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Introduction

Let k be the rational function field Fq(t) with odd characteristic. Fix the infinite place
∞ of k, and denote by k∞ the completion of k at ∞. The Kubota 2-cocycle on GL2(k∞),
which is defined via Hilbert n-th symbol for n | q − 1, gives non-trivial central extension of
GL2(k∞), called metaplectic group. The aim of this paper is to study families of functions on
the metaplectic group G, so-called metaplectic forms. We focus on the case when n = 2 and
present an analogue of classical theory of half integral weight modular forms.

In the function field context, we take the Iwahori Hecke operator at ∞ to be our “non-
Euclidean Laplacian.” Functions on G of weight κ2 are the eigenfunctions of this operator with
eigenvalue q1−κ4 . From the norm form on lattices of pure quaternions in “definite” quaternion
algebra over k (i.e. ramified at ∞), we construct theta series which are functions on G of
weight 3

2 . The action of Hecke operators on these theta series can be expressed by so-called
Brandt matrices. As in Eichler’s theory, these integral matrices are in fact representation of
Hecke operators on the space of Drinfeld type “new” forms. This allows us to define a Shimura
map Sh in §4.3 from Drinfeld type “new” forms to functions of weight 3

2 .
From knowledge about central critical values of L-series, we arrive at the following main

theorem, which gives a function field analogue of Waldspurger’s formula (cf. §4.3 for further
details):

Theorem 0.1. Let N0 be a square-free ideal of A with odd number `N0
of prime factors.

Given a “normalized” Drinfeld type newform f for Γ0(N0). Suppose for each prime factor
P of N0, the eigenvalue of the Hecke operator TP on f is one. Then given any irreducible
polynomial D in A− k2

∞ satisfying Legendre symbol
(
D
P

)
= −1 for all primes P dividing N0,

we have

L(f, 0)L(f ⊗ εD, 0) = (q
(−1)degD−1

4 ) · (3− (−1)degD) · (f, f)

2 · |D| 12 · 4(`N0
−1)

·m(f,D)2.

Here L(f, s) is the L-series attached to f , L(f ⊗ εD, s) is its twist by the quadratic character
εD; (·, ·) denotes Petersson inner product on the space of Drinfeld type cusp forms; and
m(f,D) is the (−D)-th Fourier coefficient of the weight 3

2 function Sh(f).

With suitable choice of D, the Fourier coefficient m(f,D) determines the non-vanishing of
the above central critical value of L-series. This theorem can be applied to L-series coming

1This research was partially supported by National Science Council.
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from elliptic curves over k having split multiplicative reduction at an even number of places
(including ∞) and with good reduction elsewhere.

The contents of this article are as follows. We first pick the automorphy factor from the
transformation law of a specific theta series in §1.1. After a brief review of the metaplectic
group G, the Iwahori Hecke operator at∞ is introduced in §1.3. Similar to the classical case,
integral weight functions on G are comes from functions on GL2(k∞).

In §2 we study examples of functions having integral or half integral weight. Theta series
from “imaginary” (with respect to ∞) quadratic extensions over k are of weight 1. Auto-
morphic forms of Drinfeld type, which can be viewed as an analogue of classical weight 2
modular forms (cf. [2] and [11]), are functions of weight 2. Furthermore, Eisenstein series
give us examples of higher integral weight functions. The theta series of weight 3

2 from defi-
nite quaternion algebra over k are introduced in §2.2. The Fourier coefficients of these series,
which can be viewed as representation numbers of “three squares,” are expressed explicitly
in terms of numbers of optimal embeddings of quadratic orders into the definite quaternion
algebra in question.

In §3 we introduce Hecke operators TP 2,κ2
for finite primes P on functions f of half integral

weight κ2 with κ odd. The Fourier coefficients of TP 2,κ2
f can be computed as in classical theory.

The Brandt-matrix representation for the action of Hecke operators on the above theta series
of weight 3

2 is established at the end of §3. In §4.1 we recall briefly properties of the so-called
definite Shimura curves over k. The construction of the Shimura map Sh is in §4.2, and the
proof of our main theorem is given in §4.3. Finally we apply our theorem to families of elliptic
curves over k in §4.4.

Notation

We fix the following notations:

k : the rational function field Fq(t), q = p`0 where p is an odd prime.
A : the polynomial ring Fq[t].
∞ : the infinite place, which corresponds to the degree valuation v∞.
| · | : the absolute value on k∞: for a ∈ k∞, |a| := q−v∞(a).
π∞ : t−1, a fixed uniformizer of ∞.
k∞ : Fq((t−1)), i.e. the completion of k at ∞.
O∞ : Fq[[t−1]], i.e. the valuation ring in k∞.
P : a finite prime (place) of k.
kP : the completion of k at the finite prime P .
AP : the closure of A in kP .
k̂ :

∏′
P kP , the finite adele ring of k.

Â :
∏
P AP .

ψ∞ : a fixed additive character on k∞: for y =
∑
i aiπ

i
∞ ∈ k∞, we define

ψ∞(y) := exp
(

2π
√
−1
p · TrFq/Fp(−a1)

)
.

We identify non-zero ideals of A with the monic polynomials in A by using the same
notation.

1. Half integral weight

In the classical case, the theta series∑
n∈Z

exp(2π
√
−1n2z)
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is a modular form of weight 1
2 for the congruence subgroup Γ0(4). Shimura ([12]) uses the

automorphy factor of this theta series to develop the theory of half integral weight modular
forms. In this section, starting from an explicit theta series, we propose a concept of half
integral weight in the function field setting which has direct applications to arithmetic of
function fields.

1.1. Theta series. For (x, y) ∈ k×∞ × k∞, define

θ(x, y) :=
∑
b∈A

φ∞(b2xt2)ψ∞(b2y)

Here φ∞ is the characteristic function of O∞. Given (x, y) in k×∞ × k∞ and γ =

(
a b

c d

)
in

GL2(A) with cy + d 6= 0. The Möbius transform

γ ◦ (x, y) :=

(
(ad− bc)x
(cy + d)2

,
ay + b

cy + d

)
.

To state the transformation law of θ, we recall the following symbols:

1. For β ∈ k×∞, the root number of β

ω(β) :=

1 if v∞(β) is even,

ε · sgn(β)
q−1
2 if v∞(β) is odd.

