
International Journal of Computer Vision

c© 2006 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s11263-006-5167-2

Geometry and Convergence Analysis of Algorithms for Registration
of 3D Shapes

HELMUT POTTMANN
Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Austria

pottmann@geometrie.tuwien.ac.at

QI-XING HUANG, YONG-LIANG YANG AND SHI-MIN HU
Department of Computer Science and Technology, Tsinghua University, China

shimin@tsinghua.edu.cn

Received October 12, 2004; Revised May 24, 2005; Accepted August 31, 2005

First online version published in March, 2006

Abstract. The computation of a rigid body transformation which optimally aligns a set of measurement points
with a surface and related registration problems are studied from the viewpoint of geometry and optimization. We
provide a convergence analysis for widely used registration algorithms such as ICP, using either closest points
(Besl and McKay, 1992) or tangent planes at closest points (Chen and Medioni, 1991) and for a recently developed
approach based on quadratic approximants of the squared distance function (Pottmann et al., 2004). ICP based
on closest points exhibits local linear convergence only. Its counterpart which minimizes squared distances to the
tangent planes at closest points is a Gauss–Newton iteration; it achieves local quadratic convergence for a zero
residual problem and—if enhanced by regularization and step size control—comes close to quadratic convergence
in many realistic scenarios. Quadratically convergent algorithms are based on the approach in (Pottmann et al.,
2004). The theoretical results are supported by a number of experiments; there, we also compare the algorithms
with respect to global convergence behavior, stability and running time.

Keywords: registration, rigid registration, kinematics, optimization, ICP algorithm, distance function, conver-
gence analysis

1. Introduction

Registration plays an important role in 3D model
acquisition and geometry processing (Bernardini and
Rushmeier, 2002). Individual overlapping scans of
an object, initially available in different coordinate
systems, have to be optimally positioned in a single
system. This requires the simultaneous registration of a
number of point clouds. Another industrial application
of registration is the following: For the goal of shape
inspection it is of interest to find the optimal Euclidean

motion (translation and rotation) that aligns a cloud
of measurement points of a workpiece to the CAD
model from which it has been manufactured. This
makes it possible to check the given workpiece for
manufacturing errors and to visualize and classify the
deviations. The latter registration problem concerns
only two systems. It is basic to the entire family of
rigid registration problems and thus we will investigate
this problem in detail. The simultaneous registration
of more than two systems can be done along similar
lines, but its description requires more care on issues

Pottmann et al.

such as choice of the initial position, automatic
detection of the overlapping regions of different
scans, etc., and thus we will describe it in a separate
paper.

Previous Work. A well-known standard algorithm
to solve the present registration problem is the iter-
ative closest point (ICP) algorithm of Besl and McKay
(1992). Independently, Chen and Medioni (1991) pro-
posed a similar algorithm. Although these two algo-
rithms are based on similar ideas, we will see later that
the difference—from the viewpoint of optimization—
is not marginal at all. Most of the literature is based
on these algorithms and deals with a variety of pos-
sible improvements. An excellent summary with new
results on the acceleration of the ICP algorithm has
been given by Rusinkiewicz and Levoy (2001), who
also suggest that iterative corresponding point is a bet-
ter expansion for the abbreviation ICP than the original
iterative closest point. Among the many improvements
of ICP we point to a paper by Sharp et al. (2002), where
correspondences are determined in a hybrid space of
point and feature coordinates. This leads to a remark-
able gain on the side of global convergence. Planitz
et al. (2005) proposed a general framework for analyz-
ing, comparing, developing and implementing surface
correspondence algorithms. Robust point set registra-
tion using a statistical rather than geometric approach
has been proposed by Tsin and Kanade (2004). For an
overview of further recent literature on registration we
also refer to (Eggert et al. (1998); Gelfand et al. (2003);
Ikemoto et al. (2003); Mian et al. (2004); Rodrigues
et al. (2002) and the references therein.

A study of the geometry of the squared distance
function of a geometric object led to the formulation
of another type of registration algorithms (Pottmann
et al., 2004), where one system (scan) ‘flows’ within
the squared distance field of the other scan towards the
latter. The present paper has been motivated by that
approach.

Contributions and Outline of the Present Paper. De-
spite the large amount of work on registration, it seems
that there is no thorough investigation of registration
algorithms from the viewpoint of geometry and opti-
mization. Filling this gap is the main purpose of the
present contribution. The study of registration as a ge-
ometric optimization problem reveals important infor-
mation on the behavior of known algorithms and pro-
vides the theoretical basis for empirical results which
have been reported in earlier papers. Moreover, we will

present an analysis and some extensions of the work in
(Pottmann et al., 2004), which aim at registration algo-
rithms with quadratic convergence.

This paper is organized as follows. Section 2 sum-
marizes basic facts from kinematics and the geometry
of the distance function to a surface. In Section 3, reg-
istration is formulated as a constrained nonlinear least
squares problem. Gradients of the objective function
in various norms and corresponding gradient descent
schemes for registration are studied. These algorithms
are of importance for the global convergence behavior;
the local convergence is just linear. Registration with
the ICP algorithm is discussed in Section 4. It is shown
that ICP exhibits linear convergence. To obtain better
local convergence, we devise and analyze in Section 5
algorithms with quadratic convergence; such algo-
rithms are of the Newton type and require second order
approximants of the objective function. Simplified ver-
sions are Gauss–Newton iteration and the Levenberg–
Marquart method. These are addressed in Section 5.4.
In fact, Gauss–Newton iteration turns out to be the
algorithm of Chen and Medioni. Section 6 contains
the experimental validation of the theory and a com-
parison of the various algorithms with respect to
global convergence behavior, stability and running
time.

2. Kinematical Geometry and the Squared
Distance Function of a Surface

First Order Properties of One-Parameter Motions.
Since registration requires the computation of an op-
timal rigid body motion, kinematical geometry plays
an important role. We review here some basic facts;
for proofs and more details we refer to the litera-
ture, e.g. (Bottema and Roth, 1990; Pottmann and
Wallner, 2001). Consider a rigid body moving in Eu-
clidean three-space R3. We think of two copies of
R3: One copy associated with the moving body and
called moving system �0, and one copy called the
fixed system �. We use Cartesian coordinates and de-
note points of the moving system �0 by x0, y0, . . . ,

and points of the fixed system by x, y, and so
on.

A one-parameter motion �0/� is a smooth family
of Euclidean congruence transformations depending on
a parameter t which can be thought of as time. A point
x0 of �0 is, at time t , mapped to the point x(t) =
A(t) · x0 + a0(t) of �. All points of �0 have a path
curve x(t) in �. The path of the origin is a0(t). A(t)

Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes

describes the rotational part; we have AT = A−1 and
det(A) = 1.

The first derivative ẋ(t) = Ȧ(t) · x0 + ȧ(t) of the path
of x0 is its velocity vector at time t . We write v(x) for
the vector field of vectors ẋ(t) attached to the points
x(t). It is well-known that the vector field v(x) is linear
and has the special form

v(x) = c̄ + c × x. (1)

Of special interest are the uniform motions, whose ve-
locity vector field is constant over time. Apart from the
trivial uniform motion, where all velocities are zero,
uniform motions are either translations (c = o, c̄ �=
o), rotations about a fixed axis (c · c̄ = 0, c �= o) or
helical motions (c · c̄ �= 0). The latter are the super-
position of a uniform rotation and a uniform transla-
tion parallel to the rotation’s axis. If ω is the angu-
lar velocity of the rotation, and v the velocity of the
translation, then p = v/ω is called the pitch of the he-
lical motion. Up to the first differentiation order, any
one-parameter motion agrees locally with one of these
motions.

If (c, c̄) represents the velocity vector field of the
motion, then the Plücker coordinates (g, ḡ) of the axis,
the angular velocity ω and the pitch p of the instan-
taneous helical motion (including special cases) are
reconstructed by

p = (c · c̄)/c2, ω = ‖c‖, (g, ḡ) = (c, c̄ − pc).

(2)

Recall that the Plücker coordinates of a line G consist
of a direction vector g and the momentum vector ḡ =
p × g, where p is an arbitrary point of G.

