
ON THE SIEGEL-WEIL FORMULA OVER FUNCTION FIELDS

FU-TSUN WEI

Abstract. The aim of this article is to prove the Siegel-Weil formula over function fields
for the dual reductive pair (Spn,O(V )), where Spn is the symplectic group of degree 2n

and (V,QV ) is an anisotropic quadratic space with even dimension. This is a function

field analogue of Kudla and Rallis’ result. By this formula, the theta series is identified
with the special value of the Siegel-Eisenstein series on Spn at a critical point.

Introduction

In the number field case, the Siegel-Weil formula, discovered by Siegel [16] and considerably
extended by Weil ([18] and [19]) in the representation theoretical language, connects special
values of Eisenstein series with theta series from quadratic spaces. In [19], Weil assumed
the critical point in question lies in the absolute convergence of the Eisenstein series. After
Weil, Kudla and Rallis ([9], [10], and [15]) explored the analytic behavior of the meromor-
phic continuation of the Eisenstein series, and extended Weil’s result to the case beyond the
convergence range for the dual reductive pair (Spn,O(V )). Here (V,QV ) is a non-degenerate
quadratic space with even dimension, O(V ) is the associated orthogonal group, and Spn is the
symplectic group of degree 2n. Many extensions and variations of this formula are studied in
the number field case, and have applications to the special values of automorphic L-functions.
However, there is a lack of knowledge about this formula in the function field context, except,

Harris [4] dealt with (SL2,O(V )) (resp. (S̃L2,O(V )), where S̃L2 is the metaplectic cover of
SL2) when the dimension of V is even (resp. odd) and larger than 4. Our purpose in this
article is to show a function field analogue of the Siegel-Weil formula for the dual reductive
pair (Spn,O(V )) where V is an anisotropic quadratic space with even dimension, in order
to complete the author’s work ([2], [3], and [17]) on the central critical values of L-functions
coming from ”Drinfeld type” autumorphic forms.

Let k be a global function field with odd characteristic. Let (V,QV ) be an anisotropic
quadratic space over k with even dimension. Take a Schwartz function ϕ ∈ S(V (Ak)n),
where Ak is the adele ring of k, the associated theta series on Spn(Ak)×O(V )(Ak) is defined
by

θ(g, h, ϕ) :=
∑

x∈V (k)

(
ω(g, h)ϕ

)
(x), ∀(g, h) ∈ Spn(Ak)×O(V )(Ak).

Here ω is the Weil representation of Spn(Ak)×O(V )(Ak) on the Schwartz space S(V (Ak)n)
(cf. Section 1.3). Since V is anisotropic, the following integral is well-defined:

In(g, ϕ) :=

∫
O(V )(k)\O(V )(Ak)

θ(g, h, ϕ)dh.

The measure dh is induced from the Haar measure on O(V )(Ak) normalized so that the
volume of O(V )(k)\O(V )(Ak) is 1. Then the main theorem of this article is:
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Theorem 0.1. For ϕ ∈ S(V (Ak)n) and g ∈ Spn(Ak),

E(g, s(n),Φϕ) = ε(n) · In(g, ϕ).

Here:

(i) E(g, s,Φϕ) is the Siegel-Eisenstein series on Spn(Ak) associated to the Siegel section
Φϕ (cf. Section 3);

(ii) s(n) = dim(V )/2− (n+ 1)/2; and
(iii)

ε(n) =

{
1 if dim(V ) > n+ 1,

2 if dim(V ) ≤ n+ 1.

Note that s(n) could be out of the convergence region of the Siegel-Eisenstein series:
Re(s) > (n + 1)/2. In particular, the functional equation of the Eisenstein series relates
the values at s and −s, which means that s(n) = 0 is the central critical point of the Eisen-
stein series when dim(V ) = n + 1. This gives an application to the central critical values of
automorphic L-functions. In concrete terms, we express the L-function in which we are inter-
ested by an integral representation involving the Siegel-Eisenstein series. Then at s = s(n),
the theta series In(g, ϕ) provides a plenty of arithmetic information and leads us to explicit
formulas for the special values of L-functions in question.

The strategy of the proof for Theorem 0.1 follows from [9]. The first step is to show
that In(g, ϕ) and E(g, s,Φϕ) are both concentrated on the standard Borel subgroup of Spn
(Proposition 2.3 and 3.2). Then we review the meromorphic continuation of the Eisenstein
series, and make sure that E(g, s,Φϕ) is holomorphic at s(n). Finally, we prove the equal-
ity of the constant term of In(g, ϕ) and E(g, s(n),Φϕ) along the Siegel-parabolic subgroup.
Therefore E(g, s(n),Φϕ)− ε(n)In(g, ϕ) must be a cusp form on Spn(Ak) which is orthogonal
to all the cusp forms on Spn(Ak). This assures the result. It is worth pointing out that the
dimension of V must be 2 or 4 by Hasse-Minkowski principle. In particular:

• when dim(V ) = 2, (V,QV ) ∼= (F, α · NrF/k) for α ∈ k× where F/k is a quadratic
extension and NrF/k is the norm form on F/k;

• when dim(V ) = 4 and the discriminant of V is a square in k, (V,QV ) ∼= (D,NrD/k)
where D is a division quaternion algebra over k and NrD/k is the reduced norm form
on D/k;

• when dim(V ) = 4 and the discriminant d of V is a non-square in k,

(V,QV ) ∼=
(
F od ⊕Do, α · (NrF o/k ⊕NrDo/k)

)
for α ∈ k× where Fd = k(

√
d), D is a division quaternion algebra over k such that

Fd cannot embed into D, and

F od (resp. Do) = {b ∈ Fd (resp. D) : Tr(b) = 0}.
This observation simplifies the proof. However, there are several techniques used in [9] which
were not verified in the function field case. Therefore for the sake of completeness, some
further discussions are sought in the appendices, including Fourier coefficients of theta series,
the Jacquet module of the Schwartz space, and Maass-Jacquet-Shalika Eisenstein series on
GLn. We point out that in the number field case, Kudla-Rallis use a differential operator
(introduced by Maass) at one archimedean place to obtain the continuation and also the
functional equation of the Maass-Jacquet-Shalika Eisenstein series. Our approach is to write
down directly the explicit form of the meromorphic continuation, and the functional equation
shows up accordingly.

