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Abstract

The aim of this article is to give a complete account of the Eichler-Brandt
theory over function fields and the basis problem for Drinfeld type automor-
phic forms. Given arbitrary function field k together with a fixed place oo, we
construct a family of theta series from the norm forms of "definite" quater-
nion algebras, and establish an explicit Hecke-module homomorphism from
the Picard group of an associated definite Shimura curve to a space of Drin-
feld type automorphic forms. The "compatibility" of these homomorphisms
with different square-free levels is also examined. These Hecke-equivariant
maps lead to a nice description of the subspace generated by our theta se-
ries, and thereby contributes to the so-called basis problem. Restricting the
norm forms to pure quaternions, we obtain another family of theta series
which are automorphic functions on the metaplectic group, and results in a
Shintani-type correspondence between Drinfeld type forms and metaplectic

forms.
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CHAPTER 1

Introduction

The aim of this article is to study the family of the so-called Brandt
matrices. In the number field case, the entries of these matrices are essen-
tially the representation number of positive integers by reduced norm forms
on definite quaternion algebras over Q. Let N, be a square-free positive
integer with an odd number of prime factors. Let D = D Ny be the definite
quaternion algebra over Q which is ramified precisely at the prime factors
of Ny . Let NJ be another square-free positive integer prime to N, . Take
an Eichler order R of type (N;™, Nj ), i.e. R is an order in D satisfying that
R, := R ®z Zyp is a maximal Z,-order in D), := D ®g Q,, for every p { N, -

and for p | Ny
a b
B> { < ) £ Mato(2,)
c d

Choose {I1, ..., I,} to be a complete set of representatives of locally-principal

ceN;Zp}.

right ideal classes of R. For each positive integer m and 1 < i,j < n, set

_ #{be LI7: Ne(b)N;; ' =m}
- #(RY)

Bij(m) : € Z>o,
where R; is the left order of I, Nr(b) is the reduced norm of b, and Nj;
is the positive generator of the fraction ideal Nr(Z;) Nr(Z;)~1 in Q. We call
B(m) = (Bij(m)hgi,jgn
convenience, set B;;(0) := 1/#(R}).

It is known that for each pair (i,7), 1 < i,j < n, the following theta

the m-th Brandt matrix associated to R. For

series

Z Bij(m) exp(2mv/—1mz)

m>0
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is a weight-2 modular form of level NO+ N, . Recall that the basis problem (cf.
[3]) is about finding a "natural" basis for the space of modular forms. Here
"natural" means that these linearly independent forms are arithmetically
distinguished and whose Fourier coeflicients are known or easy to obtain.
The celebrated Eichler’s trace formula (cf. [2] and [3]) connects the Brandt
matrices with the Hecke operators on the space of weight-2 modular forms.
This implies, among other things, that the theta series from definite quater-
nion algebras over Q generate the whole space of weight-2 modular forms of
the corresponding level. In other words, these theta series provide us a natu-

ral basis and give a solution of the basis problem for weight-2 modular forms.

By a global function field k, we mean k is a finitely generated field
extension of transcendence degree one over a finite field. Fix a place oo of k,
we are interested in Drinfeld type automorphic forms, which are automorphic
forms on GLs satisfying the so-called harmonic property with respect to oo
(cf. Chapter Section . In particular, let T, be the Iwahori Hecke

operator at 0o, i.e. Ty, corresponds to the double coset

Ko (”"O 0) Koo
0 1

where 7o, is a uniformizer at 0o, Ko is the Iwahori subgroup of GL2(Os)
and O is the valuation ring of the completion ko of k at co. Then the
harmonicity of these forms implies that they are fixed by To.. From the
point of view of the representation theory, these forms correspond (at co) to
the new forms in the special representation o(] - <1>é2’ | - = 2). It is natural
to view these forms as analogue of classical weight 2 modular forms.

From the work of Deligne, Drinfeld, Jacquet-Langlands, Weil, and Zarhin,
the "Drinfeld modularity" always exists for every non-isotrivial elliptic curve
over k. Here we call an elliptic curve over k (non-)isotrivial if its j-invariant
is (not) in the constant field of k. More precisely, let E be a such elliptic
curve over k which has split multiplicative reduction at co. Denote by oo

the conductor of E. Then there is a surjective homomorphism over k (cf.
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[4])
Jo(M) - E,

where Jy(M) is the Jacobian of the Drinfeld modular curve Xo(9). In par-
ticular, there exists a unique Drinfeld type automorphic cusp form Fg of
level 91 such that its L-function coincides with the Hasse-Weil L-function of
FE over k. This development motivates us to work out Eichler-Brandt theory
for any pair (k,c0), in order to collect as much as possible explicit informa-
tion for Drinfeld type automorphic forms. In other words, we target at the

basis problem for Drinfeld type automorphic forms.

From the reduced norm forms on "definite" (with respect to oco) quater-
nion algebras over k, we construct a particular family of theta series which
are Drinfeld type automorphic forms. The action of the Hecke operators on
these theta series can be read off from Brandt matrices. It is observed that
the Brandt matrices also represent the action of the Hecke correspondences
on an associated definite Shimura curve (cf. Proposition . We then es-
tablish a Hecke-equivariant homomorphism from the Picard group of the
definite Shimura curve in question to a space of Drinfeld type automorphic
forms. More precisely, let A be the ring of functions in k regular outside oo,
and X is the definite Shimura curve of type (‘ﬁ(‘f , Ny ) where ‘ﬁg is square-
free (cf. Definition . The first main result of this article is the following
(cf. Chapter [ITT] Section [4] and [f)):

THEOREM 1.1. There is a Z-bilinear map
® : Pic(X) x Pic(X)Y — Mo(Mo),

where Pic(X)Y := Hom(Pic(X),Z) and My(MNy) is the space of Drinfeld type
automorphic forms of level Ny = ’ﬁg‘ﬁa, such that for each ideal M of A
prime to MG and each pair (e,e’) € Pic(X) x Pic(X)V,

Tr®(e, ') = B(tye,e) = (e, the).

Here Ty is the Hecke operator on Mo(Noy), and t}, is the adjoint of the

Hecke correspondence ty; on X. Moreover, for every mnormalized Drinfeld
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type newform F of level Ny, there exists a unique (up to a scalar multiple)
element ep in Pic(X)" @z C such that

O(e,ep) =< e,ep > F, Ve € Pic(X) ®zC,
where < -, > is the Gross height pairing.

This theorem can be viewed as a function field analogue of Proposition
5.6 in [6]. In the number field case, the existence and the uniqueness of
er essentially follows from Eichler’s trace formula. Here we use Jacquet-
Langlands correspondence instead (cf. Theorem [[I1.13|and[[T1.14)). The Gross
height pairing is introduced in [6] §4. For convenience, we recall the definition
in the following. Note that (cf. Chapter [LI] Section [4) the definite Shimura

curve X of type (M7,M;) is a disjoint union of genus-0 curves, and the

components e, ...,e, of X correspond canonically to the locally-principal
right ideal classes [I1], ..., [I,] of an Eichler A-order R of type (Mg, Ny ).
Let R; be the left order of I; and w; := #(R) /F}) (where Fj, denotes the
constant field of k). Then the Gross height pairing on Pic(X) is simply
defined by

w;  ifi=j,

< e, e >i=

0 otherwise,
and extended bi-additively. Via this pairing, Pic(X)V is considered as a
subgroup of Pic(X) ®7 Q. We refer the reader to Chapter [II| Section for
further details.

Take a place vy of k which is prime to 91poo, and let X,, be the definite

Shimura curve over k of type (v, Ny ). The canonical map pr from X,

to X induces group homomorphisms
pry : Pic(X,,) — Pic(X)
and
pr* : Pic(X)Y — Pic(Xy,)".
Let
®,, : Pic(X,,) x Pic(Xy,)Y — Mo(voMo)
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be the corresponding Hecke module homomorphism for X,,. The problem
of "compatibility" of ®,, with ® then arrives, see Chapter [[TI] Section

The tool for our construction of theta series is of course Weil representa-
tions. We select special test functions according to the arithmetic data from
ideal class representatives of a given Eichler A-order of type (M7, Ny ). An
explicit description for the space generated by our theta series falls out from
Theorem In particular, let Sp(1,9%) be the subspace of the old forms
coming from the Drinfeld type cusp forms of full level. Then every Drinfeld
type cusp form of level Dy which is orthogonal (with respect to the Petersson
inner product) to Sp(1,Mp) can be generated by our theta series. Contrary
to the case of classical weight 2 modular forms, the space Sp(1,%) is not
trivial in general. One can find an elliptic curve E over a suitable function
field £ which has split multiplicative reduction at oo and good reduction
elsewhere (cf. Example . Then from the Drinfeld modularity, there
exists a Drinfeld type newform Fg in Sp(1,9%), which does not come from
our theta series. In other words, we are unable to find a natural basis for the
whole space of Drinfeld type cusp forms of level 91y via only the theta series

from definite quaternion algebras because of the non-triviality of Sp(1, ).

In the second part of this article (Chapter , assume the charac-
teristic of k is odd. We are interested in automorphic functions on the
metaplectic group (cf. Section . Using the Weil representations of the
metaplectic group as a tool, we construct yet another family of theta series
from the reduced norm forms, considering pure quaternions inside definite
quaternion algebras. These theta series are, in particular, eigenfunctions of
the Iwahori Hecke operator T, at oo, with equal eigenvalue qéo_ 34 Taking
this operator to be our "non-Euclidean Laplacian", we view these theta se-
ries as metaplectic forms of weight-3/2. Moreover, the Fourier coefficients
of these theta series contain arithmetic information from pure quaternions.
Consequently, the action of the Hecke operators on these theta series can
also be described by Brandt matrices (cf. Theorem . We then obtain
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a Shintani-type correspondence Sh between the space of Drinfeld type cusp
forms and the space of weight-3/2 metaplectic forms (cf. Theorem [IV.18]):

THEOREM 1.2. Let Sémg)_new(’ﬁo) be the space of Drinfeld type "N -
new" forms, and M(()g/Q)(QQ‘ﬁo) be the space of "weight-3/2" metaplectic
forms of level Q*Ng (where Q = Qy, is the "extra level” coming from the
choice of non-trivial additive character 1 on the adele class group of k).

There exists a linear map

Sh : ST (915) — M (0201)

satisfying that for each place v of k with ord,(£2?9po0) = 0,
Sh(T,F) = T35 Sh(F), VF €85 " (My).

In the number field case, the theory of half-integral weight modular
forms has been well developed with an analogous Hecke theory (starting
with Shimura’s work in [13]). Moreover, in [13] Shimura established a Hecke-
equivariant lifting from half-integral weight modular forms to integral weight
forms (via converse theorem). The adjoint lifting of Shimura’s (from integral
weight modular forms to half-integral weight forms) is provided by Kohnen
[8], [9], and Shintani [14]. It is natural to ask for the adjoint lifting of our
Sh, i.e. a Shimura-type correspondence from 853/2)(512‘}{0) to So(Mp). We
will study this topic in a future work.

When k£ is a rational function field, this map Sh was first constructed
in [1I9]. Based on the results of [18] concerning the central critical values
of Rankin-type L-functions, a function field analogue of a Waldspurger-type
formula is also derived in that paper. It follows that for a normalized Drin-
feld type newform F', the A-th Fourier coefficient of Sh(F'), where A is ir-
reducible in A, determines the non-vanishing of the central critical value of
the L-function of F' twisted by a quadratic character x). We expect that

such phenomenon can be found over arbitrary function fields.

We include in the last chapter a detailed study of the trace formula

of Brandt matrices in the function field context. This formula expresses
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the traces of Brandt matrices in terms of modified Hurwitz class numbers
of quadratic A-orders. In other words, this connects, in the definite case,
the arithmetic of quaternary quadratic forms with that of binary quadratic
forms. Similar to the number field case, our method for establishing this for-
mula comes from Eichler’s theory of optimal embeddings adapted to function
fields of positive characteristic, which is recalled in Section [I] of Chapter [V]
In the number field case, this formula, together with the trace computation
of Hecke operators on weight-2 modular forms, indicates that the algebra
generated by Brandt matrices is isomorphic to the Hecke algebra on weight-
2 modular forms (with corresponding level). This is a key step in Eichler’s
argument for the basis problem. We refer readers to [2], [3], and [15] for

further discussions in this topic.

This article is organized as follows. In Chapter [[I} after fixing the no-
tations in Section [l we review basic properties of quaternion algebras over
global function fields. In Section [3] we introduce the Brandt matrices asso-
ciated to a given Eichler A-order in definite quaternion algebras. In Section
[4 we introduce the definite Shimura curves, and connects Brandt matrices
with the Hecke correspondences on these curves. Also included in Section [4]
is the Gross height pairing on the definite Shimura curves, which is crucial
to the construction of the Heck module homomorphism @ in Theorem

In Chapter [[TI] we recall first the Weil representation, and then construct
a family of theta series from the reduced norm forms on definite quaternion
algebras over k in Section Also proved there is the harmonicity of the
theta series, which shows that these theta series are Drinfeld type automor-
phic forms. In Section [3| we verify that the Fourier coefficients of our theta
series are essentially the entries of Brandt matrices. We then construct the
Hecke module map @ in Section |4l The "compatibility" between these Hecke
module maps as the square-free levels varying is discussed in Section 4.1l We
finally treat the basis problem for Drinfeld type cusp forms of square-free lev-
els in Section [0 and describe explicitly the subspace generated by our theta

series.
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In Chapter [[V] we assume the characteristic of the base field k is odd,
and explore the connection between Brandt matrices and Hecke operators on
metaplectic forms. Utilizing Weil representations for the metaplectic group,
we first construct a particular theta series é, which is an analogue of the
most classical weight-1/2 theta series in our context. The theta series from
pure quaternions are then constructed in Section In Section [2[ we show
that the Hecke operators acting on these theta series can also be represented
by Brandt matrices (via the technical result in Section . The Shintani-type
correspondence Sh is finally established at the end of Section

In the last chapter, we first recast Eichler’s theory of optimal embeddings
by introducing chains of local lattices. The trace formula of our generalized

Brandt matrices is then established in Section Bl



CHAPTER II

Brandt matrices and definite Shimura curves

Given a global function field k together with a fixed place oo, we con-
sider "definite" quaternion algebras over k and introduce the Brandt matri-
ces. The entries are non-negative integers which count the number of ideals
of given norm in an ideal class of an Eichler A-order. Then we define the
definite Shimura curves associated to Eichler A-orders and introduce Hecke
correspondences on these definite Shimura curves. We describe the connec-

tion between these correspondences and Brandt matrices.

