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Abstract

In this paper we analyze an algorithm which solves the point projection and the “inversion” problems for para-
metric curves and surfaces. It consists of a geometric second order iteration which converges faster than existing
first order methods, and whose sensitivity to the choice of initial values is small. Applications include the ICP
algorithm for shape registration.
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1. Introduction and previouswork

Projecting a point onto a parametric curve or surface in order to find the closest point (footpoint)
and computing the parameter values of the projectiongdina inversion problem) has attracted interest
due to its importance in geometric modeling, computer graphics and computer vision, see e.g. (Ma and
Hewitt, 2000) or (Piegl and Tiller, 2001). Both projection and inversion are essential for interactively
selecting curves and surfaces (see (Hu et al., 2001)), for construction and rendering of solid models with
boundary representation, projecting of a space curve onto a surface for surface curve design (cf. (Pegna
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and Wolter, 1996)), and are also a key issues in the i@Pafive closest point) algorithm for shape
registration described in (Besl and McKay, 1992).

Several algorithms have been developed which solve these problems. Some depend on special prop-
erties of the objects to be projected onto, such as Mortennson (1985), who essentially finds the root of
a polynomial using a Newton—Raphson method. Limaien and Trochu (1995) compute the orthogonal
projection of a point onto parametric curves and surfaces by constructing an auxiliary function and find-
ing its zeros. Hartmann (1999) proposes a first order algorithm for foot point computation by using a
normalform (again, an auxiliary function) and its first derivatives.

Piegl and Tiller (2001) provide an algorithm for point projection on NURBS surfaces by decomposing
a NURBS surface into quadrilaterals, projecting the test point onto the closest quadrilateral, and then
recover the parameter from the closest quadrilateral. Ma and Hewitt (2000) present a practical algorithm
for computing a good initial value for the Newton—Raphson method.

Apparently there are two key issues in the projection and inversion problems:

— computing a good initial value; and
— using a Newton-type or other iteration to improve the solution.

Naturally, all methods using derivatives of the target object have difficulties if the magnitude of os-
cillations of the target’s surface is smaller than the test point’s distance to the target. In that case, a
zero order algorithm which consists in sampling the target and comparing distances is essentially the
only way of finding a good initial value for a further iteration, or even for solving the problem at all.

An example of this is given by Ma and Hewitt (2000), who find a good initial for NURBS curves or
surfaces by subdividing into Bézier curves or surfaces and making use of relationship between control
points and curve/surface (the control points being a very good sample of the target, including deriva-
tives).

Algorithms which converge quickly usually employ first or second derivatives. It is natural to apply a
Newton-type iteration. The sensitivity of this procedure to initial values is well known, as discussed, e.g.,
in (Ma and Hewitt, 2000). On the other hand, applications like shape registration require fast algorithms
for computing footpoints, as the projection part is actually the bottleneck of the entire computation,
see (Besl and McKay, 1992) and (Pottmann et al., 2004).

The main objective of this paper is to analyze a geometric iteration method, which solves the projection
and inversion problems, and which has second order approximation properties, It uses only such second
order information of the curve or surface under consideration which is geometric in the sense that it
is common to all possible parameterizations. In that way a certain amount of the arbitrariness always
present when parameterizations in dealing with surfaces is eliminated. We compute parameter values by
projecting points to curvature circles and use the second order Taylor expansion of the curve or surface
in order to compute parameter increments. Numerical evidence shows that this algorithm is robust and
fast.

We will also show how such a second order geometric iteration is useful in shape registration of point
clouds and improves the efficiency of the registration process.
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Fig. 1. Left: a first order algorithm for projection onto surfaces. Right: the cunn(z)), its curvature circles, and a step of
second order iteration.

2. Orthogonal projection onto a curve

Assume that:(r) be aC? curve inn-dimensional Euclidean spa® (n > 2), andp is a test point.
A first order geometric iteration which computes the footpoinpa$ the following: Projectingy onto
the tangent of att = 1y yields a pointy expressible in terms @f(zg) and the derivative’(zp) (see Fig. 1):

g = c(to) + Arc'(1). (1)

The scalar product of vectons y € R" will be denoted by(x, y), and the norm of a vector by ||x|.
Then
Af— (c'(t0),q — C(to))' @)
(c'(10), ¢'(t0))
We incrementy by Ar and repeat the above procedure uatilis less than a given tolerance, or until the
angle/(c(to)gp) is close enough to 90In this way we can compute the projectionbnto the curve
in a simple way.

