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Abstract

In this paper, we propose the generalized B divided difference, with which the(k − 1)th derivative
of B-spline curves of orderk can be obtained directly without the need to compute the first(k − 2)
derivatives as before. Based on the generalized B divided difference, the necessary and sufficient
condition for degree-reducible B-spline curves is presented. Algorithms for degree reduction of
B-spline curves are proposed using the constrained optimization methods. 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Degree reduction of parametric curves and surfaces was first proposed as the inverse
problem of degree elevation (Forrest, 1972; Farin, 1983). At the beginning, Forrest
presented an algorithm for degree reduction of Bézier curves (Forrest, 1972). Lachance
applied Chebyshev polynomials and constrained Chebyshev polynomials for degree
reduction of polynomial curves and piecewise polynomial curves (Lachance, 1988). Later,
Watkins and Worsey proposed an optimal algorithm for degree reduction of Bézier curves
via Chebyshev polynomials (Watkins and Worsey, 1988). Now there are many papers about
degree reduction of Bézier curves (Brunnett et al., 1996; Brunnett and Schreiber, 1998;
Eck, 1993, 1995; Hu et al., 1998; Watkins and Worsey, 1988), Bézier surfaces (Hu et al.,
1997) and Ball curves (Hu et al., 1996).
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By considering each segment of B-spline curves, Piegl and Tiller (1995a, 1995b),
Wolters et al. (1998) presented algorithms for degree reduction of B-spline curves. In the
algorithm of Piegl and Tiller, each segment of B-spline curves is represented by a Bézier
curve via knot insertion. Thus, algorithms for degree reduction of Bézier curves can be
applied. After each Bézier curve segment is degree reduced, the B-spline curves with the
desired knots are obtained by the knot removal (Tiller, 1992). In the algorithm of Wolters,
Wu and Farin, the blossoming principle and the least squares method are used to reduce
the degree of each polynomial segment of a B-spline curve directly. And then, the control
points of the degree reduced B-spline curve are obtained by the weighting scheme.

This paper presents the necessary and sufficient condition for a degree-reducible
B-spline curve, i.e., the curve that can be precisely represented by a B-spline curve of
a lower degree. This may be very useful in judging whether the curve is represented in
the most compact format. As shown in Section 3, an orderk B-spline curve is degree
reducible if and only if it is a degenerate curve, i.e., it has vanishing(k − 1)th derivatives
for each polynomial segment. The corresponding equations for the degenerate condition
are presented in the form of generalized B divided difference. Via the generalized B divided
difference, themth derivative of B-spline curves can be obtained without calculating the
first (m − 1) derivatives as usual. Particularly, the(k − 1)th derivative of B-spline curves
of order k can be directly obtained by the generalized B divided difference. Based on
the degenerate condition, this paper presents the constraint optimal approaches to obtain
degree reduced B-spline curves. Section 4 also gives a method of knot refinement such that
the degree reduction is controlled under the given error tolerance.

2. Generalized B divided difference

We represent the equations, which are the necessary and sufficient condition for a
degree-reducible B-spline curve, in the form of generalized B divided difference. Hence,
we introduce the B divided difference first. Via the generalized B divided difference, the
derivatives of B-spline curve can be obtained in a similar way of calculating derivatives
of Bézier curves via the forward difference. The generalized B divided difference is a
mutation of the generalized divided difference, which is introduced in (Mühlbach, 1973).
Given a series of points{di}i=0,1,...,n and a series of knots{ui}i=0,1,...,n+k , the generalized
B divided difference of orderk can be recursively defined as


δ0
kdi = di,

δm+1
k di−m−1 =


δmk di−m − δmk di−m−1

ui+k−m−1 − ui

, ui+k−m−1 �= ui ,

0, ui+k−m−1 = ui ,

(1)

for m = 0,1, . . . .
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We notice that the prescription of00 = 0 makes the de Boor–Cox recursive definition
of B-spline basis functions concise and easily used. Similarly we prescribe the quotient
x
0(∀x ∈ R) to be zero. Thus, formula (1) is collapsed as

δ0
kdi = di,

δm+1
k di−m−1 = δmk di−m − δmk di−m−1

ui+k−m−1 − ui

, for m = 0,1, . . . ,

Prescribe:
x

0
= 0, ∀x ∈ R.