Second Order Taylor Approximant of Uniform Mo-
tions. So far we have seen that a first order approxi-
mation of a motion at a given position, say at time t = 0,
is given by x1(t) = x(0) + t ẋ(0) = x0 + t(c̄ + c × x0).
Here, x0 is the position of x0 ∈ �0 at t = 0 in �. A
second order approximant of a uniform motion is (cf.
(Bottema and Roth, 1990)),

x2(t) = x0 + t(c̄ + c × x0) + t2

2
c × (c̄ + c × x0). (3)

We will use (3) as a local parameterization of the Eu-
clidean motion group, which is precise up to second
order. There, it is sufficient to identify (t c, t c̄) with

(c, c̄) and use the following parameterization with six
scalar parameters (c, c̄),

x(c, c̄) = x0 + c̄ + c × x0 + 1

2
c × (c̄ + c × x0)

= x0 + c̄ + c × x0 + 1

2
[c × c̄ + (c · x0)c

− c2 x0]. (4)

Computing a Displacement from a Taylor Approxi-
mant. The first or second order approximations of
uniform motions discussed above are in general not
rigid body transformations. Later, it will be necessary to
actually perform the rigid body transformation, whose
first or second order approximant is known. In other
words, we also have to add the higher order terms in
the Taylor expansion. Fortunately, this turns out as a
very simple task: In the unlikely case that there is no
rotational part, i.e., c = 0, we are done, since then we
have a translation with the vector c̄, which of course is a
rigid body motion. Otherwise we note that the velocity
field of the instantaneous motion is uniquely associated
with a uniform helical motion. Its axis A and pitch p
can be computed with formula (2). The rotational angle
is given by φ = ‖c‖. Altogether, the desired motion is
the superposition of a rotation about the axis A through
an angle of φ = ‖c‖ and a translation parallel to A by
the distance of p ·φ. For the explicit formulae we refer
to the literature (Bottema and Roth, 1990; Pottmann
and Wallner, 2001).

Euclidean Motions Embedded in the Affine Group.
If we do not impose orthogonality on the matrix
A, we get, for each t , an affine map. Viewing rigid
body transformations as special affine maps will be
very useful for the planned analysis of registration
algorithms.

In the following, we use a kinematic mapping (see
(Hofer et al., 2004)) that views affine maps as points
in 12-dimensional affine space. For that, consider the
affine map x = α(x0) = a0 + A · x0. Let us denote the
three column vectors of A as a1, a2, a3. They describe
the images of the basis vectors of �0 in �. Of course,
we have x = a0+x0

1 a1+x0
2 a2+x0

3 a3. Now we associate
with the affine map α a point in 12-dimensional affine
space R12, represented by the vector A = (a0, . . . , a3).
The images of Euclidean congruence transformations
(rigid body motions) α ∈ SE(3) form a 6-dimensional
manifold M6 ⊂ R12. Its six equations are given by the

Pottmann et al.

orthogonality conditions of A, i.e., ai · a j = δi j , i, j =
1, 2, 3.

It will be necessary to introduce a meaningful metric
in R12. Following (Hofer et al., 2004), this is done with
help of a collection X of points x0

1, x0
2, . . . , x0

N in the
moving system (body), which shall be called feature
points. The squared distance between two affine maps
α and β is now defined as sum of squared distances
of feature point positions after application of α and β,
respectively,

‖α − β‖2 = ‖A − B‖2 :=
∑

i

[α(x0
i) − β(x0

i)]2. (5)

With A = (a0, . . . , a3), B = (b0, . . . , b3), C :=
A − B = (c0, . . . , c3), and x0

i = (x0
i,1, x0

i,2, x0
i,3) the

distance becomes

‖A − B‖2 = ‖C‖2 =
∑

i

[c0 + x0
i,1 c1 + x0

i,2 c2

+ x0
i,3 c3]2 =: CT · M · C. (6)

This expression with help of a positive definite sym-
metric matrix M shows that the metric (5) in the space
of affine maps is Euclidean. It only depends on the
barycenter sx = (1/N)

∑
i x0

i and on the inertia tensor

J := ∑
i x0

i · x0
i

T
of the set of feature points x0

i in the
moving system (Hofer et al., 2004).

The Squared Distance Function of a Surface. Here
we will summarize a few basic facts on the squared dis-
tance function. For more details, we refer to (Pottmann
and Hofer, 2003). Given a surface � ⊂ R3, the squared
distance function d2 assigns to each point x ∈ R3 the
square of its shortest distance to �. The importance of
this function for our algorithms lies in the fact that we
want to compute a position of a data point cloud which
minimizes the sum of squared distances to a given sur-
face. Since several important optimization concepts re-
quire second order approximants of the objective func-
tion, we need second order approximants of d2.

Let us fix the notation. We consider a surface � with
unit normal vector field n(s) = n3(s), attached to its
points s. At each point s ∈ �, we have a local Carte-
sian frame (n1, n2, n), whose first two vectors n1, n2

determine the principal curvature directions. We will
refer to this local frame as principal frame 	(s). Let
κi be the (signed) principal curvature to the principal
curvature direction ni , i = 1, 2, and let ρi = 1/κi .

It is known that the second order Taylor approximant
Fd of the function d2 at a point p ∈ R3 is expressed

in the principal frame at p’s closest point (normal foot
point) s ∈ � as

Fd (x) = d

d − ρ1

(n1 · x + h1)2 + d

d − ρ2

(n2 · x + h2)2

+ (n3 · x + h3)2. (7)

Here, ni · x + hi = 0, i = 1, 2, 3, are the equations of
principal planes and tangent plane at s, respectively.

In the important special case d = 0 (i.e., p = s), the
approximant Fd equals the squared distance function
to the tangent plane of � at s. Thus, if p is close to
�, the squared distance function to the tangent plane
at p’s closest point on � is a good approximant of d2.

We may have an indefinite Taylor approximant,
which might be undesirable for optimization. Then,
we derive nonnegative quadratic approximants either
by replacing a negative term d/(d − ρ j) by zero or by
|d|/(|d| + |ρ j |); a motivation for the latter choice is
given in (Pottmann and Hofer, 2003). In any case, a
second order approximant Fd is with appropriate coef-
ficients α1, α2 and α3 = 1 given by

Fd (x) =
3∑

j=1

α j (n j · x + h j)
2. (8)

Note that so far we tacitly assumed that p does not lie
on the cut locus of �. There the distance function d and
also its square are not differentiable, and it makes no
sense to talk about a second order Taylor approximant.

For later use we finally note that the gradient ∇d2

of the squared distance function at a given point p is

∇d2 = 2(p − s) = 2d n. (9)

Remark 1. For the sake of brevity, we are discussing
in this paper only the case of smooth surfaces. How-
ever, the change to the more practical case of piecewise
smooth surfaces is straightforward. Such a surface ex-
hibits sharp edges and vertices (intersection points of
edges, singular points such as the vertex of a cone); its
squared distance field is composed of squared distance
fields of smooth surfaces, of curves (edges and eventual
boundary curves) and of points (vertices). The squared
distance field of a point is quadratic anyway. Quadratic
approximants to squared distance fields of space curves
have been studied in (Pottmann and Hofer, 2003). In-
tuitively, the simplicity of the extension to piecewise
smooth objects is explained as follows: we attach small

Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes

Figure 1. Modified d2tree structure in 2D.

smooth blending surfaces along edges and corners, with
blending radius ε, and consider the limit for ε → 0.

A Data Structure for Fast Distance Information Re-
trieval. Surface patches obtained from a 3D scanning
device are usually defined by point cloud data (PCD)
which do not contain any topology information. For the
purpose of registration of PCD, one can still compute
second order quadratic approximants in each iteration.
A numerically stable algorithm in this case benefits
from a globally smooth fitting surface and then com-
putes closest points together with the curvature infor-
mation at these points. This is not easy and time con-
suming. Therefore, we briefly address here a modified
d2tree method (Leopoldseder et al., 2003) for com-
puting quadratic approximants to the squared distance
function. It involves least squares fitting of quadratic
patches. The pre-computed quadratic patches are stored
in a special data structure called d2tree. Figure 1(a)
shows a d2tree for simple two dimensional ellipse-like
PCD.

Simply put, the d2tree in 3D is an octree like data
structure each cell of which stores a quadratic function
that approximates the squared distance locally. Previ-
ous structures of d2tree compute these quadratic func-
tions by least squares fitting to the squared distance
function with the same error threshold. However, as
different cells correspond to different approximants,
these constructions can not preserve the continuity of
quadratic approximants along the boundary of each
cell. The modified d2tree structure solves this problem
by borrowing the idea of ‘partition of unity’ (Ohtake
et al., 2003), which is typically used to integrate locally
defined approximants into a global approximation. In
our approach, the quadratic patch in each cell Ci is as-

sociated with a C2 compactly supported function wi (·),

wi (x) = W

(‖x − oi‖2

θ d2
i

)
. (10)

Here, oi and di are respectively the center and the length
of the diagonal of cell Ci , and W (·) is a C2 function
with support interval [0, 1]; the constant θ controls the
overlap of the cells. In our implementation, we chose
W to be a cubic B-spline basis function and θ = 1.7.