1. Basic setting

Let k be a global function field with finite constant field Fy, i.e. k£ is a
finitely generated field extension of transcendence degree one over F, and I,
is algebraically closed in k. For each place v of k, the completion of k at v is
denoted by k,, and O, is the valuation ring in k,. We choose a uniformizer
7y in O, and set Fy, := O, /m,O,, the residue field of k,. The degree degv of
v is [F, : Fy], and the cardinality of F,, is denoted by g,. For each a, € k,,
the absolute value |a,|, of a, is normalized to be ¢, Ord”(a”). Let A be the
adele ring of k, which is the restricted direct product H; k, with respect to
O,. The maximal compact subring [[, O, of A is denoted by O4. The idele
group A* of k is the restricted direct product [], k) with respect to O,

and for a = (ay,), € A* we set

lala =[] lavlo-
v

Embedding k into A diagonally, the product formula says that

|Oé|A:17 Vo € k*.
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Let Div(k) be the divisor group of k. We adopt the multiplicative nota-

tion so that every element m in Div(k) is written as

m— H 0rdo(m)

Given m € Div(k), we define
Il := [T g™ = goe&™,

where

degm := Z degv - ord,(m)
v
is the degree of m. There is a canonical group epimorphism
div: A* — Div(k)

defined by
a = (av)v — le(CL) = H Uordv(llu)7

v

with kernel O; . It is clear that for any a € A%,

Jala = [ldiv(a)]~".

We fix a section s : Div(k) — A* to be
s(m) := (wyr ™),

for each divisor m € Div(k).

Fix a place co of k, referred as the place at infinity; and others are referred
as finite places of k. Let A be the ring of functions in k regular outside oco.
Each finite place v of k corresponds to a maximal ideal P, (= AN m,0,) of
A. Let Divy(k) be the subgroup of Div(k) generated by finite places of k.
There is a natural group isomorphism between Div (k) and the group Z(A)
of fractional ideals of A:

Dive(k) = ZI(A)
My = [T, P ™,
M.

3

Hv poerdp, (M) = my
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For each place v of k, let

A= ko

v/
We denote by O» the maximal compact subring [[,, £v O, of A”. In par-
ticular, A is called the finite adele ring of k. The finite idele group of k is
the multiplicative group A°*, with the maximal compact subgroup O} .
Let ¢V and ¢, be the canonical embeddings from AY and k, into A = AY x k,,

i.e. for every a¥ € AV and a, € ky,
?(a’) :=(a”,0) and iy(ay) = (0,ay).
We also define
DAY s A = AV x kS and o) k) — AT
respectively by
(@) = (a%1), and ) (ay) = (1,a), Y(a’,a,) €AV X k.

The section s induces a section (also denoted by s) from Div (k) into A%,
Embedding £* into A°* diagonally, the map div o :°>* induces a natural
isomorphism from A /O, (respectively, k*\A>>* /Ox..) onto Z(A) (re-
spectively, Pic(A), i.e. the ideal class group of A).

A divisor m is called positive if ord,(m) > 0 for every place v of k. The

set of positive divisors is denoted by Divsq(k), and we let
Din,Z()(k) = Din(kJ) N DiVZQ(k),

which is identified with the set of integral ideals of A.

Finally, we fix a non-trivial additive character 1 : A — C* such that
Y(a) =1, VYo €k,

and let 0 = ¢, € Div(k) be the canonical divisor associated to 1. For each
place v of k, let 1, be the additive character on k, such that

Uy(ay) == U((ay)), Vay, € ky.
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Then ord,(d) is the maximal integer r such that 7, "0, is contained in the
kernel of 1,. It is known that degd = 2g;r — 2, where g is the genus of k.

To keep records on §, we introduce

0 if ord,(d) is even,
1 if ord,(d) is odd,

€y(0) :=

and

Q:= H v @ e Divy>o(k).
VF#00

2. Definite quaternion algebra over function fields

Let D be a definite (with respect to co) quaternion algebra, i.e. D is a
central simple algebra over k with dimg D = 4 and D ®j, ks is a division
algebra. Let M~ = M, € Divy>o(k) be the product of finite places v of k
where D is ramified, i.e. D, := D ®y, k, is division. For each place v of k,

we choose an element II, in D.¢ such that I12 = m,.

Given a positive divisor " € Div>o(k) which is prime to M7, We
call a ring R an Eichler A-order of type (M7, 9M7) if R is an A-order of D
such that R, := R®4 O, is a maximal O,-order for each v {91"; and when

v | MT, there exists an isomorphism i : D,, & Mata(k,) such that

i(Ry) = {(Z Z) € Mata(O,)

We note that R is unique up to local conjugacy. Since D is definite, the

ce Wgrd“(mﬂov} .

cardinality of the multiplicative group R* of R is finite.

A locally-principal (fractional) right ideal I of R is an A-lattice in D such
that I - R = I and for each finite place v of k, there exists a, in D,’ such
that

I,(:=1®4 Oy) = a,R,.
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Two locally-principal right ideals I1 and I5 are called equivalent if there exists
an element b in D> such that Iy = b- I5. Let

Dpo =D @, A® and R:i=R®4 Op.

Then the set of locally-principal right ideal classes of R can be identified with
the finite double coset space D*\Dj« /ﬁx More precisely, let by, ...,b, €

D} be representatives of the double cosets. Then
{I,;=DNh;R|1<i<n}

is a set of representatives of locally-principal right ideal classes of R.
For 1 <i <mn, let R; be the left order of I, i.e.

R;, .= {b e D:bl; C Ii}.
Then R; is also an Eichler A-order of type (M1, 917), as
R; = DN b;Rb; .

Given an element b in D, its reduced trace and the reduced norm are
denoted by Tr(b) and Nr(b), respectively. We call b is a pure quaternion
if Tr(b) = 0. Define o to be the permutation of {1,...,n} such that for

1<i<n, fl-_l is equivalent to I,(;). Here
L‘ :{[_)bGIZ}

and b := Tr(b) — b is the conjugate involution of D. It is clear that o2 = 1.

3. Brandt matrices

Let R be an Eichler A-order of type (9", 97). Let Iy, ..., I, be repre-
sentatives of locally-principal right ideal classes of R. For 1 < i < n, let R;
be the left order of ;. We denote the reduced ideal norm of I; by Nr(I;), i.e.
Nr(Z;) is the fractional ideal of A generated by Nr(b) for all elements b in I;.
For 1 <14,57 < n, set

Nij == Nr(I;) Nr(1;) "
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Then for every m € Divs >o(k), the m-th Brandt matriz B(m) is defined to
be (Bj; (m))lgz‘,jgn € Mat,,(Z), where
#{be LI;': Nr(b)N;;' = m}
#(R})

Recall that My, is the ideal of A corresponding to m. It is clear that B;;(m)

depends only on the ideal classes of I;, I;, and the divisor m. For each divisor

Bij (m) =

a € Divg(k), We set the permutation matrix
L(Cl) = (Lw(a))lgmgn S Matn(Z)

where
1, if MylI; is equivalent to I,

Lij(a) =
0, otherwise.

Then it is observed that

PROPOSITION IL.1. (1) For every m and wm’ in Divy>o(k) which are rel-

atiely prime,
B(mm’) = B(m)B(m').

(2) For m in Divy>o(k) and a in Divy(k),

(3) When vt N+t~
B(v"?) = B(v" ™Y B(v) — ¢, L(v)B(v").

(4) B(v") = B(v)" if v [N~

(5) L(a) = L(a') if My and My are in the same ideal classes of A.
(6)

let

The summation Z B;j(m) is independent of the choice of i. Moreover,

m) = Z Bij(m
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we get
b(mm’) = b(m)b(m') when m and m' are relatively prime,
n+1

g1 . .
Mu):q%__l if vt
b(v™) =1 ifv| N,

qTLJrl 1

kb('[)n) :21&7_1—1 ifordv(m+) =1.

ProOOF. For 1 <i,j,¢ <n and m € Divy >o(k), let
®;j(m) := {be LI; " : Nr(b)N;;" = M}
Then we have the following map for 1 < ¢ < n and m, m’ € Divy >o(k):

<I>Z-g(m) X(I)gj(m/) — @ij(mm’)
(b1 s 52) — blbz.

Suppose m and m’ are relatively prime. Take b € ®;;(mm’). There we

can find b; € ®;¢(m) for a unique ¢ such that
bI; C bil, C 1.

Moreover, for any element b € ®;,(m) with
bl; C b1, C I,

there exists a unique u € R; such that b} = byu. Therefore

ZBM m) By;(m') = By;(m),

which proves (1).

We note that for a € Divy(k) and m € Divy >o(k),

= #(RY)TH-#{b e (Mai) [ : Nr(b) M Nyt = My}
= #(R) - #{b e L(MyrI;)™" i Nr(b)M >Ny = My}
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This shows (2).

Now, we take a place v of k with v # oco. If D is ramified at v (i.e.
v | M), then for 1 < i < n and r € Z>o, there exists a unique right ideal
I C I; with Nr(I) = PJ Nr(/;). In particular, I = Pr/*T; if 7 is even. This
implies that
B(w") = B(v)" and B(v)?= L(v),
so (4) follows.
Suppose v { NTN~. For r € Z>o, let

B(")" = (By(v")°)

1<i,j<n’
where
be ®;;(v): b¢ P,LIT
Bij(vr)o — #{ ]( ) _ ¢ J }
#(R))
Then

B(w)= Y L") B ™)

VEZZO,TZQV

It is observed that for r =1,
Bw)’B() = B*)"+ (g +1)-L(v)
= B(v*)+qL(v);
for r > 1,
B(W)’B(v) = B+ ¢,L(v)Bu")°

Therefore
B(v")B(v) = B(v’""'l) + qu(v)B(v""_l),

which completes the proof of (3).
The definition of L(a) implies (5) directly, and (6) follows from the fol-

lowing description of b(m):
b(m) = #{locally-principal right ideals J C I; with Nr(J) = My Nr(;)}.

O
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Recall that o is the permutation of {1,...,n} such that for 1 < i < n,

1:1-_1 is equivalent to I, ;).
LEMMA IL1.2. Given m € Divy > (k), we have
#(R})Bij(m) = #(R) ;) Bo(jyo(m),  for 1 <i,j<n.
PRrROOF. The conjugate involution of D induces a bijection between
{be LI;': Nr(b)N;' = My}
and
{beI;'I; : Ne(b)Nj;' = My}

Therefore the result holds. O

4. Definite Shimura curves

Let Y be the genus zero curve over k associated to the given definite
quaternion algebra D, which is defined by the following: the points of Y

over any k-algebra S are
Y(S)={x € D®S:x+#0,Tr(z) = Nr(z) =0}/S™,

where the action of S* on D ®; S is by multiplication on S, Tr and Nr are
respectively the reduced trace and the reduced norm on D. The group D*
acts on Y (from the left) by conjugation.

Recall that 91~ is the product of the finite ramified places of D, and R
denotes a given Eichler A-order of type (91%,917).

DEFINITION IL.3. The definite Shimura curve X = Xgy+ qn- of type
(MNF,917) is defined as

X = DX\ (Y x (ng/ﬁx)) :
Let by, ..., b, be representatives for DX\Dgw/EX. For 1 <i<mn, let

;= blﬁxb;l N D*.
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Then X is equal to the disjoint union [[;" ; X;, where X; := I';\Y. More
precisely, each point of X has a representative (y, bi}/%x) €Y x (Dyx/ ﬁx)
and the map

X — I, T\Y
ly,b;R*] —> Ly
is the desired bijection. Moreover, the component X; of X corresponds
canonically to the ideal class of R represented by I, = D N biﬁ, and the

Picard group of X can be written as
n
Pic(X) = € Ze;,
i=1

where e; is the class of the component X;. In the following, we refer

{e1,...,en} as a canonical basis of Pic(X).

4.1. Hecke correspondences. Let vy be a finite place of k. Suppose
vo + M~. Then the isomorphism between Maty(ky,) and D,, induces a
natural embedding i,, from GLa(ky,) into Dy. We define the Hecke corre-

spondence t,, on X as follows:

too (3. bRX)) o= | 3 [y i (”50 1‘) R

uGIFUO
. 1 0\ =~
+,Ufn+ (Uo) . [y,b i < ) RX].
0y,

Here pig+ (vo) := 1 if vg t MT and 0 otherwise.
Now suppose vy divides 917. Choose an element II,, € R,, such that
Nr(Il,,) = my,. We define the Atkin-Lehner involution

wa ([y, bR¥]) == ([y, 'R*]),  for [y,bR*] € X,

where V' = (b)) y00 € Dy With b}, = b, if v # v and by, = Ly, by,.
To proceed further, for each a € Divs(k), one associates a correspondence
Iy defined by
la([y, bR¥]) = [y, s(@)bR7],
where s : Divg(k) — A% is the section introduced in Chapter |lI| Section
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It is observed that these correspondences commute with each other, and
lq = ly if the associated ideals M, and M are in the same ideal class of A.
Therefore we can define Hecke correspondence ty for every m € Divy > (k)

in the following way:

tom = tm + T if m and m’ are relatively prime,

tyerz =ty - Lyt — pom+ (V) qy - Ly - tpe  if 0O,
tvezwg ifv|MN.

The correspondences tn, and [ induce endomorphisms of the group Pic(X).
With respect to the canonical basis {ey, ..., e, }, these endomorphisms can in
fact be represented by Brandt matrices B(m) and the permutation matrices
L(a):

PROPOSITION I1.4. Given m € Divy>o(k) and a € Div(k), suppose that

m and N are relatively prime. Then we have
n n
tmei = Z Bij (m)ej and laei = Z Lij(a)ej.
j=1 j=1

PROOF. For each divisor a € Divy(k), lae; = ey where Iy and MyI; are

in the same ideal class of R. On the other hand, we have
n
ZLij(a)ej = ey = laei.
j=1

Therefore from the definition of ¢, and the recurrence relations of B(m) in
Proposition m it suffices to prove the case when m = v with v { 9" 0.

For 1 < i < n, it is clear that t,e; = 2?21 ajje; where

a;j = #{locally-principal right R-ideals J C I; : J ~ I and Nr(J) = P, Nr(/;)}
= B;j(v).
Therefore the proof is complete. O

Let v divide 9 with ord,(9) = 1. Then for each point [y, bR*] in X,

we introduce the following pseudo-involution on X:

wl,([y: bRX]) = [y,b- iy (0 1) R"].

m 0
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It is clear that w/?> = l,. Set W, := t, + w! + w} 1t,w), and

Woere := (W, — qvw;)erH — qulyWiye, for £ > 0.
One can deduce that

LEMMA IL5. Suppose ord, (M) = 1. Then
n
erei = Z Bij(’l/)ej.
j=1

PROOF. For 1 <i,j <nand{ >0, set
Sij(£) == {J C Ii : J ~ I;,Nr(J) = PyNe(L;)}.