The structure of this article is organized as follows. We set up basic notations in Section
1.1 and 1.2, and recall the Weil representation of Spn(Ak)×O(V )(Ak) on the Schwartz space
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S(V (Ak)n) in Section 1.3. In Section 2, we introduce the theta series In(·, ϕ), and show that
it is concentrated on the standard Borel subgroup of Spn. In Section 3, we investigate the
analytic behavior of Siegel-Eisenstein series by studying the constant terms along standard
parabolic subgroups. Also shown in Section 3 is that the Eisenstein series are concentrated
on the Borel subgroup of Spn. We recall in Section 4 the meromorphic continuation of the
intertwining operators on Siegel sections, and deduce in Section 5 the holomorphic property
of Siegel-Eisenstein series at s(n) by using Maass-Jacquet-Shalika Eisenstein series on GLn.
Finally, we show the Siegel-Weil formula for the case when dim(V ) = n + 1 in Section 6.1,
and prove the other cases by a finite induction process in Section 6.2 and 6.3. In Appendix A,
we follow Rallis [15] to study the non-singular Fourier coefficients of In(g, ϕ) and E(g, s,Φϕ).
Appendix B is a review of the Jordan structure of the Jacquet module of the Schwartz space
S(V (kv)

n) (where kv is the completion of k at a place v). Finally, we show the meromorphic
continuation and functional equation of the Maass-Jacquet-Shalika Eisenstein series on GLn
in Appendix C.

1. Preliminary

1.1. Basic setting. Let k be a global function field with finite constant field Fq, i.e. k is a
finitely generated field extension of transcendence degree one over Fq and Fq is algebraically
closed in k. In this article we always assume that q is odd. For each place v of k, the
completion of k at v is denoted by kv, and Ov is the valuation ring in kv. Take a uniformizer
πv in Ov. We set Fv := Ov/πvOv, the residue field at v. The cardinality of Fv is denoted by
qv. For each α ∈ kv,

|α|v := q− ordv(α)
v .

The adele ring of k is denoted by Ak. We let OAk :=
∏
v Ov, the maximal compact subring

of Ak. For any element α = (αv)v ∈ A×k , the norm |α|Ak is defined to be

|α|Ak :=
∏
v

|αv|v.

We fix a non-trivial additive character ψ = ⊗vψv : Ak → C× which is trivial on k (here
ψv(xv) := ψ(0, ..., 0, xv, 0, ...), for all xv in kv).

1.2. The symplectic group Spn. For a positive integer n, let

Spn =

{
g ∈ GL2n

∣∣∣∣∣ tg
(

0 In
−In 0

)
g =

(
0 In
−In 0

)}
.

We view Spn as an affine algebraic group over k. Let Bn = Tn · Un be the standard Borel
subgroup of Spn where

Tn =


(
a 0
0 ta−1

) ∣∣∣∣ a =

t1 . . .

tn

 (=: diag(t1, ..., tn)), ti ∈ Gm


and

Un =


(
a ∗
0 ta−1

)
∈ Spn

∣∣∣∣ a =

1 ∗
. . .

0 1

 ∈ GLn

 .

A parabolic subgroup P of Spn is called standard if Bn is a subgroup of P . The Siegel-parabolic
subgroup Pn is equal to Mn ·Nn, where

Mn :=

{
m(a) =

(
a 0
0 ta−1

) ∣∣∣∣ a ∈ GLn

}
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and

Nn :=

{
n(b) =

(
In b
0 In

) ∣∣∣∣ b = tb ∈ Matn

}
.

Let
Symn := {b = tb ∈ Matn}.

Note that GLn and Symn are isomorphic to Mn and Nn by the map m and n respectively.
For 0 < r < n we let Pr = MrNr be the maximal proper parabolic subgroup of Spn where

Nr =



Ir x y z
0 In−r

tz 0
0 0 Ir 0
0 0 −tx In−r

 ∈ Spn

 ,

Mr =



α 0 0 0
0 a 0 b
0 0 tα−1 0
0 c 0 d


∣∣∣∣∣ α ∈ GLr,

(
a b
c d

)
∈ Spn−r

 .

The above description of Mr gives us a natural isomorphism between Mr and GLr ×Spn−r.

Let NSpn(Tn) be the normalizer of Tn in Spn. The Wyel group NSpn(Tn)/Tn is denoted
by WSpn . We shall use the same symbol for an element of NSpn(Tn) and its image in WSpn .
The Bruhat decomposition says that

Spn =
∐

w∈WSpn

BnwBn.

Let X(Tn) be the group of (algebraic) characters on Tn. Then X(Tn) = ⊕ni=1Zxi, where
xi is the character on Tn satisfying

xi(diag(t1, ..., tn)) = ti.

We define an R-bilinear form < ·, · > on X(Tn)⊗Z R by setting

< xi, xj >=

{
1 if i = j,

0 otherwise,

and extending bilinearly. The left action of WSpn on X(Tn)⊗ZR (induced by conjugation on
Tn) is orthogonal with respect to < ·, · >, i.e.,

< wx,wy >=< x, y > for all w ∈WSpn and x, y ∈ X(Tn)⊗Z R.

The set of roots of Spn with respect to Tn is denoted by ∆n. For each root α ∈ ∆n, let
Nα be the unipotent subgroup of Spn associated to α, and the reflection associated to α is
denoted by wα. We let ∆+

n be the set of positive roots (with respect to Bn), and the simple
roots are

αi = xi − xi+1, 1 ≤ i < n,
αn = 2xn.

It is known that the Wyel group WSpn is generated by wαi .

1.3. The Weil representation of Spn×O(V ). Let (V,QV ) be an anisotropic quadratic
space over k which has even dimension. By Hasse-Minkowski principle (cf. Theorem 2.12 and
Section 3.1 in [11]), the dimension of V must be 2 or 4. Set

< x, y >V := QV (x+ y)−QV (x)−QV (y), ∀x, y ∈ V,
the bilinear form associated to QV . The orthogonal group of V is denoted by O(V ), i.e.

O(V ) = {h ∈ GL(V ) | QV (hx) = QV (x), ∀x ∈ V }.
Here we view O(V ) as an affine algebraic group over k.
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For each place v of k, we have fixed an additive character ψv on kv in Section 1.1. Let
V (kv) := V ⊗k kv and let S(V (kv)

n) be the space of Schwartz functions on V (kv)
n, i.e. the

space of functions on V (kv) which are locally constant and compactly supported. The (local)
Weil representation ωv(= ωv,ψv ) of Spn(kv) × O(V )(kv) on S(V (kv)

n) is determined by the
following: for every ϕv ∈ S(V (kv)

n) and x ∈ V (kv)
n,

(ωv(h)ϕv)(x) := ϕv(h
−1x1, ..., h

−1xn), ∀h ∈ O(V )(kv), ;(
ωv

(
a 0
0 ta−1

)
ϕv

)
(x) := χV,v(det a)|det a|

dim(V )
2

v · ϕv(x · a), ∀a ∈ GLn(kv);(
ωv

(
In b
0 In

)
ϕv

)
(x) := ψv

(
Trace

(
b ·Q(n)

V (x)
))
· ϕv(x), ∀b ∈ Symn(kv);(

ωv

(
0 In
−In 0

)
ϕv

)
(x) := εv(V )n · ϕ̂v(x).