The squared distance approximant at a point x is de-
fined by blending of the squared distance approximants
of its adjacent cells,

F+(x) =
∑

i wi (x)(xT · Ai · x + 2bi · x + ci)∑
i wi (x)

. (11)

The summation in Eq. (11) is taken over all cells. How-
ever, as all wi (·) are compactly supported, for a fixed
point x0, only a few terms in (11) contribute to its
squared distance approximation so that it can be ef-
ficiently computed. Figure 1(b) shows a sketch in 2D,
where the squared distance approximation of p is a
weighted combination of the squared distance approx-
imations in cells with centers oi , 1 ≤ i ≤ 4.

The construction of the modified d2tree is done in
a top-down style based on fitting quadratic functions
F(·) to samples of the squared distance field of the
PCD. The details of the construction is similar to the
method used in (Ohtake et al., 2003; Leopoldseder
et al., 2003) and will not be described here. For our
construction, the number of levels of the tree and the
error threshold for the quadratic approximants are the
required parameters.

Pottmann et al.

Our application requires a squared distance approx-
imant near a given point p. Unlike the d2tree defined
before, we use the second order Taylor approximant of
F+(x) at p,

F2(x) = F+(p) + ∇F+(p)T · (x − p)

+1

2
(x − p)T · ∇2 F+(p) · (x − p).

As W (·) has an analytic expression, both ∇F+(·) and
∇2 F+(·) can be computed analytically.

Remark 2. Compared with the previous d2tree
(Leopoldseder et al., 2003), the modified d2tree struc-
ture takes more time to supply the squared distance
approximant at a given point, as it needs the computa-
tion of gradient and Hessian of F+(·). To cut down the
computation time in the present application, one can
just apply the modified strategy when the cell is near
the surface. However, the time needed for computing
gradient and Hessian remains small compared to the
time which would be necessary for computing closest
points in each iteration of the following registration
algorithms.

3. Problem Formulation and Gradient Descent

A set of points X0 = (x0
1, x0

2, . . .) is given in some
coordinate system �0. It shall be rigidly moved (regis-
tered, positioned) to be in best alignment with a given
surface �, represented in system �. We view �0 and
� as moving and fixed system, respectively. A position
of X0 in � is denoted by X = (x1, . . .). It is the im-
age of X0 under some rigid body motion α. Since we
identify positions with motions, the motions have to
act on the same initial position. Thus, we always write
X = α(X0).

The point set X0 may be a cloud of measurement
points on the surface of a 3D object. The surface �

may be the corresponding CAD model, another scan
of the same object, a scan of a similar object, a mean
shape in some class of shapes, etc. For our description,
we will simply speak of a data point cloud and a surface
� (‘model shape’), but have in mind that � may also
be given just as a point cloud. For computations with
point cloud data, we refer to (Mitra et al., 2004).

The registration problem shall be formulated in a
least squares sense as follows. Compute the rigid body

transformation α∗, which minimizes

F(α) =
∑

i

d2(α(x0
i), �). (12)

Here, d2(α(x0
i), �) denotes the squared distance of

α(x0
i) to �. If we view α as a special affine map,

we have to compute its 12 parameters (a, A) under
the constraint that A is an orthogonal matrix. Hence,
the present problem is a constrained nonlinear least
squares problem (Geiger and Kanzow, 2002; Fletcher,
1987; Kelley, 1999).

The following notation will be used throughout this
paper. The current position of the data point cloud in
some iterative procedure is called X = (x1, x2, . . .) =
α(X0); if necessary, we write more precisely Xc =
(x1c, . . .) = αc(X0). The next position in an iteration
is indicated by X+ = (x1+, . . .) = α+(X0). The mini-
mizer of F is X∗ = α∗(X0).

For practical reasons, in particular for dealing with
outliers in the data set X , one may use a weighted sum.
This is not a major difference and shall be neglected in
the following.

3.1. Gradient Descent

In the following, we compute the gradient of the ob-
jective function F in (12). In view of (9), we multiply
F by the factor 1/2, but call the function again F . A
tangential direction in the Euclidean motion group is
determined by an instantaneous velocity vector field
v(x) = c̄+ c×x. Let yi be the closest points of the cur-
rent data point positions xi on �, and set fi := xi − yi .
Then, by Eq. (9), the directional derivative of F in
direction C = (c, c̄) reads

∂ F

∂C
=

∑
i

(xi − yi) · v(xi) =
∑

i

fi · (c̄ + c × xi)

=
∑

i

(fi · c + fi · c).

Here fi = xi × fi is the momentum vector of the sur-
face normal through xi . Let us view the vectors fi as
forces acting along the corresponding surface normals.
We call these forces the repelling forces. Then, fi are
the moments of these forces. Altogether, we have a
repelling force system, represented in terms of screw
theory (Pottmann and Wallner, 2001), pp. 192) by the

Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes

screw

F = (f, f) =
(∑

i

fi ,
∑

i

fi

)
. (13)

We will call F the repelling screw and −F the attract-
ing screw. Hence, the directional derivative appears as
virtual work done by the repelling force system on the
instantaneously moving data shape,

∂ F

∂C
= f · c̄ + f · c. (14)

With known results from line geometry and screw the-
ory (Pottmann and Wallner, 2001) we conclude: An
instantaneous motion with directional derivative zero
corresponds to a screw which is reciprocal to F. In par-
ticular, the axes of instantaneous rotations, which yield
vanishing directional derivative of F, lie in a linear line
complex.

A minimizer is characterized by vanishing deriva-
tive in all directions. This is only possible if the screw
F vanishes. In terms of statics, the condition may be
expressed as follows:

Proposition 3. At a position, which is a local min-
imizer of the objective function F of the registration
problem, the repelling force system (or equivalently
the attracting force system) is in equilibrium.

Remark 4. In the case of known correspondences,
we have an analogous equilibrium property of the
force system F = (f, f) defined by the vectors xi − yi
to pairs of corresponding points. In particular, this re-
quires f = 0, which expresses exactly the well-known
correspondence of the barycenters of the two point sets
X and Y see (Faugeras and Hebert, 1986; Horn, 1987).

To compute the gradient, we need a metric, since
the direction C needs to be normalized. The simplest
normalization via c2 + c̄2 = 1 yields as gradient

∇F = (f, f) =: F∗
. (15)

It is more natural, however, to use the Euclidean met-
ric (5) for normalization of the tangent vector to M6,
represented by C. This requires that we normalize ac-
cording to

∑
i (c + c × xi)

2 = 1. This normalization
can be written as

CT · Me · C = 1. (16)

Writing the directional derivative in the form ∂ F/∂C =
F∗T · M−1

e · Me · C, we see that the gradient ∇e F of F
for the normalization via the metric (5) is

∇e F = M−1
e · ∇F = M−1

e · F∗
. (17)

Both −∇F and −∇e F are in a certain metric direc-
tions of steepest descent and can be employed in a
gradient descent algorithm. One computes X+ from
Xc by application of a ‘small’ displacement, which is
in first order given by the velocity field in direction of
the steepest descent. One considers the helical motion
defined by this velocity field (c, c̄). Then, one applies
to the current position Xc the helical motion according
to Section 2, with an appropriate rotational angle φ.
One can start with φ = ‖c‖ and then check the va-
lidity of the corresponding step. If the decrease of the
objective function is not sufficient, the rotational angle
is reduced according to the Armijo rule (Kelley, 1999)
or a more sophisticated step size prediction scheme of
optimization (Fletcher, 1987; Kelley, 1999).

Remark 5. The gradient according to (17) possesses
the following interpretation. We are looking for a ve-
locity vector field v(x), determined by C = (c, c̄), such
that the first order approximants of the displaced data
points, namely the points xi + v(xi) = xi + c̄+ c× xi ,
are as close as possible to the closest points yi ∈ �

of xi , in a least squares sense. This requires the mini-
mization of

F1 =
∑

(xi + v(xi) − yi)
2 =

∑
i

(fi + c̄ + c × xi)
2.

(18)

With the expression of
∑

i (c̄+ c× xi)
2 = 1 in the form

(16), and with help of (15) and (13), function F1 reads
in matrix notation

F1 = CT · Me · C + 2(F∗)T · C +
∑

i

f2
i . (19)

Therefore, the minimizer Cm is given by the negative
gradient from Eq. (17),

Cm = −M−1
e · F∗ = −∇e F. (20)

Thus, a gradient descent based on ∇e F tries in each
iteration to bring the new data points xi+ as close as
possible to the foot points yi of the current data points

Pottmann et al.

xic. This is similar to the ICP algorithm, which is dis-
cussed in more detail in Section 4. There, we show that
ICP is linearly convergent. The same holds for a gradi-
ent descent, if one uses an appropriate step size (Kelley,
1999).

