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Abstract

Most approaches to least squares fitting of a B-spline surface to measurement data require a parametrization of the data point set and the choice
of suitable knot vectors. We propose to use uniform knots in connection with a feature sensitive parametrization. This parametrization allocates
more parameter space to highly curved feature regions and thus automatically provides more control points where they are needed.
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1. Introduction

In data fitting with B-spline surfaces, both parametrization
and the choice of the knot vectors are difficult and closely
related problems [23]. The number of knot lines in some part
of the parameter domain is in direct relation to the number
of control points in the corresponding part of the surface.
Moreover, more control points are needed in feature regions
such as sharp edges, smoothed edges, ridges, valleys and
prongs.

The present short paper presents a solution to this
problem by suggesting the use of a Feature Sensitive (FS)
parametrization for surface fitting. A uniform choice of
knots over a parameter domain which results from a FS
parametrization automatically provides more control points
for feature areas, since it allocates more parameter space for
feature regions. We will show how to compute such a FS
parametrization and illustrate its effect with examples.

1.1. Previous work

Since parametrization and the choice of the knots are
essential for most B-spline curve and surface fitting methods,
there is a relatively large body of literature on it. For curve
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parametrization and knot placement methods, we refer to [9,14,
13]. The state of the art on surface approximation from the CAD
perspective is found in [25]. Let us also mention that there are
fitting techniques which do not require a parametrization [17,
16]; they need, however, an initial guess for the optimization,
which may be obtained with the methods presented in this paper
(for an example, see Section 3).

Parametrization is not only important for least squares
fitting. It is a key step in a number of geometry processing
techniques and has thus received a lot of attention in recent
years. For a survey, we refer to [6]. For many applications,
such a parametrization should be near-isometric (exact isometry
being achievable only for developable surfaces). Practical
parametrization methods may achieve conformality (angle-
preservation), area-preservation or a tradeoff between those
two [4].

Since the present paper deals with a feature sensitive
method, we also give a few references on feature sensitive
geometry processing. Feature extraction is either performed
by estimating differential quantities via local or global
surface fitting (see [15] and the references therein) or
based on appropriate integral invariants such as moments
of local neighborhoods [3]. Feature sensitivity has mostly
been investigated in connection with specific applications,
e.g., FS surface extraction from volume data [12], FS
sampling for remeshing [2], FS remeshing based on curvature
estimation [24,1], FS geometry images [19,22], FS piecewise
planar approximation [5] or a PDE approach to FS surface
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editing [3]. For fitting of measurement data, work on FS
filtering and smoothing [8,10] is certainly of interest.

2. The feature sensitive metric

Our approach is based on a feature sensitive metric which
has so far been used for FS morphology on surfaces [18] and
for the design of curves on surfaces which are well aligned with
the surface features [16].

Roughly speaking, features are characterized by the way in
which the unit surface normal varies along the surface &. It
is therefore natural to consider the field of unit normal vectors
n(x) attached to the surface points x € @ as a vector-valued
image defined on the surface. Borrowing the idea of an image
manifold from image processing [11], one can now map each
surface point X to a point Xy = (X, wn) in R®. Here, w denotes
a non-negative constant, whose magnitude regulates the amount
of feature sensitivity and the scale on which one wants to
respect features (see Section 2.1). In this way, @ is associated
with a two-dimensional surface ¢y C R®. By measuring
distances of points and lengths of curves on & instead of &, we
introduce a feature sensitive metric on the surface [18]. Fig. 1
shows a few geodesic circles in the feature sensitive metric: For
four points on the surface, isolines of the distance computed
in the feature sensitive metric are displayed. As shown in the
figure, distances across features are much larger in the FS
metric than with respect to the ordinary Euclidean metric.

The key for our application is the computation of a
parametrization of a surface @ (which may be a triangulated
set of measurement points) with help of a parametrization of its
image manifold @¢. Thus, in the remainder of this section we
deal with the computation of @.

We would like to point out that the use of &5 C R is mainly
for a simple introduction of the FS metric. As will be seen from
the developments given below, we can still explain everything
in R? via an appropriately combined processing of points and
normals. The geometry of the image manifold in R® tells us
how to combine point and normal information, but it does not
result in any computational overhead over working in 3D.

2.1. Computation of the image manifold

The computation of the image manifold @ requires surface
normals. For a smooth surface in any representation this is a
simple task. However, we need to be careful with the following
issues: the presence of noise, the scale, and the presence of
sharp features. The latter can be edges as intersection curves
of smooth surfaces or corners, which are points, where at least
three surface patches intersect or where the local shape is like
the vertex of a cone.

2.1.1. Noise and scale

We assume that we are given an error tolerance § for points
on the model and a parameter ¢ (usually small, but much larger
than §); only features of width > € shall be handled.