Here:

• χV,v : k×v → {±1} is the quadratic character associated to V at v, i.e.

χV,v(α) :=
(
α, (−1)

dim(V )
2 det(V )

)
v
,

where (·, ·)v : k×v × k×v → {±1} is the Hilbert quadratic symbol and

det(V ) := det
(

(
1

2
< xi, xj >V )1≤i,j≤dim(V )

)
∈ k×/(k×)2

for any k-basis {x1, ..., xdim(V )} of V .

• Q(n)
V : V n → Symn is the moment map, i.e. for any x = (x1, ..., xn) ∈ V n,

Q
(n)
V (x) =

(
1

2
< xi, xj >V

)
1≤i,j≤n

.

• ϕ̂v is the Fourier transform of ϕv (with respect to ψv):

ϕ̂v(x) :=

∫
V (kv)n

ϕv(y) · ψv(
n∑
i=1

< xi, yi >V )dy, ∀x = (x1, ..., xn) ∈ V (kv)
n.

The Haar measure dy = dy1 · · · dyn is chosen to be self dual, i.e.̂̂ϕv(x) = ϕv(−x), ∀x ∈ V (kv)
n.

• εv(V ) is the Weil index of V at v, i.e.

εv(V ) :=

∫
Lv

ψv
(
QV (x)

)
dx

for any sufficiently large Ov-lattice Lv in V (kv). The Haar measure dx is also chosen
to be self dual.

We denote χV to be the character ⊗vχV,v : k×\A×k → {±1}.

Fix an arbitrary k-basis Λ of V . For each place v of k, let ϕ0
v be the characteristic function

Λnv ⊂ V (kv)
n, where Λv ⊂ V (kv) is the Ov-lattice generated by the elements in Λ. Then for

almost all places v of k, it is known that

ωv(κv, κ
′
v)ϕ

0
v = ϕ0

v ∀(κv, κ′v) ∈ Spn(Ov)×O(V )(Ov).

Let V (Ak) := V ⊗k Ak and let S(V (Ak)) be the space of Schwartz functions on V (Ak).
Viewing S(V (Ak)n) as the restricted tensor product ⊗′vS(V (kv)

n) with respect to {ϕ0
v}v,

we have the (global) Weil representation ω = ⊗vωv of Spn(Ak) × O(V )(Ak) on the space
S(V (Ak)n): for every ϕ = ⊗vϕv ∈ S(V (Ak)n) and (g, h) = (gv, hv)v in Spn(Ak)×O(V )(Ak),

ω(g, h)ϕ := ⊗vωv(gv, hv)ϕv.
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2. Theta series

Take a Schwartz function ϕ ∈ S(V (Ak)n). For (g, h) ∈ Spn(Ak) × O(V )(Ak), the theta
series

θ(g, h, ϕ) :=
∑

x∈V (k)n

(ω(g)ϕ)(h−1x),

as a function on Spn(Ak)×O(V )(Ak), is left Spn(k)×O(V )(k)-invariant. We define

In(g, ϕ) :=

∫
O(V )(k)\O(V )(Ak)

θ(g, h, ϕ)dh.

This integral is absolutely convergent, as O(V )(k)\O(V )(Ak) is compact. The measure dh
is induced from the Haar measure on O(V )(Ak) which is normalized so that the volume of
O(V )(k)\O(V )(Ak) is 1.

Let P be a standard parabolic subgroup of Spn. Write P = M ·N , where N is the unipotent
radical of P and M is its standard Levi subgroup. Define

InP (g, ϕ) :=

∫
N(k)\N(Ak)

In(ng, ϕ)dn, ∀g ∈ Spn(Ak),

where the measure dn on N(k)\N(Ak) is chosen so that the total mass is 1. It is clear that

Lemma 2.1. InPn(g, ϕ) = (ω(g)ϕ)(0).

Let ZM denotes the center of M , which is contained in Tn.

Lemma 2.2. For every standard parabolic subgroup P of Spn, there exists a character νP on
ZM (k)\ZM (Ak) such that for every z ∈ ZM (Ak), g ∈ Spn(Ak), ϕ ∈ S(V (Ak)n),

InP (zg, ϕ) = νP (z)InP (g, ϕ).

Proof. It is clear when P = Spn, as the center of Spn is {±1}. Next, we consider the case
when P = Pr, 0 < r ≤ n. Then Mr

∼= GLr ×Spn−r, and

InPr (g, ϕ) =

∫
O(V )(k)\O(V )(Ak)

∑
x∈V (k)n−r

ω(g)ϕ(0, h−1x)dh.

Therefore for m = (a, g′) ∈ GLr(Ak)× Spn−r(Ak) ∼= Mr(Ak), we get

InP (mg,ϕ) = χV (det a)|det a|
dimV

2

Ak In−r(g′, ϕ̃),

where ϕ̃ ∈ S(V (Ak)n−r) is defined by

ϕ̃(x) := ω(g)ϕ(0, x).

This assures the result for P = Pr.

In general, we can assume that P is contained in Pr, 0 < r ≤ n, and the Levi subgroup M
of P is isomorphic to

GLr1 × · · · ×GLr` × Spn−r,

where r1 + · · · + r` = r. Note that N = U · Nr where U is a unipotent subgroup of Mr.
Therefore

InP (g, ϕ) = InPr (g, ϕ),

which completes the proof immediately. �

The next proposition shows that In(g, ϕ) is concentrated on the Borel subgroup Bn:
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Proposition 2.3. Take a standard parabolic subgroup P = M ·N of Spn which is not equal
to Bn. Let νP be the character of ZM (k)\ZM (Ak) in Lemma 2.2. Then for every cusp form
f on M(Ak) with central character ν−1

P , ϕ ∈ S(V (Ak)n), and g ∈ Spn(Ak), we have∫
ZM (Ak)M(k)\M(Ak)

InP (mg,ϕ)f(m)dm = 0.

Proof. Suppose P is contained in Pr, 0 < r ≤ n, and M ⊂Mr
∼= GLr ×Spn−r is isomorphic

to
GLr1 × · · · ×GLr` ×Spn−r,

where r1 + · · ·+ r` = r. From the proof of Lemma 2.2, we have known that for every element
m = (a1, ..., a`, g

′) ∈M(Ak), g ∈ Spn(Ak), and ϕ ∈ S(V (Ak)n),

InP (mg,ϕ) = InPr (mg,ϕ)

=

(∏̀
i=1

χV (det ai)|det ai|
dimV

2

Ak

)
In−r(g′, ϕ̃).(2.1)

Suppose ri > 1 for some i. Then InP is left invariant under Ui(Ak), where Ui is the unipotent
radical of a proper parabolic subgroup PM of M . Note that for every cusp form f on M(Ak),∫

Ui(k)\Ui(Ak)

f(ug)du = 0.