It is clear that the cardinality of S;;(¢) is B;;(v*). Consider

S'(0) == {a,R} € D} /R : a, € R,,Nr(a,) € 700} € D} /RY.

There is a natural bijection

s = 11550
j=1
ayR} +—— DnNb;-iy(ay)R.
It suffices to show that for each [y, bR*] € X,

Wy bR ) = > [y,biv(ay)R¥],
ayRY €S (0)

which is straightforward.

O

Now, take a place vy of k with ord,, (M9 co0) = 0. Let Ry, be an

Eichler A-order of type (vo91",9M7) contained in R. Let

Xuy = D\ (Y x (DL /R, )))

the definite Shimura curve over k of type (vg9*,917). Denote the canonical

morphism from X, to X by pr, i.e.

pT([y, bﬁéo)]) = [ya bﬁx]

for any [y, bﬁ(x )] € Xy,- Then pr induces a group homomorphism pr, from

vo

Pic(X,,) to Pic(X).
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PROPOSITION I1.6. For each e € Pic(X,,) and a non-negative integer r,
pre(Wage) = togpra(e) + qut r-1pre(wy,e).
PROOF. It is observed that
pre(Wyge) = tugpry(e) + qupry(wye), Ve € Pic(Xy,).

Therefore the result holds when » = 0 and 1.
We prove this proposition by induction. Suppose it holds for r» and r — 1
with > 0. For e € Pic(X,,),

pra(Wyre) = prs (((Wv0 — Q) Wy — QvOZWOWU6*1)€>
too DT (Wag€) = Quolugpr (W r-16€)
= Ty, (tvgpr*(e) + QUtUS—lpT* (w;06)>
—Guolg (tvg—lpr*(e) + qvtvg—apr*(wéoe))
= lyrprs (€) + qutuyprs(wi,€).
This completes the proof. O

4.2. Gross height pairing. For 1 < ¢ < n, recall that R; is the left
order of I;. Set w; := #(R)/q — 1. Then the Gross height pairing < -,- >
on Pic(X) ®z Q is defined by setting

< €, €5 >:=0 if 1 £ 4,
< €, €; >i1= W,

and extending bi-linearly. Therefore Pic(X)V := Hom(Pic(X),Z) can be
viewed as a subgroup of Pic(X) ®z Q with basis

{éi = ei/wi 1= 1, ,n}

via this pairing. Note that the permutation o introduced in Section

induces an endomorphism on Pic(X) by setting
ge; = ea(i).

Then by Lemma [[T.2] we get:
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PROPOSITION IL.7. Given classes e and €' in Pic(X) ®z Q,
<tme, € > = <e,the >
for m € Divy>o(k) prime to MT, where t}, = o tmo.
REMARK. We point out that for a € Div(k),
<lge,e' > = <e,lie >
where I} = 07,0 = [,-1. When ord, (M) = 1, we also get
< Wye, e > = <e, W;ge’ >,

where W7, = o Wyeo.



CHAPTER III

The basis problem for Drinfeld type automorphic

forms

Let D be a definite quaternion algebra over k£ with 91~ equal to the
product of finite ramified places of D. For T € Divy >¢(k), take R to be an
Eichler A-order of type (M1, 91™) having right ideal class number n. For each
pair (i,7), 1 <1i,j < n, with the help of the Weil representation of GLg we
construct a theta series ©;; which is a Drinfeld type automorphic form of level
N = NN~ having Fourier coefficients given by the (i, j)-entries of Brandt
matrices. Using these theta series, we write down the Hecke equivariant map
® in Theorem and describe explicitly the image of ® inside the space of

Drinfeld type automorphic forms.

1. Weil representation

Let (V,Qvy) be the quadratic space (D,Nrp) over k where Nrp = Nr is

the reduced norm form on D. The bilinear form associated to Qy is
<z,y >y=Trp(xy), Vz,yeV,

where Trp = Tr is the reduced trace on D and § = Tr(y) —y is the conjugate
involution of D. Denote by O(V') the orthogonal group of V, i.e.

O(V):={he GL(V) : Qv(hz) = Qv(x), Vx € V}.

In this section we recall the Weil representations of the groups SLg xO(V),
G( SLo ><O(V)), and GLo, and choose a particular family of sections for the

construction our theta series in the next section.

1.1. Weil representation of SLy xO(V'). For each place v of k, let
V(ky) :=V ® ky, and denote by S(V (k,)) the space of Schwartz functions

23
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on V(ky). Recall that the local Weil representation wy, (= wy, ) of SLa(ky) x
O(V')(ky) on the space S(V (ky)) is defined by the following: for a function
¢y € S(V(ky)) and z, € V(ky),

v = ¢U( ( U))7 Vh, € O<V)<kv)7

v(hy)
( ( 0 ) (;Sv> = |ay|? - polazy), VYa, € kX

< < Lo ¢v> . %Dv(qur(ﬂ?v)) : ¢v(xv)7 \V/uv S kv

(Wv ( 1 0 ) ¢v> ( v) = 5U¢v(xv)‘

Here ¢, = —1if D is ramified at v and 1 otherwise; 51, is the Fourier transform
of ¢, (with respect to 1,):

~

Bo(0) = / b (o) o (T (07) ).
V(kv)

The Haar measure dy, is chosen to be self-dual with respect to the pairing

(Tv, Yo) = Yo (Tr(20P0))-

The global Weil representation w(= wy) of SLa(A) x O(V')(A) is defined to
be ®,w, on the space S(V(A)).

Recall that R is a given Eichler A-order in D of type (M™,917). Denote
by Op,. the maximal compact subring of Dy,. For our purpose, we fix a

particular Schwartz function ¢ = ®,¢, € S(V(A)), where
Py 1= 1H_ ordu(8) 5 if v#£ o0
Yoo 1= 1H_ ordoo(8)y if v = cc.
Here ¢ € Div(k) is the canonical divisor introduced in Chapter [[I| Section

and for each place v of k, II, is a chosen element in D.¢ such that I12 = 7,.
Let 91 := NTN~. We obtain that
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b
LEMMA IIL.1. Let v be any place v of k. For k, = (a d) € SLy(Oy)
c

with ¢ = 0 mod m‘ird” (mOO)OU,

Wv("@v)@v = Po-

PROOF. Let €, be the support of ,. It is observed that

N v, if v 1NN oo,

Pov =
qt- lp1g,, ifv[9NFN cc.
. a b .
It remains to show that for every x, = ( d) € SLy(0,) with ¢ € 7,0,,
c

wv("%})@v = Py-

b))

Hence for x, € V(ky),

Write &, as

Wy (K)o (o)

Since

() =Gl 0
[

1
“\d-te
= / Py (fd_lc’ Q(yv)) y (d_l Tr(xvgv))@v(*yv)dyv-
V (ko)

we have
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Note that v, (—d_lc . Q(yv)) =1 if y, is in the support of @,. Thus

1 0 _
o)

= / wv(Tr(diliUv?jv))@v(_yv)dyv
V(ky)

= ‘Pv(d_lxv) = ().

Since 1, (bd_lQ(azv)) = 1if z, is in the support of ¢,, the proof is complete.
O

1.2. Test functions from arithmetic data. Consider the general or-

thogonal group of V:
GO(V)={h e GL(V) | Qv(hz) = v(h) - Qv(z) Yz € V, where v(h) € G, }.
Let
G(SL2 xO(V)) := {(g,h) € GL2 xGO(V) | det(g) = v(h)}.
We extend w to a representation w’ of G(SLy xO(V))(A) on S(V(A)) by the

following: for each pair (g, h) € G(SLa xO(V))(A) and ¢ € S(V(A))

W (g, )o() = [o(h) 7 [w (((1) » ((;)_1> -g> ¢] (h-1z), VY € V(A).

Recall that I, ..., I, are chosen representatives of locally-principal right
ideal classes of the Eichler A-order R, and we let b; be the corresponding

element of I; in D} for each i. Set
) .= (11, 4@, € DX,

Viewing by, ..., b, as elements in D) (= D). x DY), each pair (5,11, b,)
induces an element in GO(V')(A):

(bII®) b)) - @ = b IIzb ! Vo e V(A).
For 1 <14,57 <mn, let

Bij = Nr(bl) Nr(b]’)_l € A%x,
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Then div(f;;) = my,

ij?

N;j = Nr(I;) Nr(I;)~!. Define

B i I 3.
Pij ‘=W ((0 &js(é))?(bzn ,05) | @,

where ¢ is introduced in the last section, and s is the section fixed in Chapter
Section [l Then for any © = (x5, 7o) € V(Ay) x V(keo) = V(A),

where my,, € Divy(k) is the divisor associated to

pij(z) = |Bijs(8)[y" - 1bi§b;1($f) 1oy (Teo)-
Moreover, Lemma [[T[.1] implies directly that

LEMMA II1.2. For every element k = (ky)y € SLa(Oy) satisfying that

b
Ky = <av v) with ¢, = 0 mod wgrd”(mm)Ov, we have

Cy v

? 0 ,6”8((5) " 0 ﬂigls(é)—l Pij = Pij-

For each place v of k, we denote by S(V (k,) x k;) the space of functions
¢y on V(ky) x kS such that for each o, € kS, ¢y(+, ) is in S(V(ky)). Let

0
¢U = Yo 0y 105

The space S(V(A) x A*) is defined to be the restricted tensor product
X! S(V (ky) x k) with respect to {¢0},, i.e. every function in S(V(A) x A%)
is a linear combination of pure-tensors ¢ = ®,d,, where ¢, = ¢) for almost
all v.

Now, for each place v of k, we extend w,, to a representation @, of GLa(k,)
on S(V(ky) x k) by the following:
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((.ZJU ( 1w ) gb) (Zy, ap) = Yy (uy N1 () ) O (T, vy), TOr 1y € Koy

1 0
((IJU < 0 ) by | (x4, ) == |al; b (0, away t), for a, € kX
Ay

f¢v(xvvav) = / ¢v(yvaO"U)wv(avTr(xvgv))davyv
V(kv)
where dq, Y, is the self-dual Haar measure with respect to the pairing
(xvayv) — wv(av Tr(xvgv)>7 Vg, Yo € V(kv)-

We set the representation @ of GL2(A) to be ®,w, on S(V(A) x AX).

Now, for 1 <i,5 < n, let @i = Pij f ® Pijoo € S(V(A) x AX) where
Pig (g 0p) =1y gy (wy) - Lox (ag - Bigs(9r))
for (z¢,af) € V(A®) x A>* and
Pijoo(Toos Qo) 1= 100 (NI (Too) * Aoo5(o0))

for (Zoo, oo) € V(keo) X k. Here doo = 000§, = §/8o, € Divy(k)
and fB;; = Nr(b;)Nr(b;)~! € A>>*. Then an immediate consequence of
Lemma [[TI.2] is the following:

LeEMMA II1.3. (1) Let k = (ky)y be an element in GL2(Op) such that
v b’U . or (o)
Ky = (a > with ¢, = 0 mod m, du (M )Ov, Then for any element

CU v

(r,a) € V(A) x AX,

(@(K)@ij) (z, ) = ij(z, ).
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(2) For every zoo € kX,

- Zoo 0 . -
w ij,00 = Pij,00-
0 2 Pij, ¥ij,

2. Theta series

For 1 <i,j < n, we define

0i(9) == > (@(9)@y)(x,a), Vg€ GLa(A).
(z,@)€V (k) x k>

Write g as (gf, goo) € GL2(A®) X GLa(koo). It is observed that
0ij(g) =0

unless det(gy) and fijs(0f) represent the same coset in k*\A%/ ng. Let
KCo(Moo) be the compact subgroup [], K, of GL2(A), where for each place

v of k,
b
Ky = {(“ ) € GLa(0y)
c d

Then Lemma II11.3] tells us that

¢ = 0 mod 7o (moo)Ov} .

ProPOsSITION II1.4. For 1 <i,j < n, 0;; can be viewed as a function on

the double coset space
GLa(k)\ GL2(A)/Z (ks ) Ko (D00),
where Z is the center of GLs.
Furthermore, these theta series 8;; are harmonic, i.e.

LEMMA IIL5. For g € GLy(A),

(1) b3 (9 ( ool )) = —0ij(g9) and  (2) > 0:j(ghoc) = 0.

Too 0 Koo €GL2(000) /Koo

Here we embed GLa(koo) into GLa(A) = GL2(A®) x GLa (k) by

Goo — (1, goo).
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PRrOOF. It suffices to show that

] o 1\) _ )
Woo Pij,co = —¥ij,00
Too 0

and

For (z,a) € V(koo) x kX, one has

- 0 1)) .
. 1 0 0 11\ .

- g /V o 10n (Ve )ar o =0) o (ap)an oo
Here d.y is the self-dual Haar measure with respect to the pairing
(z,y) — Yy(e Tr(zy)), Ve, y € V(ks).
The last integral equals to
1o, (Nr(z)am2d=©)) . yol(Q),

where

Q = {y € Do | Nr(y)ar 1 Tord=0) ¢ O}

From the normalization of the Haar measure, we get vol(Q) = gz!. This

completes the proof of (1).
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For (2), it follows by

£ (5 1))

- (— > vl - [

1o, (Nr(y)aﬂgéd‘”(‘”)woo(aTr(rcﬂ))day>

= — Lo, (aNi(z)amlford=() . [q;} 53 w<aNr<x>u>]

u€lF oo

= — Pijoo(T, ).

For 1 < j <mn, let R; be the left order of the ideal I;. Then
X _ 1yX pxp—1
R} = D" Nb;R™Y;
is a finite cyclic group. We normalize our theta series as follows:

DEFINITION III.6. For 1 <14,5 < n, set

W Bijs(6) 0 -
©ij(9) := ol %) 9w<< . ﬂij8(5)>g>, for g € GLa(A).

3. Drinfeld type automorphic forms and Hecke operators

Given M € Divy >o(k), recall the compact subgroup Ko(Noo) =[], Ky
of GLa(A), where for each place v of k,

Ky = {(‘C‘ Z) € QLy(0,)

By a Drinfeld type automorphic form F of level 9, we mean that F is a

¢ = 0 mod 7o (moo)OU} .

C-valued function on the double coset space

Yo(N) := GLa(k)\ GL2(A)/Z (koo ) Ko (IM00)
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(where Z is the center of GLj) satisfying the harmonic property: for any
g c GLo (A),

F (g < 0 ;)) =—F(g9) and Z F(gkso) = 0.