Although gradient descent is not a good method for
the fine positioning, it may be very useful to reach the
convergence area of an algorithm with quadratic con-
vergence, described in Section 5.

4. The ICP Algorithm Revisited

The most widely used algorithm for the solution of the
registration problem is the iterative closest point (ICP)
algorithm of Besl and McKay (1992). We will briefly
describe this algorithm and then take another point of
view which immediately reveals its convergence prop-
erties.

The ICP algorithm performs in each iteration the
following two steps.

(1) For each point xi = α(x0
i) in the current position

of the data shape, the closest point yi in the model
shape is computed. This is the most time consum-
ing part of the algorithm and can be implemented
efficiently, e.g. by using an octree data structure. As
result of this first step one obtains a point sequence
Y = (y1, y2, . . .) of closest model shape points to
the data point sequence X = (x1, x2, . . .). Each
point xi corresponds to the point yi with the same
index.

(2) The rigid motion α+ is computed such that the
moved data points xi+ = α+(x0

i) are closest to
their corresponding points yi , where the objective
function to be minimized is

F1 =
∑

i

‖xi+ − yi‖2. (21)

This least squares problem can be solved explicitly.
The translational part of α+ brings the barycenter
s0

x of X0 to the barycenter sy of Y (cf. Remark
4). The rotational part of α+ can be obtained as
the unit eigenvector that corresponds to the maxi-
mum eigenvalue of a certain symmetric 4×4 matrix
(Faugeras and Hebert, 1986; Horn, 1987). The so-
lution eigenvector is nothing but the unit quaternion
description of the rotational part of α+.

Now steps 1 and 2 are repeated, always using the up-
dated data points, until the change in the mean-square
error falls below a preset threshold. The ICP algorithm
always converges monotonically to a local minimum,
since the value of the objective function is decreasing
in each iteration.

4.1. ICP Exhibits Linear Convergence

The ICP algorithm can be understood nicely if we em-
bed the set of rigid body motions into the space D of
continuous deformations. A distance measure in D can
be introduced similarly as in R12, say with help of the
measurement points in X . Clearly, this distance cannot
distinguish between deformations that act identically
on X . We could also restrict to special deformations
that are uniquely determined by an image set Y of X
and reproduce Euclidean congruences where possible.

The set of Euclidean congruences is some 6-
dimensional manifold C6 in D. The set of deforma-
tions α which map X onto points of �, i.e. F(α) = 0,
is some manifold D0 ⊂ D. In case that there are no
measurement errors and X fits exactly to �, a solution
α∗ of the registration problem is an intersection point
of D0 and C6.

The two steps of ICP are interpreted in D as follows.

(1) To the point αc ∈ C6 (representing the motion be-
tween initial and current position Xc of the data
point cloud X), compute the closest point α f ∈ D0

(the deformation towards the cloud of closest points
on �).

(2) To α f ∈ D0, compute the closest point α+ ∈ C6.

Hence, each iteration consists of two orthogonal pro-
jections with respect to the chosen metric in D. At
first, one projects from a point on C6 orthogonally
onto D0, and then orthogonally back to C6. We will
show that this kind of double projection converges lin-
early. In case of a precise fit between data and model
shape, we have convergence to an intersection point
of D0 and C6. If there exists a deviation between data
shape X and model shape, we have convergence to-
wards a common normal of D0 and C6. In both cases,
the algorithm converges to a minimizer of the ob-
jective function F . Depending on the initial position,
this may just be a local minimizer, but not the global
one.

Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes

Linear convergence means that the distance of the
iterates to the solution α∗ decreases according to

‖α+ − α∗‖ ≤ C‖αc − α∗‖, (22)

for some constant C ∈ (0, 1).
Let us now proceed with a proof of the error formula

(22). In particular, we would like to compute the con-
stant C , which determines the speed of convergence.

For our purposes it is sufficient to make the follow-
ing simplification. We consider the sequence of iter-
ates (. . . , αc, α+, . . .) in C6 as points of some curve
c ⊂ C6. The intermediate foot points α f lie in some
curve f ⊂ D0. Each tangent of the curve c lies in the
corresponding tangent space of C6; hence a normal
onto C6 is also a normal onto c. The same holds for the
curve f. The desired common normal of D0 and C6 is
also a common normal of these two curves; the normal
foot points shall be c∗ (= α∗) and f ∗. Of course, in
case of an intersection point we have c∗ = f ∗. There-
fore, we consider the double projection algorithm for
the computation of the common normal of two curves
c and f. It is sufficient to assume finite dimension m of
the embedding space D = Rm ; since only the second
order Taylor expansions of c and f around c∗ and f ∗

enter the discussion, dimension m = 5 is actually suf-
ficient. Moreover, it suffices to express orthogonality
in Rm with help of the canonical inner product.

We consider arc length parameterizations c(u) and
f(v) for the two curves, with c(0) = c∗, f(0) = f∗.
Assuming bounded derivatives up to third order, the
Taylor expansions read

c(u) = c∗ + uc′
0 + u2

2
c′′

0 + O(u3),

f(v) = f ∗ + vf ′
0 + v2

2
f ′′

0 + O(v3).

The common normal property of c∗, f ∗ is expressed as

(c∗ − f ∗) · c′
0 = 0, (c∗ − f ∗) · f0

′ = 0. (23)

Given a current position c(uc)f(uc) for the common
normal, which is orthogonal to f at f(uc), the next posi-
tion c(u+), f(uc) is orthogonal to c. This is formulated
in the equations

(c(uc) − f(vc)) · f ′(vc) = 0,

(c(u+) − f(vc)) · c′(u+) = 0. (24)

Now we insert the Taylor expansions into these two
equations. The absolute terms cancel because of (23).

Vanishing of the first order terms yields two linear equa-
tions in uc, u+, vc, from which we eliminate vc and
finally get

u+ = Cuc,

with

C = (c′
0 · f ′

0)2

[c′
0

2 + (c∗ − f∗) · c′′
0][f ′

0
2 + (f ∗ − c∗) · f ′′

0]
.

C is the constant we are looking for, since u = 0 corre-
sponds to the foot point c∗. To express C in geometric
quantities, we use the properties of arc length param-

eterizations, c′
0

2 = f′0
2 = 1, and denote the angle be-

tween the tangents at the normal foot points by φ, i.e.
cos φ = c′

0 · f′0. With d ≥ 0 as distance between the
foot points c∗ and f ∗, we have f ∗−c∗ = d n, ‖n‖ = 1.
So far, this gives

C = cos2 φ

(1 − d n · c′′
0)(1 + d n · f ′′

0)
.

By the Frenet equations, we have

c′′
0 = κc nc, f ′′

0 = κ f n f ,

with κc, κ f as curvatures and nc, n f as unit principal
normal vectors of the curves c and f, respectively. Of
course, these entities are taken at the normal foot points.
nc · n equals the cosine of the angle γc between the
common normal and the osculating plane of c at c∗.
The quantity κc cos γc can be seen as normal curvature
of the curve c with respect to the normal vector n.
Analogously we define the normal curvature κn

f , but to
have symmetry, we use the normal −n there (so that it
points from f ∗ to c∗). This finally yields

C = cos2 φ

(1 − dκn
c)(1 − dκn

f)
. (25)

Remark 6. The normal curvature κn
c of c at c∗, with

respect to the normal n, can be visualized as follows:
Connecting the point f ∗ with the curve c yields a cone.
By developing this cone into the plane, c is transformed
into a planar curve c̃, whose ordinary curvature at c̃∗

(with the normal orientation given by ñ) is precisely κn
c

(Do Carmo, 1976; Spivak, 1975). The interpretation of
κn

f is analogous.

If the curves intersect, i.e. d = 0, the convergence
only depends on their intersection angle. The property

Pottmann et al.

C = cos2 φ is immediately clear for two intersecting
straight lines. It is not surprising that it appears in first
order also if c and f are not lines. For curves c and
f, which are tangent at some point c∗ = f ∗, we have
d = 0 and φ = 0, and thus C = 1. This gives a
convergence which is below a linear rate!

It is much more subtle to analyze the case d �= 0.
Obviously, even curvature information enters the dis-
cussion. The situation can be easily understood if one
takes two circles c and f in the plane. Clearly, we have
φ = 0. The speed of convergence is determined by the
radii of the circles; it is an elementary exercise to verify
the validity of (22) with the constant from (25).

