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Introduction

The purpose of this manuscript is to explore the Rankin triple product L-functions associated
to automorphic cusp forms of Drinfeld type. These automorphic forms can be viewed as function
field analogue of classical weight 2 modular forms (cf. [7] and [25]). Let N0 be a square-free ideal
of Fq[t] (with q odd). Let F = f1 ⊗ f2 ⊗ f3, where f1, f2, and f3 are normalized Drinfeld type
newforms for the congruence subgroup Γ0(N0) of GL2(Fq[t]). The Rankin triple product L-function
L(F, s) is defined by a convergent Euler product in the half-plane Re(s) > 5/2 (cf. §2). Following
idea of Piatetski-Shapiro and Rallis [16], we have a Garrett-type integral representation of L(F, s),
i.e. L(F, s) can be expressed essentially by an integral of F times the Eisenstein series associated
to a suitable section in the Siegel-parabolic induced representation of GSp3. From the functional
equation of Eisenstein series, we get (cf. Theorem 2.1):

L(F, s) = ε · q(2−s)·(5 degN0−11) · L(F, 4− s).
Here ε = ε(F ) = −

∏
prime P |N0

εP is called the root number, where εP = −cP (f1)cP (f2)cP (f3)

(∈ {±1}) and cP (fi) is the eigenvalue of the Hecke operator TP associated to fi.
The root number ε determines the parity of the vanishing order at the central critical point s = 2.

It is natural to study first the central critical value L(F, 2) when the root number ε is positive. The
main result of this article is the following analogue of Gross-Kudla formula:

Theorem 0.1. Let N0 be a square-free ideal of Fq[t] and let γN0
be the number of prime factors

of N0. Let F = f1 ⊗ f2 ⊗ f3, where fi is a normalized Drinfeld type newform for Γ0(N0) for each
i. Suppose the root number ε(F ) = 1. Let N−0 =

∏
εP=−1 P and N+

0 = N0/N
−
0 . Then the central

critical value L(F, 2) is equal to

(F, F )⊗3

q|N0|∞2γN0
−1 · < ∆F ,∆F >

⊗3 .

Here (F, F )⊗3 is the "Petersson norm" of F ; ∆F is the F -component of the "diagonal cycle" in
Pic(XN+

0 ,N
−
0

)⊗3; XN+
0 ,N

−
0

is the "definite" Shimura curve of type (N+
0 , N

−
0 ); and < ·, · >⊗3 is the

Gross height pairing on Pic(XN+
0 ,N

−
0

)⊗3.

Each object in the above formula is defined in §3.4. One ingredient in the proof is a Siegel-Weil
formula over function fields. This formula connects the Eisenstein series appearing in the integral
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representation of L(F, s) and theta series from the associated definite quaternion algebra B. By
strong multiplicity one theorem and Jacquet-Langlands correspondence between GL2 and B× (cf.
[24]), the integral representation of L(F, s) is then expressed in terms of the "periods" coming from
F and the Gross height of the corresponding cycle ∆F in the definite Shimura curves XN+

0 ,N
−
0
.

An immediate consequence from the above formula is that L(F, 2) is always non-negative, and the
Gross height of ∆F determines the non-vanishing of L(F, 2). In the case when the root number ε is
negative, the central critical derivative L′(F, 2) will be treated in a subsequent paper.

Let E be an elliptic curve over Fq(t) which is of conductor N0∞ and has split multiplicative
reduction at ∞. From the works of Weil, Jacquet-Langlands, and Deligne, it is well known that
there exists a normalized Drinfeld type newform fE for Γ0(N0) such that the Hasse-Weil L-function
L(E, s) is equal to L(fE , s− 1). Let FE = fE ⊗ fE ⊗ fE . Then we have

L(FE , s) = L(E, s− 1)2 · L(Sym3E, s),

where L(Sym3E, s) is the L-function associated to the symmetric cube representation Sym3E. The
works of Deligne [3] and Lafforgue [14] implies that L(Sym3E, s) is entire. Suppose the root number
ε(FE) is positive. Then the non-vanishing of the Gross height of ∆FE guarantees the non-vanishing
of L(E, 1). Note that the Gross height of ∆FE is only determined by the elliptic curve E. We
expect that, after further works, the value < ∆FE ,∆FE >

⊗3 could be interpreted geometrically by
the invariants of E.

The structure of this article is organized as follows. We set up the general notation in the first
section, and review basic facts about automorphic forms of Drinfeld type which are needed for our
purpose. The second section consists of analytic properties of the Rankin triple product L-functions
associated to Drinfeld type newforms with square-free level. The functional equation is formulated
in §2.1, and the proof is given at the end of §2 by using the local results in §2.2 and §2.3. In §3,
we establish the analogue of Gross-Kudla formula for the central critical value. After a brief review
of the Weil representation in §3.1, we recall the Siegel-Eisenstein series and state the Siegel-Weil
formula in §3.2. The central critical value L(F, 2) is then expressed as an integral of F times a
theta series in §3.3. In §3.4, we introduce a Hecke module homomorphism from the Picard group
of definite Shimura curves to the space of Drinfeld type automorphic forms. This homomorphism
relates the theta series to the diagonal cycle of the associated definite Shimura curve XN+

0 ,N
−
0
, which

leads us to the main result in Theorem 3.10. An application to the non-vanishing of Hasse-Weil
L-values associated to elliptic curves is given in §4. Finally, two examples from the elliptic curves is
given in §4.1.

1. Preliminary

In this section, we start with the general setting, and give a brief review of Drinfeld type auto-
morphic forms. For further details, we refer to Gekeler-Revesat [7], also Weil [27].

1.1. Notation. Let Fq be the finite field with q elements and the characteristic of Fq is denoted by
p. We always assume that p is odd. Let k be the rational function field Fq(t) with one variable t,
and denote by A the polynomial ring Fq[t]. We denote by ∞ the place of k at infinity, i.e. the place
corresponding to the degree valuation. Recall the degree valuation ord∞(a) of any element a in A is
−deg a. Let k∞ be the completion of k at ∞ and O∞ the valuation ring in k∞. Set π∞ to be t−1,
which is a uniformizer in O∞. Then O∞ = Fq[[π∞]] and k∞ = Fq((π∞)). For any element α ∈ k∞,
the absolute value |α|∞ := q− ord∞(α). We fix the following additive character ψ∞ from k∞ to C×:

ψ∞(
∑
i

aiπ
i
∞) := exp

(
2π
√
−1

p
TrFq/Fp(−a1)

)
.

1.2. Automorphic forms of Drinfeld type. Let K∞ be the Iwahori subgroup of GL2(O∞), i.e.

K∞ :=

{(
a b
c d

)
∈ GL2(O∞)

∣∣∣∣ c ≡ 0 mod π∞O∞

}
.
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For each non-zero ideal N of A, let

Γ0(N) :=

{(
a b
c d

)
∈ GL2(A)

∣∣∣∣ c ≡ 0 mod N

}
.

An automorphic form of Drinfeld type for Γ0(N) is a C-valued function f on the double coset space

Y0(N) := Γ0(N)\GL2(k∞)/Z(k∞)K∞
(where Z is the center of GL2) satisfying the so-called harmonic property: for g ∈ GL2(k∞),

f(g) + f

(
g

(
0 1
π∞ 0

))
= 0 and

∑
κ∈GL2(O∞)/K∞

f(gκ) = 0.

Let T∞ be the Bruhat-Tits tree corrsponding to the equivalent classes of rank 2 lattices in the
vector space k2

∞ (cf. [20] or [7] (1.3)). Then the double coset space Y0(N) can be identified with
the set of oriented edges in the quotient graph Γ0(N)\T∞. Under this identification, automorphic
forms of Drinfeld type for Γ0(N) are also called C-valued harmonic cochains on Γ0(N)\T∞ (cf. [7]
§3).

1.3. Petersson inner product. An automorphic form f of Drinfeld type for Γ0(N) is called a
cusp form if f is compactly supported modulo Z(k∞) · Γ0(N), i.e. f vanishes except for finitely
many double cosets in Y0(N). Suppose two Drinfeld type automorphic forms f1 and f2 for Γ0(N)
are given. If one of them is a cusp form, the Petersson inner product of f1 and f2 is

(f1, f2) :=

∫
Y0(N)

f1f2 =
∑

[g]∈Y0(N)

f1(g)f2(g)µ([g]).

Here the measure µ([g]) for each g ∈ GL2(k∞) is defined by

µ([g]) :=
q − 1

2
· 1

# (g−1Γ0(N)g ∩ K∞)
.

A Drinfeld type cusp form f for Γ0(N) is called an old form if f is a linear combination of the
forms

f ′
((

d 0
0 1

)
g∞

)
for g∞ ∈ GL2(k∞), where f ′ is a Drinfeld type cusp form for Γ0(M), M |N , M 6= N , and d|(N/M).
A Drinfeld type cusp form f for Γ0(N) is called a new form if f is orthogonal (with respect to the
Petersson inner product) to any old form for Γ0(N).

