R̂n−1) and Z(λ, slits; R̂n−1) have dimen-

sions

dimZ(λ; R̂n−1) = 6(g−1)(n−1)+
⌊

1
2 (n−1)

⌋
,

dimZ(λ, slits; R̂n−1) = 18(g−1)(n−1),

where bxc denotes the largest integer that is less than or equal to x.
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Proof. Considering Euler characteristics,

χ(U)(n−1) = dimH0(U ; R̃n−1)−dimH1(U ; R̃n−1).

Since Û is connected,

H0(U ; R̃n−1) = {c∈H0(Û ;Rn−1) : ι∗(c) =−c̄}∼= {x∈Rn−1 :x=−x̄}

has dimension
⌊

1
2 (n−1)

⌋
. Moreover, because the complement S\U consists of 4(g−1)

hexagons, χ(U)=χ(S)−4(g−1)=−6(g−1). It follows that

dimZ(λ; R̂n−1) = dimH1(U ; R̃n−1) =−χ(U)(n−1)+dimH0(U ; R̃n−1)

= 6(g−1)(n−1)+
⌊

1
2 (n−1)

⌋
.

For Z(λ, slits; R̂n−1)∼=H1(U, ∂vU ; R̃n−1), consider the exact sequence

0−!H1(U ; R̃n−1)−!H1(U, ∂vU ; R̃n−1)−!H0(∂vU ; R̃n−1)−!H0(U ; R̃n−1)−! 0.

We already observed that dimH0(U ; R̃n−1)=
⌊

1
2 (n−1)

⌋
. Since ι respects no component

of ∂vÛ , the twisted homology space H0(∂vU ; R̃n−1) is isomorphic to H0(∂vU ;Rn−1) and

therefore has dimension 12(g−1)(n−1), as ∂vU has 12(g−1) components. It follows from

the exact sequence above that

dimZ(λ, slits; R̂n−1) = dimH1(U, ∂vU ; R̃n−1)

= dimH1(U ; R̃n−1)+dimH0(∂vU ; R̃n−1)−dimH0(U ; R̃n−1)

= 18(g−1)(n−1).

As suggested by the formula and the fact that U has 18(g−1) branches, there

is a more elementary (non-homological) computation which deduces the dimension of

Z(λ, slits; R̂n−1) from Proposition 4.5, but this one is more intrinsic and conceptual.

4.7. Relative tangent cycles from another viewpoint

We give a different description of relative tangent cycles. Compared to the original

definition, this presentation does not lend itself as well to the homological interpretation

and computations of the previous sections. However, it will be better adapted to the

geometric constructions that form the core of this article. It also bypasses the need to

consider the orientation cover λ̂.

In the universal cover S̃ of S, let Ũ be the preimage of a train-track neighborhood

U of λ.
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A relative tangent cycle α∈Z(λ̂, slits;R) associates a number α(T, T ′)∈R with each

ordered pair of distinct components T and T ′ of S̃\λ̃ as follows. Choose an oriented arc

k̃⊂S̃ that is tightly transverse to λ̃ and joins T to T ′; in this preliminary stage, one can

for instance take for k̃ any geodesic arc going from T to T ′, since every component of

S̃\λ̃ is a triangle. Using Proposition 4.1, one can modify k̃ by a homotopy respecting

λ̃ so that it is contained in Ũ , and is tightly transverse to λ̃ in Ũ . Project k̃ to an arc

k⊂U , which is tightly transverse to λ.

The tightly transverse arc k admits two lifts to the 2-fold cover Û of U , each oriented

so that the canonical orientation of the leaves of the orientation cover λ̂ points to the left

of these arcs at each intersection point. Let k̂⊂Û be the lift whose orientation projects

to the same orientation of k as that of k̃. By construction, k̂ is tightly transverse to λ̂ in

Û , and we can consider the number α(k̂)∈R defined by α∈Z(λ̂, slits;R).

In this construction, the arc k̃ is uniquely determined by T and T ′ up to homotopy

respecting λ̃ in Ũ , which determines k̂ up to homotopy respecting λ̂ in Û . It follows that

α(k̂) depends only on T and T ′, and we can define α(T, T ′)=α(k̂)∈R.

The quasi-additivity property of α∈Z(λ̂, slits;R) has a relatively simple translation

in this context. Each slit s of λ, namely each spike of S\λ, lifts to two slits of λ̂: a positive

spike s+ of Û \λ̂ where the leaves of λ̂ adjacent to s+ are oriented towards the end of this

spike by the canonical orientation of λ̂, and a negative spike s− where the adjacent leaves

are oriented away from the end of s−. Define two functions ∂+α, ∂−α: {slits of λ}!R
by the property that ∂+α(s)=∂α(s+) and ∂−α(s)=∂α(s−) for every slit s of λ, where

∂α: {slits of λ̂}!R is the boundary of α∈Z(λ̂, slits;R).

If T , T ′ and T ′′ are three components of S̃\λ̃ such that T ′′ separates T from T ′

in S̃, let s̃′′ be the spike of T ′′ delimited by the two sides of T ′′ that separate T from

T ′, and let s′′ be the projection of s̃′′ to S. The quasi-additivity of α∈Z(λ̂, slits;R) then

translates to the property that

α(T, T ′) =α(T, T ′′)+α(T ′′, T ′)−∂+α(s′′)

if the spike s̃′′ of T ′′ points to the left as seen from T , and

α(T, T ′) =α(T, T ′′)+α(T ′′, T ′)+∂−α(s′′)

if s̃′′ points to the right as seen from T .

Proposition 4.8. The above construction provides a one-to-one correspondence be-

tween relative tangent cycles α∈Z(λ̂, slits;R) and maps α associating a number α(T, T ′)∈
R with each ordered pair of distinct components T and T ′ of S̃\λ̃ for which there exist

two functions ∂±α: {slits of λ}!R with the following properties:

(1) α is π1(S)-invariant, in the sense that α(γT, γT ′)=α(T, T ′) for every γ∈π1(S)

and every pair of distinct components T and T ′ of S̃\λ̃;
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(2) if T ′′ separates T from T ′ in S̃, if s̃′′ is the spike of T ′′ delimited by the two

sides of T ′′ that separate T from T ′, and if s′′ is the slit of λ defined by the projection

of s̃′′ to S, then

α(T, T ′) =α(T, T ′′)+α(T ′′, T ′)−∂+α(s′′)

if s̃′′ points to the left as seen from T , and

α(T, T ′) =α(T, T ′′)+α(T ′′, T ′)+∂−α(s′′)

if s̃′′ points to the right as seen from T .

In addition, the boundary ∂α: {slits of λ̂}!R is related to the functions

∂±α: {slits of λ}−!R

by the property that ∂α(s±)=∂±α(s) for every slit s of λ lifting to a positive slit s+ and

a negative slit s− of the orientation cover λ̂.

Proof. This is an immediate consequence of the discussion above.

Proposition 4.8 has an immediate factor-by-factor extension to relative tangent

cycles valued in Rn−1. By restriction to the space of twisted relative tangent cy-

cles Z(λ, slits; R̂n−1)⊂Z(λ̂, slits;Rn−1), this automatically gives the following statement.

Recall that x 7!x̄ denotes the involution of Rn−1 that sends x=(x1, x2, ..., xn−1) to

x̄=(xn−1, xn−2, ..., x1).

Proposition 4.9. Proposition 4.8 provides a one-to-one correspondence between

twisted relative tangent cycles α∈Z(λ, slits; R̂n−1) and maps α which associate a vector

α(T, T ′)∈Rn−1 with each ordered pair of components T and T ′ of S̃\λ̃ such that there

exists a function ∂+α: {slits of λ}!Rn−1 with the following properties:

(1) α is π1(S)-equivariant, in the sense that α(γT, γT ′)=α(T, T ′) for each γ∈π1(S)

and each pair of distinct components T and T ′ of S̃\λ̃;

(2) if T ′′ separates T from T ′ in S̃, if s̃′′ is the spike of T ′′ delimited by the two

sides of T ′′ that separate T from T ′, and if s′′ is the slit of λ defined by the projection

of s̃′′ to S, then

α(T, T ′) =α(T, T ′′)+α(T ′′, T ′)−∂+α(s′′)

if s̃′′ points to the left as seen from T , and

α(T, T ′) =α(T, T ′′)+α(T ′′, T ′)−∂+α(s′′)

if s̃′′ points to the right as seen from T ;

(3) α(T ′, T )=α(T, T ′) for every pair of distinct components T and T ′ of S̃\λ̃.
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In addition, the boundary ∂α: {slits of λ̂}!R is related to the function

∂+α: {slits of λ}−!R

by the property that ∂α(s+)=∂+α(s) and ∂α(s−)=−∂+α(s) for every slit s of λ lifting

to a positive slit s+ and a negative slit s− of the orientation cover λ̃.

Proof. This statement immediately follows from Proposition 4.8.

Note that the function ∂−α: {slits of λ}!Rn−1 that one would have expected in

this case is equal to ∂−α=−∂+α by the third condition of Proposition 4.9. In particular,

∂α(s∓)=−∂α(s±) for every α∈Z(λ, slits; R̂n−1), when s+ and s− are the positive and

negative slits of the orientation cover λ̂ that lift the same slit s of λ.

5. The shearing tangent cycle of a Hitchin character

We will now associate a twisted relative tangent cycle

σ% ∈Z(λ, slits; R̂n−1)∼=H1(U, ∂vU ; R̃n−1)

with each Hitchin character %∈Hitn(S). The key ingredient of this construction is the

slithering map introduced in the next section.

5.1. Slithering

The slithering construction is a higher-dimensional analogue of the horocyclic foliation

defined, in the case where n=2, by a hyperbolic metric and a maximal geodesic lamination

λ on the surface S; see [42] and [5] for that case. It only uses the Anosov property

of Theorem 3.1 and Proposition 3.2, and is independent of the positivity property of

Theorem 3.3. In particular, it quite possibly extends to more general Anosov contexts,

such as those of [22].

Consider a Hitchin homomorphism %:π1(S)!PSLn(R), and its associated flag map

F%: ∂∞S̃!Flag(Rn) as in §3.1.

In the universal cover S̃, let g be a leaf of the preimage λ̃⊂S̃ of the maximal geodesic

lamination λ⊂S. Choose an arbitrary orientation for g, and let x+ and x− be its positive

and negative endpoints, respectively. By Theorem 3.3, the flag pair (F%(x+),F%(x−))

is generic. It therefore defines a decomposition of Rn as the direct sum of the lines

L̃a(g)=F%(x+)(a)∩F%(x−)(n−a+1), as in §3.1.

Note that reversing the orientation of g exchanges x+ and x−, and therefore replaces

L̃a(g) by L̃n−a+1(g).
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Now consider two leaves g and g′⊂λ̃. We say that g and g′ are oriented in parallel

if exactly one of the orientations of g and g′ coincides with the boundary orientation

determined by the component of S\(g∪g′) that separates g from g′.

Proposition 5.1. There exists a unique family of linear isomorphisms

Σgg′ :Rn−!Rn,

indexed by all pairs of leaves g, g′⊂λ̃, such that the following conditions hold :

(1) Σgg=IdRn , Σg′g=(Σgg′)
−1 and Σgg′′=Σgg′ �Σg′g′′ when g′ separates g from g′′;

(2) Σgg′ depends locally Hölder continuously on g and g′; namely, for an arbitrary

riemannian metric on the manifold consisting of all geodesics of the universal cover S̃,

the map (g, g′) 7!Σgg′ is Hölder continuous on (the square of ) any compact subset of the

space of leaves of λ̃;

(3) if g and g′ have an endpoint x∈∂∞S̃ in common and are oriented towards x,

and if E=F%(x)∈Flag(Rn), then Σgg′ sends each line L̃a(g′) to L̃a(g) and its restriction

L̃a(g′)!L̃a(g) is the composition of the two natural isomorphisms

L̃a(g′)∼=E(a)/E(a−1)∼= L̃a(g).

In addition, the maps Σgg′ satisfy :

(4) if g and g′ are oriented in parallel, Σgg′ sends each line L̃a(g′) to the line L̃a(g);

(5) Σgg′ :Rn!Rn has determinant 1.

By definition, Σgg′ :Rn!Rn is the slithering map from the line decomposition

Rn =

n⊕
a=1

L̃a(g′)

to the line decomposition

Rn =

n⊕
a=1

L̃a(g).

We will construct Σgg′ by sweeping through all the leaves of λ̃ that separate g from g′,

and by composition of a (usually infinite) sequence of pivot moves as in condition (3) of

Proposition 5.1. The terminology of “slithering” is motivated by the fact that, in general,

any small section of this sweep involves both pivot moves to the left and pivot moves to

the right.(1)

Note that, although the line decomposition Rn=
⊕n

a=1 L̃a(g) depends on an ori-

entation for the leaf g, the slithering map Σgg′ :Rn!Rn is independent of a choice of

orientation for g or g′.

(1) In particular, this is unrelated to Thurston’s notion [41], [12] of “slithering” for foliations of
3-dimensional manifolds, beyond the analogy with the movements of a snake.
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Proof of Proposition 5.1. We will split the construction of the slithering map of

Proposition 5.1 into several steps and lemmas.

Let T be a component of S̃\λ̃ that separates the leaves g and g′ of λ̃. It is a triangle

since the geodesic lamination λ is maximal, and two of its three sides separate g from g′;

among these two sides, let gT be the one that is closest to g, and g′T the one closest to g′.

Define ΣT =ΣgT g′T by condition (3) of Proposition 5.1. Namely, if ET =F%(xT )∈Flag(Rn)

is the image under the flag map F%: ∂∞S̃!Flag(Rn) of the common endpoint xT ∈∂∞S̃
of gT and g′T , the map ΣT =ΣgT g′T sends Rn=

⊕n
a=1 L̃a(g′T ) to Rn=

⊕n
a=1 L̃a(gT ) by

the property that its restriction L̃a(g′T )!L̃a(gT ) coincides with the composition of the

natural isomorphisms L̃a(g′T )∼=E(a)
T /E

(a−1)
T

∼=L̃a(gT ). Note that, in a basis of Rn where

the ath vector belongs to L̃a(g′T ), the map ΣT is represented by a triangular matrix with

all diagonal entries equal to 1. In particular, L̃a(g′T ) has determinant 1 and therefore

belongs to SLn(R).

We will now define

Σgg′ =
−→∏
T

ΣT

as the composition of the maps ΣT =ΣgT g′T :Rn!Rn as T ranges over all components

of S̃\λ̃ separating g from g′. Of course, there usually are infinitely many maps in this

composition, and we also must be careful with the order in which we compose these maps;

the arrow over the product symbol is here to remind us that this is an ordered product,

if the components T are ordered from g to g′. To make sense of this composition, let Tgg′

be the set of components of S̃\λ̃ that separate g from g′. Let T={T1, T2, ..., Tm} be a

finite subset of Tgg′ , where the indexing is chosen so that each ideal triangle Tj separates

g from Tj+1. We can then consider the finite composition

ΣT = ΣT1
�ΣT2

�...�ΣTm−1
�ΣTm ∈SLn(R).

We will then show that ΣT converges to some linear map Σgg′∈SLn(R) as the finite

subset T={T1, T2, ..., Tm} tends to the whole set Tgg′ of those components of S̃\λ̃ which

separate g from g′.

The proof of convergence relies on the following estimate. Choose an arc k⊂S̃ that

is tightly transverse to the geodesic lamination λ̃, and crosses both g and g′; for instance,

we can choose k to be a geodesic arc.

In particular, for every component T of S̃\λ̃ that separates g from g′, k∩T consists

of a single arc.

Endow the space End(Rn) of linear maps Rn!Rn with any of the classical norms

‖ · ‖ such that ‖IdRn‖=1 and ‖ϕ�ψ‖6‖ϕ‖ ‖ψ‖. Our estimates will also depend on the

choice of a negatively curved metric m on S for which the leaves of λ are geodesic.
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Lemma 5.2. Given an arc k as above, there exist constants A and ν>0 such that

‖ΣT−IdRn ‖6A`(k∩T )ν

for every component T of S̃\λ̃ that separates g from g′, where ` denotes the arc length

for the auxiliary metric m.

Proof. Let xT , yT , y
′
T ∈∂∞S̃ denote the three vertices of the triangle T , in such a way

that xT and yT are the endpoints of the side gT that is closest to g, and xT and y′T are the

endpoints of the side g′T closest to g′. Then ΣT =ΣgT g′T depends only on the two generic

flag pairs (F%(xT ),F%(yT )) and (F%(xT ),F%(y
′
T )). In fact, ΣT depends differentiably on

these two flag pairs and, as T varies, these pairs stay in a compact subset of the space of

generic flag pairs (depending on k and on the continuity of the flag curve F%). Therefore,

‖ΣT−IdRn ‖=O(d(F%(yT ),F%(y
′
T ))),

where d is an arbitrary riemannian metric on Flag(Rn).

Since the flag curve F% is Hölder continuous (Proposition 3.2),

d(F%(yT ),F%(y
′
T )) =O(d(yT , y

′
T )ν)

for some Hölder exponent ν, where d now denotes the visual metric of ∂∞S̃. The required

estimate then follows from an easy geometric argument in the triangle T showing that

d(yT , y
′
T ) =O

(
`(k∩T )).

Note that the constant A depends on the arc k. The Hölder exponent ν depends

only on the flag curve F%.

The second ingredient is a now classical property of geodesic laminations, based on

the fundamental property that S\λ has only finitely many spikes and that the width of

these spikes decay exponentially.

Lemma 5.3. As T ranges over all components of S̃\λ̃ separating g from g′, the sum∑
T∈Tgg′

`(k∩T )ν

is convergent for every ν>0.

More precisely, there is a function r:Tgg′!N and constants B,C,B′, C ′>0 such

that the following conditions hold :

(1) Be−Cr(T )6`(k∩T )6B′e−C
′r(T ) for every T∈Tgg′ ;

(2) for every m∈N, the number of triangles T∈Tgg′ with r(T )=m is uniformly

bounded, independently of m.
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Proof. See for instance [5, Lemmas 4 and 5], and compare §8.2.

We are now ready to show the convergence of the infinite product
−→∏
T ΣT .

Recall that Tgg′ denotes the set of components of S̃\λ̃ that separate g from g′ and

that, for every finite subset T={T1, T2, ..., Tm} of Tgg′ where the Ti are ordered from g

to g′,

ΣT = ΣT1
�ΣT2

�...�ΣTm−1
�ΣTm .

Lemma 5.4. As T ranges over all finite subsets of Tgg′ , the matrices ΣT remain

uniformly bounded.

Proof. If T={T1, T2, ..., Tm}, Lemma 5.2 shows that ‖ΣTi‖61+A`(k∩Ti)ν for some

constants A, ν>0. Then,

‖ΣT‖6
m∏
i=1

(1+A`(k∩Ti)ν)6
∏

T∈Tgg′

(1+A`(k∩T )ν)<∞,

where the finiteness of the second product follows from Lemma 5.3.

Lemma 5.5. As the finite subset T tends to Tgg′ , the limit

Σgg′ =
−→∏

T∈Tgg′

ΣT = lim
T!Tgg′

ΣT

exists in SLn(R).

Proof. Let T={T1, T2, ..., Tm} be a finite subset of Tgg′ , where the Ti are ordered

from g to g′. If T′=T∪{T} has one more element T∈Tgg′ , and if T separates Ti from

Ti+1, set T1={T1, T2, ..., Ti} and T2={Ti+1, T2, ..., Tm}; then

‖ΣT′−ΣT‖= ‖ΣT1
�(ΣT−IdRn)�ΣT2

‖=O(`(k∩T )ν)

by Lemmas 5.2 and 5.4. Lemma 5.3 then shows that, as T ranges over all finite subsets of

Tgg′ , the family of maps ΣT∈SLn(R) satisfies the Cauchy property. The limit therefore

exists.

Having defined the slithering map Σgg′ :Rn!Rn, we now show that it satisfies the

properties of Proposition 5.1. We begin with condition (1).

Lemma 5.6. For any two leaves g and g′ of λ̃, one has Σgg=IdRn and Σg′g=Σ−1
gg′ .