4.2. Conclusions on the Performance of ICP

We will only discuss the case of a small residual prob-
lem (d small); there, the data point cloud X fits very
well onto �. By Eq. (25), the speed of convergence is
given by C ≈ cos2 φ and thus we have to find the angle
φ, under which the minimizer is approached.

By Eq. (5) squared distances between two positions,
say the current position X and the minimizer X∗, are
computed as sum of squared distances of corresponding
data point locations,

‖X − X∗‖2 = ‖α − α∗‖2 =
∑

i

(xi − x∗
i)2. (26)

As approximants to the tangent vectors at the minimizer
(vectors c′

0 and f ′
0 of the previous subsection), we may

use the normalized secant vectors (X − X∗)/‖X − X∗‖
and (Y − Y ∗)/‖Y − Y ∗‖, and thus we have

cos φ ≈
∑

i (xi − x∗
i) · (yi − y∗

i)√∑
i (xi − x∗

i)2
√∑

i (yi − y∗
i)2

. (27)

During the computation, X∗ is not yet known. An al-
ternative is the estimation of φ from two successive
iterates,

cos φ ≈
∑

i (xic − xi+) · (yic − yi+)√∑
i (xic − xi+)2

√∑
i (yic − yi+)2

. (28)

This confirms an intuitively obvious and experimen-
tally verified phenomenon: ICP is very slow, if tangen-
tial moves along the surface are needed. Then the angle
φ is small and the constant C is close to 1. Tangential
moves belong to a velocity vector field of a rigid body
motion which is nearly tangential to �.

We have run a large number of experiments to em-
pirically test the accuracy of the estimate (28) of te
constant in the linear convergence behavior of ICP.
A representative example is the following one. The
chosen surface � is a bi-cubic B-spline surface with
36 control points and uniform knots. The size of the
object is approximately 0.352 × 0.340 × 0.354. The
data set X results from random sampling of k = 500
points on � and successive displacement of the point
cloud as a rigid body system; thus we have a zero
residual problem. Figure 2 shows the initial and the
final position after 200 iterative steps of standard ICP.
Table 1 presents for each given iteration the error
E(j) = √

[
∑

i (xi − x∗
i)2]/k according to (26), the

estimate cos2 φ of the constant C using formula (28)
and the quotient E(j)/E(j − 1), which represents the
exact error reduction in each iteration. The last two
quantities are graphed in Fig. 2, bottom. It reveals that
the theoretical convergence result describes the exact
behavior very well, except for a few initial iterations
when the data point cloud is far from the fixed object.
This is expected, since we have performed a local con-
vergence analysis which does not capture the initial
phase.

Surfaces, which possess a velocity vector field
v(x), such that v(x) is exactly tangential to � for
all x ∈ �, are invariant under a uniform motion.
Such a surface must be a plane, sphere, cylinder, ro-
tational or helical surface. Clearly, for such a surface,
F has an infinite number of minimizers. An instabil-
ity can also exist infinitesimally or approximately. A
linear algorithm for the detection of such cases can
be based on line geometry (Pottmann and Wallner,
2001); strategies for handling them in an ICP algo-
rithm have been described by Gelfand et al. (2003), and
Ikemoto et al. (2003).

Let us summarize the results on the convergence of
ICP.

Proposition 7. The ICP algorithm exhibits in general
linear convergence with a decay constant C given by
Eq. (25). For a zero residual problem, where the min-
imizer is approached tangentially, we have the worst
case C = 1; a tangential approach occurs in an ex-
act way only for surfaces which are invariant under a
uniform motion.

Without further discussion, we mention that the
quadratically convergent algorithms in the next section
exhibit a better convergence for small angles φ than

Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes

Figure 2. Local convergence behavior of the standard ICP algorithm: (upper left) initial position, (upper right) final position, (bottom)

illustration of the constant C for the linear error reduction, and its estimate cos2 φ according to (28).

ICP does. However, they are no longer quadratically
convergent for φ = 0.

5. Registration Algorithms of the Newton-Type
and Gauss–Newton Iteration

There are various possibilities to achieve quadratic
convergence in registration algorithms. Recall that
quadratic convergence means an error reduction of the
form

‖α+ − α∗‖ ≤ C‖αc − α∗‖2, (29)

with some positive constant C . We will describe several
algorithms, all of them based on a Newton type iteration
or a simplification of it.

Algorithms which use quadratic approximants of
the squared distance function according to (7) will
be called SDM (squared distance minimization) al-
gorithms. Those, which set d = 0 and thus use
only squared tangent plane distances, are called TDM
schemes. In this section, the following algorithms will
be analyzed (in this order).

(1) Affine SDM. As a preparation for further dis-
cussions, we drop the rigidity constraint of
the moving system and thus allow an affine
distortion.

(2) SDM 1. This scheme, first proposed in (Pottmann
et al., 2004), uses a linearization of the motion
(rigidity constraint).

(3) SDM 2 is an SDM scheme based on a second order
motion approximant.

(4) TDM simplifications exist to all SDM algorithms
mentioned above. We will show that they corre-
spond to Gauss–Newton iteration and thus should
be enhanced by regularization techniques such as
the Levenberg–Marquardt method.

All these algorithms follow the same basic scheme
and are quite easy to implement because of the careful
study of the squared distance function and kinematical
geometry; they can take advantage from preprocessing
of the squared distance field (see (Mitra et al., 2004)).
This geometric insight is lacking in a paper by Tucker
and Kurfess (2003), which applies the Newton method
to registration in a straightforward way and thus leads

Pottmann et al.

Table 1. Error reduction in the standard ICP algorithm.

Iterative Closest Point (ICP)

j E(j) E(j)
E(j−1) cos2 φ j E(j) E(j)

E(j−1) cos2 φ

0 8.607e-2 110 1.302e-7 0.8637 0.8633

10 5.291e-2 0.9696 0.5302 120 3.014e-8 0.8639 0.8635

20 3.453e-2 0.9510 0.6529 130 6.987e-9 0.8640 0.8636

30 1.631e-2 0.8968 0.3871 140 1.621e-9 0.8640 0.8637

40 3.670e-3 0.8573 0.8314 150 3.764e-10 0.8641 0.8638

50 8.478e-4 0.8754 0.8467 160 8.745e-11 0.8641 0.8639

60 1.957e-4 0.8685 0.8511 170 2.032e-11 0.8642 0.8639

70 4.720e-5 0.8616 0.8601 180 4.725e-12 0.8643 0.8639

80 1.071e-5 0.8625 0.8617 190 1.101e-12 0.8640 0.8639

90 2.451e-6 0.8631 0.8624 200 2.588e-13 0.8659 0.8638

100 5.640e-7 0.8635 0.8629

to quite involved expressions and little possibilities for
acceleration.

Newton Algorithms. Before we enter the discussion
of registration, let us recall the most basic facts on New-
ton iteration (Kelley, 1999). A Newton method for the
minimization of a function F(α) computes a second or-
der Taylor approximant at the current position αc and
minimizes this quadratic function to obtain the next it-
erate α+. Therefore, with the gradient ∇F(αc) and the
Hessian ∇2 F(αc), one has

α+ = αc − (∇2 F(αc))−1 · ∇F(αc).

Under appropriate assumptions on F and on the initial
iterate, a Newton iteration converges quadratically to
a local minimizer. In order to obtain a globally con-
vergent algorithm, i.e. an algorithm which converges
from each initial position to a local minimizer, one
has to make some improvements (Kelley, 1999). If the
Hessian is not positive definite, the Newton direction
may fail to be a descent direction; then one has to em-
ploy an approximate Hessian, which in our case will
come from nonnegative quadratic approximants of the
squared distance function. Moreover, one should use a
step size control and compute a step λ such that

α+ = αc − λ(∇2 F(αc))−1 · ∇F(αc),

has sufficient descent (Kelley, 1999). In the following,
we will not explicitly point to this stabilization, but we
are assuming it is done.

Gauss–Newton Iteration. Our objective function
F(α) in Eq. (12) is a sum (1/2)

∑
i di (α)2 of squares.

One speaks of a nonlinear least squares problem
(Kelley, 1999). To avoid the costly computation of the
full Hessian ∇2 F , one may use a Gauss–Newton iter-
ation, which is equivalent to the solution of the linear
least squares problem

min
N∑

i=1

[di (αc) + ∇di (αc) · (α − αc)]2. (30)

It is well-known (Kelley, 1999), pp. 24) that the dis-
tance ‖ec‖ = ‖αc − α∗‖ of the current iterate to the
minimizer α∗ is related to the error ‖α+‖ in the next
iterate by

‖e+‖ ≤ K (‖ec‖2 + ‖R(α∗)‖ ‖ec‖). (31)

Here, R(α∗) = (d1, . . . , dN)(α∗) is the residual at the
minimizer, and K is an appropriate constant which in-
volves the Jacobian of R(α). The error estimate is only
true, if one is sufficiently close to the minimum. The
well-known conclusions of (31) are: Gauss–Newton
iteration converges quadratically for a zero residual
problem. There, the data can be fitted exactly. More-
over, for good initial data and a small residual problem,
convergence of Gauss–Newton is fast. For a large resid-
ual problem, the iteration may not converge at all.

