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Abstract. In this paper, we establish a height inequality, in terms of an (am-
ple) line bundle, for a sum of subschemes located in `-sub-general position in

an algebraic variety, which extends the main result of McKinnon and Roth

in [14]. The inequality obtained in this paper connects the result of McKin-
non and Roth [14] (the case when the subschemes are points) and the results

of Corvarja-Zannier [4], Evertse-Ferretti [7], Ru [19], and Ru-Vojta [20] (the
case when the subschmes are divisors). Furthermore, our approach gives an

alternative short and simpler proof of the main result in [14].

1. Introduction and Statements

In their recent Invent. Math. paper (see [14]), McKinnon and Roth introduced

the approximation constant αx(L) to an algebraic point x on an algebraic variety

V with an ample line bundle bundle L. The invariant αx(L) measures how well x

can be approximated by rational points on X with respect to the height function

associate to L. They showed that αx(L) is closely related to the Seshadri constant

εx(L) measuring the local positivity of L at x. They also showed that the invariant

αx(L) can be computed through another invariant βx(L) in the height inequality

they established (see Theorem 5.1 and Theorem 6.1) in [14]. By computing the

Seshadri constant εx(L) for the case of V = P1, their result recovers the Roth’s the-

orem, so the height inequality they established can be viewed as the generalization

of the Roth’s theorem to arbitrary projective varieties.

In this short note, we give such results a short and simpler proof. Furthermore,

we extend the results from the points of a projective variety to subschemes. The

generalized result in terms of subschemes connects, as well as gives a clearer ex-

planation, the above mentioned result of McKinnon and Roth [14] with the recent

Diophantine approximation results in term of the divisors obtained by Corvarja-

Zannier [4], Evertse-Ferretti [7] , Ru [19], and Ru-Vojta [20].
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We now state our result. Let V be a projective variety defined over a number

field k.

Definition 1.1. Let Y be a closed subscheme of V and IY the ideal sheaf of Y .

Let L be a line sheaf on V with h0(V,LN ) ≥ 1 for N big enough. We define

βL,Y := lim sup
N→∞

∑∞
m=1 h

0(V,LN ⊗ ImY )

N · h0(V,LN )
.

Remark 1.2. (a) Let Y be a closed subscheme of V of codimension at least two

and π : Ṽ → V be the blow-up along Y , and E be the exceptional divisor. Let

L be a line bundle over V with h0(V,NL) ≥ 1 for N big enough and L be the

corresponding line sheaf. Then

βL,Y := lim sup
N→∞

∑∞
m=1 h

0(Ṽ , Nπ̃∗L−mE)

N · h0(V,NL)
= βL,Y .

(b) Let D be an effective divisor on V , we define βD,Y := βO(D),Y , where O(D)

is the line sheaf associated to D.

Definition 1.3. We say that close subschemes Y1, · · · , Yq of a projective variety

V are in `-sub-general position if, for any x ∈ V , there are at most ` subschemes

among Y1, . . . , Yq which contain x.

Remark 1.4. In the case Y1 = y1, . . . , Yq = yq are the points (this is what McKin-

non and Roth dealt with in [14]), the condition that y1, . . . , yq are distinct implies

that Y1, . . . , Yq are in 1-sub-general position (i.e with ` = 1).

We establish the following result.

Main Theorem. Let k be a number field and Mk be the set of places on k. Let

S ⊂Mk be a finite subset containing all archimedean places. Let V be a projective

variety defined over k and Y1, · · · , Yq be closed subschemes of V defined over k in

`-sub-general position. For any v ∈ S, choose a local Weil function λYj ,v for each

Yj , 1 ≤ j ≤ q. Let L be a line sheave with h0(V,LN ) ≥ 1 for N big enough. Then

for any ε > 0 ∑
v∈S

q∑
i=1

λYi,v(x) ≤ `( max
1≤i≤q

{β−1
L,Yi}+ ε)hL(x)(1.1)

holds for all x outside a proper Zariski-closed subset Z of V (k).
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The main result of McKinnon and Roth in [14] easily follows from the above

main theorem (with subschemes being the points) as the following Corollary and

the proof will be given in the last section.

Corollary 1.5 (cf. Theorem 6.1 in [14]). Let V be a projective variety over k.