In addition, Σgg′′=Σgg′ �Σg′g′′ when one of the three leaves g, g′ and g′′ separates the

other two.
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In the missing case where none of g, g′ and g′′ separates the other two, the rela-

tionship between Σgg′′ , Σgg′ and Σg′g′′ is more complicated and involves the triangle

invariants of the unique component T of S̃\λ̃ that separates these three leaves, as we

will implicitly see in §5.2 (and in particular in the proof of Proposition 5.15).

Proof. The first two properties are immediate from definitions. When g′ separates

g from g′′, Tgg′′ is the disjoint union of Tgg′ and Tg′g′′ , and the property that Σgg′′=

Σgg′ �Σg′g′′ is again an immediate consequence of the construction. The other two cases

follow from this one by an algebraic manipulation.

We now turn to condition (2).

Lemma 5.7. The slithering map Σgg′ provided by Lemma 5.5 depends Hölder con-

tinuously on the leaves g, g′⊂λ̃ meeting the tightly transverse arc k.

Proof. If the leaf h is close to g, and if the leaf h′ is close to the leaf g′, we can apply

Lemma 5.6 to decompose Σhh′ as

Σhh′ = Σhg �Σgg′ �Σg′h′ .

The argument used in the proof of Lemma 5.5 shows that, for some ν>0,

‖Σhg−IdRn ‖=O

( ∑
T∈Thg

`(k∩T )ν
)
.

By Lemma 5.3, the above series is dominated by a geometric series and, using the precise

estimate provided by the second half of that statement,∑
T∈Thg

`(k∩T )ν =O
(

max
T∈Thg

e−νC
′r(T )

)
=O

(
max
T∈Thg

`(k∩T )ν
′
)

=O(`(khg)
ν′) =O(d(h, g)ν

′
)

for ν′=νC ′/C with the constants C, C ′>0 of Lemma 5.3, and where khg is the subarc

of k that joins the two points k∩g and k∩h. Therefore,

‖Σhg−IdRn ‖=O(d(g, h)ν
′
).

Similarly,

‖Σg′h′−IdRn ‖=O(d(g′, h′)ν
′
).

Combining these two estimates with the bound provided by Lemma 5.4,

‖Σhh′−Σgg′‖6 ‖Σhh′−Σgh′‖+‖Σgh′−Σgg′‖

6 ‖Σhg−IdRn ‖‖Σgh′‖+‖Σgg′‖‖Σg′h′−IdRn ‖

=O(d(g, h)ν
′
+d(g′, h′)ν

′
),

which proves that the map (g, g′) 7!Σgg′∈SLn(R) is Hölder continuous over the square

of the space of leaves of λ̃ that cross the arc k.
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Figure 5. Adding triangles between Ti and Ti+1.

Lemma 5.7 proves the local Hölder continuity condition (2) of Proposition 5.1.

If the leaves g and g′ share a common endpoint x∈∂∞S̃, then all leaves of λ̃ that

separate g from g′ also have x as an endpoint. In particular, Σgg′ is defined as an infinite

product of elementary slitherings ΣT =ΣgT g′T that respect the flag E=F%(x) and act as

the identity on each line E(a)/E(a−1). It follows that Σgg′ satisfies the same property,

which proves condition (3) of Proposition 5.1.

Lemma 5.8. Suppose that the leaves g, g′⊂λ̃ are oriented in parallel. Then, the slith-

ering map Σgg′ provided by Lemma 5.5 sends the line decomposition Rn=
⊕n

a=1 L̃a(g′)

to the line decomposition Rn=
⊕n

a=1 L̃a(g).

Proof. The strategy is to approximate by a finite lamination the part of λ̃ that

separates g from g′. The slithering map associated with this finite lamination will send

the line decomposition Rn=
⊕n

a=1 L̃a(g′) to the line decomposition Rn=
⊕n

a=1 L̃a(g), and

approximate the slithering map Σgg′ . Passing to the limit in the approximation process

will conclude the proof.

Let T={T1, T2 ..., Tm} be a finite subset of Tgg′ , where the Ti are ordered from g

to g′. We insert two triangles Ui and U ′i between Ti and Ti+1 as follows. Recall that

gTi and g′Ti are the two sides of Ti separating g from g′, with gTi closest to g. Let hi

be the geodesic of S̃ that joins the left-hand side (as seen from g) endpoint of g′Ti to

the right-hand side endpoint of gTi+1
. The two geodesics g′Ti and hi are two sides of a

unique ideal triangle Ui⊂S̃, possibly reduced to a single geodesic when g′Ti=hi. We can

similarly consider the ideal triangle U ′i , possibly reduced to a single geodesic, with sides

hi and gTi+1
. See Figure 5. The same construction with the conventions that g′T0

=g and

gTm+1
=g′ also defines triangles U0, U ′0, Um and U ′m.

As before, the triangles Ui and U ′i define an elementary slithering map ΣUi sending

the line decomposition Rn=
⊕n

a=1 L̃a(hi) to the line decomposition Rn=
⊕n

a=1 L̃a(g′Ti),

and another one ΣU ′i sending the line decomposition Rn=
⊕n

a=1 L̃a(gTi+1
) to the line

decomposition Rn=
⊕n

a=1 L̃a(hi). These slithering maps are equal to the identity when
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the corresponding triangles are reduced to geodesics.

Now consider

Σ̂T = (ΣU0
�ΣU ′0)�ΣT1

�(ΣU1
�ΣU ′1)�ΣT2

�(ΣU2
�ΣU ′2)�ΣT3

�...

...�ΣTm−1
�(ΣUm−1

�ΣU ′m−1
)�ΣTm �(ΣUm �ΣU ′m).

By construction, Σ̂T sends the line decomposition

Rn =

n⊕
a=1

L̃a(gTm+1
) =

n⊕
a=1

L̃a(g′)

to the line decomposition

Rn =

n⊕
a=1

L̃a(g′T0
) =

n⊕
a=1

L̃a(g).

To compare Σ̂T and ΣT, choose an arc k tightly transverse to λ̃ and meeting both g

and g′. Then, Lemma 5.2 provides constants A, ν>0 such that ‖ΣUi−IdRn ‖6A`(k∩Ui)ν

and ‖ΣU ′i−IdRn‖6A`(k∩U ′i)ν .

Since a ν -Hölder continuous function on a compact set is also ν′-Hölder continuous

for every ν′<ν, we can assume that ν61 without loss of generality. Then, with this

condition,

`(k∩Ui)ν 6 `
(
k∩(Ui∪U ′i))ν 6

∑
T∈T

g′Ti
gTi+1

`(k∩T )ν ,

where the sum is over all components T of S̃\λ̃ that separate Ti from Ti+1. A similar

estimate holds for `(k∩U ′i)ν . It follows that

‖ΣUi �ΣU ′i−IdRn‖=O

( ∑
T∈T

g′Ti
gTi+1

`(k∩T )ν
)
.

The arguments used in the proof of Lemmas 5.4 and 5.5 can then be applied to show

that

‖Σ̂T−ΣT‖=O

( ∑
T∈Tgg′−T

`(k∩T )ν
)
.

Lemma 5.3 then shows that Σ̂T and ΣT have the same limit as the finite subset T

tends to Tgg′ . Therefore, Σ̂T also converges to the slithering map Σgg′ as T tends to Tgg′ .

We already observed that each Σ̂T sends the line decomposition Rn=
⊕n

a=1 L̃a(g′)

to the line decomposition Rn=
⊕n

a=1 L̃a(g). Passing to the limit, we conclude that Σgg′

has the same property.
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Lemma 5.8 proves condition (4) of Proposition 5.1.

We already observed in Lemma 5.5 that Σgg′ has determinant 1, which is condi-

tion (5).

The only property of Proposition 5.1 remaining to prove is the uniqueness of the

slithering map.

Lemma 5.9. If a family of linear isomorphisms Σ′gg′ :Rn!Rn, indexed by all pairs

of leaves g, g′⊂λ̃, satisfies conditions (1)–(3) of Proposition 5.1, then Σ′gg′ is equal to the

map Σgg′ constructed above for every g and g′.

In particular, conditions (4) and (5) are consequences of conditions (1)–(3).

Proof. As usual, let k be a tightly transverse arc that crosses both g and g′. Let

T={T1, T2, ..., Tm} be a finite subset of the set Tgg′ of components of S̃\λ̃ that separate

g from g′, indexed in such a way that the Ti occur in this order as one goes from g to g′.

Let gTi and g′Ti be the sides of Ti that are closest to g and g′, respectively.

By condition (1),

Σ′gg′ = Σ′ggT1
�Σ′gT1g

′
T1

�Σ′g′T1gT2
�Σ′gT2g

′
T2

�...�Σ′gTm−1
g′Tm−1

�Σ′g′Tm−1
gTm
�Σ′gTmg

′
Tm

�Σ′g′Tmg
′ .

Condition (3) implies that Σ′
gTi

g′Ti
=ΣgTig

′
Ti

=ΣTi , so that

Σ′gg′ = Σ′ggT1
�ΣT1

�Σ′g′T1gT2
�ΣT2

�...�ΣTm−1
�Σ′g′Tm−1

gTm
�ΣTm �Σ

′
g′Tmg

′ .

By condition (2), the map (h, h′) 7!Σ′hh′ is Hölder continuous over the space of leaves

of λ̃ that meet the arc k. As a consequence, there exists a constant ν>0 such that, for

every i,

‖Σ′g′TigTi+1

−IdRn‖=O(d(g′Ti , gTi+1
)ν).

Because the leaves g′Ti and gTi+1
are disjoint, a classical estimate in negative curvature

geometry (see, for instance, [13, §5.2.6]) shows that d(g′Ti , gTi+1
) is bounded by a constant

times the length `(kg′TigTi+1
) of the subarc kg′TigTi+1

⊂k delimited by the points k∩g′Ti
and k∩gTi+1

.

The geodesic lamination λ̃ has area zero ([39, §8.5], [1]). Its intersection with the

transverse arc k therefore has length zero, and

`(kg′TigTi+1
) =

∑
T∈T

g′Ti
gTi+1

`(k∩T ).

Assuming ν61 without loss of generality, we can combine all these estimates and

conclude that

‖Σ′g′TigTi+1

−IdRn‖=O

( ∑
T∈T

g′Ti
gTi+1

`(k∩T )ν
)
.
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This also holds for i=0 and i=m, with the convention that g′T0
=g and gTm+1

=g′.

From this estimate, we can then use the arguments of the proofs of Lemmas 5.4

and 5.5 to show that

‖Σ′gg′−ΣT‖=O

( ∑
T∈Tgg′−T

`(k∩T )ν
)
.

By Lemma 5.3, this proves that

Σ′gg′ = lim
T!Tgg′

ΣT = Σgg′ ,

which concludes the proof of Lemma 5.9.

This uniqueness property completes the proof of Proposition 5.1.

Remark 5.10. In Proposition 5.1 (and in Lemma 5.9), the uniqueness property would

be false without the hypothesis that the slithering map Σgg′ depends locally Hölder

continuously (and not just continuously) on the leaves g and g′. This is already true in

the classical case where n=2. Indeed, let α be a transverse measure for λ that has no

atom (which is automatic if λ has no closed leaf). The atom-free hypothesis guarantees

that the α-mass α(g, g′) of the set of leaves of λ̃ separating g from g′ depends continuously

on g and g′. If g and g′ are oriented in parallel in such a way that g′ is to the left of g,

let Σ′gg′ :R2
!R2 be obtained by postcomposing the slithering map Σgg′ with the linear

map that acts by multiplication by e−α(g,g′) on the line L̃1(g), and by multiplication by

eα(g,g′) on L̃2(g). This new family of maps Σ′gg′ satisfies conditions (1) and (3)–(5) of

Proposition 5.1, the maps Σ′gg′ depend continuously (but not locally Hölder continuously)

on g and g′, and they are of course different from the original family of slithering maps

Σgg′ if α is non-trivial.

To generalize this construction to all n, let α1, α2, ..., αn−1 be atom-free transverse

measures for λ such that αn−a=αa for every a (so that in practice we only have
⌊

1
2n
⌋

such αa). For two leaves g and g′ of λ̃, define β1(g, g′), β2(g, g′), ..., βn(g, g′) by the

properties that αa(g, g′)=βa+1(g, g′)−βa(g, g′) and
∑n
a=1 βa(g, g′)=0. If g and g′ are

oriented in parallel in such a way that g′ is to the left of g, let Σ′gg′ :Rn!Rn be obtained

by postcomposing the slithering map Σgg′ with the linear map that respects each line

L̃a(g) and acts by eβa(g,g′) on L̃a(g). The maps Σ′gg′ satisfy conditions (1) and (3)–(5)

of Proposition 5.1, and depend continuously on g and g′. They clearly differ from the

slithering maps Σgg′ if at least one of the αa is non-zero. This construction automatically

generalizes to the situation where the αa are topological differential forms in the sense

of [26], in which case it completely describes how the uniqueness can fail if we remove

the Hölder condition from Proposition 5.1.
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Tx
y

z

g

T ′

x′

y′

z′

g′

Figure 6. The triangles T and T ′ and their vertices.

5.2. The shearing cycle

We now use the slithering map to associate with the Hitchin homomorphism

%:π1(S)−!PSLn(R)

a certain twisted tangent cycle σ%∈Z(λ, slits; R̂n−1) relative to the slits of λ. This relative

tangent cycle is the shearing cycle of the Hitchin homomorphism %.

Unlike §5.1, this construction uses in a fundamental way the positivity property of

Theorem 3.3; see Lemma 5.11.

We will use the point of view of §4.7. Let T and T ′ be two components of S̃\λ̃.

Let g be the side of T that is closest to T ′, and let g′ be the side of T ′ closest to T .

We orient these two leaves of λ̃ to the left as seen from T . In particular, g and g′ are

oriented in parallel, and the slithering map Σgg′ :Rn!Rn of Proposition 5.1 sends each

line L̃a(g′) to the line L̃a(g).

Let x, y∈∂∞S̃ be the positive and negative endpoints of g, and let z be the third

vertex of the ideal triangle T . Similarly, let x′, y′∈∂∞S̃ be the positive and negative

endpoints of g′, and let z′ be the third vertex of T ′. See Figure 6. The flag curve

F%: ∂∞S̃!Flag(Rn) of Proposition 3.2 now associates six flags

F%(x),F%(y),F%(z),F%(x
′),F%(y

′),F%(z
′)∈Flag(Rn)

with these vertices. By our definitions, the slithering map Σgg′ sends F%(x
′) to F%(x)

and F%(y
′) to F%(y).

We want to consider the double ratio Da(F%(x),F%(y),F%(z),Σgg′(F%(z
′))), as in

§1.4.

Lemma 5.11. The double ratio Da(F%(x),F%(y),F%(z),Σgg′(F%(z
′))) is finite and

positive.
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Proof. When T and T ′ are adjacent so that g=g′, then Σgg′=IdRn and the state-

ment is an immediate consequence of the positivity property of Theorem 3.3. In the

general case, however, the appearance of the slithering map Σgg′ requires a more elab-

orate argument. The key ingredient is a deeper consequence of the positivity property,

which is that the family of the line bundles La!T
1S of Theorem 3.1 carries a canonical

joint orientation, as we now define.

A joint orientation for the line bundles La is the choice of an orientation for (the

fibers of) each bundle, but determined only up to simultaneous reversal of all orientations.

More formally, a joint orientation for the bundles La is an orientation for each of the line

bundles La⊗La+1.

Actually, we will see that the line bundles La admit two equally canonical but

opposite joint orientations: the left-hand-side and right-hand-side joint orientations.

To define these joint orientations, focus attention on a point ũ∈T 1S̃. As in §3.1,

consider the line decomposition Rn=
⊕n

a=1 L̃a(ũ) defined by the fibers over ũ of the line

bundles L̃a!T
1S̃ lifting the bundles La!T

1S. Then, if p, q∈∂∞S̃ are the positive and

negative endpoints of the orbit g of ũ under the geodesic flow, we have

L̃a(ũ) =F%(p)
(a)∩F%(q)(n−a+1),

by definition of the flag curve F% in Proposition 3.2. Consider another point r∈∂∞S̃ that

is different from p and q, and that sits to the left of p as seen from q. By Theorem 3.3,

the flag triple (F%(p),F%(q),F%(r)) is generic. As a consequence, if v is a non-trivial

vector in the line F%(r)
(1), the projection of v∈Rn=

⊕n
b=1 L̃b(ũ) to the line L̃a(ũ) parallel

to all L̃b(ũ) with b 6=a is non-trivial, and therefore specifies an orientation for L̃a(ũ).

Replacing v by any other non-trivial vector v′∈F%(r)(1) determines the same orientation

on L̃a(ũ) if the ratio v/v′ in the line F%(r)
(1) is positive, or reverses all these orientations

if v/v′<0. Therefore, the joint orientation of the lines L̃a(ũ) is independent of the choice

of v∈F%(r)(1).

To show that the joint orientation of the lines L̃a(ũ) is independent of the choice

of the point r∈∂∞S̃, consider another point r′∈∂∞S̃ different from p and q, and now

located on the right of p as seen from q. This point r′ similarly defines a joint orientation

for the lines L̃a(ũ), and we will see that this joint orientation is exactly the opposite

of that defined by r (considering joint orientations as orientations of the line bundles

La⊗La+1). To prove this, pick non-trivial vectors v∈F%(r)(1) and v′∈F%(r′)(1). Let va

and v′a denote the respective projections of v and v′ to the line L̃a(ũ) parallel to all L̃b(ũ)

with b 6=a. Since r and r′ are in different components of ∂∞S̃\{p, q}, Lemma 1.6 and the

positivity condition of Theorem 3.3 show that

0<Da(F%(p),F%(q),F%(r),F%(r
′)) =−va+1

v′a+1

v′a
va
,



246 f. bonahon and g. dreyer

where the ratios v′b/vb∈R\{0} are computed in the lines L̃b(ũ). As a consequence, v and

v′ induce opposite orientations on the lines L̃a(ũ)⊗L̃a+1(ũ). In other words, the joint

orientation of the lines L̃a(ũ) defined by the point r′∈∂∞S̃ is the opposite of that defined

by r. It immediately follows that the joint orientation defined by r is independent of the

choice of r in the left-hand-side component of ∂∞S̃\{p, q} (as seen from q).

We will refer to the joint orientation defined by r as the left-hand-side joint orien-

tation of the lines L̃a(ũ), whereas the right-hand-side joint orientation will be the one

defined by r′. These two joint orientations are opposite of each other.

Let h and h′ be two oriented geodesics of S̃ that share the same positive endpoint p∈
∂∞S̃, and let Σhh′ :Rn!Rn be the elementary slithering map, sending each line L̃a(h′) to

L̃a(h), defined as in Proposition 5.1 (4). The definition of Σhh′ through the isomorphisms

L̃a(h′)∼=F%(p)(a)/F%(p)(a−1)∼= L̃a(h)

makes it clear that Σhh′ sends the left-hand-side joint orientation of the family of lines

L̃a(h′) to the left-hand-side joint orientation of the L̃a(h).

We now return to the leaves g and g′ of λ̃. As in the proof of Lemma 5.8 and with

the notation used there, approximate the part of λ̃ that separates g and g′ by a finite

lamination, and the slithering map Σgg′ by a finite composition

Σ̂T = (ΣU0
�ΣU ′0)�ΣT1

�(ΣU1
�ΣU ′1)�ΣT2

�(ΣU2
�ΣU ′2)�ΣT3

�...

...�ΣTm−1
�(ΣUm−1

�ΣU ′m−1
)�ΣTm �(ΣUm �ΣU ′m)

of elementary slitherings where, for any two consecutive terms, the corresponding trian-

gles Ti and Ui, or Ui and U ′i , or U ′i and Ti+1, share a side gTi , hi or g′Ti+1
, respectively.