In the presence of noise or negligible features, we estimate
normals from a neighborhood of size & €, e.g., with local
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Fig. 1. Isolines of the distance from given points computed with respect to the
feature sensitive metric.

planar or quadratic fits (see, e.g., [23]) and a fitting error < §.
Even if this does not mean smoothing of the original data this
approach prevents a dramatic increase of the noise level in @ .
Moreover, marginal features — in contrast to relevant ones — do
not manifest themselves in larger areas of @;.

If the model @ gets scaled by a factor o, @ scales with the
same factor if the weight w is also multiplied by o. Hence, w
has to be judged in relation to the object size. Suitable values
of w for certain purposes will therefore be given under the
assumption that the model fits into the unit cube.

2.1.2. Sharp features

In order to carefully represent a sharp feature in a B-spline
surface, it must be a parameter line. If this is not the case,
the best we can do is to approximate it by a smoothed edge
with very high curvature across the edge. Thus, we assume
the viewpoint that a sharp feature is a limit case of a smooth
surface. The reader may consider sharp features smoothed with
a very small blending radius. Then, a point p on a sharp edge
¢ C &, with normals n~ and n' of the adjacent smooth
surfaces, corresponds to a circular arc p » on the image manifold
& r; this arc has the endpoints (p, wn™) and (p, wn™). We have
a blow-up phenomenon (see Fig. 2): a sharp edge is mapped
to a surface region on @. Likewise, at a corner we have a
two-dimensional set of surface normals and a corresponding
spherical patch in the image manifold. This phenomenon is
already known from (untrimmed) offsets at a distance u,
which incidentally can be obtained from & via the mapping
(X1, ..., X6) > (x1, X2, x3) + £ (x4, x5, x6).

Because of the wide applicability, we focus on surfaces ¢
which are given as a triangle mesh. After normals have been
estimated, we can simply map each vertex to feature space
R® while keeping the connectivity unchanged. Thus, & 7 is
represented by a triangle mesh embedded in R®. However,
sharp features and corners with large normal changes require a
special treatment in order to represent the image manifold with
sufficient accuracy.

2.1.3. Detection of sharp edges and corners

A mesh representation generally does not contain explicit
information on sharp edges or corners. Thus, at the first stage
of the algorithm we need to identify those features. This can
be done as follows: (1) For each edge segment e in the mesh,
we compute a robust normal deviation angle v. For well-shaped
adjacent triangles and well-sampled models without data errors,
v is the angle between the normals of the two adjacent faces.
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Fig. 2. The blow-up phenomenon at sharp edges and corners: Top: original mesh in R3. Bottom left and center: projection of the corresponding mesh in RS. Bottom

right: parametrization of the corresponding mesh in RO.

In critical cases, we intersect the mesh locally with a plane
through e’s midpoint m and orthogonal to e. With robust fits
(by a straight line or a low degree polynomial) of the profile
section data on either side of m, the normal deviation angle v is
estimated. (2) With a user-defined threshold 8, an edge segment
e belongs to a sharp edge if v > B. (3) Corners are detected
where three or more sharp edges coincide. A corner v of the
cone-vertex type is found as follows: let y; denote the angles of
the adjacent triangles at v, then the vertex v is seen as a corner

if Y, yi/(2m) < cos(B/2).

2.1.4. Edge/corner handling

In order to handle sharp edges and corners in a consistent
way, we consider five classes of vertices. Sharp edge segments
form connected paths: an interior vertex of the path is called
an in-path vertex and each end point is a path-end vertex.
A boundary vertex is placed at the boundary of the mesh.
A corner has been explained above. Any other vertex is an
ordinary vertex. An ordinary vertex is not blown up, and neither
are boundary and path-end vertices. An in-path vertex will be
split according to the change in surface normals there. The
edges connecting a path-end vertex and an in-path vertex or
two in-path vertices will be blown up to a region in R® that is
triangulated appropriately (see Fig. 2). If a vertex v is a corner,
but its neighbors are not, it is mapped to a submesh Cy in R®
as follows: an average surface normal at v yields the center of
Cyr. An edge emanating from v yields one or more vertices
of Cy depending on whether it is sharp or not. Two adjacent
corners (a rare occurrence) are avoided by inserting a further
vertex between them.

3. B-spline surface fitting based on a feature sensitive
parametrization

Parametrizing a mesh @ over a planar domain D requires
a bijective mapping to be set up between ¢ and D. This is

a key step in a number of geometry processing techniques
including surface fitting. For several applications, but not
necessarily for surface fitting, such a parametrization should
be near-isometric (exact isometry being achievable only for
developable surfaces). Practical parametrization methods may
achieve conformality (angle-preservation), area-preservation or
a tradeoff between those two [4,6]. Let us see what we can
achieve by parametrizing ¢ via an appropriate area preserving
parametrization of &;: we will see that the resulting FS
parametrization assigns rather more space of the parameter
domain D to highly curved regions than it does to flat ones.