Moo Koo €GL2(0s0) /Koo

Recall that we embed GLa (ko) into GLa(A) = GL2(A%®) x GLa(ks) by

Joo = (1, goo)-

These forms can be viewed as function field analogue of classical weight 2

modular forms. For further discussions, we refer the reader to [4] and [19].

Let M(D) be the space of Drinfeld type automorphic forms of level 1.
For each place v of k, the Hecke operator T;,, on My(N) is defined by the
following: for F' € M(M) and g € GLa(A),

(T,F)(g) := E;F <g (7;” ;‘)) T pnoo(v) - F (g (g f)) |

Here

1 if vt oo,
Hoo (U) =
0 otherwise.

The harmonicity of F' implies that
TooF =F, YF & MyNh).

Since T, and T,y commute to each other for any places v and v’, we define

the Hecke operator T, for m € Divy >o(k) by the following:

Tt = T - T for m and m’ are coprime;
Tyev2 = TyTer1 — pm(v)go - p(s(v)) T, for any finite place v of k.

v v

For each divisor m € Div(k), the m-th Fourier coefficient F*(m) of F' is

ern s(07tm) w B
o (477}
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Here the Haar measure du is normalized such that the volume of k\A is
one, and § is the canonical divisor of k introduced in Chapter [[I] Section

It is observed that F*(m) = 0 unless m is positive. Let

* ‘_ s(67tm) wu
s | #((427 )

Then the harmonicity of F' implies that
F*(m) = [[moo | 7' F*(my)  and  Ey(m) = [[meo|| THF (my).

Here
Mo = ogCdec(m) .
oo T ) f T m/mOO7
and s : Div(k) — A is the section fixed in Chapter [II| Section |1} Moreover,
given a and o' in Divy(k), F§(a) = Fj(a’) if the corresponding fractional

ideals M, and M are in the same ideal class of A.

For ay € A%, set

LOO’X(af) 0
ar)F =r .
(p(ar)F)(g) (( 0 L“’X(af)> g>

Here (%% : A°>* < A* is introduced in Chapter [[I| Section . Then the
surjectivity of the canonical map from B(A) onto Yo(M) (where B is the
standard Borel subgroup of GL9) implies that

LEMMA IIL.7. F is uniquely determined by Fourier coefficients

(p(a)F)"(m) and  (p(ai)F)y(div(ay))

for m € Divy>o(k) and representatives ay, ..., an of kX\AJf /ng.

3.1. Fourier coefficients of theta series. Recall that in Chapter [[I]]
Section [2| we constructed a family of theta series ©;; (cf. Definition ,
1 < 4,7 < n, associated to a given Eichler A-order R of type (M, M™).
Moreover, Proposition and Lemma tells us that these series are
Drinfeld type automorphic forms of level 91 = 91791~ In the following, we
show that the m-th Fourier coefficient of ©;; is essentially the (4, j)-entry of
the Brandt matrix B(m) for every m € Divy > (k):
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PropOSITION II1.8. For divisors m € Divy>o(k) and a € Div(k),

Bij(m) €ij(a)
0 (m) = =2 and  OF o(a) = L.
’ [[o| 70 wj|all
Here
(@ 1 if the ideals My and Ni;1 are in the same class of A,
€ijla) =

0 otherwise;

and wj = #(R)/(q — 1) is introduced in Chapter [[I] Section [.2]

95’., ) 6ij8(5) 0 Bij
ij - 0 Bi;s(8) ij

where the Weil representation @ of GLa(A) and the Schwartz function @;; are
introduced in Chapter [[1I| Section Then for any pair (z,a) € V(A) x A,

PROOF. Let

85;]'(95704) = 15_—15(5”711,1.}?1,]_—1(UUf)logoo(Oéfﬁz-;ls((sf)_l)

ij

'100o (Nr<moo>aoos(5oo))'

Given m € Divy > (k), for each u € A one has

“ B s(07tm) w
#<Rj>-umu~@u<< 0 1))

= Y F(07 mz, s(6m) " a) - (Ne(x)ua)

(z,0)€V (k) x k>

- Z [ (1ﬁi;1biﬁb;1(3(m)$f)1o§m (S(m)flafﬂigl) “lo., (Nr(ﬂfoo)aoo)>

(z,0)€V (k) x k>
. @D(Nr(x)ua)] .
Thus
©jj(m) = 65 9(m) = 0 = Bj;j(m)

unless s(m) and ﬁigl represent the same coset in k*\A°*/OX,. In this

case, let v € k* such that v - 5 - s(m) € Ofw. Then

#(RJ) - [m]] - 6j(m) = ¢ —1
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and
#(R)) - [[m] - ©;(m)
= #{(z,¢) € V(k) x F} | v ‘2 € b;Rb;* and Nr(z)y e =1}
~ N
= #{zeDNbiRY | ;(]‘”) € s(m)0%.}
= #(R]) Bij(m).
Therefore the proof is complete. O

The following proposition says that the action of Hecke operators on the

theta series ©;; can be read off by the Brandt matrices:

PROPOSITION IIL.9. For any m € Divy>o(k) which is prime to M+ and
1<, <n,

n
ThwO;j = Z Bip(m)Oy;.
/=1
PRroor. First, from the definition of ©;;, it is clear that

LEMMA II1.10. For ay € A and g € GLy(A),

plag)©ij =Y Lig(div(ay))Oy;.
=1

Here L;j(a) for any divisor a € Div(k) is introduced in §3|

Since the Brandt matrices and the Hecke operators share the same re-

currence relation, it suffices to prove the case when m = v with v { 91",
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By Proposition [I11.8] we obtain that for each divisor m € Div>o(k),
n
> Bie(v)©7;(m)
{=1

= [[m[ ™) Bie(v)Byj(m)

/=1

= Hmuil Z,U«‘ﬁoo V)qu - Lig(v )BZJ( ) + Bij(mv)

m
= 'v@ 00 % O7,(—
3,0} (mv +;Mm v)Lie(v)O;()
Moreover, it is clear that

ZBM @Zj olm ) (Tv@w)g(m)

Therefore by Lemma [[TL.7] and [[TI.10], the proof is complete. O

REMARK. Proposition [[I.§ and Lemma tell us, in particular, that
these theta series ©;; are Q-valued Drinfeld type automorphic forms. Propo-
sition [[IT.9]leads to a Hecke module homomorphism from the Picard group of
definite Shimura curves into the space of QQ-valued Drinfeld type automorphic

forms. Further discussions are in the next subsection.

4. The Hecke module homomorphism &

Recall the definite Shimura curve X = X+ o1 introduced in Chapter E
Section [4] and the Gross height pairing

« /
<eeé>= E a;a;,
i

where (e,¢) € Pic(X) x Pic(X)Y with e = Y . ae; and € = >, ajé;. We
let M =NMTN" and denote My(IM,Q) the space of Q-valued Drinfeld type

automorphic forms of level 1. Define the Z-bilinear map

® : Pic(X) x Pic(X)Y — Mo(M,Q)
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(e, é) := Z ;0O

1<i,j<n
for any e € Pic(X) with e = Y, a;e; and é € Pic(X)Y with € = >, alé;.
Then for any divisor m € Divy>o(k) which is prime to 9", by Proposi-
tion and we get

B(e, &) (m) = <tme,€>  <e,lpé>

fmf [m]]
Note that Proposition implies further that
T (®(e,€)) = P(tme, &) = P(e, t5€)
for m € Divy >o(k) prime to 9N+, Let
Tg := Q[tm : m € Divy >o(k) prime to 7).
Consider the Tg-module structure of Pic(X)Y @z Q defined by
(tm, &) — th6.

We conclude that

THEOREM III.11. The map ® : Pic(X)xPic(X)V — Mo(N, Q) satisfies
that for any divisor m € Divy >o(k) which is prime to M,

B(e, ¢y (m) = <tme,€> < e tpé >

lmf - im]]
and
Tn®(e, &) = O(tme, €) = D(e, thé).
Moreover, this map induces a homomorphism
(Pic(X) ®z Q) @1, (Pic(X)" ®z Q) — Mo(N, Q)

as Tg-modules.

REMARK. Suppose N is square-free. We change the notation M, 91—,
and 9T to ‘ﬁar, Ny, and Ny, respectively. Given m € Divy>o(k), write
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m=m Hvl‘ﬁf{ v with m’ and M coprime. Then by Proposition [IT1.8
and Lemma we obtain that for (e, €) € Pic(X) x Pic(X)V,

< (tm/ Hv‘m+ W,Uord,u(m))e, é >

®(e,€)"(m)

< e? (t:’kn’ H'U|‘ﬂ+ W;ordv(m))é >

4.1. Changing levels. Let X be the definite Shimura curve over k of
type (‘ﬁg’ , Ny ), where Ny = ‘ﬁa”ﬁg is square-free. Choose a place vy of k
with ord,, (Mg, oo) = 0. Denote by X, the definite Shimura curve over k
of type (vo‘ﬂg , My ). Then the canonical morphism pr from X, to X induces

natural group homomorphisms

pry : Pic(X,,) = Pic(X) and  pr*: Pic(X)Y — Pic(X,,)".
Define pry : Pic(X)" — Pic(Xy,)" by
< gy Py (€) v 1= < pra(wy €uy), € >, V(eyy, &) € Pic(Xy,) x Pic(X)Y.

Here < -, >,, and < -,- > are Gross height pairing on Pic(X,,) ®z Q
and Pic(X) ®z Q, respectively. Recall the Hecke module homomorphism &
introduced in Theorem [[T[.T1] and denote by

®,, : Pic(Xy,) % Pic(X,,)Y — Mo(veNo)
the corresponding Hecke module homomorphism for X,,.

THEOREM II1.12. For é € Pic(X)Y, e,, € Pic(Xy,), and g € GLa(A),

we have

1 0
Dy, (€vys 7 (8)) (9) = @ (praleny), €) (9) + ®(pra(whyev, ), €) <g ( v ))
and

71'_1
oo (evo’pr;O (é)) (9) = (I)(pr* (wgoevo), é) (g)+q)(lvop7‘*(evo)> é) (g ( 80 (1]>> |
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PROOF. It suffices to prove the equality for the Fourier coefficients, i.e.
for m € Divy>o(k), a € Divy(k), é € Pic(X)V, and e, € Pic(X,,),

(1) Dy (eve, pr*(€)) (m) = @(pri(ey),é) (m)

+® (pre(whyevy), €) " (mug ),
@) By (Cup, pr(€))g(a) = (prales,), €)(a)

+® (pra(w)yev ), €)(avg ),
(8)  Bulew,prig(@) (m) = B (pro(w),en),é) (m)

+® (Loypre(eug), ) (mog V),
(4) oy (€0, P75, (€))5(@) = @ (pro(whyeny). €)5(a)

+® (Lyypr(€vy), é);(avo_l).
Denote by {ei,...,en} and {ey 1, ..., €vy,n,, } the canonical bases of Pic(X)
and Pic(X,,), respectively. Suppose pri(ey, i) = €;,- Then by Proposition
L] it is observed that

By (€un.is pr(8))) @) = Yy ol

ir||a
ey /€ Pt (e5) wUOJIH H

v(0,J
€igj (CL)

wjlall”

= (qvo + 1)

On the other hand,

y €igj(@) _ _ . _
® (pre(evy,i)s &)i(a) = uZJO?HaH = (g @ (pra (W) €vg,i), €5) o (avg ).
J

Therefore the equality (2) holds. Suppose
Wy €pi = Copir and  pry(eyy i) = ey~ with 1 < i’ ip < m.
Then

~ 6 7" /(a)
(I)vo (evo,iv p’l“:o (eJ))S(a) - Z W
1 V0,]
€vg,j! EPT* (e5)

%j(a)

wyllall”

= (qvo + 1)
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Since

Ei()j(a)

wj||af

qv_olcb(lvopr*(evo,i) )O(a 0 = ‘I)(PT*(U)UO@UO, ), éj);(a),

the equality (4) holds.

Now, for m € Divy >o(k), write m as m’ Hv|uomg v (™) with m’ and N
coprime. The remark of Theorem says that
< (tm/ HUPnS— Wvordv (m) )p'r* (Wvgrdvo (m) 61)0), € >

Dy (g, pr(8)) " (m) = [[m]

and

< (tm/ Hvlma» Wvordu (m) )pr* (WUOTde (m) w;)() €uvo )7 e>

Dy (v, (2)) (m) = -

By Proposition we get

Dy, (evo ,pr’ (é)) " (m)
< (tml H’U‘m+ W pordy (m)) OrdUO (m)p’r* (evO )7 é >

[[on|
qUO. < (tm/ Hv|m+ W ordv(m)) Orduo(m)*lp,r* (wiloe'UO)’ é >
+ Yo
[[m|]

= ®(pri(ey,), é)*(m) + O (pra(wy, e), é)*(mval),

and

Dy (evo , pT:O (é)) i (m)
< (tm’ Hv|m+ w pordy ( m)) ordvo(m)pr* (w/vo 6UO)’ €>
0

[l

Quy- < (tm’ H’U“ﬂ+ |44 Ofdv(m)) Ordvo (m)—llvopr* (eUO)a €>
_"_ Yo

[[m]
= (I)(pr*(wvoevo) )( )+@(lvopr*(evo)vé)*(mval)'

Therefore (1) and (3) holds and the proof of this proposition is complete. [J
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5. Construction of Drinfeld type newforms

Given M € Divy >o(k), a Drinfeld type automorphic form F' of level 9 is
called a cusp form if for every g € GLa(A),

L (o D))

Note that this cuspidal condition is equivalent to say that F' vanishes at
almost all double cosets in Yo(M) (cf. [7]). Given two Drinfeld type auto-
morphic forms F; and Fy of level 91, suppose one of them is a cusp form.

The Petersson inner product of Fi and Fy is:

(F1, Fy) Fi(g)Fa(g)dg

. /Z(koo)GLz(k)\GI&(A)
= Y FF@ul),

[g]€Y0 (M)

where Z is the center of GLy and for each double coset [g] € Yo(1), the

measure (([g]) is normalized to be

pp— q — 1 1
(lg]) = 2. #(Pic(A)) . #(GLQ(IC) N glco(moo)gfl) .

A Drinfeld type cusp form F of level 91 is called an old form if F' is a

linear combination of the forms

- <g ((1) 8(;/))), Vg € GLay(A),

where F” is a Drinfeld type cusp form of level ¥ with 9U0” | 9T and N # N.
A Drinfeld type cusp form F of level 91 is called a newform if F' is a Hecke
eigenform and (F, F') = 0 for any old form F” of level 1.