1.4. Fourier expansion and L-functions. Let f be an automorphic form of Drinfeld type for
Γ0(N). For r ∈ Z and u ∈ k∞, recall the Fourier expansion

f

(
πr∞ u
0 1

)
=
∑
λ∈A

f∗(r, λ)ψ∞(λu),

where

f∗(r, λ) =

∫
A\k∞

f

(
πr∞ u
0 1

)
ψ∞(−λu)du.

Note that f∗(r, λ) = f∗(r, ελ) for any ε ∈ F×q and f∗(r, λ) vanishes when deg λ > r + 2. If
deg λ ≤ r + 2, the harmonic property of f implies that f∗(r + 1, λ) = q−1 · f∗(r, λ).

Suppose f is a cusp form. The L-function associated to f is

L(f, s) := (1− q−(s+1))−1 ·
∑

m∈A, monic

f∗(degm+ 2,m)

|m|s∞
, Re(s) > 1.

This L-function can be extended to an entire function on C (which is in fact a polynomial in q−s).
Moreover,

L(f, s) = −q(3−degN)s · L(f ′,−s),
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where f ′ is the Drinfeld type cusp form for Γ0(N) defined by f ′(g) := f

((
0 1
N 0

)
g

)
.

1.5. Hecke operators. Let f be an automorphic form of Drinfeld type for Γ0(N). For each monic
irreducible polynomial P of A, the Hecke operator TP is defined by:

TP f(g) :=
∑

deg u<degP

f

1 u

0 P

 · g
+ µN (P ) · f

P 0

0 1

 · g
.

Here µN (P ) = 1 if P - N and 0 otherwise. It is clear that TP f still satisfies the harmonic property,
and the Fourier coefficients of TP f are of the form:

(TP f)∗(r, λ) = |P |∞ · f∗(r + degP, Pλ) + µN (P ) · f∗(r − degP, λ/P ).

Here f∗(πr∞, λ/P ) = 0 if P - λ. Note that TP and TP ′ commute to each other, we define the
Hecke operator Tm for each monic polynomial m in A as follows:{

Tmm′ = TmTm′ if m and m′ are relatively prime,
TP ` = TP `−1TP − µN (P ) · |P |∞TP `−2 .

Now, suppose f is a cusp form. We call f a Hecke eigenform if Tmf = cm(f) ·f where cm(f) ∈ C
for all monic polynomial m in A. In this case, we must have

cm(f) · f∗(2, 1) = |m|∞ · f∗(degm+ 2,m).

Since TP is self-adjoint with respect to the Petersson inner product for P - N , we have cP (f) ∈ R
for P - N . If f is normalized, i.e. f∗(2, 1) = 1, then L(f, s) can be written as the following Euler
product:

(1− q−(1+s))−1 ·
∏

monic irrducible P of A

(1− cP (f)|P |−(1+s)
∞ + µN (P )|P |1−2(1+s)

∞ )−1.

Suppose the Hecke eigenform f is a new form (called a newform). It is known for a newform f that:
(1) For P | N , cP (f) ∈ {±1} if P ‖ N and 0 otherwise. Therefore cm(f) ∈ R for all monic

polynomials m, which implies that f is an R-valued function if f is normalized.
(2) f ′ = εN (f) · f where εN (f) ∈ {±1}.
(3) For P - N , the quadratic polynomial X2− cP (f)X + |P |∞ has two complex conjugate roots

(i.e. cP satisfies the so-called Ramanujan bound: |cP (f)| ≤ 2|P |1/2∞ ).

1.6. Adelic language. For each place v of k, the completion of k at v is denoted by kv, and Ov
is the valuation ring in kv. We call v a finite place of k if v 6= ∞. For any finite place v, there
exists a unique monic irreducible polynomial Pv in A which is a uniformizer in Ov. We set πv := Pv
and Fv := Ov/πvOv. The cardinality of Fv is denoted by qv (which is equal to |Pv|∞). For each
α ∈ kv, |α|v := q

− ordv(α)
v . For the infinite place∞, we have chosen a uniformizer π∞ = t−1, and the

cardinality q∞ of the residue field F∞ := O∞/π∞O∞ is equal to q. The adele ring of k is denoted
by Ak, with the maximal compact subring

∏
v Ov =: OAk .

Consider the compact subgroup K0(N∞) :=
∏
v Kv of GL2(Ak), where for v = ∞, we have

defined K∞ in §1.2; for v - N∞, Kv := GL2(Ov); for v | N ,

Kv :=

{(
a b
c d

)
∈ GL2(Ov)

∣∣∣∣ c ≡ 0 mod πordv(N)
v Ov

}
.

The strong approximation theorm (cf. [23] Chapter III Theorem 4.3) tells that the natural map from
the double coset space Y0(N) to GL2(k)\GL2(Ak)/Z(Ak)K0(N∞) is a bijection. Therefore every
automorphic form f of Drinfeld type for Γ0(N) can be viewed as a function on the double coset
space GL2(k)\GL2(Ak)/Z(Ak)K0(N∞). The harmonic property of f is equivalent to say that (cf.
[7] §4) the space generated by fg(·) := f(·g) for all g ∈ GL2(k∞) is isomorphic (as a representation
of GL2(k∞)) to the special representation σ(| · |1/2∞ , | · |−1/2

∞ ).
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1.6.1. Whittaker functions. Fix the additive character ψ on Ak defined by ψ(a) :=
∏
v ψv(av) for

a = (av)v ∈ Ak, where for each place v of k,

ψv(av) := exp

(
2π
√
−1

p
TrFv/Fp

(
Resv(avdt)

))
.

For each Drinfeld type cusp form f for Γ0(N), the Whittaker function Wf associated to f is the
following function on GL2(Ak):

Wf (g) :=

∫
k\Ak

f

((
1 u
0 1

)
g

)
ψ(−u)du.

Here the Haar measure is normalized so that
∫
k\Ak 1 du = 1. The adelic version of the “Fourier

expansion” of f is

f(g) =
∑
α∈k×

Wf

((
α 0
0 1

)
g

)
∀g ∈ GL2(Ak).

Suppose f is a newform. Let Wf,v := Wf |GL2(kv). Then

Wf (g) =
∏
v

Wf,v(gv) ∀g = (gv)v ∈ GL2(Ak).

2. Rankin triple product

Let N0 be a square-free ideal of A. Given f1, f2, and f3 be three normalized Drinfeld type
newforms for Γ0(N0), let F = f1 ⊗ f2 ⊗ f3 be the function on GL2(k∞)3 defined by

F (g1, g2, g3) := f1(g1)f2(g2)f3(g3).

The triple product L-function L(F, s) associated to f1, f2, and f3 is the Euler product

L(F, s) := L∞(F, s) ·
∏

monic irreducible P in A

LP (F, s),

where each local factor is defined by the following:
(1) L∞(F, s) := (1− q−s)−1(1− q1−s)−2.
(2) For P | N0, we set εP := −cP (f1)cP (f2)cP (f3) ∈ {±1} and

LP (F, s) := (1 + εP |P |−s∞ )−1(1 + εP |P |1−s∞ )−2.

(3) For P - N0, let α
(1)
P,i and α

(2)
P,i be two complex conjugate roots of the quadratic polynomial

X2 − cP (fi)X + |P |∞. Then we set

LP (F, s) :=
∏

1≤j1,j2,j3≤2

(
1− α(j1)

P,1 α
(j2)
P,2 α

(j3)
P,3 |P |

−s
∞

)−1

.

The Ramanujan bound of cP (fi) implies that L(F, s) converges absolutely for Re(s) > 5/2. We
remark that the local L-factor Lv(F, s) for each place v is in fact the local L-function associated to
ρf1,v ⊗ ρf2,v ⊗ ρf3,v. Here for 1 ≤ i ≤ 3, ρfi,v is the Weil-Deligne representation corresponding to fi
at v via local Langlands correspondence (cf. [2] Chapter 7, 8).

We set ε∞ := −1. The root number of L(F, s) is, by definition, equal to ε := ε∞ ·
∏
P |N0

εP . Let
Λ(F, s) := q−8(s− 3

2 ) · L(F, s). Then

Theorem 2.1. The function Λ(F, s) can be extended to an entire function (in fact, a polynomial
in q−s), and satisfies the following functional equation:

Λ(F, s) = ε · (|N0|∞ · q)5·(2−s) · Λ(F, 4− s).
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Remark. The functional equation implies that L(F, s) is a polynomial in q−s of degree 5 degN0−11
and the constant coefficient is 1. Moreover,

ε = (−1)ords=2 L(F,s),

which means that the root number ε tells us the parity of the vanishing order of L(F, s) at s = 2.

The proof of Theorem 2.1 is in §2.3, by using the local results in §2.1 and §2.2.

2.1. Zeta integrals. Let G := GSp3, i.e. the set of R-points of G for any algebra R is

GSp3(R) :=

{
g ∈ GL6(R)

∣∣∣∣ tg · ( 0 I3
−I3 0

)
· g = `g ·

(
0 I3
−I3 0

)
for some `g ∈ R×

}
.