By our earlier observation, each of these elementary slitherings respects joint orientations

of the appropriate families of lines. It follows that Σ̂T sends the left-hand-side joint ori-

entation of the lines L̃a(g′) to the left-hand-side joint orientation of the L̃a(g). Passing

to the limit as the approximation Σ̂T tends to Σgg′ , we conclude that the slithering map

Σgg′ sends the left-hand-side joint orientation of the lines L̃a(g′) to the left-hand-side

joint orientation of the L̃a(g).

We are now ready to determine the sign of the double ratio

Da(F%(x),F%(y),F%(z),Σgg′(F%(z
′))).

Pick non-trivial vectors v and v′ in the lines F%(z)
(1) and F%(z

′)(1), respectively. The

left-hand-side joint orientation of the family of lines L̃a(g) is defined by the projections

va of v to L̃a(g) parallel to the other lines L̃b(g) with b 6=a. Similarly, the right-hand-side

joint orientation of the lines L̃a(g′) is defined by the projections v′a of v′ to L̃a(g′) parallel
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to the lines L̃b(g
′) with b 6=a. Since we just proved that the slithering map Σgg′ respects

joint orientations, and since the left- and right-hand-side orientations are opposite of each

other, the joint orientation of the L̃a(g) by the vectors va is opposite to that defined by

the vectors Σgg′(v
′
a). In other words, all ratios

Σgg′(v
′
a)

va

va+1

Σgg′(v′a+1)

are negative. By Lemma 1.6,

Da(F%(x),F%(y),F%(z),Σgg′(F%(z
′))) =− va+1

Σgg′(v′a+1)

Σgg′(v
′
a)

va
> 0,

which concludes the proof of Lemma 5.11.

Lemma 5.11 enables us to define the a-th shearing parameter of the Hitchin homo-

morphism % between the components T and T ′ of S̃\λ̃ as

σ%a(T, T ′) = logDa(F%(x),F%(y),F%(z),Σgg′(F%(z
′)))∈R.

These shearing parameters are then combined in the shearing vector

σ%(T, T ′) = (σ%1(T, T ′), σ2(T, T ′), ..., σ%n−1(T, T ′))∈Rn−1.

We now show that the family of shearing vectors σ%(T, T ′) defines a relative tan-

gent cycle σ%∈Z(λ, slits; R̂n−1) for λ valued in the twisted coefficient bundle R̂n, as in

Proposition 4.9. We begin with the easier part, namely condition (3) of that statement.

Lemma 5.12. For any two components T and T ′ of S̃\λ̃,

σ%a(T ′, T ) =σ%n−a(T, T ′).

Proof. Using the notation of Figure 6,

σ%a(T ′, T ) = logDa(F%(y
′),F%(x

′),F%(z
′),Σg′g(F%(z)))

= logDn−a(F%(x
′),F%(y

′),Σg′g(F%(z)),F%(z
′))

= logDn−a(Σg′g(F%(x)),Σg′g(F%(y)),Σg′g(F%(z)),F%(z
′))

= logDn−a(F%(x),F%(y),F%(z),Σgg′(F%(z
′)))

=σ%n−a(T, T ′),

where the second equality is a consequence of the elementary properties of double ratios

stated in Lemma 1.7, the third equality comes from the fact that Σg′g sends each line

L̃b(g) to L̃b(g
′), and the fourth equality follows from the invariance of double ratios under

the action of Σgg′=Σ−1
g′g∈SLn(R).
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The quasi-additivity property, namely condition (2) of Proposition 4.9, will involve

the quadruple ratios Qa(E,F,G) of §1.3. The following computation, which connects

quadruple ratios to double ratios and slithering maps, is the key to this relationship.

Lemma 5.13. Let x, y, y′∈∂∞S̃ be the vertices of a component T of S̃\λ̃, occurring

in this order counterclockwise around T . Let g be the side of T going from x to y,

and let g′ be the side going from x to y′. In particular, the elementary slithering map

Σgg′ :Rn!Rn respects the flag E=F%(x)∈Flag(Rn) and sends F ′=F%(y
′) to F=F%(y).

Then,

Qa(E,F, F ′) =Da(E,F, F ′,Σgg′(F ))−1.

Proof. By definition of the double ratio,

Da

(
E,F, F ′,Σgg′(F )) =− e(a)∧f (n−a−1)∧f ′(1)

e(a)∧f (n−a−1)∧Σgg′(f (1))

e(a−1)∧f (n−a)∧Σgg′(f
(1))

e(a−1)∧f (n−a)∧f ′(1)

for arbitrary non-zero e(b)∈Λb(E(b)), f (b)∈Λb(F (b)), f ′(b)∈Λb(F ′(b)).

The elementary slithering map Σgg′ respects the flag E and sends F ′ to F . By

condition (3) of Proposition 5.1, it acts trivially on each Λb(E(b)), including Λn(E(n))=

Λn(Rn). If we choose f ′(b)=Σ−1
gg′(f

(b)), we consequently have that

e(b)∧f (n−b−1)∧Σgg′(f
(1)) = Σgg′(e

(b))∧Σgg′(f
′(n−b−1))∧Σgg′(f

(1))

= Σgg′(e
(b)∧f ′(n−b−1)∧f (1)) = e(b)∧f

′(n−b−1)∧f (1)

for every b. Similarly, e(b)∧f (n−b)=e(b)∧f ′(n−b) for every b.

Combining these properties and rearranging terms provides

Da

(
E,F, F ′,Σgg′(F ))

=−e
(a)∧f (n−a−1)∧f ′(1)

e(a)∧f ′(n−a−1)∧f (1)

e(a−1)∧f ′(n−a)∧f (1)

e(a−1)∧f (n−a)∧f ′(1)

=
e(a)∧f (n−a−1)∧f ′(1)

e(a−1)∧f (n−a)∧f ′(1)

e(a−1)∧f (1)∧f ′(n−a)

e(a)∧f (1)∧f ′(n−a−1)

e(a+1)∧f ′(n−a−1)

e(a+1)∧f (n−a−1)

e′(a)∧f (n−a)

e(a)∧f ′(n−a)

=Qa(E,H,H ′)−1.

Let s be a slit of λ or, equivalently, a spike of the complement S\λ. Lift s to a spike

of S̃\λ̃, namely to a vertex x∈∂∞S̃ of a triangle component T of S̃\λ̃. Let y and z be the

other two vertices of T , indexed so that x, y and z occur in this order counterclockwise

around T . The flag curve F% then determines a positive triple of flags F%(x), F%(y) and

F%(z)∈Flag(Rn). Considering their quadruple ratios as in §1.3, define

ξ%a(s) = logQa
(
F%(x),F%(y),F%(z)),
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which is clearly independent of the lift of the slit s to the universal cover S̃.

This invariant ξ%a(s) can be expressed in terms of the triangle invariants τ%abc(s) of %

that we introduced in §3.2.

Lemma 5.14.

ξ%a(s) =
∑

b+c=n−a

τ%abc(s).

Proof. This is an immediate consequence of Lemma 1.5.

Recall that, by definition, a slit ŝ of the orientation cover λ̂ is positive if the canonical

orientation of λ̂ orients towards ŝ the two leaves that are adjacent to ŝ, and that ŝ is

negative when these two leaves are oriented away from ŝ.

Proposition 5.15. The rule (T, T ′) 7!σ%a(T, T ′) defines a relative tangent cycle σ%a∈
Z(λ̂, slits;R). The boundary ∂σ%a: {slits of λ̂}!R is defined by the property that, for every

slit ŝ of λ̂ projecting to a slit s of λ,

∂σ%a(ŝ) =

{
ξ%a(s), if ŝ is a positive slit of λ̂,

−ξ%n−a(s), if ŝ is negative.

In the classical case where n=2, the boundary ∂σ%1 is trivial, since there are no

triangle invariants, and σ%1∈Z(λ̂;R) is consequently a (non-relative) tangent cycle.

Proof. Using the framework of Proposition 4.8, let T , T ′ and T ′′ be three components

of S̃\λ̃ such that T ′′ separates T from T ′ in S̃. Let s̃′′ be the spike of T ′′ delimited by

the two sides of T ′′ that separate T from T ′.

We first consider the case where s̃′′ points to the left as seen from T .

Let g be the side of T that is closest to T ′ and T ′′, and let g′ be the side of T ′ that is

closest to T and T ′′. Let f be the side of T ′′ that faces T , and let f ′ be the side of T ′′ that

faces T ′. Orient these leaves of λ̃ to the left as seen from T . Let E,F,E′, F ′, E′′, H,H ′∈
Flag(Rn) be the flags respectively assigned by the flag curve F%: ∂∞S̃!Flag(Rn) to the

positive endpoint of g, the negative endpoint of g, the positive endpoint of g′, the negative

endpoint of g′, the positive endpoint s̃′′ of f and f ′, the negative endpoint of f , and the

negative endpoint of f ′. Similarly, let G, G′∈Flag(Rn) be respectively associated with

the vertex of T that is not contained in g, and with the vertex of T ′ that is not contained

in g′. See Figure 7, where the vertices of T , T ′ and T ′′ are labelled by the flags assigned

to them by the flag curve F%.

Then,

σ%a(T, T ′) = logDa(E,F,G,Σgg′(G
′)) = logDa(E′′, H,Σfg(G),Σfg′(G

′)),
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E
F

G

E′

F ′

G′

E′′

H

H ′

g

g′

f

f ′

T

T ′

T ′′

Figure 7. The triangles T , T ′ and T ′′, their sides, and the flags associated with their vertices.

by using the fact that the slithering map Σfg sends E to E′′ and F to H. Similarly,

σ%a(T, T ′′) = logDa(E,F,G,Σgf (H ′)) = logDa(E′′, H,Σfg(G), H ′)

and

σ%a(T ′′, T ′) = logDa(E′′, H ′, H,Σf ′g′(G
′)) = logDa(E′′, H,Σff ′(H),Σfg′(G

′)).

Using the elementary properties of double ratios stated in Lemma 1.7, it follows that

σ%a(T, T ′) =σ%a(T, T ′′)+σ%a(T ′′, T ′)+logDa

(
E′′, H,H ′,Σff ′(H)).

Lemma 5.13 now shows that

σ%a(T, T ′) =σ%a(T, T ′′)+σ%a(T ′′, T ′)−logQa(E′′, H,H ′) =σ%a(T, T ′′)+σ%a(T ′′, T ′)−ξ%a(s′′),

where s′′ is the slit of λ that is the projection of the slit s̃′′ of λ̃.

This computation holds when s̃′′ points to the left as seen from T . When s̃′′ points

to the right, a very similar computation or an application of Lemma 5.12 shows that in

this case

σ%a(T, T ′) =σ%a(T, T ′′)+σ%a(T ′′, T ′)−ξ%n−a(s′′).

Considering these two cases, Proposition 4.8 then shows that the rule

(T, T ′) 7−!σ%a(T, T ′)

defines a relative tangent cycle σ%a∈Z(λ̂, slits;R), whose boundary ∂σ%a: {slits of λ̂}!R is

the one described in the statement of Proposition 5.15. This concludes the proof of that

proposition.
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Through Proposition 4.9, the combination of Lemma 5.12 and Proposition 5.15

shows that the relative tangent cycles σ%a∈Z(λ̂, slits;R) can be combined to define a

relative tangent cycle σ%∈Z(λ, slits; R̂n−1) valued in the twisted coefficient bundle R̂n−1

introduced in §4.6. This twisted relative tangent cycle is the shearing cycle of the Hitchin

character %∈Hitn(S) with respect to the maximal geodesic lamination λ.

6. Hitchin characters are determined by their invariants

The goal of this section is to show that, if two Hitchin homomorphisms %, %′:π1(S)!

PSLn(R) have the same triangle invariants and the same shearing cycle, then they rep-

resent the same character in the Hitchin component Hitn(S).

6.1. Revisiting the slithering map

We give in Proposition 6.2 below a different description of the slithering map Σgg′ of

§5.1. This new formulation is based on the following simple algebraic trick.

Lemma 6.1. Let A1, A2, ..., Am be elements of a group. Then,

A1A2 ... Am−1Am = ÂmÂm−1 ... Â2Â1

where Âi=(A1A2 ... Ai−1)Ai(A1A2 ... Ai−1)−1.

Proof. Observe that A1A2 ... Am−1Am=ÂmA1A2 ... Am−1, and proceed by induc-

tion.

We return to the construction of the slithering map Σgg′ in §5.1. Let g and g′ be

two leaves of the preimage λ̃⊂S̃ of the geodesic lamination λ, and let Tgg′ be the set of

components of S̃\λ̃ that separate g from g′, where these components are ordered from g

to g′. For such a component T∈Tgg′ , we consider the elementary slithering ΣT =ΣgT g′T
defined by condition (3) of Proposition 5.1, where gT and g′T are the two sides of T that

are respectively closest to g and g′.

We now consider the infinite product of the maps

Σ̂T = ΣggT �ΣT �Σ
−1
ggT .

More precisely, let T={T1, T2, ..., Tm} be a finite subset of Tgg′ , where each Ti separates

Ti+1 from g. We then consider the limit

←−∏
T∈Tgg′

Σ̂T = lim
T!Tgg′

Σ̂Tm �Σ̂Tm−1
�...�Σ̂T2

�Σ̂T1
.
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The reverse arrow on top of the product sign is here to remind us that the composition

of the Σ̂T is taken in the order opposite to the ordering of the elements of Tgg′ from g

to g′,

Proposition 6.2. The slithering map Σgg′ is equal to

Σgg′ =
←−∏

T∈Tgg′

Σ̂T .

Proof. First of all, the fact that the infinite product converges is proved by the

estimates of §5.1, using the fact that the ΣggT are uniformly bounded (Lemma 5.4) and

the estimates on ΣT−IdRn given by Lemmas 5.2 and 5.3.

As usual, let T={T1, T2, ..., Tm} be a finite subset of Tgg′ , where each Ti separates

Ti+1 from g. By Lemma 6.1,

−→∏
T∈T

ΣT = ΣT1 �ΣT2 �...�ΣTm−1 �ΣTm = Σ̂T
Tm �Σ̂

T
Tm−1

�...�Σ̂T
T2
�Σ̂T

T1
=
←−∏
T∈T

Σ̂T
T ,

where

Σ̂T
Ti = (ΣT1

�ΣT2
�...�ΣTi−1

)�ΣTi �(ΣT1
�ΣT2

�...�ΣTi−1
)−1.

For a fixed T , the map Σ̂T
T tends to Σ̂T =ΣggT �ΣT �Σ

−1
ggT as the finite family T

tends to the set Tgg′ of all components of S̃\λ̃ separating g from g′, by definition of the

slithering map. By uniformity in the exponential estimates guaranteeing the convergence

of the infinite products, it follows that

Σgg′ = lim
T!Tgg′

−→∏
T∈T

ΣT = lim
T!Tgg′

←−∏
T∈T

Σ̂T
T = lim

T!Tgg′

←−∏
T∈T

Σ̂T =
←−∏

T∈Tgg′

Σ̂T .

6.2. Reconstructing a Hitchin homomorphism from its invariants

We now show how to reconstruct, up to conjugation by an element of PSLn(R), a Hitchin

homomorphism %:π1(S)!PSLn(R) from its triangle invariants and its shearing cycle.

For this, we first normalize % to avoid having to worry about conjugations. Fix a

component T0 of S̃\λ̃, with vertices x0, y0, z0∈∂∞S̃. Also, choose a generic flag triple

(E0, F0, G0).

Lemma 6.3. The flag triple (E0, F0, G0) can be chosen so that every Hitchin char-

acter is represented by a unique homomorphism %:π1(S)!PSLn(R) for which the flag

F%(x0) is equal to E0, the flag F%(y0) is equal to F0, and the line F%(z0)(1) is equal to

the line G
(1)
0 .



hitchin characters and geodesic laminations 253

Note that the last condition involves only the line F%(z0)(1), not the whole flag

F%(z0).

Proof. For a Hitchin homomorphism %:π1(S)!PSLn(R), we know from Theorem 3.3

that the flag triple (F%(x0),F%(y0),F%(z0)) is positive, and in particular generic. By

elementary linear algebra, there consequently exists a unique projective isomorphism

ϕ%∈PGLn(R) sending the flag F%(x0) to E0, the flag F%(y0) to F0, and the line F%(z0)(1)

to the line G
(1)
0 . This ϕ% depends continuously on %.

If ϕ%0∈PGLn(R) is in PSLn(R) for some Hitchin homomorphism %0 (which is au-

tomatic when n is odd), then ϕ% belongs to PSLn(R) for all %, by connectedness of the

space of all Hitchin homomorphisms. Conjugating % by ϕ%∈PSLn(R) replaces the flag

curve F%: ∂∞S̃!Flag(Rn) by its composition with the action of ϕ% on Flag(Rn), and

consequently provides a representative of the class of % in Hitn(S) with the requested

properties. The uniqueness of this representative is an immediate consequence of the fact

that the stabilizer of (E0, F0, G
(1)
0 ) in PSLn(R) is trivial.

Otherwise, ϕ% is in the complement of PSLn(R) in PGLn(R) for every Hitchin ho-

momorphism %. Replace the flag triple (E0, F0, G0) by its image under an arbitrary ψ

in this complement. This replaces each ϕ% by ψ�ϕ%, which is now in PSLn(R) for every

Hitchin homomorphism. We then conclude as in the earlier case.

Note that all generic flag triples (E0, F0, G0) can be used in Lemma 6.3 when n

is odd, and “half” of them (namely those in one of the two equivalence classes of an

appropriate equivalence relation) when n is even.

The following lemma will help in the exposition, by decreasing the number of cases

to consider. Let g0 be the side of T0 joining x0 and y0, and let h0 be the side joining x0

and z0.

Lemma 6.4. The fundamental group π1(S) is generated by finitely many elements

γ∈π1(S) whose axes cross both g0 and h0, and send T0 to a triangle γT0 contained in

the component of S̃\T0 that is adjacent to g0, as in Figure 8.

Proof. The axes of π1(S) are dense in the space of geodesics of S̃. Therefore, there

exists an element γ0∈π1(S) whose axis crosses both g0 and h0, and whose attracting

fixed point in ∂∞S̃ is contained in the closure of the component U of S̃\T0 delimited

by g0. In particular, γ0T0 is contained in U .

Let γ1, γ2, ..., γk be a set of generators for π1(S). The ping-pong lemma shows that,

for mi, ni>0 large enough, the attracting and repelling fixed points of γ′i=γ
mi
0 γiγ

ni
0 are

very close to the attracting and repelling fixed points of γ0. In particular, the axis of γ′i
crosses both g0 and h0, and γ′iT0 is contained in U .
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T0
x0

y0

z0

g0

h0

γT0

γx0

γy0

γz0

γg0

γh0

T
gT

xT

yT

zT g′T

Figure 8. The triangles T0, γT0 and T .

Then, the family of elements γ0, γ
′
1, γ
′
2, ..., γ

′
k generates π1(S) and has the required

properties.

For a Hitchin homomorphism %:π1(S)!PSLn(R) and an element γ∈π1(S), the

projective map %(γ)∈PSLn(R) sends the flag pair (F%(x0),F%(z0)) to (F%(γx0),F%(γz0))

by %-equivariance of the flag map F%. We would like to compare it to another map

sending (F%(x0),F%(z0)) to (F%(γx0),F%(γz0)), namely the slithering map Σ(γh0)h0
=

Σ(γh0)g0 �Σg0h0 :Rn!Rn. Focusing on the side g0 of the triangle T0 instead of h0, we

conclude that Σg0(γh0)�%(γ)�Σh0g0 stabilizes the flag pair (F%(x0),F%(y0)), and we expect

this element of the stabilizer to be related to the shearing vector σ%(T0, γT0)∈Rn−1.

With this in mind, we introduce a family of elements of the stabilizer of (E0, F0)=

(F%(x0),F%(y0)), assuming % normalized as in Lemma 6.3. For t=(t1, t2, ..., tn−1)∈Rn−1,

let u1, u2, ..., un be uniquely determined by the properties that ta=ua−ua+1 and∑n
a=1 ua=0. Namely,

ua =
1

n

n−1∑
b=1

(n−b)tb−
a−1∑
b=1

tb.

Then, let Θt
E0F0

:Rn!Rn be the element of SLn(R) that acts by multiplication by eua

on each line E
(a)
0 ∩F

(n−a+1)
0 .