Now, Suppose D1 = MM, where N and Y1~ are relatively prime, and
9~ is the product of finite ramified places of a definite quaternion algebra
D over k. Let X = Xy+ - be the definite Shimura curve of type (M*,917),
and denote by

Pic(X)c := Pic(X) ®7 C, Pic(X){ = Pic(X)Y @z C.
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Extend < -,- > to a pairing on Pic(X)c x Pic(X)¢ which is linear on the
left and conjugate linear on the right. We emphasize that Pic(X)¢ can be
identified with the space of C-valued functions on DX\Dg JR*:

¢ € Pic(X)¢ — (bl =< e, é>, [b]) € D*\DJ /RX)

For each character x : Pic(A) — C*, let

con =Y X(Nr(I) ™ - € Pie(X) @z C.

w;
Then for every divisor m € Divy > (k) which is prime to 9,
tmeo,y = X(m)b(m)eq .
Recall that b(m) = }°"_, Bjj(m). Set
Pico(X)¢ :={€ € Pic(X)¢ | <epy,€>=0 Vx:Pic(4) —» C*}

We also denote by Sémi)_new(‘ﬁ) the space of Drinfeld type (M~ )-new forms

of level M, i.e. every F € Sémi)_new(‘ﬁ) is a linear combination of the forms

(1 0
! (g (0 S(m,,))) |

where F” is a Drinfeld type newform of level 9" with V0" | 9T and M~ | 97
Then the Jacquet-Langlands correspondence for D* and GLs tells us that

THEOREM IIL.13. (cf. [7]) There exists an isomorphism (as C-vector
spaces) JL from Pico(X) onto S (17)= "Y(MN) such that given m € Div s >o(k)
and F € S )7 (),

JL Y TWF) = t5 JL7Y(F).

Suppose now that 91 is square-free. As in the remark of Theorem
we change the notation D, 917, and 9~ respectively to Ny, ‘ﬁg , and Ny .
Let F' € Sp(9Mp) be a Drinfeld type newform. Define

er = JL7YF) € Pico(X).

where € := 7" @ - & for any é = Y ' | a;¢; € Pico(X){¢. Then if F is

normalized, i.e. F*(1) = 1, we get
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THEOREM III.14. For any e € Pic(X)c,
O(e,ep) =< e,ep > -F.
Here ® is the map introduced in Theorem [ILIT]

PrOOF. By Theorem [[I1.11] and [[IL.13| ®(e,er) and F share the same
eigenvalues of Ty, for any m € Div >o(k) prime to 7. Let v be a place with

v | M. Since F is a newform, we get
(ty + W) ep = 0.
This implies that W*ep = t’,ep. Therefore
P(e,ep)*(m) =< e,ep > -F*(m) for any divisor m € Divy>q(k).
Since e is orthogonal to eq, for every character x of Pic(A), we obtain
®(e,er)o(a) =0

for any divisor a € Div¢(k). By Lemma [II1.7] the proof is complete accord-
ingly. ([

REMARK. 1. Suppose ‘ﬁg = 1. Then Theorem [[II.14| tells us that &
maps Pic(X )¢ x Pico(X)¢ to the space S§(9g) spanned by Drinfeld type
newforms of level 91y.

2. In general, by Theorem|II1.12|we obtain that ®(e, €) is in fact in S(()m_)fnew(‘ﬁo)
for any pair (e, €) € Pic(X)c x Pico(X){.

In the next section, we study the basis problem for Drinfeld type cusp

forms of square-free levels.

6. The basis problem

Let 9N € Divy>o(k) be a square-free divisor. Let So(9p) be the space
of Drinfeld type cusp forms of level 91y. Then

So(Mo) = So(1, M) & So(1, M)

Here Sp(1,91) denotes the space generated by the old forms

ot 0
MNo son) )
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where F’ is a Drinfeld type cusp form of level 1 and M | Mg; So(1,Mp)* is
the othogonal component of Sy(1,9%) with respect to the Petersson inner
product.

For a finite place v of k and N € Divy>o(k) with v | N, the theta
series ®(e,¢’) for any e € Pico(Xov,)c and € € Pico(Xoy )¢ is in fact in
So(1,Mp)*. On the other hand, every F' € Sy(1,9)" is constructed by
newforms of non-trivial levels dividing 9. Moreover, for 1 # 91, | o, let
vo be a finite place dividing N, and set N := 9, /vg. Then Theorem
and says that every Drinfeld type newform F of level 9 is equal to

<eep > Ble er)
for e € PiCo(ang,vo)(c with < e,ep >%# 0. Therefore we conclude that

THEOREM II1.15. The space So(1,Mg) " is generated by the family of
theta series ®(e, '), where (e e’) € PiCo(Xmg)ﬂm; )e X PiCO(Xm6+7m6* )& for
the pairs (MGF,NG) with NGENG~ dividing No, and the old forms coming

from these theta series.
An immediate consequence is the following:

COROLLARY III.16. Suppose Sp(1,9%) = 0. Then the whole space So(No)
is generated by those theta series introduced in Theorem [ILIA and the old

forms coming from them.

REMARK. 1. When k is a rational function field and oo corresponds to
the degree valuation, the space Sp(1,D%) is trivial and hence every Drinfeld
type cusp forms of level 9y can be generated by our theta series.

2. It is worth pointing out that Sp(1,9%) is not trivial in general. For
example, we might take an elliptic curve E/k which has split multiplicative
reduction at oo and has good reduction elsewhere. Then from the works
of Weil, Jacquet-Langlands, and Deligne, there exists a normalized Drinfeld
type newform Fg of level 1 whose L-function is equal to the Hasse-Weil
L-function of E/k. The following example indicates the existence of such

elliptic curves.
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ExampLE II1.17. (Given by M. Papikian) Let k = F,(¢) with (¢,6) = 1.

Consider the following elliptic curve
E:y? + (t —1728)xy = 2 — 36(t — 1728)3x — (t — 1728)°.

Then the discriminant of E is t2(t — 1728)°, and the j-invariant j(E) of E
is t. It is observed that E has multiplicative reduction at co. Since j(E)
is regular outside co, F has potentially good reduction at the places ¢ and
t — 1728. Denote by k; and k;_1798 the completion of k at ¢t and ¢ — 1728,
respectively. Therefore we can find fields Ky, K5, K3, where

(K : k] = [Ka : kp172s] = [K3 @ ko] = 12

and F/K;, E/Ks are good reduction, E/K3 is split multiplicative reduc-
tion. By Krasner’s lemma and approximation theorem, there exists a global
function field K with [K : k] = 12 and

K ®p ki = K1, K ®p ki—1728 = K2, K @ koo = K3.

Hence E/K has split multiplicative reduction at the unique place cog lying

above 0o, and has good reduction elsewhere.






CHAPTER IV

Metaplectic forms and Shintani-type

correspondence

In this chapter, we assume that ¢ is odd. Following Kubota, we consider
a non-trivial central extension of GLo, the metaplectic group. In the function
field context, we take the Iwahori Hecke operator at oo to be our “non-
Euclidean Laplacian,” and functions on the metaplectic group of weight r/2
are defined to be the eigenfunctions of this operator with eigenvalue qio_ 5.
From the norm form on A-lattices of pure quaternions in definite quaternion
algebras over the function field k, we construct another family of theta series
which are metaplectic forms of weight 3/2. It turns out that the action
of Hecke operators on these theta series can also be expressed by Brandt
matrices. This allows us to establish a Shintani-type correspondence Sh in
Theorem

1. Metaplectic forms

1.1. Metaplectic group. We assumed that ¢ is odd. Let v be a place
of k. Recall the Kubota 2-cocycle o, : GLa(k,) X GLa(k,) — {£1} defined
by (cf. [10]):

; z(g192)  x(9192)
= Lo(ky).
Uv(gl792) < x(gl) ) det g1 - x(gz) va V91792 € G 2(]{7 )

Here

a b ¢, ifec#0,
X =
c d d, ifec=0;

47
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and (-, ), is the Hilbert quadratic symbol at v, i.e. for any a, b € kS,

1, if aZ? + bZ3 = Z2 has a non-trivial solution,
(a,b)y = 1 2 3
b v T

—1, otherwise.

Define a map s, : GLa(k,) — {£1} by setting

<a b) (c,d/(ad — bc))y, if ordy(c) is odd and d # 0,
Sy =

c d 1, otherwise.

Let o, be the 2-cocycle defined by

ou(g1,92) = 0, (g1, 92)50(91)50(92)50(9192) ™", Va1, 92 € GLa(ky).
It is known that (cf. [5])

oy(Kk1,k2) =1 VK1, ke € GLa(Oy).

Hence o, induces a central extension GLa(k,) of GLa(k,) by

Cl:={zeC:|z|=1}

which splits on the subgroup GL2(O,). More precisely, the extension GLg (k)
is identified with GLa(k,) x C! (as sets) with the following group law:

(91,&) - (92,&2) = (9192, &1&200(g1, 92))-

Globally, we define a 2-cocycle o on GL2(A) by setting o := ®,0,, and

denote by GLa(A) the corresponding central extension of GLa(A) by Cl. We
emphasize that the embeddings

—_~— —_—

GLQ(]C) — GLQ(A) and GLQ(OA) — GLQ(A)
v o= 7= (8(9) K — K= (k1)

are group monomorphisms. Here s(v) := [, sv(7).

¢ =0 mod ToOso and (Moo, d)oo = 1}

—_— —~—

KL = {Fioo = (Koo, 1) € GLa(koo) : Koo € K;}
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It is observed that

e (™ ) a)eo 1 (= 1))
0 1 e \\ 01

P

For each function F' on GLa(A) with
F(gfe) = F(g), Vkeo € K:oa

we define for each integer r, the weight-r/2 operator (with respect to oo):

~ r/d— ~ Too U
Too,r/2F(g) = (:ZOé4 L. Z F <g : (( ) a1>> .
u€lF oo 0 1

DEeFINITION IV.1. Suppose an integer r is given. A C-valued function

F on GLg(A) is call a weight-r/2 metaplectic form if there exists an open
subgroup K of GL2(O4,) such that

—_——

F(:Yf]’%) = ETF(ga 1)7 vé = (975) € GLQ(A)ﬂ QS GL2(k)7 k€K x K:;_oa
and

Toorj2F = F.

ExXAMPLE IV.2. Let F' be a Drinfeld type automorphic forms. Then F
induces a function (still denoted by F') on GL2(A) by setting

—~—

F(g,6) :=¢"-Flg), V(g,¢) € GLa(A).
The harmonicity of F tells us that
Ta2F = F.

Therefore every Drinfeld type automorphic form can be viewed as a weight-2

metaplectic forms.

In the next subsection, we review the Weil representation of the meta-

plectic group GLa(A), and construct an explicit family of metaplectic forms

having half integral weight.

1.2. Weil representation and theta series from pure quater-

nions.
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1.2.1. local results. Recall that (V,Qy) is the quadratic space (D, Nr),
where D is the chosen definite quaternion algebra over k in Chapter [[II}
Then

(V) QV) - (‘/la Ql) @ (‘/35 Q3)7
where
Vii=k V3= {b eD: Tr(b) = 0}, and Q;:=Q |Vz .

For each place v of k, Denote by S(V;(k,) x k) the space of functions ¢,
on V,.(ky) x kX such that for each «a, € kS, ¢y(+, ) is a Schwartz function

on V;.(ky). Define the Weil index vy, (., @) for the quadratic form «, @,

’Ywu(anT) :_/L V(0 Qr (1)) da, v

where L, is a sufficiently large O, lattice in V,.(k,). The Haar measure d,,u

is self-dual with respect to the pairing
(:E, y) = wv(av TI“(ZEQ)), Vr,y € V;"(kv)

Note that for r =1 or 3, we define Wy, . : kX — C! by setting

Va, € k.

and

W, r (O‘v)Wde ,r (Bv)

= (aw, Bv)v, Vo, vek;;-
szv,r(avﬁv) ( B ) ﬁ

In particular, Wy, »(ow) = (wﬁrd“(‘”, Qw), for any a, € OFF.
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—_—

THEOREM IV.3. (Gelbart [5]) There is a representation wy, of GLa (k)
on the space S(V,(ky) x k) satisfying that

(1) wr7v(17£)¢(waav) = §T¢(w7av)v f € Cl;

(2> Wrp (((1) T) 71> ¢(waav) = wv(xanr(w))¢(waav)7 T € ky;

-1 0

4)  wr ((g a(;) ,1) d(w, o) = ]a\é(a, a)zmdaw,av), ack);

(3> Wr.p (( 0 1) 71> ¢(wa OCU) = Vb (anr>~Fr(¢)(w70‘v)§

5)  wro ((é ;) ,1> b(w, @) = |8y d(w, auf ), B € B,

Here

Fo(d)(w,ay) = / 00 0 T

where the Haar measure dy,u s normalized so that
FA o) (w, on) = ¢(~w, ).
Now, consider a particular function in S(Vi (k) X k)):
P (@0, a0) = 1oy (@0) - Loz (aw),  V(we,an) € Vilky) x k.

Then

Cy dy

b
LEMMA IV .4. For any Kk, = <av v) € GL2(O0y) with ¢, € 1,0y, we
have

Wl,v(’%v)cpg;l) = Wwv,l(av) : 901(;1)

In particular, suppose ord,(d) is even. Then
wr(Ro) e = oY, Vry € GLy(O,).

PRrROOF. It is observed that

1 0
(3 0) )
0 uy
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for any u, € O, and

qv_l/2 if ord,(9) is odd,

]:1(805,1))(%7%) = 17rtfordv(5)/2jo, (*7311)']-073< (o)
B Y 1 if ord, (0) is even.

b
Let Ky = ( “ ) € SLy(0,) with ¢ € O,. Then
e d

1 bd= Y\ (d71 0 1 0
Ky = .
0 1 0 d) \md e 1

Therefore for (x,, ) € Vi(ky) X kS,

Wl,v(’%v)%(;l) (20, )

_ W 1(&) 1 0 _
- v vbdl [ 1%7: v 71 (1) dlvyv-
1/) (a Ql(.ﬁC )) (Cb,av)v (wL ((m,dlc 1) )va ( z a)
Since
I 0\ (0 1\ (1 —-md'c) (0 -1
mdle 1) \=1 0/ \o 1 1 0)’
we have
1 0
(1) -1
<W1,v<<ﬂ_vd_lc 1>vl> v >(d xma’u)

- /V (k) w” (_O‘vﬂ'vdilc : Ql(yv)) wv(Qavdilxvyv)fl((pgl))(_yv7 av)davyv-
1\Rv

f— . _— 71 . 71
= ]_Ol>)< (av) /ﬁvt—ordv(é)/?Jov wv( aymyd e Ql(yv)) wv(2avd xvyv)dauyv

g /% if ord,(6) is odd,
1 if ord,(9) is even.
= PulTy, ).
Moreover, for (zy, ) € w7020, « OJ, one has
by (bd ' Qi(z,)) =1 and  (a,a,), = 1.
Therefore

Wi, (Ro) el = Wy, 1(a) - o)
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a

for any Kk, = (

Suppose ord,(d) is even. Then 7y, (,Q1) = 1 for any «, € O) and

b
) € GL2(0O,) with ¢ € O,,.