Then for any ample line bundle L and any x ∈ V (k̄) either

(a) αx(L) ≥ βL,x or

(b) There exists a proper subvariety Z ⊂ V , irreducible over k̄, with x ∈
Z(k̄) so that αx,V (L) = αx,Z(L|Z), i.e. “αx(L) is computed on a proper

subvariety of V ”,

where αx(L) is the approximation constant defined in [14, Definition 2.8], and βL,x

is defined in Definition 1.2 (with Y taken as a point x).

We will show in Lemma 2.2 that for any line bundle L, x ∈ V

(1.2) βL,x ≥
n

n+ 1
εx(L),

where n = dimV . We note that the Seshadri constant εx(L) does not decrease when

restricting to a subvariety (see [14, Proposition 3.4 ]), so we can use induction to

further get, from Corollary 1.5 and Eq. (1.2), the following result.

Corollary 1.6 (cf. Theorem 6.2, alternative statement in [14]). Let V be a projec-

tive variety over k. For any ample line bundle L and choose x ∈ X(k̄). Then for

any δ > 0, thre are only finitely many solutions y ∈ X(k) to

dv(x, y) < HL(y)−( n+1
nεx(L)

+δ).

In the case when V = Pn and L = OPn(1), we have εx(L) = 1 for all x ∈ Pn (see

[14, Lemma 3.3]). Therefore the above result generalizes the theorem of Roth.

We now turn to another extreme case when the subschemes Y1, . . . , Yq are divisors

D1, . . . , Dq. Let D := D1 + · · · + Dq. Assume that each Dj is linearly equivalent

to a fixed ample divisor A. Then we have the following relation of height functions

hD = qhA + O(1). On the other hand, by the Riemann-Roch theorem, with n =

dimV ,

h0(ND) = h0(qNA) =
(qN)nAn

n!
+ o(Nn)

and

h0(ND −mDj) = h0((qN −m)A) =
(qN −m)nAn

n!
+ o(Nn).
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Thus∑
m≥1

h0(ND −mDj) =
An

n!

qN−1∑
l=0

ln + o(Nn+1) =
An(qN − 1)n+1

(n+ 1)!
+ o(Nn+1).

Hence

βD,Dj = lim
N→∞

An(qN−1)n+1

(n+1)! + o(Nn+1)

N (qN)nAn

n! + o(Nn+1)
=

q

n+ 1
.

Thus the Main Theorem, together with the above computation, implies the follow-

ing result of Chen–Ru-Yan [3] (see also [5]).

Theorem 1.7 ([3] or [5]). Let k be a number fields and Mk is the set of places on k.

Let S ⊂Mk be a subset. Let V be a projective variety of dimension n defined over

k. Let D1, · · · , Dq be effective Cartier divisors in `-sub-general position. Assume

that each Dj , 1 ≤ j ≤ q, is linearly equivalent to a fixed ample divisor A. For any

v ∈ S, choose a Weil function λDj ,v for each Dj , 1 ≤ j ≤ q. Then for any ε > 0∑
v∈S

q∑
i=1

λDi,v(x) ≤ `(n+ 1 + ε)hA(x)(1.3)

holds for all x outside a proper Zariski-closed subset Z of V (k). In particular, if

D1, . . . , Dq are in general position on V , then the inequality∑
v∈S

q∑
i=1

λDi,v(x) ≤ n(n+ 1 + ε)hA(x)(1.4)

holds for all but finitely many x ∈ V (k).

In the general case when D1, . . . , Dq are only assumed to be big and nef, we can

also compute βD,Dj . The details will be carried out in the next section.

We note that recently the first named author and P. Vojta [20] obtained the

following sharp result in the case when D1, . . . , Dq in general position and when V

is Cohen-Macaulay (for example V is smooth).

Theorem 1.8 (Ru-Vojta). Let k be a number fields and Mk is the set of places

on k. Let S ⊂ Mk be a finite subset. Let V be a projective variety defined over k.

Assume that V is Cohen-Macaulay (for example V is smooth). Let D1, · · · , Dq be

effective Cartier divisors in general position. For any v ∈ S, choose a Weil function

λDj ,v for each Yj , 1 ≤ j ≤ q. Let L be a line bundle on V with h0(V,NL) ≥ 1 for

N big enough. Then for any ε > 0∑
v∈S

q∑
i=1

λDi,v(x) ≤ ( max
1≤i≤q

{β−1
L,Di
}+ ε)hL(x)(1.5)
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holds for all x outside a proper Zariski-closed subset Z of V (k).