Here sgn is a sign function on k×∞ (with respect to π∞): for y ∈ k×∞
y = sgn(y) · u · πv∞(y)

∞

where u ∈ 1 + π∞O∞, sgn(y) ∈ F×q ; ε is the sign of the following Gauss sum:

ε := q−
1
2

∑
ε∈Fq

ε
q−1
2 exp

(
2π
√
−1

p
TrFq/Fp(ε)

)
.

We point out that ω(−β) = ω(β)−1 and ω(β)2 = (−1)
q−1
2 v∞(β).

2. For α, β ∈ k×∞, the Hilbert quadratic symbol

(α, β)∞ :=

1 if αX2 + βY 2 = Z2 has a non-trivial solution,

−1 otherwise.

It can be checked that for α, β ∈ k×∞, (α, β)∞ = ω(α)ω(β)/ω(αβ).

3. Given γ =

(
a b

c d

)
∈ SL2(A), the Kubota symbol of γ

µ(γ) :=


(
d
c

)
if cd 6= 0,

1 otherwise.

Here
( ·
·
)
is the Legendre quadratic symbol.

Basing on Poisson summation formula, the transformation law of θ is worked out:

Proposition 1.1. (cf. [16] IV.2.1) Let x ∈ k×∞ and y ∈ k∞. For any γ =

(
a b

c d

)
in SL2(A)

with v∞(cx) > v∞(cy + d), one has

θ(γ ◦ (x, y)) = |cy + d| 12 ε(γ, x, y)θ(x, y)
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with

ε(γ, x, y) =

µ(γ)ω(cy + d)(c, cy + d)∞, if c 6= 0,

1, otherwise.

This leads to a function on the metaplectic cover G of GL2(k∞).

1.2. Extension G of GL2(k∞) by the circle group S1. Given g =

(
a b

c d

)
in GL2(k∞).

Let X(g) := c if c is non-zero and d if c is zero. Kubota (cf. [8]) introduced a 2-cocycle
σ : GL2(k∞)×GL2(k∞)→ {±1} which is defined by

σ(g, g′) =

(
X(gg′)

X(g)
,

X(gg′)

det(g)X(g′)

)
∞
.

This gives us an extension G of GL2(k∞) by S1:

1 −→ S1 −→ G −→ GL2(k∞) −→ 1

where S1 = {z ∈ C, |z| = 1}.

The map µ̃ : SL2(A)→ G given by γ 7−→ γ̃ = (γ, µ(γ)) is a group monomorphism (cf. [6]).
The group GL2(O∞) also can be embedded into G by the homomorphism %̃ : GL2(O∞)→ G

mapping γ∞ to γ̃∞ = (γ∞, %(γ∞)) where for γ∞ =

(
a b

c d

)
∈ GL2(O∞),

%(γ∞) :=

(c, d/det γ∞)∞, if 0 < |c| < 1,

1, otherwise.

Furthermore, since σ(z1, z2) = (z1, z2)∞ for z1, z2 ∈ k×∞, we embed k×∞ into G via the homo-
morphism ω̃ : k×∞ → G defined by z 7−→ z̃ = (z, ω(z)−1). Note that ω̃(k×∞) is not in the center
of G.

For any congruence subgroup Γ = Γ
(1)
0 (N) in SL2(A) where N is a non-zero ideal of A and

Γ
(1)
0 (N) =

{(
a b

c d

)
∈ SL2(A) : c ≡ 0 mod N

}
,

one has GL2(k∞) = Γ ·H∞ · Γ1
∞ · k×∞, where

Γ1
∞ :=

{(
a b

c d

)
∈ GL2(O∞) : c ≡ d− 1 ≡ 0 mod π∞O∞

}
, H∞ :=

(
k×∞ k∞

0 1

)
.

Let k̃×∞ := ω̃(k×∞), Γ̃ := µ̃(Γ), Γ̃1
∞ := %̃(Γ1

∞), H∞ := {(h, ξ) : h ∈ H∞, ξ ∈ S1}. Then
G = k̃×∞ · Γ̃ ·H∞ · Γ̃1

∞.

Back to the theta series θ in §1.1. Given g̃ ∈ G, write g̃ as z̃γ̃(h, ξ)γ̃∞, where z ∈ k×∞,

γ ∈ SL2(A), γ∞ ∈ Γ1
∞, h =

(
x y

0 1

)
, and ξ ∈ S1. We extend θ to a function Θ on G by

Θ(g̃) := |x| 14 θ(x, y) · ξ.

The transformation law of θ implies that Θ is a well-defined function on G, and for z ∈ k×∞,
γ ∈ SL2(A), γ∞ ∈ Γ1

∞, ξ ∈ S1

Θ(z̃γ̃(1, ξ)g̃γ̃∞) = ξΘ(g̃).

This leads to a concept of half integral weight in the function field setting.
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1.3. Half integral weight and weight operators. Here we are interested in functions f
on the coset space G/Γ̃1

∞. For κ ∈ N, define

T̃∞,κ2 f(g̃) := q
κ
4−1 ·

∑
v∈Fq

f

(
g̃
((

π∞ v

0 1

)
, 1
))

.

Since

Γ̃1
∞

((
π∞ 0

0 1

)
, 1

)
Γ̃1
∞ =

∐
v∈Fq

((
π∞ v

0 1

)
, 1

)
Γ̃1
∞,

T̃∞,κ2 f is also a function on G/Γ̃1
∞. The metaplectic form Θ is of weight 1

2 under the following
definition:

Definition 1.2. f is of weight κ
2 if for all ξ ∈ S1 and g̃ ∈ G,

f((1, ξ)g̃) = ξκf(g̃) and T̃∞,κ2 f = f.

1.3.1. Fourier expansion. Suppose f is a function on G/Γ̃1
∞ satisfying that for z ∈ k×∞

f(z̃g̃) = χ∞(z)f(g̃)

where χ∞ is a character χ∞ : k×∞ → C× trivial on 1 + π∞O∞. We call χ∞ the “central ”
character of f .

Given a weight κ
2 function f on G/Γ̃1

∞ with “central” character χ∞. Suppose there exists

a Dirichlet character χN : (A/NA)× → C× such that for all γ =

(
a b

c d

)
∈ Γ

(1)
0 (N),

f(γ̃g̃) = χN (d)f(g̃) . Then for r ∈ Z and u ∈ k∞, the Fourier expansion of f is:

f

((
πr∞ u

0 1

)
, 1

)
=

∑
deg λ+2≤r

f∗(r, λ)ψ∞(λu)

where

f∗(r, λ) =

∫
A\k∞

f

((
πr∞ u

0 1

)
, 1

)
ψ∞(−λu)du.