The center ZG of G consists of scalar matrices in GL6. There is a canonical embedding from

H := {(g1, g2, g3) ∈ (GL2)3 | det g1 = det g2 = det g3}
into G:

((
a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

)
,

(
a3 b3
c3 d3

))
7−→


a1 b1

a2 b2
a3 b3

c1 d1

c2 d2

c3 d3

 .

Let PG = NG ·MG be the Siegel parabolic subgroup of G, where the set of R-points of NG is

NG(R) :=

{
n(b) :=

(
I3 b
0 I3

) ∣∣∣∣ b = tb ∈ Mat3(R)

}
;

the set of R-points of MG is

MG(R) :=

{
m(a, `) :=

(
a 0
0 ` · ta−1

) ∣∣∣∣ a ∈ GL3(R), ` ∈ R×
}
.

Let KG := G(OAk). The Bruhat decomposition of G says that

G(Ak) = P (Ak) ·KG.

For s ∈ C, let IAk(s) be the representation of G(Ak) consisting of smooth functions Φ on G(Ak)
such that

Φ(n ·m(a, `) · g) = |det a|2s+2
A · |`|−3s−3

A Φ(g)

for all g ∈ G(Ak), n ∈ NG(Ak), andm(a, `) ∈MG(Ak). Here |α|A :=
∏
v |αv|v for all α = (αv) ∈ A×k .

Let φ be a function on KG such that

φ(n ·m(a, `) · g) = φ(g), for all g ∈ KG, n ∈ NG(OAk), m(a, `) ∈MG(OAk).

Then φ gives us a flat section Φφ, i.e. for each s ∈ C, φ can be extended uniquely to a function
Φφ(·, s) in IAk(s) such that Φφ |G(OAk ))= φ. We call Φ a meromorphic (respectively, holomorphic)
section if Φ is a linear combination of flat sections where the coefficients are rational functions in
q−s (respectively, the coefficients are in C[q−s, qs]).

Let Φ be a meromorphic section. The Eisenstein series E(Φ, s, ·) on G(Ak) is defined by:

E(Φ, s, g) :=
∑

γ∈PG(k)\G(k)

Φ(γ · g, s), ∀g ∈ G(Ak).

It is well-known that this series converges for Re(s) sufficiently large. Moreover, E(Φ, s, g) has a
meromorphic continuation in s ∈ C (in fact, a rational function in q−s, cf. [15] IV.1.12).

Definition 2.2. The (global) zeta integral associated to F and a meromorphic section Φ is:

Z(F,Φ, s) :=

∫
ZG(Ak)H(k)\H(Ak)

F (h) · E(Φ, s, h)dh.

Here F is viewed as a function on GL2(Ak)3, and the measure dh is induced from the Haar measure
on ZG(Ak)\H(Ak) normalized so that the volume of ZG(Ak)\ZG(Ak)H(OAk) is 1.



TRIPLE PRODUCT L-FUNCTIONS OVER FUNCTION FIELDS 7

Let U0 be the following algebraic subgroup of H:

U0 :=

{((
1 u1

0 1

)
,

(
1 u2

0 1

)
,

(
1 u3

0 1

))
∈ (GL2)3

∣∣∣∣ u1 + u2 + u3 = 0

}
.

Following Garrett and Harris [6], we choose a particular element

δ :=


1 1 1 −1 0 0
0 1 0 −1 1 0
0 0 1 −1 0 1
1 1 1 0 0 0
0 0 0 −1 1 0
0 0 0 −1 0 1

 ∈ GSp3 .

Then we have

Proposition 2.3. (cf. [16]) For Re(s) sufficiently large,

Z(F,Φ, s) = q−2 ·
∫
ZG(Ak)U0(Ak)\H(Ak)

WF (h) · Φ(δ · h, s)dh

where WF (h1, h2, h3) = Wf1(h1) ·Wf2(h2) ·Wf3(h3) for any h = (h1, h2, h3) ∈ H(Ak), and Wfi is
the Whittaker function associated to fi for 1 ≤ i ≤ 3 intoduced in §1.6.

For each place v of k, we set Iv(s) to be the space of smooth functions ϕ on G(kv) satisfying that

ϕ(nvm(av, `v)gv) = |det av|2s+2
v · |`v|−3s−3

v · ϕ(gv)

for all nv ∈ NG(kv),m(av, `v) ∈ MG(kv), gv ∈ G(kv). Let ΦφG(Ov)
(·, s) ∈ Iv(s) be the flat section

associated to φG(Ov) where φG(Ov) ≡ 1 on G(Ov). Then IAk(s) is the restricted tensor product
⊗′vIv(s) (w. r. t. {ΦφG(Ov)

}v). We call a meromorphic section Φ ∈ IAk(s) is a pure-tensor if Φ = ⊗vΦv
where for each v, Φv(·, s) ∈ Iv(s) is a meromorphic section, and Φv = ΦφG(Ov)

for almost all v.

Lemma 2.4. For any pure-tensor Φ = ⊗vΦv ∈ IAk(s), we have Z(F,Φ, s) = q−2 ·
∏
v Zv(F,Φv, s),

where

Zv(F,Φv, s) :=

∫
ZG(kv)U0(kv)\H(kv)

WF,v(hv)Φv(δhv, s)dhv

and WF,v(hv,1, hv,2, hv,3) := Wf1,v(hv,1)Wf2,v(hv,2)Wf3,v(hv,3).

2.2. Local factors. When v - N0∞, the conductor of the fixed additive character ψv is trivial.
Take φv = φG(Ov) where φG(Ov) ≡ 1 on G(Ov). Then (cf. [16] Theorem 3.1)

Zv(F,Φφv , s) =

∫
ZG(kv)U0(kv)\H(kv)

WF,v(hv) · Φφv (δhv, s)dhv =
1

bv(s)
· Lv(F, s+ 2)

where bv(s) := (1− q−2s−2
v )−1(1− q−4s−2

v )−1.

Now, suppose v | N0∞. Let K0(v) be the following compact subgroup in G(kv):

K0(v) :=

{(
A B
C D

)
∈ G(Ov)

∣∣∣∣ A,B,C,D ∈ Mat3(Ov) and C ≡ 0 mod πvOv

}
.

For 0 ≤ i ≤ 3, let

wi :=


I3−i 0 0 0

0 0 0 Ii
0 0 I3−i 0
0 −Ii 0 0

 .

Then the Iwasawa decomposition of G implies

G(Ov) =
∐

0≤i≤3

K0(v)wiK0(v).
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For 0 ≤ i ≤ 3, we set φ(i)
v to be the characteristic function of K0(v)wiK0(v) on G(Ov). Then∑

0≤i≤3

φ
(i)
v = φG(Ov). These four functions Φ

φ
(i)
v

(·, s), 0 ≤ i ≤ 3, form a basis for the space Iv(s)K0(v)

of K0(v)-fixed functions in Iv(s).

For each Φ ∈ Iv(s)K0(v), we define (ωvΦ)(g) := Φ(gηv), where

ηv :=

(
0 I3

−πvI3 0

)
∈ G(kv).

It is observed that ωvΦφ(i)
v

= q
(2i−3)(s+1)
v Φ

φ
(3−i)
v

. Set Φ̃
φ
(i)
v

(·, s) := q
−i(s+1)
v · Φ

φ
(i)
v

(·, s) ∈ Iv(s), then
one has ωvΦ̃φ(i)

v
= Φ̃

φ
(3−i)
v

. Note that

ΦφG(Ov)
=
∑

0≤i≤3

qi(s+1)
v · Φ̃

φ
(i)
v

and Φ′φG(Ov)
:= ωvΦφG(Ov)

=
∑

0≤i≤3

q(3−i)(s+1)
v · Φ̃

φ
(i)
v
.

We choose two more functions Φ±v (·, s) in Iv(s)K0(v) which are defined by

Φ±v (·, s) :=
∑

0≤i≤3

(±1)iΦ̃
φ
(i)
v

(·, s).

Then ωvΦ±v = ±Φ±v . Suppose s 6= −1. Then {ΦφG(Ov)
,Φ′φG(Ov)

,Φ±v } also form a basis of Iv(s)K0(v).
Next, we calculate the local zeta integral associated to these four functions.

For each hv ∈ H(kv), we have ωvWF,v(hv) := WF,v(hvηv) = εvWF,v(hv). Therefore

Zv(F, ωvΦ, s) = εvZv(F,Φ, s) ∀Φ ∈ Iv(s)K0(v).

This tells us that Zv(F,Φ−εvv , s) = 0. we also deduce that

Zv(F,ΦφG(Ov)
, s) = Zv(F,Φ

′
φG(Ov)

, s) = 0.

The remaining case is the zeta integral Zv(F,Φεvv , s). Since ωvΦ̃φ(i)
v

= Φ̃
φ
(3−i)
v

, we get

Zv(F,Φ
εv
v , s) = −2εvq

s+1
v · (1− εvq−(s+1)

v )2 · Zv(F, Φ̃φ(0)
v
, s).

Proposition 2.5. If v | N0∞, then we have

Zv(F,Φφ(0)
v
, s) = −q(1−s)δv

v · (qv + 1)−3 · q−2s−2
v · (1 + εvq

−s−2
v )−1 · (1 + εvq

−s−1
v )−2

where πδvv is the conductor of the additive character ψv.