TyC

b
.7-"1(90,5,1)) = 905,1). Since GL2(O,) is generated by elements (a d) with
c

0 1
¢ = 0 mod 7,0, and ( > , the proof of this lemma is complete. O

Recall

0 if ord,(9) is even,

1 if ord,(0) is odd.

€(6) =
Then we immediately get

COROLLARY IV.5. Let &,(,1) be the function in S(Vi(k,) X k) defined by

—ordy (6)—2¢€y(9)

N(l)(xva av) = ]-W; ordv(8) 5y (xv) ’ 10;} (avﬂ'v )

P

v b’U
for any (zy, o) € Vi(ky) X k). Then for every k, = (a ) € GL2(0y)

Cy v

v(6)

with ¢, = 0 mod 7r?f Oy, we have

wl,v(’%v)&q(;l) = (51(;1)-

Proor. Note that

—|—ordy(3)/2]

e 0

w v Y ;]- 'E;l) x’l})av
1, (( 0 W;L—ordv(a)/zj) >60 ( )

W, 1 (L oo ®)/21)
(79 [—ordw(8)/2] o)

. 17%_ ordy (5)01) (:L'U) 105< (avﬂg |—ordy(8)/2] )

= (ol orde(®)/2) -l -ordu(3)/2))

v

Hence let

v

o D (zy, ) = 1 o), (z0)1x (om0 de@/2Dy () € Vi (ky)x kX,

we have

w1, (Ro) @M = Wy, 1(a) @ - V)
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b €
for any Kk, = (a d) € GL2(0,) with ¢ = 0 mod 7%1,(6)0”. Here we set
c

Wy, 1(a) :=11if a = 0. Since

N . 1 0
S (R

a

b €
we get for any , = ( d) € GLy(0,) with ¢ = 0 mod 75" 0,,

1 0
W1,v € 5
b 0 71'1,”(6)

It is clear that

c

N 1 0 ~ o (s) ~
1) " ((o wEv“’) 1)] B = Wy, 1(a) @ - .

Therefore the proof is complete. O

Let 581) = ®v95((]%1)) € S(V1(A) x A*), where for each v of k with v # oo
and (214, ay) € Vi(ky) X kY,
~(1 N
‘10(()’7))(371,1;,061,) = 901()1)(-%1,1);061))
- 1ﬂ_7mdv(§)0 (:L‘v) . 1013< (OZMTU_ ordv(é)_gev(5));

and for (21,00, o) € Vi(koo) X kX,

B (@100 000) 1= Wi 1(0i00) " Lo, (27 soroom = @),
Let
6@ = > (@) @a) Ve GLa(a).
(z,0) €V (k) x kX
We have

PRrROPOSITION IV.6. The theta series é, is a weight-1/2 metaplectic form
on GLa(A) which satisfy that

O(&) = O(7), Vk € Ko(Q200T).
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Here Q) € Divy >o(k) is introduced at the end of Section |1] in C’hapter and

Ko(Q%00™) := H Ko | x KL

VF#00
b
Ky = {(a ) € GLy(0,)
c d

for v # oo and

K% = {(“ Z) € GLo(Ow)

We emphasize that the theta series O is viewed as a function field ana-

where

¢ =0 mod 72 Ord”(Q)Ov}

¢ =0mod 75O and (Moo, d)oo = 1} .

logue of the theta series

Z 627r\/j1n227
nez
a modular form of weight 1/2 for T'g(4) (cf. [13]).

We have fixed an Eichler A-order R in D of type (917,917) and repre-
sentatives Iy, ..., I, of locally-principal right ideal classes of R, and denoted
by R; the left order of I;. For 1 < i < n, denote by Rl(p ) the set of pure

quaternions in R;, i.e.
R? .= {be R;: Tr(b) = 0}.
Then
Ri=A®RY
and for any b= by + b3 € R; with by € A and bg € R,
Tr(b) = 2by + Tr(bs).

For each finite place v of k, let gol(dv) be the function in S(V3(k,) x k.S ) defined
by

3 _ _
oL (0, ) = 1 —oray(@) o (20) - Lo (g (0720 0)),
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Here REZ) = Rgp ) 4 Oy. Tt is observed that for any z,, € V,.(k,) and
ay € kJ,

(1)

3l ) —ordv(é)—Zev(é)).

3
(xl,w av)"ﬂgﬂ, (333,1;7 av) = 17Fu_ ordy (8) o (xl,v‘f'x&v)lofj (a’uﬂv

o

Moreover, consider @’ & ¢
g € GLa(ky) and 1 < i <mn,

l(i)) as a function in S(V (k) x k. ), then for any

Gul9) |8 © 0] = winlg, NP @ wa (g, 1)l
Recall that Q =[], v € Divy>o(k). By Corollary we get

LEMMA IV.7. Let v be an arbitrary finite place of k. For each element

v bv . or -
Ky = <a ) € GL2(0Oy) with ¢, = 0 mod 7, dy (PPN )Ov,

Cy v

wg’v(/?av)go(?’) SO <i<n.

1,0 = SDi,v’
For (21,00 + 23,00, Qo) € (Vl(koo) @ Vg(koo)) x kX, let

(Pg))) (-1'3,00; O‘OO) = Wlboo,?)(aoo)_l]-ooo (Nr(x&oo)aooﬂ'gédw((s))-

Then it is observed that for zoo = 1,00 + 2300 € V (ko) = Vi(koo) ® V3(koo)

and o € k%,

B0 (21,005 (o)  $D (@3,005 Qo) = L0 (Nr(o0) oo me0=(9)),

Similarly, we obtain that

(oo boo

LEMMA IV.8. For any Koo = < > € GL2(Ouo) with coo 1N TooOso,

Coo  doo

<W3,oo(’~ioo)$0<(>i)> ($3,o<>7 Qoo) = (Wwoo,?)(dooxdom QOO)OO) : SO((S;) (5'33,007 Qo)

for any (23,00, ) € V3(koo) X kZ. In particular, if (Too, doo)oo = 1,

W3,00 ('%OO)SD&? = (P(oi) .



1. METAPLECTIC FORMS 57

Furthermore, it is observed that for (3 oo, Qo) € Va(koo) X kX

Moo U
Z W3,00 << > 71> @gi)(xwvaoo)
UE]FOO 1

= Z 7/)00 r(zso aoou) lom(Nr($oo)aoo7rio_ordoo(5))

UEF o

’ ’7700’_3/4+3/2(7T0077Too)oo 7wm(am93) W, 3(0[0071'_1)_1
> ’ono(aooﬂoolei) Yoo Oo

- qgé4 ’ Ww"o’g(aoo)illooo ( Nr(xoo)aooﬁégordww)) ) Z Yoo ( NI‘(JJoo)OéooU)
u€Fs

1-3/4

= dx : 90((33) (Too, Qo)

Therefore we get

LEMMA IV.9.

gt W3,00 T M) Q) = ).

1.2.2. Theta series of pure quaternions. Let w3 be the Weil representa-
tion ®yws , of GL2(A) on the space S(V3(A) x A*). Recall that I; = Dﬂbiﬁ
with b; € Dyw. Let 3; = Nr(b;) € A°*. For each finite place v of k, set

5 (w0, ) 1= 0 (Brumy 2 Dy, 0, B 278D, W(wy, @) € Valhy) X .

ZU’U

We also let
Pl =9, 1<i<n

—_—

DEFINITION IV.10. For 1 < i < n, let (:), be the function on GLga(A)
defined by

—_~—

&:i(@) =817 S (ws(@B?) (@.0), Vg€ GLy(A),
(z,0)eV3(k)x kX

where &5 )= ®vtp( ) e S(V3(A) x AX).



58 IV. METAPLECTIC FORMS AND SHINTANI-TYPE CORRESPONDENCE

For each divisor m € Divy >q(k), we set

Ko(moo®) = [ ] Ko | x KL

vF£00

K, = {(Z Z) € GLy(0,)

for v # oo and

K% = {(a Z) € GL2(Ox)

Then by Lemma [I[V.7, [V.8] and [[V.9] we obtain that

where

¢ =0 mod wgfd”(‘“)Ou}

¢ =0mod TeOso and (Moo, d)oo = 1} .

ProprosSITION IV.11. The theta series éi, 1 <i < n, are weight-3/2

—_—~—

metaplectic forms on GLo(A) which satisfy that

0i(Gk) = 0;(§), Vr € Ko(Q2*Moo™).

Here M = NN~ In particular, ©;(g,&) = 0 for (g,€) € Gm) unless

there exists an element o € k™ such that for each finite place v of k,

a-detg, - 52, 7o (0)=200) ¢ OX

2,0 v

1.3. Fourier coefficients of metaplectic theta series. Let F' be a

weight-r /2 metaplectic form satisfying that
F(gk) = F(3), Yk € Ko(2*Noc™).

For z € A* and m € Div(k), the Fourier coefficients F*(z,m) and Fj(z,m)
are defined by

. o zs(é_lm) U Cdu
F*(z,m) '_/IC\AF<< . Z)J)@b( )d
Fi(z,m) = /MF ((Zs(éolm) Z) ,1) du,

and
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where the Haar measure du is normalized so that fk\ A du = 1. Then it is

observed that F*(z,m) = 0 unless m € Divs((k), and

3

F*(z,mo0") = q;ﬁz - F*(z,m), Vm € Divy>o(k), £ € Z>o.

Similarly,

3

Fi(z,moot) = g - Fi(z,m), ¥m € Divy(k), £ € Z.

Now, we focus on the Fourier coefficients of the theta series (:)Z For
m € Divy>o(k) and 2 = (25, 200) € A% X kX = AX, let

Nr(b) - A= M2 Nr(I;)2Mq-2y,
Si(z,m) := {b € Mdiv(zf)NI'(Ii)Rgp) : r(0) div(zp) Nr(1i)* Mo-20, }

and orde,(m) >0

Here Myiy(z,) and Mq-2y, are the fractional ideals of A corresponding to the
divisors div(zy) and Q7 *m in Div(k), respectively. Set

Wy3(2) = [[Wyos(z0), Vze A

Then we get
LEMMA IV.12. For1<i<mn, z € A*, and m € Divy>o(k),

5i(eam) — sl m)
T W) m

ST Wi s (N2(8) ™ (200, Nr (b))

beS;(z,m)

. H (zvﬂgrd”(571m),Nr(b))v .
Ee)

Here 67 = doo~ °"4=0) € Div (k). In particular, éf(z,m) =0 unless Q2 | m.
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PROOF. It is clear that S;(z, m) is empty unless Q? | m. By definition of

©,; one has

w8, ((25(5;“” “) ,1>

= Z ¢(Nr(z)au)
(z,a)€V3(k)x kX
| 0 (2o, — 1) oo
( Moo (@3) ( )
ordy ’1m
) H Vo (zommy @0 )aQS) (z _Wordv(éflm))
et T, (aQ3) Y

.<1ﬁi1§§p)(2fs((2f2mf)x) Aox (az;Qﬁﬁs(Q?m;l))

1o, ( Nr(w)a))] .
Therefore
[ml|3/* - 67 (2, m)

- Moo (2200Q3)
bes%,m)( Vipoo (Q3) (200, —1)oo

rdy (671
I Yo (o O N (5) Q) (g, — oo m)y )
el Yep, (NI (D) Q3)

Note that for each place v of k and a, € k.S,

'va(zvav Nr(b)Qs) 2y, —Qy)y = M. ) r
e N )@y) BT = gy (e N 0),
and
Moo (70 NE(O)Q3) 0y
Yoo (Q3) (%00 N1(b), —1) 0o

= Wy 3(200) W 3(N2(B)) ™ (200, Nr (b))

0o’

This completes the proof. ([
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Similarly, for each divisor a € Divs(k), and z € A*, the Fourier coeffi-

cient @)i,g(z, a) is understood by the following result:

COROLLARY IV.13.

Wy .3 (5(5]71a))
Wy 3(2) | al|3/4

Z [Wq/;oo,s(a)_l(zoo,a)oo

ackX,
—2,—2 —
azy B; s(02a 1)60};(00

Oio(z,a)

T ()|

Ee)

We emphasize that the Fourier coefficients ©*(z, m) and @);‘?O(z, a) deter-
mine uniquely the metaplectic form ©,. From the information of the Fourier
coefficients in Lemma and Corollary [V.13] we connect the action of
Hecke operators on these theta series with Brandt matrices in the next sec-

tion.

2. Hecke operators and Shintani-type correspondence

Let v be a place of k& where ord,(2?00) = 0. Recall that we embed

—_~—

GL2(0,) into GLy(k,) by sending any element r,, € GL2(O,) to Ry = (Ky, 1).

—~—

Denote by GL2(O,) the image of this embedding. Then it is observed that

LEMMA IV.14. For any place v of k with ord,(£2?9lc0) = 0,

GLs(0y) ((7;2 ?) ,1) GLo(0y)

—_— P

= U Ay GLQ(OU) H U bh GL2(OU)

u mod 720, heRy

[]c GL2(Ov),

where
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-((9))

/\Iﬁt M((]T/2)(Q2‘ﬁ) be the space of weight-r/2 metaplectic forms F' on
GL2(A) satisfying that

F(gi) = F(3), Yk € Ko(Q2*Noo™).
DEFINITION IV.15. Let v be a place of k& where ord, (2?9toc) = 0. The

Hecke operator T2 3/5 on M(()?’/ 2)(92‘31) is defined by

Togpp F(G) =32 > F(gaw)+ Y F(Gbu) + F(je)

u mod 720, heFy
for every F € Mé3/2)(92‘ﬁ).