We will also need to replace the slithering map Σg0h0 by another map Φ0∈PGLn(R)

that stabilizes the flag F%(x0), and sends F%(z0) to F%(y0), but is normalized in such a

way that

Da(F%(x0),F%(y0),F%(z0),Φ0(F%(y0))) = 1

for every a∈{1, 2, ..., n−1}. The existence and uniqueness of the projective map Φ0∈
PGLn(R) is elementary. By comparison, the slithering map Σg0h0

was normalized so that
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it acts by the identity on each F%(x0)(a+1)/F%(x0)(a)∼=R. The normalization defining Φ0

is better adapted to shearing parameters.

Lemma 6.5. Let % be normalized as in Lemma 6.3 and γ∈π1(S) be as in Lemma 6.4.

Then,

%(γ) = Σ−1
g0(γh0)�Θ

σ%(T0,γT0)
E0F0

�Φ0 ∈PGLn(R),

where Θt
E0F0

and Φ0 are defined as above, and where σ%(T0, γT0)∈Rn−1 is the shearing

vector of % between T0 and γT0 defined in §5.2.

Proof. Note that, since γ satisfies the conclusions of Lemma 6.4, the side of γT0 that

is closest to T0 is γh0, while g0 is the side of T0 closest to γT0. See Figure 8.

The map Σg0(γh0)�%(γ) sends the flag triple (F%(x0),F%(z0),F%(y0)) to

(F%(x0),F%(y0), G′0) = (E0, F0, G
′
0),

where G′0=Σg0(γh0)�F%(γy0).

Similarly, Θ
σ%(T0,γT0)
E0F0

�Φ0 sends (F%(x0),F%(z0),F%(y0)) to

(F%(x0),F%(y0), G′′0) = (E0, F0, G
′′
0),

where G′′0 =Θ
σ%(T0,γT0)
E0F0

�Φ0�F%(y0).

We want to compare the lines G
′(1)
0 and G

′′(1)
0 . The key property is that

Da(F%(x0),F%(y0),F%(z0), G′0) =Da(F%(x0),F%(y0),F%(z0),Σg0(γh0)�F%(γy0))

= eσ
%
a(T0,γT0),

by definition of the shearing parameter σ%a(T0, γT0).

We have designed the definitions so that

Da(F%(x0),F%(y0),F%(z0), G′′0)) =Da(F%(x0),F%(y0),F%(z0),Θ
σ%(T0,γT0)
E0F0

�Φ0(F%(y0)))

= eσ
%
a(T0,γT0)Da(F%(x0),F%(y0),F%(z0),Φ0(F%(y0)))

= eσ
%
a(T0,γT0),

where the second equality comes from Lemma 1.6 and from the definition of Θ
σ%(T0,γT0)
E0F0

.

Comparing these two double ratios for every a=1, 2, ..., n, we conclude that the lines

G
′(1)
0 and G

′′(1)
0 are equal (use for instance Lemma 1.6 again).

Therefore, the two projective maps Σg0(γh0)�%(γ) and Θ
σ%(T0,γT0)
E0F0

�Φ0 send the flag

F%(x0) to the same flag F%(x0), send the flag F%(z0) to the same flag F%(y0), and

send the line F%(y0)(1) to the same line G
′(1)
0 =G

′′(1)
0 . By genericity of the flag triple

(F%(x0),F%(z0),F%(y0)) they consequently coincide, which proves the lemma.
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In the formula of Lemma 6.5, the term Θ
σ%(T0,γT0)
E0F0

depends only on the shearing

cycle σ%. The term Φ0 is defined by the generic flag triple (F%(x0),F%(z0),F%(y0)) and,

because of our normalization that F%(x0)=E0, F%(y0)=F0 and F%(z0)(1)=G
(1)
0 , is com-

pletely determined by the triangle invariants τ%abc(s) of the base triangle T0. We now

turn our attention to the remaining term, the slithering map Σg0(γh0).

By Proposition 6.2,

Σg0(γh0) =
←−∏

T∈Tg0(γh0)

Σ̂T ,

with the notation of that statement.

Consider the contribution Σ̂T =Σg0gT �ΣT �Σ
−1
g0gT of a triangle T∈Tg0(γh0), separating

g0 from γh0.

Lemma 6.6. For each triangle T∈Tg0(γh0), the map Σ̂T ∈PSLn(R) is uniquely deter-

mined by the shearing vector σ%(T0, T )∈Rn−1 and by the triangle invariants τ%abc(s)∈R
of the triangle T .

More precisely,

Σ̂T = Θσ%(T0,T )
�Σ̂′T �Θ

−σ%(T0,T )

where Σ̂′T depends only on the triangle invariants τ%abc(s) of T .

Proof. Index the vertices of T as xT , yT and zT , in such a way that the side gT =yTxT

is the one that is closest to g0=y0x0, and is oriented in parallel with g0. See Figure 8.

As in the definition of the map Φ0, there is a unique projective map ΦT ∈PGLn(R)

sending F%(xT ) to F%(x0)=E0, F%(yT ) to F%(y0)=F0, and F%(zT ) to a flag G′T such that

Da(F%(x0),F%(y0),F%(z0), G′T ) = 1

for every a=1, 2, ..., n.

A fundamental observation is that, although the map ΦT depends on the flag triple

(F%(xT ),F%(yT ),F%(zT )), the flag G′T =ΦT (F%(zT )) depends only on the orbit of that flag

triple under the action of PGLn(R) or, equivalently, on the triangle invariants τ%abc(s) of

the triangle T .

The two maps ΦT and Σg0gT both send F%(xT ) to F%(x0) and F%(yT ) to F%(y0). As

in the proof of Lemma 6.5,

Da(F%(x0),F%(y0),F%(z0),Σg0gT (F%(zT )) = eσa(T0,T )

by definition of the shearing parameter σa(T0, T ), and

Da(F%(x0),F%(y0),F%(z0),Θ
σ%(T0,T )
E0F0

�ΦT (F%(zT ))) = eσa(T0,T )
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by construction. Again as in the proof of Lemma 6.5, it follows that

Σg0gT = Θ
σ%(T0,T )
E0F0

�ΦT .

Noting that (Θt
E0F0

)−1=Θ−tE0F0
, we set

Σ̂′T = Θ
−σ%(T0,T )
E0F0

�Σ̂T �Θ
σ%(T0,T )
E0F0

= Θ
−σ%(T0,T )
E0F0

�Σg0gT �ΣT �Σ
−1
g0gT �Θ

σ%(T0,T )
E0F0

= ΦT �ΣT �Φ
−1
T .

There are now two cases to distinguish in the exposition, according to whether the

side g′T of T that is closest to γT0 is equal to zTxT or to yT zT .

Consider the case where T points to the right, namely where g′T is equal to yT zT , as

in Figure 8. Then, the elementary slithering ΣT =ΣgT g′T is the unique linear map that

fixes the flag F%(yT ), acts by the identity on each line F%(yT )(a+1)/F%(yT )(a), and sends

the flag F%(zT ) to F%(xT ). It follows that Σ̂′T =ΦT �ΣT �Φ
−1
T is the unique linear map

that fixes the flag ΦT (F%(yT ))=F0, acts as the identity on each line F
(a+1)
0 /F

(a)
0 , and

sends the flag ΦT (F%(zT ))=G′T to ΦT (F%(xT ))=E0. Since we already observed that the

flag G′T is uniquely determined by the triangle invariants τ%abc(s), so is the map Σ̂′T and

Σ̂T = Θσ%(T0,T )
�Σ̂′T �Θ

−σ%(T0,T )

depends only on these triangle invariants as well as the shearing vector σ%(T0, T ).

The argument is essentially identical in the case where the triangle T points to the

left, namely when g′t is equal to the geodesic zTxT . In this case, Σ̂′T is the unique linear

map that fixes E0, acts as the identity on each line E
(a+1)
0 /E

(a)
0 , and sends G′T to F0.

Again, this proves that Σ̂′T is uniquely determined by the triangle invariants τ%abc(s).

Lemma 6.7. Let % be normalized as in Lemma 6.3 and γ∈π1(S) be as in Lemma 6.4.

Then,

%(γ) =

( ←−∏
T∈Tg0(γh0)

(Θ
σ%(T0,T )
E0F0

�Σ̂′T �Θ
−σ%(T0,T )
E0F0

)

)−1

�Θ
σ%(T0,γT0)
E0F0

�Φ0

in PGLn(R), with the definitions introduced above. In particular, the maps Σ̂′T and

Φ0 depend only on the triangle invariants τ%abc(s) of %, while the terms Θ
±σ%(T0,T )
E0F0

are

determined by its shearing cycle σ%∈C(λ, slits; R̂n−1).

Proof. This follows from the combination of Lemmas 6.5 and 6.6, together with the

observation that Φ0 depends only on the triangle invariants τ%abc.

Corollary 6.8. Two Hitchin homomorphisms %, %′:π1(S)!PSLn(R) that have

the same triangle invariants σ%abc(s)=σ%
′

abc(s) and the same shearing cycles σ%=σ%
′∈

C(λ, slits; R̂n) are conjugate by an element of PSLn(R), and therefore represent the same

character in Hitn(S).
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Proof. Conjugate % and %′ by elements of PSLn(R) in order to normalize them as in

Lemma 6.3. Then, for every element γ∈π1(S) satisfying the conditions of Lemma 6.4,

the formula of Lemma 6.7 shows that %(γ)=%′(γ). Since these γ generate π1(S), this

proves that %=%′.

7. Length functions

Our next goal is to determine which triangle invariants and shearing cycles can be realized

as invariants of Hitchin characters. The length functions considered in this section provide

one of the constraints that need to be satisfied by these invariants.

7.1. Length functions associated with Hitchin characters

Let %:π1(S)!PSLn(R) be a Hitchin homomorphism. Labourie proves in [27] that, for ev-

ery non-trivial γ∈π1(S), the matrix %(γ)∈PSLn(R) is diagonalizable and its eigenvalues

can be indexed as µ1(%(γ)), µ2(%(γ)), ..., µn(%(γ)) in such a way that

µa(%(γ))

µa+1(%(γ))
> 1

for every i=1, 2, ..., n−1. (Note that eigenvalues of an element of PSLn(R) are only

defined up to sign when n is even, but that the quotient between two such eigenvalues

makes intrinsic sense.) This property is in fact an easy consequence of Theorem 3.1.

Eigenvalues are invariant under conjugation. This consequently defines n−1 func-

tions

`%a: {non-trivial conjugacy classes of π1(S)}−!R

by the property that

`%a(γ) = log
µa(%(γ))

µa+1(%(γ))
> 0.

The same conjugation invariance shows that the length function `%a depends only on the

Hitchin character %∈Hitn(S), not on the Hitchin homomorphism %:π1(S)!PSLn(R)

that represents it.

The set of conjugacy classes of the fundamental group π1(S) is discrete, but these

length functions have a natural extension to a continuous space. Indeed, endowing the

surface S with an arbitrary negatively curved riemannian metric, a conjugacy class of

π1(S) uniquely determines an oriented closed geodesic of S, and therefore a closed orbit

of the geodesic flow of the unit tangent bundle T 1S. This closed leaf is endowed with an

integer weight m>0 if the conjugacy class is an m-power of a primitive class. Considering
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the Dirac transverse measure defined by this closed orbit and this weight, this provides

an analytic interpretation of a conjugacy class of π1(S) as a transverse measure for the

geodesic foliation FS of T 1S, whose leaves are the orbits of the geodesic flow.

This defines a completion of the set of conjugacy classes of π1(S) by the space

Cm(S) of all (positive Radon) transverse measures for the geodesic foliation FS [2], [3],

[4], analogous to Thurston’s completion [39], [17], [36] of the set of isotopy classes of

simple closed curves in S by the space ML(S) of measured laminations on S.

For differentiability properties, it is useful to consider more general transverse struc-

tures for the geodesic foliation, namely transverse Hölder distributions in the sense of [7]

and [6]. When the geodesic foliation FS is realized by the geodesic flow of a riemannian

metric m of constant negative curvature, it inherits from that construction a transverse

differential structure, namely a smooth structure on the space of leaves of FS∩U for

every sufficiently small open subset of T 1S. A transverse Hölder distribution then is

a distribution, in the usual sense, on these local leaf spaces with additional regularity

properties that makes the notion independent of the auxiliary riemannian metric m. See

[7] and [6] for details.

In particular, a transverse measure is a special type of transverse Hölder distribution.

This embeds the set of conjugacy classes of π1(S) in the topological vector space CH(S)

of all transverse Hölder distributions for the geodesic foliation FS . In other words, we

now have embeddings

{non-trivial conjugacy classes of π1(S)}⊂Cm(S)⊂CH(S).

The elements of Cm(S) and CH(S) are respectively called measure geodesic currents

and Hölder geodesic currents for the surface S. See the references mentioned above for

a proof that these constructions depend only on the topology of the surface S.

Theorem 7.1. ([15]) For each Hitchin character %∈Hitn(S) and for each a=1, 2, ...,

n−1, the length function

`%a: {non-trivial conjugacy classes of π1(S)}−!R

extends to a continuous linear map `%a:CH(S)!R.

Remark 7.2. The reader should beware that the above functions `%a are slightly

different from those introduced in [15]. Namely, our functions `%a would be called `%a−`
%
a+1

in [15]. Although mathematically equivalent to those of [15], our conventions are better

adapted to the framework of the current article, as will be apparent in Proposition 7.4

and Theorem 7.5 below.
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Remark 7.3. By linearity and continuity, the extension `%a:CH(S)!R is uniquely

determined on the closure of the set of all linear combinations of conjugacy classes of

π1(S). We do not know if this closure is equal to all of CH(S) (this seems unlikely), but

it can be shown to contain all the Hölder geodesic currents that we will encounter in this

article, including the image of the embedding Z(λ̂;R)!CH(S) that will appear in §7.2.

The following statement will be particularly important in our characterization of

which relative tangent cycles can occur as shearing cycles of Hitchin characters.

Proposition 7.4. Let α∈Cm(S) be a non-zero measure geodesic current. Then,

`%a(α)> 0

for every Hitchin character %∈Hitn(S) and every a=1, 2, ..., n−1.

Proof. This is a simple consequence of the Anosov property of Theorem 3.1.

For this, we need to remind the reader of the construction of the length functions

`%a:CH(S)!R in [15], taking Remark 7.2 into account. As in §3.1, consider the geodesic

flow (gt)t∈R on the unit tangent bundle T 1S (for an arbitrary metric of negative cur-

vature) and its flat lift to a flow (Gt)t∈R on the vector bundle T 1S×%′Rn, twisted by

a homomorphism %′:π1(S)!SLn(R) lifting %. In addition, choose a riemannian metric

‖ · ‖ on the vector bundle T 1S×%′Rn!T 1S.

The vector bundle T 1S×%′Rn!T 1S splits as a direct sum of line bundles La!T
1S

as in §3.1. For a=1, 2, ..., n, this data provides a function fa:T 1S!R defined by the

property that, for x∈T 1S,

fa(x) =−
(
d

dt
log ‖Gt(va(x))‖gt(x)

)∣∣∣∣
t=0

,

where va(x) is an arbitrary non-zero vector in the fiber La(x) of the line bundle La!T
1S.

For a measure geodesic current α∈Cm(S), the length `%a(α) is then defined as the integral

`%a(α) =

∫
T 1S

(fa−fa+1)α×dt

of the function fa−fa+1 with respect to the measure α×dt on T 1S that, locally, is the

product of the transverse measure α for the geodesic flow (gt)t∈R with the measure dt

along the orbits of this geodesic flow.
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The measure α×dt is invariant under the geodesic flow. Therefore, for every t0>0,∫
T 1S

fa α×dt=

∫
T 1S

fa�gu α×dt

=
1

t0

∫
T 1S

∫ t0

0

fa�gu duα×dt

=
1

t0

∫
T 1S

∫ t0

0

− d

du
log ‖Gu(va(x))‖gu(x) duα×dt(x)

=
1

t0

∫
T 1S

log
‖va(x)‖x

‖Gt0(va(x))‖gt0 (x)
α×dt(x),

so that

`%a(α) =
1

t0

∫
T 1S

log
‖va(x)‖x

‖Gt0(va(x))‖gt0 (x)

‖Gt0(va+1(x))‖gt0 (x)

‖va+1(x)‖x
α×dt(x).

Theorem 3.1 provides constants A,B>0 such that

log
‖va(x)‖x

‖Gt0(va(x))‖gt0 (x)

‖Gt0(va+1(x))‖gt0 (x)

‖va+1(x)‖x
> logA+Bt0

for every t0>0. In particular, this integrand is strictly positive for t0 large enough, and

it follows that the integral `%a(α) is strictly positive.

7.2. Shearing cycles and length functions

We now consider a special type of Hölder geodesic current.

We saw in §4.1 that a positive tangent cycle µ∈Z(λ̂;R) determines a transverse

measure for λ̂. A general tangent cycle α∈Z(λ̂;R) determines a transverse Hölder dis-

tribution, which lifts to a Hölder geodesic current α∈CH(S) [7], [6]. This provides an

embedding Z(λ̂;R)⊂CH(S), and the length functions `%a:CH(S)!R of the previous sec-

tion restrict to linear functions `%a:Z(λ̂;R)!R.

The following statement connects these length functions to the homological inter-

pretation of relative tangent cycles in §4.5, based on a train-track neighborhood Û of the

orientation cover λ̂. Proposition 4.5 provides isomorphisms Z(λ̂, slits;R)∼=H1(Û , ∂vÛ ;R)

and Z(λ̂;R)∼=H1(Û ;R).

Theorem 7.5. Let %∈Hitn(S) be a Hitchin character with shearing cyle

σ% ∈Z(λ, slits; R̂n−1)⊂Z(λ̂, slits;Rn−1).

Then, for every a=1, 2, ..., n−1, the a-th component σ%a∈Z(λ̂, slits;R)∼=H1(Û , ∂vÛ ;R) of

σ% is related to the length function `%a:Z(λ̂;R)!R by the property that

`%a(α) = [α]·[σ%a]
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for every tangent cycle α∈Z(λ̂;R)∼=H1(Û ;R), where · denotes the algebraic intersection

number of relative homology classes in the train-track neighborhood Û of the orientation

cover λ̂.

In the case where n=2, this statement is implicit in [42], and explicitly expressed

in [5, Theorem E] in terms of the Thurston intersection form on the space Z(λ;R) of

tangent cycles.

We will split the proof of Theorem 7.5 into several lemmas.

We first give a homological interpretation of the length function `%a:Z(λ̂;R)!R, by

connecting it to a certain closed 1-form Ωa defined on Û . Because of the lack of transverse

regularity of the geodesic lamination λ̂ and of the line bundles La!T
S , we however need

a version of closed 1-form that is weaker than the usual differentiable definition.

7.2.1. Topological closed 1-forms

Remember that a differential form is closed if and only if it is locally exact. This motivates

the following definition. A topological closed 1-form Ω on a topological space X is defined

by a family {(Vi, Fi)}i∈I such that the following conditions hold:

(1) each Vi is open in X, and X=
⋃
i∈I Vi;

(2) each Fi:Vi!R is a continuous function;

(3) for every i, j∈I, the function Fi−Fj is locally constant on Vi∩Vj .
By definition, two such families {(Vi, Fi)}i∈I and {(V ′i′ , F ′i′)}i′∈I′ define the same

topological closed 1-form when, for every i∈I and i′∈I ′, the function Fi−F ′i′ is locally

constant on Vi∩V ′i′ . In other words, a topological closed 1-form Ω is defined as an equiv-

alence class of families {(Vi, Fi)}i∈I satisfying the above three conditions. Equivalently,

a topological closed 1-form is a maximal family {(Vi, Fi)}i∈I satisfying the above three

conditions.

The motivation of the definition comes of course from the case where X is a differen-

tiable manifold and all functions Fi are differentiable. Such a family of charts {(Vi, Fi)}i∈I
uniquely determines a closed differential 1-form Ω by the property that Ω|Vi=dFi on each

chart Vi⊂X.