Remark. The conductor of ψ∞ is not trivial. Hence this result is not covered by Proposition 4.2 in
[8]. We rework the proof here accordingly.

Proof. Let

U :=

{((
1 x1

0 1

)
,

(
1 x2

0 1

)
,

(
1 x3

0 1

))}
⊂ GL3

2

and

T :=

{((
a1 0
0 a−1

1

)
,

(
a2 0
0 a−1

2

)
,

(
a3 0
0 a−1

3

))}
⊂ GL3

2 .

Fix a place v | N0∞. Let KHv := G(Ov) ∩H(kv), and

H0
v := {h ∈ H(kv) : ordv(deth) is even}.

Then ZG(kv), U(kv), T (kv),KHv are subgroups in H0
v . Let d×z be the Haar measure on ZG(kv)

normalized such that vol(ZG(Ov)) = 1, du be the Haar measure on U(kv) normalized such that
vol(U(Ov)) = 1, d×a(= d×a1 · d×a2 · d×a3) be the Haar measure on T (kv) normalized such that
vol(T (Ov)) = 1, and dκ be the Haar measure on KHv such that vol(KHv ) = 1. Then d×z du

|a|2v
d×adκ
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is a Haar measure on H0
v , where |a|v := |a1a2a3|v. We can extend this measure to a Haar measure

on H(kv), as

H(kv) = H0
v ∪

(
πvI3 0

0 I3

)
H0
v .

Now, we embed kv into U(kv) by x 7→ u(x) :=

((
1 x
0 1

)
, I2, I2

)
. Then the invariant measure

dh on ZG(kv)U0(kv)\H0
v is

dh0 :=
1

|a|2v
dxd×adκ,

and on ZG(kv)U0(kv)\
(
πvI3 0

0 I3

)
H0
v is q2

vdh0. Hence Zv(F,Φφ(0)
v
, s) = Z1 + Z2, where

Z1 =

∫
ZG(kv)U0(kv)\H0

v

WF (h0)Φ
φ
(0)
v

(δh0, s)dh0,

and

Z2 = q2
v

∫
ZG(kv)U0(kv)\H0

v

WF

((
πvI3 0

0 I3

)
h0

)
Φ
φ
(0)
v

(
δ

(
πvI3 0

0 I3

)
h0, s

)
dh0.

Since Φ
φ
(0)
v

is right invariant by K0(v), Z1 is equal to

vol(K0(v) ∩H(kv)) ·
∑

κ∈KHv/K0(v)∩H(kv)

Z1(κ),

where
Z1(κ) :=

∫
(k×v )3

∫
kv

WF

(
u(x)aκ

)
Φ
φ
(0)
v

(
δu(x)aκ, s

) dx
|a|2v

d×a.

Choose the following coset representatives of KHv/K0(v) ∩H(kv):

1, κ(x1) :=

((
1 x1

0 1

)(
0 1
−1 0

)
, I2, I2

)
,

κ(x2) :=

(
I2,

(
1 x2

0 1

)(
0 1
−1 0

)
, I2

)
,

κ(x3) :=

(
I2, I2,

(
1 x3

0 1

)(
0 1
−1 0

))
∣∣∣∣∣ x1, x2, x3 ∈ Fv


.

When κ = 1,

Φ
φ
(0)
v

(δu(x)aκ, s) =

{
|a|2s+2

v · |x|−2s−2
v if |x|v > |ai|2v for 1 ≤ i ≤ 3,

0 otherwise.

We then deduce that Z1(1) is equal to

(−εv)δvq3δv
v (1− q−2s−2

v )−3(1− q−2s−4
v )−1

·
[
− qδv(2s+1)

v q−2s−2
v q(−6s−6)dδv/2e

v (1− q−2s−4
v )

+(1− q−1
v )q−6s−6

v q(−2s−4)dδv/2e
v

+(1− q−1
v )q−4s−5

v q(−2s−4)bδv/2c
v

]
When κ = κ(xi) for some xi ∈ Fv,

Φ
φ
(0)
v

(δu(x)aκ, s) =

{
|a|2s+2

v |ai|−2s−4
v if |ai|2v > |x+ a2

ixi|v and |ai|v > |aj |v for j 6= i,
0 otherwise.

Therefore we get

Z1(κ(xi)) = −q−1
v (−εv)δvq3δv

v q−4s−5
v (1− q−2s−2

v )−2(1− q−2s−4
v )−1 · q(−2s−4)bδv/2c

v .
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Since the volume vol(K0(v) ∩H(kv)) is (qv + 1)−3, Z1 is equal to

(−εv)δvq3δv
v (qv + 1)−3q−2s−2

v (1− q−2s−2
v )−3(1− q−2s−4

v )−1

·
[
− 3 · q−2s−3

v q(−2s−4)bδv/2c
v (1− q−2s−2

v ) + (−1)q(2s+1)δv
v q(−6s−6)dδv/2e

v (1− q−2s−4
v )

+(1− q−1
v )q−4s−4

v q(−2s−4)dδv/2e
v + (1− q−1

v )q−2s−3
v q(−2s−4)bδv/2c

v

]
Next, we consider Z2. It is clear that

Φ
φ
(0)
v

(
δ

(
πvI3 0

0 I3

)
h0, s

)
= q−s−1

v Φ
φ
(0)
v

(δh0, s).

Note that b(δv − 1)/2c = bδv/2c − 1+(−1)δv

2 . By the same argument, we obtain that Z2 is equal to

(−εv)δvq3δv
v (qv + 1)−3q−2s−2

v (1− q−2s−2
v )−3(1− q−2s−4

v )−1q(−2s−4)bδv/2c
v

·
(
(−εv)q−3

v · q−s−1
v · q2

v · q
(2s+4)(

1+(−1)δv

2 )
v

)
·
[
− 2q−2s−3

v + q−2s−4
v

(
q

(−4s−5)(
1+(−1)δv

2 )
v − 1

)
+ q−4s−4

v q
(−2s−4)(

1+(−1)δv

2 )
v

+q−4s−5
v

(
3− q(−2s−4)(

1+(−1)δv

2 )
v

)
− q(−4s−5)(

1+(−1)δv

2 )
v

]
.

Therefore

Z1 + Z2 = −(qv + 1)−3q(1−s)δv
v q−2s−2

v (1 + εvq
−s−2
v )−1(1 + εvq

−s−1
v )−2

where πδvv is the conductor of the additive character ψv, which is the desired conclusion. �

For v | N0∞, let

ξv(s) := 2εv(qv + 1)−3 · q−s−1
v · (1− εvq−s−1

v )2 · bv(s).
Moreover, we set b(s) :=

∏
v bv(s), and b

∗(s) := q−6s−4 · b(s). Then one has

Corollary 2.6. (1) When v | N0∞,

Zv(F,Φ
εv
v , s) = q(1−s)δv

v · ξv(s) ·
1

bv(s)
· Lv(F, s+ 2),

where πδvv is the conductor of the additive character ψv.
(2) Take Φ\ = ⊗vΦ\v ∈ IAk(s), where{

Φ\v = ΦφG(Ov)
for v - N0∞;

Φ\v := ξv(s)
−1 · Φεvv for v | N0∞.

Then
Z(F,Φ\, s) = q−2 · q−2s+2 · 1

b(s)
· L(F, s+ 2) =

1

b∗(s)
Λ(F, s+ 2).

Proof. For v - N0∞, we have mentioned that

Zv(F,ΦφG(Ov)
, s) =

1

bv(s)
· Lv(F, s+ 2).

Therefore (2) follows from Proposition 2.3, Lemma 2.4 and (1). For v | N0∞, recall that

Zv(F,Φ
εv
v , s) = −2εvq

s+1
v · (1− εvq−(s+1)

v )2 · Zv(F, Φ̃φ(0)
v
, s).

Therefore (1) follows from Proposition 2.5. �

Remark. We point out that the zeta integral Z(F,Φ\, s) can be extended to a rational function
in q−s. Thus the above corollary gives us immediately the meromorphic continuation of L(F, s).
In fact, by the main theorem of [10], the triple product L-fucntion L(F, s) is entire. In the next
subsection, we shall give the functional equation of L(F, s).
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2.3. Intertwining operator M(s) and the functional equation. For Re(s) > 1, the global
intertwining operator M(s) : IAk(s)→ IAk(−s) is given by the following integral

M(s)Φ(g) :=

∫
NG(Ak)

Φ(w3ng)dn.

The Haar measure dn is normalized so that vol(NG(k)\NG(Ak)) = 1. It is known that (cf. [16]
§4) this integral operator has a meromorphic continuation to the whole s-plane, and it gives the
following functional equation of the Eisenstein series E(Φ, s, g) (cf. [15] IV.1.10):

E(Φ, s, g) = E(M(s)Φ,−s, g).