Therefore (m 7→ InP (mg,ϕ)) is orthogonal to all cusp forms on M(Ak).
In the case when ri = 1 for all 1 ≤ i ≤ `, we must have r < n (as P 6= Bn). From Equation

(2.1) we reduce to the case when P = Spn. By Theorem A.5 in the Appendix A, we have
that for every cusp form f on Spn(Ak),∫

Spn(k)\ Spn(Ak)

In(g, ϕ) · f(g) dg = 0.

This completes the proof. �

3. Siegel-Eisenstein series

Let IAk(s) be the space of smooth functions Φ on Spn(Ak) satisfying that for elements

g ∈ Spn(Ak) and

(
a ∗
0 ta−1

)
∈ Pn(Ak),

Φ

((
a ∗
0 ta−1

)
g

)
= χV (det a)|det a|s+

n+1
2

Ak · Φ(g).

For g ∈ Spn(Ak) and Φ ∈ IAk(s), it is known that the Eisenstein series

E(g, s,Φ) :=
∑

γ∈Pn(k)\ Spn(k)

Φ(γg)

converges absolutely for Re(s) > (n+ 1)/2. From the Iwasawa decomposition

Spn(Ak) = Pn(Ak) · Spn(OAk),

we can extend Φ to a standard section (which is still denoted by Φ), i.e. for all s′ ∈ C,
a ∈ GLn(Ak), κ ∈ Spn(OAk),

Φ

((
a ∗
0 ta−1

)
κ, s′

)
= χV (det a)|det a|s

′+n+1
2

Ak · Φ(κ).

It is known that for g ∈ Spn(Ak), E(g, s,Φ) can be extended to a meromorphic function of
s ∈ C (in fact, a rational function in q−s).

In this section, our aim is to show that E(g, s,Φ) is also concentrated on the Borel subgroup
Bn for every section Φ ∈ IAk(s) (in Proposition 3.2).
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3.1. Constant terms of Eisenstein series. Let P be a standard parabolic subgroup of
Spn, i.e. P is a parabolic subgroup of Spn containing Bn. Then P = M ·N , where M is the
Levi subgroup of P and N is the unipotent radical of P . For g ∈ Spn(Ak) and Φ ∈ IAk(s),
the constant term of E along P is defined by

EP (g, s,Φ) :=

∫
N(k)\N(Ak)

EP (ng, s,Φ)dn.

Here the measure dn is induced from the Haar measure of N(Ak) normalized so that the
volume of N(k)\N(Ak) is 1. Let WM be the Weyl group of M with respect to Tn, and denote
by ∆+

M the set of positive roots with respect to the Borel subgroup Bn ∩M of M . Then it
is known that

WMn,M := {w ∈WSpn |w
−1α ∈ ∆+

n for all α ∈ ∆+
Mn

, and wα ∈ ∆+
n for all α ∈ ∆+

M}

forms a set of double coset representatives of WMn
\WSpn/WM .

Lemma 3.1. For each w ∈WMn,M , let M ′′w := w−1Pnw∩M and N ′′w := w−1Pnw∩N . Then

EP (g, s,Φ) =
∑

w∈WMn,M

 ∑
γ′∈M ′′w(k)\M(k)

Φw(γ′g)

 ,

where

Φw(g) :=

∫
N ′′w(Ak)\N(Ak)

Φ(wng)dn.

Proof. Note thatWMn,M also forms a set of double coset representatives of Pn(k)\ Spn(k)/P (k).
Moreover, for each w ∈WMn,M we have the following bijection

(N ′′w(k)\N(k))× (M ′′w(k)\M(k)) ∼= w−1P (k)w ∩ P (k)\P (k).

Therefore

EP (g, s,Φ) =

∫
N(k)\N(Ak)

∑
w∈Pn(k)\ Spn(k)/P (k)

∑
γw∈w−1Pn(k)w∩P (k)\P (k)

Φ(wγwng)dn

=
∑

w∈WMn,M

 ∑
γ′∈M ′′w(k)\M(k)

∫
N(k)\N(Ak)

∑
n′∈N ′′w(k)\N(k)

Φ(wn′γ′ng)dn

 .

It is observed that ∫
N(k)\N(Ak)

∑
n′∈N ′′w(k)\N(k)

Φ(wn′γ′ng)dn

=

∫
N(k)\N(Ak)

∑
n′∈N ′′w(k)\N(k)

Φ(w(n′n)γ′g)dn

=

∫
N ′′w(k)\N(Ak)

Φ(wnγ′g)dn

= Φw(γ′g).

The last equality is from

Φ(wn′′g) = Φ(wg), ∀n′′ ∈ N ′′w(Ak).

�

For w ∈ WMn,M , there exists a character µw on M ′′w(Ak) trivial on M ′′w(k) such that for
m ∈M ′′w(Ak)

Φw(mg) = µw(m)Φw(g).
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Note that M ′′w is a standard parabolic subgroup of M (with respect to Bn ∩ M) for any
w ∈WMn,M . Let νw be the restriction of µw on the center ZM (Ak) of M(Ak). Then we can
write

EP (g, s,Φ) =
∑

character ν on ZM (Ak)

EP,ν(g, s,Φ),

where

EP,ν(g, s,Φ) :=
∑

w∈WMn,M ,νw=ν

 ∑
γ∈M ′′w(k)\M(k)

Φw(γg)

 .

Since µw is trivial on UM ′′w(Ak) where UM ′′w is the unipotent radical of M ′′w when M ′′w 6= M
and we take UM ′′w = Bn ∩M if M ′′w = M , we have the following result.

Proposition 3.2. Suppose a function Φ ∈ IAk(s) and g ∈ Spn(Ak) are given. Let P ) Bn
be a standard parabolic subgroup of Spn. Then for any cusp form f on M(Ak) (where M is
the Levi subgroup of P ) with central character ν−1, we have∫

ZM (Ak)M(k)\M(Ak)

EP,ν(mg, s,Φ)f(m)dm = 0.

Corollary 3.3. For every section Φ and every standard parabolic subgroup P of Spn, E(g, s,Φ)
and EP (g, s,Φ) have the same set of poles. More precisely, for s0 ∈ C, let

ords=s0 E(·, s,Φ) = min
g∈Spn(Ak)

{ords=s0 E(g, s,Φ)}

and

ords=s0 EP (·, s,Φ) = min
g∈Spn(Ak)

{ords=s0 EP (g, s,Φ)}.