Optimization theory provides several methods to
achieve convergence of Gauss–Newton like iterations
even for large residual problems (Kelley, 1999). A vari-
ant of the Gauss–Newton iteration does not apply the
full step α+ −αc, but just a scalar multiple λ(α+ −αc),
usually with λ < 1, to the current iteration. Various
methods for a line search along αc + λ(α+ − αc) can
be applied (see (Kelley, 1999)). This results in a so-
called damped Gauss–Newton algorithm. Another way

Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes

to modify Gauss–Newton is a regularization with the
Levenberg–Marquardt method (Kelley, 1999). Here, a
scalar multiple of the unit matrix is added to the ap-
proximate Hessian.

5.1. Affine SDM: A Newton Algorithm for Affine
Registration

As a preparation for further investigations let us first
consider affine registration. In certain situations, affine
registration may even be used for registration by a rigid
body motion, namely if F possesses an isolated mini-
mizer α∗ within the affine group which is contained in
(or very close to) M6. A minimizer lies in M6 if the
deviations between data set and model shape are zero
(up to Gaussian noise). This minimizer is isolated if
there are no affine transformations of the model shape
into itself.

Starting from an appropriate initial position α0, we
perform a Newton iteration in R12 for the minimization
of F . This requires a second order approximation of the
objective function F . Since F is the sum of squared dis-
tances of the data point positions xi to the model shape
�, a second order approximant is F2 = ∑

i Fd,i , where
Fd,i is the second order approximant of the squared
distance function to the model shape at xi . These ap-
proximants have been investigated in Section 2. Let
ni, j · x + hi, j = 0, ‖ni, j‖ = 1, for j = 1, 2, 3, be
the equations of the coordinate planes of the principal
frame at xi ’s closest point yi ∈ �. Then, by Eq. (8),
a second order Taylor approximant of the squared dis-
tance function at xi is written as

Fd,i (x) =
3∑

j=1

αi, j (ni, j · x + hi, j)
2. (32)

The same form holds for a nonnegative modification.
Nonnegative approximants should be applied at least
in initial steps of the iteration to ensure positive defi-
niteness of the Hessian of the objective function.

We now insert an affine displacement of the data
points,

x′
i = xi + c0 + xi,1 c1 + xi,2 c2 + xi,3 c3, (33)

into F2 and arrive at the local quadratic model of the
objective function

F2 =
∑

i

3∑
j=1

αi, j [ni, j · (xi + c0 + xi,1 c1 + xi,2 c2

+xi,3 c3) + hi, j]
2. (34)

Since ni, j · xi + hi, j is the distance of xi to the
j th coordinate plane of the principal frame, this value
equals 0 for j = 1, 2; it equals the oriented distance di

of xi to � for j = 3. Therefore we may rewrite F2 as

F2 =
∑

i

2∑
j=1

αi, j [ni, j · (c0 + xi,1 c1 + xi,2 c2

+ xi,3 c3)]2 + F̃2. (35)

Here, F̃2 denotes the part arising from the squared
distances to the tangent planes at the closest points yi ,

F̃2 =
∑

i

[ni ·(c0+xi,1 c1+xi,2 c2+xi,3 c3)+di]
2. (36)

The minimization of the quadratic function F2 in the
parameters (c0, . . . , c3) of the affine displacement re-
quires the solution of a linear system. Applying this
affine displacement to the data set, we obtain a new
position. This procedure is iterated. We stop with an
appropriate criterion, e.g. if the error or its decrease
fall below a given threshold or a maximum number of
iterations has been reached. To enforce that the final
position of the data set is a Euclidean copy of the orig-
inal one, we may register the original position to the
final affine position, which is a well-known eigenvalue
problem (the second step in each iteration of ICP).

Since the present method is a Newton algorithm, it
converges quadratically.

Remark 8. Affine registration in the present formula-
tion has an infinite number of singular solutions: These
occur if the whole moving system shrinks to a single
point of the model shape, which clearly results in a zero
residual. Our experiments confirm that this shrinking
effect may appear if the initial position is too far away
from the model shape (cf. Table 3).

5.2. SDM 1: A Newton Algorithm Based on a First
Order Motion Approximant

SDM 1 according to (Pottmann et al., 2004) keeps the
rigidity constraint, i.e., the path in R12 towards the min-
imizer is restricted to M6. Let us first explain the iter-
ative procedure in R12. Here, each iteration from αc to
α+ consists of the following two steps.

Pottmann et al.

(1) Compute the tangent space T 6 of M6 at αc and min-
imize a local quadratic model F2 of the objective
function F within T 6. Let α∗

T denote the unique
minimum in T 6.

(2) Project α∗
T onto M6 to obtain α+.

Such a projected Newton algorithm needs not even
be convergent if the unconstrained minimizer αu (in
R12) is far away from M6. However, if αu = α∗ lies
in M6, the algorithm can be shown to be quadratically
convergent. These results follow by a local quadratic
approximation of the objective function at the mini-
mizer and by the use of corresponding results on the
constrained minimization of quadratic functions (see,
e.g. (Hofer and Pottmann, 2004)).

The realization of the two steps in SDM 1 is as fol-
lows (Pottmann et al., 2004).

Step 1. The tangent space T 6 is defined by Euclidean
velocity fields, i.e. v(x) = c̄ + c × x. Equivalently,
ci of (33) are no longer arbitrary, but define a skew
symmetric matrix. Therefore, minimization of the local
quadratic model inside T 6 requires the minimization of
the quadratic function F2 in (c, c̄),

F2 =
∑

i

2∑
j=1

αi, j [ni, j · (c̄ + c × xi)]
2 + F̃2. (37)

As before, F̃2 arises from squared tangent plane dis-
tances,

F̃2 =
∑

i

[ni ·(c̄+c×xi)+di]
2 =

∑
i

[ni ·c̄+n̄i ·c+di]
2,

(38)
and can be used instead of F2 when we are already
close to the model shape (see also Section 5.4). Note
that (ni , n̄i) are the Plücker coordinates of the surface
normal through xi . F2 is a quadratic function in the
unknowns (c, c̄). The unique solution (c∗, c̄∗) can be
given explicitly by solving a system of linear equations.

Step 2. The projection back to M6 proceeds accord-
ing to Section 2. We apply a helical motion which is
determined by the velocity field (c∗, c̄∗).

The presented algorithm can be made convergent in
any situation, even if the minimum within the affine
group is not close to M6. However, then the choice
of the rotational angle cannot simply be ‖c‖. Espe-
cially, if a large rotational angle arises, it is better to use
arctan ‖c‖ or even a smaller value than that. A secure

way is to employ the Armijo rule or a similar strategy
from optimization (Kelley, 1999) for the determination
of an appropriate step size, analogous to the procedure
in a gradient descent algorithm. It is well known in opti-
mization (Kelley, 1999) that this results in an algorithm
with linear convergence.

5.3. SDM 2: A Newton Algorithm with Second
Order Motion Approximation

To achieve quadratic convergence in any case, we can
use a second order approximant for the motion from
αc to α+ according to (4). This means that we estimate
the displaced data point xi by

x′
i = xi + c̄ + c × xi + Ti,2,

with the second order term

Ti,2 = 1

2
[c × c̄ + (c · xi)c − c2 xi].

We insert this into Fd (xi) and sum up,

F2 =
∑

i

2∑
j=1

αi, j [ni, j ·(c̄+c×xi +Ti,2)]2+ F̃2. (39)

We observe that the quadratic term Ti,2 in the first part
produces just cubic or quartic contributions to F2. Since
we will minimize a local quadratic model at (c, c̄) =
(0, 0), these terms do not matter at all. However, we
have to look into F̃2,

F̃2 =
∑

i

[ni · (c + c × xi + Ti,2) + di]
2, (40)

Skipping again the higher order terms, we get a local
quadratic approximant, denoted by F̃ ′

2,

F̃ ′
2 =

∑
i

[ni · c+ ni · c+di]
2 +2

∑
i

di ni ·Ti,2. (41)

Hence, the only relevant correction term compared to
the use of a linearized motion as in Subsection 5.2 is

F2c =
∑

i

di [det(ni , c, c̄)+(c·xi)(c·ni)−c2(xi ·ni)].