Replacing Φ by the function Φ\ in Corollary 2.6 (2), the above functional equation implies

Z(F,Φ\, s) = Z(F,M(s)Φ\,−s).
Since Φ\ = ⊗vΦ\v where Φ\v ∈ Iv(s), it is clear that for Re(s) > 1, M(s)Φ\ = ⊗vMv(s)Φ

\
v where

Mv(s) : Iv(s)→ Iv(−s) is defined by

Mv(s)Φv(gv) =

∫
NG(kv)

Φv(w3nvgv)dnv, ∀Φv ∈ Iv(s).

For each place v, the Haar measure dnv can be normalized so that vol(NG(Ov)) = q3δv
v .

For each place v of k, let av(s) := (1 − q−2s+1
v )−1 · (1 − q−4s+1

v )−1. Note that for v - N0∞,
Φ\v = ΦφG(Ov)

. Hence (cf. [16] §4)

MvΦ
\
v(s) =

av(s)

bv(s)
Φ\v(−s).

Since Mv is G(kv) intertwining, it carries Iv(s)K0(v) to Iv(−s)K0(v). Thus when v | N0∞,

Zv(F,Mv(s)Φ
εv
v ,−s) = αv(s) · Zv(F,Φεvv ,−s)

where αv(s) is a meromorphic function. By the same argument in [8] Proposition 5.1, one gets

Proposition 2.7. When v | N0∞,

αv(s) = εv · q3δv · q−3s−2
v · (1− εvq−s−1

v )2(1 + εvq
1−s
v )(1 + q1−2s

v )

(1− εvq1−s
v )(1− q1−4s

v )
,

where πδvv is the conductor of the additive character ψv.

For each place v of k, we set

ηv(s) :=

1 if v - N0∞;

q−3δv
v · ξv(−s)

ξv(s)
· bv(s)
av(s)

· αv(s) = εvq
−5s
v if v | N0∞.

Then

Corollary 2.8. For each place v of k, we have

Zv(F,Mv(s)Φ
\
v,−s) = q3δv

v · ηv(s) ·
av(s)

bv(s)
Zv(F,Φ

\
v,−s).

Proof of Theorem 2.1. The remark at the end of §2.2 has already told us that Λ(F, s) can be
extended to a polynomial in q−s. Let η(s) :=

∏
v|N0∞ ηv(s) (which is equal to ε · (|N0|∞q)−5s) and

a(s) :=
∏
v av(s). By Corollary 2.6 and 2.8, we obtain that

1

b∗(s)
Λ(F, s+ 2) = q6 · δ(s) · a(s)

b(s)

1

b∗(−s)
Λ(F,−s+ 2).

Let ζ∗k(s) := q−s
∏
v(1− q−sv )−1. Then the functional equation ζ∗k(s) = ζ∗k(1− s) implies that

q6 · a(s)

b(s)
· 1

b∗(−s)
=

1

b∗(s)
.
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Therefore we get the functional equation of Λ(F, s) in Theorem 2.1:

Λ(F, s+ 2) = δ(s) · Λ(F,−s+ 2) = ε · (|N0|∞q)−5s · Λ(F,−s+ 2).

�

3. Function field analogue of Gross-Kudla formula

From now on, we assume the root number ε is positive, i.e. L(F, s) does not vanish automatically
at s = 2. In this section, we explore the central critical value L(F, 2) and present an analogue of
Gross-Kudla formula.

3.1. Weil representation. For convenience, we set εv = 1 for v - N0∞. Let S be the set consisting
of the places v of k such that εv = −1. Then the cardinality of S is even. Let B be the unique
quaternion algebra over k which is ramified at the places in S and unramified elsewhere. Let (V,QV )
be the quadratic space (B,NrB) over k where NrB = Nr is the reduced norm form on B. For x, y in
V , the bilinear form < x, y >V associated to QV is TrB(xȳ), where TrB = Tr is the reduced trace
on B and ȳ := Tr(y)− y is the main involution of B. We denote by O(V ) the orthogonal group of
V . Let G1 := Sp3, i.e. the following algebraic subgroup of G:{

g ∈ GL6

∣∣∣∣ tg · ( 0 I3
−I3 0

)
· g =

(
0 I3
−I3 0

)}
.

For each place v of k, we have fixed an additive character ψv on kv in §1.6. Let V (kv) := V ⊗k kv
and let S(V (kv)) be the space of Schwartz functions on V (kv), i.e. the space of functions on V (kv)
which are locally constant and compactly supported. The (local) Weil representation ωv(= ωv,ψv )
of G1(kv)×O(V )(kv) on the space

S(V (kv))⊗C S(V (kv))⊗C S(V (kv)) = S(V (kv)
3)

is defined by the following: for ϕ = ϕ1 ⊗ ϕ2 ⊗ ϕ3 ∈ S(V (kv)
3) and x = (x1, x2, x3) ∈ V (kv)

3,

(ωv(h)ϕ)(x) := ϕ(h−1x1, h
−1x2, h

−1x3), ∀h ∈ O(V )(kv), ;(
ωv

(
a 0
0 ta−1

)
ϕ

)
(x) := |det a|2v · ϕ((x1, x2, x3) · a), ∀a ∈ GL3(kv);(

ωv

(
I3 b
0 I3

)
ϕ

)
(x) := ψv

(
Tr
(
b ·Q(x)

))
· ϕ(x), ∀b = tb ∈ Mat3(kv);

ωv(wi)ϕ := (εv)
i · ϕ1 ⊗ · · · ⊗ ϕ3−i ⊗ ϕ̂3−i+1 ⊗ · · · ⊗ ϕ̂3, 0 ≤ i ≤ 3.

Here Q(x) is the 3-by-3 matrix whose (i, j)-entry is 1
2 < xi, xj >V ; and ϕ̂i is the Fourier transform

of ϕi (with respect to ψv)

ϕ̂i(xi) :=

∫
V (kv)

ϕi(y)ψv(< xi, y >V )dy.

The Haar measure dy is chosen to be self dual, i.e. ̂̂ϕi(xi) = ϕi(−xi). Let V (Ak) := V ⊗k Ak
and let S(V (Ak)) be the space of Schwartz functions on V (Ak). Then we have the (global) Weil
representation ω = ⊗vωv of G1(Ak)×O(V )(Ak) on the space

S(V (Ak))⊗C S(V (Ak))⊗C S(V (Ak)) = S(V (Ak)3).

Let N−0 be the product of primes P of A with εP = −1, and N+
0 := N0/N

−
0 . Let R be an Eichler

A-order of B of type (N+
0 , N

−
0 ), i.e. for each finite place v, Rv := R ⊗A Ov is a maximal Ov-order

in Bv := B ⊗k kv if v - N+
0 ; and

Rv ∼=
{(

a b
c d

)
∈ GL2(Ov)

∣∣∣∣ c ≡ 0 mod N+
0 Ov

}
if v | N+

0 .

Let ϕ = ⊗vϕv be the Schwartz function in S(V (Ak)) where for each v 6=∞,

ϕv = the characteristic function of Rv;
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ϕ∞ = the characteristic function of π∞OB∞ ,

where OB∞ is the maximal O∞-order in B∞ := B ⊗k k∞. Let

ϕ̃ := ϕ⊗ ϕ⊗ ϕ ∈ S(V (Ak)3).

For s ∈ C, g = nm(a, `)κ ∈ GSp3(Ak) where n ∈ NG(Ak), m(a, `) ∈MG(Ak), κ ∈ KG. We define

Φϕ̃(g, s) := |`|−3s−3
Ak · | det a|2sAk · (ω(g1)ϕ̃)(0)

where g1 :=

(
I3 0
0 `−1I3

)
· g. Although the expression of g as nm(a, `)κ is not unique, |`|Ak and

|det a|Ak is uniquely determined by g. Therefore Φϕ̃(g, s) is well-defined. It is clear that Φϕ̃(·, s) is
in IAk(s), and Φϕ̃ = ⊗vΦϕ̃v with Φϕ̃v ∈ Iv(s).

Proposition 3.1. (1) Suppose v - N0∞. Then for g ∈ G(kv), we have

Φϕ̃v (g, 0) = ΦφG(Ov)
(g, 0).

(2) If v | N0∞, we get
Φϕ̃v (g, 0) = Φεvv (g, 0).

Here ΦφG(Ov)
and Φεvv are introduced in §2.2.

Proof. Recall that ΦφG(Ov)
and Φεvv are in Iv(s)K0(v), and ΦφG(Ov)

(wi, s) = 1, Φεvv (wi, s) = εivq
−i(s+1)
v .

It is easy to check that

Lemma 3.2. (1) For each place v 6=∞,

ϕ̂v =

{
q−1
v · characteristic function of Π−1

v Rv if v | N0,
ϕv if v - N0.

Here when v | N−0 , Πv is a generator of the maximal ideal of Rv; when v | N+
0 , Πv is the element

of Rv corresponding to
(

0 1
πv 0

)
.

(2)

ϕ̂∞ = q−1
∞ · characteristic function of Π−1

∞ π∞OB∞ .

Here Π∞ is a generator of the maximal ideal of OB∞ .

For each function φv ∈ S(V (kv)
3) with φv = φv,1 ⊗ φv,2 ⊗ φv,3, we have that for 0 ≤ i ≤ 3,

ω(wi)φv = εiv · φv,1 ⊗ · · · ⊗ ϕv,3−i ⊗ φ̂v,3−i+1 ⊗ · · · φ̂v,3.