Then

ords=s0 E(·, s,Φ) = ords=s0 EP (·, s,Φ), ∀s0 ∈ C.

Proof. From the definition of EP (g, s,Φ), it is clear that

ords=s0 EP (·, s,Φ) ≥ ords=s0 E(·, s,Φ).

Write P = M · N , where N is the unipotent radical of P and M is the Levi subgroup. We
also have

ords=s0 EBn(·, s,Φ) ≥ ords=s0 EP (·, s,Φ),

as for every g ∈ Spn(Ak)

EBn(g, s,Φ) =

∫
Bn(k)N(Ak)\Bn(Ak)

EP (ng, s,Φ)dn.

It suffices to show that

ords=s0 E(·, s,Φ) ≥ ords=s0 EBn(·, s,Φ).

Let ` = ords=s0 E(·, s,Φ) and `′ = ords=s0 EBn(·, s,Φ). If ` < `′, then the function
f(g) := lims→s0(s− s0)−`E(g, s,Φ) would have

fBn(g) =

∫
Un(k)\Un(Ak)

f(ug)du = 0.

By Proposition 3.2, f is also concentrated on Bn. Therefore f ≡ 0 (as f is a cusp form on
Spn(Ak) which is also orthogonal to all cusp forms). Therefore the proof is complete. �
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Take a Schwartz function ϕ ∈ S(V (Ak)n). For any g =

(
a ∗
0 ta−1

)
· κ ∈ Spn(Ak) where

a ∈ GLn(Ak) and κ ∈ Spn(OAk), set s(n) := dim(V )/2− (n+ 1)/2 and

Φϕ(g, s) := |det a|s−s(n)

Ak · (ω(g)ϕ)(0).

Then Φϕ is in IAk(s). We call Φϕ the Siegel section associated to ϕ and E(g, s,Φϕ) the Siegel-
Eisenstein series associated to ϕ. To show that E(g, s,Φϕ) is holomorphic at s = s(n) for
every Siegel section Φϕ, by Corollary 3.3 it suffices to get

ords=s(n)
EPn(·, s,Φϕ) ≥ 0.

In the next two sections, we study the analytic behavior of EPn(g, s,Φϕ) at s = s(n), and
prove its holomorphic property.

4. The analytic behavior of EPn(g, s,Φϕ) I: Intertwining operators

For 0 ≤ r ≤ n, let

wr :=


In−r 0 0 0

0 0 0 Ir
0 0 In−r 0
0 −Ir 0 0

 ∈ Spn .

Then {w0, ..., wn} is a set of double coset representatives of WMn
\WSpn/WMn

, and we have

Spn =
∐n
r=0 PnwrPn. Moreover, M ′′wr = w−1

r Pnwr ∩Mn = {m(a) : a ∈ Qr} where

Qr :=

{(
a ∗
0 d

)
∈ GLn

∣∣∣ a ∈ GLn−r, d ∈ GLr

}
,

and

N ′′wr = w−1
r Pnwr ∩Nn =

{
n

(
y z
tz 0

) ∣∣∣ y ∈ Symn−r, z ∈ Mat(n−r)×r

}
,

N ′′wr\Nn ∼= N ′r :=

{
n

(
0 0
0 b

) ∣∣∣ b ∈ Symr

}
.

Here m and n are the isomorphisms introduced in Section 1.2.

Take a section Φ ∈ IAk(s). By Lemma 3.1, we can write EPn(g, s,Φ) as

n∑
r=0

E
(r)
Pn

(g, s,Φ),

where

E
(r)
Pn

(g, s,Φ) :=
∑

γ∈Qr(k)\GLn(k)

Φ(r)
(
m(γ)g, s

)
with

Φ(r)(g, s) :=

∫
N ′r(Ak)

Φ(wrng, s)dn.

Notice that

E
(0)
Pn

(g, s,Φ) = Φ(g, s), E
(n)
Pn

(g, s,Φ) =
(
M(s)Φ

)
(g, s)

where M(s) : IAk(s)→ IAk(−s) is the intertwining operator defined by(
M(s)Φ

)
(g, s) :=

∫
Nn(Ak)

Φ(wnng, s)dn,

and

a 7→ E
(r)
Pn

(m(a)g, s,Φ), ∀a ∈ GLn(Ak)

is an Eisenstein series on GLn(Ak) for 0 < r < n.



ON THE SIEGEL-WEIL FORMULA OVER FUNCTION FIELDS 11

In this section, we review the meromorphic continuation of the intertwining operator M(s),

and show that E
(n)
Pn

(g, s,Φ) is holomorphic at s = s(n) when Φ = Φϕ is a Siegel section.

4.1. The intertwining operator M(s). For each place v of k, let Iv(s) be the space of

smooth functions Φv on Spn(kv) satisfying that for g ∈ Spn(kv) and

(
a ∗
0 ta−1

)
∈ Pn(kv),

Φv

((
a ∗
0 ta−1

)
g

)
= χV,v(det a)|det a|s+

n+1
2

v Φv(g).

Given Φv ∈ Iv(s), we can extend Φv to be a standard section, i.e. for s′ ∈ C,

Φv

((
a ∗
0 ta−1

)
κv

)
:= χV,v(det a)|det a|s

′+n+1
2

v Φv(κv), ∀a ∈ GLn(kv), κv ∈ Spn(Ov).

Define the intertwining operator Mv(s) : Iv(s)→ Iv(−s) by

Mv(s)Φv(g) :=

∫
Nn(kv)

Φv(wnnvg)dnv,

which converges when s > (n− 1)/2. We state the known facts we need in the following:

Lemma 4.1. (cf. [5]) Let

an,v(s) := Lv(s+
n+ 1

2
− n, χV,v)

bn/2c∏
i=1

ζk,v(2s− n+ 2i)

and

bn,v(s) = Lv(s+
n+ 1

2
, χV,v)

bn/2c∏
i=1

ζk,v(2s+ n− 2i+ 1),

where
ζk,v(s) := (1− q−sv )−1 and Lv(s, χV,v) := (1− αv(χV,v)q−sv )−1

with

αv(χV,v) :=

{
χV,v(πv), if χV,v is unramified,

0, otherwise.

(i) For any standard section Φv ∈ Iv(s) and g ∈ Spn(kv),

1

an,v(s)
Mv(s)Φv(g, s)

can be extended to an entire function of s.
(ii) Suppose χV,v is unramified. Let Φ0

v(g, s) ∈ Iv(s) be the standard section such that

Φ0
v(κv, s) = 1, ∀κv ∈ Spn(Ov).

Then we have

Mv(s)Φ
0
v(g, s) = vol(Nn(Ov), dnv) ·

an,v(s)

bn,v(s)
· Φ0

v(g,−s), ∀g ∈ Spn(kv).