The definition of a topological closed 1-form Ω is specially designed so that we can

integrate Ω over every oriented continuous arc k. Indeed, if Ω is defined by a family of

charts {(Vi, Fi)}i∈I , the arc k can be split into a finite family of arcs k1, k2, ..., kp such

that each kj is contained in some chart Vij . Then, the integral of Ω over the arc k is

defined as ∫
k

Ω =

p∑
j=1

(Fij (x
+

j )−Fij (x
−
j )),
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where x+

j , x
−
j ∈Vij are the positive and negative endpoints of the arc kj . It is immediate

that this definition is independent of the decomposition of k into subarcs kj (and of the

chart Vij containing each individual kj), and that the integral
∫
k

Ω is invariant under

homotopy of k fixing its endpoints.

The construction is of course designed to coincide with the usual definition when Ω

is a closed differential 1-form and the arc k is differentiable.

The invariance of the integral
∫
k

Ω under homotopy of k fixing endpoints yields the

following result.

Lemma 7.6. A topological closed 1-form Ω on the space X defines a cohomology

class [Ω]∈H1(X;R), represented by the singular cochain assigning the integral
∫
k

Ω to

each continuous arc (=singular 1-simplex ) k.

When X is a metric space, we say that a topological closed 1-form Ω is Hölder

continuous if it can be defined by a family of charts {(Vi, Fi)}i∈I , where each function

Fi:Vi!R is Hölder continuous. The terminology is convenient but somewhat abusive,

because such a form is only, locally, the “differential” of a Hölder continuous function.

7.2.2. A homological interpretation of the lengths of tangent cycles

The length functions `%a are constructed in [15] by using the differential 1-forms ωa=fa dt,

defined on the orbits of the geodesic flow in the unit tangent bundle T 1S, that we

encountered in the proof of Proposition 7.4.

The (geodesic) leaves of λ̂ have canonical lifts to orbits of the geodesic flow in T 1S,

so that the 1-forms ωa induce 1-forms along the leaves of λ̂, which we will also denote

by ωa. We want to extend the forms ωa to the train-track neighborhood Û of λ̂.

We first extend ωa to the subset λ̂.

Lemma 7.7. There exists a Hölder continuous topological closed 1-form Ωa on the

orientation cover λ̂ whose restriction to each leaf of λ̂ is equal to the form ωa=fa dt

above.

Proof. We need to remember the precise definition of the form ωa. We fix a rie-

mannian metric ‖ · ‖ on the flat bundle T 1S ×̃%′ Rn, where %′:π1(S)!SLn(R) lifts the

Hitchin homomorphism %:π1(S)!PSLn(R). Each x∈λ̂ determines a point (x, v) in the

unit tangent bundle T 1S by considering the unit tangent vector v∈T 1
xS of the (oriented)

leaf of λ̂ passing through x. This enables us to identify λ̂ to a subset of T 1S, which is a

union of orbits of the geodesic flow.

Locally choose a non-zero section x 7!va(x) of the restriction of the line bundle La

over this subset λ̂, in such a way that the section is flat over each of the leaves of λ̂. This
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restriction is possible because the line bundle is flat over these leaves, by invariance of La

under the flat lift of the geodesic flow (see Theorem 3.1). The choice of the local section

x 7!va(x) locally defines a function Fa on λ̂ by the property that

Fa(x) =− log ‖va(x)‖x,

which is smooth along each leaf of λ̂. Then ωa is defined as ωa=dFa on each leaf of λ̂.

The construction is designed so that ωa does not depend on the choice of the local section

va(x). However, its “antidifferential” Fa does, and the crux of the argument is to choose

the local sections x 7!va(x) so that locally Fa only changes by a constant as one moves

from one chart to another, as required in the definition of topological closed 1-forms. We

will use the slithering maps of §5.1 for this purpose.

Every x∈λ̂ admits a small neighborhood Vx⊂Û such that, if we lift Vx to an open

subset Ṽx in the universal covering S̃, the leaves of λ̃⊂S̃ that meet Ṽx are parallel in the

following sense: given any three such leaves g, g′ and g′′, one of them separates the other

two in S̃. The leaves of λ̃∩Ṽx are oriented by the canonical orientation of the leaves of

λ̂∩Vx. As in §5.1, the lift of the line bundle La associates a line L̃a(g)⊂Rn with each

oriented leaf of λ̃.

Pick an arbitrary non-zero vector ṽxa(x)∈L̃a(gx) for the leaf gx of λ̃ that contains the

lift x̃∈Ṽx of x∈Vx. Then, for every y∈Vx∩λ̂, define ṽxa(y)=Σgygx(ṽxa(x))∈L̃a(gy), where

Σgygx :Rn!Rn is the slithering map of §5.1. This map ṽa projects to a section va of the

line bundle La over Vx∩λ̂, which is flat along the leaves of Vx∩λ̂ because ṽxa(y) depends

only on the leaf gy, and which is Hölder continuous because of the Hölder continuity

property of the slithering map Σgygx (condition (2) of Proposition 5.1). We can then

consider the Hölder continuous function F xa :Vx∩λ̂!R defined by

F xa (y) =− log ‖vxa(y)‖y.

We claim that the family {(Vx∩λ̂, F xa )}x∈λ̂ defines a Hölder continuous topological 1-

form Ωa. Namely, we will prove that F xa −F x
′

a is locally constant near each y∈Vx∩Vx′∩λ̂.

Consider such a point y∈Vx∩Vx′∩λ̂. We arranged that the leaves of λ̃ that meet Ṽx

are parallel to each other. By Lemma 5.6, it follows that for every z∈Vx∩Vx′∩λ̂

ṽxa(z) = Σgzgx(ṽxa(x)) = Σgzgy �Σgygx(ṽxa(x)) = Σgzgy (ṽxa(y)).

In the construction of the local sections vxa and vx
′

a , we can choose the lift Ṽx′⊂S̃ so

that it contains the lift ỹ∈Ṽx of y∈Vx∩Vx′ . In particular, the vectors ṽxa(y) and ṽx
′

a (y) are

both in the line L̃a(gy) associated with the leaf of λ̃ passing through ỹ, and there exists
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Figure 9. A spike s of Û \λ̂ and its neighborhood Ws.

a non-zero number c∈R such that ṽx
′

a (y)=cṽxa(y). Each z∈Vx∩Vx′∩λ̂ that is sufficiently

close to y lifts to the same point z̃ in Ṽx′ and in Ṽx, and as before,

ṽx
′

a (z) = Σgzgy (ṽx
′

a (y)) = Σgzgy (cṽxa(y)) = cṽxa(z).

It follows that vx
′

a (z)=cvxa(z) for z∈λ̂ sufficiently close to y.

This proves that

F xa (z)−F x
′

a (z) =− log ‖vxa(z)‖z+log ‖vx
′

a (z)‖z =− log ‖vxa(z)‖z+log ‖cvxa(z)‖z = log |c|

for every z∈λ̂ near y. As a consequence, we have that F xa −F x
′

a is locally constant near

each y∈Vx∩Vx′∩λ̂.

This concludes the proof that the family {(Vx∩λ̂, F xa )}x∈λ̂ defines a Hölder contin-

uous topological closed 1-form Ωa on λ̂. This form Ωa was specially designed so that its

restriction to the leaves of λ̂ coincides with the original 1-form ωa.

We now extend Ωa to the whole train-track neighborhood Û .

Lemma 7.8. There exists a Hölder continuous topological closed 1-form Ωa on the

train-track neighborhood Û of λ̂ whose restriction to each leaf of λ̂ is equal to the

form ωa.

Proof. Each spike s of Û \λ̂ admits a neighborhood Ws foliated by half-geodesics

converging to s; see Figure 9. Choose these neighborhoods so that they are pairwise

disjoint, and so that each of them is delimited by a differentiable (say) arc.

The union W of λ̂ and of these neighborhoods Ws is then foliated by complete

geodesics (namely leaves of λ̂) and complete half-geodesics (in the neighborhoods Ws of

the spikes). The slithering maps of §5.1 straightforwardly extend to the preimage of W

in the universal cover S̃, by elementary slitherings on each component of the preimage

of the Ws. This enables us to use the argument of the proof of Lemma 7.7 to extend the

topological closed 1-form Ωa to W .
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Each component A of Û \W is an annulus, bounded on one side by a component of

∂Û and on the other side by a dodecagon, made up of six arcs contained in leaves of λ̂

and of six arcs delimiting the Ws associated with the six spikes of the component of Û \λ̂
that contains A. As a consequence, there is a Hölder continuous retraction r: Û!W .

We can then pull back by r the topological closed 1-form Ω that we have constructed on

W to extend it to Û .

Since the retraction r fixes W , this does not change the restriction of Ω to the leaves

of λ̂, which consequently coincides with the form ωa=fa dt.

By Lemma 7.6, the topological closed 1-form Ωa provided by Lemma 7.8 defines a

cohomology class [Ωa]∈H1(Û ;R). Also, a tangent cycle α∈Z(λ̂;R) determines a homol-

ogy class [α]∈H1(Û ;R) by Proposition 4.2. The following statement connects these to

the length `%a(α)∈R.

Lemma 7.9. For every tangent cycle α∈Z(λ̂;R), the length `%a(α) is equal to the

evaluation

`%a(α) = 〈[Ωa]−[Ωa+1], [α]〉

of the cohomology class [Ωa]−[Ωa+1]∈H1(Û ;R) over the homology class [α]∈H1(Û ;R).

Proof. The tangent cycle α∈Z(λ̂;R) defines a transverse Hölder distribution for the

geodesic lamination λ̂; see [7] and [6]. As in [38], we can then interpret the data of the

geodesic lamination λ̂ endowed with this transverse Hölder distribution as a closed de

Rham current in Û . The homology class of H1(Û ;R) defined by this de Rham current is

exactly the class [α] introduced in Proposition 4.2.

By definition, the length `%a(α) is obtained by locally integrating the differential form

ωa−ωa+1 over the leaves of λ̂, and then integrating the corresponding function of the

leaves of λ̂ with respect to the transverse Hölder distribution defined by α. See [15] for

precise details, using a suitable partition of unity for T 1S. Since ωa is the restriction of

the topological closed 1-form Ω to the leaves of λ̂, this construction is identical to the

expression of [38] for the evaluation of [Ωa−Ωa+1]∈H1(Û ;R) over the homology class

[α]∈H1(Û ;R) represented by the de Rham current α∈CH(λ̂).

7.2.3. A homological interpretation of the shearing cycle σ%
a

We now relate the shearing cycle σ%a to the topological closed 1-form Ωa provided by

Lemma 7.8.

For this, consider an arc k in Û that is tightly transverse to λ̂. As usual, orient k

to the right of the leaves of λ̂, and lift k to an oriented arc k̃ in the universal cover S̃.
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Figure 10. Integrating Ωa over a tightly transverse arc k.

Consistently with the canonical orientation of the leaves of λ̂, we orient the leaves of λ̃

that meet k̃ to the left of k̃.

We first consider a component d of k̃\λ̃ that does not contain any of the two end-

points of k. In particular, the positive and negative endpoints x+

d and x−d of d belong

to λ̃.

The tangent of the oriented leaf of λ̃ passing through x±d determines an element

u±d ∈T 1S̃ of the unit tangent bundle of S̃. If g±d denotes the leaf of λ̃ passing through x±d
and if we use the same letter to denote the projection d⊂k⊂Û of the arc d⊂k̃⊂S̃, we

now connect the integral
∫
d

Ωa to the elementary slithering map Σg+d g
−
d

:Rn!Rn. The

riemannian metric on the vector bundle T 1S×̃%′Rn used in the definition of the forms

Ωa=fa dt along λ̂ defines, for each u∈T 1S̃, a norm ‖ · ‖u on Rn.

Lemma 7.10. Let k be an arc in Û that is tightly transverse to λ̂, and let d be a

component of k\λ̂ that contains none of the two endpoints of k. Then,

∫
d

Ωa = log
‖va(u−d )‖u−d

‖Σg+d g−d (va(u−d ))‖u+
d

for any non-zero vector va(u−d ) in the line L̃a(u−d ).

The property is rather immediate when Ωa is the form provided by our proof of

Lemmas 7.7 and 7.8, and when d is sufficiently small. However, we need a proof that is
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valid for all components d of k\λ̂ that are disjoint from the endpoints. Our argument

will be valid for all forms Ωa satisfying the conclusions of Lemma 7.8, not just the one

provided by our proof.

Proof. The two leaves g+

d and g−d are asymptotic. We can therefore find points

y+

d ∈g
+

d and y−d ∈g
−
d which are arbitrarily close to each other. Let w±d be the element of

the unit tangent bundle T 1S̃ determined by the tangent of the oriented geodesic g±d at

the point y±d . See Figure 10. We can then deform d to an arc consisting of the arc from

x−d to y−d in the leaf g−d , followed by a short arc from y−d to y+

d , and completed by the arc

from y+

d to x+

d in g+

d . Then, by definition of the restriction ωa of Ωa to the leaves of λ̂,

∫
d

Ωa =

∫ y−d

x−d

Ωa+

∫ y+d

y−d

Ωa+

∫ x+
d

y+d

Ωa = log
‖va(u−d )‖u−d
‖va(u−d )‖w−d

+

∫ y+d

y−d

Ωa+log
‖va(u+

d )‖w+
d

‖va(u+

d )‖u+
d

for arbitrary non-zero vectors va(u+

d )∈L̃a(u+

d ) and va(u−d )∈L̃a(u−d ). In particular, we can

choose va(u+

d )=Σg+d g
−
d

(va(u−d )), in which case

∫
d

Ωa = log
‖va(u−d )‖u−d

‖Σg+d g−d (va(u−d ))‖u+
d

−log
‖va(u−d )‖w−d

‖Σg+d g−d (va(u−d ))‖w+
d

+

∫ y+d

y−d

Ωa.

Now, we let the points y+

d and y−d tend to the common endpoint of g+

d and g−d in such a

way that the distance from y+

d to y−d tends to zero. Looking at the projections to S, the

integral
∫ y+d
y−d

Ωa tends to zero by continuity of the functions Fa that locally define Ωa,

while the quotient
‖va(u−d )‖w−d

‖Σg+d g−d (va(u−d ))‖w+
d

tends to 1 (compare Lemma 5.2 and use the %-equivariance of the riemannian metric

‖ · ‖). It follows that ∫
d

Ωa = log
‖va(u−d )‖u−d

‖Σg+d g−d (va(u−d ))‖u+
d

for any non-zero vector va(u−d )∈L̃a(u−d ).

We will now choose preferred vectors va(u−d )∈L̃a(u−d ).

Let d+ and d− be the components of k̃\λ̃ that contain the positive and negative

endpoints of k̃, respectively. In particular, their endpoints x−d+ and x+

d− are the points of

k̃∩λ̃ that are closest to the positive and negative endpoints in k̃, respectively. As usual,

let u∓d±∈T
1S̃ be defined by the vector tangent to the (oriented) leaf g∓d± of λ̃ passing

through x∓d± . See Figure 10.
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The flag map F%: ∂∞S̃!Flag(Rn) associates several lines of Rn with the vector

u−d+∈T
1S̃. This includes the n lines L̃a(u−d+)=F%(x)(a)∩F%(y)(n−a+1) of §3.1, defined by

the flags F%(x) and F%(y) respectively associated with the positive endpoint x and the

negative endpoint y of the leaf g−d+ . We can also consider the line F%(z)
(1) of the flag F%(z)

associated with the third vertex z of the triangle component of S̃\λ̃ that contains d+.

Pick a non-trivial vector v(u−d+) in this line F%(z)
(1), and let va(u−d+)∈L̃a(u−d+) be the

projection of v(u−d+) parallel to the L̃b(u
−
d+) with b 6=a.

In particular, the quantity
‖va(u−d+)‖u−

d+

‖va+1(u−d+)‖u−
d+

is independent of the choice of the vector v(u−d+)∈F%(z)(1). Note that this ratio is finite

and positive by genericity of the flag triple (F%(x),F%(y),F%(z)).

We can introduce similar definitions at the point x+

d− of k̃∩λ̃ that is closest to the

negative endpoint of k̃. Considering the triangle component of S̃\λ̃ that contains the

negative endpoint of k̃, this leads to a well-defined positive ratio

‖va(u+

d−)‖u+

d−

‖va+1(u+

d−)‖u+

d−

.

Lemma 7.11. Let k be an arc in Û that is tightly transverse to λ̂. Then, for the

above definitions,

σ%a(k) =

∫
k\(d+∪d−)

(Ωa−Ωa+1)+log
‖va(u−d+)‖u−

d+

‖va+1(u−d+)‖u−
d+

−log
‖va(u+

d−)‖u+

d−

‖va+1(u+

d−)‖u+

d−

.

Note that the notation is ambiguous in the special case where u−d+ =u+

d− , which

occurs when the arc k crosses λ̂ in only one point. We will leave to the reader the easy

task of lifting the ambiguity in this case.

Proof. By a well-known result of Birman–Series [1], the intersection k̃∩λ̃ has Haus-

dorff dimension zero. Since the topological closed 1-form Ωa is Hölder continuous, if

follows that ∫
k\(d+∪d−)

Ωa =
∑
d

∫
d

Ωa,

where the sum is over all components d of k̃\λ̃ that are different from d+ and d−.

(The critical property is that the image of a set of Hausdorff dimension zero under a

Hölder continuous function has Hausdorff dimension zero, and in particular has Lebesgue

measure zero in R.)
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We now apply Lemma 7.10 while choosing va(u−d )=Σg−d g
+

d−
(va(u+

d−))∈La(u−d ), where

va(u+

d−)∈L̃a(u+

d−) is determined as above by the vertices of the triangle component of

S̃\λ̃ that contains d+. Then,∫
k\(d+∪d−)

Ωa =
∑
d

log
‖Σg−d g+d− (va(u+

d−))‖u−d
‖Σg+d g+d− (va(u+

d−))‖u+
d

by observing that

Σg+d g
−
d

(va(u−d )) = Σg+d g
−
d
�Σg−d g

+

d−
(va(u+

d−)) = Σg+d g
+

d−
(va(u+

d−)).

If gx denotes the oriented leaf of λ̃ passing through x∈k̃∩λ̃ and if ux∈T 1S̃ is the

unit vector tangent to gx at x, the map x 7!
∥∥Σgxg+

d−
(va(u+

d−))
∥∥
ux

is Hölder continuous,

because gx depends Lipschitz continuously on x by [13, §5.2.6], and because the slithering

map Σgg+
d−

is a Hölder continuous function of the leaf g by Proposition 5.1. Using again

the fact that k̃∩λ̃ has Hausdorff dimension zero, it follows that∫
k\(d+∪d−)

Ωa =
∑
d

log
‖Σg−d g+d− (va(u+

d−))‖u−d
‖Σg+d g+d− (va(u+

d−))‖u+
d

= log
‖va(u+

d−)‖u+

d−

‖Σg−
d+
g+
d−

(va(u+

d−))‖u−
d+

.

By construction, the slithering map Σg−
d+
g+
d−

sends L̃a(u+

d−) to L̃a(u−d+). In particu-

lar, there exists a non-zero number µa such that Σg−
d+
g+
d−

(va(u+

d−))=µava(u−d+). Then,

∫
k\(d+∪d−)

(Ωa−Ωa+1) = log
‖va(u+

d−)‖u+

d−

‖va+1(u+

d−)‖u+

d−

−log
‖va(u−d+)‖u−

d+

‖va+1(u−d+)‖u−
d+

−log

∣∣∣∣ µaµa+1

∣∣∣∣
= log

‖va(u+

d−)‖u+

d−

‖va+1(u+

d−)‖u+

d−

−log
‖va(u−d+)‖u−

d+

‖va+1(u−d+)‖u−
d+

+σ%a(k),

by definition of the shearing parameter σ%a(k) in §5.2 (and using Lemma 1.6).

Lemma 7.12. For every homology class [α]∈H1(Û ;R),

〈[Ωa]−[Ωa+1], [α]〉= [α]·[σ%a].