Therefore by Lemma 3.2, Φϕ̃v (wi, 0) = ω(wi)ϕ̃v(0) = εiv · νiv, where νv := q−1
v if v | N0 and 1

otherwise. Moreover, it is observed that Φϕ̃ is in Iv(s)K0(v). Therefore the proposition holds. �

3.2. Siegel-Eisenstein series. The Siegel-Eisenstein series associated to ϕ̃ is the Eisenstein series
E(g, s,Φϕ̃) on GSp3(Ak) associated to the section Φϕ̃. Let

ξ(s) :=
∏

v|N0∞

ξv(s)

where ξv(s) is the rational function in q−s defined in §2.2. Then by Proposition 3.1, we have

Proposition 3.3.
E(g, s,Φ\)|s=0 = ξ(0)−1 · E(g, s,Φϕ̃)|s=0.

For each g1 ∈ G1(Ak) and h ∈ O(V )(Ak), the theta series

θ(g1, r, ϕ̃) :=
∑

x∈V (k)3

(ω(g1)ϕ̃)(r−1x)
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is left G1(k) invariant as a function of g1 ∈ G1(Ak) and left O(V )(k) invariant as a function of
r ∈ O(V )(Ak). We define

I(g1, ϕ̃) :=

∫
O(V )(k)\O(V )(Ak)

θ(g1, r, ϕ̃)dr.

This integral is absolutely convergent, as O(V )(k)\O(V )(Ak) is compact. We normalized the mea-
sure dr so that the total mass is 1. Then the following result, which is called the Siegel-Weil formula
for the quadratic space V and Sp3, connects the Siegel-Eisenstein series associated to E(g1, s,Φϕ̃)
and I(g1, ϕ̃):

Theorem 3.4. For every element g1 ∈ G1(Ak), we have

E(g1, s,Φϕ̃)|s=0 = 2 · I(g1, ϕ̃).

This result follows from arguments similar to that given in Kudla-Rallis [13], details will be shown
in a forthcoming paper [26].

Recall that from Corollary 2.8 (2) and Proposition 3.3, one has

L(F, 2) = b(0) · ξ(0)−1 ·
∫
ZG(Ak)H(k)\H(Ak)

F (h)
(
E(h, s,Φϕ̃)|s=0

)
dh.

Moreover, the strong approximation theorem for GL2 and Theorem 3.4 tell us that

Proposition 3.5.

L(F, 2) =
b(0)ξ(0)−1

2
∏
v|N0∞(qv + 1)3

·
∑

[h]∈
(

Γ
(1)
0 (N0)\ SL2(k∞)/K(1)

∞

)3 F (h)I(h, ϕ̃)µ0([h]),

where

µ0([h]) :=
∏

1≤i≤3

2

#(h−1
i Γ

(1)
0 (N0)hi ∩ K∞)

, ∀h = (h1, h2, h3) ∈ SL2(k∞)3.

Here K∞ is introduced in §1.2 and Γ
(1)
0 (N0) = Γ0(N0) ∩ SL2(A), K(1)

∞ := K∞ ∩ SL2(k∞).

3.3. Theta series. Recall that R is a fixed Eichler A-order of type (N+
0 , N

−
0 ) in the definite quater-

nion algebra B over k. Let I1, ..., In be representatives of locally-free right ideal classes of R. For
1 ≤ i, j ≤ n, let Nij ∈ k× be the monic generator of the fractional ideal

< Nr(b) : b ∈ IiI−1
j >A .

The theta series θij associated to IiI−1
j is a function on k×∞ × k∞ defined by:

θij(y, x) :=
∑

b∈IiI−1
j

1O∞

(
Nr(b)

Nij
yt2
)
ψ∞

(
Nr(b)

Nij
x

)
, ∀(y, x) ∈ k×∞ × k∞.

Here 1O∞ is the characteristic function of O∞. It is known that (cf. [24] §2.1.1) θij can be extended
to a function θ̃ij on Y(1)

0 (N0) := Γ
(1)
0 (N0)\GL2(k∞)/Z(k∞)K∞ by setting

θ̃ij

(
y x
0 1

)
:= |y|∞ · θij(y, x).

Moreover, θ̃ij are harmonic, i.e. for g ∈ GL2(k∞),

θ̃ij

(
g

(
0 1
π∞ 0

))
= −θ̃ij(g) and

∑
γ∞∈GL2(O∞)/K∞

θ̃ij(gγ∞) = 0.

For 1 ≤ i ≤ n, let Ri be the left order of Ii and wi := #(R×i /F×q ). We have
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Proposition 3.6. For hi =

(
yi y−1

i xi
0 y−1

i

)
where yi ∈ k×∞ and xi ∈ k∞, 1 ≤ i ≤ 3,

I
(
(h1, h2, h3), ϕ̃

)
=

(
n∑
i=1

1

wi

)−2

·

 ∑
1≤i,j≤n

1

wiwj
θ̃ij(h1)θ̃ij(h2)θ̃ij(h3)

 .

Proof. Set A0
k :=

∏′
v 6=∞ kv, the finite adele ring of k. Let R̂ :=

∏
v R ⊗A Ov, and B̂ := B ⊗k A0

k.
The double coset space B×\B̂×/R̂× is conanically identified with the set of right ideal classes of R.
Here B is embedded into B̂ diagonally. More precisely, let b1, ..., bn ∈ B̂× be representatives of the
double cosets. Then I1, ..., In, where Ii := B ∩ biR̂ are representatives of right ideal classes of R.

Write B̂× as
n∐
i=1

B×biR̂
×. We can choose bi such that Nr(bi) = 1, as the reduced norm map

from B to k is surjective. Take ε ∈ B× such that Nr(ε) ∈ F×q − (F×q )2 and γ ∈ R̂× such that
Nr(γ) = Nr(ε)−1. Let

B×∞,+ := {b ∈ B×∞ = (B ⊗k k∞)× : Nr(b) is monic with respect to π∞}.
Then

B×B×∞,+(1, bi)R̂
× = B×B×∞,+(1, εbiγ)R̂× ⇔ R×i = B× ∩ biR̂×b−1

i = F×q2 .

Here we embedded B into BAk diagonally, (1, bi) and (1, εbiγ) are elements in B×∞ × B̂× = B×Ak .
Therefore

B×Ak =
∐
i,νi

B×B×∞,+(1, b
(νi)
i )R̂×

where

νi ∈

{
{1} if R×i ∼= F×q2 ,
{1, 2} if R×i ∼= F×q ,

b
(1)
i = bi, b

(2)
i = εbiγ. Moreover,

Γνii := B× ∩
(
B×∞,+ × b

(νi)
i R̂×(b

(νi)
i )−1

)
=

{
{α ∈ F×q2 : Nr(α) = 1} if R×i ∼= F×q2 ,
{±1} if R×i ∼= F×q .

Let M be the algebraic group defined over k whose S-points for every k-algebra S are

{(b1, b2) ∈ (B ⊗k S)× × (B ⊗k S)× : Nr(b1) = Nr(b2)}.
Then we have

Lemma 3.7.
M(Ak) =

∐
i,j,νi,νj

M(k)M(k∞)+m
(νi,νj)
i,j KM

where M(k∞)+ := M(k∞)∩(B×∞,+×B×∞,+), m(νi,νj)
i,j := ((1, b

(νi)
i ), (1, b

(νj)
j )), and the compact group

KM := M(A0
k) ∩ (R̂× × R̂×). Moreover,

Γ
(νi,νj)
i,j := M(k) ∩

(
M(k∞)+ ×m

(νi,νj)
i,j KM (m

(νi,νj)
i,j )−1

)
= Γ

(νi)
i × Γ

(νj)
j .

We define an involution τ : M →M by

τ(β1, β2) 7−→ (β2 ·Nr(β2)−1, β1 ·Nr(β1)−1).

There is then a surjective homomorphism ρ : Mo < τ >−→ O(V ) where for each x ∈ V = B,

ρ(β1, β2)(x) := β1xβ
−1
2 ; τ(x) := x̄ = Tr(x)− x.

This yields the following exact sequence

0 −→ ZM −→Mo < τ >−→ O(V ) −→ 0,

where ZM the algebraic subgroup of M whose S-points are {(z, z) ∈ S××S×}. This exact sequence
is an extension of the isomorphism M/ZM ∼= SO(V ) by the involution τ .
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For each place v of k, let τv : M(kv) → M(kv) be the involution which extends τ . Let
C := C∞ × C0, where C∞ :=< τ∞ > and C0 :=

∏
v 6=∞ < τv >. We note that KM is pre-

served by the action of elements in C0. The homomorphism ρ injects C into O(V )(Ak), and C is
compact with respect to the relative topology.