The above theorem, together with the above computation, recovers the result of

Evertse-Ferretti(cf. [6] and[7]) in the case when V is smooth.

2. Computation of the constant βL,Y

We first compute the constant βL,y, i.e. Y = y is a point in V (k). The following

lemma is a reformulation of Lemma 4.1 in [14].

Lemma 2.1. Let V be a projective variety and x be a point in V . Let π : Ṽ → V

be the blow-up along x, and E be the exceptional divisor. Let L be an ample line

bundle L and m a positive integer. Then

(i) h0(Ṽ , Nπ∗L−mE) = 0 if m > N · γeff,x, where γeff,x is defined in [14].

(ii) h0(Ṽ , Nπ∗L−mE) ≥ h0(V,NL)− multxV
n! mn +O(Nn−1) for N >> 0

Proof. Write h0(Ṽ , Nπ∗L − mE) = h0(Ṽ , Nπ∗L − N · γE), where γ = m/N .

The argument in [14] shows that h0(Ṽ , Nπ∗L −mE) ≥ h0(V,NL) − multxV
n! mn +

O(Nn−1). �

The following is a restatement of Corollary 4.2 in [14].

Lemma 2.2. For any ample line bundle L, x ∈ V and positive integer m, we have

βL,x ≥
n

n+ 1
(

Ln

multxV
)

1
n ≥ n

n+ 1
εx(L).

Proof. Choose a sufficiently large N . By Lemma 2.1 and the Riemann-Roch theo-

rem,

h0(Ṽ , π̃∗NL−mE) ≥ h0(V,NL)(1− multxV

Ln
(
m

N
)n) +O(Nn−1).(2.1)

Moreover, the right hand side of (2.1) is less than zero when m > u = [N( Ln

multxV )
1
n ],

and hence

∞∑
m=1

h0(Ṽ , π̃∗NL−mE) ≥ h0(V,NL)

u∑
m=1

(1− multxV

Ln
(
m

N
)n) +O(Nn).(2.2)
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Consequently,

βL,x ≥
1

N

u∑
m=1

(1− multxV

Ln
(
m

N
)n) +O(

1

N
)

=
1

N
(u− multxV

Ln
· un+1

(n+ 1)Nn
) +O(

1

N
)

≥ nu

(n+ 1)N
+O(

1

N
).

Let N run through all sufficiently large integers. Then we have

βL,x ≥
n

n+ 1
(

Ln

multxV
)

1
n .(2.3)

�

Next we consider the case when Yj = Dj , 1 ≤ j ≤ q, are effective big and nef

Cartier divisors on V .

Definition 2.3. Suppose that X is a complete variety of dimension n. Let D1, . . . , Dq

be effective Cartier divisors on X, and let D = D1 + D2 + · · · + Dq. We say that

D has equi-degree with respect to D1, D2, . . . , Dq if Di.D
n−1 = 1

qD
n for all

i = 1, . . . , q.

Lemma 2.4 (Lemma 9.7 in [13]). Let V be a projective variety of dimension n.

If Dj , 1 ≤ j ≤ q, are big and nef Cartier divisors, then there exist positive real

numbers rj such that D =
∑q
j=1 rjDj has equi-degree.

Since divisors rjDj and Dj have the same support, the above lemma tells us

that we can always make the given big and nef divisors have equi-degree without

changing their supports. So now we assume thatD := D1+· · ·+Dq is of equi-degree.

To compute βD,Dj for j = 1, . . . , q, we use the following lemma from Autissier [1].