Proof. We already observed, in the proof of Proposition 4.5, that H1(Û , ∂hÛ ;R)

admits a basis where each element is represented by a generic tie of Û . We can there-

fore write the image [α]∈H1(Û , ∂hÛ ;R) as a linear combination [α]=
∑
i µi[ki] of classes

represented by generic ties ki, with coefficients µi∈R.

Recall that the ties of Û are oriented to the right for the canonical orientation of

the leaves of λ̂. In particular, the components of the horizontal boundary ∂hÛ are of two
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types: those components where the orientation of the ties point outside of Û , and those

where it points inside. Also, because of this orientation convention,

[α]·[σ%a] =
∑
i

µi [ki]·[σ%a] =
∑
i

µi σ
%
a(ki)

by definition of the homology class [σ%a]∈H1(Û , ∂vÛ ;R) associated with the relative tan-

gent cycle σ%a∈Z(λ̂, slits;R) by Proposition 4.5.

We now modify each arc ki by a homotopy respecting λ̂ and ∂hÛ to obtain an arc k′i
such that the following holds: for every component C of the horizontal boundary ∂hÛ ,

there is an arc kC⊂Û such that, for every arc k′i with an endpoint in C, the component

of k′i\λ̂ containing this endpoint is equal to kC . The only case where this regrouping of

arcs near the horizontal boundary requires some care is when the original tie ki meets λ̂

in one point; in this special situation, one needs to first choose the relevant arcs kC so

that k′i=ki, and then modify the other kj accordingly.

Now, by Lemma 7.11,∑
i

µi σ
%
a(k′i) =

∑
i

µi

∫
k′i

(Ωa−Ωa+1)−
∑
i

µi

∫
d+i

(Ωa−Ωa+1)−
∑
i

µi

∫
d−i

(Ωa−Ωa+1)

+
∑
i

µi log

‖va(u−
d+i

)‖u−
d
+
i

‖va+1(u−
d+i

)‖u−
d
+
i

−
∑
i

µi log

‖va(u+

d−i
)‖u+

d
−
i

‖va+1(u+

d−i
)‖u+

d
−
i

,

where d+

i and d−i are the components of k′i\λ̂ containing the positive and negative end-

points of k′i, respectively. In particular, each d±i is equal to one of the arcs kC associated

with the components C of the horizontal boundary ∂hÛ .

The key observation is now that [α]=
∑
i µi[ki]∈H1(Û , ∂hÛ ;R) comes from an el-

ement of H1(Û ;R), and in particular has boundary zero. This implies that, for each

component C of ∂hÛ where the ties point outwards, the sum of the µi such that ki has

an endpoint in C is equal to zero; equivalently, the µi such that d+

i =kC add up to zero.

Similarly, for each component C of ∂hÛ where the ties point inwards, the sum of the

coefficients µi such that d−i =kC is equal to zero.

This implies that most terms cancel out in the above sum, and that

∑
i

µiσ
%
a(k′i) =

∑
i

µi

∫
k′i

(Ωa−Ωa+1) =
〈
[Ωa]−[Ωa+1], [α]

〉
.

For the second equality note that, because the µi for which the positive (resp. negative)

endpoint of k′i is in a given component C of ∂hÛ add up to zero, the chain
∑
i µik

′
i is

closed and represents the class [α]∈H1(Û ;R).
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This proves that

[α]·[σa] =
∑
i

µiσa(ki) =
∑
i

µiσa(k′i) = 〈[Ωa]−[Ωa+1], [α]〉.

The combination of Lemmas 7.9 and 7.12 completes the proof of Theorem 7.5.

Corollary 7.13. Let µ be a non-trivial transverse measure for the orientation

cover λ̂, and let [µ]∈H1(Û ;R) be its associated homology class as in §4.3. Then,

[µ]·[σ%a]> 0

for each component σ%a∈Z(λ̂, slits;R)∼=H1(Û , ∂vÛ ;R) of the shearing cycle

σ% ∈Z(λ, slits; R̂n−1)

of a Hichin character %∈Hitn(S).

Proof. This is an immediate consequence of Theorem 7.5 and Proposition 7.4.

8. Parametrizing Hitchin components

In §3 and §5.2, we associated certain invariants with a Hitchin character %∈Hitn(S).

The first type of invariants are the triangle invariants τ%abc(s), defined as s ranges over

the slits of λ and as a, b, c>1 range over all integers such that a+b+c=n. Noting that

there are 1
2 (n−1)(n−2) such triples (a, b, c) and 12(g−1) slits of S\λ, we can combine

all these invariants into a single map

Hitn(S)−!R6(g−1)(n−1)(n−2).

The second invariant is the shearing cycle σ%∈C(λ, slits; R̂n), which provides a map

Hitn(S)−!C(λ, slits; R̂n)∼=R18(g−1)(n−1),

where the isomorphism is given by Proposition 4.7.

Combining these two maps, we define

Φ: Hitn(S)−!R6(g−1)(n−1)(n−2)×C(λ, slits; R̂n)∼=R6(g−1)(n+1)(n−1),

which sends each Hitchin character %∈Hitn(S) to its triangle invariants and its shearing

cycle. We proved in Corollary 6.8 that this map Φ is injective. We will show that

Φ induces a homeomorphism between Hitn(S) and an open convex polyhedral cone P

contained in a linear subspace of R6(g−1)(n+1)(n−1).
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Lemma 8.1. The above map

Φ: Hitn(S)−!R6(g−1)(n−1)(n−2)×C(λ, slits; R̂n)

is continuous.

Proof. The key property is that the flag curve F%: ∂∞S̃!Flag(Rn) depends continu-

ously on the Hitchin homomorphism %:π1(S)!PSLn(R), and is uniformly Hölder contin-

uous as % ranges over a compact subset of the space of homomorphisms π1(S)!PSLn(R).

These two properties follow from the application to the setup of §3.1 of the classical struc-

tural stability theorems for Anosov flows, and Hölder continuity properties for their stable

and unstable foliations; see for instance [24, §18 and §19].

The continuity property immediately shows that the triangle invariants τ%abc(s) de-

pend continuously on %.

The case of the shearing cycle σ%∈C(λ, slits; R̂n) requires an additional argument,

because its construction relies on the slithering maps Σgg′ :Rn!Rn. The uniform Hölder

continuity property makes the estimates used in the construction of slithering maps in

§5.1 uniform, and guarantees uniform convergence in this construction. It follows that,

for any two leaves g and g′ of λ̃, the slithering map Σgg′ depends continuously on %.

After this, the continuous dependence of the flag map F% on % is enough to prove that

σ% depends continuously on %.

8.1. Constraints between invariants

There are clear constraints on the image of Φ. The first one is the following consequence

of Lemma 1.1, which we have already encountered in Lemma 3.4.

Triangle rotation condition. If the spikes of the component T of S\λ are indexed as

s, s′ and s′′ in counterclockwise order around T , then

τ%abc(s) = τ%bca(s′) = τ%cab(s
′′).

The second constraint comes from the quasi-additivity property of the shearing cy-

cle σ%. Recall that the lack of additivity of the ath component σ%a∈Z(λ̂, slits;Rn−1) of

σ%∈Z(λ, slits; R̂n−1)⊂Z(λ̂, slits;Rn−1) is measured by its boundary ∂σ%a, which associates

a number ∂σ%a(ŝ)∈R with each spike ŝ of the orientation cover λ̂ of the geodesic lami-

nation λ. The spikes ŝ can be positive or negative, according to whether the canonical

orientation of the leaves of λ̂ orients the two leaves that are adjacent to ŝ towards ŝ or

away from ŝ (namely, according to whether ŝ sits at the positive or negative end of these

leaves).
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The following constraint comes from the computation of ∂σ%a provided by Proposi-

tion 5.15 and Lemma 5.14.

Shearing cycle boundary condition. For every positive slit s+ of λ̂ projecting to a

slit s of λ,

∂σ%a(s+) =
∑

b+c=n−a

τ%abc(s).

Note that this property for positive slits, combined with the equivariance property

of σ%∈Z(λ, slits; R̂n−1)⊂Z(λ̂, slits;Rn−1) with respect to the covering involution of the

cover λ̂!λ, determines ∂σ%a on negative slits. More precisely,

∂σ%a(s−) =−
∑
b+c=a

τ%(n−a)bc(s)

for every negative slit s− of λ̂ projecting to a slit s of λ.

The last condition is provided by Corollary 7.13.

Positive intersection condition.

[µ]·[σ%a]> 0

for every non-trivial transverse measure µ for λ̂, where

[µ]∈H1(Û ;R) and [σ%a]∈H1(Û , ∂vÛ ;R)

are the homology classes respectively defined by µ∈Z(λ̂;R) and by the ath component

σ%a∈Z(λ̂, slits;R) of the shearing cycle σ%∈Z(λ; R̂n−1)⊂Z(λ̂, slits;Rn−1), and where · de-

notes the algebraic intersection in Û .

Let P be the set of pairs (τ, σ) such that

(1) τ is a function which associates a number τabc(s)∈R with each triple of integers

a, b, c>1 with a+b+c=n, and with each slit s of λ;

(2) σ∈Z(λ, slits; R̂n−1) is a tangent cycle for λ valued in the coefficient bundle R̂n−1

and relative to the slits of λ; in particular, σ is defined by n−1 relative tangent cycles

σa∈Z(λ̂, slits;R);

(3) τ and σ satisfy the above triangle rotation condition, shearing cycle boundary

condition and positive intersection condition.

We will call a function τ∈R6(g−1)(n−1)(n−2) as in (1) a triangle data function. It is

rotation-invariant when it satisfies the triangle rotation condition.

Proposition 8.2. The space P is an open convex polyhedral cone in a linear sub-

space of R6(g−1)(n−1)(n−2)×Z(λ, slits; R̂n−1) of dimension 2(g−1)(n2−1).
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Proof. The transverse measures for the geodesic lamination λ̂ form a positive cone

over a finite-dimensional simplex [25], [35]. It therefore suffices to check the positive

intersection condition on the vertices of this simplex (corresponding to ergodic measures).

This reduces the positive intersection condition to finitely many linear inequalities, in

fact at most 6(g−1) such inequalities by the main result of [35]. As a consequence, P is an

open convex polyhedral cone in the linear subspace of R6(g−1)(n−1)(n−2)×C(λ, slits; R̂n)

defined by the triangle rotation condition and the shearing cycle boundary condition.

We need to compute its dimension, which will require a few lemmas.

The triangle rotation condition divides the dimension of the space of triangle data

functions by 3, in the sense that the space of rotation-invariant triangle data functions

τ∈R6(g−1)(n−1)(n−2) is isomorphic to R2(g−1)(n−1)(n−2). Indeed, if we pick a spike sj for

each triangle component Tj of S\λ, such a rotation-invariant τ is completely determined

by the 2(g−1)(n−1)(n−2) numbers τabc(sj). We will use this observation to denote by

R2(g−1)(n−1)(n−2) the space of all rotation-invariant triangle data functions τ .

Consider the linear subspace L⊂R2(g−1)(n−1)(n−2)×Z(λ, slits; R̂n−1) consisting of

all pairs (τ, σ), where τ is a rotation-invariant triangle data function and σ is a twisted

tangent cycle for λ relative to its slits, and where τ and σ satisfy the shearing cycle

boundary condition.

To analyze L, we introduce a new vector space Z(slits;Rn−1), consisting of all func-

tions ξ: {slits of λ}!Rn−1. For a=1, 2, ..., n−1, we denote the ath component of such

a ξ∈Z(slits;Rn−1) by ξa: {slits of λ}!R. The definition of the space L can then be

expressed in terms of two maps

∂:Z(λ, slits; R̂n−1)−!Z(slits;Rn−1) and Ξ:R2(g−1)(n−1)(n−2)−!Z(slits;Rn−1).

The first map ∂:Z(λ, slits; R̂n−1)!Z(slits;Rn−1) is the usual boundary map of §4.4,

and associates with a relative cycle σ∈Z(λ, slits; R̂n−1) the restriction

∂σ: {positive slits of λ̂}= {slits of λ}−!Rn−1

of its boundary ∂σ to positive slits of the orientation cover λ̂. (Recall that this restric-

tion completely determines ∂σ by the definition of twisted relative tangent cycles, since

∂σa(s−)=−∂σn−a(s+) when the negative slit s− of λ̂ projects to the same slit of λ as the

positive slit s+.)

The second map Ξ:R2(g−1)(n−1)(n−2)
!Z(slits;Rn−1) associates with each rotation-

invariant triangle data function τ∈R2(g−1)(n−1)(n−2) the function ξτ : {slits of λ}!Rn−1

defined by the property that

ξτa(s) =
∑

b+c=n−a

τabc(s)∈R
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for every slit s of λ and every a=1, 2, ..., n−1.

Then the subspace L consists of all pairs (τ, σ)∈R2(g−1)(n−1)(n−2)×Z(λ, slits; R̂n−1)

such that ∂σ=Ξ(τ) in Z(slits;Rn−1).

Lemma 8.3. The image of the boundary map ∂:Z(λ, slits; R̂n−1)!Z(slits;Rn−1)

consists of all ξ∈Z(slits;Rn−1) such that∑
s slit of λ

ξa(s) =
∑

s slit of λ

ξn−a(s)

for every a=1, 2, ..., n−1. This image has codimension
⌊

1
2 (n−1)

⌋
in Z(slits;Rn−1)∼=

R12(g−1)(n−1).

Proof. This is an immediate consequence of the homological interpretation of twisted

relative tangent cycles in §4.6, and more precisely of the isomorphism Z(λ, slits; R̂n−1)∼=
H1(U, ∂vU ; R̃n−1) constructed there.

This construction is well behaved with respect to the boundary maps ∂ in the follow-

ing sense. There is a unique isomorphism Z(slits;Rn−1)∼=H0(∂vU ; R̃n−1) defined as fol-

lows: this isomorphism associates with ξ∈Z(slits;Rn−1) the element of H0(∂vU ; R̃n−1)⊂
H0(∂vÛ ;Rn−1) that assigns to each component of ∂vÛ facing a positive slit s+ the weight

ξ(s)∈Rn−1 associated by ξ with the projection s of s+ (and, by definition of the twist-

ing of the coefficient bundle R̃n, assigns to the component of ∂vÛ facing a negative slit

s− projecting to s the vector −ξ̄(s)∈Rn−1 whose ath coordinate is −ξ̄a(s)=−ξn−a(s)).

Then, for these isomorphisms Z(λ, slits; R̂n−1)∼=H1(U, ∂vU ; R̃n−1) and Z(slits;Rn−1)∼=
H0(∂vU ; R̃n−1), the boundary homomorphism ∂:Z(λ, slits; R̂n−1)!Z(slits;Rn−1) corre-

sponds to the homological boundary ∂:H1(U, ∂vU ; R̃n−1)!H0(∂vU ; R̃n−1).

Lemma 8.3 is then an immediate consequence of the long exact sequence

...−!H1(U, ∂vU ; R̃n−1)−!H0(∂vU ; R̃n−1)−!H0(U ; R̃n−1)−!H0(U, ∂vU ; R̃n−1),

using the properties that, because Û is connected and ∂vÛ is non-empty,

dimH0(U ; R̃n−1) =
⌊

1
2 (n−1)

⌋
and H0(U, ∂vU ; R̃n−1)=0.

Lemma 8.4. For n>3, the image of Ξ:R2(g−1)(n−1)(n−2)
!Z(slits;Rn−1) consists

of all ξ∈Z(slits;Rn−1) such that

ξn−1(s1) = 0 and ξ1(s1) =

n−2∑
a=2

(
a−1

n−3
−1

)
ξa(s1)+

n−2∑
a=2

a−1

n−3
ξa(s2)+

n−2∑
a=2

a−1

n−3
ξa(s3),
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whenever s1, s2 and s3 are the three spikes of the same component T of S\λ. In

particular, the image of Ξ has dimension 12(g−1)(n−3).

When n=3, the image of Ξ:R4(g−1)
!Z(slits;R2) consists of all ξ∈Z(slits;R2) such

that

ξ2(s1) = 0 and ξ1(s1) = ξ1(s2) = ξ1(s3),

whenever s1, s2 and s3 are the three spikes of the same component T of S\λ. In

particular, the image of Ξ then has dimension 4(g−1).

When n=2, the image of Ξ:R0
!Z(slits;R) is of course trivial.

Proof. If ξτ=Ξ(τ) for a rotation-invariant function τ∈R2(g−1)(n−1)(n−2), then by

definition ξτn−1(s)=
∑
b+c=1 τ(n−1)bc(s)=0 for every slit s, since all indices b and c are

supposed to be at least 1.

Less trivially, if n>3 and if s1, s2 and s3 are the three spikes of a same component

T of S\λ, in this order counterclockwise around T ,

n−2∑
a=2

a−1

n−3
ξτa(s1)+

n−2∑
a=2

a−1

n−3
ξτa(s2)+

n−2∑
a=2

a−1

n−3
ξτa(s3)

=

n−2∑
a=1

a−1

n−3

∑
b+c=n−a

τabc(s1)+

n−2∑
a=1

a−1

n−3

∑
b+c=n−a

τabc(s2)+

n−2∑
a=1

a−1

n−3

∑
b+c=n−a

τabc(s3)

=

n−2∑
a=1

a−1

n−3

∑
b+c=n−a

τabc(s1)+

n−2∑
b=1

b−1

n−3

∑
a+c=n−b

τabc(s1)+

n−2∑
c=1

c−1

n−3

∑
a+b=n−c

τabc(s1)

=
∑
a,b,c

(
a−1

n−3
+
b−1

n−3
+
c−1

n−3

)
τabc(s1)

=
∑
a,b,c

τabc(s1)

=

n−1∑
a=1

ξτa(s1),

where the second equality uses the rotation invariance of τ . It follows that

ξτ1 (s1) =

n−2∑
a=2

(
a−1

n−3
−1

)
ξτa(s1)+

n−2∑
a=2

a−1

n−3
ξτa(s2)+

n−2∑
a=2

a−1

n−3
ξτa(s3).

As a consequence, any function ξ=Ξ(τ) in the image of Ξ satisfies the relations of

Lemma 8.4.

Conversely, as a ranges from 2 to n−2 and s ranges over all slits of λ, the functions

τ 7!ξτa(s) are linearly independent in the space R2(g−1)(n−1)(n−2) of rotation-invariant
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triangle data functions τ . Indeed, this follows from a simple computation focusing on

the coefficients of the terms τ1bc(s) and τ2bc(s) in any linear relation between these

functions.

The dimension computation then follows from the fact that λ has 12(g−1) slits.

This completes the proof of Lemma 8.4 in the case considered, when n>3.

The proof is much simpler when n=3, as the triangle data function τ assigns only

one number τ111(s) to each slit s. This makes the argument in this case completely

straightforward.

Lemma 8.5. The intersection im(∂)∩im(Ξ) of the images im(∂)=∂(Z(λ, slits; R̂n−1))

and im(Ξ)=Ξ(R2(g−1)(n−1)(n−2)) has dimension{
12(g−1)(n−3)−

⌊
1
2 (n−1)

⌋
, if n> 3,

4g−5, if n= 3.

As in Lemma 8.4, the case n=2 is trivial since im(Ξ)=0 in this case.

Proof. This is an immediate consequence of the characterization of these images in

Lemmas 8.3 and 8.4. Indeed, one very easily checks that the restrictions of the
⌊

1
2 (n−1)

⌋
relations of Lemma 8.3 to the image im(Ξ) are linearly independent.

We now return to the subspace L⊂R2(g−1)(n−1)(n−2)×Z(λ, slits; R̂n−1), consisting

of all pairs (τ, σ) such that ∂σ=Ξ(τ) in Z(slits;Rn−1). The maps Ξ and ∂ induce the

same linear map L!Z(slits;Rn−1), associating Ξ(τ)=∂σ with each (τ, σ)∈L. The image

of this map is im(∂)∩im(Ξ), and its kernel is the direct sum of ker Ξ and ker ∂. Note

that ker ∂ is just the space Z(λ; R̂n−1) of closed tangent cycles. Therefore, by combining

Lemma 8.5, Lemma 8.4 and Proposition 4.7,

dimL= dim im(∂)∩im(Ξ)+dim ker Ξ+dim ker ∂

= 12(g−1)(n−3)−
⌊

1
2 (n−1)

⌋
+2(g−1)(n−1)(n−2)

−12(g−1)(n−3)+6(g−1)(n−1)+
⌊

1
2 (n−1)

⌋
= 2(g−1)(n2−1),

when n>3.