Now, we fix a measure ofM(Ak)oC as follows. First, we normalize the Haar measure onM(A0
k)

for which KM has volume 1. On M(k∞), we fix the Haar measure for which M(k∞)+/ZM (k∞)+

has volume 1. Here ZM (k∞)+ := ZM (k∞) ∩M(k∞)+. Finally, we normalize the measure on the
compact group C to have volume 1. The homomorphism ρ induces a map

ZM (k∞)+M(k)\M(Ak) o C −→ O(V )(Ak),

and the measure on M(Ak) o C induces an invariant measure d′r on O(V )(Ak). In particular, the
volume of (O(V )(k)\O(V )(Ak) with respect to d′r is equal to the volume of ZM (k∞)+M(k)\M(Ak),
which is ∑

i,j,νi,νj

1

w
(νi,νj)
i,j

.

Here w(νi,νj)
i,j := #(Γ

(νi,νj)
i,j ). This is from Lemma 3.9, and the volume of M(k)M(k∞)+m

(νi,νj)
i,j KM

in ZM (k∞)+M(k)\M(Ak) with respect to d′r is 1

w
(νi,νj)

i,j

. Let w(νi)
i := #(Γ

(νi)
i ). Then we have

∑
νi

1

w
(νi)
i

=
1

wi

where wi = #(R×i /F×q ). Therefore the volume of (O(V )(k)\O(V )(Ak) with respect to d′r is ∑
1≤i≤n

1

wi

2

.

Note that the function ϕ̃ is invariant under KM , C, and M(k∞)+. So for g1 ∈ G1(Ak),

I(g1, ϕ̃) =

(
n∑
i=1

1

wi

)−2

·
∫
O(V )(k)\O(V )(Ak)

θ(g1, r, ϕ̃)d′r

=

(
n∑
i=1

1

wi

)−2

·
∫
ZM (k∞)+M(k)\M(Ak)

θ(g1, ρ(m), ϕ̃)dm

=

(
n∑
i=1

1

wi

)−2

·

 ∑
i,j,νi,νj

1

w
(νi)
i w

(νj)
j

· θ(g1, ρ(m
(νi,νj)
i,j ), ϕ̃)

 .

Suppose g1 = (h1, h2, h3), where h` =

(
y` y−1

` x`
0 y−1

`

)
=

(
1 x`
0 1

)(
y` 0
0 y−1

`

)
with y` ∈ k×∞ and

x` ∈ k∞ for 1 ≤ ` ≤ 3. We have

θ(g1, ρ(m
(νi,νj)
i,j ), ϕ̃)

= |y1y2y3|2∞
∑

(β1,β2,β3)∈(B∩biR̂b−1
j )3

 ∏
1≤`≤3

1π∞OB∞ (y`βi)ψ∞(Nr(βi)x`)


= θ̃ij(h1) · θ̃ij(h2) · θ̃ij(h3),

which is independent of (νi, νj). This completes the proof. �
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Let θ̃ :=
∑

1≤i,j≤n

1
wiwj

θ̃ij ⊗ θ̃ij ⊗ θ̃ij , which is a function on
(
Y(1)

0 (N0)
)3. The harmonic property

of θ̃ij and fi leads to

L(F, 2) =
b(0)ξ(0)−1

2
∏
v|N0∞(qv + 1)3

· 1

23
·

(
n∑
i=1

1

wi

)−2

·
∑

[h]∈
(
Y(1)

0 (N0)
)3 F (h)θ̃(h)µ0([h]).

For h ∈ GL2(k∞) and 1 ≤ i, j ≤ n, we define

Θij(h) :=
q2

q − 1
·
∑
α∈F×q

θ̃ij

((
α 0
0 1

)
h

)
.

Then Θij are Q-valued Drinfeld type automorphic forms for Γ0(N0). Set

Θ̃ :=
∑

1≤i,j≤n

1

wiwj
Θij ⊗Θij ⊗Θij .

Then Θ̃ is a function on
(
Y0(N0)

)3 and

L(F, 2) =
b(0)ξ(0)−1

2
∏
v|N0∞(qv + 1)3

· 1

23
·

(
n∑
i=1

1

wi

)−2

· 26

q6
·

∑
[h]∈
(
Y0(N0)

)3 F (h)Θ̃(h)µ1([h])

where for h = (h1, h2, h3) ∈ GL2(k∞)3, µ1([h]) := µ([h1]) · µ([h2]) · µ([h3]) and the measure µ on
Y0(N0) is introduced in §1.3. Note that

b(0) =

(
q3

(q2 − 1)(q − 1)

)2

, ξ(0)−1 =
∏

v|N0∞

(qv + 1)3(q2
v − 1)2

2qv(qv − εv)2
,

and the mass formula (cf. [4] §1) gives
n∑
i=1

1

wi
=

∏
v|N0

(qv + εv)

q2 − 1
.

Let γN0 be the number of prime factors of N0. We get

Proposition 3.8. The central critical value L(F, 2) is equal to
1

q · |N0|∞ · 2γN0
−1 ·

∑
[h]∈
(
Y0(N0)

)3 F (h)Θ̃(h)µ1([h]).

3.4. Gross-Kudla type formula.

3.4.1. Definite Shimura curves. We start with a brief review of basic properties of definite Shimura
curves. Further details are referred to [24]. Recall that B is the definite quaternion algebra over
k which is only ramified at places v of k with εv = −1, and R is a chosen Eichler A-order of type
(N+

0 , N
−
0 ). Let Y be the genus zero curve defined over k whose M -points for any k-algebra M are

Y (M) = {x ∈ B ⊗M : x 6= 0,Tr(x) = Nr(x) = 0}/M×.

The group B× acts on Y (from the right) by conjugation. We define the definite Shimura curves

XN+
0 ,N

−
0

:=
(
R̂×\B̂× × Y

)
/B×,

where B̂ := B ⊗k A0
k (A0

k is the finite adele ring of k) and R̂ :=
∏
P RP .

We have also chosen representatives I1, ..., In of locally-free right ideal classes of R, and Ri is the
left order of Ii. Then I−1

i , ..., I−1
n are representatives of left ideal classes of R, and Ri is the right
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order of I−1
i . Then XN+

0 ,N
−
0

is in fact the disjoint union
∐n
i=1Xi, where Xi := Y/R×i . Since Xi has

genus zero for each i, we have

Pic(XN+
0 ,N

−
0

) =

n⊕
i=1

Zei,

where the divisor class ei corresponds to the component Xi.

For each monic polynomial m in A and 1 ≤ i, j ≤ n, set

Bij(m) :=
#{b ∈ IjI−1

i : (Nr(b)
Nij

) = (m)}
(q − 1)wj

∈ Z≥0

where wj = #(R×j /F×q ) and Nij is the monic generator of the fractional ideal generated by Nr(b)

for b ∈ IjI−1
i . Then for any monic m ∈ A with (m,N0) = 1, the Hecke correspondence tm acting

on XN+
0 ,N

−
0

is expressed by

tmei =

n∑
i=1

Bij(m)ej .

The so-called Gross height pairing < ·, · > on Pic(XN+
0 ,N

−
0

) is defined by setting

< ei, ej >:=

{
0 if i 6= j,
wi if i = j,

and extending bi-additively. We point out that tm with (m,N0) = 1 is self-adjoint with respect to
this pairing.

Let M(Γ0(N0),R) be the space of R-valued Drinfeld type automorphic forms for Γ0(N0). The
map

Φ : Pic(XN+
0 ,N

−
0

)× Pic(XN+
0 ,N

−
0

) −→M(Γ0(N0),R)

which is defined by Φ(ei, ej) := Θij satisfies that for e, e′ ∈ Pic(XN+
0 ,N

−
0

) and for monic m ∈ A with
(m,N0) = 1,

Φ(tme, e
′) = Φ(e, tme

′).

Moreover, let TR := R[tm : monic m ∈ A with (m,N0) = 1]. Then from the Jacquet-Langlands
correspondence and strong multiplicity one theorem (cf. [11]), Φ induces a Hecke module homomor-
phism (cf. [24] Theorem 2.6)

Φ :
(

Pic(XN+
0 ,N

−
0

)⊗Z R
)
⊗TR

(
Pic(XN+

0 ,N
−
0

)⊗Z R
)
−→M(Γ0(N0),R)

such that for each newform f for Γ0(N0), there exists a unique one-dimensional eigenspace Ref in
Pic(XN+

0 ,N
−
0

) ⊗Z R satisfying that tmef = cm(f)ef for any monic m ∈ A with (m,N0) = 1. Here
cm(f) is the eigenvalue of Tm associated to f . We point out that if f is normalized, then for each
e′ ∈ Pic(XN+

0 ,N
−
0

)⊗Z R,
Φ(ef , e

′) =< ef , e
′ > ·f.

3.4.2. The diagonal cycle ∆. Consider
(

Pic(XN+
0 ,N

−
0

) ⊗Z R
)⊗3, with natural action by T⊗3

R . We

have an induced pairing < ·, · >⊗3 on
(

Pic(XN+
0 ,N

−
0

)⊗Z R
)⊗3 by setting

< a1 ⊗ a2 ⊗ a3, a
′
1 ⊗ a′2 ⊗ a′3 >⊗3:=< a1, a

′
1 > · < a2, a

′
2 > · < a3, a

′
3 > .