From the pure-algebraic result on pure quaternions in the next section

(Theorem [IV.22]), we obtain that

THEOREM IV.16. For each place vy of k with ord,, (2?9cc) = 0,

Ty2s2 ©i= Y Bij(1)9;,

1<j<n

where Bij(vo) is the (i,j)-entry of the vo-th Brandt matriz introduced in
Chapter [[T Section [3]

PRrROOF. It suffices to show that for z € A*, m € Div(k), and u € A,

~ zs(671m)  zu
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By definition of T}2 3/, we get

~ zs(67'm) zu

5 @((zs(é—olmv%) (4 w0 ’>),1>

z
2
u/ mod o (O

ordy, (6~ tm)
+ E (Twos> ZupTwy h)uq
heFy,

-1/2
Vo

_ ordy, (6~ 1m)
B, 2Ty $(07Im) 27y (U + Ty ° ”}jo) 1

0 2Ty,

18, ((zs(élm) zu77230> 71> ] '
0 2T,
By Corollary [[V.13] it is observed that for z € A* and m € Div(k),

( v2,3/2 @> (Z,ITI)
= qgf@z‘,o(za”wo) + Qv_ol/Qéf,o(

W%g (s(é;lm))
Wy,3(2)||[m]|3/4

Z [W¢w,3( Zoov mH( Ordv o )aa)v)]

ackX,

az;%;?s(sz;mflvg%eogm

= Y Bij(v0)6(z,m).

1<j<n

Uo,mvo )

= (1+QU0)'

Therefore it remains to show that

( v2,3/2 ®> (z,m) Z Bij( v0)O% (2, m)

1<5<n

for any 2 € A* and m € Divy >o(k) with Q% | m.
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~ \ X
Fix z € A* and m € Divy>o(k). Then (Tv373/2 @z') (z,m) is equal to

HECHER T

_|_

~1/2 ordy, (6 tm h ordy, (6~ Tm) h
qvo / 2 : g 5 Twg 0 T )vo T,Z)vo (Trvo ¢ T )
heFX o o

. ((ﬂ'vo, Zvo Mo ) vo é;(zwvo, m)) ]

+  Quy - (qvogm@ (zm vo,mvo )).

Since ord,, (9) is even, it is observed that

ordyg (5~ 1m) h

_ do, (6~ m) h
qv01/2 Z (Wvovﬂ'g; o (5™ — o ¥vo (Twg )
o Tvg Tug
heIFvo
0 if ord,,(m) > 0,
(ﬂvoa _1)110 Wdivo,l (ﬂ'vo) if ordy, (m) =0

~ N\ %
By Lemma [[V.12 (Tug73/2 9i> (z,m) is equal to

Wy3 (8((5;1111))
Wy,3(2)[[m3/4

[ S Wana(Ne ) ™ e Ne(8) . TT (om0 Mo,

beS, (z,mvd) v#00

+&y, (M) Z (WUO, —Nr(b))vo . <Www,3(Nr(b))1(zoo,Nr(b))oo

bES; (27w ,m)

) H (zvﬂgrdv(élm)7Nr(b))v>

v#£00

+QU0 : Z <Www,3(Nr(b))_l (ZOO’Nr(b))oo

beS; (ZTI'%O ;mvg ?)

VF00
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Here

o (m) = 1 if ordy,(m) =0,

0 otherwise.
Define p : kX — C! by
lu(a) = Wwooﬁ(a)_l(zoo’a)oo H (Z ﬂ-ordv(5 " )’a)v'
v#£00
Then
p(Ba) = pla), Va,f € k¥,
Therefore by Theorem [[V.22|in Section 3] we get that for any z € A* and
me DinZ()(kJ),
(Tv273/2 él) Z m Z BZ] @* Z m)
1<j<n

This completes the proof. O

Recall that X = Xyt - denotes the definite Shimura curve of type
(O, 9M7), and Pic(X)c = Pic(X){ is generated by ey, ..., e, where e; corre-
sponds to the ideal I; canonically. We introduce the following map:

U Pic(X)e — M)
Yo aie; — > ai-O4).

1<i<n 1<i<n
Here o is the order-2 permutation on {1,...,n} introduced in Chapter

Section[2] Then Proposition [[T.4] [T.7 and Theorem imply immediately
that

PROPOSITION IV.17. For each place v of k with ord,(Q2?*MNoo) = 0,
U(tye) = To2 379 ¥(e), Ve € Pic(X)c.

Recall that the Jacquet-Langlands correspondence JL introduced in The-
orem [[II.13|identifies the space Sémi)fnew(‘ﬂ) with Pico(X)¢. More precisely,

for each finite place v of k,
JLNT,F) = JL-Y(F), VF e s )™ m).

Therefore
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THEOREM IV.18. The linear map
Sh:=WoJL 1 : S5 7 (9n) — MY (02
satisfies that for each place v of k with ord,(Q*MNoo) =0,

Sh(T,F) =T, 5/5 Sh(F), VFeSy" )" (mn).
3. Pure quaternions and Brandt matrices

In this section, we focus on pure quaternions and work out a purely alge-
braic result (Theorem . This is the key ingredient for connecting the
Brandt matrices with the Hecke operators on metaplectic forms in Theorem
V.10

Let D®) be the subspace of pure quaternions in D, i.e.
DW .= {be D: Tr(b) = 0}.

Recall that I, ..., I, are chosen representatives of locally-principal right ideal
classes of the Eichler A-order R of type (M1, M™), and R; is the right order
of I;. Let M; be a fractional ideal of A. For any integral ideal M of A and
1 <4,5 <mn, define

Si(My, M) :={b e D® N M, Nr(I;)R; : Nr(b)A= M?Nr(I;)>M},

and set
Sij(M) :={a € LI-': Nr(a) Nr(I;) = Nr(I;) M}
It is clear that
#(8i;(M)) = #(R[) - Bij(mar),
where mys € Divy >o(k) is the divisor corresponding to the ideal M. Let vy

be a finite place of k such that ord,,(9179~) = 0. We have the following

canonical map:

ﬁl (SZ](P()) X S](Ml,M)) — SZ(Ml,PgM)

(a ) b) —> aba.

Here Py is the prime ideal of A corresponding to the finite place vyg.
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Take an element b € S;(My, PEM) — S;(M1Py, M). Let J be the unique
locally-principal left ideal of R; satisfying that

RibC JC My Nr(l;)R; and Nr(b)-A= FPyNr(J).

There exist unique j and o € S;;(Fp), up to the right multiplication by
elements in R}, such that J = IZ-I]-_l(a_lb). Let 8 = a~'b. Since

Tr(b) =b+b=0,
we get b= —b = —f3a. Let J' := My Nr(I;)I,; ' T;a. Then we also have
RibC J C MyNr(I;)R; and Nr(J') = PyM?Nr(I;)?.
Since b € S;(My, P2M) — S;(M1Py, M), we get a chain of left ideals of R;:
Rb=RbcCJCJ C MNr(L)R,;.

Let b := Ba~!. Then b= ab'a and J C J' implies that ¥’ € S;(My, M). we

conclude that

LEMMA 1V.19. For any b € S;(My, P2M) — S;(My Py, M), there exist
unique j and o € S (Py), up to the right multiplication by elements in ij,
such that

v =a tbat € Sj(My, M).

Now, take an element b in S;(M1 Py, M) and consider the following two
cases:
(1) Suppose Py | M. Then the left ideal Py 'R;b of R; is contained in
M Nr(L;)R;. If P(;2Rib ¢ My Nr(I;)R;, there exists a unique locally-principal
left ideal J of R; contained in Mj Nr(I;)R; with

Py'Rib C J € My Ni(L)R;

and
Nr(b) - A = P Nr(J).

There exist unique j and o € S;;(FPy), up to the right multiplication by

elements in ij, such that

A |
PyJ = LI (o7 ').
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Therefore we have the following chain of left ideals of R;:
Rib C PoJ = LiI; ' (a™'b) C PyMy Nr(I;)R; C My Nr(I;)I; ' [;00 C My Nr(L;)R;.
This tells us that

Vi:=a'ba"! € S;(My,M) and b= aba.
If Py ?R;b C My Nr(I;)R;, we have the ideal chain

Rib C Po_lRZ-b C PoMi Nr(;)R; € My Nr(;)R;.
Thus for every j and o € S;;(Fp),

Rib C LI; (o™ 'b) C By 'Rib
and
PyM;y Nr(I;)R; € My Nr(I)I; ' I;a € My Nr(L)R;,
which implies that
a~tba~t € Sj(My, M).
We conclude that
LEMMA IV.20. Suppose Py | M. Letb € Si(M]_PQ,M)—SZ'(M]_POQ,P(;2M).

Then there exist unique j and o € Sij(Py), up to the right multiplication by

elements in R, such that
v =a tba ! € (M, M).

Moreover, if b € S;(My P2, Py 2M), we have that for every j and a € S;j(Py),
v =atbat € S;(My, M).

(2) Suppose Py { M. Then S;(M P, Py*>M) is empty. Take b in
Si(M1Py, M). Let Oy be the quadratic A-order of k(b) generated by ele-

ments in
(PoMy Nr(L)) "o = {ab: a € (PMiNr(L)) '} (C Rink(b)).

Suppose that b can be written as ab’@ where o € S;;(Pp) for some j and
b e Sj(Ml,M). Set
J = I_Z-ilf_joié C Ry,
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the left ideal of R; with Nr(J) = Py. Then Ja C J for any a € Op. Therefore

we get
J = R;Py

where Py = J N Oy is a prime ideal of Oy lying above Fj.

On the other hand, for every prime ideal P’ of O, lying above Py, there
exist unique j' and o’ € S;;j/(FP), up to the right multiplication by elements
in ij,, such that

It is observed that o/~'ba/~t € S;(My, M) and R;P’ # R;P" if P’ # P".
We emphasize that the number of prime ideals of Oy lying above Py is

1+ (7Tv0, — Nr(b))

v
Therefore we conclude that
LEMMA IV.21. Suppose Py t M. Let b € S;(Mi1Py,M). Then exist

exactly 1+ (my,, — Nlr(b))v0 choices of the pair (j, o) with a € S;;(FPp), up to

the multiplication by elements in R;, such that
V =a tba ! € S;(My, M).
Let p : kX — C! be a function satisfying that
w(f%a) =a, Va,pek”.

Then from Lemma [[V19] ~ [V:21] we arrive at

THEOREM IV.22. Let M be an integral ideal of A and My be a fractional
ideal of A. Then for each finite place vy of k with ord,,(MTN") = 0, we
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have

Here &, (M

):

n

> Biywo) Y. u(Nr(b)

j=1 beS; (My,M)

Y. adNe()

beS;(M,P2ZM)

+€Uo (M) Z (va - Nr(b))vo,u(Nr(b))

bGSi(Ml Py ,M)
+quvy > 1(Nr(b)).
beS; (M1 P2, Py 2 M)

1 if Pyt M and &,,(M) := 0 otherwise.



CHAPTER V

Trace formula of Brandt matrices

Following the notations in Chapter [[I] we fix a pair (k,o0), where k is
a global function field with constant field F, and oo is a place of k. The
ring of functions in k regular outside oo is denoted by A. Let D be the
definite (with respect to co) quaternion algebra over k in Chapter [[I| Section
A family of Brandt matrices was introduced in Chapter [[I] Section
to encode information from the arithmetic of D. Adapting Eichler’s method
from the Q case, we establish here a fine formula expressing the trace of these
matrices in terms of class numbers of specific A-orders inside "imaginary"
(with respect to co) quadratic field extension of k£ embeddable into D. The
proof is based on a detailed study of the so-called optimal embeddings from

quadratic A-orders into D.

1. Optimal embeddings

Take 9N, € Divy>o(k) be the product of finite places of k where D
is ramified. Let R be an Eichler A-order in D of type (9,9, ) where
Mg € Divy>o(k) is square-free. Let K be a quadratic extension of k. There
exists an embedding ¢ from K into D if and only if v does not split in K
for each place v | 9 co. Let ¢ be a non-zero ideal of A, and O, denotes the

quadratic A-order in K with conductor ¢, i.e.
O, := A+ cOg

where Ok is the integral closure of A in K. An embedding ¢ : K — D is

called an optimal embedding from O, into R if

(K)NR=1(0,).

71
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Fix an embedding ¢ : K < D. Let ¢ be a non-zero ideal of A. By
Noether-Skolem theorem, the set of optimal embeddings from O, into R can
be identified with

L(KX)\{g eD*: g W(K)gNR =g (O0.)g}.

Choose representatives I, ..., I, of locally-principal right ideal classes of
R, and R; denotes the left order of I;. For 1 <1i¢ <mn, let

Ei(t,e,R) :={ge D*: gilc(K)g NR; = gilL(Oc)g}.

Then R; acts on &(t, ¢, R) by right multiplication, and t(K*)\& (¢, ¢, R) /R
can be identified with the set of the optimal embeddings from O, into R;

modulo the conjugation by R.

Set
E(t,¢,R) == {§ € DY - t(Kp) NGRG™ = 1(O.)},

where

Kpo = K@, A® and O.:= O, @4 Opee.

We have the following observation.

LEMMA V.1. There is a bijection between
[T:ENE( e R)/RE = (KNG, e R) /R
i=1

l9:], 9i € Ei(t,e,R) = [9i - bil,

where b; € Dy such that I; = DN biRR.
For 1 <i<n,let
hi(c) = # (U NE(r e, R) /R,
and h(c) denotes the class number of the invertible ideals of O, i.e.
h(c) = # (KX\Kgm/éj) .
From the natural surjection

WENE (L, ¢, R) /R — o(K 2 )\E(1, ¢, R)/RX,
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one has
LEMMA V.2.
D hile) = #(U(EKN\E(, e, R)/R¥)
i=1
= h(c) #((K )\E( e, R)/RX).
Note that
UK NE (e, R)/R* = [] e(K)\Eu(t,c, R)/ R
NS
where
K, = K ®y, ky, Oc,v =0.®a O’U7
and

Ev(t,e,R) :={gy € D) : L(Ky) N ngvg;1 = 1(Ocp)}-

We then obtain the number Y7 h;(c) by computing # (c(K;)\Ey(¢, ¢, R)/RY)

for each finite place v of k:
PROPOSITION V.3. (1) When v {N$MN, 0o, we have
#(LE)\Eo(t e, R)/RY) =1
(2) Suppose v | NS. Then

2, ifwv is split in K or ord,(c) > 0,
# (K N\E(1, ¢, R)/RY) =1, if v is ramified in K and ord,(c) = 0,
0, ifv isinert in K and ord,(c) = 0.
(3) Suppose v | N, . Then

2, ifv isinert in K and ord,(c) =0,
# (K ONE(1, ¢, R)/RY) =41, if v is ramified in K and ord,(c) = 0,

0, otherwise.
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PRrROOF. Suppose first that v | 9;. Since R, is the unique maximal

Oy-order in D,, it is clear that

DX, if ord,(c) = 0,
o, R)=1{ " 1o
empty, otherwise.