(2)

From formula (2), using mathematical induction, we can prove the following formula

δmk di−m =
m∑

j=0

(−1)jdi−j

C
j
m−1∑
l=0

m−1∏
h=0

1

ui−k−m+h−σ(h,l,m,j) − ui−σ(h,l,m,j)

,

for m = 1,2, . . . , k − 1, (3)

whereσ(h, l,m, j) =∑h
g=0 τ (g, l,m, j), for h = 0,1, . . . , m − 1

τ (g, l,m, j) = [f (l,m, j)mod2m−g] − [f (l,m, j)mod2m−g−1

2m−g−1
,

for g = 0,1, . . . , m − 1,

f (l,m,0) = 0, for l = 0,

f (l,m,1) =
 0,

2l−1,

for l = 0,

for l = 1,2, . . . ,m − 1,

f (l,m, j) = 2j+r−2 + f (l − b(j, r),m, j − 1),


j = 2,3, . . . ,m,

l = 0,1, . . . ,Cj
m − 1,

b(j, r) � l < b(j, r + 1),

b(j, t) =
{0, for t = 0,

C
j

j+t−1, for t = 1,2, . . . .

From formula (2), we can also get the following properties of the generalized B divided
difference.

(1) Finite. Whenm is larger than(k − 1), δmk di is equal to zero.
(2) Distributive. Suppose there is another series of points{ξi}i=0,1,...,n, we have

δmk (di−m + ξi−m) = δmk di−m + δmk ξi−m.

3. Necessary and sufficient condition for degree reducible B-spline curves

Given control pointsdi (i = 0,1, . . . , n) and a knot vectorU = {u0, u1, . . . , un+k},
where

u0 = u1 = · · · = uk−1 < uk � uk+1 � · · · � un < un+1 = un+2 = · · · = un+k,
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and the multiplicity of each knot is no more thank, the B-spline curve of orderk is

p(u) =
n∑

i=0

diNi,k(u). (4)

Using the de Boor–Cox recursive definition of B-spline basis functions and the generalized
B divided difference, we obtain themth derivative of B-spline curves

p(m)(u) = dmp(u)

dum
= (k − 1)!

(k − m − 1)!
n∑

i=m

δmk di−mNi,k−m(u),

for m = 0,1, . . . , k − 1.

Especially, whenm is equal to(k − 1), we have

p(k−1)(u) = (k − 1)!
n∑

i=k−1

δk−1
k di−k+1Ni,1(u).

We define a degenerate B-spline curve of orderk as a B-spline curve of orderk which
has vanishing(k − 1)th derivatives for each polynomial segment. Suppose the knot vector
is rewritten as

U =
{ k︷ ︸︸ ︷
t0, . . . , t0;

z1︷ ︸︸ ︷
t1, . . . , t1;

z2︷ ︸︸ ︷
t2, . . . , t2; . . . ;

zT−1︷ ︸︸ ︷
tT −1, . . . , tT −1;

k︷ ︸︸ ︷
tT , . . . , tT

}
,

where {ti}i=0,1,...,T is a given strictly increasing sequence,{zi}i=1,2,...,T −1 is a given
positive integer sequence with

1 � zi � k; i = 1,2, . . . , T − 1;
the multiplicities oft0 andtT arek, and the multiplicities ofti arezi , for i = 1,2, . . . , T −1.
Then, we have the following theorem.

Theorem 1. The necessary and sufficient condition on the degeneracy of a B-spline curve
is

p(k−1)(u) = 0,

i.e.,

δk−1
k di−k+1 = 0, for i = I0, I1, . . . , IT −1, (5)

where{Ij }T −1
j=0 satisfiesuIj = tj anduIj < uIj+1.

According to the Curry–Schoenberg theorem (Curry and Schoenberg, 1966); see also
(de Boor, 1978) and the basic properties of B-spline (Mühlbach, 1973), a degenerate
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B-spline curve can be represented by a B-spline curve with a lower degree, i.e., the
following theorem.

Theorem 2. Suppose a degenerate B-spline curve is a B-spline curve defined by
formula (4), and satisfies Eq.(5), then it can be represented as a B-spline curve with a
lower degree as follows,

p(u) =
ñ∑

i=0

d̃iÑi,k−1(u), (6)

where

ñ = k − 2+
T −1∑
i=1

yi,

the new knot vector is

Ũ =
{ k−1︷ ︸︸ ︷
t0, . . . , t0;

y1︷ ︸︸ ︷
t1, . . . , t1;

y2︷ ︸︸ ︷
t2, . . . , t2; . . . ;

yT−1︷ ︸︸ ︷
tT −1, . . . , tT −1;

k−1︷ ︸︸ ︷
tT , . . . , tT

}
,

and

yi =
{

1; zi = 1,

zi − 1; zi > 1,
for i = 1,2, . . . , T − 1,

are the multiplicities ofti in the degree reduced B-spline curve.