Recall that IAk(s) is the restricted tensor product of Iv(s) with respect to {Φ0
v}. We

normalize the Haar measure dnv on Nn(kv) such that vol(Nn(Ov)) = 1 for almosrt all places
v and the Haar measure dn =

∏
v dnv on Nn(Ak) satisfies vol(Nn(k)\Nn(Ak), dn) = 1.

Then M(s) = ⊗Mv(s), which converges absolutely on Re(s) > (n + 1)/2. In particular, for
a factorizable section Φ = ⊗vΦv ∈ IAk(s), let Σ(Φ, dn) be the finite set of places v of k
such that Φv 6= Φ0

v or vol(Nn(Ov), dnv) 6= 1. Then by Lemma 4.1 (ii), M(s)Φ(g, s) can be
expressed by

an(s)

bn(s)
·
[(
⊗v/∈Σ(Φ,dn)Φ

0
v(gv,−s)

)
⊗
(
⊗v∈Σ(Φ,dn)

bn,v(s)

an,v(s)
Mv(s)Φv(gv, s)

)]
,
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where

an(s) :=
∏
v

an,v(s) and bn(s) :=
∏
v

bn,v(s).

By Lemma 4.1 (i), we have the meromorphic continuation of M(s)Φ(g, s) for each element
g ∈ Spn(Ak).

Lemma 4.2.

(i) Suppose χV is non-trivial. Then when dim(V ) = 2 we have

ords=s(n)

an(s)

bn(s)
=

{
0, if n = 1,

+1, if n > 1;

when dim(V ) = 4,

ords=s(n)

an(s)

bn(s)
=


0, if n = 1 or 3,

−1, if n = 2,

1, if n > 3.

(ii) When χV is trivial, we have dim(V ) = 4 and

ords=s(n)

an(s)

bn(s)
=


−1, if n = 1,

−2, if n = 2,

0, if n = 3,

+1, if n > 3.

Recall that S(V (Ak)n) can be viewed as the restricted tensor product ⊗′vS(V (kv)
n) with

respect to {ϕ0
v}v, where the functions ϕ0

v are chosen in Section 1.3. Suppose a factorizable
Schwartz function ϕ = ⊗vϕv ∈ S(V (Ak)n) is given. Then the associated section Φϕ = ⊗vΦϕv
is also factorizable.

Proposition 4.3. For each place v of k,

bn,v(s)

an,v(s)
Mv(s)Φϕv (gv, s)

is holomorphic at s = s(n) for all g ∈ Spn(kv) and ϕv ∈ S(V (kv)
n).

Remark. The above proposition does not hold for all sections of Iv(s) in general, as

ords=s(n)
bn,v(s) =

{
−1, if dim(V ) < n+ 1,

0, if dim(V ) ≥ n+ 1.

Proof. We define an intertwining operator Tv from S(V (kv)
n) to Iv(−s(n)) (as representations

of Spn(kv)) by

ϕv 7−→
1

an,v(s(n))
Mv(s(n))Φϕv .

When dim(V ) < n + 1, this intertwining operator Tv must be zero by the following lemma
(Lemma 4.4), which tells us that an,v(s)

−1Mn,n,v(s)Φϕv (g, s) has a zero at s = s(n) for all
ϕ ∈ S(V (kv)

n) and g ∈ Spn(kv). Therefore the result holds. �

Lemma 4.4. Let

`(n, v) := dimC HomSpn(kv)×O(V )(kv)

(
S(V (kv)

n), Iv(−s(n))⊗ 1
)
,

where 1 is the trivial representation of O(V )(kv). Then

(i) When dim(V ) < n+ 1, we have `(n, v) = 0.
(ii) When dim(V ) = 2 and n = 1, `(n, v) ≤ 1.
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(iii) When dim(V ) = 4 and n = 1 or 2,

`(n, v) ≤

{
n, if V (kv) is isotropic,

0, if V (kv) is anisotropic.

(iv) When dim(V ) = 4 and n = 3, we have `(n, v) ≤ 1.

Proof. This is a consequence of Proposition B.1. The proof is given in Appendix B (cf.
Corollary B.3 and Remark B.4). �

The above lemma implies immediately that:

Corollary 4.5. If dim(V ) ≥ n+ 1 and `(n, v) = 0, then the meromorphic function

bn,v(s)

an,v(s)
Mn,n,v(s)Φϕ(g, s)

has a zero at s = s(n) for all g ∈ Spn(kv) and ϕ ∈ S(V (kv)
n).

Recall that given ϕ = ⊗vϕv ∈ S(V (Ak)n), M(s)Φϕ(g, s) can be expressed by

an(s)

bn(s)
·
[(
⊗v/∈Σ(Φϕ,dn)Φ

0
ϕv (gv,−s)

)
⊗
(
⊗v∈Σ(Φϕv ,dn)

bn,v(s)

an,v(s)
Mv(s)Φϕv (gv, s)

)]
.

Note that when dim(V ) = 4 and χV is non-trivial (resp. other cases), there exists at least one
(resp. two) places of k such that (V,QV ) is anisotropic over kv. Since any Schwartz function
ϕ ∈ S(V (Ak)n) is a linear combination of factorizable functions, we finally arrive at:

Proposition 4.6. For each Siegel section Φϕ ∈ IAk(s), M(s)Φϕ(g, s) is holomorphic at
s = s(n) for all g ∈ Spn(Ak). Moreover,

M(s(n))Φϕ(g, s(n)) = 0 for all g ∈ Spn(Ak)

except for the following cases:

(i) when dim(V ) = 2 and n = 1;
(ii) when dim(V ) = 4 and n = 2 or 3.

4.2. The intertwining operator Mn,r(s). Fix an integer r with 0 < r < n. We consider

the standard parabolic subgroup P
(r)
n := M

(r)
n N

(r)
n contained in Pn, where the Levi subgroup

M
(r)
n ⊂Mn is equal to {

m

(
a1 0
0 a2

) ∣∣∣∣ a1 ∈ GLn−r, a2 ∈ GLr

}
.

For each pair of Hecke characters µ1 and µ2 on k×\A×k , Let In,r(µ1, µ2) be the space of

smooth functions f on Spn(Ak) satisfying that for (a1, a2) ∈ GLn−r ×GLr and n′ ∈ N (r)
n ,

f

(
m

(
a1 0
0 a2

)
n′g

)
= µ1(a1)µ2(a2)

|det a1|
n+r+1

2

Ak

|det a2|
r+1
2

Ak

f(g).