Lemma 2.5 (Lemma 4.2 in [1]). Suppose E is a big and base-point free Cartier

divisor on a projective variety X, and F is a nef Cartier divisor on X such that

F − E is also nef. Let δ > 0 be a positive real number. Then, for any positive

integers N and m with 1 ≤ m ≤ δN , we have

h0(NF −mE) ≥ Fn

n!
Nn − Fn−1.E

(n− 1)!
Nn−1m

+
(n− 1)Fn−2.E2

n!
Nn−2 min{m2, N2}+O(Nn−1),

where the implicit constant depends on β.
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We now compute
∑
m≥1 h

0(ND−mDi) for each 1 ≤ i ≤ q. Let n = dimX, and

assume that n ≥ 2. Let b = Dn

nDn−1.Di
and A = (n− 1)Dn−2.D2

i . Then, by Lemma

2.5,
∞∑
m=1

h0(ND −mDi)

≥
[bN ]∑
m=1

(
Dn

n!
Nn − Dn−1.Di

(n− 1)!
Nn−1m+

A

n!
Nn−2 min{m2, N2}

)
+O(Nn)

≥
(
Dn

n!
b− Dn−1.Di

(n− 1)!

b2

2
+
A

n!
g(b)

)
Nn+1 +O(Nn)

=

(
b

2
+

A

Dn
g(b)

)
DnN

n+1

n!
+O(Nn)

=

(
b

2
+ α

)
Nh0(ND) +O(Nn)

where α := A
Dn g(b) and g : R+ → R+ is the function given by g(x) = x3

3 if x ≤ 1 and

g(x) = x− 2
3 for x ≥ 1. Now from the assumption of equi-degree, Di.D

n−1 = 1
qD

n,

so b = q
n . Moreover, α > 0 since dimV ≥ 2 and that the Di’s are big and nef

divisors. Hence

βD,Di = sup
N

∑
m≥1 h

0(ND −mDi)

Nh0(ND)
≥ b

2
+ α.

Thus we have proved the following.

Proposition 2.6. Let V be a projective variety of dimV ≥ 2 and D :=
∑q
j=1Dj

has equi-degree respect to D1, . . . , Dq which are assumed to be big and nef. Then

βD,Di = sup
N

∑
m≥1 h

0(ND −mDi)

Nh0(ND)
>

q

2n
+ α,

where α is a computable positive number.

This, together with the Main Theorem, implies

Theorem 2.7 (Saud-Ru, [11]). Let k be a number field and let S ⊆Mk be a finite

set containing all archimedean places. Let V be a projective variety of dimension

≥ 2 over k, and let D1, . . . , Dq be effective, big, and nef Cartier divisors on V

defined over k, located in `-subgeneral position. Let ri > 0 be real numbers such

that D :=
∑q
i=1 riDi has equi-degree (such numbers exist due to Lemma 2.4). Then,

for ε0 > 0 small enough, the inequality∑
v∈S

q∑
j=1

rjλDi,v(x) < `

(
2 dimV

q
− ε0

) q∑
j=1

rjhDj (x)
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holds for all x ∈ V (k) outside a proper Zariski-closed subset of V .

3. Proof of the Main Theorem

We first recall some basic properties of local Weil functions associated to closed

subschemes from [15, Section 2]. We assume that the readers are familiar with the

notion of Weil functions associated to divisors. (See [12, Chapter 10], [10, B.8] or

[15, Section 1].)

Let Y be a closed subscheme on a projective variety V defined over k. Then one

can associate to each place v ∈Mk a function

λY,v : V \ supp(Y )→ R

satisfying some functorial properties (up to a Mk-constant) described in [15, The-

orem 2.1]. Intuitively, for each P ∈ V, v ∈Mk

λY,v(P ) = − log(v-adic distance from P to Y ).

The following lemma indicates the existence of local Weil functions.

Lemma 3.1. Let Y be a closed subscheme of V . There exist effective divisors

D1, · · · , Dr such that

Y = ∩Di.

Proof. See Lemma 2.2 from [15]. �

Definition 3.2. Let k be a number field, and Mk be the set of places on k. Let V

be a projective variety over k and let Y ⊂ V be closed subscheme of V . We define

the (local) Weil function for Y with respect to v ∈Mk as

λY,v = min
i
{λDi,v},(3.1)

when Y = ∩Di (such Di exist according to the above lemma).

Lemma 3.3 ( Lemma 2.5.2 in [21] or Theorem 2.1 (h) in [15] ). Let Y be a closed

subscheme of V , and let Ṽ be a blow up of V along Y with exceptional divisor

E = π∗Y , then λY,v(π(P )) = λE,v(P ) +Ov(1) for P ∈ Ṽ .

