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Abstract

The aim of this article is to give a complete account of the Eichler-Brandt
theory over function fields and the basis problem for Drinfeld type automor-
phic forms. Given arbitrary function field k together with a fixed place∞, we
construct a family of theta series from the norm forms of "definite" quater-
nion algebras, and establish an explicit Hecke-module homomorphism from
the Picard group of an associated definite Shimura curve to a space of Drin-
feld type automorphic forms. The "compatibility" of these homomorphisms
with different square-free levels is also examined. These Hecke-equivariant
maps lead to a nice description of the subspace generated by our theta se-
ries, and thereby contributes to the so-called basis problem. Restricting the
norm forms to pure quaternions, we obtain another family of theta series
which are automorphic functions on the metaplectic group, and results in a
Shintani-type correspondence between Drinfeld type forms and metaplectic
forms.
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CHAPTER I

Introduction

The aim of this article is to study the family of the so-called Brandt
matrices. In the number field case, the entries of these matrices are essen-
tially the representation number of positive integers by reduced norm forms
on definite quaternion algebras over Q. Let N−0 be a square-free positive
integer with an odd number of prime factors. Let D = DN−0

be the definite
quaternion algebra over Q which is ramified precisely at the prime factors
of N−0 . Let N+

0 be another square-free positive integer prime to N−0 . Take
an Eichler order R of type (N+

0 , N
−
0 ), i.e. R is an order in D satisfying that

Rp := R ⊗Z Zp is a maximal Zp-order in Dp := D ⊗Q Qp for every p - N+
0 ,

and for p | N+
0

Rp ∼=

{(
a b

c d

)
∈ Mat2(Zp)

∣∣∣∣ c ∈ N+
0 Zp

}
.

Choose {I1, ..., In} to be a complete set of representatives of locally-principal
right ideal classes of R. For each positive integer m and 1 ≤ i, j ≤ n, set

Bij(m) :=
#{b ∈ IiI−1

j : Nr(b)N−1
ij = m}

#(R×j )
∈ Z≥0,

where Rj is the left order of Ij , Nr(b) is the reduced norm of b, and Nij

is the positive generator of the fraction ideal Nr(Ii) Nr(Ij)
−1 in Q. We call

B(m) := (Bij(m))1≤i,j≤n the m-th Brandt matrix associated to R. For
convenience, set Bij(0) := 1/#(R×j ).

It is known that for each pair (i, j), 1 ≤ i, j ≤ n, the following theta
series ∑

m≥0

Bij(m) exp(2π
√
−1mz)

1



2 I. INTRODUCTION

is a weight-2 modular form of level N+
0 N

−
0 . Recall that the basis problem (cf.

[3]) is about finding a "natural" basis for the space of modular forms. Here
"natural" means that these linearly independent forms are arithmetically
distinguished and whose Fourier coefficients are known or easy to obtain.
The celebrated Eichler’s trace formula (cf. [2] and [3]) connects the Brandt
matrices with the Hecke operators on the space of weight-2 modular forms.
This implies, among other things, that the theta series from definite quater-
nion algebras over Q generate the whole space of weight-2 modular forms of
the corresponding level. In other words, these theta series provide us a natu-
ral basis and give a solution of the basis problem for weight-2 modular forms.

By a global function field k, we mean k is a finitely generated field
extension of transcendence degree one over a finite field. Fix a place∞ of k,
we are interested in Drinfeld type automorphic forms, which are automorphic
forms on GL2 satisfying the so-called harmonic property with respect to ∞
(cf. Chapter III Section 3). In particular, let T∞ be the Iwahori Hecke
operator at ∞, i.e. T∞ corresponds to the double coset

K∞

(
π∞ 0

0 1

)
K∞

where π∞ is a uniformizer at ∞, K∞ is the Iwahori subgroup of GL2(O∞)

and O∞ is the valuation ring of the completion k∞ of k at ∞. Then the
harmonicity of these forms implies that they are fixed by T∞. From the
point of view of the representation theory, these forms correspond (at ∞) to
the new forms in the special representation σ(| · |1/2∞ , | · |−1/2

∞ ). It is natural
to view these forms as analogue of classical weight 2 modular forms.

From the work of Deligne, Drinfeld, Jacquet-Langlands, Weil, and Zarhin,
the "Drinfeld modularity" always exists for every non-isotrivial elliptic curve
over k. Here we call an elliptic curve over k (non-)isotrivial if its j-invariant
is (not) in the constant field of k. More precisely, let E be a such elliptic
curve over k which has split multiplicative reduction at ∞. Denote by N∞
the conductor of E. Then there is a surjective homomorphism over k (cf.
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[4])

J0(N) � E,

where J0(N) is the Jacobian of the Drinfeld modular curve X0(N). In par-
ticular, there exists a unique Drinfeld type automorphic cusp form FE of
level N such that its L-function coincides with the Hasse-Weil L-function of
E over k. This development motivates us to work out Eichler-Brandt theory
for any pair (k,∞), in order to collect as much as possible explicit informa-
tion for Drinfeld type automorphic forms. In other words, we target at the
basis problem for Drinfeld type automorphic forms.

From the reduced norm forms on "definite" (with respect to ∞) quater-
nion algebras over k, we construct a particular family of theta series which
are Drinfeld type automorphic forms. The action of the Hecke operators on
these theta series can be read off from Brandt matrices. It is observed that
the Brandt matrices also represent the action of the Hecke correspondences
on an associated definite Shimura curve (cf. Proposition II.4). We then es-
tablish a Hecke-equivariant homomorphism from the Picard group of the
definite Shimura curve in question to a space of Drinfeld type automorphic
forms. More precisely, let A be the ring of functions in k regular outside ∞,
and X is the definite Shimura curve of type (N+

0 ,N
−
0 ) where N+

0 is square-
free (cf. Definition II.3). The first main result of this article is the following
(cf. Chapter III Section 4 and 5):

Theorem I.1. There is a Z-bilinear map

Φ : Pic(X)× Pic(X)∨ −→M0(N0),

where Pic(X)∨ := Hom(Pic(X),Z) andM0(N0) is the space of Drinfeld type
automorphic forms of level N0 = N+

0 N
−
0 , such that for each ideal M of A

prime to N+
0 and each pair (e, e′) ∈ Pic(X)× Pic(X)∨,

TMΦ(e, e′) = Φ(tMe, e
′) = Φ(e, t∗Me

′).

Here TM is the Hecke operator on M0(N0), and t∗M is the adjoint of the
Hecke correspondence tM on X. Moreover, for every normalized Drinfeld
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type newform F of level N0, there exists a unique (up to a scalar multiple)
element eF in Pic(X)∨ ⊗Z C such that

Φ(e, eF ) =< e, eF > F, ∀e ∈ Pic(X)⊗Z C,

where < ·, · > is the Gross height pairing.

This theorem can be viewed as a function field analogue of Proposition
5.6 in [6]. In the number field case, the existence and the uniqueness of
eF essentially follows from Eichler’s trace formula. Here we use Jacquet-
Langlands correspondence instead (cf. Theorem III.13 and III.14). The Gross
height pairing is introduced in [6] §4. For convenience, we recall the definition
in the following. Note that (cf. Chapter II Section 4) the definite Shimura
curve X of type (N+

0 ,N
−
0 ) is a disjoint union of genus-0 curves, and the

components e1, ..., en of X correspond canonically to the locally-principal
right ideal classes [I1], ..., [In] of an Eichler A-order R of type (N+

0 ,N
−
0 ).

Let Ri be the left order of Ii and wi := #(R×i /F
×
k ) (where Fk denotes the

constant field of k). Then the Gross height pairing on Pic(X) is simply
defined by

< ei, ej >:=

wi if i = j,

0 otherwise,

and extended bi-additively. Via this pairing, Pic(X)∨ is considered as a
subgroup of Pic(X)⊗Z Q. We refer the reader to Chapter II Section 4.2 for
further details.

Take a place v0 of k which is prime to N0∞, and let Xv0 be the definite
Shimura curve over k of type (v0N

+
0 ,N

−
0 ). The canonical map pr from Xv0

to X induces group homomorphisms

pr∗ : Pic(Xv0)→ Pic(X)

and

pr∗ : Pic(X)∨ → Pic(Xv0)∨.

Let

Φv0 : Pic(Xv0)× Pic(Xv0)∨ →M0(v0N0)
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be the corresponding Hecke module homomorphism for Xv0 . The problem
of "compatibility" of Φv0 with Φ then arrives, see Chapter III Section 4.1.

The tool for our construction of theta series is of course Weil representa-
tions. We select special test functions according to the arithmetic data from
ideal class representatives of a given Eichler A-order of type (N+

0 ,N
−
0 ). An

explicit description for the space generated by our theta series falls out from
Theorem I.1. In particular, let S0(1,N0) be the subspace of the old forms
coming from the Drinfeld type cusp forms of full level. Then every Drinfeld
type cusp form of level N0 which is orthogonal (with respect to the Petersson
inner product) to S0(1,N0) can be generated by our theta series. Contrary
to the case of classical weight 2 modular forms, the space S0(1,N0) is not
trivial in general. One can find an elliptic curve E over a suitable function
field k which has split multiplicative reduction at ∞ and good reduction
elsewhere (cf. Example III.17). Then from the Drinfeld modularity, there
exists a Drinfeld type newform FE in S0(1,N0), which does not come from
our theta series. In other words, we are unable to find a natural basis for the
whole space of Drinfeld type cusp forms of level N0 via only the theta series
from definite quaternion algebras because of the non-triviality of S0(1,N0).

In the second part of this article (Chapter IV), assume the charac-
teristic of k is odd. We are interested in automorphic functions on the
metaplectic group (cf. Section 1.1). Using the Weil representations of the
metaplectic group as a tool, we construct yet another family of theta series
from the reduced norm forms, considering pure quaternions inside definite
quaternion algebras. These theta series are, in particular, eigenfunctions of
the Iwahori Hecke operator T∞ at ∞, with equal eigenvalue q1−3/4

∞ . Taking
this operator to be our "non-Euclidean Laplacian", we view these theta se-
ries as metaplectic forms of weight-3/2. Moreover, the Fourier coefficients
of these theta series contain arithmetic information from pure quaternions.
Consequently, the action of the Hecke operators on these theta series can
also be described by Brandt matrices (cf. Theorem IV.16). We then obtain
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a Shintani-type correspondence Sh between the space of Drinfeld type cusp
forms and the space of weight-3/2 metaplectic forms (cf. Theorem IV.18):

Theorem I.2. Let S(N−0 )−new
0 (N0) be the space of Drinfeld type "N−0 -

new" forms, and M(3/2)
0 (Ω2N0) be the space of "weight-3/2" metaplectic

forms of level Ω2N0 (where Ω = Ωψ is the "extra level" coming from the
choice of non-trivial additive character ψ on the adele class group of k).
There exists a linear map

Sh : S(N−0 )−new
0 (N0) −→M(3/2)

0 (Ω2N0)

satisfying that for each place v of k with ordv(Ω
2N0∞) = 0,

Sh(TvF ) = Tv2,3/2 Sh(F ), ∀F ∈ S(N−0 )−new
0 (N0).

In the number field case, the theory of half-integral weight modular
forms has been well developed with an analogous Hecke theory (starting
with Shimura’s work in [13]). Moreover, in [13] Shimura established a Hecke-
equivariant lifting from half-integral weight modular forms to integral weight
forms (via converse theorem). The adjoint lifting of Shimura’s (from integral
weight modular forms to half-integral weight forms) is provided by Kohnen
[8], [9], and Shintani [14]. It is natural to ask for the adjoint lifting of our
Sh, i.e. a Shimura-type correspondence from S(3/2)

0 (Ω2N0) to S0(N0). We
will study this topic in a future work.

When k is a rational function field, this map Sh was first constructed
in [19]. Based on the results of [18] concerning the central critical values
of Rankin-type L-functions, a function field analogue of a Waldspurger-type
formula is also derived in that paper. It follows that for a normalized Drin-
feld type newform F , the λ-th Fourier coefficient of Sh(F ), where λ is ir-
reducible in A, determines the non-vanishing of the central critical value of
the L-function of F twisted by a quadratic character χλ. We expect that
such phenomenon can be found over arbitrary function fields.

We include in the last chapter a detailed study of the trace formula
of Brandt matrices in the function field context. This formula expresses
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the traces of Brandt matrices in terms of modified Hurwitz class numbers
of quadratic A-orders. In other words, this connects, in the definite case,
the arithmetic of quaternary quadratic forms with that of binary quadratic
forms. Similar to the number field case, our method for establishing this for-
mula comes from Eichler’s theory of optimal embeddings adapted to function
fields of positive characteristic, which is recalled in Section 1 of Chapter V.
In the number field case, this formula, together with the trace computation
of Hecke operators on weight-2 modular forms, indicates that the algebra
generated by Brandt matrices is isomorphic to the Hecke algebra on weight-
2 modular forms (with corresponding level). This is a key step in Eichler’s
argument for the basis problem. We refer readers to [2], [3], and [15] for
further discussions in this topic.

This article is organized as follows. In Chapter II, after fixing the no-
tations in Section 1, we review basic properties of quaternion algebras over
global function fields. In Section 3, we introduce the Brandt matrices asso-
ciated to a given Eichler A-order in definite quaternion algebras. In Section
4 we introduce the definite Shimura curves, and connects Brandt matrices
with the Hecke correspondences on these curves. Also included in Section 4
is the Gross height pairing on the definite Shimura curves, which is crucial
to the construction of the Heck module homomorphism Φ in Theorem I.1.

In Chapter III, we recall first the Weil representation, and then construct
a family of theta series from the reduced norm forms on definite quaternion
algebras over k in Section 2. Also proved there is the harmonicity of the
theta series, which shows that these theta series are Drinfeld type automor-
phic forms. In Section 3 we verify that the Fourier coefficients of our theta
series are essentially the entries of Brandt matrices. We then construct the
Hecke module map Φ in Section 4. The "compatibility" between these Hecke
module maps as the square-free levels varying is discussed in Section 4.1. We
finally treat the basis problem for Drinfeld type cusp forms of square-free lev-
els in Section 6, and describe explicitly the subspace generated by our theta
series.
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In Chapter IV we assume the characteristic of the base field k is odd,
and explore the connection between Brandt matrices and Hecke operators on
metaplectic forms. Utilizing Weil representations for the metaplectic group,
we first construct a particular theta series Θ̃, which is an analogue of the
most classical weight-1/2 theta series in our context. The theta series from
pure quaternions are then constructed in Section 1.2. In Section 2 we show
that the Hecke operators acting on these theta series can also be represented
by Brandt matrices (via the technical result in Section 3). The Shintani-type
correspondence Sh is finally established at the end of Section 2.

In the last chapter, we first recast Eichler’s theory of optimal embeddings
by introducing chains of local lattices. The trace formula of our generalized
Brandt matrices is then established in Section 2.



CHAPTER II

Brandt matrices and definite Shimura curves

Given a global function field k together with a fixed place ∞, we con-
sider "definite" quaternion algebras over k and introduce the Brandt matri-
ces. The entries are non-negative integers which count the number of ideals
of given norm in an ideal class of an Eichler A-order. Then we define the
definite Shimura curves associated to Eichler A-orders and introduce Hecke
correspondences on these definite Shimura curves. We describe the connec-
tion between these correspondences and Brandt matrices.

1. Basic setting

Let k be a global function field with finite constant field Fq, i.e. k is a
finitely generated field extension of transcendence degree one over Fq and Fq
is algebraically closed in k. For each place v of k, the completion of k at v is
denoted by kv, and Ov is the valuation ring in kv. We choose a uniformizer
πv in Ov and set Fv := Ov/πvOv, the residue field of kv. The degree deg v of
v is [Fv : Fq], and the cardinality of Fv is denoted by qv. For each av ∈ kv,
the absolute value |av|v of av is normalized to be q−ordv(av)

v . Let A be the
adele ring of k, which is the restricted direct product

∏′
v kv with respect to

Ov. The maximal compact subring
∏
v Ov of A is denoted by OA. The idele

group A× of k is the restricted direct product
∏′
v k
×
v with respect to O×v ,

and for a = (av)v ∈ A× we set

|a|A :=
∏
v

|av|v.

Embedding k into A diagonally, the product formula says that

|α|A = 1, ∀α ∈ k×.
9
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Let Div(k) be the divisor group of k. We adopt the multiplicative nota-
tion so that every element m in Div(k) is written as

m =
∏
v

vordv(m).

Given m ∈ Div(k), we define

‖m‖ :=
∏
v

qordv(m)
v = qdegm,

where

degm :=
∑
v

deg v · ordv(m)

is the degree of m. There is a canonical group epimorphism

div : A× → Div(k)

defined by

a = (av)v 7−→ div(a) :=
∏
v

vordv(av),

with kernel O×A . It is clear that for any a ∈ A×,

|a|A = ‖div(a)‖−1.

We fix a section s : Div(k)→ A× to be

s(m) := (πordv(m)
v )v

for each divisor m ∈ Div(k).

Fix a place∞ of k, referred as the place at infinity; and others are referred
as finite places of k. Let A be the ring of functions in k regular outside ∞.
Each finite place v of k corresponds to a maximal ideal Pv (= A ∩ πvOv) of
A. Let Divf (k) be the subgroup of Div(k) generated by finite places of k.
There is a natural group isomorphism between Divf (k) and the group I(A)

of fractional ideals of A:

Divf (k) ∼= I(A)

m 7−→ Mm :=
∏
v P

ordv(m)
v ,∏

v v
ordPv (M) =: mM 7−→ M .
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For each place v of k, let

Av :=
∏
v′ 6=v

′
kv′ .

We denote by OAv the maximal compact subring
∏
v′ 6=v Ov′ of Av. In par-

ticular, A∞ is called the finite adele ring of k. The finite idele group of k is
the multiplicative group A∞,×, with the maximal compact subgroup O×A∞ .
Let ιv and ιv be the canonical embeddings from Av and kv into A = Av×kv,
i.e. for every av ∈ Av and av ∈ kv,

ιv(av) := (av, 0) and ιv(av) := (0, av).

We also define

ιv,× : Av,× ↪→ A× = Av,× × k×v and ι×v : k×v ↪→ A×

respectively by

ιv,×(av) := (av, 1), and ι×v (av) := (1, av), ∀(av, av) ∈ Av,× × k×v .