For a section Φ ∈ IAk(s), define

Mn,r(s)Φ(g, s) :=

∫
N ′r(Ak)

Φ(wrng, s)dn,

where the Haar measure dn is normalized so that the volume of N ′r(k)\N ′r(Ak) is 1. When
Re(s) > (n+ 1)/2, it is clear that Mn,r(s)Φ(·, s) is a section in In,r(s), where

In,r(s) := In,r(| · |
s− r2
Ak , | · |−s+

n−r
2

Ak ).

We also set In,0(s) := IAk(s) and In,n(s) := IAk(−s), and Mn,n(s) := M(s) introduced in
Section 4.1.
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For any κ ∈ Spn(OAk), let ρ(κ) denote the left action of κ by right multiplication on
IAk(s) and In,r(s). This action is independent of s. Let Φ ∈ IAk(s) be a standard section.
Given κ ∈ Spn(OAk), let Φ′ := ρ(κ)Φ, which is also a standard section. Define the inclusion
i : Spr ↪→ Spn by (

a b
c d

)
7−→


In−r

a b
In−r

c d

 .

Then we have the following commutative diagram:

In,0(s)
Mn,r(s) //

i∗

��

In,r(s)

i∗

��
Ir,0(s′)

Mr,r(s′)

// Ir,r(s′)

where s′ = s + n−r
2 . For each g ∈ Spn(Ak), write g = n(b)m(a)κ where n(b) ∈ Nn(Ak),

a =

(
a1 ∗
0 a2

)
∈ Qr(Ak), and κ ∈ Spn(OAk). Then

Mn,r(s)Φ(g, s) = |det a1|
s+n+1

2

Ak · | det a2|
−s+n+1

2

Ak Mn,r(s)(ρ(κ)Φ)(1, s)

= |det a1|
s+n+1

2

Ak · | det a2|
−s+n+1

2

Ak Mr,r(s
′)
(
i∗(ρ(κ)Φ)

)
(1, s′).

This gives the meromorphic continuation of Mn,r(s)Φ for each standard section Φ, and

ords=s(n)
Mn,r(s)Φ(g, s) = ords′=s(r) Mr,r(s

′)
(
i∗(ρ(κ)Φ)

)
(1, s′).

In particular, suppose Φ is factorizable. Write Φ = ⊗vΦv. Recall that Σ(Φ, dn) is the finite
set of places of k such that Φv = Φ0

v and vol(Nn(Ov)) = 1 when v /∈ Σ(Φ, dn). Then Mn,r(s)Φ
is equal to

ar(s
′)

br(s′)
·
[(
⊗v/∈Σ(Φ,dn) Φ0

v

)
⊗
(
⊗v∈Σ(Φ,dn)

br,v(s
′)

ar,v(s′)
Mn,r,v(s)Φv

)]
.

5. The analytic behavior of EPn(g, s,Φϕ) II: Mass-Jacquet-Shalika Eisenstein
series

Recall that when Re(s) > (n+ 1)/2, for g ∈ Spn(Ak) and a section Φ ∈ IAk(s) we defined

E
(r)
Pn

(g, s,Φ) =
∑

γ∈Qr(k)\GLn(k)

Φ(r)(γg, s)

where Φ(r)(g, s) = Mn,r(s)Φ(g, s) ∈ In,r(s). The discussion in Section 4.2 gives us the

meromorphic continuation of Φ(r). Moreover, for each g ∈ Spn(Ak), the function (a 7→
E

(r)
Pn

(m(a)g, s,Φ)) can be viewed as a Mass-Jacquet-Shalika Eisenstein series on GLn(Ak).
In this section, we recall the analytic behavior of this kind of Eisenstein series, and show that

E
(r)
Pn

(m(a), s,Φ) is holomorphic at s = s(n) for every a ∈ GLn(Ak) when Φ = Φϕ is a Siegel
section.

Fix an integer r with 0 < r < n. Set Xr := Matr×n (as an affine space over k). Let
µ1, µ2 be two Hecke characters on k×\A×k . For any g ∈ GLn(Ak) and Schwartz function
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f ∈ S(Xr(Ak)), define

F (g) = F (g, µ1, µ2, f) := µ1(det g)|det g|r/2Ak

∫
GLr(Ak)

f(h−1(0, Ir)g)µ−1(deth)d×h.

Here µ = µ1µ
−1
2 | · |

n/2
Ak and the Haar measure d×h is normalized so that the volume of

GLr(OAk) is 1. This integral is absolutely convergent if |µ1µ
−1
2 | = | · |σAk where σ > r − n/2.

Recall that

Qr =

{(
a1 ∗
0 a2

)
∈ GLn

∣∣∣∣a1 ∈ GLn−r, a2 ∈ GLr

}
.

For g ∈ GLn(Ak) and b =

(
a1 ∗
0 a2

)
∈ Qr(Ak), we have

F (bg) = µ1(det a1)µ2(det a2)δQr (b)
1/2F (g)

where δQr (b) = |det a1|r/2Ak · |det a2|(r−n)/2
Ak . The Maass-Jacquet-Shalika Eisenstein series

associated to f , µ1, µ2 is defined by

E(g, µ1, µ2, f) =
∑

γ∈Qr(k)\GLn(k)

F (γg).

This series converges absolutely when |µ1µ
−1
2 |Ak = |·|σAk with σ > n/2. The following theorem

gives us the meromorphic continuation of such Eisenstein series (the proof is given in Theorem
C.3):

Theorem 5.1. Suppose µ1 · µ−1
2 = | · |σAk . Then

(1) (Continuation) E(g, µ1, µ2, f) can be extended to a meromorphic function in σ (in
fact, a rational function in q−σ), and every possible pole can only be a simple pole.
Let P (σ) := P+(σ) · P−(σ), where

P±(σ) =

r−1∏
i=0

(1− q−σ±(n2−i)).

Then P (σ) · E(g, µ1, µ2, f) is entire.
(2) (Functional equation) For each f ∈ S(Xr(Ak)), we have

E(g, µ1, µ2, f) = E(tg−1, µ−1
1 , µ−1

2 , f̂)

where f̂ is the Fourier transform of f :

f̂(x) :=

∫
Xr(Ak)

f(y)ψ(−Tr(xty))dy.

The Haar measure dy is chosen to be self-dual, i.e.
ˆ̂
f(x) = f(−x).

(3) Suppose that there exists a place v of k such that the support of the restriction of f
on Xr(kv) is contained in the set of elements with rank r in Xr(kv). Then

P+(σ) · E(g, µ1, µ2, f) is entire.

Now, we set

µ1,s := | · |s+
n−r+1

2

Ak and µ2,s := | · |−s+
r+1
2

Ak .