A geometric second order method is to replace the curbg its curvature circle att = 1. The
curve’s curvature will be denoted by the symhol Recall that the curvature circle has radiuse 1
and lies on that side of the tangent whef&z,) points to. The curvature is computed by the for-
mula k = aredc' (1), ¢’ (t0)) /I’ (t0)||3. Here are&x, y) denotes the area of the parallelogram spanned
by the vectorsx and y, possibly with sign. Ifn = 2, we have arda, y) = det(x, y). If n = 3, we
use areé, y) = ||x x y||, and in general we have the formula apeay)? = (x, x)(y, y) — (x, y)%. In
any case the area has the properties that(area.y, y) = aredx, y + Ax) = aredx, y) for all A, and
aredix, y) = aredx, Ay) = A aredx, y) for all » > 0. We compute the footpoigt of p on the curvature
circle (or on the tangent, if happens to be zero; see Fig. 1).

We assume for the moment the curvature citcle be parameterized such that it has the same Taylor
polynomial as the curve. We use the symbol(@?) for any vector-valued or real-valued functier)
such that lim,,_.o 7 (Ar) = 0. Then we have

g = &(tg+ At) = c(tg + At) + 0(Ar?) (3)
/ Atz " 2
=c(tg) + Atc'(tg) + 7C (to) + O(Ar9). 4)
In R?, we may take the determinant of the previous equation with eitlgy. We get

det(q — c(to), ¢’ (to)) = At det(c/ (o), " (o)) + O(At?),
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which yields the formula

detlq —c(to).c"(t)) 1
det(c’(10), ¢"(10)) kllc'lI®
From this, the parameter incremefit may be computed easily by simply disregarding the remainder
term aAr)?.
In the general case:(may now be greater than 2), we compute &ea c(1g), ¢’(tp)) with g from
Eq. (3). We get

At 4+ 0(Ar?) =

det(q — c(t0), ¢"(t0)). (5)

2
aredc’, g — c(tp)) = ATt aredc’, ¢”') + o(Ar?) (6)

aredc’,q —c(fo)) 2area(c’, q — c(to))

2
= Ar‘=2 =
aredc’, c”) «le|®

(7)
The sign ofAr is chosen according to

sign(Ar) = signc’(10), g — c(to)). (8)

These equations now can be used to compute the parameter incrAmdteration yields a second
order algorithm for computing the footpoint efonto the curve together with the parameter value of the
footpoint.

Forn = 2, both formulas (5) and (7) are equivalent in the limit- zy, but the second one, which only
includes the first derivative vector and the curvature, leads to a more stable iteration.

This algorithm also solves thaversion problemwhich means computing the parameter valdier a
point which is known to lie on the curve.

3. Orthogonal projection onto a surface

We extend the geometric iteration described above to surfdsés:?) in R3. Partial derivatives with
respect to the parametersandu? will be denoted by 1, 52, 5,11, and so on. The coefficients of the first
fundamental form are given kgt; = (s ;, s ;), the unit normal vector field by = (s 1 x s2)/,/det(g i),
and the coefficients of the second fundamental formk py= (s ¢, n). We assume thatis regular, i.e.,

{s.1, 52} is linearly independent, so dgt;) = areds 1, 52)2#0.

Projecting a poinp onto a surface is done as follows. We assume that we already have an initial guess

po = s(ug, u3), and that we fing; by projectingp onto the tangent plane ab (see Fig. 2):

g — po=s1.Aut+52.Au’. 9)
By multiplying with s; (i =1, 2) we get

(5.1, 5.1) Aut + (5.2, 5.1) Au® = (g — po. 1), (10)

(5,1, 8. 2) Aut 4 (5.2, 5.2) Au® = (g — po. s.2), (11)

soAu', Au? can be computed as solution of a regular system of linear equations, with coefficient matrix
(g,x). We update:g, u3 by addingAu®, Au?. This first order geometric iteration appears in (Hartmann,
1999; Hoschek and Lasser, 1993), and (Hu et al., 2000).
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Fig. 2. lllustration of first order (left) and second order (right) geometric iteration for surfaces.

In order to improve efficiency, we would like to propose the following approach of geometric approx-
imation by normal curvature. Any vecter— po can be expressed as a linear combination of the tangent
vectorss 1, s » and the normal vector at po:

x — po=Ats 1+ A%+ vn. (12)

The normal curvature of the tangent vectds ; + A%, can be computed via

2 2 -1

Kn = ( > hiinkj> : ( > g,.jw',\f) : (13)
i,j=1 i,j=1

We consider a planar section of the given surface with the plane which coptaitiee normal vecton,

and the pointc. It has some parameterizatiofy) which we actually will not need, and which has the

property that:(0) = po, and that its tangent vector is given by

c'(0) = Als 1+ 2% 5. (14)

Its radius of curvature is given by 4,. The circle of curvature is contained in the plane mentioned above,
and has the centern + n/x;,.