When n=3, the same argument gives that

dimL= (4g−5)+0+(12g−11) = 16(g−1),

which is equal to 2(g−1)(n2−1) in this case as well.

Since P is an open convex polyhedral cone in the space L, this concludes the proof

of Proposition 8.2.
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Corollary 8.6. The map Φ: Hitn(S)!P is a local homeomorphism.

Proof. The map Φ is continuous by Lemma 8.1, and injective by Corollary 6.8.

By the invariance of the domain theorem, it is therefore a local homeomorphism, since

Hitn(S) and P have the same dimension by Proposition 8.2.

8.2. An estimate from the positive intersection condition

This section is devoted to a key estimate (Lemma 8.8) which will play a crucial role in

our proof, completed in the next section §8.3, that the above map Φ: Hitn(S)!P is a

global homeomorphism.

For the preimage λ̃ of the maximal geodesic lamination λ in the universal cover S̃

of S, we want to quantify the complexity of the relative position with respect to each

other of the components T of the complement S̃\λ̃. For this, we choose a train-track

neighborhood U of λ, with preimage Ũ in S̃.

We also select an oriented arc k̃ tightly transverse to λ̃ in S̃; recall that this means

that k̃ is transverse to the leaves of λ̃ and that, for each component T of S̃\λ̃, the

intersection T∩k̃ is either empty, or an arc containing an endpoint of k̃, or an arc joining

two distinct components of ∂T . As in §4.7, using Proposition 4.1, we can arrange by a

homotopy respecting λ̃ that k̃ is contained in Ũ .

Let T be a component of S̃\λ̃ that meets k̃, and does not contain any of the endpoints

of k̃. Then k̃∩T consists of a single arc, since k̃ is tightly transverse to λ̃, and k̃∩T can

be joined to the complement T \Ũ by a path contained in T . We define the divergence

radius r(T )>1 of T with respect to Ũ and k̃ as the minimum number of branches of Ũ

that are met by a path joining k̃∩T to the complement T \Ũ in T .

Lemma 8.7. For every integer r0, the number of triangles T with divergence radius

r(T )=r0 is uniformly bounded, independently of r0.

Proof. Instead of counting the components T of S̃\λ̃ meeting k̃, it is easier to count

the components of k̃\λ̃. Cutting k̃ into smaller arcs if necessary, we may assume without

loss of generality that k̃ is sufficiently short that it projects to an arc k embedded in S.

Then there is a natural correspondence between the components of k̃\λ̃ and those of

k\λ. For each component d of k\λ, let Td be the component of S̃\λ̃ that contains the

component of k̃\λ̃ corresponding to d, and define r(d)=r(Td). We need to show that the

number of components d of k\λ with r(d)=r0 is uniformly bounded.

As e ranges over all branches of the train-track neighborhood U , the components

of e\λ form a family of rectangles Ri whose union is equal to U \λ. In particular, this
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decomposes U \λ in two pieces:

(1) the union of the finitely many rectangles Ri that meet the boundary ∂U ;

(2) 12(g−1) infinite chains of rectangles Ri1∪Ri2∪...∪Rik∪... , where each Rik
shares with Rik+1

a side contained in a tie of U , that form the spikes of U \λ.

Compare Proposition 4.1 and Figure 3.

If d is a component of k\λ whose divergence radius r(d) is equal to 1, then it meets

one of the finitely many rectangles Ri of (1) above. The number of components of k\λ
meeting a given rectangle Ri is uniformly bounded, by a constant depending on the

diameter of the rectangles Ri and on the minimum distance between k̃ and its iterates

under the action of π1(S). Therefore, there are only finitely many components of k\λ
with divergence radius 1.

If d is a component of k\λ with r(d)>1, it is contained in one of the spikes Ri1∪
Ri2∪...∪Rik∪... as in (2) above. In fact, d meets the (r(d)−1)-th rectangle Rir(d)−1

of

this spike, by definition of the divergence radius r(d). Since the number of components

of k\λ meeting each Ri is uniformly bounded, and since there are only 12(g−1) spikes,

it follows that for r0>1 the number of components d of k\λ with r(d)=r0 is uniformly

bounded.

To explain the divergence radius terminology, consider the two sides of T that meet k̃.

These two leaves of λ̃ follow the same train route in Ũ over a length of approximately

r(T ) branches (up to a bounded error term) before diverging at some switch of Ũ .

The side of the oriented arc k̃ where this divergence occurs will greatly matter.

There are two possibilities for the two sides of T meeting k̃: Either they are asymptotic

on the left-hand side of k̃, or they are asymptotic on the right-hand side. We say that

T points to the left of k̃ in the first case, and points to the right in the second case. We

already encountered this terminology in §4.7 and §6.2.

Finally, remember that λ̂ denotes the orientation cover of λ, and that the covering

map λ̂!λ uniquely extends to a cover Û!U for some train-track neighborhood Û of λ̂.

Let T0 be the component of S̃\λ̃ containing the negative endpoint of k̃. Using

the point of view of §4.7, a relative tangent cycle σ∈Z(λ̂, slits;R) associates a number

σ(T0, T )∈R with each component T of S̃\λ̃.

Lemma 8.8. Suppose that the relative tangent cycle σ∈Z(λ̂, slits;R)∼=H1(Û , ∂vÛ ;R)

satisfies the positive intersection property of §8.1: [µ]·[σ]>0 for every non-trivial trans-

verse measure µ for λ̂, defining a homology class [µ]∈H1(Û ;R). Then, there exists a

constant C>0 such that, for all but finitely many components T of S̃\λ̃ meeting k̃,

• σ(T0, T )>Cr(T ) if T points to the right of k̃;

• σ(T0, T )6−Cr(T ) if T points to the left of k̃.
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Û

∂hÛ

l0

ln

k̂

Û

λ̂

∂hÛ
t0

tn
k̂′′n

Figure 11. The arc k̂′n=k̂′′n∪l0∪ln∪t0∪tn.

Proof. Pick a tie ke in each branch e of the train-track neighborhood Û . Then, for

each transverse measure µ for λ̂, define

‖µ‖=
∑
e

µ(ke),

where the sum is over all branches e of Û . This defines a norm ‖ · ‖ on the space

M(λ̂)⊂Z(λ̂;R) of transverse measures for λ̂. The space of transverse measures of norm 1

is compact for the weak∗ topology and, since σ satisfies the positive intersection condition,

there consequently exists a number ε>0 such that [µ]·[σ]>ε for every transverse measure

µ with ‖µ‖=1. Let us show that the conclusion of the lemma holds for every C<ε.

For this, we use a proof by contradiction. Suppose that the property does not hold.

Then, there exists a sequence of distinct components Tn of S̃\λ̃ meeting k̃ such that

σ(T0, Tn)<Cr(Tn) if Tn points to the right of k̃, and σ(T0, Tn)>−Cr(Tn) if it points to

the left. Passing to a subsequence if necessary, we can arrange that either all Tn point

to the right, or they all point to the left.

Let us focus attention on the case where all Tn point to the left, in which case

σ(T0, Tn)>−Cr(Tn) for every n. The other case will be similar.

Let k̃n be the subarc of k̃ going from the negative endpoint of k̃ to an arbitrary

point of k̃∩Tn. Let kn be the projection of k̃n⊂Ũ to U . Among the two lifts of kn to the

cover Û of U , let k̂n be the one where the canonical orientation of the leaves of λ̂ points

to the left for the orientation of k̂n coming from the orientation of k̃. (We are here using

the fact that k̃ is tightly transverse to λ̃.) In particular, k̂n is tightly transverse to λ̂ in

Û , and σ(T0, T )=σ(k̂n) by the construction of §4.7.

Let [k̂n]∈H1(Û , ∂hÛ ;R) be the relative homology class associated with k̂n as in

Step 2 of the proof of Proposition 4.5. Namely, [k̂n] is represented by an arc k̂′n⊂Û with

∂k̂′n⊂∂hÛ that is made up of the following five pieces: the arc k̂′′n obtained from k̂n by
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removing the two components of k̂n\λ̂ that contain its endpoints; two arcs l0 and ln in

the leaves of λ̂ that contain the endpoints of k̂′′n; two arcs t0 and tn contained in ties of Û ,

with one endpoint in the horizontal boundary ∂hÛ , with the other endpoint in λ̂, and

whose interior is disjoint from λ̂. We choose the indexing so that ln joins the positive

endpoint of k̂′′n to the negative endpoint of tn, and l0 joins the positive endpoint of t0 to

the negative endpoint of k̂′′n. In addition, we can arrange that t0 and l0 are independent

of n. See Figure 11.

By Step 2 of the proof of Proposition 4.5, the homology classes [σ]∈H1(Û , ∂vÛ ;R)

and [k̂n]=[k̂′n]∈H1(Û , ∂hÛ ;R) are such that

[k̂′n]·[σ] =σ(k̂n) =σ(T0, Tn).

By definition of the divergence radius r(Tn), the arc ln crosses approximately r(Tn)

branches of Û (counted with multiplicity). Because the triangles Tn are all distinct, r(Tn)

tends to infinity as n tends to ∞ by Lemma 8.7. Passing to a subsequence if necessary,

the standard weak∗ compactness argument provides a non-trivial transverse measure µ

for λ̂ such that ∫
k

µ= lim
n!∞

1

r(Tn)
#(k∩ln)

for every arc k transverse to λ̂, where #(k∩ln) denotes the number of points of k∩ln.

In addition, ‖µ‖=1 by definition of the norm ‖ · ‖.
Note that k̂′n\ln has uniformly bounded length. In addition, the orientation of ln

coming from the orientation of k̂′n is opposite to the canonical orientation of the leaf of

λ̂ that contains it. Therefore,

lim
n!∞

1

r(Tn)
[k̂′n] =−[µ]

in H1(Û , ∂hÛ ;R). Then, intersecting with the class [σ]∈H1(Û , ∂vÛ ;R) represented by

σ∈Z(λ̂, slits;R) gives

[µ]·[σ] =− lim
n!∞

1

r(Tn)
[k̂′n]·[σ] =− lim

n!∞

1

r(Tn)
σ(T0, Tn)6C,

since σ(T0, Tn)>−Cr(Tn) by hypothesis.

Therefore, we have constructed a transverse measure µ for λ̂ such that [µ]·[σ]6C

and ‖µ‖=1. But this contradicts our hypothesis that C<ε6[µ]·[σ] for any such µ, and

provides the contradiction sought when all Tn point to the left of k̃.

The argument is similar when all Tn point to the right. The only difference is that

the transverse measure µ then constructed represents the homology class

[µ] = lim
n!∞

1

r(Tn)
[k̂′n]
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in H1(Û , ∂hÛ ;R), because the orientation of ln now coincides with the canonical ori-

entation of the leaf of λ̂ containing it. Since the inequality σ(T0, Tn)<Cr(Tn) is also

reversed, this again provides a transverse measure µ for λ̂ such that [µ]·[σ]<C<ε and

‖µ‖=1, concluding the proof in this case as well.

Complement 8.9. The conclusion of Lemma 8.8 holds when σ is replaced by any

σ′ in a small neighborhood of σ in the finite-dimensional vector space Z(λ̂, slits;R).

Proof. By compactness of the space of transverse measures µ with ‖µ‖=1, we can

choose ε>0 so that [µ]·[σ′]>ε for every σ′∈Z(λ̂, slits;R) sufficiently close to σ and ev-

ery transverse measure µ with ‖µ‖=1. Then the proof shows that the conclusion of

Lemma 8.8 holds for any such σ′ and C<ε.

8.3. Realization of invariants, and parametrization of Hitn(S)

At the beginning of §8, we introduced the map

Φ: Hitn(S)−!P⊂R6(g−1)(n−1)(n−2)×Z(λ, slits; R̂n)

that associates its triangle invariants and shearing cycle with a Hitchin character. We

showed in §8.1 that the image of Φ is contained in the convex polyhedral cone P defined by

the triangle rotation condition, the shearing cycle boundary condition and the positive

intersection condition. We also showed in Corollary 8.6 that Φ: Hitn(S)!P is a local

homeomorphism.

Proposition 8.10. The map Φ: Hitn(S)!P is proper.

Proof. We need to prove the following property: Let {%i}i∈N be a sequence in Hitn(S)

such that {Φ(%i)}i∈N={(τ%i , σ%i)}i∈N converges to a point (τ∞, σ∞)∈P; then the se-

quence {%i}i∈N admits a converging subsequence.

For this, we will revisit our proof that a Hitchin character is determined by its

triangle invariants and its shearing cycle, as in §6.2. In that proof, we showed that the

fundamental group π1(S) is generated by elements γ of the type described in Lemma 6.4,

and then proved that

%i(γ) =

( ←−∏
T∈Tg0(γh0)

(Θ
σ%i (T0,T )
E0F0

�Σ̂iT �Θ
−σ%i (T0,T )
E0F0

)

)−1

�Θ
σ%i (T0,γT0)
E0F0

�Φi0 ∈PGLn(R),

with the notation of Lemma 6.7, except that Σ̂iT and Φi0 were respectively called Σ̂′T
and Φ0 there. Recall that the terms Θ

σ%i (T0,T )
E0F0

depend only on the shearing cycles σ%i ,

whereas Σ̂iT and Φi0 depend only on the triangle invariants of %i. Also, the expression of
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Σ̂iT given in the proof of Lemma 6.6 involves two cases, according to whether T points

to the left or to the right as seen from T0, as defined there (or again in §8.2).

Lemma 8.11. There exists a constant C, independent of T , such that

‖Θσ%i (T0,T )
E0F0

�Σ̂iT �Θ
−σ%i (T0,T )
E0F0

−IdRn‖6C max
a

e−(n−1)σ%ia (T0,T ),

if T points to the right between T0 and γT0 (as seen from T0), and

‖Θσ%i (T0,T )
E0F0

�Σ̂iT �Θ
−σ%i (T0,T )
E0F0

−IdRn‖6C max
a

e(n−1)σ%ia (T0,T ),

if T points to the left.

Proof. Fix for Rn a basis in which the ath term belongs to the line E
(a)
0 ∩F

(n−a+1)
0 .

Then, by definition, the matrix of Θ
σ%i (T0,T )
E0F0

in this basis is diagonal, with diagonal

entries eu1 , eu2 , ..., eun , where u1, u2, ..., un are uniquely determined by the properties

that ua−ua+1=σ%ia (T0, T ) and
∑n
a=1 ua=0.

Consider for instance the case where T points to the left. Then the map Σ̂iT respects

the flag E0, and acts by the identity on each of the lines E
(a)
0 /E

(a−1)
0 . Therefore, in the

above basis for Rn, the matrix A of Σ̂iT is upper triangular with all diagonal entries equal

to 1.

By construction, the map Σ̂iT is completely determined by, and depends continuously

on, the triangle invariants τ%iabc(s) associated with the slit s of λ that is the projection of

the spike of T delimited by the two components of ∂T that separate T0 from γT0. Since

these triangle invariants converge to τ∞abc(s), we conclude that each ab-entry Aab of the

matrix A is uniformly bounded by a constant C. We already observed that Aab=0 if

a>b and Aaa=1.

Multiplying matrices, we conclude that for a<b the ab-entry of the matrix of

Θ
σ%i (T0,T )
E0F0

�Σ̂iT �Θ
−σ%i (T0,T )
E0F0

−IdRn

is equal to Aabe
ua−ub and bounded by

|Aab|eua−ub 6Ceua−ub =Ce−
∑b−1
c=a(uc+1−uc) =Ce

∑b−1
c=a σ

%i
c (T0,T ) 6C max

c
e(n−1)σ%ic (T0,T ).

The other entries of this matrix are 0 since Aab=0 if a>b, and since Aaa=1.

This proves the estimate required when the triangle T points to the left.

The proof is almost identical when T points to the right, except that the matrix A

is now lower triangular.

We now use the property that the limit (τ∞, σ∞)∈R6(g−1)(n−1)(n−2)×Z(λ, slits; R̂n)

actually belongs to the polyhedron P, and more precisely the fact that the relative tangent

cycle σ∞∈Z(λ, slits; R̂n) satisfies the positive intersection condition.
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Lemma 8.12. For γ∈π1(S) as above, the %i(γ)∈PSLn(R) are bounded independently

of i.

Proof. Because σ∞ satisfies the positive intersection condition, the combination of

Lemma 8.8, Complement 8.9 and Lemma 8.11 provides constants C,D>0 such that, in

the expression

%i(γ) =

( ←−∏
T∈Tg0(γh0)

(Θ
σ%i (T0,T )
E0F0

�Σ̂iT �Θ
−σ%i (T0,T )
E0F0

)

)−1

�Θ
σ%i (T0,γT0)
E0F0

�Φi0,

the contribution of each triangle T is such that

‖Θσ%i (T0,T )
E0F0

�Σ̂iT �Θ
−σ%i (T0,T )
E0F0

−IdRn‖6Ce−Dr(T ),

for the divergence radius r(T ) defined in §8.2. In addition, for every integer r0>1,

Lemma 8.7 shows that the number of triangles T such that r(T )=r0 is bounded inde-

pendently of r0. It follows that the product

←−∏
T∈Tg0(γh0)

(Θ
σ%i (T0,T )
E0F0

�Σ̂iT �Θ
−σ%i (T0,T )
E0F0

)

converges and is uniformly bounded.

By construction, the remaining terms Θ
σ%i (T0,γT0)
E0F0

and Φi0 are completely determined

by, and depends continuously on, the triangle and shearing invariants of %i. Since these

invariants converge, it follows that these two terms are also uniformly bounded.

Lemma 8.12 shows that the sequence (%i(γ))i∈N admits a converging subsequence

in PSLn(R). Doing this for all γ in the finite set of generators for π1(S) provided by

Lemma 6.4, we conclude that the sequence (%i)i∈N admits a converging subsequence in

Hitn(S).

Therefore, every sequence of Hitn(S) whose image under Φ converges in the poly-

hedron P admits a converging subsequence in Hitn(S). This proves that the map

Φ: Hitn(S)!P is proper, and concludes the proof of Proposition 8.10.

Theorem 8.13. The map Φ: Hitn(S)!P is a homeomorphism from the Hitchin

component Hitn(S) to the polyhedron P⊂R6(g−1)(n−1)(n−2)×Z(λ, slits; R̂n).

Proof. The map Φ is a local homeomorphism by Corollary 8.6, and proper by Propo-

sition 8.10. Since Φ is injective by Corollary 6.8 and since the convex polytope P is

connected, this proves that Φ is a homeomorphism.
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Remark 8.14. The formulas of §6.2, in particular Lemma 6.7, provide an explicit

construction for the inverse map Φ−1:P!Hitn(S). The boundedness estimates that we

just used in the proof of Lemma 8.12 show that the infinite products involved in these

formulas do converge. This immediately proves that this inverse map Φ−1 is real analytic.

It can be shown that the forward map Φ is also analytic, using the fact [10] that

the flag curve F%: ∂∞S̃!Flag(Rn) depends real analytically on the homomorphism %.

However, this is beyond the scope of this article.

8.4. Constraints among triangle invariants, and on shearing cycles

The shearing cycle boundary condition does more than connecting the boundary of the

shearing cycle σ% of a Hitchin character %∈Hitn(S) to its triangle invariants τ%abc(s). It

also puts constraints between the triangle invariants themselves, and restricts the twisted

relative tangent cycles that can occur as shearing cycles of Hitchin characters. As a

complement to Theorem 8.13, this section is devoted to emphasizing these somewhat

unexpected phenomena, which we already encountered in Lemmas 8.3 and 8.4.