We also have the induced map

Φ⊗3 :
(

Pic(XN+
0 ,N

−
0

)⊗Z R
)⊗3 ×

(
Pic(XN+

0 ,N
−
0

)⊗Z R
)⊗3 →M(Γ0(N0),R)⊗3

by setting

Φ⊗3(a1 ⊗ a2 ⊗ a3, a
′
1 ⊗ a′2 ⊗ a′3) := Φ⊗3(a1, a

′
1)⊗ Φ⊗3(a2, a

′
2)⊗ Φ⊗3(a3, a

′
3).
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Take ∆ :=
n∑
i=1

1
wi
ei ⊗ ei ⊗ ei. Then it is clear that

Lemma 3.9. The function Θ̃ is equal to Φ⊗3(∆,∆).

3.4.3. Special values. Let S(Γ0(N0)) be the space of Drinfeld type cusp forms for Γ0(N0). For
F1 = f ⊗ g⊗h ∈ S(Γ0(N0))⊗3 and F2 = f ′⊗ g′⊗h′ ∈M(Γ0(N0))⊗3, we extend the Petersson inner
product by setting

(F1, F2)⊗3 := (f, f ′) · (g, g′) · (h, h′).
Given any three monic polynomials m1,m2,m3 in A with (m1m2m3, N0) = 1, we have a natural
action of Tm1 ⊗ Tm2 ⊗ Tm3 on M(Γ0(N0))⊗3 defined by

Tm1
⊗ Tm2

⊗ Tm3
(h1 ⊗ h2 ⊗ h3) := Tm1

h1 ⊗ Tm2
h2 ⊗ Tm3

h3.

Recall that our function F = f1⊗f2⊗f3 ∈M(Γ0(N0),R)⊗3, where f1, f2, f3 are three normalized
newforms for Γ0(N0). Let

eF := ef1 ⊗ ef2 ⊗ ef3 ∈
(

Pic(XN+
0 ,N

−
0

)⊗Z R
)⊗3

where Refi is the eigenspace corresponding to fi. Let tF ∈ T⊗3
R be the projection from the space(

Pic(XN+
0 ,N

−
0

)⊗Z R
)⊗3 onto ReF with respect to < ·, · >⊗3, i.e.

tFx :=
< x, eF >

⊗3

< eF , eF >⊗3
· eF .

Define ∆F := tF∆, the component of ∆ in the space ReF . Then

Lemma 3.10. The component of Θ̃ in the eigenspace RF with respect to (·, ·)⊗3 is

< ∆F ,∆F >
⊗3 F.

The above lemma says that (F, Θ̃)⊗3 = (F, F )⊗3· < ∆F ,∆F >
⊗3 . By Proposition 3.7, we arrive

at our main result:

Theorem 3.11. Let N0 be a square-free ideal of A and let γN0
be the number of prime factors of

N0. Let F = f1 ⊗ f2 ⊗ f3, where f1, f2, f3 are normalized Drinfeld type newforms for Γ0(N0).
Suppose the root number ε =

∏
v|N0∞ εv = 1. Then we have

L(F, 2) =
(F, F )⊗3

q|N0|∞2γN0
−1 · < ∆F ,∆F >

⊗3 .

Remark. 1. The central critical value L(F, 2) is a non-negative real number.

2. Suppose efi =
n∑
j=1

βi,jej ∈ Pic(XN0
)⊗Z R where βi,j ∈ R for 1 ≤ i ≤ 3. Then

< ∆F ,∆F >
⊗3=

(
∑
j w

2
jβ1,jβ2,jβ3,j)

2

(
∑
j wjβ

2
1,j)(

∑
j wjβ

2
2,j)(

∑
j wjβ

2
3,j)

.

4. Application to elliptic curves and examples

Let N0 be a square-free ideal of A. Let E be an elliptic curve over k which is of conductor N0∞
and has split multiplicative reduction at an even number of places including ∞. From the work
of Weil, Jacquet-Langlands, and Deligne, there exists a normalized Drinfeld type newform fE for
Γ0(N0) such that

L(E, s+ 1) = L(fE , s).

Here L(E, s+ 1) is the Hasse-Weil L-function associated to E.
Let FE := fE ⊗ fE ⊗ fE . Clearly, the root number of L(FE , s) is positive, and we have

L(FE , s) = L(Sym3E, s) · L(E, s− 1)2,

From the work of Deligne [3] and Lafforgue [14], The L-function L(Sym3E, s) is entire. Therefore
the special value formula in Theorem 3.10 implies that
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Corollary 4.1. Let E be an elliptic curve over k which is of conductor N0∞ and has split multi-
plicative reduction at an even number of places including ∞. Let N−0 be the product of primes of A
where E has split multiplicative reduction and N+

0 = N0/N
−
0 . If we write

efE =

n∑
j=1

βj(E)ej ∈ Pic(XN+
0 ,N

−
0

)⊗Z Q,

then the central critical value L(E, 1) does not vanish if AE :=
∑n
j=1 w

2
jβj(E)3 6= 0.

Remark. The Birch and Swinnerton-Dyer conjecture predicts the following equality:

ords=1 L(E, s)
?
= rankZE(k).

It is known that (cf. [22]) ords=1 L(E, s) ≥ rankZE(k), which means, in particular, that the conjec-
ture holds when L(E/k, 1) 6= 0. Therefore the non-vanishing of AE guarantees the finiteness of the
Mordell-Weil group E(k).

4.1. Examples. We present two examples from elliptic curves in this subsection. Some of the
calculations below were performed using the computer package: Sage.

4.1.1. Example 1. Let k = F7(t) (i.e. q = 7). Let E be the following elliptic curve:

E : y2 = x3 − 3t(t3 + 2)x+ (−2t6 + 3t3 + 1).

The conductor of E is (t3−2)∞. More precisely, E has split multiplicative reduction at (t3−2) and
∞. Let N0 = t3 − 2. Let fE be the normalized Drinfeld type newform for Γ0(N0) corresponding to
E. Let FE := fE ⊗ fE ⊗ fE . We compute

L(FE , s) = 1− 28q−s − 1617q−2s − 67228q−3s + 5764801q−4s.

This L-function satisfies the functional equation in Theorem 2.1, and the central critical value
L(FE , 2) = 9/49.

On the other hand, γN0
= 1, and from a formula of Gekeler (cf. [19] Theorem 1.1) we immediately

get (fE , fE) = 39. Such computation can be also checked via the algorithm in [17]. According
to [18] Example 19, we have w1 = 8, w2 = · · · = w8 = 1, and the corresponding divisor is
efE = [1,−4,−1,−1, 2,−1, 2, 2]. Then we get < ∆FE ,∆FE >

⊗3= 212/393. Therefore

(FE , FE)⊗3

q|N0|∞2γN0
−1 · < ∆FE ,∆FE >

⊗3=
393

74
· 212

393
=

9

49
= L(FE , 2).

4.1.2. Example 2. Let k = F3(t) (i.e. q = 3). For 0 ≤ i ≤ 2, let Ei be the following elliptic curve
over k:

Ei : y2 = x3 + ((t+ i)2 + 1)x2 + (t+ i)2x.

The conductor of Ei is (t)(t + 1)(t + 2)∞ for each i. More precisely, Ei has split multiplicative
reduction at (t+ i) and ∞, and has non-split multiplicative reduction at (t+ j) for j 6= i.

Let N0 = t(t + 1)(t − 1) = t3 − t. Let fi be the normalized Drinfeld type newform for Γ(N0)
associated to Ei. Let F := f0 ⊗ f1 ⊗ f2. We compute the triple product L-function

L(F, s) = 1 + 28q−s + 358q−2s + 2268q−3s + 6561q−4s.

This L-function satisfies the functional equation in Theorem 2.1, and the central critical value
L(F, 2) = 1024/81. On the other hand, γN0

= 3, and we compute that for 0 ≤ i ≤ 2, (fi, fi) = 16.
Therefore we get (F, F )⊗3 = 212. The number γN0 of prime factors of N0 is 3. The only value
remained is < ∆F ,∆F >

⊗3.

Let B be the definite quaternion algebra over k ramified at (t), (t+ 1), and (t− 1). Then

B = k + kα+ kβ + kαβ
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where α2 = −1, β2 = N0 = t3 − t, and βα = −αβ. Let R := A + Aα + Aβ + Aαβ, which is a
maximal A-order in B. the class number (of left ideal classes) is 4, and wi = #(R×/F×3 ) = 4 for
1 ≤ i ≤ 4. We calculate the following Brandt matrices:

(
Bij(t)

)
1≤i,j≤4

=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,
(
Bij(t+1)

)
1≤i,j≤4

=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,
(
Bij(t+2)

)
1≤i,j≤4

=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

The corrsponding divisors efi for 0 ≤ i ≤ 2 can be chosen by:

ef0 := [1, 1,−1,−1], ef1 := [1,−1, 1,−1], ef2 := [1,−1,−1, 1].

Therefore < ∆F ,∆F >
⊗3= 1, and

(F, F )⊗3

q|N0|∞2γN0
−1 · < ∆F ,∆F >

⊗3=
212

34 · 22
· 1 =

1024

81
= L(F, 2).
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