As mentioned, we are especially interested in area
preserving mappings Py +— D. In order to give a more precise
explanation of their effect, we mention the following property
whose proof is outlined in the Appendix.

Theorem 1. Given a region R C &, the surface area A ¢ of the
corresponding region Ry in the image manifold @y is expressed
via the principal curvatures ki, k> and Gaussian curvature
K =«kikp of @ as

AfZ/R\/1+w2(K12+K22)+w4K2 dA. 1)

Here dA is the area element of ®.

This has a very useful effect on our parametrization. For large
values of w, the surface area Ay is governed by the value of
Ay = w? f |K|dA. Therefore, the main growth Ay — A in the
surface area of corresponding regions on ¢ and & happens at
places of @ which have large Gaussian curvature K. We could
also say that the overhead in surface area on 9 is in a direct
relation to the deviation of the corresponding region R C ¢
from a developable surface (a surface characterized by K = 0).
Note that only developable surfaces possess a distortion free
(isometric) parametrization over a planar domain D. If @ is
a developable surface, one principal curvature vanishes, say
k1 = 0. Since the other principal curvature x; may still exhibit
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Fig. 3. Stretch minimizing parametrization with increasing feature sensitivity: w = 0, 0.08, 0.25.

|

Fig. 4. Visualization of the parameter domain with stretch-related color coding. Left: the model; center: parametrization without feature sensitivity; right: FS
parametrization.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

a large variation, it would not be advisable to use an isometric
mapping and uniform knots in a parametrization for fitting such
a surface. Our method takes this into account: for a developable
surface and large w, Ay is governed by w f |k2|dA. Thus,
regions with high x; on @ will get enlarged on &. This is
precisely what we want to have. For relatively small w, the main
growth Ay — A in surface area on @7 happens at regions with
larger K12 + K22, which has similar effects that feature regions
(with one or two large principal curvatures) will be enlarged
accordingly.

Let us now assume that we have constructed an area
preserving parametrization of @¢. Such a parametrization is
feature sensitive, since it reserves parameter space according
to the value of Ay in (1), which is a kind of total curvature
of &. Highly curved regions get more space than others in
a sense discussed above. This effect is also seen in Fig. 3.
In Fig. 4, the blow-up effect is visualized with stretch-related
color coding. We are talking here about the stretch between
the actual model ¢ and the image manifold &¢. Since the
parametrization in Fig. 4 has been computed with a stretch
minimizing parametrization of @, the stretch between &

and &7 can also be observed as stretch between & and the
parameter domain. Note that the red parts in the figures indicate
large stretching, which correspond exactly to the feature regions
of the model.

There are infinitely many area preserving parametrizations
of a given surface. Thus, to make this a practical concept,
discrete equi-areal mappings (almost) preserve the surface area,
but also try to avoid angle distortions which are too heavy. In
our paper, we use the stretch minimizing parametrization of
Sander et al. [21]. It retains some degree of angle preservation
in addition to reducing area distortions and appears to be
effective in numerical examples [6].

Let us briefly describe parametrization by stretch minimiza-
tion [21], as it is heavily used in our work: first, the boundary of
a patch is mapped to a rectangular domain. Since stretch min-
imization is a nonlinear optimization problem, one requires an
initial parametrization, which is set up with a robust and compu-
tationally efficient method like mean value parametrization [7].
The texture stretch metric is defined as the root-mean-square
stretch over all directions and optimized with iterative local line
search optimization. As it is a nonlinear optimization problem,



804 Y.-K. Lai et al. / Computer-Aided Design 38 (2006) 800-807

Fig. 6. Fitting of a part on a screwdriver (left) using a periodic B-spline surface without (center) and with (right) feature sensitivity, w = 0.20.(For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

it is slow for large models. Thus, we employ a hierarchical ap-
proach as in [20] to increase both the efficiency and the quality
of the parametrization.

In a FS parametrization, sharp features, if handled as those,
get blown up (see Fig. 2); then we do not have a parametrization
of @ in the usual sense, but still a practically useful tool, which
is shown in the following by means of B-spline surface fitting.

B-spline fitting based on a FS parametrization is illustrated
in Fig. 5. We parametrize the model over a rectangular
domain with a FS stretch minimizing parametrization, that is,
a stretch minimizing parametrization [21] of &,. Then we
fit the data with a uniform cubic B-spline surface (30 x 20
control points), based on the standard regularized least squares
fitting algorithm [23]. The FS approach is superior at sharp
and smooth feature areas. Sharp edges of the model always get
smoothed by fitting (unless we have multiple knot lines there,
which is only possible in special cases), but the rounding effect
is smaller with the FS approach.