The Haar measure taken here is normalized so that
∫
A\k∞ du = 1. Since f is of weight κ

2 ,
one has f∗(r + 1, λ) = q−

κ
4 f∗(r, λ) for all λ ∈ A with deg λ+ 2 ≤ r.

Define function ϕf on k×∞ × k∞ by

ϕf (x, y) := |x|−κ4 f

((
x y

0 1

)
, 1

)
=

∑
λ∈A,deg λ+2≤v∞(x)

ϕ∗f (λ)ψ∞(λy)

where ϕ∗f (λ) := q
κr
4 f∗(r, λ) for any r ≥ deg λ+2. Then we have the following transformation

law for ϕf : given (x, y) ∈ k×∞ × k∞ and γ =

(
a b

c d

)
in Γ

(1)
0 (N) with v∞(cx) > v∞(cy + d),

ϕf
(
γ ◦ (x, y)

)
= χN (d)χ∞(cy + d)−1

(
|cy + d|κ2 ε(γ, x, y)κ

)
· ϕf (x, y).

1.3.2. Integral weight. When κ is even and h is a weight κ
2 (=: ν) function on G/Γ̃1

∞ with
“central” character χ∞, let

h′(g) := h(g, 1) for g ∈ GL2(k∞).

Then h′ is a function on GL2(k∞)/Γ1
∞ such that for z ∈ k×∞ and g ∈ GL2(k∞)

h′(zg) = (−1)
(q−1)ν

2 v∞(z) · χ∞(z) · h′(g),
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and

T∞,νh
′(g) := q

ν
2−1

∑
v∈Fq

h′

(
g

(
π∞ v

0 1

))
= h′(g).

Conversely, given a function f on GL2(k∞)/Γ1
∞ such that f(zg) = χ∞(z)f(g) for z ∈ k×∞,

g ∈ GL2(k∞) and T∞,νf = f . Let

f ′(g, ξ) = ξνf(g) for all (g, ξ) ∈ G.

Then f ′ is a weight ν function with “central” character χ∞ ·(−1)
(q−1)ν

2 v∞(·). This tells us that
functions of weight ν on G/Γ̃1

∞ are in fact induced from functions on GL2(k∞)/Γ1
∞ fixed by

the “integral weight” operator T∞,ν .

2. Natural family of functions having weight

In this section we give examples of functions having weight. A function f of integral weight
ν can be viewed as a function on GL2(k∞)/Γ1

∞ which is fixed by the operator T∞,ν in §1.3.2.
We start with integral weight examples.

2.1. Functions of integral weight. 1. Theta series of imaginary quadratic function fields.
Given a square-free polynomial D in A such that K = k(

√
D) is “imaginary” quadratic field

(i.e. ∞ does not split in K). Let a0 be a fractional ideal in K such that the ideal norm
NK/k(a0) = (λ0) for λ0 ∈ k×. The theta series θa0,λ0

on k×∞×k∞ introduced by Rück [10] is:

θa0,λ0(x, y) :=
∑
µ∈a0

φ∞(
NK/k(µ)

λ0
xt2)ψ∞(

NK/k(µ)

λ0
y).

For any g ∈ GL2(k∞), write g as γ

(
x y

0 1

)
γ∞z where γ =

(
a b

c d

)
in Γ

(1)
0 (D), (x, y) in

k×∞ × k∞, γ∞ in Γ1
∞, and z in k×∞. Let

Θa0,λ0
(g) := |x| 12 ·

(
d

D

)
θa0,λ0

(x, y) · δz.

Here δ : k×∞ → {±1} is the local norm symbol at ∞, i.e. δz = 1 if z ∈ k×∞ is a norm of
an element in K∞ = k∞(

√
D) and −1 otherwise. Then from the transformation law of

θa0,λ0
(cf. [10] Proposition 5.1), Θa0,λ0

is a weight 1 function on GL2(k∞) satisfying that for

γ =

(
a b

c d

)
∈ Γ

(1)
0 (D), z ∈ k×∞, g ∈ GL2(k∞), γ∞ ∈ Γ1

∞,

Θa0,λ0
(γgγ∞z) =

(
d

D

)
Θa0,λ0

(g)δz.

2. Automorphic forms of Drinfeld type. Given a non-zero ideal N of A. Let

Γ0(N) :=

{(
a b

c d

)
∈ GL2(A) : c ≡ 0 mod N

}
.

An automorphic form f of Drinfeld type for Γ0(N) is a C-valued function on the double coset
space Γ0(N)\GL2(k∞)/Γ∞k

×
∞ satisfying the following harmonic property: for any element g

in GL2(k∞),

f

(
g

(
0 1

π∞ 0

))
= −f(g) and

∑
µ∈GL2(O∞)/Γ∞

f(gµ) = 0.

Here Γ∞ is the Iwahori subgroup{(
a b

c d

)
∈ GL2(O∞) : c ≡ 0 mod π∞O∞

}
.
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The harmonicity implies that f is of weight 2.

Remark. The space of weight 2 functions on Γ0(N)\GL2(k∞)/Γ∞k
×
∞ is generated by auto-

morphic forms of Drinfeld type for Γ0(N) together with a “non-harmonic” function E on the
double coset space GL2(A)\GL2(k∞)/Γ∞k

×
∞ satisfying that for g ∈ GL2(k∞)

E(g) + E(g

(
0 1

π∞ 0

)
) =

q

1− q
,

and the Fourier expansion of E is:

E

(
πr∞ u

0 1

)
= q−r+2

 1

1− q2
+

∑
06=λ∈A

deg λ≤r+2

σ(λ)ψ∞(λu)


where r ∈ Z and u ∈ k∞. Here σ is the divisor function σ(λ) :=

∑
monic m|λ

|m|. Restricting E

to the subgroup H∞, it agrees with the improper Eisenstein series of Gekeler (cf. [1] 5.5).

3. Principal series and Eisenstein series. Given an integer ν. Consider the principal series
π(| · | ν−1

2 , | · | 1−ν2 ) (cf. [7] Chap. I §3), which is the space of smooth functions f on GL2(k∞)
satisfying that for any element g∞ ∈ GL2(k∞), a and d ∈ k×∞, b ∈ k∞,

f

((
a b

0 d

)
g∞

)
= |a| ν2 · |d|

−ν
2 f(g∞).