Therefore, the necessary and sufficient condition for a degenerate B-spline curve is also
the necessary and sufficient condition for a degree reducible B-spline curve. According to
Theorem 2, it is easy to get the following algorithm for degree reduction of a degenerate
B-spline curve.

Algorithm 1. Degree reduction of a degenerate B-spline curve
1. Produce the new knot vector as given in Theorem 2.
2. Extend the piecewise polynomial curves defined by Eqs. (4) and (6) respectively

according to de Boor–Cox recursive definition.
3. Because the right side of Eq. (4) is equal to the right side of Eq. (6), the corresponding

coefficients of every monomial item of the same degree are equivalent for every
polynomial segment in(ti , ti+1) (i = 0,1, . . . , T − 1). Therefore, we have a linear
equation system, in which variables are the new control points.

4. According to Theorem 2, we know that the linear equation system has only one
unique solution. Solve the linear equation system, and get the control points of the
degree reduced B-spline curve.

5. End of Algorithm 1.
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4. Degree reduction of B-spline curves

4.1. Constrained optimization methods

A degenerate B-spline curve can be degree reduced by Algorithm 1. Now the problem
is how to construct a degenerate B-spline curve from the original B-spline curve. A simple
way is to disturb control points using a constrained optimization method such that the new
curve is a degenerate B-spline curve, and the perturbations between the new control points
and the old ones are minimized. Suppose the perturbations of control pointsdi areξi , i.e.,
the new control points are

qi = di + ξi , i = 0,1, . . . , n.

Thus, the new B-spline curve is

q(u) =
n∑

i=0

qiNi,k(u),

and the objective is

min

(
n∑

i=0

‖ξi‖2

)
.

The constraint, i.e., Eqs. (5), can be easily written in the matrix form,

AQ = 0,

whereQ is a vector made up of(n + 1) control points of the new B-spline curve. The
solution to such a constrained optimization problem can be obtained by

Q = D + ATX,

whereD is a vector made up of(n + 1) control points of the original B-spline curve, and
X is a vector, which is obtained by

AATX = −AD.

The following considers the case when it is mandatory that the two end points of the new
curve should be the coincident with those of the original one. Thus,q0 = d0 andqn = dn

are known control points; and the other control points,q1, q2, . . . , qn−1, are unknown. Via
the transposition of Eqs. (5), the items containing unknown control points are retained on
the left side of the equations, and the other items are transposed to the right side. The result
can be written in the following matrix form,

A1Q1 = b,

whereQ1 is a vector made up of(n − 1) unknown control points, i.e.,q1, q2, . . . , qn−1.
The solution to the corresponding constrained optimization problem can be obtained by

Q1 = D1 +AT
1X1,

whereD1 is a vector made up of(n − 1) original inner control points, i.e.,d1, d2, . . . ,

dn−1, andX1 is a vector, which is obtained by

A1A
T
1X1 = b − A1D1.
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4.2. Knot refinement

If a B-spline curve is required to be approximated by a B-spline curve with a lower
degree under the given error tolerance, knot refinement can lead to a desired result. Knot
refinement is to insert new real numbers as the knots of the original curve before the degree
reduction. The corresponding algorithm is shown as follows.

Algorithm 2. Approximate a B-spline curvep(u) with a degree reduced B-spline curve
q(u) under the given error tolerance

1. For every simple knotti (i.e., the knot which multiplicity is 1), insertti as a knot
into p(u).

2. Using the constrained optimization methods, obtain the degenerate B-spline curve
c(u) corresponding top(u) (note that, here,p(u) is the B-spline curve after knot
insertion).

3. If the error betweenc(u) andp(u) is larger than the given error tolerance, then
3.1 Findtj , at which the maximum error betweenc(u) andp(u) is obtained.
3.2 Find the interval[ui, ui+1] such that

(1) ui andui+1 are knots ofp(u);
(2) [ui, ui+1] containstj ;
(3) [ui, ui+1] has the largest size among all intervals which satisfy (1) and (2).

3.3 Insertui+ui+1
2 as a new knot ofp(u) twice.

3.4 Go to Step 2.
4. If the error betweenc(u) and p(u) is not larger than the given error tolerance,

then perform Algorithm 1 on the degenerate curvec(u), and get the degree reduced
B-spline curveq(u).