The section s induces a section (also denoted by s) from Divf (k) into A∞,×.
Embedding k× into A∞,× diagonally, the map div ◦ ι∞,× induces a natural
isomorphism from A∞,×/O×A× (respectively, k×\A∞,×/O×A∞) onto I(A) (re-
spectively, Pic(A), i.e. the ideal class group of A).

A divisor m is called positive if ordv(m) ≥ 0 for every place v of k. The
set of positive divisors is denoted by Div≥0(k), and we let

Divf,≥0(k) := Divf (k) ∩Div≥0(k),

which is identified with the set of integral ideals of A.

Finally, we fix a non-trivial additive character ψ : A→ C× such that

ψ(α) = 1, ∀α ∈ k,

and let δ = δψ ∈ Div(k) be the canonical divisor associated to ψ. For each
place v of k, let ψv be the additive character on kv such that

ψv(av) := ψ(ιv(av)), ∀av ∈ kv.
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Then ordv(δ) is the maximal integer r such that π−rv Ov is contained in the
kernel of ψv. It is known that deg δ = 2gk − 2, where gk is the genus of k.
To keep records on δ, we introduce

εv(δ) :=

0 if ordv(δ) is even,

1 if ordv(δ) is odd,

and

Ω :=
∏
v 6=∞

vεv(δ) ∈ Divf,≥0(k).

2. Definite quaternion algebra over function fields

Let D be a definite (with respect to ∞) quaternion algebra, i.e. D is a
central simple algebra over k with dimkD = 4 and D ⊗k k∞ is a division
algebra. Let N− = N−D ∈ Divf,≥0(k) be the product of finite places v of k
where D is ramified, i.e. Dv := D ⊗k kv is division. For each place v of k,
we choose an element Πv in D×v such that Π2

v = πv.

Given a positive divisor N+ ∈ Divf,≥0(k) which is prime to N−. We
call a ring R an Eichler A-order of type (N+,N−) if R is an A-order of D
such that Rv := R⊗A Ov is a maximal Ov-order for each v - N+; and when
v | N+, there exists an isomorphism i : Dv

∼= Mat2(kv) such that

i(Rv) =

{(
a b

c d

)
∈ Mat2(Ov)

∣∣∣∣∣ c ∈ πordv(N+)
v Ov

}
.

We note that R is unique up to local conjugacy. Since D is definite, the
cardinality of the multiplicative group R× of R is finite.

A locally-principal (fractional) right ideal I of R is an A-lattice in D such
that I · R = I and for each finite place v of k, there exists αv in D×v such
that

Iv(:= I ⊗A Ov) = αvRv.
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Two locally-principal right ideals I1 and I2 are called equivalent if there exists
an element b in D× such that I1 = b · I2. Let

DA∞ := D ⊗k A∞ and R̂ := R⊗A OA∞ .

Then the set of locally-principal right ideal classes of R can be identified with
the finite double coset space D×\D×A∞/R̂×. More precisely, let b1, ..., bn ∈
D×A∞ be representatives of the double cosets. Then

{Ii := D ∩ biR̂ | 1 ≤ i ≤ n}

is a set of representatives of locally-principal right ideal classes of R.
For 1 ≤ i ≤ n, let Ri be the left order of Ii, i.e.

Ri := {b ∈ D : bIi ⊂ Ii}.

Then Ri is also an Eichler A-order of type (N+,N−), as

Ri = D ∩ biR̂b−1
i .

Given an element b in D, its reduced trace and the reduced norm are
denoted by Tr(b) and Nr(b), respectively. We call b is a pure quaternion
if Tr(b) = 0. Define σ to be the permutation of {1, ..., n} such that for
1 ≤ i ≤ n, Ī−1

i is equivalent to Iσ(i). Here

Īi := {b̄ : b ∈ Ii}

and b̄ := Tr(b)− b is the conjugate involution of D. It is clear that σ2 = 1.

3. Brandt matrices

Let R be an Eichler A-order of type (N+,N−). Let I1, ..., In be repre-
sentatives of locally-principal right ideal classes of R. For 1 ≤ i ≤ n, let Ri
be the left order of Ii. We denote the reduced ideal norm of Ii by Nr(Ii), i.e.
Nr(Ii) is the fractional ideal of A generated by Nr(b) for all elements b in Ii.
For 1 ≤ i, j ≤ n, set

Nij := Nr(Ii) Nr(Ij)
−1.
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Then for every m ∈ Divf,≥0(k), the m-th Brandt matrix B(m) is defined to
be
(
Bij(m)

)
1≤i,j≤n ∈ Matn(Z), where

Bij(m) :=
#{b ∈ IiI−1

j : Nr(b)N−1
ij = Mm}

#(R×j )
.

Recall that Mm is the ideal of A corresponding to m. It is clear that Bij(m)

depends only on the ideal classes of Ii, Ij , and the divisor m. For each divisor
a ∈ Divf (k), We set the permutation matrix

L(a) :=
(
Lij(a)

)
1≤i,j≤n ∈ Matn(Z)

where

Lij(a) =

1, if MaIi is equivalent to Ij ,

0, otherwise.

Then it is observed that

Proposition II.1. (1) For every m and m′ in Divf,≥0(k) which are rel-
atively prime,

B(mm′) = B(m)B(m′).

(2) For m in Divf,≥0(k) and a in Divf (k),

B(m)L(a) = L(a)B(m).

(3) When v - N+N−,

B(vr+2) = B(vr+1)B(v)− qvL(v)B(vr).

(4) B(vr) = B(v)r if v | N−.
(5) L(a) = L(a′) if Ma and Ma′ are in the same ideal classes of A.
(6) The summation

∑
j Bij(m) is independent of the choice of i. Moreover,

let

b(m) :=
∑
j

Bij(m),



3. BRANDT MATRICES 15

we get

b(mm′) = b(m)b(m′) when m and m′ are relatively prime,

b(vn) =
qn+1
v − 1
qv − 1 if v - N+N−,

b(vn) = 1 if v | N−,

b(vn) = 2 · q
n+1
v − 1
qv − 1 − 1 if ordv(N

+) = 1.

Proof. For 1 ≤ i, j, ` ≤ n and m ∈ Divf,≥0(k), let

Φij(m) := {b ∈ IiI−1
j : Nr(b)N−1

ij = Mm}.

Then we have the following map for 1 ≤ ` ≤ n and m, m′ ∈ Divf,≥0(k):

Φi`(m)× Φ`j(m
′) −→ Φij(mm′)

(b1 , b2) 7−→ b1b2.

Suppose m and m′ are relatively prime. Take b ∈ Φij(mm′). There we
can find b1 ∈ Φi`(m) for a unique ` such that

bIj ⊂ b1I` ⊂ Ii.

Moreover, for any element b′1 ∈ Φi`(m) with

bIj ⊂ b′1I` ⊂ Ii,

there exists a unique u ∈ R×` such that b′1 = b1u. Therefore
n∑
`=1

Bi`(m)B`j(m
′) = Bij(m),

which proves (1).

We note that for a ∈ Divf (k) and m ∈ Divf,≥0(k),
n∑
`=1

Li`(a)B`j(m)

= #(R×j )−1 ·#{b ∈ (MaIi)I
−1
j : Nr(b)M−2

a N−1
ij = Mm}

= #(R×j )−1 ·#{b ∈ Ii(Ma−1Ij)
−1 : Nr(b)M−2

a N−1
ij = Mm}

=
n∑
`=1

Bi`(m)L`j(a).
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This shows (2).

Now, we take a place v of k with v 6= ∞. If D is ramified at v (i.e.
v | N−), then for 1 ≤ i ≤ n and r ∈ Z≥0, there exists a unique right ideal
I ⊂ Ii with Nr(I) = P rv Nr(Ii). In particular, I = P

r/2
v Ii if r is even. This

implies that

B(vr) = B(v)r and B(v)2 = L(v),

so (4) follows.
Suppose v - N+N−. For r ∈ Z≥0, let

B(vr)0 :=
(
Bij(v

r)0
)

1≤i,j≤n ,

where

Bij(v
r)0 :=

#{b ∈ Φij(v
r) : b /∈ PvIiI−1

j }
#(R×j )

.

Then

B(vr) =
∑

ν∈Z≥0, r≥2ν

L(vν) ·B(vr−2ν)0.

It is observed that for r = 1,

B(v)0B(v) = B(v2)0 + (qv + 1) · L(v)

= B(v2) + qvL(v);

for r > 1,

B(vr)0B(v) = B(vr+1)0 + qvL(v)B(vr−1)0

Therefore

B(vr)B(v) = B(vr+1) + qvL(v)B(vr−1),

which completes the proof of (3).
The definition of L(a) implies (5) directly, and (6) follows from the fol-

lowing description of b(m):

b(m) = #{locally-principal right ideals J ⊂ Ii with Nr(J) = Mm Nr(Ii)}.

�
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Recall that σ is the permutation of {1, ..., n} such that for 1 ≤ i ≤ n,
Ī−1
i is equivalent to Iσ(i).

Lemma II.2. Given m ∈ Divf,≥0(k), we have

#(R×j )Bij(m) = #(R×σ(i))Bσ(j)σ(i)(m), for 1 ≤ i, j ≤ n.

Proof. The conjugate involution of D induces a bijection between

{b ∈ IiI−1
j : Nr(b)N−1

ij = Mm}

and

{b ∈ Ī−1
j Īi : Nr(b)N−1

ij = Mm}.

Therefore the result holds. �

4. Definite Shimura curves

Let Y be the genus zero curve over k associated to the given definite
quaternion algebra D, which is defined by the following: the points of Y
over any k-algebra S are

Y (S) = {x ∈ D ⊗k S : x 6= 0,Tr(x) = Nr(x) = 0}/S×,

where the action of S× on D ⊗k S is by multiplication on S, Tr and Nr are
respectively the reduced trace and the reduced norm on D. The group D×

acts on Y (from the left) by conjugation.
Recall that N− is the product of the finite ramified places of D, and R

denotes a given Eichler A-order of type (N+,N−).

Definition II.3. The definite Shimura curve X = XN+,N− of type
(N+,N−) is defined as

X = D×\
(
Y × (D×A∞/R̂

×)
)
.

Let b1, ..., bn be representatives for D×\D×A∞/R̂×. For 1 ≤ i ≤ n, let

Γi := biR̂
×b−1

i ∩D
×.
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Then X is equal to the disjoint union
∐n
i=1Xi, where Xi := Γi\Y . More

precisely, each point of X has a representative (y, biR̂
×) ∈ Y × (D×A∞/R̂

×)

and the map
X −→

∐n
i=1 Γi\Y

[y, biR̂
×] 7−→ Γiy

is the desired bijection. Moreover, the component Xi of X corresponds
canonically to the ideal class of R represented by Ii = D ∩ biR̂, and the
Picard group of X can be written as

Pic(X) =
n⊕
i=1

Zei,

where ei is the class of the component Xi. In the following, we refer
{e1, ..., en} as a canonical basis of Pic(X).

4.1. Hecke correspondences. Let v0 be a finite place of k. Suppose
v0 - N−. Then the isomorphism between Mat2(kv0) and Dv0 induces a
natural embedding iv0 from GL2(kv0) into D×A∞ . We define the Hecke corre-
spondence tv0 on X as follows:

tv0([y, bR̂×]) :=

 ∑
u∈Fv0

[y, b · iv0

(
πv0 u

0 1

)
R̂×]


+µN+(v0) · [y, b · iv0

(
1 0

0 πv0

)
R̂×].

Here µN+(v0) := 1 if v0 - N+ and 0 otherwise.
Now suppose v0 divides N−. Choose an element Πv0 ∈ Rv0 such that

Nr(Πv0) = πv0 . We define the Atkin-Lehner involution

wv0([y, bR̂×]) := ([y, b′R̂×]), for [y, bR̂×] ∈ X,

where b′ = (b′v)v 6=∞ ∈ D×A× with b′v = bv if v 6= v0 and b′v0
= Πv0bv0 .

To proceed further, for each a ∈ Divf (k), one associates a correspondence
la defined by

la([y, bR̂
×]) := [y, s(a)bR̂×],

where s : Divf (k)→ A∞,× is the section introduced in Chapter II Section 1.
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It is observed that these correspondences commute with each other, and
la = la′ if the associated ideals Ma and Ma′ are in the same ideal class of A.
Therefore we can define Hecke correspondence tm for every m ∈ Divf,≥0(k)

in the following way:
tmm′ = tm · tm′ if m and m′ are relatively prime,

tv`+2 = tv · tv`+1 − µN+(v)qv · lv · tv` if v - N−,

tv` = w`v if v | N−.

The correspondences tm and la induce endomorphisms of the group Pic(X).
With respect to the canonical basis {e1, ..., en}, these endomorphisms can in
fact be represented by Brandt matrices B(m) and the permutation matrices
L(a):

Proposition II.4. Given m ∈ Divf,≥0(k) and a ∈ Divf (k), suppose that
m and N+ are relatively prime. Then we have

tmei =

n∑
j=1

Bij(m)ej and laei =

n∑
j=1

Lij(a)ej .

Proof. For each divisor a ∈ Divf (k), laei = ei′ where Ii′ and MaIi are
in the same ideal class of R. On the other hand, we have

n∑
j=1

Lij(a)ej = ei′ = laei.

Therefore from the definition of tm and the recurrence relations of B(m) in
Proposition II.1, it suffices to prove the case when m = v with v - N+∞.

For 1 ≤ i ≤ n, it is clear that tvei =
∑n

j=1 αijej where

αij = #{locally-principal right R-ideals J ⊂ Ii : J ∼ Ij and Nr(J) = Pv Nr(Ii)}

= Bij(v).

Therefore the proof is complete. �

Let v divide N+ with ordv(N
+) = 1. Then for each point [y, bR̂×] in X,

we introduce the following pseudo-involution on X:

w′v([y, bR̂
×]) := [y, b · iv

(
0 1

πv 0

)
R̂×].
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It is clear that w′2v = lv. Set Wv := tv + w′v + w′−1
v tvw

′
v, and

Wv`+2 := (Wv − qvw′v)Wv`+1 − qvlvWv` , for ` ≥ 0.

One can deduce that

Lemma II.5. Suppose ordv(N
+) = 1. Then

Wv`ei =
n∑
j=1

Bij(v
`)ej .

Proof. For 1 ≤ i, j ≤ n and ` ≥ 0, set

Sij(`) := {J ⊂ Ii : J ∼ Ij ,Nr(J) = P `v Nr(Ii)}.

It is clear that the cardinality of Sij(`) is Bij(v`). Consider

S′(`) := {avR×v ∈ D×v /R×v : av ∈ Rv,Nr(av) ∈ π`vO×v } ⊂ D×v /R×v .

There is a natural bijection

S′(`) ∼=
n∐
j=1

Sij(`)

avR
×
v 7−→ D ∩ bi · iv(av)R̂.

It suffices to show that for each [y, bR̂×] ∈ X,

Wv`([y, bR̂
×]) =

∑
avR

×
v ∈S′(`)

[y, b · iv(av)R̂×],

which is straightforward. �

Now, take a place v0 of k with ordv0(N+N−∞) = 0. Let R(v0) be an
Eichler A-order of type (v0N

+,N−) contained in R. Let

Xv0 := D×\
(
Y × (D×A×/R̂

×
(v0))

)
,

the definite Shimura curve over k of type (v0N
+,N−). Denote the canonical

morphism from Xv0 to X by pr, i.e.

pr([y, bR̂×(v0)]) = [y, bR̂×]

for any [y, bR̂×(v0)] ∈ Xv0 . Then pr induces a group homomorphism pr∗ from
Pic(Xv0) to Pic(X).
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Proposition II.6. For each e ∈ Pic(Xv0) and a non-negative integer r,

pr∗(Wvr0
e) = tvr0pr∗(e) + qvtvr−1

0
pr∗(w

′
v0
e).

Proof. It is observed that

pr∗(Wv0e) = tv0pr∗(e) + qvpr∗(w
′
v0
e), ∀e ∈ Pic(Xv0).

Therefore the result holds when r = 0 and 1.
We prove this proposition by induction. Suppose it holds for r and r− 1

with r > 0. For e ∈ Pic(Xv0),

pr∗(Wvr+1
0
e) = pr∗

((
(Wv0 − qvw′v0

)Wvr0
− qv0 lv0Wvr−1

0

)
e
)

= tv0pr∗(Wvr0
e)− qv0 lv0pr∗(Wvr−1

0
e)

= tv0

(
tvr0pr∗(e) + qvtvr−1

0
pr∗(w

′
v0
e)
)

−qv0 lv0

(
tvr−1

0
pr∗(e) + qvtvr−2

0
pr∗(w

′
v0
e)
)

= tvr+1
0
pr∗(e) + qvtvr0pr∗(w

′
v0
e).

This completes the proof. �

4.2. Gross height pairing. For 1 ≤ i ≤ n, recall that Ri is the left
order of Ii. Set wi := #(R×i )/q − 1. Then the Gross height pairing < ·, · >
on Pic(X)⊗Z Q is defined by setting< ei, ej >:= 0 if i 6= j,

< ei, ei >:= wi,

and extending bi-linearly. Therefore Pic(X)∨ := Hom(Pic(X),Z) can be
viewed as a subgroup of Pic(X)⊗Z Q with basis

{ěi := ei/wi : i = 1, ..., n}

via this pairing. Note that the permutation σ introduced in Section 3
induces an endomorphism on Pic(X) by setting

σei := eσ(i).

Then by Lemma II.2 we get:
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Proposition II.7. Given classes e and e′ in Pic(X)⊗Z Q,

< tme, e
′ > = < e, t∗me

′ >

for m ∈ Divf,≥0(k) prime to N+, where t∗m = σ−1tmσ.

Remark. We point out that for a ∈ Divf (k),

< lae, e
′ > = < e, l∗ae

′ >

where l∗a = σ−1laσ = la−1 . When ordv(N
+) = 1, we also get

< Wv`e, e
′ > = < e,W ∗v`e

′ >,

where W ∗
v`

= σ−1Wv`σ.