We project the point onto the circle of curvature, which yields the pajntThe orthogonal projection
of x onto the surface is now approximateddi), with Az computed according to Eq. (7)’ (s taken
from (14)). The sign ofA¢ is that of the scalar produ¢t’(0), g — po) We now update! andu? according
to

u —u + Au, Au' =\ At. (15)
The procedure is repeated again, with®, x?) as new initial point, until the desired accuracy criteria are
met.

4. Examples

This section shows numerical evidence concerning the behaviour of the first and the second order
geometric algorithms discussed above.
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Table 1
StepizesAr, and Arp in Example 1 for the first and second order algorithms

x =(1,0.8), 1o = 0.898

Step 1 2 3 4 5 6

Ay 8.1e-02 2.7e-03 5.7e-05 1.2e-06 2.3e-08 0.0
At 8.4e-02 1.8e-04 6.0e-10 0.0 t =0.982347
x=(2,2),t0=1795

Step 1 2 3 4 5 6

Ay —2.2e-02 2.1e-02 —2.0e-02 1.9e-02 —1.8e-02 1.7e-02
Atp —1.1e-02 2.5e-05 1.0e-10 0.0 t=1.783812

Fig. 3. lllustration of geometric iteration for the B-spline curve.

Example 1. We consider the curve(r) = (¢, sint), depicted in Fig. 1 together with 7 evenly distrib-

uted curvature circles. Table 1 shows the results of geometric iteration. Here, the initial pargriseter
estimated by comparing the distance between the test point and 7 uniformly sampled points with pa-
rameters = 2k /7,k=0,1,...,7. The experimental data show the second order algorithm has good
convergence, and but the convergence of the first order algorithm is sometimes very slow.

Example 2. We consider the order B-spline curv&) = "/_,b; Bl-4(t) with the knot list(0, 0, 0, 0, 0.2,
0.4,0.6,0.8,1,1,1,1) and the control point€100, 100), (140, 196), (200 240), (260, 164), (340, 164),
(400, 240, (460, 196), (500,100 . An initial parameter guess for the footpoiptof a pointx may be
obtained by finding the control point nearestidsee Ref. Ma and Hewitt (2000)), or by computing
distances to a sample of points;).

Fig. 3 shows the initial point to be projected, together with the first gues$s) for a footpoint and
the curvature circle there. The-" sign denotes the result of one step of iteration.

Table 2 compares the first and second order algorithms, the faster convergence of the latter being
clearly visible. Table 3 shows the robustness of the second order algorithm with respect to the choice of
an initial valuerg. The solution in this case is given by= 0.6223419238.

Example 3. In order to give also a surface example, we consider theddB-spline surfaces (u, v) =
Y0 0 Y00 pijBi.a(u)Bj 4. (v), whose control points are given by-236, —197,—22), (—206, —117,
—22), (-216,-27, 8), (246, 62,—22); (—156,—177, 8), ¢176,—97, 38), 157, 20, 126), {186,
142, 8); (86, —157, 8), (138, —113, —146), (—104, 14,—60), (—96, 102, 8); £6, —197, —22),
(—47,-96,—33), (25, 32, 95),46, 102, 8); ( 74~177, 8), (3475, 147), (86, 97, 105), (54, 142, 8);
(124,—157, 8), (19831, 63), (64, 31, 154), (144, 102, 8); (204197,—22), (234,—77, 8), (2147,
8), (239, 102-22). The knot lists aré0, 0, 0, 0, 0.25,0.5,0.75,1, 1, 1, 1) for « and(0,0,0,0,1,1,1, 1)
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Table 2
Stepsizes\ry and Az, for the first and second order algorithms together with the solut@mresponding to Example 2

x = (381252, 19=0.75

Step 1 2 3 4 5 6

Ay 3.2e-02 —2.3e-02 —1.8e-02 —1.4e-02 1.1e-02 —8.8e-03
At 2.1e-02 —1.2e-03 —4.1e-06 0.0 t =0.7695140103

x =(332200),10=0.5

Step 1 2 3 4 5 6

Ay 8.5e-02 2.9e-02 6.9e-03 1.3e-03 2.2e-04 3.9e-05
Aty 1.2e-01 1.2e-03 —3.8e-06 0.0 t =0.6223419238

Table 3

Convergence rate in terms @fr of the second order algorithm for different choices of initial valggx = (332 200 in
Example 2)