Note that in the original statement of Lemma 2.5.2 in [21], V is assumed to be

smooth, but from the proof it is easy to see that it works for general projective

variety from Theorem 2.1 (h) in [15].
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For our purpose, it suffices to fix a choice of local Weil functions λYi,v for each

1 ≤ i ≤ q and v ∈ S.

Lemma 3.4. Let Y1, · · · , Yq be closed subschemes of a projective variety V in `-

sub-general position. Then
q∑
i=1

λYi,v(x) ≤ max
I

∑
j∈I

λYj ,v(x) +Ov(1),(3.2)

where I runs over all index subsets of {1, · · · , q} with ` elements for all x ∈ V (k).

Proof. Let {i1, · · · , iq} = {1, · · · , q}. Since the Yi are in `-sub-general position,

∩`+1
t=1Yit = ∅. Then

min
1≤i≤`+1

{λYi,v} = {λ∩`+1
t=1Yit ,v

} = Ov(1).(3.3)

We note that the first equality follows from (3.1), the definition of the local Weil

function; and the second equality follows from Corollary 3.3 in [12, Chapter 10].

For x with the following ordering

λYi1 ,v(x) ≥ λYi2 ,v(x) ≥ · · · ≥ λYiq ,v(x),

we have
q∑
i=1

λYi,v(x) =
∑̀
i=1

λYi,v(x) +Ov(1).

Then the assertion (3.2) follows directly as the number of subvarieties under con-

sideration is finite. �

We also need the following generalized Schmidt subspace theorem due to Ru-

Vojta [20].

Theorem 3.5 (Theorem 2.7 in [20]). Let k be a number field, let S be a finite

set of places of k containing all archimedean places, let X be a complete variety

over k, let D be a Cartier divisor on X, let W be a nonzero linear subspace of

H0(X,O(D)), let s1, . . . , sq be nonzero elements of W , let ε > 0, and let c ∈ R.

For each i = 1, . . . , q, let Dj be the Cartier divisor (sj), and let λDj be a Weil

function for Dj. Then there is a proper Zariski-closed subset Z of X, depending

only on k, S, X, L, W , s1, . . . , sq, ε, c, and the choices of Weil and height functions,

such that the inequality

(3.4)
∑
υ∈S

max
J

∑
j∈J

λDj ,υ(x) ≤ (dimW + ε)hD(x) + c
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holds for all x ∈ (X \ Z)(k). Here the set J ranges over all subsets of {1, . . . , q}
such that the sections (sj)j∈J are linearly independent.

We are now ready to prove the Main Theorem.

Proof of the Main Theorem. Let δ > 0 be a sufficiently small number. We may

choose a sufficiently large integer N such that

∞∑
m=1

h0(V,LN ⊗ ImY ) ≤ (βL,Yi − δ)Nh0(V,LN ).(3.5)

Let L be the associated line bundle of L and M = h0(V,NL) = h0(V,LN ).

Let x ∈ V (k) and v ∈ S. Since the Yi are in `-sub-general position, it follows

from Lemma 3.4 that

q∑
i=1

λYi,v(x) ≤ `λYi0 ,v(x) +Ov(1),(3.6)

with 1 ≤ i0 ≤ q, where the constant Ov(1) is independent of x. Note that i0

depends on the point x, but Ov(1) is independent of x.

We first consider the case when the codimension Yi0 in V is at least 2. Let

π : Ṽ → V be the blow-up at Yi0 and E = π−1(Yi0) be the exceptional divisor of

π. We consider the following filtration.

H0(Ṽ , π∗NL) ⊇ H0(Ṽ , π∗NL− E) ⊇ H0(Ṽ , π∗NL− 2E) ⊇ · · ·(3.7)

Choose regular sections s1, · · · , sM ∈ H0(V,NL) successively so that their pull-

back π∗s1, · · · , π∗sM ∈ H0(Ṽ , π∗NL) form a basis associated to this filtration.

Equivalently, s1, · · · , sM ∈ H0(V,NL) are chosen successively according to the

filtration

H0(V,LN ) ⊇ H0(V,LN ⊗ IY ) ⊇ H0(V,LN ⊗ I2
Y ) ⊇ · · ·(3.8)

For a section π∗s ∈ H0(Ṽ , π∗NL−mE) (regarded as a subspace of H0(Ṽ , π∗NL))

we have

div(π∗s) ≥ mE.