CHAPTER III

The basis problem for Drinfeld type automorphic

forms

Let D be a definite quaternion algebra over k with N− equal to the
product of finite ramified places of D. For N+ ∈ Divf,≥0(k), take R to be an
Eichler A-order of type (N+,N−) having right ideal class number n. For each
pair (i, j), 1 ≤ i, j ≤ n, with the help of the Weil representation of GL2 we
construct a theta series Θij which is a Drinfeld type automorphic form of level
N = N+N− having Fourier coefficients given by the (i, j)-entries of Brandt
matrices. Using these theta series, we write down the Hecke equivariant map
Φ in Theorem I.1, and describe explicitly the image of Φ inside the space of
Drinfeld type automorphic forms.

1. Weil representation

Let (V,QV ) be the quadratic space (D,NrD) over k where NrD = Nr is
the reduced norm form on D. The bilinear form associated to QV is

< x, y >V = TrD(xȳ), ∀x, y ∈ V,

where TrD = Tr is the reduced trace on D and ȳ = Tr(y)−y is the conjugate
involution of D. Denote by O(V ) the orthogonal group of V , i.e.

O(V ) := {h ∈ GL(V ) : QV (hx) = QV (x), ∀x ∈ V }.

In this section we recall the Weil representations of the groups SL2×O(V ),
G
(

SL2×O(V )
)
, and GL2, and choose a particular family of sections for the

construction our theta series in the next section.

1.1. Weil representation of SL2×O(V ). For each place v of k, let
V (kv) := V ⊗k kv, and denote by S(V (kv)) the space of Schwartz functions

23
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on V (kv). Recall that the local Weil representation ωv(= ωψv) of SL2(kv)×
O(V )(kv) on the space S(V (kv)) is defined by the following: for a function
φv ∈ S(V (kv)) and xv ∈ V (kv),

(
ωv(hv)φv

)
(xv) := φv(h

−1
v (xv)), ∀hv ∈ O(V )(kv),(

ωv

(
av 0

0 a−1
v

)
φv

)
(xv) := |av|2v · φv(axv), ∀av ∈ k×v(

ωv

(
1 uv

0 1

)
φv

)
(xv) := ψv(uvNr(xv)) · φv(xv), ∀uv ∈ kv(

ωv

(
0 1

−1 0

)
φv

)
(xv) := εvφ̂v(xv).

Here εv = −1 ifD is ramified at v and 1 otherwise; φ̂v is the Fourier transform
of φv (with respect to ψv):

φ̂v(xv) :=

∫
V (kv)

φv(yv)ψv(Tr(xvȳv))dyv.

The Haar measure dyv is chosen to be self-dual with respect to the pairing

(xv, yv) 7−→ ψv(Tr(xvȳv)).

The global Weil representation ω(= ωψ) of SL2(A)×O(V )(A) is defined to
be ⊗vωv on the space S(V (A)).

Recall that R is a given Eichler A-order in D of type (N+,N−). Denote
by OD∞ the maximal compact subring of D∞. For our purpose, we fix a
particular Schwartz function ϕ = ⊗vϕv ∈ S(V (A)), whereϕv := 1

Π
− ordv(δ)
v Rv

, if v 6=∞

ϕ∞ := 1
Π
− ord∞(δ)
∞ OD∞

, if v =∞.

Here δ ∈ Div(k) is the canonical divisor introduced in Chapter II Section 1,
and for each place v of k, Πv is a chosen element in D×v such that Π2

v = πv.
Let N := N+N−. We obtain that
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Lemma III.1. Let v be any place v of k. For κv =

(
a b

c d

)
∈ SL2(Ov)

with c ≡ 0 mod π
ordv(N∞)
v Ov,

ωv(κv)ϕv = ϕv.

Proof. Let Ωv be the support of ϕv. It is observed that

ϕ̂v =

ϕv, if v - N+N−∞,

q−1
v · 1Π−1

v Ωv
, if v | N+N−∞.

It remains to show that for every κv =

(
a b

c d

)
∈ SL2(Ov) with c ∈ πvOv,

ωv(κv)ϕv = ϕv.

Write κv as (
1 bd−1

0 1

)(
d−1 0

0 d

)(
1 0

d−1c 1

)
.

Hence for xv ∈ V (kv),

ωv(κv)ϕv(xv)

= ψv
(
bd−1Q(xv)

)
·

(
ωv

(
1 0

d−1c 1

)
ϕv

)
(d−1xv).

Since (
1 0

d−1c 1

)
=

(
0 1

−1 0

)(
1 −d−1c

0 1

)(
0 −1

1 0

)
,

we have (
ωv

(
1 0

d−1c 1

)
ϕv

)
(d−1xv)

=

∫
V (kv)

ψv
(
−d−1c ·Q(yv)

)
ψv
(
d−1 Tr(xvȳv)

)
ϕ̂v(−yv)dyv.
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Note that ψv
(
−d−1c ·Q(yv)

)
= 1 if yv is in the support of ϕ̂v. Thus(

ωv

(
1 0

d−1c 1

)
ϕv

)
(d−1xv)

=

∫
V (kv)

ψv
(

Tr(d−1xvȳv)
)
ϕ̂v(−yv)dyv

= ϕv(d
−1xv) = ϕv(xv).

Since ψv
(
bd−1Q(xv)

)
= 1 if xv is in the support of ϕv, the proof is complete.

�

1.2. Test functions from arithmetic data. Consider the general or-
thogonal group of V :

GO(V ) = {h ∈ GL(V ) | QV (hx) = ν(h) ·QV (x) ∀x ∈ V, where ν(h) ∈ Gm} .

Let

G(SL2×O(V )) := {(g, h) ∈ GL2×GO(V ) | det(g) = ν(h)}.

We extend ω to a representation ω′ of G(SL2×O(V ))(A) on S(V (A)) by the
following: for each pair (g, h) ∈ G(SL2×O(V ))(A) and φ ∈ S(V (A))

ω′(g, h)φ(x) := |v(h)|−1
A ·

[
ω

((
1 0

0 det(g)−1

)
· g

)
φ

]
(h−1x), ∀x ∈ V (A).

Recall that I1, ..., In are chosen representatives of locally-principal right
ideal classes of the Eichler A-order R, and we let bi be the corresponding
element of Ii in D×A∞ for each i. Set

Π(δ) := (Π− ordv(δ)
v )v ∈ D×A .

Viewing b1, ..., bn as elements in D×A (= D×A∞ × D×∞), each pair (biΠ
(δ), bj)

induces an element in GO(V )(A):

(biΠ
(δ), bj) · x := biΠ

(δ)xb−1
j ∀x ∈ V (A).

For 1 ≤ i, j ≤ n, let

βij := Nr(bi) Nr(bj)
−1 ∈ A∞,×.
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Then div(βij) = mNij , where mNij ∈ Divf (k) is the divisor associated to
Nij = Nr(Ii) Nr(Ij)

−1. Define

ϕij := ω′

((
1 0

0 βijs(δ)

)
, (biΠ

(δ), bj)

)
ϕ,

where ϕ is introduced in the last section, and s is the section fixed in Chapter
II Section 1. Then for any x = (xf , x∞) ∈ V (Af )× V (k∞) = V (A),

ϕij(x) = |βijs(δ)|−1
A · 1biR̂b−1

j
(xf ) · 1OD∞ (x∞).

Moreover, Lemma III.1 implies directly that

Lemma III.2. For every element κ = (κv)v ∈ SL2(OA) satisfying that

κv =

(
av bv

cv dv

)
with cv ≡ 0 mod π

ordv(N∞)
v Ov, we have

ω

((
1 0

0 βijs(δ)

)
κ

(
1 0

0 β−1
ij s(δ)

−1

))
ϕij = ϕij .

For each place v of k, we denote by S(V (kv)×k×v ) the space of functions
φv on V (kv)× k×v such that for each αv ∈ k×v , φv(·, αv) is in S(V (kv)). Let

φ0
v := ϕv ⊗ 1O×v .

The space S(V (A) × A×) is defined to be the restricted tensor product⊗′
v S(V (kv)×k×v ) with respect to {φ0

v}v, i.e. every function in S(V (A)×A×)

is a linear combination of pure-tensors φ = ⊗vφv, where φv = φ0
v for almost

all v.
Now, for each place v of k, we extend ωv to a representation ω̃v of GL2(kv)

on S(V (kv)× k×v ) by the following:
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(
ω̃v

(
1 uv

0 1

)
φ

)
(xv, αv) := ψv(uvNr(xv)αv)φv(xv, αv), for uv ∈ kv;(

ω̃v

(
av 0

0 a−1
v

)
φv

)
(xv, αv) := |av|2v · φ(avxv, αv), for av ∈ k×v ;(

ω̃v

(
0 1

−1 0

)
φv

)
(xv, αv) := εv · Fφv(xv, αv);(

ω̃v

(
1 0

0 av

)
φv

)
(xv, αv) := |a|−1

v φ(xv, αva
−1
v ), for av ∈ k×v

Here

Fφv(xv, αv) :=

∫
V (kv)

φv(yv, αv)ψv(αvTr(xvȳv))dαvyv

where dαvyv is the self-dual Haar measure with respect to the pairing

(xv, yv) 7−→ ψv(αv Tr(xvȳv)), ∀xv, yv ∈ V (kv).

We set the representation ω̃ of GL2(A) to be ⊗vω̃v on S(V (A)× A×).

Now, for 1 ≤ i, j ≤ n, let ϕ̃ij = ϕ̃ij,f ⊗ ϕ̃ij,∞ ∈ S(V (A)× A×) where

ϕ̃ij,f (xf , αf ) := 1
biR̂b

−1
j

(xf ) · 1O×A∞ (αf · βijs(δf ))

for (xf , αf ) ∈ V (A∞)× A∞,×, and

ϕ̃ij,∞(x∞, α∞) := 1O∞(Nr(x∞) · α∞s(δ∞))

for (x∞, α∞) ∈ V (k∞) × k×∞. Here δ∞ = ∞ord∞(δ), δf = δ/δ∞ ∈ Divf (k)

and βij = Nr(bi) Nr(bj)
−1 ∈ A∞,×. Then an immediate consequence of

Lemma III.2 is the following:

Lemma III.3. (1) Let κ = (κv)v be an element in GL2(OA) such that

κv =

(
av bv

cv dv

)
with cv ≡ 0 mod π

ordv(N∞)
v Ov. Then for any element

(x, α) ∈ V (A)× A×, (
ω̃(κ)ϕ̃ij

)
(x, α) = ϕ̃ij(x, α).
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(2) For every z∞ ∈ k×∞,

ω̃

((
z∞ 0

0 z∞

))
ϕ̃ij,∞ = ϕ̃ij,∞.

2. Theta series

For 1 ≤ i, j ≤ n, we define

θij(g) :=
∑

(x,α)∈V (k)×k×

(
ω̃(g)ϕ̃ij

)
(x, α), ∀g ∈ GL2(A).

Write g as (gf , g∞) ∈ GL2(A∞)×GL2(k∞). It is observed that

θij(g) = 0

unless det(gf ) and βijs(δf ) represent the same coset in k×\A×f /O
×
Af . Let

K0(N∞) be the compact subgroup
∏
v Kv of GL2(A), where for each place

v of k,

Kv :=

{(
a b

c d

)
∈ GL2(Ov)

∣∣∣∣ c ≡ 0 mod πordv(N∞)
v Ov

}
.

Then Lemma III.3 tells us that

Proposition III.4. For 1 ≤ i, j ≤ n, θij can be viewed as a function on
the double coset space

GL2(k)\GL2(A)/Z(k∞)K0(N∞),

where Z is the center of GL2.

Furthermore, these theta series θij are harmonic, i.e.

Lemma III.5. For g ∈ GL2(A),

(1) θij

(
g

(
0 1

π∞ 0

))
= −θij(g) and (2)

∑
κ∞∈GL2(O∞)/K∞

θij(gκ∞) = 0.

Here we embed GL2(k∞) into GL2(A) = GL2(A∞)×GL2(k∞) by

g∞ 7→ (1, g∞).
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Proof. It suffices to show that

ω̃∞

((
0 1

π∞ 0

))
ϕ̃ij,∞ = −ϕ̃ij,∞

and

∑
u∈F∞

(
ω̃∞

(
u 1

1 0

))
ϕ̃ij,∞ = −ϕ̃ij,∞.

For (x, α) ∈ V (k∞)× k×∞, one has

(
ω̃∞

((
0 1

π∞ 0

))
ϕ̃ij,∞

)
(x, α)

=

(
ω̃∞

(
1 0

0 π∞

)(
0 1

−1 0

)
ϕ̃ij,∞

)
(x, α)

= −q∞
∫
V (k∞)

1O∞(Nr(y)απ−1+ord∞(δ)
∞ ) · ψ∞(Tr(xȳ)απ−1

∞ )dαπ−1
∞
y.

Here dεy is the self-dual Haar measure with respect to the pairing

(x, y) 7−→ ψv(εTr(xȳ)), ∀x, y ∈ V (k∞).

The last integral equals to

1O∞(Nr(x)απord∞(δ)
∞ ) · vol(Ω),

where

Ω = {y ∈ D∞ | Nr(y)απ−1+ord∞(δ)
∞ ∈ O∞}.

From the normalization of the Haar measure, we get vol(Ω) = q−1
∞ . This

completes the proof of (1).
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For (2), it follows by

∑
u∈F∞

((
ω̃∞

(
u 1

1 0

))
ϕ̃ij,∞

)
(x, α)

=

(
−
∑
u∈F∞

ψ(αNr(x)u) ·
∫
V (k∞)

1O∞(Nr(y)απord∞(δ)
∞ )ψ∞(αTr(xȳ))dαy

)

=− 1O∞(αNr(x)απ1+ord∞(δ)
∞ ) ·

[
q−1
∞ ·

∑
u∈F∞

ψ(αNr(x)u)

]
=− ϕ̃ij,∞(x, α).

�

For 1 ≤ j ≤ n, let Rj be the left order of the ideal Ij . Then

R×j = D× ∩ bjR̂×b−1
j

is a finite cyclic group. We normalize our theta series as follows:

Definition III.6. For 1 ≤ i, j ≤ n, set

Θij(g) :=
1

‖δ‖ ·#(R×j )
· θij

((
βijs(δ) 0

0 βijs(δ)

)
g

)
, for g ∈ GL2(A).

3. Drinfeld type automorphic forms and Hecke operators

Given N ∈ Divf,≥0(k), recall the compact subgroup K0(N∞) =
∏
v Kv

of GL2(A), where for each place v of k,

Kv :=

{(
a b

c d

)
∈ GL2(Ov)

∣∣∣∣ c ≡ 0 mod πordv(N∞)
v Ov

}
.

By a Drinfeld type automorphic form F of level N, we mean that F is a
C-valued function on the double coset space

Y0(N) := GL2(k)\GL2(A)/Z(k∞)K0(N∞)
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(where Z is the center of GL2) satisfying the harmonic property: for any
g ∈ GL2(A),

F

(
g

(
0 1

π∞ 0

))
= −F (g) and

∑
κ∞∈GL2(O∞)/K∞

F (gκ∞) = 0.

Recall that we embed GL2(k∞) into GL2(A) = GL2(A∞)×GL2(k∞) by

g∞ 7→ (1, g∞).

These forms can be viewed as function field analogue of classical weight 2

modular forms. For further discussions, we refer the reader to [4] and [19].

LetM0(N) be the space of Drinfeld type automorphic forms of level N.
For each place v of k, the Hecke operator Tv on M0(N) is defined by the
following: for F ∈M0(N) and g ∈ GL2(A),

(TvF )(g) :=
∑
u∈Fv

F

(
g

(
πv u

0 1

))
+ µN∞(v) · F

(
g

(
1 0

0 πv

))
.

Here

µN∞(v) =

1 if v - N∞,

0 otherwise.

The harmonicity of F implies that

T∞F = F, ∀F ∈M0(N).

Since Tv and Tv′ commute to each other for any places v and v′, we define
the Hecke operator Tm for m ∈ Divf,≥0(k) by the following:Tmm′ := Tm · Tm′ for m and m′ are coprime;

Tv`+2 := TvTv`+1 − µN(v)qv · ρ
(
s(v)

)
Tv` for any finite place v of k.

For each divisor m ∈ Div(k), the m-th Fourier coefficient F ∗(m) of F is

F ∗(m) :=

∫
k\A

F

((
s(δ−1m) u

0 1

))
ψ(−u)du.



3. DRINFELD TYPE AUTOMORPHIC FORMS AND HECKE OPERATORS 33

Here the Haar measure du is normalized such that the volume of k\A is
one, and δ is the canonical divisor of k introduced in Chapter II Section 1.
It is observed that F ∗(m) = 0 unless m is positive. Let

F ∗0 (m) :=

∫
k\A

F

((
s(δ−1m) u

0 1

))
du.

Then the harmonicity of F implies that

F ∗(m) = ‖m∞‖−1F ∗(mf ) and F ∗0 (m) = ‖m∞‖−1F ∗(mf ).

Here

m∞ :=∞ord∞(m), mf := m/m∞,

and s : Div(k)→ A× is the section fixed in Chapter II Section 1. Moreover,
given a and a′ in Divf (k), F ∗0 (a) = F ∗0 (a′) if the corresponding fractional
ideals Ma and Ma′ are in the same ideal class of A.

For af ∈ A∞,×, set

(
ρ(af )F

)
(g) := F

((
ι∞,×(af ) 0

0 ι∞,×(af )

)
g

)
.

Here ι∞,× : A∞,× ↪→ A× is introduced in Chapter II Section 1. Then the
surjectivity of the canonical map from B(A) onto Y0(N) (where B is the
standard Borel subgroup of GL2) implies that

Lemma III.7. F is uniquely determined by Fourier coefficients(
ρ(ai)F

)∗
(m) and

(
ρ(ai)F

)∗
0
(div(aj))

for m ∈ Divf,≥0(k) and representatives a1, ..., ah of k×\A×f /O
×
Af .

3.1. Fourier coefficients of theta series. Recall that in Chapter III
Section 2 we constructed a family of theta series Θij (cf. Definition III.6),
1 ≤ i, j ≤ n, associated to a given Eichler A-order R of type (N+,N−).
Moreover, Proposition III.4 and Lemma III.5 tells us that these series are
Drinfeld type automorphic forms of level N = N+N−. In the following, we
show that the m-th Fourier coefficient of Θij is essentially the (i, j)-entry of
the Brandt matrix B(m) for every m ∈ Divf,≥0(k):



34 III. THE BASIS PROBLEM FOR DRINFELD TYPE AUTOMORPHIC FORMS

Proposition III.8. For divisors m ∈ Divf,≥0(k) and a ∈ Divf (k),

Θ∗ij(m) =
Bij(m)

‖m‖
and Θ∗ij,0(a) =

εij(a)

wj‖a‖
.