The subspace of functions f in π(| · | ν−1
2 , | · | 1−ν2 ) such that

f(g∞γ∞) = f(g∞) for all γ∞ ∈ GL2(O∞)

is spanned by the function ϕν where for x and w in k×∞, y in k∞, γ∞ in GL2(O∞),

ϕν

((
x y

0 w

)
γ∞

)
:= |x| ν2 |w|− ν2 .

Define

Φν(g∞) := ϕν(g∞)− q ν2−1ϕν(g∞

(
1 0

0 π∞

)
)

for any g∞ ∈ GL2(k∞). Then Φν is a function of weight ν (with trivial central character)
with

Φν

(
x y

0 1

)
= |x| ν2 (1− qν−1) and Φν

((
x y

0 1

)(
0 1

π∞ 0

))
= |x| ν2 (q

ν
2 − q ν2−1).

Fix an integer ν > 2. Let

B(A) :=

{(
a b

c d

)
∈ GL2(A) : c = 0

}
.

Then for any γ ∈ B(A) and g∞ ∈ GL2(k∞), one has

Φν(γg∞) = Φν(g∞).

Consider the Eisenstein series

Eν(g∞) :=
∑

γ∈B(A)\GL2(A)

Φν(γg∞), for g∞ ∈ GL2(k∞).

Then Eν is a well-defined weight ν function on GL2(A)\GL2(k∞)/Γ∞k
×
∞.
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2.2. Functions of half integral weight. In §1.3 we note that Θ is a function of weight 1
2 .

Here we give weight 3
2 functions via theta series from reduced norm form on lattices of pure

quaternions inside quaternion algebras.
Let D = DN− be a “definite” quaternion algebra over k (i.e. D is ramified at∞) where N−

is the product of finite ramified primes of D. Choose an ideal N+ of A which is prime to N−.
An Eichler order RN+,N− of type (N+, N−) is an (A-)order in D such that the (AP -)order
(RN+,N−)P := RN+,N− ⊗A AP is maximal in DP := D⊗k kP for all P - N+, and for P | N+

there exist an isomorphism ϕP : DP ∼= Mat2(kP ) such that

ϕP
(
(RN+,N−)P

)
=

{(
a b

c d

)
∈ Mat2(AP ) : c ≡ 0 mod N+AP

}
.

A left ideal I of RN+,N− is a rank 4 A-lattice in D such that for all finite primes P ,
IP := I ⊗A AP = RN+,N− · gP for some gP ∈ D×P .

Let I1, ..., In be representatives of left ideal classes of R. For each i, let Ri be the right
order of Ii. Consider the A-lattice Si of pure quaternions in Ri, i.e. Si := {b ∈ Ri : Tr(b) = 0}.
For (x, y) ∈ k×∞ × k∞, define the following theta series for Si:

ϑi(x, y) :=
1

2

∑
b∈Si

φ∞(Nr(b)xt2)ψ∞(Nr(b)y).

Proposition 2.1. (cf. [17] Proposition 3.1) Let N0 = N+ ·N−. For γ =

(
a b

c d

)
∈ Γ

(1)
0 (N0)

with v∞(cx) > v∞(cy + d), we have

ϑi(γ ◦ (x, y)) = |cy + d| 32 ε(γ, x, y)3ϑi(x, y).

Given g̃ ∈ G. Write g̃ as z̃γ̃(h, ξ)γ̃∞, where z in k×∞, γ in Γ
(1)
0 (N0), γ∞ in Γ1

∞, h =

(
x y

0 1

)
in H∞, and ξ in S1. For each i, we extend ϑi to a function Θi on G:

Θi(g̃) := |x| 34 · ϑi(x, y) · ξ3.

Then Θi is of weight 3
2 and for z ∈ k×∞, γ ∈ Γ

(1)
0 (N0), γ∞ ∈ Γ1

∞, ξ ∈ S1

Θi(z̃γ̃(1, ξ)g̃γ̃∞) = ξ3Θi(g̃).

Given λ ∈ A with λ 6= 0, the Fourier coefficient

Θ∗i (r, λ) =

0 if deg λ+ 2 > r or −λ ∈ (k×∞)2,
1
2 · q

− 3
4 r ·#{b ∈ Si : Nr(b) = λ} if deg λ+ 2 ≤ r and −λ /∈ k2

∞.

When deg λ+2 ≤ r and −λ /∈ k2
∞, Θ∗i (r, λ) can be expressed by number of optimal embeddings

into Ri. Let d ∈ A− k2
∞. An optimal embedding of the quadratic order Od := A[

√
d] into Ri

is an embedding ι of k(
√
d) into D so that

ι
(
k(
√
d)
)
∩Ri = ι(Od).

For any α ∈ R×i , α−1ια is also an optimal embedding of Od into Ri. Let wi := #(R×i /F×q ),
u(d) := #(O×d /F×q ), and hi(d) denote the number of optimal embeddings of Od into Ri
modulo conjugation by elements in R×i . We have

Proposition 2.2. For 0 6= λ ∈ A with deg λ+ 2 ≤ r,

Θ∗i (r, λ) = q−
3
4 r · wi

2

∑
−λ=df2,f monic

hi(d)

u(d)
.
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3. Hecke operators

Here we assume κ = 2ν + 1 where ν ∈ Z≥0 and study Hecke operators on weight κ
2

functions.

For 0 6= m ∈ A, consider the double coset Γ̃1(N)

((
1 0

0 m

)
, 1

)
Γ̃1(N) in G where

Γ1(N) =

{
γ ∈ SL2(A) : γ ≡

(
1 ∗
0 1

)
mod N

}
.

One has

Γ̃1(N)

((
1 0

0 m

)
, 1

)
Γ̃1(N) =

∐
i

Γ̃1(N)

((
1 0

0 m

)
, 1

)
· γ̃i

where γ̃i are right coset representatives of the following subgroup in Γ̃1(N):((
1 0

0 m

)
, 1

)−1

Γ̃1(N)

((
1 0

0 m

)
, 1

)⋂
Γ̃1(N).

Let f be a weight κ
2 function f on G/Γ̃1

∞ with “central” character χ∞ on k×∞. Suppose
f(γ̃g̃) = f(g̃) for all γ ∈ Γ1(N). For each monic polynomial m in A, define

f

(
Γ̃1(N)

((
1 0

0 m

)
, 1

)
Γ̃1(N)g̃

)
:=
∑
i

f

(((
1 0

0 m

)
, 1

)
γ̃ig̃

)
.