Corollary 8.15. A rotation-invariant triangle data function τ∈R2(g−1)(n−1)(n−2)

is the triangle invariant τ% of a Hitchin character %∈Hitn(S) if and only if∑
s slit of λ

∑
b+c=n−a

τabc(s) =
∑

s slit of λ

∑
b+c=a

τ(n−a)bc(s)

for every a=1, 2, ..., n−1.

As a consequence, the triangle invariants of Hitchin characters form a linear subspace

of codimension
⌊

1
2 (n−1)

⌋
in the space R2(g−1)(n−1)(n−2) of all rotation-invariant triangle

data functions.

Proof. Theorem 8.13 shows that τ is the triangle invariant of a Hitchin character if

and only if there exists a relative cycle σ∈Z(λ, slits; R̂n−1) such that the pair (τ, σ) sat-

isfies the shearing boundary condition, and such that σ satisfies the positive intersection

condition.

The proof of Proposition 8.2, and in particular Lemmas 8.3 and 8.5, takes care

of the first constraint. More precisely, with the notation of that proof, there exists

σ∈Z(λ, slits; R̂n−1) such that (τ, σ) satisfies the shearing boundary cycle condition if

and only if Ξ(τ) belongs to the image im(∂). Lemma 8.3 shows that this is equivalent

to the condition stated in Corollary 8.15, while Lemma 8.5 shows that Ξ−1(im(∂)) has

codimension
⌊

1
2 (n−1)

⌋
in R2(g−1)(n−1)(n−2).

The only thing left to prove is that the positive intersection condition has no impact

on this property. Namely, if there exists σ∈Z(λ, slits; R̂n−1) such that (τ, σ) satisfies the
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shearing cycle boundary condition, the relative tangent cycle σ can be chosen so that, in

addition, it satisfies the positive intersection condition.

For this, we will use the existence of a closed twisted tangent cycle σ0∈Z(λ; R̂n−1)

that satisfies the positive intersection condition. An easy way to construct such a tangent

cycle is to consider the shearing cycle σ0=σ%0∈Z(λ, slits; R̂n−1) of a Hitchin character %0∈
Hit2(S)⊂Hitn(S) coming from a discrete homomorphism %:π1(S)!PSL2(R)⊂PSLn(R).

All triangle invariants τ%0abc(s) of such a Hitchin character are equal to zero; the easiest

way to see this is to apply Lemma 1.1 and to observe that, for every triangle component

of S̃\λ̃ with vertices s̃, s̃′ and s̃′′, there is an element of PGLn(R) coming from an element

of PGL2(R) that fixes the flag F%0(s̃)∈Flag(Rn) and exchanges F%0(s̃) and F%0(s̃). It

therefore follows from the shearing cycle boundary condition that ∂σ0=0, namely that

σ0 is closed. And σ0 satisfies the positive intersection condition by Corollary 7.13.

If the rotation-invariant triangle data function τ∈R2(g−1)(n−1)(n−2) satisfies the con-

ditions of Corollary 8.15, we just showed that there exists σ∈Z(λ, slits; R̂n−1) such that

(τ, σ) satisfies the shearing cycle boundary condition. For c>0 sufficiently large, σ+cσ0

satisfies the positive intersection condition since this property holds for σ0 and since the

space of transverse measures for λ̂ is finite-dimensional [25], [35]. In addition, the pair

(τ, σ+cσ0) satisfies the shearing cycle boundary condition since ∂(σ+cσ0)=∂σ, and the

triangle rotation condition by choice of τ . As a consequence, Theorem 8.13 provides a

Hitchin character %∈Hitn(S) whose triangle invariant τ% is τ , and whose shearing cycle

σ% is equal to σ+cσ0.

There is a similar characterization of the shearing cycles of Hitchin characters.

Corollary 8.16. Let n>3. For a twisted relative tangent cycle σ∈Z(λ, slits; R̂n−1)

and for a=1, 2, ..., n−1, let ∂σa be the a-th component of its boundary ∂σ: {slits of λ̂}!
Rn−1. Then, σ is the shearing cycle σ% of a Hitchin character %∈Hitn(S) if and only if

σ satisfies the positive intersection condition and

∂σn−1(s+1 ) = 0,

∂σ1(s+1 ) =

n−2∑
a=2

(
a−1

n−3
−1

)
∂σa(s+1 )+

n−2∑
a=2

a−1

n−3
∂σa(s+2 )+

n−2∑
a=2

a−1

n−3
∂σa(s+3 ),

whenever s+1 , s+2 and s+3 are positive slits of the orientation cover λ̂ that project to the

three spikes of the same component T of S\λ.

As a consequence, the shearing cycles of Hitchin characters form an open convex

polyhedral cone in a linear subspace of codimension 24(g−1) of

Z(λ, slits; R̂n−1)∼=R18(g−1)(n−1).
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Proof. This is a consequence of Lemma 8.4 and Proposition 4.7.

Corollary 8.17. When n=3, a twisted relative tangent cycle σ∈Z(λ, slits; R̂2) is

the shearing cycle σ% of a Hitchin character %∈Hit3(S) if and only if σ satisfies the

positive intersection condition and

∂σ2(s+1 ) = 0 and ∂σ1(s+1 ) = ∂σ1(s+2 ) = ∂σ1(s+3 ) = 0,

whenever s+1 , s+2 and s+3 are positive slits of the orientation cover λ̂ that project to the

three spikes of the same component T of S\λ. As a consequence, the shearing cycles

of Hitchin characters form an open convex polyhedral cone in a subspace of codimension

20(g−1) of Z(λ, slits; R̂2)∼=R36(g−1).

When n=2, a twisted relative tangent cycle σ∈Z(λ, slits; R̂)=Z(λ, slits;R) is the

shearing cycle σ% of a Hitchin character %∈Hit2(S) if and only if σ is closed (namely σ∈
Z(λ;R)) and satisfies the positive intersection condition. The shearing cycles of Hitchin

characters (=fuchsian representations) consequently form an open convex polyhedral cone

in a subspace of codimension 12(g−1) of Z(λ, slits;R)∼=R18(g−1).

Proof. This also follows from Lemma 8.4 and Proposition 4.7.

We conclude this article by giving, in the next two sections, two brief applications

of the machinery developed in this article. In particular, these applications require the

full generality of geodesic laminations (as opposed to the much simpler case of geodesic

laminations with finitely many leaves considered in [9]).

9. The action of pseudo-Anosov homeomorphisms on the Hitchin component

Let ϕ:S!S be a pseudo-Anosov homeomorphism of the surface S. We can use our

parametrization of Hitn(S) to show that the action of ϕ on the Hitchin component

Hitn(S) is concentrated in a relatively small factor of Hitn(S), where it acts linearly.

This section is only intended as an illustration of the possible applications of the main

results of the article; we are consequently limiting its scope to avoid making an already

long article much longer.

The pseudo-Anosov property of ϕ is usually expressed in terms of transverse mea-

sured foliations on the surface S [40], [17]. It will be more convenient to use the point

of view of [14], so that the homeomorphism ϕ:S!S is (isotopic to) a pseudo-Anosov

homeomorphism if there exist a geodesic lamination λs, a transverse measure µs for λs

and a number R>1 such that, after an isotopy of ϕ, the following conditions hold:

(1) each component of the complement of the topological support λs of µs is a

topological disk;
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(2) ϕ(λs)=λs;

(3) the pull back ϕ∗(µs) of the transverse measure µs is equal to Rµs.

The homomorphism ϕ:S!S acts on the character variety XPSLn(R)(S) as % 7!%�ϕ∗,
where ϕ∗:π1(S)!π1(S) is any homomorphism induced by ϕ (by choosing a path joining

the base point to its image under ϕ). When %∈XPSLn(R)(S) comes from a Teichmüller

character of Hit2(S), it is immediate that so does %�ϕ∗. By connectedness, it follows

that the action % 7!%�ϕ∗ respects the Hitchin component Hitn(S).

Replacing ϕ by one of its powers does not significantly change its dynamics.

Lemma 9.1. There exists an integer k>0 and a maximal geodesic lamination λ+

containing λs such that ϕk(λ+)=λ+ after isotopy of ϕk. In addition, ϕk can be chosen

so that it respects each slit of λ+.

Proof. The homeomorphism ϕ permutes the finitely many slits of λs. Therefore,

there exists k such that ϕk respects each slit.

Let λ+ be any maximal geodesic lamination containing λs. Because each component

of S\λs is a topological disk, or more precisely an ideal polygon, λ+ is obtained from

λs by adding finitely many diagonal leaves joining spikes of these polygons. Since ϕk

respects each slit of λs, namely each spike of S\λs, it can easily be isotoped to respect

these diagonal leaves (as well as λs). By construction, ϕk respects each slit of λ+.

We can now use the maximal geodesic lamination λ+ to construct a parametrization

of the Hitchin component Hitn(S) by the polytope

P⊂R6(g−1)(n−1)(n−2)×Z(λ+, slits; R̂n−1)

as in Theorem 8.13.

Because ϕk respects the geodesic lamination λ+, it acts on Z(λ+, slits; R̂n−1) as

follows. Lift ϕ to a homeomorphism ϕ̃: S̃!S̃ of the universal cover S̃; in particular,

ϕ̃k respects the pre-image λ̃+ of λ+. Then, using the point of view of §4.7, define a

linear map ϕk
�
:Z(λ+, slits; R̂n−1)!Z(λ+, slits; R̂n−1) by the property that ϕk

�
(α)(T, T ′)=

α(ϕ̃k(T ), ϕ̃k(T ′)) for any two components T and T ′ of S̃\λ̃+.

Proposition 9.2. For the homeomorphism

Φ: Hitn(S)−!P⊂R6(g−1)(n−1)(n−2)×Z(λ+, slits; R̂n−1)

provided by Theorem 8.13, the action of ϕk on Hitn(S) corresponds to the restriction

to P of the product of the identity IdR6(g−1)(n−1)(n−2) and of the linear action of ϕk on

Z(λ+, slits; R̂n−1).
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Proof. For %∈Hitn(S), we need to compare the triangle invariants τ
%�ϕk∗
abc (s) and the

shearing cycle σ%�ϕ
k
∗∈Z(λ+, slits; R̂n−1) of %�ϕk∗ to those of %.

Lift ϕ to a homeomorphism ϕ̃: S̃!S̃ of the universal cover S̃, which is equivariant

with respect to ϕ∗:π1(S)!π1(S) in the sense that ϕ̃(γx)=ϕ∗(γ)ϕ̃(x) for every x∈S̃ and

γ∈π1(S). It is well known what ϕ̃ extends to a homeomorphism of S̃∩∂∞S̃. The flag

maps F% and F%�ϕk∗ : ∂∞S̃!Flag(Rn) are then related by the property that F%�ϕk∗=F%�ϕ̃
k.

Going back to the definitions of these invariants and remembering that ϕk respects each

slit of λ+, it immediately follows that % and %�ϕk∗ have the same triangle invariants

τ
%�ϕk∗
abc (s)=τ%abc(s), and that σ%�ϕ

k
∗=ϕk

�
(σ%).

This is better described in terms of the map π: Hitn(S)!R6(g−1)(n−1)(n−2) cor-

responding to the projection of Hitn(S)∼=P to the first factor of R6(g−1)(n−1)(n−2)×
Z(λ+, slits; R̂n−1). Namely, π associates its triangle invariants τ%abc(s) with a Hitchin

character %∈Hitn(S). The image L=π(Hitn(S)) is the vector space of dimension

2(g−1)(n−1)(n−2)−
⌊

1
2 (n−1)

⌋
determined by Corollary 8.15. This defines a fibration π: Hitn(S)!L, where the fiber

π−1(τ) above each τ∈L is a convex polyhedral cone of dimension

3(g−1)(n−1)+
⌊

1
2 (n−1)

⌋
in Z(λ+, slits; R̂n−1)∼=R18(g−1)(n−1).

Then, Proposition 9.2 states that the action of ϕk on Hitn(S) respects each fiber

π−1(τ), and acts on each of these polyhedral cones π−1(τ)⊂Z(λ+, slits; R̂n−1) by restric-

tion of ϕk
�
:Z(λ+, slits; R̂n−1)!Z(λ+, slits; R̂n−1).

If U is a train-track neighborhood of λ+, the endomorphism ϕk
�

of Z(λ+, slits; R̂n−1)∼=
H1(U, ∂vU ; R̃n−1) can be explicitly described in terms of a classical object associated with

the pseudo-Anosov homeomorphism ϕ, namely the incidence matrix of ϕ with respect

to the train track U (see for instance [17, Exposés 9–10]). However, this would take us

beyond the intended scope of this article.

10. Length functions of measured laminations

One of the motivations for this article is to extend to the Hitchin component the dif-

ferential calculus of lengths of simple closed curves that was developed for hyperbolic

geometry in [39], [42], [6], [5].

For a Hitchin character %∈Hitn(S), the length functions `%1, `
%
2, ..., `

%
n−1, of [15] and

§7.1 can be restricted to Thurston’s space ML(S) of measured geodesic laminations.
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There is just a little subtlety, which is that the geodesic currents discussed in §7.1 form

a completion of the set of homotopy classes of oriented closed curves, whereas ML(S)

completes the set of homotopy classes of unoriented simple closed curves.

An unoriented simple closed curve γ in S defines two oriented curves γ∗ and γ∗∗,

one for each orientation, and therefore two measure geodesic currents that we also denote

by γ∗, γ∗∗∈Cm(S). Then there is a unique continuous embedding ι:ML(S)!Cm(S) that

is homogeneous, in the sense that ι(tµ)=tι(µ) for every µ∈ML(S) and every t>0, and

such that ι(γ)= 1
2 (γ∗+γ∗∗) for every simple closed curve γ∈ML(S); see for instance [3].

Combining this embedding with `%a:Cm(S)!R defines, for each a=1, 2, ..., n−1, a length

function `%a:ML(S)!R. The definition, and in particular the introduction of the factor
1
2 , is designed so that when n=2 the function `%1 coincides with Thurston’s length function

`%:ML(S)!R for the hyperbolic metric on S associated with %∈Hit2(S), which plays a

fundamental role in hyperbolic geometry; see for instance [40], [17], [39], [3], [33] for a

few applications of this length function `%.

Because `%a(γ∗∗)=`%n−a(γ∗), the length functions `%a and `%n−a coincide on ML(S) so

that, in practice, we have only
⌊

1
2n
⌋

length functions `%a:ML(S)!R.

The space ML(S) of measured geodesic laminations is homeomorphic to R6(g−1),

but admits no differentiable structure that is respected by the action of the mapping class

group. As a consequence, we cannot use the standard concepts of differential calculus on

this space.

However, ML(S) is naturally endowed with a piecewise integral linear structure;

this means that it admits an atlas locally modelling it over R6(g−1) where the coordinate

changes are piecewise linear and where the linear pieces of these coordinate changes have

integer coefficients [39], [36]. In particular, because a piecewise linear map does have a

tangent map, a consequence of the piecewise linear structure is that ML(S) admits a

well-defined tangent space TµML(S) at each point µ∈ML(S).

Each tangent space TµML(S) is homeomorphic to R6(g−1) and is homogeneous, in

the sense that there is a well-defined multiplication of tangent vectors by non-negative

numbers, but it is not always a vector space. Indeed, there exist points µ∈ML(S) where

the tangent space TµML(S) admits no vector space structure which is respected by all

coordinate charts; a typical example of such points are the positive real multiples of simple

closed curves, which are dense in ML(S). Conversely, at a measured geodesic lamination

µ whose support is a maximal geodesic lamination, the piecewise integral linear structure

does define a natural vector space structure on the tangent space TµML(S); these µ form

a subset of full measure in ML(S). See [42], for instance.
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Theorem 10.1. For a Hitchin character %∈Hitn(S) and for every a=1, 2, ...,
⌊

1
2n
⌋
,

the length function `%a:ML(S)!R admits a tangent map Tµ`
%
a:TµML(S)!R at each

µ∈ML(S), in the following sense. For µ∈ML(S) and v∈TµML(S), let t 7!αt be a

curve in ML(S) such that α0=µ and the right-hand-side tangent derivative

d

dt+
αt

∣∣∣∣
t=0

exists and is equal to v. Then

d

dt+
`%a(αt)

∣∣∣∣
t=0

=Tµ`
%
a(v)∈R.

Proof. See [15, §3.2].

The proof of Theorem 10.1 relies on two key ingredients: the analytic interpretation

[7], [6] of tangent vectors v∈TµML(S) as a certain type of Hölder geodesic currents as

in §7.1; and the continuity of the length function `%a:CH(S)!R for the Hölder topology,

proved in [15]. In particular, Tµ`
%
a(v) is equal to the ath length `%a(v) of the Hölder

geodesic current v∈CH(S) associated with v∈TµML(S).

The results of the current paper, and in particular Theorem 7.5, provide a description

of the tangent map Tµ`
%
a on the faces of TµML(S).

This is based on a more combinatorial interpretation, also developed in [6] and [7],

of tangent vectors v∈TµML(S) as tangent cycles for geodesic laminations λ containing

the support λµ of µ; these tangent cycles must satisfy a certain positivity condition

(unrelated to the positive intersection condition of §8.1). This decomposes the tangent

space TµML(S) into a family of cones Fλ, indexed by geodesic laminations λ containing

the support λµ of µ, where Fλ consists of those tangent vectors v∈TµML(S) that can

be described as tangent cycles for λ. In particular, each Fλ is naturally identified to a

convex polyhedral cone in the vector space Z(λ;R) of all tangent cycles for λ, and the

homogeneous and additive structure induced on the cone Fλ by the vector space structure

of Z(λ;R) is compatible with the piecewise linear structure of ML(S). The Fλ are the

faces of TµML(S) for the piecewise linear structure of ML(S). See [42] for a slightly

different approach.

In the generic case where the support λµ of µ∈ML(S) is maximal, there is only one

face in TµML(S), namely Fλµ . This face Fλµ is equal to the whole vector space Z(λµ;R)

of tangent cycles for λµ.

Because of the positivity condition involved in the interpretation of tangent vectors

v∈TµML(S) as tangent cycles for geodesic laminations, it is quite possible that different

geodesic laminations λ and λ′ define the same face Fλ=Fλ′ . The correspondence λ 7!Fλ
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can be made bijective by restricting attention to chain recurrent geodesic laminations

[42], [7]. Instead of chain recurrent geodesic laminations, we will focus on the case

where the geodesic lamination λ is maximal, as it is better adapted to our purposes.

Every geodesic lamination λ′ is contained in a maximal geodesic lamination λ, so that

every face of TµML(S) is contained in a face Fλ associated with a maximal geodesic

lamination λ. Note that, although λ is maximal, the dimension of the associated face Fλ

may be significantly smaller than the dimension 6(g−1) of TµML(S).

Theorem 10.2. The tangent map Tµ`
%
a:TµML(S)!R is linear on each face of

TµML(S).

More precisely, if the face Fλ⊂TµML(S) is associated with a maximal geodesic lam-

ination λ, if we interpret the tangent vector v∈Fλ as a tangent cycle for λ, and if

σ%∈Z(λ, slits; R̂n−1) is the shearing cycle of %, then

Tµ`
%
a(v) = [σ%a]·[v]

where, as in §4.5 and §7.2, the dot · denotes the algebraic intersection number in a train-

track neighborhood Û of the orientation cover λ̂ of λ, [σ%a]∈H1(Û , ∂vÛ ;R) is the a-th

component of the twisted relative homology class

[σ%]∈H1(U, ∂vU ; R̃n−1)⊂H1(Û , ∂vÛ ;Rn−1)

defined by σ%∈Z(λ, slits; R̂n−1), and [v]∈H1(Û ;R) is the homology class represented by

v∈Z(λ;R)⊂Z(λ̂;R).

Proof. We already observed that Tµ`
%
a(v)=`%a(v) where the right-hand side interprets

v as a tangent cycle for λ and involves the function `%a:Z(λ̂)!R introduced in §7.1. The

formula then occurs as a special case of Theorem 7.5.
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Astérisque, 66. Société Mathématique de France, Paris, 1979.

[18] Fock, V. V. & Goncharov, A. B., Moduli spaces of local systems and higher Teichmüller

theory. Publ. Math. Inst. Hautes Études Sci., 103 (2006), 1–211.
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