Here

εij(a) :=

1 if the ideals Ma and N−1
ij are in the same class of A,

0 otherwise;

and wj = #(R×j )/(q − 1) is introduced in Chapter II Section 4.2.

Proof. Let

ϕ̃′ij := ω̃

(
βijs(δ) 0

0 βijs(δ)

)
ϕ̃ij

where the Weil representation ω̃ of GL2(A) and the Schwartz function ϕ̃ij are
introduced in Chapter III Section 1.2. Then for any pair (x, α) ∈ V (A)×A×,

ϕ̃′ij(x, α) = 1β−1
ij s(δf )−1biR̂b

−1
j

(xf )1O×A∞
(αfβ

−1
ij s(δf )−1)

·1O∞
(

Nr(x∞)α∞s(δ∞)
)
.

Given m ∈ Divf,≥0(k), for each u ∈ A one has

#(R×j ) · ‖m‖ ·Θij

((
s(δ−1m) u

0 1

))
=

∑
(x,α)∈V (k)×k×

ϕ̃′ij
(
s(δ−1m)x, s(δm)−1α

)
· ψ(Nr(x)uα)

=
∑

(x,α)∈V (k)×k×

[(
1
β−1
ij biR̂b

−1
j

(s(m)xf )1O×A∞
(s(m)−1αfβ

−1
ij ) · 1O∞(Nr(x∞)α∞)

)
· ψ(Nr(x)uα)

]
.

Thus

Θ∗ij(m) = Θ∗ij,0(m) = 0 = Bij(m)

unless s(m) and β−1
ij represent the same coset in k×\A∞,×/O×A∞ . In this

case, let γ ∈ k× such that γ · βij · s(m) ∈ O×A∞ . Then

#(R×j ) · ‖m‖ ·Θ∗ij,0(m) = q − 1
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and

#(R×j ) · ‖m‖ ·Θ∗ij(m)

= #
{

(x, ε) ∈ V (k)× F×q | γ−1xf ∈ biR̂b−1
j and Nr(x)γ−1ε = 1

}
.

= #
{
x ∈ D ∩ biR̂b−1

j |
Nr(x)

βij
∈ s(m)O×A∞

}
= #(R×j ) ·Bij(m).

Therefore the proof is complete. �

The following proposition says that the action of Hecke operators on the
theta series Θij can be read off by the Brandt matrices:

Proposition III.9. For any m ∈ Divf,≥0(k) which is prime to N+ and
1 ≤ i, j ≤ n,

TmΘij =
n∑
`=1

Bi`(m)Θ`j .

Proof. First, from the definition of Θij , it is clear that

Lemma III.10. For af ∈ A∞,× and g ∈ GL2(A),

ρ(af )Θij =

n∑
`=1

Li`
(
div(af )

)
Θ`j .

Here Lij(a) for any divisor a ∈ Divf (k) is introduced in §3.

Since the Brandt matrices and the Hecke operators share the same re-
currence relation, it suffices to prove the case when m = v with v - N+.
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By Proposition III.8, we obtain that for each divisor m ∈ Divf,≥0(k),
n∑
`=1

Bi`(v)Θ∗`j(m)

= ‖m‖−1˙

n∑
`=1

Bi`(v)B`j(m)

= ‖m‖−1 ·

[
n∑
`=1

µN∞(v)qv · Li`(v)B`j(
m

v
) +Bij(mv)

]

= qvΘ
∗
ij(mv) +

n∑
`=1

µN∞(v)Li`(v)Θ∗`j(
m

v
)

= (TvΘij)
∗(m).

Moreover, it is clear that
n∑
`=1

Bi`(v)Θ∗`j,0(m) = (TvΘij)
∗
0(m).

Therefore by Lemma III.7 and III.10, the proof is complete. �

Remark. Proposition III.8 and Lemma III.10 tell us, in particular, that
these theta series Θij are Q-valued Drinfeld type automorphic forms. Propo-
sition III.9 leads to a Hecke module homomorphism from the Picard group of
definite Shimura curves into the space ofQ-valued Drinfeld type automorphic
forms. Further discussions are in the next subsection.

4. The Hecke module homomorphism Φ

Recall the definite Shimura curve X = XN+,N− introduced in Chapter II
Section 4 and the Gross height pairing

< e, ě > =
∑
i

aia
′
i,

where (e, ě) ∈ Pic(X) × Pic(X)∨ with e =
∑

i aiei and ě =
∑

i a
′
iěi. We

let N = N+N− and denote M0(N,Q) the space of Q-valued Drinfeld type
automorphic forms of level N. Define the Z-bilinear map

Φ : Pic(X)× Pic(X)∨ →M0(N,Q)
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by

Φ(e, ě) :=
∑

1≤i,j≤n
aia
′
jΘij

for any e ∈ Pic(X) with e =
∑

i aiei and ě ∈ Pic(X)∨ with ě =
∑

i a
′
iěi.

Then for any divisor m ∈ Divf,≥0(k) which is prime to N+, by Proposi-
tion III.8 and III.9 we get

Φ(e, ě)∗(m) =
< tme, ě >

‖m‖
=
< e, t∗mě >

‖m‖
.

Note that Proposition III.9 implies further that

Tm
(
Φ(e, ě)

)
= Φ(tme, ě) = Φ(e, t∗mě)

for m ∈ Divf,≥0(k) prime to N+. Let

TQ := Q[tm : m ∈ Divf,≥0(k) prime to N+].

Consider the TQ-module structure of Pic(X)∨ ⊗Z Q defined by

(tm, ě) 7→ t∗mě.

We conclude that

Theorem III.11. The map Φ : Pic(X)×Pic(X)∨ −→M0(N,Q) satisfies
that for any divisor m ∈ Divf,≥0(k) which is prime to N+,

Φ(e, ě)∗(m) =
< tme, ě >

‖m‖
=
< e, t∗mě >

‖m‖

and

TmΦ(e, ě) = Φ(tme, ě) = Φ(e, t∗mě).

Moreover, this map induces a homomorphism

(Pic(X)⊗Z Q)⊗TQ (Pic(X)∨ ⊗Z Q) −→M0(N,Q)

as TQ-modules.

Remark. Suppose N is square-free. We change the notation N+, N−,
and N to N+

0 , N−0 , and N0, respectively. Given m ∈ Divf,≥0(k), write
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m = m′
∏
v|N+

0
vordv(m) with m′ and N+

0 coprime. Then by Proposition III.8
and Lemma II.5, we obtain that for (e, ě) ∈ Pic(X)× Pic(X)∨,

Φ(e, ě)∗(m) =
< (tm′

∏
v|N+ Wvordv(m))e, ě >

‖m‖

=
< e, (t∗m′

∏
v|N+ W ∗vordv(m))ě >

‖m‖
.

4.1. Changing levels. Let X be the definite Shimura curve over k of
type (N+

0 ,N
−
0 ), where N0 = N+

0 N
−
0 is square-free. Choose a place v0 of k

with ordv0(N+
0 N
−
0∞) = 0. Denote by Xv0 the definite Shimura curve over k

of type (v0N
+
0 ,N

−
0 ). Then the canonical morphism pr from Xv0 to X induces

natural group homomorphisms

pr∗ : Pic(Xv0)→ Pic(X) and pr∗ : Pic(X)∨ → Pic(Xv0)∨.

Define pr∗v0
: Pic(X)∨ → Pic(Xv0)∨ by

< ev0 , pr
∗
v0

(ě) >v0 := < pr∗(w
′
v0
ev0), ě >, ∀(ev0 , ě) ∈ Pic(Xv0)× Pic(X)∨.

Here < ·, · >v0 and < ·, · > are Gross height pairing on Pic(Xv0) ⊗Z Q
and Pic(X)⊗Z Q, respectively. Recall the Hecke module homomorphism Φ

introduced in Theorem III.11, and denote by

Φv0 : Pic(Xv0)× Pic(Xv0)∨ →M0(v0N0)

the corresponding Hecke module homomorphism for Xv0 .

Theorem III.12. For ě ∈ Pic(X)∨, ev0 ∈ Pic(Xv0), and g ∈ GL2(A),
we have

Φv0

(
ev0 , pr

∗(ě)
)
(g) = Φ

(
pr∗(ev0), ě

)
(g) + Φ

(
pr∗(w

′
v0
ev0), ě

)(
g

(
π−1
v0

0

0 1

))

and

Φv0

(
ev0 , pr

∗
v0

(ě)
)
(g) = Φ

(
pr∗(w

′
v0
ev0), ě

)
(g)+Φ

(
lv0pr∗(ev0), ě

)(
g

(
π−1
v0

0

0 1

))
.
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Proof. It suffices to prove the equality for the Fourier coefficients, i.e.
for m ∈ Divf,≥0(k), a ∈ Divf (k), ě ∈ Pic(X)∨, and ev0 ∈ Pic(Xv0),

Φv0

(
ev0 , pr

∗(ě)
)∗

(m) = Φ
(
pr∗(ev0), ě

)∗
(m)(1)

+Φ
(
pr∗(w

′
v0
ev0), ě

)∗
(mv−1

0 ),

Φv0

(
ev0 , pr

∗(ě)
)∗

0
(a) = Φ

(
pr∗(ev0), ě

)∗
0
(a)(2)

+Φ
(
pr∗(w

′
v0
ev0), ě

)∗
0
(av−1

0 ),

Φv0

(
ev0 , pr

∗
v0

(ě)
)∗

(m) = Φ
(
pr∗(w

′
v0
ev0), ě

)∗
(m)(3)

+Φ
(
lv0pr∗(ev0), ě

)∗
(mv−1

0 ),

Φv0

(
ev0 , pr

∗
v0

(ě)
)∗

0
(a) = Φ

(
pr∗(w

′
v0
ev0), ě

)∗
0
(a)(4)

+Φ
(
lv0pr∗(ev0), ě

)∗
0
(av−1

0 ).

Denote by {e1, ..., en} and {ev0,1, ..., ev0,nv0
} the canonical bases of Pic(X)

and Pic(Xv0), respectively. Suppose pr∗(ev0,i) = ei0 . Then by Proposition
III.8 it is observed that

Φv0

(
ev0,i, pr

∗(ěj)
)∗

0
(a) =

∑
ev0,j′

∈ pr−1
∗ (ej)

εv0,ij′(a)

wv0,j′‖a‖

= (qv0 + 1)
εi0j(a)

wj‖a‖
.

On the other hand,

Φ
(
pr∗(ev0,i), ěj

)∗
0
(a) =

εi0j(a)

wj‖a‖
= q−1

v0
Φ
(
pr∗(w

′
v0
ev0,i), ěj

)∗
0
(av−1

0 ).

Therefore the equality (2) holds. Suppose

w′v0
ev0,i = ev0,i′ and pr∗(ev0,i′) = ei′0 with 1 ≤ i′, i′0 ≤ n.

Then

Φv0

(
ev0,i, pr

∗
v0

(ěj)
)∗

0
(a) =

∑
ev0,j′

∈pr−1
∗ (ej)

εv0,i′j′(a)

wv0,j′‖a‖

= (qv0 + 1)
εi′0j(a)

wj‖a‖
.
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Since

q−1
v0

Φ
(
lv0pr∗(ev0,i), ěj

)∗
0
(av−1

0 ) =
εi′0j(a)

wj‖a‖
= Φ

(
pr∗(w

′
v0
ev0,i), ěj

)∗
0
(a),

the equality (4) holds.

Now, for m ∈ Divf,≥0(k), write m as m′
∏
v|v0N

+
0
vordv(m) with m′ and N+

0

coprime. The remark of Theorem III.11 says that

Φv0

(
ev0 , pr

∗(ě)
)∗

(m) =
<
(
tm′
∏
v|N+

0
Wvordv(m)

)
pr∗(W

v
ordv0 (m)

0

ev0), ě >

‖m‖

and

Φv0

(
ev0 , pr

∗
v0

(ě)
)∗

(m) =
<
(
tm′
∏
v|N+

0
Wvordv(m)

)
pr∗(W

v
ordv0 (m)

0

w′v0
ev0), ě >

‖m‖
.

By Proposition II.6, we get

Φv0

(
ev0 , pr

∗(ě)
)∗

(m)

=
<
(
tm′
∏
v|N+

0
Wvordv(m)

)
t
v

ordv0 (m)

0

pr∗(ev0), ě >

‖m‖

+
qv0 · <

(
tm′
∏
v|N+

0
Wvordv(m)

)
t
v

ordv0 (m)−1

0

pr∗(w
′
v0
ev0), ě >

‖m‖
= Φ

(
pr∗(ev0), ě

)∗
(m) + Φ

(
pr∗(w

′
v0
e), ě

)∗
(mv−1

0 ),

and

Φv0

(
ev0 , pr

∗
v0

(ě)
)∗

(m)

=
<
(
tm′
∏
v|N+

0
Wvordv(m)

)
t
v

ordv0 (m)

0

pr∗(w
′
v0
ev0), ě >

‖m‖

+
qv0 · <

(
tm′
∏
v|N+

0
Wvordv(m)

)
t
v

ordv0 (m)−1

0

lv0pr∗(ev0), ě >

‖m‖
= Φ

(
pr∗(w

′
v0
ev0), ě

)∗
(m) + Φ

(
lv0pr∗(ev0), ě

)∗
(mv−1

0 ).

Therefore (1) and (3) holds and the proof of this proposition is complete. �
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5. Construction of Drinfeld type newforms

Given N ∈ Divf,≥0(k), a Drinfeld type automorphic form F of level N is
called a cusp form if for every g ∈ GL2(A),∫

k\A
F

((
1 u

0 1

)
g

)
du = 0.

Note that this cuspidal condition is equivalent to say that F vanishes at
almost all double cosets in Y0(N) (cf. [7]). Given two Drinfeld type auto-
morphic forms F1 and F2 of level N, suppose one of them is a cusp form.
The Petersson inner product of F1 and F2 is:

(F1, F2) :=

∫
Z(k∞) GL2(k)\GL2(A)

F1(g)F2(g)dg

=
∑

[g]∈Y0(N)

F1(g)F2(g)µ([g]),

where Z is the center of GL2 and for each double coset [g] ∈ Y0(N), the
measure µ([g]) is normalized to be

µ([g]) :=
q − 1

2 ·#(Pic(A))
· 1

#
(

GL2(k) ∩ gK0(N∞)g−1
) .

A Drinfeld type cusp form F of level N is called an old form if F is a
linear combination of the forms

F ′

(
g

(
1 0

0 s(N′′)

))
, ∀g ∈ GL2(A),

where F ′ is a Drinfeld type cusp form of level N′ with N′N′′ | N and N′ 6= N.
A Drinfeld type cusp form F of level N is called a newform if F is a Hecke
eigenform and (F, F ′) = 0 for any old form F ′ of level N.

Now, Suppose N = N+N−, where N+ and N− are relatively prime, and
N− is the product of finite ramified places of a definite quaternion algebra
D over k. Let X = XN+,N− be the definite Shimura curve of type (N+,N−),
and denote by

Pic(X)C := Pic(X)⊗Z C, Pic(X)∨C := Pic(X)∨ ⊗Z C.
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Extend < ·, · > to a pairing on Pic(X)C × Pic(X)∨C which is linear on the
left and conjugate linear on the right. We emphasize that Pic(X)∨C can be
identified with the space of C-valued functions on D×\D×Af /R̂

×:

ě ∈ Pic(X)∨C 7−→
(
[bi] 7→< ei, ě >, [bi] ∈ D×\D×Af /R̂

×).
For each character χ : Pic(A)→ C×, let

e0,χ :=
n∑
i=1

χ(Nr(Ii))
−1 · ei

wi
∈ Pic(X)⊗Z C.

Then for every divisor m ∈ Divf,≥0(k) which is prime to N+,

tme0,χ = χ(m)b(m)e0,χ.

Recall that b(m) =
∑n

j=1Bij(m). Set

Pic0(X)∨C := {ě ∈ Pic(X)∨C | < e0,χ, ě >= 0 ∀χ : Pic(A)→ C×}.

We also denote by S(N−)−new
0 (N) the space of Drinfeld type (N−)-new forms

of level N, i.e. every F ∈ S(N−)−new
0 (N) is a linear combination of the forms

F ′

(
g

(
1 0

0 s(N′′)

))
,

where F ′ is a Drinfeld type newform of level N′ with N′N′′ | N and N− | N′.
Then the Jacquet-Langlands correspondence for D× and GL2 tells us that

Theorem III.13. (cf. [7]) There exists an isomorphism (as C-vector
spaces) JL from Pic0(X)∨C onto S(N−)−new

0 (N) such that given m ∈ Divf,≥0(k)

and F ∈ S(N−)−new
0 (N),

JL−1(TmF ) = t∗mJL
−1(F ).

Suppose now that N is square-free. As in the remark of Theorem III.11,
we change the notation N, N+, and N− respectively to N0, N+

0 , and N−0 .
Let F ∈ S0(N0) be a Drinfeld type newform. Define

eF := JL−1(F ) ∈ Pic0(X)∨C.

where ě :=
∑n

i=1 ai · ěi for any ě =
∑n

i=1 aiěi ∈ Pic0(X)∨C. Then if F is
normalized, i.e. F ∗(1) = 1, we get
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Theorem III.14. For any e ∈ Pic(X)C,

Φ(e, eF ) =< e, eF > ·F.

Here Φ is the map introduced in Theorem III.11.

Proof. By Theorem III.11 and III.13, Φ(e, eF ) and F share the same
eigenvalues of Tm for any m ∈ Divf,≥0(k) prime to N+

0 . Let v be a place with
v | N+

0 . Since F is a newform, we get

(tv + w′v)
∗eF = 0.

This implies that W ∗
v`
eF = t∗

v`
eF . Therefore

Φ(e, eF )∗(m) =< e, eF > ·F ∗(m) for any divisor m ∈ Divf,≥0(k).