(42)
Computationally, the second order motion approxima-
tion does not require much more effort. However, in

Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes

this refined version we can guarantee quadratic con-
vergence provided that we have an initial position in
the region of attraction of the minimizer.

5.4. TDM: Registration via Gauss–Newton
Iteration.

At the final steps, the second order approximants Fd (xi)
will be close to squared distance functions of tangent
planes at the closest points yi . This means that the in-
fluence of αi,1 and αi,2 will be negligible and thus these
parameters can be set to zero. We may then simply use
F̃2 instead of F2; this results in the TDM scheme asso-
ciated with any of the SDM methods above. Minimiza-
tion of squared tangent plane distances has been first
proposed by (Chen and Medioni, 1991), and it has been
observed in various papers that this results in faster con-
vergence than ICP. We will give a deeper explanation
by showing that TDM corresponds to Gauss–Newton
iteration.

We have to formulate Eq. (30) for the present reg-
istration problem. It is better to start the discussion
without the rigidity constraint, i.e., to consider affine
registration. For this, we note that the gradient ∇d(xi)
of the distance function to � at a point xi , taken with
respect to the spatial coordinates x, is given by the unit
normal vector ni at xi ’s closest point yi ∈ �, ∇di =
(xi −yi)/‖xi −yi‖ = ni . The term ∇di (αc)·(α−αc) de-
scribes, in our case, the directional derivative of this dis-
tance for an affine displacement α of xi , which equals
ni · (c̄ + xi,1 c1 + xi,2 c2 + xi,3 c3). Therefore, the min-
imization of squared tangent plane distances, which is
described in (36), is identical to Gauss–Newton itera-
tion (30).

Adding the rigidity constraint has been discussed in
Subsections 5.2 and 5.3; in exactly the same way we
can handle the constraint for Gauss–Newton iteration
(TDM). The only difference is that we do not use full
local quadratic approximants of the squared distance
function at the current data points, but we only use
squared tangent plane distances, described in function
F̃2. Let us summarize the conclusions one can make
with known results from optimization, which have been
mentioned at the beginning of this section.

Proposition 9. Registration algorithms which are
based on the approach by (Chen and Medioni, 1991)
and iteratively minimize the sum of squared distances
to tangent planes at the closest points yi ∈ � of the
current data point locations xi , correspond to a Gauss–

Newton iteration. Therefore, these algorithms converge
quadratically for a sufficiently good initial position and
a zero residual problem (i.e., the data shape fits exactly
onto the model shape).

Moreover, one has to expect that the Chen & Medioni
method works well for small residual problems. To
achieve convergence even for a large residual prob-
lem, one should employ the modifications addressed
above. For instance, Levenberg–Marquardt (L-M) reg-
ularization applied to Gauss–Newton iteration with a
first order motion approximant requires iterative mini-
mization of

F̃2 =
∑

i

[ni · (c̄ + c × xi) + di]
2 + ν(c̄2 + c2). (43)

For the choice of the parameter ν, we refer to (Kelley,
1999).

6. Experimental Validation

In this section, we present an experimental verification
of the theoretical results. We compare the standard ICP
algorithm and the four algorithms presented in Sub-
sections 5.1–5.4 with respect to local convergence and
global stability. The experiments have been performed
on a Pentium IV 2.8G with 1G RAM.

We present the results of test series run on four dif-
ferent models and corresponding data sets (Fig. 3). We
test both local convergence and global stability and do
this by an evaluation of the algorithms for a large num-
ber of initial positions; examples for such positions are
shown in Fig. 4.

(1) Test 1 uses a fender model represented as a bi-
cubic B-spline surface (Fig. 3(a)). The size of the
object is approximately 2.023 × 0.750 × 0.367.
The data set is obtained by sampling the model at
k = 500 points with small Gaussian noise; this is
done by normal-uniform sampling (Rusinkiewicz
and Levoy, 2001). Newton’s method is employed
to compute on demand the closest point of each
data point.

(2) In Test 2 the original model is a triangle mesh (ob-
tained from real measurement data; see Fig. 3(b));
it has a size of 0.2183 × 0.2727 × 0.2155. Hav-
ing an application in industrial inspection in mind,
where the original model would be used many
times, we use preprocessing by the modified d2tree

Pottmann et al.

Figure 3. Models and data sets in registered position; the sample points used for registration in (b), (c) and (d) are shown in red.

Figure 4. Some initial positions for local and global convergence tests; in all cases the shown positions yield convergence.

from Section 2. Data point clouds are obtained by
random sampling at k = 1000 points with small
Gaussian noise.

(3) Test 3 concerns a large residual problem (Fig. 3(c)),
where model shape and data point clouds come
from different face models. Evaluation of the
squared distance function is done via prepro-
cessing.

(4) Test 4 shows the process of aligning two partially
overlapping scans of the bunny model (Figs. 3(d)
and 4). During registration, the dark point cloud
S is fixed and the other point cloud is active. We
sampled the active part at k = 500 points and use
preprocessing of S with the modified d2tree. Three
parameters T1, T2, τ are used to exclude sample
points that do not belong to the overlapping region.

Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes

In the objective function, the term of each sample
xi is multiplied by a weight wi according to

wi :=⎧⎨⎩1 if d2(xi , S) ≤ T1,

exp(−τ (d2(xi , S) − T1)2) if T1 < d2(xi , S) < T2,

0 if T2 ≤ d2(xi , S).

(44)

In general, T1, T2 need to be reduced during the
optimization. The constant τ controls the decay of
influence and can be increased in later steps of the
iterative procedure. In the final few steps, we set
T1 = T2.

Computation of initial positions of the data
sets is performed as follows. We apply helical
motions with parameters (c, c̄) (cf. Section 2) to
the optimally aligned position α∗ of the data set.
Thus, the latter belongs to parameters (0, . . . , 0).
The (c, c̄)–parameter domain is uniformly sam-
pled as (βix , βiy, βiz, L jx , L jy, L jz), where −3 ≤
jx , jy, jz ≤ 3. For the local convergence tests we use
−3 ≤ ix , iy, iz ≤ 3, β = π/90 and L is 1/50 of the
diagonal Db of the bounding box of the model shape.
Initial positions for global convergence tests belong to
−4 ≤ ix , iy, iz ≤ 4, β = π/9 and L = Db/8.

6.1. Local Convergence.

The results of the four test series run on the initial po-
sitions as explained above are shown via 3D graphs
in Figs. 5–8. Along the three axes we graph iteration
number j , logarithm log(E(j)) of the error (with E(j)
defined as in Section 4.2), and the number of occur-
rences in the test series. This shows that the 2D con-
vergence graphs to the individual initial positions are
pretty close to each other; we have a strong concentra-
tion at a certain mean plot.

The error decay in the experiments is in agreement
with the theory. Affine SDM and SDM 2 are quadrat-
ically convergent, SDM 1, TDM and standard ICP are
linearly convergent; the latter exhibits the clearly worst
local convergence behavior. We also see that TDM does
not work well for large residual problems. Basically the
same picture is found for the total computation time
(Table 2).

Let us discuss in more detail the time required per
iteration. In all algorithms, the dominant cost lies in

computing various approximants of the squared dis-
tance function. We analyze the cost ttotal for one data
point. Essentially, ttotal = tquery + ta sums up the
time tquery required for finding the closest point, and
the time ta for computing the squared distance ap-
proximant at the closest point. As we use the same
data structure for computing the closest point, tquery

remains fixed along all tested algorithms. TDM re-
quires less information than SDM, and this yields
in practice t T DM

a ≈ 0.5 ∗ t SDM
a . Thus, if tquery is

dominant (as for test 1), ttotal for SDM and TDM
are nearly the same. If ta is dominant (d2tree pre-
processing), we have tTDM

total ≈ 0.5 · tSDM
total . How-

ever, faster convergence of SDM can still give lower
total computation time of the registration process
(Table 2).

6.2. Global Stability.

After examining the local convergence, we come to
the global stability issue. We are interested here in the
size of the funnel of attraction of the minimizer. Since
pure Newton and Gauss Newton methods would not
do well at all, we have to enhance them by step size
control and/or L-M regularization.

For each algorithm, we let the moving system start
from the initial positions as outlined above and count
the percentage of those initial positions that result in
the global minimizer α∗; the results are collected in
Table 3.

We summarize the results as follows. SDM 1 and
standard ICP show similar global behavior, but they
are only a little better than SDM 2. TDM has a worse
global behavior. As expected, affine SDM is the worst
one, since it is prone to exhibit a shrinking effect when
the initial position is far from the shape model.