5. End of Algorithm 2.

Suppose that there are two B-spline curvesp1(u) andp2(u). p2(u) contains simple
knots, whilep1(u) is the result of inserting every simple knot ofp2(u) once as a new
knot intop2(u). Thus,p1(u) andp2(u) are parametrically equivalent. After the methods
in Section 4.1 are applied,q1(u) andq2(u) become the degree reduced B-spline curves of
p1(u) andp2(u) respectively with no more knots inserted. Then,q1(u) andq2(u) have the
same knot vector and the same number of control points; however, the error tolerance
betweenq1(u) and p1(u) is in general, smaller than that betweenq2(u) and p2(u).
Therefore, although the constrained optimization methods can directly deal with B-spline
curves which contain simple knots, Step 1 converts them into the B-spline curves which
have no simple knots.

Step 3 seems a little complicated. However, if Step 3 simply insertstj as a new knot
into thep(u), it will have the risk thatp(u) may have the knot of multiplicity greater than
the order ofp(u) after knot insertion. This may also lead to a dead loop, i.e., the same
real number may be inserted again and again and the given error tolerance will never be
satisfied. The method for new knots inserted in (Wolters et al., 1998) ignores this risk.
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5. Examples

Fig. 1 explains how degree reduction algorithms in Section 4.1 works. In Fig. 1, the orig-
inal curve is an order 6 B-spline curve over the knots{0,0,0,0,0,0,1.5,1.5,3,4.5,4.5,6,
6,6,6,6,6}. At the first step, the original curve is approximated by a degenerate B-spline
curve. At the second step, the degenerate B-spline curve is represented by the degree re-
duced B-spline curve.

Fig. 2 shows that the error between the degree reduced curve and the original curve be-
comes smaller after all the simple knots are inserted as knots once. The original curve in
Fig. 2 is an order 5 B-spline curve over the knots{0,0,0,0,0,1,2,3,4,5,5,5,5,5}. In
Fig. 2 and the following figure, the notation “M1” refers to our algorithm without the end
points constraint, whereas “M2” refers to our algorithm with the two end points constraint.

The results of different algorithms are illustrated in Fig. 3, where Piegl and Tiller’s
algorithm is marked with “P1”, and Wolters, Wu and Farin’s algorithm is noted
as “W1”. In this figure, the original curve is an order 8 B-spline curve over the
knots {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2}. Using the same curve, Table 1 gives

(a) (b)

Fig. 1. Procedures of our algorithms for degree reduction. (a) Step 1: to the degenerate curve. (b) Step
2: to the degree reduced curve.

(a) (b)

(c) (d)

Fig. 2. Degree reduction can be improved by knot insertion. (a) M1 (error= 0.20). (b) M2 (error
= 0.24). (c) M1 after all simple knots are inserted once (error= 0.03). (d) M2 after all simple knots
are inserted once (error= 0.03).
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(a) (b)

(c)

(d)

Fig. 3. Results of degree reduction by different algorithms. (a) M1 (error= 0.22). (b) M2 (error
= 0.21). (c) P1 (error= 2.15). (d) W1 (error= 0.34).

Table 1
Numbers of control points used by different methods under given error tolerances

Given errors P1 W1 M1 M2

1 10 8 8 8

10−1 10 10 9 9

10−2 13 16 11 11

10−3 15 20 12 12

10−4 20 22 15 15
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the numbers of the control points of the resulting B-spline curves produced by the
corresponding algorithms after knot refinement under the given error tolerances. In Table 1,
the same notations are used for the corresponding algorithms for degree reduction after the
knot refinement, which is coincident with that in Algorithm 2 in Section 4.2.

According to Fig. 3, our final curves are closer to the original curve than the results of
the other two methods. Piegl and Tiller’s algorithm consists of three steps (Piegl and Tiller,
1995a, 1995b):

(1) decompose the B-spline curve into Bézier pieces on the fly,
(2) degree reduce each Bézier piece, and
(3) remove unnecessary knots.
Both step (2) and step (3) will produce error that may increase the total error. Wolters,

Wu and Farin’s Algorithm has two steps. The first step uses the least squares method for
degree reduction of each polynomial segment, and the second step applies the weighting
scheme for merging multiple copies of the control points produced by the first step. In
general, both these two steps may introduce error. Our algorithms also have two steps, but
the error may be produced only at the first step using the constrained optimization methods
to get the degenerate B-spline curves. At the second step, the degenerate B-spline curves
can be represented by B-spline curves with a lower degree, i.e., the degenerate B-spline
curves are degree reducible.
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