Since eF is orthogonal to e0,χ for every character χ of Pic(A), we obtain

Φ(e, eF )∗0(a) = 0

for any divisor a ∈ Divf (k). By Lemma III.7, the proof is complete accord-
ingly. �

Remark. 1. Suppose N+
0 = 1. Then Theorem III.14 tells us that Φ

maps Pic(X)C × Pic0(X)∨C to the space Snew
0 (N0) spanned by Drinfeld type

newforms of level N0.
2. In general, by Theorem III.12 we obtain that Φ(e, ě) is in fact in S(N−)−new

0 (N0)

for any pair (e, ě) ∈ Pic(X)C × Pic0(X)∨C.

In the next section, we study the basis problem for Drinfeld type cusp
forms of square-free levels.

6. The basis problem

Let N0 ∈ Divf,≥0(k) be a square-free divisor. Let S0(N0) be the space
of Drinfeld type cusp forms of level N0. Then

S0(N0) = S0(1,N0)⊕ S0(1,N0)⊥.

Here S0(1,N0) denotes the space generated by the old forms

F ′

(
g

(
1 0

0 s(N′′)

))
,
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where F ′ is a Drinfeld type cusp form of level 1 and N′′ | N0; S0(1,N0)⊥ is
the othogonal component of S0(1,N0) with respect to the Petersson inner
product.

For a finite place v of k and N′ ∈ Divf,≥0(k) with N′v | N0, the theta
series Φ(e, e′) for any e ∈ Pic0(XN′,v)C and e′ ∈ Pic0(XN′,v)

∨
C is in fact in

S0(1,N0)⊥. On the other hand, every F ∈ S0(1,N0)⊥ is constructed by
newforms of non-trivial levels dividing N0. Moreover, for 1 6= N′0 | N0, let
v0 be a finite place dividing N′0 and set N′′0 := N′0/v0. Then Theorem III.13
and III.14 says that every Drinfeld type newform F of level N′0 is equal to

< e, eF >
−1 Φ(e, eF )

for e ∈ Pic0(XN′′0 ,v0
)C with < e, eF >6= 0. Therefore we conclude that

Theorem III.15. The space S0(1,N0)⊥ is generated by the family of
theta series Φ(e, e′), where (e, e′) ∈ Pic0(XN′+0 ,N′−0

)C × Pic0(XN′+0 ,N′−0
)∨C, for

the pairs (N′+0 ,N
′−
0 ) with N′+0 N′−0 dividing N0, and the old forms coming

from these theta series.

An immediate consequence is the following:

Corollary III.16. Suppose S0(1,N0) = 0. Then the whole space S0(N0)

is generated by those theta series introduced in Theorem III.15 and the old
forms coming from them.

Remark. 1. When k is a rational function field and ∞ corresponds to
the degree valuation, the space S0(1,N0) is trivial and hence every Drinfeld
type cusp forms of level N0 can be generated by our theta series.
2. It is worth pointing out that S0(1,N0) is not trivial in general. For
example, we might take an elliptic curve E/k which has split multiplicative
reduction at ∞ and has good reduction elsewhere. Then from the works
of Weil, Jacquet-Langlands, and Deligne, there exists a normalized Drinfeld
type newform FE of level 1 whose L-function is equal to the Hasse-Weil
L-function of E/k. The following example indicates the existence of such
elliptic curves.
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Example III.17. (Given by M. Papikian) Let k = Fq(t) with (q, 6) = 1.
Consider the following elliptic curve

E : y2 + (t− 1728)xy = x3 − 36(t− 1728)3x− (t− 1728)5.

Then the discriminant of E is t2(t − 1728)9, and the j-invariant j(E) of E
is t. It is observed that E has multiplicative reduction at ∞. Since j(E)

is regular outside ∞, E has potentially good reduction at the places t and
t − 1728. Denote by kt and kt−1728 the completion of k at t and t − 1728,
respectively. Therefore we can find fields K1, K2, K3, where

[K1 : kt] = [K2 : kt−1728] = [K3 : k∞] = 12

and E/K1, E/K2 are good reduction, E/K3 is split multiplicative reduc-
tion. By Krasner’s lemma and approximation theorem, there exists a global
function field K with [K : k] = 12 and

K ⊗k kt = K1, K ⊗k kt−1728 = K2, K ⊗k k∞ = K3.

Hence E/K has split multiplicative reduction at the unique place ∞K lying
above ∞, and has good reduction elsewhere.





CHAPTER IV

Metaplectic forms and Shintani-type

correspondence

In this chapter, we assume that q is odd. Following Kubota, we consider
a non-trivial central extension of GL2, the metaplectic group. In the function
field context, we take the Iwahori Hecke operator at ∞ to be our “non-
Euclidean Laplacian,” and functions on the metaplectic group of weight r/2
are defined to be the eigenfunctions of this operator with eigenvalue q1− r

4∞ .
From the norm form on A-lattices of pure quaternions in definite quaternion
algebras over the function field k, we construct another family of theta series
which are metaplectic forms of weight 3/2. It turns out that the action
of Hecke operators on these theta series can also be expressed by Brandt
matrices. This allows us to establish a Shintani-type correspondence Sh in
Theorem I.2

1. Metaplectic forms

1.1. Metaplectic group. We assumed that q is odd. Let v be a place
of k. Recall the Kubota 2-cocycle σ′v : GL2(kv) × GL2(kv) → {±1} defined
by (cf. [10]):

σ′v(g1, g2) :=

(
x(g1g2)

x(g1)
,

x(g1g2)

det g1 · x(g2)

)
v

, ∀g1, g2 ∈ GL2(kv).

Here

x

(
a b

c d

)
:=

c, if c 6= 0,

d, if c = 0;

47
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and (·, ·)v is the Hilbert quadratic symbol at v, i.e. for any a, b ∈ k×v ,

(a, b)v :=

1, if aZ2
1 + bZ2

2 = Z2
3 has a non-trivial solution,

−1, otherwise.

Define a map sv : GL2(kv)→ {±1} by setting

sv

(
a b

c d

)
:=

(c, d/(ad− bc))v, if ordv(c) is odd and d 6= 0,

1, otherwise.

Let σv be the 2-cocycle defined by

σv(g1, g2) := σ′v(g1, g2)sv(g1)sv(g2)sv(g1g2)−1, ∀g1, g2 ∈ GL2(kv).

It is known that (cf. [5])

σv(κ1, κ2) = 1 ∀κ1, κ2 ∈ GL2(Ov).

Hence σv induces a central extension G̃L2(kv) of GL2(kv) by

C1 := {z ∈ C : |z| = 1}

which splits on the subgroup GL2(Ov). More precisely, the extension G̃L2(kv)

is identified with GL2(kv)× C1 (as sets) with the following group law:

(g1, ξ1) · (g2, ξ2) =
(
g1g2, ξ1ξ2σv(g1, g2)

)
.

Globally, we define a 2-cocycle σ on GL2(A) by setting σ := ⊗vσv, and
denote by G̃L2(A) the corresponding central extension of GL2(A) by C1. We
emphasize that the embeddings

GL2(k) −→ G̃L2(A)

γ 7−→ γ̃ := (γ, s(γ))
and

GL2(OA) −→ G̃L2(A)

κ 7−→ κ̃ := (κ, 1)

are group monomorphisms. Here s(γ) :=
∏
v sv(γ).

Let

K+
∞ :=

{(
a b

c d

)
∈ GL2(O∞)

∣∣∣∣ c ≡ 0 mod π∞O∞ and (π∞, d)∞ = 1

}
and

K̃+
∞ :=

{
κ̃∞ = (κ∞, 1) ∈ ˜GL2(k∞) : κ∞ ∈ K+

∞

}
.
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It is observed that

K̃+
∞

((
π∞ 0

0 1

)
, 1

)
K̃+
∞ =

∐
u∈F∞

((
π∞ u

0 1

)
, 1

)
K̃+
∞.

For each function F on G̃L2(A) with

F (g̃κ̃∞) = F (g̃), ∀κ∞ ∈ K+
∞,

we define for each integer r, the weight-r/2 operator (with respect to ∞):

T∞,r/2F (g̃) := qr/4−1
∞ ·

∑
u∈F∞

F

(
g̃ ·

((
π∞ u

0 1

)
, 1

))
.

Definition IV.1. Suppose an integer r is given. A C-valued function
F on G̃L2(A) is call a weight-r/2 metaplectic form if there exists an open
subgroup K of GL2(OAf ) such that

F (γ̃g̃κ̃) = ξrF (g, 1), ∀g̃ = (g, ξ) ∈ G̃L2(A), γ ∈ GL2(k), κ ∈ K ×K+
∞,

and
T∞,r/2F = F.

Example IV.2. Let F be a Drinfeld type automorphic forms. Then F
induces a function (still denoted by F ) on G̃L2(A) by setting

F (g, ξ) := ξ4 · F (g), ∀(g, ξ) ∈ G̃L2(A).

The harmonicity of F tells us that

T∞,2F = F.

Therefore every Drinfeld type automorphic form can be viewed as a weight-2
metaplectic forms.

In the next subsection, we review the Weil representation of the meta-
plectic group G̃L2(A), and construct an explicit family of metaplectic forms
having half integral weight.

1.2. Weil representation and theta series from pure quater-
nions.
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1.2.1. local results. Recall that (V,QV ) is the quadratic space (D,Nr),
where D is the chosen definite quaternion algebra over k in Chapter III.
Then

(V,QV ) = (V1, Q1)⊕ (V3, Q3),

where

V1 := k, V3 := {b ∈ D : Tr(b) = 0}, and Qi := Q |Vi .

For each place v of k, Denote by S(Vr(kv) × k×v ) the space of functions φv
on Vr(kv)× k×v such that for each αv ∈ k×v , φv(·, αv) is a Schwartz function
on Vr(kv). Define the Weil index γψv(αvQr) for the quadratic form αvQr:

γψv(αvQr) :=

∫
Lr

ψv(αvQr(u))dαvu

where Lr is a sufficiently large Ov lattice in Vr(kv). The Haar measure dαvu
is self-dual with respect to the pairing

(x, y) 7→ ψv(αv Tr(xȳ)), ∀x, y ∈ Vr(kv).

Note that for r = 1 or 3, we define Wψv ,r : k×v −→ C1 by setting

Wψv ,r(αv) :=
γψv(αvQr)

γψv(Qr)
∀αv ∈ k×v .

Then it is known that

Wψv ,1 ·Wψv ,3 ≡ 1

and

Wψv ,r(αv)Wψv ,r(βv)

Wψv ,r(αvβv)
= (αv, βv)v, ∀αv, βv ∈ k×v .

In particular, Wψv ,r(αv) = (π
ordv(δ)
v , αv)v for any αv ∈ O×v .
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Theorem IV.3. (Gelbart [5]) There is a representation ωr,v of G̃L2(kv)

on the space S(Vr(kv)× k×v ) satisfying that

(1) ωr,v(1, ξ)φ(w,αv) := ξrφ(w,αv), ξ ∈ C1;

(2) ωr,v

((
1 x

0 1

)
, 1

)
φ(w,αv) = ψv(xαvQr(w))φ(w,αv), x ∈ kv;

(3) ωr,v

((
0 1

−1 0

)
, 1

)
φ(w,αv) = γψv(αvQr)Fr(φ)(w,αv);

(4) ωr,v

((
a 0

0 a−1

)
, 1

)
φ(w,αv) = |a|

r
2
v (a, a)rv

γψv(aαvQr)

γψv(αvQr)
φ(aw, αv), a ∈ k×v ;

(5) ωr,v

((
1 0

0 β

)
, 1

)
φ(w,αv) = |β|−

r
4

v φ(w,αvβ
−1), β ∈ k×v .

Here

Fr(φ)(w,αv) =

∫
Vr(kv)

φ(u, αv)ψv(αv Tr(uw̄))dαvu,

where the Haar measure dαvu is normalized so that

F2
r (φ)(w,αv) = φ(−w,αv).

Now, consider a particular function in S(V1(kv)× k×v ):

ϕ(1)
v (xv, αv) := 1

π
d− ordv(δ)/2e
v Ov

(xv) · 1O×v (αv), ∀(xv, αv) ∈ V1(kv)× k×v .

Then

Lemma IV.4. For any κv =

(
av bv

cv dv

)
∈ GL2(Ov) with cv ∈ πvOv, we

have

ω1,v(κ̃v)ϕ
(1)
v = Wψv ,1(av) · ϕ(1)

v .

In particular, suppose ordv(δ) is even. Then

ω1,v(κ̃v)ϕ
(1)
v = ϕ(1)

v , ∀κv ∈ GL2(Ov).

Proof. It is observed that

ω1,v

((
1 0

0 uv

)
, 1

)
ϕ(1)
v = ϕ(1)

v
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for any uv ∈ O×v , and

F1(ϕ(1)
v )(xv, αv) = 1

π
b− ordv(δ)/2c
v Ov

(xv)·1O×v (αv)·

q
−1/2
v if ordv(δ) is odd,

1 if ordv(δ) is even.

Let κv =

(
a b

πvc d

)
∈ SL2(Ov) with c ∈ Ov. Then

κv =

(
1 bd−1

0 1

)(
d−1 0

0 d

)(
1 0

πvd
−1c 1

)
.

Therefore for (xv, αv) ∈ V1(kv)× k×v ,

ω1,v(κ̃v)ϕ
(1)
v (xv, αv)

= ψv
(
αvbd

−1Q1(xv)
)
·
Wψv ,1(a)

(a, αv)v
·

(
ω1,v

((
1 0

πvd
−1c 1

)
, 1

)
ϕ(1)
v

)
(d−1xv, αv).

Since (
1 0

πvd
−1c 1

)
=

(
0 1

−1 0

)(
1 −πvd−1c

0 1

)(
0 −1

1 0

)
,

we have(
ω1,v

((
1 0

πvd
−1c 1

)
, 1

)
ϕ(1)
v

)
(d−1xv, αv)

=

∫
V1(kv)

ψv
(
−αvπvd−1c ·Q1(yv)

)
ψv(2αvd

−1xvyv)F1(ϕ(1)
v )(−yv, αv)dαvyv.

= 1O×v (αv) ·
∫
π
b− ordv(δ)/2c
v Ov

ψv
(
−αvπvd−1c ·Q1(yv)

)
ψv(2αvd

−1xvyv)dαvyv

·

q
−1/2
v if ordv(δ) is odd,

1 if ordv(δ) is even.

= ϕv(xv, αv).

Moreover, for (xv, αv) ∈ πd− ordv(δ)/2e
v Ov ×O×v , one has

ψv
(
αvbd

−1Q1(xv)
)

= 1 and (a, αv)v = 1.

Therefore

ω1,v(κ̃v)ϕ
(1)
v = Wψv ,1(a) · ϕ(1)

v
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for any κv =

(
a b

πvc d

)
∈ GL2(Ov) with c ∈ Ov.

Suppose ordv(δ) is even. Then γψv(αvQ1) = 1 for any αv ∈ O×v and

F1(ϕ
(1)
v ) = ϕ

(1)
v . Since GL2(Ov) is generated by elements

(
a b

c d

)
with

c ≡ 0 mod πvOv and

(
0 1

−1 0

)
, the proof of this lemma is complete. �

Recall

εv(δ) =

0 if ordv(δ) is even,

1 if ordv(δ) is odd.

Then we immediately get

Corollary IV.5. Let ϕ̃(1)
v be the function in S(V1(kv)× k×v ) defined by

ϕ̃(1)
v (xv, αv) := 1

π
− ordv(δ)
v Ov

(xv) · 1O×v (αvπ
− ordv(δ)−2εv(δ)
v )

for any (xv, αv) ∈ V1(kv)× k×v . Then for every κv =

(
av bv

cv dv

)
∈ GL2(Ov)

with cv ≡ 0 mod π
2εv(δ)
v Ov, we have

ω1,v(κ̃v)ϕ̃
(1)
v = ϕ̃(1)

v .

Proof. Note that

ω1,v

((
π
−b− ordv(δ)/2c
v 0

0 π
−b− ordv(δ)/2c
v

)
, 1

)
ϕ(1)
v (xv, αv)

= (π−b− ordv(δ)/2c
v , π−b− ordv(δ)/2c

v )v
Wψv ,1(π

−b− ordv(δ)/2c
v )

(π
−b− ordv(δ)/2c
v , αv)v

·1
π
− ordv(δ)
v Ov

(xv)1O×v (αvπ
2b− ordv(δ)/2c
v ).

Hence let

ϕ′v
(1)(xv, αv) := 1

π
− ordv(δ)
v Ov

(xv)1O×v (αvπ
2b− ordv(δ)/2c
v ), ∀(xv, αv) ∈ V1(kv)×k×v ,

we have

ω1,v(κ̃v)ϕ
′
v

(1) = Wψv ,1(a)εv(δ) · ϕ′v(1)
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for any κv =

(
a b

c d

)
∈ GL2(Ov) with c ≡ 0 mod π

εv(δ)
v Ov. Here we set

Wψv ,1(a) := 1 if a = 0. Since

ϕ̃(1)
v = |πv|εv(δ)/4

v · ω1,v

((
1 0

0 π
εv(δ)
v

)
, 1

)
ϕ′v

(1),

we get for any κv =

(
a b

c d

)
∈ GL2(Ov) with c ≡ 0 mod π

εv(δ)
v Ov,

ω1,v

[((
1 0

0 π
εv(δ)
v

)
, 1

)
κ̃v

((
1 0

0 π
−εv(δ)
v

)
, 1

)]
ϕ̃(1)
v = Wψv ,1(a)εv(δ) · ϕ̃(1)

v .

It is clear that ((
1 0

0 π
εv(δ)
v

)
, 1

)
κ̃v

((
1 0

0 π
−εv(δ)
v

)
, 1

)

=

((
a π

−εv(δ)
v b

π
εv(δ)
v c d

)
,Wψv ,1(a)εv(δ)

)
.

Therefore the proof is complete. �

Let ϕ̃(1)
0 := ⊗vϕ̃(1)

0,v ∈ S(V1(A)× A×), where for each v of k with v 6=∞
and (x1,v, αv) ∈ V1(kv)× k×v ,

ϕ̃
(1)
0,v(x1,v, αv) := ϕ̃(1)

v (x1,v, αv)

= 1
π
− ordv(δ)
v Ov

(xv) · 1O×v (αvπ
− ordv(δ)−2εv(δ)
v );

and for (x1,∞, α∞) ∈ V1(k∞)× k×∞,

ϕ̃
(1)
0,∞(x1,∞, α∞) := Wψ∞,1(α∞)−11O∞(x2

1,∞α∞π
ord∞(δ)
∞ ).