Table 2. Average computational time of each algorithm.

Face Partial

Test 1 Test 2 registration alignment

Preprocessing 0s 19.616s 21.571s 15.421s

Samples 1000 1000 1000 500

Standard ICP 11.12s 0.515s 0.637s 0.582s

TDM 1.623s 0.101s 0.153s 0.074s

SDM 1 0.523s 0.118s 0.204s 0.042s

SDM 2 0.409s 0.085s 0.104s 0.034s

affine SDM 0.334s 0.056s 0.087s 0.026s

Pottmann et al.

Figure 5. Error reduction for local convergence test 1 (small residual).

Figure 6. Error reduction for local convergence test 2 (small residual).

Figure 7. Error reduction for local convergence test 3 (large residual).

Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes

Figure 8. Error reduction for local convergence test 4 (partial matching).

Table 3. Percentage of initial positions which belong to the convergence funnel of the global

minimizer.

Test 1 Test 2 Face registration Partial alignment

Standard ICP 30.902% 29.921% 6.721% 12.874%

TDM + Armijo rule 10.209% 5.726% 2.978% 3.656%

TDM + L-M method 19.743% 12.354% 4.567% 6.493%

SDM 1 + Armijo rule 37.434% 28.545% 8.721% 14.218%

SDM 1+ L–M method 40.211% 30.671% 9.326% 15.951%

SDM 2 + Armijo rule 20.825% 16.768% 4.822% 7.869%

SDM 2 + L–M method 22.579% 18.546% 6.542% 9.928%

Affine SDM + Armijo rule 0.207% 0.157% 0.056% 0.282%

Affine SDM + L–M method 0.588% 0.352% 0.122 0.633%%

7. Conclusion and Future Research

Exploiting the geometry of the squared distance func-
tion and using known facts from kinematical geometry
and optimization, we have been able to analyze and
improve the local convergence behavior of registration
algorithms. In particular, we have proposed algorithms
with local quadratic convergence. Moreover, an exper-
imental validation of the theoretical results has been
given. Both from the theoretical study and the experi-
ments we conclude that the most widely used ICP al-
gorithm (Besl and McKay, 1992) is the slowest. The
algorithm of (Chen and Medioni, 1991) (essentially
a Gauss–Newton iteration) shows faster convergence,
but it is still behind the other schemes (SDM1, SDM2,
affine SDM) with respect to convergence rate and com-
putation time.

It has also been shown that the quadratically con-
vergent algorithms (with regularization and step size

control) do not require a very close but still a reason-
able initial position. Finding such a position requires
different techniques; a promising direction is the ap-
proach by (Sharp et al., 2002).

The presented optimization algorithms can be ex-
tended to the simultaneous registration of multiple
views. Also there, we can achieve local quadratic con-
vergence and verify it by experiments. For registration
of multiple views, the choice of a good initial position
is even more critical, and thus we will discuss mul-
tiview registration in a separate paper, both from the
perspective of local and global convergence.

Acknowledgements

Part of this research has been carried out within the
Competence Center Advanced Computer Vision and
has been funded by the Kplus program. This work was

Pottmann et al.

also supported by the Austrian Science Fund (FWF)
under grant P16002-N05, by the innovative project
‘3D Technology’ of Vienna University of Technology,
and by the Natural Science Foundation of China under
grants 60225016 and 60321002.

References

Bernardini, F. and Rushmeier, H. 2002. The 3D model acquisition

pipeline. Computer Graphics Forum, 21:149–172.

Besl, P.J. and McKay, N.D. 1992. A method for registration of 3D

shapes. IEEE Trans. Pattern Anal. and Machine Intell., 14:239–

256.

Bottema, O. and Roth, B. 1990. Theoretical Kinematics. Dover: New

York.

Chen, Y. and Medioni, G. 1991. Object modeling by registration of

multiple range images. Proc. IEEE Conf. on Robotics and Au-

tomation.

Do Carmo, M.P. 1976. Differential Geometry of Curves and Surfaces.

Prentice Hall.

Eggert, D.W., Fitzgibbon, A.W., and Fisher, R.B. 1998. Simultaneous

registration of multiple range views for use in reverse engineer-

ing of CAD models. Computer Vision and Image Understanding,

69:253–272.

Eggert, D.W., Lorusso, A., and Fisher, R.B. 1997. Estimating 3-

D rigid body transformations: a comparison of four major algo-

rithms. Machine Vision and Applications, 9:272–290.

Gelfand, N., Ikemoto, L., Rusinkiewicz, S., and Levoy, M. 2003.

Geometrically stable sampling for the ICP algorithm, Proc. Intl.

Conf. on 3D Digital Imaging and Modeling.

Faugeras, O.D. and Hebert, M. 1986. The representation, recognition,

and locating of 3-D objects. Int. J. Robotic Res., 5:27–52.

Fletcher, R. 1987. Practical Methods of Optimization. Wiley: New

York.

Geiger, C. and Kanzow, C. 2002. Theorie und Numerik restringierter
Optimierungsaufgaben. Springer: Heidelberg.

Hofer, M., Pottmann, H., and Ravani, B. 2004. From curve design

algorithms to motion design. Visual Computer, 20:279–297.

Hofer, M. and Pottmann, H. 2004. Algorithms for constrained

minimization of quadratic functions—geometry and convergence

analysis. Tech. Rep. 121, TU Wien, Geometry Preprint Series.

http://www.geometrie.tuwien.ac.at/ig/papers/foot tr121.pdf.

Horn, B.K.P. 1987. Closed form solution of absolute orientation us-

ing unit quaternions. Journal of the Optical Society A, 4:629–642.

Huber, D. and Hebert, M. 2003. Fully Automatic Registration of

Mutiple 3D Data Sets. Image and Vision Computing, 21:637–650.

Ikemoto, L., Gelfand, N., and Levoy, M. 2003. A hierarchical method

for aligning warped meshes. Proc. Intl. Conf. on 3D Digital Imag-

ing and Modeling.

Kelley, C.T. 1999. Iterative Methods for Optimization. SIAM:

Philadelphia.

Leopoldseder, S., Pottmann, H., and Zhao, H. 2003. The d2-tree: A

hierarchical representation of the squared distance function, Tech.

Rep. 101, Institute of Geometry, Vienna University of Technology.

Mian, A.S., Bennamoun, M., and Owens, R. 2004. Matching ten-

sors for automatic correspondence and registration. Proceedings

of ECCV’04, Springer LNCS 3022, pp. 495–505.

Mitra, N., Gelfand, N., Pottmann, H., and Guibas, L. 2004. Registra-

tion of point cloud data from a geometric optimization perspective.

Proc. Eurographics/ACM SIGGRAPH Symposium on Geometry

Processing, pp. 23–32.

Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H.P. 2003.

Multi-level partition of unity implicits. ACM Trans. Graphics,

22:153–161.

Planitz, B.M., Maeder, A.J, and Williams, J.A. 2005. The

correspondence framework for 3D surface matching algo-

rithms. Computer Vision and Image Understanding, 97:347–

383.

Pottmann, H. and Hofer, M. 2003. Geometry of the squared distance

function to curves and surfaces. In: H.-C. Hege and K. Polth-

ier, (Eds.), Visualization and Mathematics III, Springer, pp. 221–

242.

Pottmann, H., Leopoldseder, S., and Hofer, M. 2004. Registration

without ICP. Computer Vision and Image Understanding, 95:54–

71.

Pottmann, H. and Wallner, J. 2001. Computational Line Geometry.

Springer-Verlag.

Rodrigues, M., Fisher, R., and Liu, Y. (Eds.). 2002. Special issue

on registration and fusion of range images. Computer Vision and

Image Understanding, 87:1–131.

Rusinkiewicz, S. and Levoy, M. 2001. Efficient variants of the ICP

algorithm. Proc. 3rd Int. Conf. on 3D Digital Imaging and Mod-

eling, Quebec.

Sharp, G.C., Lee, S.W., and Wehe, D.K. 2002. ICP registration us-

ing invariant features, IEEE Trans. Pattern Analysis and Machine

Intelligence, 24:90–102.

Spivak, M. 1975. A Comprehensive Introduction to Differential Ge-
ometry. Publish or Perish.

Tsin, Y. and Kanade, T. 2004. A correlation-based approach to robust

point set registration. Proceedings of ECCV’04, Springer LNCS

3023, pp. 558–569.

Tucker, T.M. and Kurfess, T.R. 2003. Newton methods for paramet-

ric surface registration, Part 1: Theory. Computer-Aided Design,

35:107–114.