Therefore (3) holds. We complete the proof of (1) and (2) by computing the
number of local optimal embeddings in Section O

For each finite place v of k, set
1 if v splits in K or ord,(c) > 0,
c
{*} =4 —1 ifwvisinert in K and ord,(c) = 0,
0 if v is ramified in K and ord,(c) = 0.

Then we arrive at:

COROLLARY V 4.
>t =10 TT(1={£}) TT (+{5)).
i=1 v[Ny v|‘.Tlar

1.1. Local optimal embeddings. Let F' be a non-archimedean local
field. The valuation ring of F' is denoted by O, and let Pr be the maximal

ideal of Op. The valuation map vp : F* — Z is normalized so that
vp(a) =1 for a € Pp — P&

Let L be a quadratic extension over F' (or the F-algebra F' x F'). Further,
allow the integral closure of Op in L (or Op xOp if L = F X F') to be denoted
by Op. Let Ry := Maty(Op). Fix an F-algebra embedding ¢ : L — Maty(F).
For ¢ € Or, set Op ¢ := Op +cOp, and

E(t,¢,Ro) == {g € GLa(F) | g (L)g N Ry = g *1(OL ) g}
Then we have the natural bijection

{optimal embeddings from Oy . into Ro}/R} = (L) \ E(¢, ¢, Ro) /Ry
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Let V := F? and \° := O%, the standard Op-lattice in V. Given an
Op-lattice A, define

End(\) := {g € Mata(F) | gA C A}
Then
GLa(F)/Ry = {Op-lattice of V} and  End(g\°) = g~ ' Rog.
Let A be an Op-lattice in V. We call A an Oy, -lattice if
L(Ore) - AT A

LEMMA V.5. Any Oy -lattice X is of the form Or ox for x € L and
d € O with vp(c) > vp(d).

PROOF. First, we consider the case when L is a quadratic field over F'.
Then V can be viewed as an L-vector space of dimension one. Identifying V'
with L, every Op, -lattice in V' can be viewed as a (fractional) Op, -ideal in
L. Let z € X such that

vr(z) = min{vg(a) | a € A},
where vy, is the normalized valuation map on L. Then it is observed that
Orr=0LAD A2 Oy .
Consequently, there exists an element ¢ € Op with vp(c) > vp(¢) such that
A=0px.

Now, we consider the case when L = F' x F. Similarly, identifying V'
with L, A is viewed as an O, .-lattice in L. Let x1,y2 € F'* such that

vp(z1) = min{up(z) | (z,y) € A}
and

vp(y2) = min{vp(y) | (z,y) € A)}.
Then there exists y1,z2 € F such that (z1,y1), (z2,y2) € A. So we have

vp(y1) > vr(y2) and  wvp(r2) > ve(T).

Choose a particular element (x,y0) € A by the following:
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1. When vp(y1) = vp(y2) (or vp(zy) = vp(xs)), take
(z0,Y0) == (z1,y1) (or (z2,92)) € A

2. If vp(y2) > vr(y2) and vp(x2) > vp(xy), take

(w0, 0) := (z1 + 22,91 +12) €\
Therefore
vp(r) > vr(z0), vr(Y) > vr(yo) V(z,y) € A
Using the above choice of (xg,yp), we get
Or(xo0,y0) = OLA 2 X 2 Op (0, y0)-

Therefore, there exists ¢ € Op with vp(c) > vp(c’) such that

A= 0OL¢(%o,Y0)-
(]

Suppose A is an O, -lattice. We call X optimalif «(L)NEnd(X) = ¢(Of.c).

Equivalently, there exists an element = € A such that
A=1(OL.) - .

Two optimal Oy, . lattice A; and A2 are isomorphic if there exists an element
g in (L) such that gA\; = Ag. For g € GLa(F), it is clear that g)\g is an
optimal O, . lattice if and only if g € £(¢,¢, Ro). Let LA(L, ¢) be the set
of isomorphism classes of optimal Oy, . lattices. We then have the following
bijection
ULXNE(OLe, Ro)/Ry = LA(L,c)
ULX)g Ry = [9Adl.

Therefore Proposition (1) follows from the following lemma.
LEMMA V.6. The cardinality of LA(L,c) is one.

PROOF. This follows directly from Lemma O
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CEPF}.

E(t,e,R) :=={g € GLo(F) | g ' u(L)gN R = g_lL(OL,c)g}.

Now, consider the Iwahori Op-order

R := {( Z Z) EMatz((’)F)

Similarly, we let

Then

{optimal embeddings from Oy . into R}/R* = (L) \ E(¢,¢, R)/R*.

Take two Op-lattices A1, Ag in V = F2. We call A\, := {\;,\2} an
Op-chain in V if

Al DA and A /A2 = Op/Pr as Op-modules.
Let A := {\?, \J} be the standard Op-chain, i.e.

AN =02 and Ag:{<$>6(9F yePp}.
Yy

Then for g € Mato(F), gAY C AV (i.e. g\ € A for i = 1,2) if and only if
g € R. Moreover, for every Op-chain A, there exists a unique gy, € GLy(F),

up to the right multiplication by elements in R*, such that A\, = g, A?. This

says that there is a natural bijection
GLy(F)/R* = {Op-chains in V'}
gR* — g2,
In particular, for each Op-chain A, let
End(As) = {g € GLa(F) | gA« C A}
Then for every g € GL2(F') one has

End(gA)) = gRg™".

A given Op-chain A, of Op, -lattices is called an optimal Oy, .-chain if

(L) NEnd(\) = ¢(Orc).
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Two optimal Oy, .-chains Al and A\? are isomorphic if there exists an element
g in «(L*) such that g\l = A2, Let CH(L,c) be the set of isomorphism
classes of optimal Oy, .-chains. We have the following bijection
ULNE(OLe, R)/R* = CH(L,c)
ULX)gR* = [l
Thus the computation of the cardinality of CH(L,¢) in Lemma
ensures Proposition (2).

LEMMA V.7. Suppose L is a quadratic field over F'. Then for c € O},

_J 0, if L/F is umramified;
#(CH(L C)) - { 1, if L/F is ramified.

PROOF. Notice that Or, . = Oy, for every ¢ € OF. Identifying V with L
(as L-vector space), every Op-lattice can be viewed as a (fractional) Or-ideal
in L. Therefore there is no optimal Op-chain if L/F is unramified; when

L/F is ramified, every optimal Op-chain is of the form
{Orz,Prz}, € L.
This completes the proof. O

LEMMA V.8. Suppose L is a quadratic field over F. For every element

c in Pr we have

#(CH(L,¢)) = 2.

PROOF. Let Ay = {A1, A2} be an O, -chain (not necessary optimal) in
V. Identifying V with L (as L-vector space), take x; € \; for i = 1,2 such
that
vp(z;) = min{v(a)|a € A}

We have v (x1) < vp(x2), and by Lemma there exist ¢1,co € Of with
vp(c) > vp(cr),vp(e2) such that A; = Op ¢, x;. We separate into 2 cases.

i. Suppose vr(z1) = vr(22). Then \y = Op ¢, x2 and Ay = Op ¢, x2.

Since A1/ = Op/Pp, we must have c; = cymp where mp is a

uniformizer of Ppg.
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ii. Suppose vr(x1) < vp(x2). From A1 /Ao = Op/Pp, we get
vr(z1) < vp(ze) <wvp(xy) 4+ v(mp).

If vp(x2) = vp(mpzr), then Ay = Op o, mpx1 and ¢ = comp. Sup-
pose vr(z1) < vp(ze) < vp(z1) + vp(rp). Then L/F must be
ramified and vy (z2) = v (21)+ 1. Write 25 as axq where o € Op,
with vy () = 1. Thus we must have ¢; € OF (ie. Or. = Or).

Since

A/ =2 Op/Pr =2 Orx1/Opze  and A2 C Opxa,
we get A9 = Orxy. Therefore Ay D Ao is an Op-chain, which is a
contradiction.

We conclude that for every optimal Op, .~chain A, = {A1, A2}, we can find

an element x in A1 such that either

M =0 1.z and A =O0pr.-7,

Ly
or
M=0rc-z and A= (’)L’m; - TRX.
Therefore the proof is complete. O

LEMMA V.9. When L = F X F, the cardinality of CH(L, ¢) is 2 for every
ce Op.

PRrROOF. Given an O -chain, Ay D Ay with A/ = Op/Pp, From
Lemma we take (x;,2}) € A\; and ¢; € Op with vp(c) > vp(c;) such that

M =Opc(z1,2))  and Ao = Op o, (72, 5).

So vp(x1) + 1 > vp(xe) > vp(x1) and vp(z)) + 1 > vp(zh) > vp(x)). We
separate into 4 cases.
(i) vr(z2) = vp(x1) and vp(zh) = vp(z)).
Then )\1 = OL,Cl (l‘g,l’é) and )\2 = (’)L702(a:2,a:’2). So Cy) = C1TFR.
(i) vp(xe) = vp(mpx1) and vp(zh) = vp(Tr)).

Then Ay = Of, ¢, (7px1, Tpx)). Hence we must get ¢; = comp.
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(ili) vp(z2) = vp(z1) and vp(ah) = vp(rpa)).
Take u € O% such that uxs = 1. Then

('%1’1‘,1) - U(l‘g,xé) = (07'%/1 - ’LL.Z‘/Q) € A1.

Since vp(z4) = vp(mpa)), then there exist v € Of such that
o' (2} —uzh) = ). So (0,2)) € A\1. This implies that Op ., = Op.
Now we have

Or (1, 77)

AM/A2 = Op/Pr = Or (w2, 2h)

and Ay C Op(xe,24). So Ao = Op(x2,2h) = Op(x1, 7pz)). Hence
A1 D Ao is an Op-chain.
(iv) vp(z2) = vp(mpz1) and vp(zh) = vp(z)).
The argument is similar to case (iii), we get A} D Ay is also an
Opr-chain.
Therefore (i) and (ii) asserts the case when ¢ € Pp. The case when ¢ € O

follows from (iii) and (iv). O

2. Trace formula

A quadratic extension K of k is called imaginary if oo does non-split in
K. From the study of optimal embeddings in the last section, we express
the trace of Brandt matrices in terms of the so-called modified Hurwitz class

numbers of imaginary quadratic fields over k.

Let kP be a fixed separable closure of k. Define g, : k5P — kP by the

following:

z2, if ¢ is odd,

pq(x) = ) o
x4+ x, if ¢ is even.

Then for each d € k, K4 := k(p,'(d)) is a separable quadratic extension of
k if p;l(d) ¢ k. In this case, denote by Oy the integral closure of A in Kj.
For each integral ideal c of A, let O, 4 := A + c¢- Oy, the quadratic A-order
in K4 of conductor c¢. Let h(c,d) be the class number of O 4 and u(c,d)
denotes the cardinality of O], /F if Ky is imaginary.
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Suppose ¢ is even, we let Kj, be the unique (up to k-isomorphism) in-
separable quadratic extension of k, and O;, be the integral closure of A in
Kiy. The quadratic A-order A+ c¢- Oy, is denoted by O in, and we let hiy(c)

be the class number of O, jy.

Recall that R is a given Eichler A-order of type (9,91, ). For each d in
k such that K is imaginary and a non-zero integral ideal c of A, the modified

Hurwitz class number is

wen= 3 peg Mo {SPh o+ {55

ideal ¢/CA, — +
e ClRI% glRIN

where
1 if v splits in Ky or ord,(c) > 0,

c,d
{( )} =4 —1 ifwvisinert in Ky and ord,(c) =0,
0 if v is ramified in Ky and ord,(c) = 0.

Similarly, let

)= 3 i) TL0+{5),)).

dle v|m3'
where

{c’} 1 if ordy(c) > 0,
v/ 0 iford,(c) =0

For convenience, set
n
H(1,0) := > #(R)™!
i=1

and

n

Hin(0) := (g —1)- > _#(R)™".

i=1

We then arrive at the trace formula of Brandt matrices (associated to R):



82 V. TRACE FORMULA OF BRANDT MATRICES

THEOREM V.10. For each divisor m € Divyo(k), Trace(B(m)) = 0
unless the corresponding ideal My, of A is principal. In this case, let m € A
be a generator of the ideal My,. Then
Trace(B(m)) = egHin(c1(m)) + Z H(c(vm,s),d(vm,s)).

(1/,5)6]17;< XA, d(vm,s)=0 or
Kd(l/m’s>is maginary

Here
s2 —dvm  if q is odd,
o d=d(vm,s) =
vm/s? if q is even and s # 0;
e c(vm,s) :=11ifd = 0; if Kq is imaginary over k, c(vm,s) is the

conductor of the quadratic order A[b] C Ky, where b € K satisfies
Tr(b) = s and Nr(b) = vm;

e when q is even,

1 if q is even,

€qg =
0  otherwise;

c1(m) denotes the conductor of the order A[\/m] C Kiy if vym ¢ k
and c1(m) :=0 if V/m € k.

PrOOF. Without loss of generality, assume the ideal My, is generated
by m € A. Recall that Iy, ..., I,, are representatives of locally-principal right
ideal classes of R, and R; is the left order of I; for 1 <i < n. Given v € IF'qX
and s € A, let

Ai(v,s) = {b € Ri|Nr(b) = vm, Tr(b) = s}.
It is clear that A;(v,s) is a finite set, which is empty if K; # k and oo is
split in K4 where d = d(vm, s). Then
Trace(B(m))

#{b € Ri|Nr(b)A = M}
_Z #(R})

#A #Ai(y’s)
(% Py x A

=1 yerx i=1 yeF), seA—{0} v
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When ¢ is odd and d = 0, it is clear that
3 #FAWS) g g,
i=1 #(Ri )
Similarly, when ¢ is even and /m € k,

- Ai(V, 0) 1T
2 2 Gy O

=1 Z/EIE‘;<

Now, suppose that Ky is imaginary. Every b € A;(v,s) gives rise to an
embedding of the order Oy s)q into R;. The group T; := R /F, acts on
A;i(v, s) and the set of these embeddings by conjugation. For each non-zero
ideal c of A, Let h;(c,d) be the number of optimal embeddings O, 4 into R;,

modulo conjugation by R. Then we get

£ Ai(v,5) = #;(fi? /Z hi(d,d) Ju(c, d).
Therefore Corollary [V4] implies thatc "
NS - (RN ()

= H(c(vm,s),d(vm,s)).
Similarly, when ¢ is even and /m ¢ k, by Corollary we get

n

#Al(lj,O) — H (¢
Z Z #(sz) _Hln( 1(1’(1))

i=1 VEJF;<

Therefore the proof is complete. O
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