Lemma 3.1. Let m be a monic polynomial in A. Suppose the prime-to-N part of the ideal
(m) is not a square ideal of A, then for all g̃ ∈ G

f

(
Γ̃1(N)

((
1 0

0 m

)
, 1

)
Γ̃1(N)g̃

)
= 0.

Definition 3.2. Let f be a weight κ
2 function f on G/Γ̃1

∞ with “central” character χ∞ on
k×∞. Suppose f(γ̃g̃) = f(g̃) for all γ ∈ Γ1(N). Given any prime P of A. We define for g̃ ∈ G

TP 2,κ2
f(g̃) := |P |(κ2−2) · f

(
Γ̃1(N)

((
1 0

0 P 2

)
, 1

)
Γ̃1(N)g̃

)
.

As in the classical case, we have

Proposition 3.3. Let χN : (A/NA)× be a Dirichlet character. Given a weight κ2 function f

on G with “central” character χ∞ such that f(γ̃g̃) = χN (d)f(g̃) for γ =

(
a b

c d

)
∈ Γ

(1)
0 (N)

and g̃ ∈ G. Then for each prime P ,

TP 2,κ2
f

((
πr∞ u

0 1

)
, 1

)
=

∑
deg λ+2≤r

(TP 2,κ2
f)∗(r, λ)ψ∞(λu)

where

(TP 2,κ2
f)∗(r, λ) = χ∞(P 2) ·

[
|P |κ2 f∗(r + 2 degP, P 2λ)

]
+χN (P )χ∞(P )

(
(−1)νλ

P

)
|P |(ν−1) ·

[
f∗(r, λ)

]
+χN (P 2)|P |κ−2 ·

[
|P |−κ2 f∗(r − 2 degP,

λ

P 2
)

]
.

Here we set f∗(r − 2 degP, λ
P 2 ) = 0 if P 2 - λ and χN (P ) = 0 if P |N .
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Proof. For sake of completeness we sketch the argument.

Consider the double coset Γ1(N)

(
1 0

0 P 2

)
Γ1(N), which is equal to


⋃

deg v<2 degP

Γ1(N)av if P |N ,( ⋃
deg v<2 degP

Γ1(N)av

)
∪

( ⋃
h6=0,deg h<degP

Γ1(N)bh

)
∪ Γ1(N)τ if P - N .

Here av =

(
1 v

0 P 2

)
, bh = ςP

(
P h

0 P

)
, τ = ςP 2

(
P 2 0

0 1

)
, ςm is an element in SL2(A) such

that ςm ≡

(
m−1 0

0 m

)
mod N . The contribution of av is:

|P |(κ2−2) ·
∑

deg v<2 degP

f

(((
1 v

0 P 2

)
, 1

)
·
((

πr∞ u

0 1

)
, 1

))

=
∑

deg λ+2≤r

χ∞(P 2) ·
[
|P |κ2 f∗(r + 2 degP, P 2λ)

]
ψ∞(λu).

When P divides N , χN (P ) = χN (P 2) = 0 and so the formula holds.

Assume P is prime to N . The contribution of τ is:

|P |(κ2−2)f

(
ς̃P 2

((
πr−2 degP
∞ P 2u

0 1

)
, 1

)

=
∑

deg λ+2≤r

χN (P 2)|P |(κ−2)

[
|P |−κ2 f∗(r − 2 degP,

λ

P 2
)

]
· ψ∞(λu).

For the contribution of bh with h 6= 0 and deg h < degP , let γh, γ′h ∈ Γ1(N) such that

γ′h

(
1 0

0 P 2

)
γh = bh.

Then γ̃′h

((
1 0

0 P 2

)
, 1

)
γ̃h = ς̃P

((
P h

0 P

)
,
(
h
P

))
and

|P |(κ2−2)f

(((
1 0

0 P 2

)
, 1

)
γ̃h

((
πr∞ u

0 1

)
, 1

))

=

[
ω(P )κ

( h
P

)
|P |− 1

2ψ∞(
λh

P
)

]
·

∑
deg λ+2≤r

χN (P )χ∞(P )|P |(ν−1)f∗(r, λ)ψ∞(λu)

Since ω(P )2ν =
(

(−1)ν

P

)
and |P |− 1

2

∑
h 6=0,deg h<degP

(
h
P

)
ψ∞(λhP ) =

(
λ
P

)
ω(P )−1,

|P |(κ2−2)
∑

h6=0,deg h<degP

f

(((
1 0

0 P 2

)
, 1

)
γ̃h

((
πr∞ u

0 1

)
, 1

))

=
∑

deg λ+2≤r

χN (P )χ∞(P )|P |(ν−1)
( (−1)νλ

P

)[
f∗(r, λ)

]
ψ∞(λu).

Combining these we get the formula for the Fourier coefficients of TP 2,κ2
f . �
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From lattices of pure quaternions in the right orders of left ideals I1, . . . , In of Eichler order
RN+,N− in D(N−) we have introduced weight 3

2 theta series Θi for 1 ≤ i ≤ n in §2.2. Suppose
N+ = 1, i.e. R = RN+,N− is a maximal order (and N0 = N−). The action of Hecke operators
on Θi can be expressed by so-called Brandt matrices.

Given a left ideal I of RN+,N− , the set I−1 = {b ∈ D : IbI ⊂ I} is a right ideal for RN+,N−

whose left order is the right order of I. The reduced ideal norm of I is denoted by Nr(I),
which is the fractional ideal of A generated by the reduced norm of elements in I. For each
monic polynomial m in A, the m-th Brandt matrix B(m) :=

(
Bij(m)

)
1≤i,j≤n

in Matn(Z)

where

Bij(m) :=
#{b ∈ I−1

j Ii : (Nr(b)/Nij) = (m)}
(q − 1)wj

.

Here Nij is the monic generator of the reduced ideal norm Nr(Ij)
−1 Nr(Ii) of I−1

j Ii, and
wj = #(R×j /F×q ) where Rj is the right order of Ij .

Proposition 3.4. For every prime P of A,

TP 2, 32
Θi =

∑
j

Bij(P )Θj = wi
∑
j

Bji(P )(
1

wj
Θj).

Proof. For each monic polynomial m in A, wjBij(m) = wiBji(m) and so the second equality
is clear. We only need to show the first equality.

When P | N0, TP 2, 32
Θ∗i (r, λ) = |P | 32 Θ∗i (r + 2 degP, P 2λ) for λ ∈ A with deg λ + 2 ≤ r.