Let

Θ̃(g̃) :=
∑

(x,α)∈V1(k)×k×

(
ω1(g̃)ϕ̃

(1)
0

)
(x, α), ∀g̃ ∈ G̃L2(A).

We have

Proposition IV.6. The theta series Θ̃, is a weight-1/2 metaplectic form
on G̃L2(A) which satisfy that

Θ̃(g̃κ̃) = Θ̃(g̃), ∀κ ∈ K0(Ω2∞+).
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Here Ω ∈ Divf,≥0(k) is introduced at the end of Section 1 in Chapter II and

K0(Ω2∞+) :=

∏
v 6=∞
Kv

×K+
∞

where

Kv :=

{(
a b

c d

)
∈ GL2(Ov)

∣∣∣∣ c ≡ 0 mod π2 ordv(Ω)
v Ov

}
for v 6=∞ and

K+
∞ =

{(
a b

c d

)
∈ GL2(O∞)

∣∣∣∣ c ≡ 0 mod π∞O∞ and (π∞, d)∞ = 1

}
.

We emphasize that the theta series Θ̃ is viewed as a function field ana-
logue of the theta series ∑

n∈Z
e2π
√
−1n2z,

a modular form of weight 1/2 for Γ0(4) (cf. [13]).

We have fixed an Eichler A-order R in D of type (N+,N−) and repre-
sentatives I1, ..., In of locally-principal right ideal classes of R, and denoted
by Ri the left order of Ii. For 1 ≤ i ≤ n, denote by R(p)

i the set of pure
quaternions in Ri, i.e.

R
(p)
i := {b ∈ Ri : Tr(b) = 0}.

Then

Ri = A⊕R(p)
i

and for any b = b1 + b3 ∈ Ri with b1 ∈ A and b3 ∈ R(p)
i ,

Tr(b) = 2b1 + Tr(b3).

For each finite place v of k, let ϕ(3)
i,v be the function in S(V3(kv)×k×v ) defined

by

ϕ
(3)
i,v (xv, αv) := 1

π
− ordv(δ)
v R

(p)
i,v

(xv) · 1O×v (αvπ
− ordv(δv)−2εv(δ)
v ).
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Here R(p)
i,v := R

(p)
i ⊗A Ov. It is observed that for any xr,v ∈ Vr(kv) and

αv ∈ k×v ,

ϕ̃(1)
v (x1,v, αv)·ϕ(3)

i,v (x3,v, αv) = 1
π
− ordv(δ)
v Rv

(x1,v+x3,v)1O×v (αvπ
− ordv(δ)−2εv(δ)
v ).

Moreover, consider ϕ̃(1)
v ⊗ ϕ(3)

i,v as a function in S(V (kv)× k×v ), then for any
g ∈ GL2(kv) and 1 ≤ i ≤ n,

ω̃v(g)
[
ϕ̃(1)
v ⊗ ϕ

(3)
i,v

]
= ω1,v(g, 1)ϕ̃(1)

v ⊗ ω3,v(g, 1)ϕ
(3)
i,v .

Recall that Ω =
∏
v 6=∞ v

εv(δ) ∈ Divf,≥0(k). By Corollary IV.5 we get

Lemma IV.7. Let v be an arbitrary finite place of k. For each element

κv =

(
av bv

cv dv

)
∈ GL2(Ov) with cv ≡ 0 mod π

ordv(Ω2N+N−)
v Ov,

ω3,v(κ̃v)ϕ
(3)
i,v = ϕ

(3)
i,v , ∀1 ≤ i ≤ n.

For (x1,∞ + x3,∞, α∞) ∈
(
V1(k∞)⊕ V3(k∞)

)
× k×∞, let

ϕ(3)
∞ (x3,∞, α∞) := Wψ∞,3(α∞)−11O∞(Nr(x3,∞)α∞π

ord∞(δ)
∞ ).

Then it is observed that for x∞ = x1,∞+x3,∞ ∈ V (k∞) = V1(k∞)⊕V3(k∞)

and α ∈ k×∞,

ϕ̃
(1)
0,∞(x1,∞, α∞) · ϕ(3)

∞ (x3,∞, α∞) = 1O∞(Nr(x∞)α∞π
ord∞(δ)
∞ ).

Similarly, we obtain that

Lemma IV.8. For any κ∞ =

(
a∞ b∞

c∞ d∞

)
∈ GL2(O∞) with c∞ in π∞O∞,

(
ω3,∞(κ̃∞)ϕ(3)

∞

)
(x3,∞, α∞) =

(
Wψ∞,3(d∞)(d∞, α∞)∞

)
· ϕ(3)
∞ (x3,∞, α∞)

for any (x3,∞, α∞) ∈ V3(k∞)× k×∞. In particular, if (π∞, d∞)∞ = 1,

ω3,∞(κ̃∞)ϕ(3)
∞ = ϕ(3)

∞ .
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Furthermore, it is observed that for (x3,∞, α∞) ∈ V3(k∞)× k×∞,

∑
u∈F∞

ω3,∞

((
π∞ u

0 1

)
, 1

)
ϕ(3)
∞ (x∞, α∞)

=
∑
u∈F∞

ψ∞
(

Nr(x∞)α∞u
)
· 1O∞

(
Nr(x∞)α∞π

1−ord∞(δ)
∞

)
·

(
|π∞|−3/4+3/2

∞ (π∞, π∞)∞
γψ∞(α∞Q3)

γψ∞(α∞π
−1
∞ Q3)

Wψ∞,3(α∞π
−1
∞ )−1

)
= q3/4

∞ ·Wψ∞,3(α∞)−11O∞
(

Nr(x∞)α∞π
1−ord∞(δ)
∞

)
·
∑
u∈F∞

ψ∞
(

Nr(x∞)α∞u
)

= q1−3/4
∞ ·Wψ∞,3(α∞)−11O∞

(
Nr(x∞)α∞π

− ord∞(δ)
∞

)
= q1−3/4

∞ · ϕ(3)
∞ (x∞, α∞).

Therefore we get

Lemma IV.9.

q3/4−1
∞ ·

∑
u∈F∞

ω3,∞

((
π∞ u

0 1

)
, 1

)
ϕ(3)
∞ = ϕ(3)

∞ .

1.2.2. Theta series of pure quaternions. Let ω3 be the Weil representa-
tion ⊗vω3,v of G̃L2(A) on the space S(V3(A)×A×). Recall that Ii = D∩biR̂
with bi ∈ D×A∞ . Let βi = Nr(bi) ∈ A∞,×. For each finite place v of k, set

ϕ̃
(3)
i,v (xv, αv) := ϕ

(3)
i,v (βi,vπ

−2εv(δ)
v xv, αvβ

−2
i,v π

4εv(δ)
v ), ∀(xv, αv) ∈ V3(kv)× k×v .

We also let

ϕ̃
(3)
i,∞ := ϕ(3)

∞ , 1 ≤ i ≤ n.

Definition IV.10. For 1 ≤ i ≤ n, let Θ̃i be the function on G̃L2(A)

defined by

Θ̃i(g̃) := ‖δ‖−3/4
∑

(x,α)∈V3(k)×k×

(
ω3(g̃)ϕ̃

(3)
i

)
(x, α), ∀g̃ ∈ G̃L2(A),

where ϕ̃(3)
i := ⊗vϕ̃(3)

i,v ∈ S(V3(A)× A×).
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For each divisor m ∈ Divf,≥0(k), we set

K0(m∞+) =

∏
v 6=∞
Kv

×K+
∞

where

Kv =

{(
a b

c d

)
∈ GL2(Ov)

∣∣∣∣ c ≡ 0 mod πordv(m)
v Ov

}
for v 6=∞ and

K+
∞ =

{(
a b

c d

)
∈ GL2(O∞)

∣∣∣∣ c ≡ 0 mod π∞O∞ and (π∞, d)∞ = 1

}
.

Then by Lemma IV.7, IV.8, and IV.9 we obtain that

Proposition IV.11. The theta series Θ̃i, 1 ≤ i ≤ n, are weight-3/2
metaplectic forms on G̃L2(A) which satisfy that

Θ̃i(g̃κ̃) = Θ̃i(g̃), ∀κ ∈ K0(Ω2N∞+).

Here N = N+N−. In particular, Θ̃i(g, ξ) = 0 for (g, ξ) ∈ G̃L2(A) unless
there exists an element α ∈ k× such that for each finite place v of k,

α · det gv · β2
i,v · πordv(δ)−2εv(δ)

v ∈ O×v .

1.3. Fourier coefficients of metaplectic theta series. Let F be a
weight-r/2 metaplectic form satisfying that

F (g̃κ̃) = F (g̃), ∀κ ∈ K0(Ω2N∞+).

For z ∈ A× and m ∈ Div(k), the Fourier coefficients F ∗(z,m) and F ∗0 (z,m)

are defined by

F ∗(z,m) :=

∫
k\A

F

((
zs(δ−1m) u

0 z

)
, 1

)
ψ(−u)du

and

F ∗0 (z,m) :=

∫
k\A

F

((
zs(δ−1m) u

0 z

)
, 1

)
du,
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where the Haar measure du is normalized so that
∫
k\A du = 1. Then it is

observed that F ∗(z,m) = 0 unless m ∈ Div≥0(k), and

F ∗(z,m∞`) = q
− 3

4
`

∞ · F ∗(z,m), ∀m ∈ Divf,≥0(k), ` ∈ Z≥0.

Similarly,

F ∗0 (z,m∞`) = q
− 3

4
`

∞ · F ∗0 (z,m), ∀m ∈ Divf (k), ` ∈ Z.

Now, we focus on the Fourier coefficients of the theta series Θ̃i. For
m ∈ Divf,≥0(k) and z = (zf , z∞) ∈ A∞,× × k×∞ = A×, let

Si(z,m) :=

{
b ∈Mdiv(zf ) Nr(Ii)R

(p)
i :

Nr(b) ·A = M2
div(zf ) Nr(Ii)

2MΩ−2m,

and ord∞(m) ≥ 0

}
.

Here Mdiv(zf ) and MΩ−2m are the fractional ideals of A corresponding to the
divisors div(zf ) and Ω−2m in Divf (k), respectively. Set

Wψ,3(z) :=
∏
v

Wψv ,3(zv), ∀z ∈ A×.

Then we get

Lemma IV.12. For 1 ≤ i ≤ n, z ∈ A×, and m ∈ Divf,≥0(k),

Θ̃∗i (z,m) =
Wψ,3

(
s(δ−1

f m)
)

Wψ,3(z)‖m‖3/4

·
∑

b∈Si(z,m)

[
Wψ∞,3

(
Nr(b)

)−1(
z∞,Nr(b)

)
∞

·
∏
v 6=∞

(
zvπ

ordv(δ−1m)
v ,Nr(b)

)
v

]
.

Here δf = δ∞− ord∞(δ) ∈ Divf (k). In particular, Θ̃∗i (z,m) = 0 unless Ω2 | m.
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Proof. It is clear that Si(z,m) is empty unless Ω2 | m. By definition of
Θ̃i one has

‖m‖3/4 · Θ̃i

((
zs(δ−1m) zu

0 z

)
, 1

)

=
∑

(x,α)∈V3(k)×k×

[
ψ
(

Nr(x)αu
)

·

(
γψ∞(z∞αQ3)

γψ∞(Q3)
· (z∞α,−1)∞

·
∏
v 6=∞

γψv(zvπ
ordv(δ−1m)
v αQ3)

γψv(αQ3)
· (zv,−πordv(δ−1m)

v )v

)

·

(
1
β−1
i R̂

(p)
i

(zfs(Ω
−2
f mf )x) · 1O×A∞

(
αz−2

f β−2
i s(Ω2

fm
−1
f )
)

·1O∞
(

Nr(x)α
))]

.

Therefore

‖m‖3/4 · Θ̃∗i (z,m)

=
∑

b∈Si(z,m)

(
γψ∞(z∞αQ3)

γψ∞(Q3)
· (z∞α,−1)∞

·
∏
v 6=∞

γψv(zvπ
ordv(δ−1m)
v Nr(b)Q3)

γψv(Nr(b)Q3)
· (zv,−πordv(δ−1m)

v )v

)
.

Note that for each place v of k and av ∈ k×v ,

γψv(zvav Nr(b)Q3)

γψv(Nr(b)Q3)
· (zv,−av)v =

Wψv ,3(av)

Wψv ,3(zv)
·
(
zvav,Nr(b)

)
v

and

γψ∞(z∞Nr(b)Q3)

γψ∞(Q3)
· (z∞Nr(b),−1)∞

= Wψ∞,3(z∞)−1Wψ∞,3

(
Nr(b)

)−1(
z∞,Nr(b)

)
∞.

This completes the proof. �
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Similarly, for each divisor a ∈ Divf (k), and z ∈ A×, the Fourier coeffi-
cient Θ̃i,0(z, a) is understood by the following result:

Corollary IV.13.

Θ̃∗i,0(z, a) =
Wψ,3

(
s(δ−1

f a)
)

Wψ,3(z)‖a‖3/4

·
∑

α∈k×,
αz−2
f

β−2
i

s(Ω2a−1)∈O×A∞

[
Wψ∞,3(α)−1(z∞, α)∞

·
∏
v 6=∞

(
(zvπ

ordv(δ−1a)
v , α)v

)]
.

We emphasize that the Fourier coefficients Θ̃∗i (z,m) and Θ̃∗i,0(z, a) deter-
mine uniquely the metaplectic form Θ̃i. From the information of the Fourier
coefficients in Lemma IV.12 and Corollary IV.13, we connect the action of
Hecke operators on these theta series with Brandt matrices in the next sec-
tion.

2. Hecke operators and Shintani-type correspondence

Let v be a place of k where ordv(Ω
2N∞) = 0. Recall that we embed

GL2(Ov) into G̃L2(kv) by sending any element κv ∈ GL2(Ov) to κ̃v = (κv, 1).
Denote by ˜GL2(Ov) the image of this embedding. Then it is observed that

Lemma IV.14. For any place v of k with ordv(Ω
2N∞) = 0,

˜GL2(Ov)

((
π2
v 0

0 1

)
, 1

)
˜GL2(Ov)

=

 ·⋃
u mod π2

vOv

au ˜GL2(Ov)

∐ ·⋃
h∈F×v

bh ˜GL2(Ov)


∐

c ˜GL2(Ov),

where

au :=

((
π2
v u

0 1

)
, 1

)
, bh :=

((
πv h

0 πv

)
, (πv, h)v

)
,
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c :=

((
1 0

0 π2
v

)
, 1

)
.

Let M(r/2)
0 (Ω2N) be the space of weight-r/2 metaplectic forms F on

G̃L2(A) satisfying that

F (g̃κ̃) = F (g̃), ∀κ ∈ K0(Ω2N∞+).

Definition IV.15. Let v be a place of k where ordv(Ω
2N∞) = 0. The

Hecke operator Tv2,3/2 onM(3/2)
0 (Ω2N) is defined by

Tv2,3/2 F (g̃) := q3/2−2
v

 ∑
u mod π2

vOv

F (g̃au) +
∑
h∈F×v

F (g̃bh) + F (g̃c)


for every F ∈M(3/2)

0 (Ω2N).

From the pure-algebraic result on pure quaternions in the next section
(Theorem IV.22), we obtain that

Theorem IV.16. For each place v0 of k with ordv0(Ω2N∞) = 0,

Tv2
0 ,3/2

Θ̃i =
∑

1≤j≤n
Bij(v0)Θ̃j ,

where Bij(v0) is the (i, j)-entry of the v0-th Brandt matrix introduced in
Chapter II Section 3.

Proof. It suffices to show that for z ∈ A×, m ∈ Div(k), and u ∈ A,

Tv2
0 ,3/2

Θ̃i

((
zs(δ−1m) zu

0 z

)
, 1

)

=
∑

1≤j≤n
Bij(v0) · Θ̃j

((
zs(δ−1m) zu

0 z

)
, 1

)
.
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By definition of Tv2,3/2, we get

Tv2
0 ,3/2

Θ̃i

((
zs(δ−1m) zu

0 z

)
, 1

)

= q−1/2
v0

·

[ ∑
u′ mod π2

v0
Ov0

Θ̃i

((
zs(δ−1mv2

0) z(u+ π
ordv0 (δ−1m)
v0 u′)

0 z

)
, 1

)

+
∑
h∈F×v0

(πv0 , zv0π
ordv0 (δ−1m)
v0 h)v0

·Θ̃i

zπv0s(δ
−1m) zπv0(u+ π

ordv0 (δ−1m)
v0

h
πv0

)

0 zπv0

 , 1


+Θ̃i

((
zs(δ−1m) zuπ2

v0

0 zπ2
v0

)
, 1

)]
.

By Corollary IV.13, it is observed that for z ∈ A× and m ∈ Divf (k),(
Tv2

0 ,3/2
Θ̃i

)∗
0

(z,m)

= q3/2
v0

Θ̃∗i,0(z,mv2
0) + q−1/2

v0
Θ̃∗i,0(zπ2

v0
,mv−2

0 ).

= (1 + qv0) ·
Wψ,3

(
s(δ−1

f m)
)

Wψ,3(z)‖m‖3/4

·
∑

α∈k×,
αz−2
f

β−2
i

s(Ω2
f
m−1v−2

0 )∈O×A∞

[
Wψ∞,3(α)−1(z∞, α)∞

∏
v

(
(zvπ

ordv(δ−1a)
v , α)v

)]

=
∑

1≤j≤n
Bij(v0)Θ̃∗j,0(z,m).

Therefore it remains to show that(
Tv2

0 ,3/2
Θ̃i

)∗
(z,m) =

∑
1≤j≤n

Bij(v0)Θ̃∗j (z,m)

for any z ∈ A× and m ∈ Divf,≥0(k) with Ω2 | m.
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Fix z ∈ A× and m ∈ Divf,≥0(k). Then
(
Tv2

0 ,3/2
Θ̃i

)∗
(z,m) is equal to

q3/2
v0

Θ̃∗i (z,mv
2
0)

+

[q−1/2
v0

∑
h∈F×v0

(πv0 , π
ordv0 (δ−1m)
v0

h

πv0

)v0ψv0(π
ordv0 (δ−1m)
v0

h

πv0

)


·
(

(πv0 , zv0πv0)v0Θ̃∗i (zπv0 ,m)
)]

+ qv0 ·
(
q−3/2
v0

Θ̃∗i (zπ
2
v0
,mv−2

0 )
)
.