Hence, λ(π∗s),v ≥ mλE,v+Ov(1). Note that although Ov(1) here depends i0 (which

depends on x), there are q many choices of such i0 and V is compact, so we can
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again make Ov(1) independent of x. Therefore, also using Lemma 3.3 and (3.5),

M∑
j=1

λ(π∗sj),v ≥
∞∑
m=1

m(h0(Ṽ , π∗NL−mE)− h0(Ṽ , π∗NL− (m+ 1)E))λE,v +Ov(1)

=

∞∑
m=1

m(h0(Ṽ , π∗NL−mE)− h0(Ṽ , π∗N − (m+ 1)E))λYi0 ,v ◦ π +Ov(1)

=

∞∑
m=1

h0(Ṽ , π∗NL−mE)λYi0 ,v ◦ π +Ov(1)

≥ (βL,Yi0 − δ)Nh
0(V,NL)λYi0 ,v ◦ π +Ov(1).

Noticing that, by the functorial property of Weil functions implies that λ(π∗sj),v =

λ(sj),v ◦ π +Ov(1). Hence, the above inequality, together with (3.6), implies that

q∑
i=1

λYi,v(x) ≤ `

N · h0(V,NL)(min1≤i≤q{βL,Yi} − δ)
max
J
{
∑
j∈J

λ(sj),v(x)}+Ov(1),

(3.9)

where J is a subset containing M linearly independent sections taken among the

collection of sections {sj(i0, v)|1 ≤ i0 ≤ q, v ∈ S} coming from the claim (3.6).

Note that when Yi0 is a divisor, by the same proof simply using the filtration (3.8)

without doing the blow up, (3.9) still holds. It then follows from Theorem 3.5 and

a suitable choice of δ that for given ε > 0 there exists a proper algebraic subset Z

over k such that ∑
v∈S

q∑
i=1

λYi,v(x) ≤ (` · max
1≤i≤q

{β−1
L,Yi
}+ ε)hL(x)(3.10)

for all x ∈ V (k) \ Z(k). �

Proof of Corollary 1.5. Let v be a place of k. The main point of the proof is

to reformulate the distance function dv(·, ·) defined on V (k̄) [14, Sect. 2] into a

product of several distance functions on V (K), where K is a finite extension of

k. Following the construction in [14, Sect. 2], we fix an extension of v to k̄. The

place defines an absolute value ‖ · ‖v on k̄. If K ⊂ k̄ is a finite extension of k,

then dv(·, ·)K = dv(·, ·)[Kv :kv]
k . Here dv(·, ·)K refers to the distance function defined

by using the same embedding and normalizing with respect to K and dv(·, ·)k the

distance function normalized with respect to k. (cf. [14, Proposition 2.1 (b)])

Assume that V ⊂ PN (given by the canonical map associated to the ample line

bundle L). For a given fixed point y = [y0 : · · · : yN ] ∈ V (k̄), let K be the Galois

closure of k(y0, . . . , yN ) over k. For each v ∈Mk, the inclusion map (iv)|K : K → k̄v

induces a place w0 := v of K over v, and other places w of K over v are conjugates
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by elements σw ∈ Gal(K/k) such that ‖σw(a)‖w = ‖a‖v for all a ∈ K. Then, for

x, y ∈ K,∏
w∈MK ,w|v

dw(σw(x), σw(y))K =
∏

w∈MK ,w|v

dv(x, y)K

=
∏

w∈MK ,w|v

dv(x, y)
[Kv :kv ]
k = [K : k]dv(x, y)k,

i.e.

dv(x, y)k =
∏

w∈MK ,w|v

dw(σw(x), σw(y))
1

[K:k]

K , for x, y ∈ K.(3.11)

To compute αy(L), we consider any sequence {xi} ⊆ X(k) of distinct points

with dv(y, xi)→ 0. By (3.11), we have dv(y, xi)k =
∏
w∈MK ,w|v dw(σw(y), xi)

1
[K:k]

K .