By Proposition 2.2 and the fact that hi(P 2d) = 0 for any d and prime P | N0, we get
|P | 32 Θ∗i (r + 2 degP, P 2λ) = Θ∗i (r, λ) and so TP 2, 32

Θi = Θi.
On the other hand, B(P ) is a permutation matrix of order 2, and the entry Bij(P ) = 1

implies Ri ∼= Rj . Therefore the proposition holds for P | N0.

Suppose P - N0. For λ ∈ A and r ≥ deg λ + 2, let ci(λ) =: q
3
4 rΘi(r, λ). To prove this

proposition, we need to show

ci(P
2λ) +

(−λ
P

)
ci(λ) + |P |ci(

λ

P 2
) =

∑
j

Bij(P )cj(λ).

For each j, consider the map

{α ∈ I−1
j Ii : (Nr(α)/Nij) = (P )} × {εa : a ∈ Sj ,Nr(a) = λ, ε ∈ F×q } −→ Si

which is defined by
(α, εa) 7−→ b = α∗ · εa · α.

Here α∗ := ᾱNij . Then Nr(b) = λP 2ε′2 for some ε′ ∈ F×q . Note that

#{α ∈ I−1
j Ii : (Nr(α)/Nij) = (P )} = (q − 1)wjBij(P ), and

#{εa : a ∈ Sj ,Nr(a) = λ, ε ∈ F×q } = (q − 1)cj(λ).

Given b ∈ Si with Nr(b) = λP 2ε2 for ε ∈ F×q . First, we consider the case when P - b,
i.e. b 6= Pa for any a ∈ Si. Then there exists a unique α ∈ I−1

j Ii for some j, up to R×j ,
with (Nr(α)/Nij) = (P ) such that b = βα where β ∈ I−1

i Ij . Since Tr(b) = b + b̄ = 0,
b = −ᾱβ̄ = −α∗β∗ and so β∗ = εaα with a ∈ Sj , Nr(a) = λ and ε ∈ F×q . Therefore in this
case, b = α∗(−εa)α for a unique α ∈ I−1

j Ii up to R×j .

Now, we suppose P | b and consider the following two cases:
(1) Assume P | λ. Write b as P · εa for some a ∈ Si with Nr(a) = λ. If P - a, there exist
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an element α ∈ I−1
j Ii for some j, up to R×j , such that (Nr(α)/Nij) = (P ) and a = βα with

β ∈ I−1
i Ij . Therefore

b = P · εa = α∗ · (αεβ) · α.
If P | a, then a = a′P for some a′ ∈ Si with Nr(a′) = λ

P 2 and so

b = Pεa′P = α∗ · (αε′a′α∗) · α

for any j and any α ∈ I−1
j Ii with (Nr(α)/Nij) = (P ). Hence we obtain∑

j

Bij(P )cj(λ) =
(
ci(λP

2)− ci(λ)
)

+
(
ci(λ)− ci(

λ

P 2
)
)

+ (|P |+ 1)ci(
λ

P 2
)

= ci(λP
2) + |P |ci(

λ

P 2
).

(2) Assume P - λ. Write b as εaP where a ∈ Si with Nr(a) = λ. If b = α∗ε′a′α where
α ∈ I−1

j Ii with Nr(a) = λ and ε′ ∈ F×q , then

α∗ε′a′α = Pεa = α∗(αεa).

Let I = I−1
i Ijα. Then I ⊂ Ri with Nr(I) = (P ) and I · a ⊂ I. We deduce that there exist

a unique prime ideal p of the quadratic order A[a] so that I = Rip. Since there are only
1 +

(−λ
P

)
ideals of A[a] whose ideal norm is P , b can be written as α∗ε′aα with Nr(a) = λ in

1 +
(−λ
P

)
ways, up to R×j if α ∈ I−1

j Ii. Combining these we have that when P - λ∑
j

Bij(P )cj(λ) =
(
ci(λP

2)− ci(λ)
)

+ (1 +
(−λ
P

)
)ci(λ) = ci(λP

2) +
(−λ
P

)
ci(λ).

By (1) and (2) the proposition holds. �

4. Special values and an analogue of Waldspurger’s formula

In this section we present a function field analogue of Waldspurger’s formula.

4.1. Definite Shimura curves and automorphic forms. Let D = DN− be a definite
quaternion algebra over k and let N− be the product of finite ramified primes of D. Choose
an ideal N+ of A prime to N−. The definite Shimura curve X = XN+,N− of type (N+, N−)
is

R̂×N+,N−\(D̂
× × Y )/D×.

Here D̂ := D ⊗k k̂; R̂N+,N− := RN+,N− ⊗A Â where RN+,N− is an Eichler order of type
(N+, N−); Y is the curve of genus zero such that for each k-algebra M ,

Y (M) := {x ∈ D ⊗kM : x 6= 0,Tr(x) = Nr(x) = 0}/M×.

The (right) action of D× on Y is by conjugation. It is known thatX is a disjoint finite union of
genus zero curves, and the components correspond canonically to left ideal classes of RN+,N− .

From now on we assume N+ = 1, i.e. RN+,N− = R is a maximal order and N0 = N−.
Let I1, . . . , In be representatives of left ideal classes of R, and let Xi be the component of X
corresponding to Ii. Denote ei to be the divisor class in Pic(X) corresponding to Xi. Then
Pic(X) = ⊕Zei. The Gross height pairing on Pic(X) is defined by

< ei, ej >=

0 if i 6= j,

wi = #(R×i /F×q ) if i = j,

and extending bi-additively.
As in the case of definite Shimura curves over Q (cf. [4]), we have Hecke correspondence

tm on X for each monic polynomial m in A which satisfies
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Proposition 4.1. For i = 1, 2, ..., n,

tmei =

n∑
j=1

Bij(m)ej .

Here B(m) =
(
Bij(m)

)
1≤i,j≤n is the m-th Brandt matrix.

We point out that the Hecke correspondences are self-adjoint with respect to the Gross
height pairing.

Function field analogue of Eichler’s theory. Recall that an automorphic form f of Drinfeld
type for Γ0(N) is a C-valued function on Γ0(N)\GL2(k∞)/Γ∞k

×
∞ satisfying the harmonic

property in §2.1. We say f is a cusp form if for all g∞ ∈ GL2(k∞) and γ ∈ GL2(A),∫
A\k∞

f

(
γ

(
1 hγu

0 1

)
g∞

)
du = 0.