Since ordv0(δ) is even, it is observed that

q−1/2
v0

∑
h∈F×v0

(πv0 , π
ordv0 (δ−1m)
v0

h

πv0

)v0ψv0(π
ordv0 (δ−1m)
v0

h

πv0

)

=

0 if ordv0(m) > 0,

(πv0 ,−1)v0Wψv0 ,1
(πv0) if ordv0(m) = 0.

By Lemma IV.12,
(
Tv2

0 ,3/2
Θ̃i

)∗
(z,m) is equal to

Wψ,3

(
s(δ−1

f m)
)

Wψ,3(z)‖m‖3/4

·

[ ∑
b∈Si(z,mv2

0)

Wψ∞,3

(
Nr(b)

)−1(
z∞,Nr(b)

)
∞

∏
v 6=∞

(
zvπ

ordv(δ−1m)
v ,Nr(b)

)
v


+ξv0(m)

∑
b∈Si(zπv0 ,m)

(
πv0 ,−Nr(b)

)
v0
·
(
Wψ∞,3

(
Nr(b)

)−1(
z∞,Nr(b)

)
∞

·
∏
v 6=∞

(
zvπ

ordv(δ−1m)
v ,Nr(b)

)
v

)

+qv0 ·
∑

b∈Si(zπ2
v0
,mv−2

0 )

(
Wψ∞,3

(
Nr(b)

)−1(
z∞,Nr(b)

)
∞

·
∏
v 6=∞

(
zvπ

ordv(δ−1m)
v ,Nr(b)

)
v

)]
.
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Here

ξv0(m) :=

1 if ordv0(m) = 0,

0 otherwise.

Define µ : k× → C1 by

µ(α) := Wψ∞,3

(
α
)−1(

z∞, α
)
∞

∏
v 6=∞

(
zvπ

ordv(δ−1m)
v , α

)
v
.

Then

µ(β2α) = µ(α), ∀α, β ∈ k×.

Therefore by Theorem IV.22 in Section 3, we get that for any z ∈ A× and
m ∈ Divf,≥0(k),(

Tv2,3/2 Θ̃i

)∗
(z,m) =

∑
1≤j≤n

Bij(v)Θ̃∗j (z,m).

This completes the proof. �

Recall that X = XN+,N− denotes the definite Shimura curve of type
(N+,N−), and Pic(X)C ∼= Pic(X)∨C is generated by e1, ..., en where ei corre-
sponds to the ideal Ii canonically. We introduce the following map:

Ψ: Pic(X)C −→ M(3/2)
0 (Ω2N)∑

1≤i≤n
aiei 7−→

∑
1≤i≤n

ai · Θ̃σ(i).

Here σ is the order-2 permutation on {1, ..., n} introduced in Chapter II
Section 2. Then Proposition II.4, II.7 and Theorem IV.16 imply immediately
that

Proposition IV.17. For each place v of k with ordv(Ω
2N∞) = 0,

Ψ(t∗ve) = Tv2,3/2 Ψ(e), ∀e ∈ Pic(X)C.

Recall that the Jacquet-Langlands correspondence JL introduced in The-
orem III.13 identifies the space S(N−)−new

0 (N) with Pic0(X)∨C. More precisely,
for each finite place v of k,

JL−1(TvF ) = t∗vJL
−1(F ), ∀F ∈ S(N−)−new

0 (N).

Therefore



66 IV. METAPLECTIC FORMS AND SHINTANI-TYPE CORRESPONDENCE

Theorem IV.18. The linear map

Sh := Ψ ◦ JL−1 : S
(N−)−new
0 (N) −→M(3/2)

0 (Ω2N)

satisfies that for each place v of k with ordv(Ω
2N∞) = 0,

Sh(TvF ) = Tv2,3/2 Sh(F ), ∀F ∈ S(N−)−new
0 (N).

3. Pure quaternions and Brandt matrices

In this section, we focus on pure quaternions and work out a purely alge-
braic result (Theorem IV.22). This is the key ingredient for connecting the
Brandt matrices with the Hecke operators on metaplectic forms in Theorem
IV.16.

Let D(p) be the subspace of pure quaternions in D, i.e.

D(p) := {b ∈ D : Tr(b) = 0}.

Recall that I1, ..., In are chosen representatives of locally-principal right ideal
classes of the Eichler A-order R of type (N+,N−), and Ri is the right order
of Ii. Let M1 be a fractional ideal of A. For any integral ideal M of A and
1 ≤ i, j ≤ n, define

Si(M1,M) := {b ∈ D(p) ∩M1 Nr(Ii)Ri : Nr(b)A = M2
1 Nr(Ii)

2M},

and set
Sij(M) := {α ∈ IiI−1

j : Nr(α) Nr(Ij) = Nr(Ii)M}.

It is clear that
#(Sij(M)) = #(R×i ) ·Bij(mM ),

where mM ∈ Divf,≥0(k) is the divisor corresponding to the ideal M . Let v0

be a finite place of k such that ordv0(N+N−) = 0. We have the following
canonical map:

n∐
j=1

(
Sij(P0) × Sj(M1,M)

)
−→ Si(M1, P

2
0M)

(α , b) 7−→ αbᾱ.

Here P0 is the prime ideal of A corresponding to the finite place v0.
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Take an element b ∈ Si(M1, P
2
0M)− Si(M1P0,M). Let J be the unique

locally-principal left ideal of Ri satisfying that

Rib ⊂ J ⊂M1 Nr(Ii)Ri and Nr(b) ·A = P0 Nr(J).

There exist unique j and α ∈ Sij(P0), up to the right multiplication by
elements in R×j , such that J = IiI

−1
j (α−1b). Let β = α−1b. Since

Tr(b) = b+ b̄ = 0,

we get b = −b̄ = −β̄ᾱ. Let J ′ := M1 Nr(Ii)Ī
−1
i Ījᾱ. Then we also have

Rib ⊂ J ′ ⊂M1 Nr(Ii)Ri and Nr(J ′) = P0M
2
1 Nr(Ii)

2.

Since b ∈ Si(M1, P
2
0M)− Si(M1P0,M), we get a chain of left ideals of Ri:

Rib = Rib̄ ⊂ J ⊂ J ′ ⊂M1 Nr(Ii)Ri.

Let b′ := βᾱ−1. Then b = αb′ᾱ and J ⊂ J ′ implies that b′ ∈ Sj(M1,M). we
conclude that

Lemma IV.19. For any b ∈ Si(M1, P
2
0M) − Si(M1P0,M), there exist

unique j and α ∈ Sij(P0), up to the right multiplication by elements in R×j ,
such that

b′ = α−1bᾱ−1 ∈ Sj(M1,M).

Now, take an element b in Si(M1P0,M) and consider the following two
cases:
(1) Suppose P0 | M . Then the left ideal P−1

0 Rib of Ri is contained in
M1 Nr(Ii)Ri. If P−2

0 Rib 6⊂M1 Nr(Ii)Ri, there exists a unique locally-principal
left ideal J of Ri contained in M1 Nr(Ii)Ri with

P−1
0 Rib ⊂ J ⊂M1 Nr(Ii)Ri

and

Nr(b) ·A = P 3
0 Nr(J).

There exist unique j and α ∈ Sij(P0), up to the right multiplication by
elements in R×j , such that

P0J = IiI
−1
j (α−1b).
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Therefore we have the following chain of left ideals of Ri:

Rib ⊂ P0J = IiI
−1
j (α−1b) ⊂ P0M1 Nr(Ii)Ri ⊂M1 Nr(Ii)Ī

−1
i Ījᾱ ⊂M1 Nr(Ii)Ri.

This tells us that

b′ := α−1bᾱ−1 ∈ Sj(M1,M) and b = αb′ᾱ.

If P−2
0 Rib ⊂M1 Nr(Ii)Ri, we have the ideal chain

Rib ⊂ P−1
0 Rib ⊂ P0M1 Nr(Ii)Ri ⊂M1 Nr(Ii)Ri.

Thus for every j and α ∈ Sij(P0),

Rib ⊂ IiI−1
j (α−1b) ⊂ P−1

0 Rib

and

P0M1 Nr(Ii)Ri ⊂M1 Nr(Ii)Ī
−1
i Ījᾱ ⊂M1 Nr(Ii)Ri,

which implies that

α−1bᾱ−1 ∈ Sj(M1,M).

We conclude that

Lemma IV.20. Suppose P0 |M . Let b ∈ Si(M1P0,M)−Si(M1P
2
0 , P

−2
0 M).

Then there exist unique j and α ∈ Sij(P0), up to the right multiplication by
elements in R×j , such that

b′ = α−1bᾱ−1 ∈ Sj(M1,M).

Moreover, if b ∈ Si(M1P
2
0 , P

−2
0 M), we have that for every j and α ∈ Sij(P0),

b′ = α−1bᾱ−1 ∈ Sj(M1,M).

(2) Suppose P0 - M . Then Si(M1P
2
0 , P

−2
0 M) is empty. Take b in

Si(M1P0,M). Let Ob be the quadratic A-order of k(b) generated by ele-
ments in

(P0M1 Nr(Ii))
−1b := {ab : a ∈ (P0M1 Nr(Ii))

−1}
(
⊂ Ri ∩ k(b)

)
.

Suppose that b can be written as αb′ᾱ where α ∈ Sij(P0) for some j and
b′ ∈ Sj(M1,M). Set

J := Ī−1
i Ījᾱ ⊂ Ri,



3. PURE QUATERNIONS AND BRANDT MATRICES 69

the left ideal of Ri with Nr(J) = P0. Then Ja ⊂ J for any a ∈ Ob. Therefore
we get

J = RiP0

where P0 = J ∩ Ob is a prime ideal of Ob lying above P0.
On the other hand, for every prime ideal P ′ of Ob lying above P0, there

exist unique j′ and α′ ∈ Sij′(P0), up to the right multiplication by elements
in R×j′ , such that

Ī−1
i Īj′ᾱ

′ = RiP ′.

It is observed that α′−1bᾱ′−1 ∈ Sj′(M1,M) and RiP ′ 6= RiP ′′ if P ′ 6= P ′′.
We emphasize that the number of prime ideals of Ob lying above P0 is

1 +
(
πv0 ,−Nr(b)

)
v0
.

Therefore we conclude that

Lemma IV.21. Suppose P0 - M . Let b ∈ Si(M1P0,M). Then exist
exactly 1 +

(
πv0 ,−Nr(b)

)
v0

choices of the pair (j, α) with α ∈ Sij(P0), up to
the multiplication by elements in R×j , such that

b′ = α−1bᾱ−1 ∈ Si(M1,M).

Let µ : k× −→ C1 be a function satisfying that

µ(β2α) = α, ∀α, β ∈ k×.

Then from Lemma IV.19 ∼ IV.21, we arrive at

Theorem IV.22. Let M be an integral ideal of A and M1 be a fractional
ideal of A. Then for each finite place v0 of k with ordv0(N+N−) = 0, we
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have
n∑
j=1

Bij(v0)
∑

b∈Sj(M1,M)

µ(Nr(b))

=
∑

b∈Si(M1,P 2
0M)

µ(Nr(b))

+ξv0(M)
∑

b∈Si(M1P0,M)

(
πv0 ,−Nr(b)

)
v0
µ(Nr(b))

+qv0

∑
b∈Si(M1P 2

0 ,P
−2
0 M)

µ(Nr(b)).

Here ξv0(M) := 1 if P0 -M and ξv0(M) := 0 otherwise.



CHAPTER V

Trace formula of Brandt matrices

Following the notations in Chapter II, we fix a pair (k,∞), where k is
a global function field with constant field Fq and ∞ is a place of k. The
ring of functions in k regular outside ∞ is denoted by A. Let D be the
definite (with respect to∞) quaternion algebra over k in Chapter II Section
2. A family of Brandt matrices was introduced in Chapter II Section 3,
to encode information from the arithmetic of D. Adapting Eichler’s method
from the Q case, we establish here a fine formula expressing the trace of these
matrices in terms of class numbers of specific A-orders inside "imaginary"
(with respect to ∞) quadratic field extension of k embeddable into D. The
proof is based on a detailed study of the so-called optimal embeddings from
quadratic A-orders into D.

1. Optimal embeddings

Take N−0 ∈ Divf,≥0(k) be the product of finite places of k where D
is ramified. Let R be an Eichler A-order in D of type (N+

0 ,N
−
0 ) where

N+
0 ∈ Divf,≥0(k) is square-free. Let K be a quadratic extension of k. There

exists an embedding ι from K into D if and only if v does not split in K

for each place v | N−0∞. Let c be a non-zero ideal of A, and Oc denotes the
quadratic A-order in K with conductor c, i.e.

Oc := A+ cOK

where OK is the integral closure of A in K. An embedding ι : K ↪→ D is
called an optimal embedding from Oc into R if

ι(K) ∩R = ι(Oc).
71
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Fix an embedding ι : K ↪→ D. Let c be a non-zero ideal of A. By
Noether-Skolem theorem, the set of optimal embeddings from Oc into R can
be identified with

ι(K×)
∖
{g ∈ D× : g−1ι(K)g ∩R = g−1ι(Oc)g}.

Choose representatives I1, ..., In of locally-principal right ideal classes of
R, and Ri denotes the left order of Ii. For 1 ≤ i ≤ n, let

Ei(ι, c, R) := {g ∈ D× : g−1ι(K)g ∩Ri = g−1ι(Oc)g}.

Then Ri acts on Ei(ι, c, R) by right multiplication, and ι(K×)\Ei(ι, c, R)/R×i
can be identified with the set of the optimal embeddings from Oc into Ri
modulo the conjugation by R×i .

Set

Ê(ι, c, R) := {ĝ ∈ D×A∞ : ι(KA∞) ∩ ĝR̂ĝ−1 = ι(Ôc)},

where

KA∞ := K ⊗k A∞ and Ôc := Oc ⊗A OA∞ .

We have the following observation.

Lemma V.1. There is a bijection between
n∐
i=1

ι(K×)\Ei(ι, c, R)/R×i
∼= ι(K×)\Ê(ι, c, R)/R̂×

[gi], gi ∈ Ei(ι, c, R) 7→ [gi · bi],

where bi ∈ D×A∞ such that Ii = D ∩ biR̂.

For 1 ≤ i ≤ n, let

hi(c) := #
(
ι(K×)\Ei(ι, c, R)/R×i

)
,

and h(c) denotes the class number of the invertible ideals of Oc, i.e.

h(c) = #
(
K×\K×A∞/Ô

×
c

)
.

From the natural surjection

ι(K×)\Ê(ι, c, R)/R̂× � ι(K×A∞)\Ê(ι, c, R)/R̂×,
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one has

Lemma V.2.
n∑
i=1

hi(c) = #
(
ι(K×)\Ê(ι, c, R)/R̂×

)
= h(c) ·#

(
ι(K×A∞)\Ê(ι, c, R)/R̂×

)
.

Note that

ι(K×A∞)\Ê(ι, c, R)/R̂× ∼=
∏
v 6=∞

ι(K×v )\Ev(ι, c, R)/R×v

where

Kv := K ⊗k kv, Oc,v = Oc ⊗A Ov,

and

Ev(ι, c, R) := {gv ∈ D×v : ι(Kv) ∩ gvRvg−1
v = ι(Oc,v)}.

We then obtain the number
∑n

i=1 hi(c) by computing #
(
ι(K×v )\Ev(ι, c, R)/R×v

)
for each finite place v of k:

Proposition V.3. (1) When v - N+
0 N
−
0∞, we have

#
(
ι(K×v )\Ev(ι, c, R)/R×v

)
= 1.

(2) Suppose v | N+
0 . Then

#
(
ι(K×v )\Ev(ι, c, R)/R×v

)
=


2, if v is split in K or ordv(c) > 0,

1, if v is ramified in K and ordv(c) = 0,

0, if v is inert in K and ordv(c) = 0.

(3) Suppose v | N−0 . Then

#
(
ι(K×v )\Ev(ι, c, R)/R×v

)
=


2, if v is inert in K and ordv(c) = 0,

1, if v is ramified in K and ordv(c) = 0,

0, otherwise.
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Proof. Suppose first that v | N−0 . Since Rv is the unique maximal
Ov-order in Dv, it is clear that

Ev(ι, c, R) =

D×v , if ordv(c) = 0,

empty, otherwise.

Therefore (3) holds. We complete the proof of (1) and (2) by computing the
number of local optimal embeddings in Section 1.1. �

For each finite place v of k, set

{ c
v

}
=


1 if v splits in K or ordv(c) > 0,

−1 if v is inert in K and ordv(c) = 0,

0 if v is ramified in K and ordv(c) = 0.

Then we arrive at:

Corollary V.4.
n∑
i=1

hi(c) = h(c)
∏
v|N−0

(
1−

{ c
v

}) ∏
v|N+

0

(
1 +

{ c
v

})
.

1.1. Local optimal embeddings. Let F be a non-archimedean local
field. The valuation ring of F is denoted by OF , and let PF be the maximal
ideal of OF . The valuation map vF : F× → Z is normalized so that

vF (α) = 1 for α ∈ PF − P2
F .

Let L be a quadratic extension over F (or the F -algebra F × F ). Further,
allow the integral closure of OF in L (or OF×OF if L = F×F ) to be denoted
byOL. Let R0 := Mat2(OF ). Fix an F -algebra embedding ι : L→ Mat2(F ).
For c ∈ OL, set OL,c := OF + cOL and

E(ι, c, R0) := {g ∈ GL2(F ) | g−1ι(L)g ∩R0 = g−1ι(OL,c)g}.

Then we have the natural bijection

{optimal embeddings from OL,c into R0}/R×0 ∼= ι(L×) \ E(ι, c, R0)/R×0 .
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Let V := F 2 and λ0 := O2
F , the standard OF -lattice in V . Given an

OF -lattice λ, define

End(λ) := {g ∈ Mat2(F ) | gλ ⊂ λ}.

Then

GL2(F )/R×0
∼= {OF -lattice of V } and End(gλ0) = g−1R0g.

Let λ be an OF -lattice in V . We call λ an OL,c-lattice if

ι(OL,c) · λ ⊂ λ.

Lemma V.5. Any OL,c-lattice λ is of the form OL,c′x for x ∈ L and
c′ ∈ OL with vF (c) ≥ vF (c′).