(Here we extend σw ∈ Gal(K/k) to the map from V (K) to V (K) by acting on the

coordinates of the points.) The distance function dw(y, x) in [14] is constructed

by choosing an embedding φL : V → PN into a projective space via the sections

of L and measure the distance in the embedded space. For fixed y, − log dw(y, ·)
is indeed a local Weil function on the embedded space that is denoted by λφ(y),w.

We note that this fact can also be proved by slightly modification of Lemma 2.6

in [14]. By the functoriality of Weil functions of closed subschemes [15, Theorem

2.1 (h)] we have − log dw(σw(y), x) = λσw(y),w(x) +O(1). On the other hand, it is

clear from the definition that βy,L = βσw(y),L for very σw ∈ Gal(K/k). The Main

Theorem (Note that, in this case, ` = 1.) then implies that for any ε > 0, for any

x ∈ K

− log dv(y, xi) =
1

[K : k]

∑
w∈MK ,w|v

− log dw(y, xi) ≥ −({β−1
y,L}+ ε)hL(xi)

holds for all xi outside a proper Zariski-closed subset Z of V (K). We note that Z

is indeed defined over k since all the xi are in k. The first assertion then follows

directly from the definition of αy(L). The rest of the arguments is the same as the

proof of Theorem 6.1 in [14]. �

4. the complex case

In this section, we state and sketch a proof of the result in Nevanlinna theory

which is analogy to our Main Theorem above. We use the standard notation in

Nevanlinna theory (see, for example, [18]).
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Theorem 4.1. Let V be a complex projective variety and Y1, · · · , Yq be closed

subschemes of V in `-sub-general position. Let L be a line sheave with h0(V,LN ) ≥
1 for N big enough. Let f : C→ V be a holomorphic map with Zariski dense image.

Then for any ε > 0

q∑
i=1

mf (r, Yi) ≤ `( max
1≤i≤q

{β−1
L,Yi}+ ε)Tf,L(r) ‖(3.12)

where ‖ means the inequality holds for all r ∈ (0,+∞) except for a subset E ⊂
(0,+∞)

In above, for a subcheme Y of V ,

mf (r, Y ) =

∫ 2π

0

λY (f(reiθ))
dθ

2π

where λY is the Weil function of Y defined similarly in the arithmetic case above.

To prove the theorem, we need the following result.

Theorem 4.2 (Theorem 2.8 in [20]). Let X be a complex projective variety, let

D be a Cartier divisor on X, let V be a nonzero linear subspace of H0(X,O(D)),

and let s1, . . . , sq be nonzero elements of V . For each i = 1, . . . , q, let Dj be the

Cartier divisor (sj), and let λDj be a Weil function for Dj. Let f : C → X be a

holomorphic map with Zariski-dense image. Then∫ 2π

0

max
J

∑
j∈J

λDj (f(reiθ)) ≤ (dimV )Tf,D(r) +O(log+ Tf,D(r)) + o(log r) ‖

here the set J ranges over all subsets of {1, . . . , q} such that the sections (sj)j∈J

are linearly independent.

Sketch of the proof of Theorem 4.1: In the same way in deriving (3.9), we can prove

that, for any x ∈ V ,

q∑
i=1

λYi(x) ≤ `

N · h0(V,NL)(min1≤i≤q{βL,Yi} − δ)
max
J
{
∑
j∈J

λ(sj)(x)}+O(1).

By taking x = f(reiθ), we get

q∑
i=1

λYi(f(reiθ)) ≤ `

N · h0(V,NL)(min1≤i≤q{βL,Yi} − δ)
max
J
{
∑
j∈J

λ(sj)(f(reiθ))}+O(1).

From here, the theorem can be easily derived by applying Theorem 4.2.
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Corollary 4.3. Let V be a complex projective variety of dimension n and a1, · · · , aq
be distinct points on V . Let L be a line sheave with h0(V,LN ) ≥ 1 for N big enough.

Let f : C→ V be a holomorphic map with Zariski dense image. Then for any ε > 0
q∑
i=1

mf (r, ai) ≤
(
n+ 1

n
max

1≤i≤q
{ε−1
ai (L)}+ ε

)
Tf,L(r) ‖

where εx(L) is the Seshadri constant of L at the point x ∈ V .

In particular, if V = Pn, then for any ε > 0
q∑
i=1

mf (r, ai) ≤
(
n+ 1

n
+ ε

)
Tf,L(r). ‖
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