Here the Haar measure du is normalized so that
∫
A\k∞ 1 du = 1, and hγ is a generator of the

ideal of A which is maximal for the property that

γ

(
1 hγA

0 1

)
γ−1 ⊂ Γ0(N).

For each non-zero ideal N of A, the Petersson inner product on the C-vector space
S(Γ0(N)) of Drinfeld type cusp forms for Γ0(N) is a non-degenerate pairing

(f, g) :=

∫
G0(N)

f · g.

Here G0(N) = Γ0(N)\GL2(k∞)/Γ∞k
×
∞. The measure of each double coset [e] in G0(N) is

normalized to be
d([e]) :=

q − 1

2
· 1

#(StabΓ0(N)(e))
.

Definition 4.2. A Drinfeld type cusp form f for Γ0(N) is a new form if, with respect to
Petersson inner product, f is orthogonal to functions

g

((
d 0

0 1

)
g∞

)
for all Drinfeld type cusp form g for Γ0(M) where M | N and d | (N/M). We call f a
newform if f is also a Hecke eigenform.

Let Mnew(Γ0(N0)) := Snew(Γ0(N0) ⊕ CEN0 , where Snew(Γ0(N0) is the space of Drinfeld
type new forms and EN0 is an analogue of Eisenstein series with Fourier expansion given by:
for r ∈ Z and u ∈ k∞

EN0

(
πr∞ u

0 1

)
= q−r+2

 1

q2 − 1

∏
P |N0

(|P | − 1) +
∑

m∈A, monic
degm+2≤r

σN0
(m)

∑
ε∈F×q

ψ∞(εmu)

 .

Here σN0(m) is the divisor function σN0(m) :=
∑

m′|m, monic
(N0,m

′)=1

|m′|.

As in classical Eichler’s theory, one can establish an isomorphism (cf. [18] Theorem 2.5)

Mnew(Γ0(N0)) −→ Pic(X)⊗Z C
f 7−→ ef

such that Tmf 7→ tmef for all monic polynomials m in A, and < ef , ef >= 1 for each
newform f normalized so that the “first” Fourier coefficient f∗(2, 1) is one. Here the Tm are
Hecke operators on automorphic forms for Γ0(N0).
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4.2. The Shimura map Sh. Consider the definite Shimura curve X = X1,N− (i.e. N+ = 1
and N0 = N−). For any element e =

∑
i aiei ∈ Pic(X)⊗Z C, define

Θe :=
∑
i

aiΘi

where Θi are weight 3
2 function introduced in §2.2. For each a ∈ A− k2

∞, let

ea :=

n∑
i=1

 ∑
a=df2,f monic

hi(d)

2u(d)

 ei ∈ Pic(X)⊗Z Q.

From Proposition 2.2, the Fourier coefficients of Θe are

Θ∗e(r, λ) = q−
3
4 r· < e, e−λ >

for −λ 6= 0 ∈ A− k2
∞ with deg λ+ 2 ≤ r, and Θ∗e(r, 0) = q−

3
4 r · deg e/2.

Given any prime P of A, Proposition 3.4 and Proposition 4.1 tells us that

TP 2, 32
Θe = Θ(tP e).

Let M 3
2
(Γ

(1)
0 (N0)) be the space of weight 3

2 functions on the double coset space

k̃×∞
˜

Γ
(1)
0 (N0)

∖
G
/

Γ̃1
∞.

Since Pic(X)⊗ZC and the space Mnew(Γ0(N0)) of automorphic “new” forms of Drinfeld type
for Γ0(N0) are isomorphic Hecke modules, we have the following map

Sh : Mnew(Γ0(N0)) ∼= Pic(X)⊗Z C −→ M 3
2
(Γ

(1)
0 (N0))

f 7→ ef 7−→ Θef =: Sh(f)

such that for all prime P of A

Sh(TP f) = TP 2, 32
Sh(f).

This map Sh can be viewed as an analogue of Shimura correspondence. LetMnew(Γ0(N0))+

be the eigenspace of TP with eigenvalue 1 for P | N0, and letMnew(Γ0(N0))− ⊂ Snew(Γ0(N0))
be the orthogonal component (with respect to Petersson inner product). Then the kernel of
Sh contains the subspace Mnew(Γ0(N0))−.

For each f ∈ Mnew(Γ0(N0)), let ef ∈ Pic(X)⊗Z C be the corresponding divisor from the
Hecke module isomorphism as in §4.1. Then

q
3
4 r · Sh(f)∗(r, λ) =< ef , e−λ >

is independent of r, for −λ ∈ A− k2
∞ with deg λ+ 2 ≤ r. This value is denoted by m(f,−λ)

(i.e. the λ-th Fourier coefficient of the weight 3
2 function Sh(f))).

Suppose f is a normalized Drinfeld type newform for Γ0(N0). Let D be an irreducible
polynomial in A−k2

∞ satisfying
(
D
P

)
= −1 for all prime factors P of N0. Set the divisor ef,D

to be < ef , eD > ·ef . Summarizing, we have

Theorem 4.3. The Gross height < ef,D, ef,D > of the divisor ef,D is exactly m(f,D)2.
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4.3. Function field analogue of Waldspurger’s formula. Let N0 be a square-free ideal
of A with odd number `N0

of prime factors. To an automorphic cusp form f of Drinfeld type
for Γ0(N0) one can attach an L-series L(f, s): let m be an effective divisor of k written as
div(λ)0 + (r − deg λ)∞ for a nonzero polynomial λ (= λ(m)) in A, with

div(λ)0 :=
∑

finite prime P

ordP (λ)P.

Set

f∗(m) :=

∫
A\k∞

f

(
πr+2
∞ u

0 1

)
ψ∞(−λu)du = f∗(r + 2, λ).

The L-series L(f, s) attached to f is

L(f, s) :=
∑
m≥0

f∗(m)q− deg(m)s, Re s > 1.

Given a square-free D ∈ A− k2
∞. Let εD be the following quadratic character on divisors

of k:

εD(P ) =

(
D

P

)
and εD(∞) =

−1 if degD is even,

0 if degD is odd.

The twisted L-series of f by εD is:

L(f ⊗ εD, s) :=
∑
m≥0

f∗(m)εD(m)q− deg ms.

Note that L(f, s) and L(f ⊗ εD, s) have analytic continuation to s-plane with functional
equation for s 7→ −s (cf. [19] Chap. VII Theorem 2).