An example of fitting the screwdriver part with periodic B-
spline surfaces is given in Fig. 6, and fitting errors are color
coded. The red parts are regions with high fitting error, while
the blue parts are those with low error. Each fitting surface

contains 30 x 30 control points. Control grids are illustrated
in Fig. 7. Fig. 8 shows the fitting results on a femur model, again
using 30 x 30 control points. Compared to the result without
feature sensitivity, the FS approach preserves more significant
details.

Our approach provides a good initial parametrization of
mesh models suitable for B-spline surface fitting. After least-

Fig. 7. Control grids of B-spline surfaces of Fig. 6 (middle and right) obtained
by fitting without (left) and with (right) feature sensitivity.
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Fig. 8. Fitting of femur part (left) using a periodic B-spline surface without (center) and with (right) feature sensitivity, w = 0.20.

Fig. 9. Fitting results of SDM optimization, using as the initial position a
fitting surface which has been computed without (left) and with (right) feature
sensitivity.

squares fitting, iterative methods can be used to further improve
the result. We tested this with the Newton-type algorithm
in [17], which is based on quadratic approximation of the
squared distance field and is known as Squared Distance
Minimization (hereafter abbreviated as SDM). For all iterative
algorithms in nonlinear optimization, good initial positions
usually lead to better results or faster convergence. Clearly,
SDM is no exception to this rule. Fig. 9 shows the results of
SDM optimization. If SDM gets initialized with a fit obtained
by a FS parametrization, it converges to a much better result. In
Fig. 10, the car part on the left is approximated with a B-spline
surface with 20 x 30 control points using a FS parametrization
(center) and SDM is then successfully used to improve that
result (right); corresponding control grids are shown in Fig. 11.

Let us compare our approach with a frequently used
technique, which is based on a uniform parametrization of
sample points (possibly via a base surface) [14] plus adaptive
knot insertion at places where needed. Though used for a
long period, this approach has a few limitations: a base
surface needs to be constructed which can be mapped in a
one-to-one fashion to the surface approximating the given

data; this is not easy to achieve, especially for models with
complicated features. The iterative insertion of knots involves
more expensive computations than our approach. Moreover, our
approach can also be improved with other iterative techniques,
e.g. SDM, as illustrated in the paper. Our method usually
requires fewer control points for achieving the same level of
overall fitting error as the standard approach. This is beneficial
for various applications, though it is achieved at the expense of
a parametrization which is unavoidably distorted in the usual
sense.

4. Conclusion and future research

We have proposed the use of a feature sensitive
parametrization in connection with a uniform knot distribution
for least squares fitting with B-spline surfaces. Even
complicated data sets can be fitted well by a single B-spline
patch with this method. A single patch is not sufficient for
very complex data sets or for objects with a complicated
topology. Future work could address this problem by using the
FS metric and tools from topology for an automatic patch layout
algorithm. Another interesting topic for future research would
be variational surface design based on minimization of Ay.
Ay favors developable shapes, but also punishes singularities,
which are a major problem in developable surface fitting.
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Fig. 10. Fitting a car part (left) by a cubic B-spline surface with 20 x 30 control points and a FS parametrization (center); the result can be further improved with

SDM (right).

Fig. 11. Control grids obtained by FS fitting before (left) and after (right) SDM optimization for the B-spline surfaces in Fig. 10, middle and right.
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Appendix

Proof of Theorem 1. It is sufficient to employ a principal
curvature parametrization x(u, v) of @. Furthermore, let n(u, v)
be a unit normal vector field of @. Under these assumptions, one
of the coefficients g;; of the first fundamental form vanishes,
g12 = 0. Moreover, the coefficients /;; of the so-called third
fundamental form (we write partial derivatives via indices,
e.g.,n, = dn/ou),

2 2
I =ny, lip =n, -0y, lpn =n;, 2

are related to the g;;’s via

Iy = «igu, by = K382, lip =g =0. 3)

The area element of @ is given by

dA =/g11822 — g7, dudv = /g11822 dudv. 4)

Likewise, the area of the image manifold &, whose
parametrization is X(u, v) = (x(u, v), wn(u, v)), is found via

Ap= /\/xgxg — (X - X,)? dudv

= /\/(gn + w2l11)(g22 + w) — (12 + w2l12)* dudv.

Using (3) and (4), this simplifies to the form stated in (1),

Af = f\/(l + w2 (1 + we3)g11822 dudv

_ /\/1 +w2(c? + k2) + wAK2 dA.
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