Proof. First, we consider the case when L is a quadratic field over F .
Then V can be viewed as an L-vector space of dimension one. Identifying V
with L, every OL,c-lattice in V can be viewed as a (fractional) OL,c-ideal in
L. Let x ∈ λ such that

vL(x) = min{vL(α) | α ∈ λ},

where vL is the normalized valuation map on L. Then it is observed that

OLx = OLλ ⊃ λ ⊇ OL,cx.

Consequently, there exists an element c′ ∈ OF with vF (c) ≥ vF (c′) such that

λ = OL,c′x.

Now, we consider the case when L = F × F . Similarly, identifying V
with L, λ is viewed as an OL,c-lattice in L. Let x1, y2 ∈ F× such that

vF (x1) = min{vF (x) | (x, y) ∈ λ}

and

vF (y2) = min{vF (y) | (x, y) ∈ λ)}.

Then there exists y1, x2 ∈ F such that (x1, y1), (x2, y2) ∈ λ. So we have

vF (y1) ≥ vF (y2) and vF (x2) ≥ vF (x1).

Choose a particular element (x0, y0) ∈ λ by the following:
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1. When vF (y1) = vF (y2) (or vF (x1) = vF (x2)), take

(x0, y0) := (x1, y1) (or (x2, y2)) ∈ λ.

2. If vF (y2) > vF (y2) and vF (x2) > vF (x1), take

(x0, y0) := (x1 + x2, y1 + y2) ∈ λ.

Therefore

vF (x) ≥ vF (x0), vF (y) ≥ vF (y0) ∀(x, y) ∈ λ.

Using the above choice of (x0, y0), we get

OL(x0, y0) = OLλ ⊇ λ ⊇ OL,c(x0, y0).

Therefore, there exists c′ ∈ OF with vF (c) ≥ vF (c′) such that

λ = OL,c′(x0, y0).

�

Suppose λ is anOL,c-lattice. We call λ optimal if ι(L)∩End(λ) = ι(OL,c).
Equivalently, there exists an element x ∈ λ such that

λ = ι(OL,c) · x.

Two optimal OL,c lattice λ1 and λ2 are isomorphic if there exists an element
g in ι(L×) such that gλ1 = λ2. For g ∈ GL2(F ), it is clear that gλ0 is an
optimal OL,c lattice if and only if g ∈ E(ι, c, R0). Let LA(L, c) be the set
of isomorphism classes of optimal OL,c lattices. We then have the following
bijection

ι(L×)\Eι(OL,c, R0)/R×0
∼= LA(L, c)

ι(L×)gR×0 7→ [gλ0].

Therefore Proposition V.3 (1) follows from the following lemma.

Lemma V.6. The cardinality of LA(L, c) is one.

Proof. This follows directly from Lemma V.5. �
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Now, consider the Iwahori OF -order

R :=

{(
a b

c d

)
∈ Mat2(OF )

∣∣∣∣∣ c ∈ PF
}
.

Similarly, we let

E(ι, c, R) := {g ∈ GL2(F ) | g−1ι(L)g ∩R = g−1ι(OL,c)g}.

Then

{optimal embeddings from OL,c into R}/R× ∼= ι(L×) \ E(ι, c, R)/R×.

Take two OF -lattices λ1, λ2 in V = F 2. We call λ∗ := {λ1, λ2} an
OF -chain in V if

λ1 ⊃ λ2 and λ1/λ2
∼= OF /PF as OF -modules.

Let λ0
∗ := {λ0

1, λ
0
2} be the standard OF -chain, i.e.

λ0
1 = O2

F and λ0
2 =

{(
x

y

)
∈ OF

∣∣∣∣∣ y ∈ PF
}
.

Then for g ∈ Mat2(F ), gλ0
∗ ⊂ λ0

∗ (i.e. gλ0
i ⊂ λ0

i for i = 1, 2) if and only if
g ∈ R. Moreover, for every OF -chain λ∗, there exists a unique gλ∗ ∈ GL2(F ),
up to the right multiplication by elements in R×, such that λ∗ = gλ∗λ

0
∗. This

says that there is a natural bijection

GL2(F )/R× ∼= {OF -chains in V }
gR× 7→ gλ0

∗.

In particular, for each OF -chain λ∗, let

End(λ∗) := {g ∈ GL2(F ) | gλ∗ ⊂ λ∗}.

Then for every g ∈ GL2(F ) one has

End(gλ0
∗) = gRg−1.

A given OF -chain λ∗ of OL,c-lattices is called an optimal OL,c-chain if

ι(L) ∩ End(λ∗) = ι(OL,c).
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Two optimal OL,c-chains λ1
∗ and λ2

∗ are isomorphic if there exists an element
g in ι(L×) such that gλ1

∗ = λ2
∗. Let CH(L, c) be the set of isomorphism

classes of optimal OL,c-chains. We have the following bijection

ι(L×)\Eι(OL,c, R)/R× ∼= CH(L, c)

ι(L×)gR× 7→ [gλ0
∗].

Thus the computation of the cardinality of CH(L, c) in Lemma V.7∼V.9
ensures Proposition V.3 (2).

Lemma V.7. Suppose L is a quadratic field over F . Then for c ∈ O×F ,

#
(
CH(L, c)

)
=

{
0, if L/F is umramified;
1, if L/F is ramified.

Proof. Notice that OL,c = OL for every c ∈ O×F . Identifying V with L
(as L-vector space), every OL-lattice can be viewed as a (fractional) OL-ideal
in L. Therefore there is no optimal OL-chain if L/F is unramified; when
L/F is ramified, every optimal OL-chain is of the form

{OLx,PLx}, x ∈ L.

This completes the proof. �

Lemma V.8. Suppose L is a quadratic field over F . For every element
c in PF we have

#
(
CH(L, c)

)
= 2.

Proof. Let λ∗ = {λ1, λ2} be an OL,c-chain (not necessary optimal) in
V . Identifying V with L (as L-vector space), take xi ∈ λi for i = 1, 2 such
that

vL(xi) = min{v(α)|α ∈ λi}.

We have vL(x1) ≤ vL(x2), and by Lemma V.5 there exist c1, c2 ∈ OL with
vF (c) ≥ vF (c1), vF (c2) such that λi = OL,cixi. We separate into 2 cases.

i. Suppose vL(x1) = vL(x2). Then λ1 = OL,c1x2 and λ2 = OL,c2x2.
Since λ1/λ2

∼= OF /PF , we must have c2 = c1πF where πF is a
uniformizer of PF .
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ii. Suppose vL(x1) < vL(x2). From λ1/λ2
∼= OF /PF , we get

vL(x1) < vL(x2) ≤ vL(x1) + vL(πF ).

If vF (x2) = vF (πFx1), then λ2 = OL,c2πFx1 and c1 = c2πF . Sup-
pose vL(x1) < vL(x2) < vL(x1) + vF (πF ). Then L/F must be
ramified and vL(x2) = vL(x1)+1. Write x2 as αx1 where α ∈ OL,c1
with vL(α) = 1. Thus we must have c1 ∈ O∗F (i.e. OL,c1 = OL).
Since

λ1/λ2
∼= OF /PF ∼= OLx1/OLx2 and λ2 ⊂ OLx2,

we get λ2 = OLx2. Therefore λ1 ⊃ λ2 is an OL-chain, which is a
contradiction.

We conclude that for every optimal OL,c-chain λ∗ = {λ1, λ2}, we can find
an element x in λ1 such that either

λ1 = OL,cπ−1
F
· x and λ2 = OL,c · x,

or

λ1 = OL,c · x and λ2 = OL,cπ−1
F
· πFx.

Therefore the proof is complete. �

Lemma V.9. When L = F ×F , the cardinality of CH(L, c) is 2 for every
c ∈ OF .

Proof. Given an OL,c-chain, λ1 ⊃ λ2 with λ1/λ2
∼= OF /PF , From

Lemma V.5, we take (xi, x
′
i) ∈ λi and ci ∈ OF with vF (c) ≥ vF (ci) such that

λ1 = OL,c1(x1, x
′
1) and λ2 = OL,c2(x2, x

′
2).

So vF (x1) + 1 ≥ vF (x2) ≥ vF (x1) and vF (x′1) + 1 ≥ vF (x′2) ≥ vF (x′1). We
separate into 4 cases.

(i) vF (x2) = vF (x1) and vF (x′2) = vF (x′1).
Then λ1 = OL,c1(x2, x

′
2) and λ2 = OL,c2(x2, x

′
2). So c2 = c1πF .

(ii) vF (x2) = vF (πFx1) and vF (x′2) = vF (πFx
′
1).

Then λ2 = OL,c2(πFx1, πFx
′
1). Hence we must get c1 = c2πF .



80 V. TRACE FORMULA OF BRANDT MATRICES

(iii) vF (x2) = vF (x1) and vF (x′2) = vF (πFx
′
1).

Take u ∈ O∗F such that ux2 = x1. Then

(x1, x
′
1)− u(x2, x

′
2) = (0, x′1 − ux′2) ∈ λ1.

Since vF (x′2) = vF (πFx
′
1), then there exist u′ ∈ O∗F such that

u′(x′1 − ux′2) = x′1. So (0, x′1) ∈ λ1. This implies that OL,c1 = OL.
Now we have

λ1/λ2
∼= OF /PF ∼=

OL(x1, x
′
1)

OL(x2, x′2)

and λ2 ⊂ OL(x2, x
′
2). So λ2 = OL(x2, x

′
2) = OL(x1, πFx

′
1). Hence

λ1 ⊃ λ2 is an OL-chain.
(iv) vF (x2) = vF (πFx1) and vF (x′2) = vF (x′1).

The argument is similar to case (iii), we get λ1 ⊃ λ2 is also an
OL-chain.

Therefore (i) and (ii) asserts the case when c ∈ PF . The case when c ∈ O×F
follows from (iii) and (iv). �

2. Trace formula

A quadratic extension K of k is called imaginary if ∞ does non-split in
K. From the study of optimal embeddings in the last section, we express
the trace of Brandt matrices in terms of the so-called modified Hurwitz class
numbers of imaginary quadratic fields over k.

Let ksep be a fixed separable closure of k. Define ℘q : ksep → ksep by the
following:

℘q(x) :=

x2, if q is odd,

x2 + x, if q is even.

Then for each d ∈ k, Kd := k(℘−1
q (d)) is a separable quadratic extension of

k if ℘−1
q (d) 6⊂ k. In this case, denote by Od the integral closure of A in Kd.

For each integral ideal c of A, let Oc,d := A + c · Od, the quadratic A-order
in Kd of conductor c. Let h(c, d) be the class number of Oc,d and u(c, d)

denotes the cardinality of O×c,d/F
×
q if Kd is imaginary.
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Suppose q is even, we let Kin be the unique (up to k-isomorphism) in-
separable quadratic extension of k, and Oin be the integral closure of A in
Kin. The quadratic A-order A+ c ·Oin is denoted by Oc,in, and we let hin(c)

be the class number of Oc,in.

Recall that R is a given Eichler A-order of type (N+
0 ,N

−
0 ). For each d in

k such that Kd is imaginary and a non-zero integral ideal c of A, the modified
Hurwitz class number is

H(c, d) =
1

q − 1

∑
ideal c′⊂A,

c′|c

h(c′, d)

u(c′, d)

∏
v|N−0

(1−
{(c′, d)

v

}
)
∏
v|N+

0

(1 +
{(c′, d)

v

}
),

where

{(c, d)

v

}
=


1 if v splits in Kd or ordv(c) > 0,

−1 if v is inert in Kd and ordv(c) = 0,

0 if v is ramified in Kd and ordv(c) = 0.

Similarly, let

Hin(c) :=
∑
c′|c

hin(c′) ·
∏
v|N+

0

(1 +
{c′
v

}
in

)

 ,

where {c′
v

}
in

=

1 if ordv(c) > 0,

0 if ordv(c) = 0.

For convenience, set

H(1, 0) :=

n∑
i=1

#(R×i )−1

and

Hin(0) := (q − 1) ·
n∑
i=1

#(R×i )−1.

We then arrive at the trace formula of Brandt matrices (associated to R):
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Theorem V.10. For each divisor m ∈ Divf,≥0(k), Trace
(
B(m)

)
= 0

unless the corresponding ideal Mm of A is principal. In this case, let m ∈ A
be a generator of the ideal Mm. Then

Trace
(
B(m)

)
= εqHin(c1(m)) +

∑
(ν,s)∈F×q ×A, d(νm,s)=0 or
Kd(νm,s)is imaginary

H(c(νm, s), d(νm, s)).

Here

• d = d(νm, s) :=

s2 − 4νm if q is odd,

νm/s2 if q is even and s 6= 0;
• c(νm, s) := 1 if d = 0; if Kd is imaginary over k, c(νm, s) is the
conductor of the quadratic order A[b] ⊂ Kd, where b ∈ Kd satisfies
Tr(b) = s and Nr(b) = νm;
• when q is even,

εq =

1 if q is even,

0 otherwise;

c1(m) denotes the conductor of the order A[
√
m] ⊂ Kin if

√
m /∈ k

and c1(m) := 0 if
√
m ∈ k.

Proof. Without loss of generality, assume the ideal Mm is generated
by m ∈ A. Recall that I1, ..., In are representatives of locally-principal right
ideal classes of R, and Ri is the left order of Ii for 1 ≤ i ≤ n. Given ν ∈ F×q
and s ∈ A, let

Ai(ν, s) = {b ∈ Ri|Nr(b) = νm,Tr(b) = s}.

It is clear that Ai(ν, s) is a finite set, which is empty if Kd 6= k and ∞ is
split in Kd where d = d(νm, s). Then

Trace
(
B(m)

)
=

n∑
i=1

#{b ∈ Ri|Nr(b)A = Mm}
#(R×i )

=

 n∑
i=1

∑
ν∈F×q

#Ai(ν, 0)

#(R×i )

+

 n∑
i=1

∑
ν∈F×q , s∈A−{0}

#Ai(ν, s)

#(R×i )

 .
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When q is odd and d = 0, it is clear that
n∑
i=1

#Ai(ν, s)

#(R×i )
= H(1, 0).

Similarly, when q is even and
√
m ∈ k,

n∑
i=1

∑
ν∈F×q

Ai(ν, 0)

#(R×i )
= Hin(0).

Now, suppose that Kd is imaginary. Every b ∈ Ai(ν, s) gives rise to an
embedding of the order Oc(νm,s),d into Ri. The group Γi := R×i /F×q acts on
Ai(ν, s) and the set of these embeddings by conjugation. For each non-zero
ideal c of A, Let hi(c, d) be the number of optimal embeddings Oc,d into Ri,
modulo conjugation by R×i . Then we get

#Ai(ν, s) =
#(R×i )

q − 1

∑
c′|c(µ,s)

hi(c
′, d)/u(c′, d).

Therefore Corollary V.4 implies that
n∑
i=1

#Ai(ν, s)

#(R×i )

=
1

q − 1
·
∑

c′|c(νm,s)

(
1

u(c′, d)
·
n∑
i=1

hi(c
′, d)

)

=
1

q − 1
·
∑

c′|c(νm,s)

h(c′, d)

u(c′, d))

∏
v|N−

(
1−

{(c′, d)

v

}) ∏
v|N+

(
1 +

{(c′, d)

v

})
= H(c(νm, s), d(νm, s)).

Similarly, when q is even and
√
m /∈ k, by Corollary V.4 we get

n∑
i=1

∑
ν∈F×q

#Ai(ν, 0)

#(R×i )
= Hin(c1(m)).

Therefore the proof is complete. �
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< ·, · >, 21
< ·, · >v0 , 38
B(m), 14

Bij(m), 14

D, 12

D(p), 66

Dv, 12

DA∞ , 13

F ∗(m), 33

F ∗(z,m), 58

F ∗0 (m), 33

F ∗0 (z,m), 58

I, 12

I1, ..., In, 13

L(a), 14

Mm, 10

Nij , 14

Ov, 9

OAv , 11

OA, 9

Pv, 10

Q1, 50

Q3, 50

QV , 23

Ri, 13

Rv, 12

Tv, 32

T∞,r/2, 49

Tm, 32

Tv2,3/2, 62

V , 23

V1, 50

V3, 50

Wv, 20

Wψv,r, 50

X, XN+,N− , 17

Xi, 18

Xv0 , 20, 38

Y , 17

Z, 29

A, 9
Av, 11
A×, 9
Div(k), 10

Divf (k), 10

Div≥0(k), 11

Divf,≥0(k), 11

Fq, 9
Fv, 9
Γi, 18

I(A), 10

K0(N∞), 29

K+
∞, 48

M0(N), 32

M0(N,Q), 36

M(r/2)
0 (Ω2N), 62
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N, 24

N−, 12

N0, 37

N+
0 , 37

N−0 , 37

Nr(I), 13

Ω, 12, 56

Φ, 37

Π(δ), 26

Πv, 12, 24

Pic(X), 18

Pic(X)∨, 21

Pic(X)C, 42

Pic(X)∨C , 42

Ψ, 65

S0(1,N0), 43

S0(1,N0)⊥, 44

S0(N0), 43

S(N−)−new
0 (N), 42

Sh, 66

Θij , 31

‖m‖, 10
Y0(N), 32

ȳ, 23

βij , 27

ěi, 21

degm, 10

deg v, 9

δ, 11

δf , 59

εv(δ), 12, 53

γψv (αvQr), 50

ιv, 11

ιv,×, 11

ιv, 11

ι×v , 11

| · |A, 9
| · |v, 9

ω, 24

ω′, 26

ωv, 24

πv, 9

ψ, 11

ψv, 11

ρ(af ), 33

σ, 13

GO(V ), 26

O(V ), 23

div, 10

θij , 29

Tr, 17

εv, 24

R̂, 13

Θ̃, 54

Θ̃i, 57

ξv0 , 70

b(m), 15

b1, ..., bn, 13

e1, ..., en, 18

eF , 42

gk, 12

k, 9

kv, 9

la, 18

pr, 20, 38

pr∗, 38

pr∗, 20, 38

pr∗v0 , 38

qv, 9

sv, 48

tv, 18

tm, 19

wi, 21

wv, 18

w′v, 20
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Eichler A-order R, 12

infinite place ∞, 10

Kubota 2-cocycle σ, 48

Kubota 2-cocycle σv, 48

section s, 10
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