Suppose f is a normalized Drinfeld type newform for Γ0(N0) and TP f = f for all prime
factors P of N0. If D ∈ A−k2

∞ is irreducible and satisfies
(
D
P

)
= −1 for all prime P | N0, the

central critical value L(f, 0)L(f ⊗ εD, 0) can be expressed by the Gross height of ef,D times
a “period” constant related to f , N0, and D. More precisely, let

C(N0, f,D) := (q
(−1)degD−1

4 ) · (3− (−1)degD) · (f, f)

2 · |D| 12 · 4(`N0
−1)

.

Then
L(f, 0)L(f ⊗ εD, 0) = C(N0, f,D)· < ef,D, ef,D > .

This formula can be obtained by Rankin’s method (cf. [18] Theorem 3.3). Therefore Theorem
4.3 leads to our analogue of Waldspurger’s formula in Theorem 0.1:

Corollary 4.4. Let N0 be a square-free ideal of A with odd number `N0 of prime factors. Let
f be a normalized Drinfeld type newform for Γ0(N0). Suppose TP f = f for all prime factors
P of N0. Then for any irreducible polynomial D in A − k2

∞ with
(
D
P

)
= −1 for all prime

factors P of N0, we have

L(f, 0)L(f ⊗ εD, 0) = C(N0, f,D) ·m(f,D)2

Remark. Recall that for each prime P of A and f ∈Mnew(Γ0(N0)),

Sh(TP f) = TP 2, 32
Sh(f).

To know the dimension of the image of Sh, it suffices to determine which normalized newforms
f fixed by TP for all P | N0 satisfy Sh(f) 6= 0. By Corollary 4.4, Sh(f) 6= 0 if there exists
an irreducible polynomial D in A − k2

∞ such that
(
D
P

)
= −1 for all P | N0 and the central

critical value L(f, 0)L(f ⊗ εD, 0) is non-zero. Adapting methods in [5] Theorem 1, it can
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be shown that for each normalized newform f , it is always possible to choose an irreducible
polynomial D in A− k2

∞ so that(
D

P

)
= −1 for all P | N0 and L(f ⊗ εD, 0) 6= 0.

Therefore the condition reduces to L(f, 0) = 0 and we claim that the dimension of the image
of Sh is equal to the number of newforms f with L(f, 0) 6= 0 plus one (the image of “Eisenstein
series” EN0

).

4.4. Application to elliptic curves. Let E be an elliptic curve over a global function field
F . Mordell-Weil theorem tells us that the abelian group E(F ) of F -rational points of E is
finitely generated. The Birch and Swinnerton-Dyer conjecture is the following equality:

ords=1 L(E/F, s)
?
= rankZE(F ).

Here L(E/k, s) is the Hasse-Weil L-series of E over k. It is known that (cf. [13])

ords=1 L(E/F, s) ≥ rankZE(F ).

We focus on the case when E is defined over k. From the work of Weil, Jacquet-Langlands,
and Deligne, one knows that there exists an automorphic cusp form fE such that

L(E/k, s+ 1) = L(fE , s).

Suppose the conductor of E is N0∞ and E has split multiplicative reduction at∞. Then the
automorphic form fE is of Drinfeld type for Γ0(N0), which is a normalized newform (cf. [2]
§8.3).

Assume N0 is square-free with odd number of prime factors. Given an irreducible polyno-
mial D in A − k×∞ such that

(
D
P

)
= −1 for all prime factors P of N0 and let K = k(

√
D).

Then
L(E/K, s+ 1) = L(fE , s)L(fE ⊗ εD, s).

From Corollary 4.4 above, we have

Proposition 4.5. E(K) is a finite abelian group if m(fE , D) 6= 0.

Remark. 1. Let ED be the twist of E by D. Suppose the Weierstrass equation of E is
y2 = x3 + ax2 + bx + c where a, b, c ∈ k, then the Weierstrass equation of the twist ED is
y2 = x3 + aDx2 + bD2x + cD3. Note that E and ED are isomorphic over K via the map
(x, y) 7→ ( xD ,

y

D
√
D

), and
L(E/K, s) = L(E/k, s)L(ED/k, s).

Therefore when m(fE , D) 6= 0, the conjecture of Birch and Swinnerton-Dyer is true for E
and ED over k and so both of E(k) and ED(k) are finite abelian groups.

2. When m(fE , D) 6= 0, the special value of L(E/K, s) at s = 1 can be expressed in terms
of invariants of E:

L(E/K, 1) =
#
(
X(E/K)

)
· τ

#
(
E(K)tors

)2 .

Here X(E/K) is the Tate-Shafarevitch group of E/K, and τ is a Tamagawa number (an
analogue of period). Comparing this formula with our result, the constant m(fE , D) contains
information of #

(
X(E/K)

)
and #

(
E(K)tors

)
.

Note that the divisor efE is in Pic(X)⊗ZQ. Let cE be the minimal positive integer so that
cE · efE ∈ Pic(X). Then cE ·m(fE , D) ∈ Z. In the special case when N0 is a prime and E is
a strong Weil curve, let ẼN0

be the reduction of E at N0. Then c2E is equal to deg πE · εE ,
where εE is the number of components of ẼN0

and πE is the strong uniformization from the
Drinfeld modular curve X0(N0) to E. Also in this special case, the relation between the value
m(fE , D) and the cardinality of X(E/K) is given explicitly in [9] §4. We expect this should
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holds for general N0.

3. Note that E(K) ⊗Z Q is a Gal(K/k)-module. Let ι be the nontrivial element in
Gal(K/k). Then E(K)⊗ZQ decomposes to a direct sum of eigenspaces for ι with eigenvalues
±1. It is easy to see that E(k) ⊗Z Q is the eigenspace for ι with eigenvalue 1. From the
isomorphism (x, y) 7→ (Dx,D

√
Dy), we identify ED(k) ⊗Z Q with the eigenspace for ι with

eigenvalue −1. Hence

E(K)⊗Z Q = (E(k)⊗Z Q)⊕ (ED(k)⊗Z Q).

Assume further that E has split multiplicative reduction at all bad primes, i.e. fE is in
Mnew(Γ(N0))+. Then when m(fE , D) = 0, we have

ords=1 L(E/K, s) = ords=1 L(E/k, s) + ords=1 L(ED/k, s) ≥ 1.

Therefore if L(ED/k, 1) = L(fE ⊗ εD, 0) 6= 0, E should have a k-rational point of infinite
order according to Birch and Swinnerton-Dyer conjecture.
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