Step 1 2 3 4 5 6
10 =0.30 1.4e-01 1.7e-01 1.1e-02 —2.9e-04 —2.0e-07 0.0
to=0.40 2.0e-01 2.0e-02 —1.1e-03 2.7e-06 0.0

tg=0.50 1.2e-01 1.2e-03 —3.8e-06 0.0

o =0.60 2.4e-02 —1.4e-03 —5.1e-06 1.0e-10

t0=0.70 —6.6e-02 —1.1e-02 —2.9e-04 —2.0e-07 0.0

to=0.80 —1.1e-01 —6.1e-02 —9.0e-03 —1.9e-04 8.8e-08 0.0
Table 4

Data for Example 3x= (120 10, 100), (u3, u) = (0.9, 0.6))

First order algorithm

Step 1 2 3 4 5 6

Aul —3.8e-02 —2.4e-06 —3.8e-04 —1.4e-04 —4.3e-05 1.2e-05
Au? —5.4e-02 1.4e-02 —2.6e-03 —5.1e-04 —1.1e-04 2.5e-05
Second order algorithm

Step 1 2 3 4 5 6

Aul —3.4e-02 —4.3e-03 3.8e-05 —5.1e-06 9.0e-08 —1.2e-08
Au? —4.8e-02 6.5e-03 2.3e-04 7.3e-08 5.4e-07 2.0e-10

for v. An initial estimate for the projection has been obtained by means of the control polyhedron. Table 4
shows experimental results with the test paibR0 10, 100) and initial parametet0.9, 0.6). Table 5
shows a case were the first order algorithm fails. The test poirti20, 10, 100), the initial parameter

was set tq0.1, 0.6).

5. Application to the ICP algorithm for shaperegistration

The shape registration problem for a given design model and a set of data points (i.e., a point cloud
approximating the shape of the design model) amounts to finding a rigid body motion such that its
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Table 5
Experimental data for Example 3. Test pointis120, 10, 100, and(u3, u) = (0.1, 0.6)

First order algorithm

Step 1 2 3 4 5 10

Aut 6.9e-02 —7.3e-02 9.6e-02 —1.0e-01 1.2e-01 —1.2e-01
Au? 6.3e-02 2.5e-02 —7.0e-02 7.6e-02 —9.7e-02 1.0e-01
Second order algorithm

Step 1 2 3 4 5 10

Aut 3.1e-02 —9.4e-03 7.0e-03 —4.9e-04 7.8e-04 —1.5e-07
Au? 2.9e-02 3.8e-02 1.4e-03 5.5e-03 5.1e-06 2.3e-06
Table 6

Convergence rate of the registration process illustrated in Fig. 4. Objectsiz€: x 0.8 x 0.4. The quantityE () is defined

as,/ (O (x; — yi)2)/k, where; is the number of iterations

j 0 1 2 3 4 5 6 7 8
E()) 104  35e1  2lel  llel  6.0e2  13e2  43e4  17e-6  23ell
755 0.34 0.60 0.53 0.54 0.22 32e2  37e3  ldes

application to the design model minimizes an appropriately defined distance of the design model from
the point cloud.

A well known standard algorithm to solve such a registration problem is the iterative closest point
(ICP) algorithm of Besl and McKay (1992). It usually consists of two steps. First, for pejntsthe
cloud the respective closest pointson the model are computed. Second, a motiois found such
that " dist(m (x;), y;) is minimized. The first step is the most time consuming part of the algorithm and
has to implemented efficiently, see e.g. (Pottmann et al., 2004). Other registration algorithms such as the
Newton method of Tucker and Kurfess (2003) or the squared distance function method of Pottmann et
al. (2004) depend on computing closest points, i.e., computing orthogonal projections.

Second order algorithms as those discussed in this paper have some properties which make them
suitable for projection and for accelerating the ICP algorithm. First;, &ndx; are close together, we
may always use the footpoinmt of x; as an initial value for the computation of; and when iterating the
computation of the motiom:, we may use the footpoints of the previous step as an initial value for the
current one. While this is true for most projection algorithms, it is probably even more so for ours, as it
is rather insensitive with respect to initial values.

Depending on the oscillatory behaviour of the surface in question (which would be tame for many
applications, a fact usually known beforehand), we might expect, due to numerical observations, that
about 95% of the total parameter increment during projection is achieved in the first step. This means
that it would be sufficient to perform just one step of the projection algorithm in order to ensure con-
vergence of the ICP algorithm. Fig. 4 shows a registration example. It has been computed using the
algorithm of Pottmann et al. (2004), which is faster than the traditional ICP method, as documented by
Table 6.
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/)

Fig. 4. Left: before registration. Right: after registration.

6. Conclusion

This paper investigates point projection and point inversion on parametric curves and surfaces by using
curvature information. Experimental results show that the algorithms under consideration are robust and
efficient. Applications to shape registration are discussed.
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