Let Ĩn,r(s) be the space of smooth functions Ψ on GLn(Ak) such that for every element

p =

(
a1 ∗
0 a2

)
∈ Qr(Ak) and g ∈ GLn(Ak),

Ψ(pg) = µ1,s(det a1) · µ2,s(det a2) ·
(
|det a1|

r
2

Ak · | det a2|
r−n
2

Ak

)
·Ψ(g).
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It is clear that Ĩn,r(s) = ⊗′v Ĩn,r,v(s), and given f = ⊗vfv ∈ S(Xr(Ak)) = ⊗′vS(Xr(kv)) we
have,

F (g, µ1,s, µ2,s, f) = ⊗vFv(gv, µ1,s,v, µ2,s,v, fv)

for g = (gv)v ∈ GLn(Ak). Here

Fv(gv, µ1,s,v, µ2,s,v, fv) := µ1,s,v(det gv)|det gv|r/2v

∫
Xr(kv)

fv(h
−1
v (0, Ir)gv)µ

−1
s,v(hv)d

×hv

and µs,v = µ1,s,v · µ−1
2,s,v · | · |

n/2
v . We have (cf. Lemma C.2)

Lemma 5.2. (1) For any standard section Ψv ∈ Ĩn,r,v(s), there exists a Schwartz function
f on Xr(kv) supported on elements of rank r such that

Fv(gv, µ1,v,s, µ2,v,s, fv) = Ψv(gv, s).

(2) Let f0
v be the charateristic function of Xr(Ov). Then

F 0
v (gv) := Fv(g, µ1,s,v, µ2,s,v, f

0
v ) =

r−1∏
i=0

ζv(2s− 2n− r − i)Ψ0
v

where Ψ0
v ∈ Ĩn,r,v(s) is the standard section such that

Ψ0
v(κv) = 1, ∀κv ∈ GLn(Ov).

For any Φ (res. Φv) ∈ In,r(s), we denote by Φ̃ (res. Φ̃v) the restriction of Φ (res. Φv) on

Mn(Ak) (Mn(kv)). Then via the isomorphism m between GLn and Mn, Φ̃ (res. Φ̃v) can be

viewed as a function in Ĩn,r(s) (res. Ĩn,r,v(s)). Let cr(s) :=
∏
v cr,v(s) where

cr,v(s) :=

r−1∏
i=0

ζk,v(2s+ n− r − i).

For each factorizable Schwartz function ϕ = ⊗vϕv ∈ S(V (Ak)n), from the discussion in
Section 4.2 and Lemma 5.2 we get

˜Mn,r(s)Φϕ

=
ar(s

′)

br(s′)
·

((
⊗v/∈Σ(Φϕ,dn) Ψ0

v

)
⊗
(
⊗v∈Σ(Φϕ,dn)

br,v(s
′)

ar,v(s′)
˜Mn,r,v(s)Φϕv

))

=
ar(s

′)

cr(s)br(s′)
·

(
F 0,ϕ ⊗

(
⊗v∈Σ(Φϕ,dn)

cr,v(s)br,v(s
′)

ar,v(s′)
˜Mn,r,v(s)Φϕv

))
,

where s′ = s + (r − n)/2, Σ(Φ, dn) is the finite set of places v of k such that Φv 6= Φ0
v or

vol(Nn(Ov)) 6= 1, and F 0,ϕ = ⊗v/∈Σ(Φϕ,dn)F
0
v .

Lemma 5.3. For any ϕv ∈ S(V (kv)
n), there exists a finite collection of standard sections

Φjv in Iv(s) such that

br,v(s
′)

ar,v(s′)
˜Mn,r,v(s)Φϕv (mv, s) =

∑
j

(
br,v(s

′)

ar,v(s′)
˜Mn,r,v(s)Φ

j
v(1, s)

)
Ψj
v(mv, s)

for all mv ∈Mn(kv), where Ψj
v ∈ Ĩn,r,v(s) is a standard section for each j.

Then Lemma 5.2 and 5.3 lead us to the following result:

Proposition 5.4. (1) For each Siegel section Φϕv ∈ Iv(s), there exists a finite collection of
Schwartz functions fv,j ∈ S(Xr(kv)) such that

cr,v(s)br,v(s
′)

ar,v(s′)
˜Mn,r,v(s)Φϕv =

∑
j

βv,jFv,j ,



ON THE SIEGEL-WEIL FORMULA OVER FUNCTION FIELDS 17

where for each j, βv,j is a rational function in q−s which is holomorphic at s = s(n), and

Fv,j(gv) = F (gv, µ1,s,v, µ2,s,v, fv,j), for gv ∈ GLn(kv).

(2) Moreover, suppose ar,v(s
′)−1Mn,r,v(s)Φϕv (gv, s) has a zero at s = s(n) for all elements

gv ∈ Spn(kv). Then we are able to choose suitable fv,j and βv,j such that either βv,j has a
zero at s = s(n) for all j or the support of fv,j is contained in the set of elements of rank r
in Xr(kv) for all j.

The above proposition describes the analytic behavior of the local factors at each place
v ∈ Σ(Φϕ, dn). Immediately, we have

Corollary 5.5. For any factorizable ϕ = ⊗vϕv ∈ S(V (Ak)n), there exists a finite collection
of Schwartz functions fj ∈ S(Xr(Ak)) such that

Φ̃(r)
ϕ = ˜Mn,r(s)Φϕ =

ar(s
′)

cr(s)br(s′)

∑
j

βj(s)Fj(s)

where for each j, βj is a rational function in q−s which is holomorphic at s(n), and F j is the

section of Ĩn,r(s) corresponding to fj.

5.1. The order of E
(r)
Pn

(m(a), s,Φϕ) at s = s(n) for 0 < r < n. By Corollary 5.5 we have
that for a ∈ GL2(Ak),

E
(r)
Pn

(m(a), s,Φϕ) =
ar(s

′)

cr(s)br(s′)
·
∑
j

βj(s) · E(a, µ1,s, µ2,s, fj).

Recall that s(n) = dim(V )/2− (n+ 1)/2, s′ = s+ (n− r)/2, and

ar(s) = L(s+
r + 1

2
− r, χV )

br/2c∏
i=1

ζk(2s− r + 2i),

br(s) = L(s+
r + 1

2
, χV )

br/2c∏
i=1

ζk(2s+ r − 2i+ 1),

cr(s) =

r−1∏
i=0

ζk(2s+ n− r − i).

Therefore

ords=s(n)
cr(s)

−1 =


+2, if dim(V ) = 4 and r = 2,

+1, if (dim(V ), r) = (2, 1) or (4, 3),

0, otherwise.

By Lemma 4.2 we have

ords=s(n)

ar(s
′)

cr(s)br(s′)
=



+1, if dim(V ) = 2,

−1, if (dim(V ), r) = (4, 1) and χV is trivial,

0, if (dim(V ), r) = (4, 1) and χV is non-trivial,

0, if (dim(V ), r) = (4, 2) and χV is trivial,

+1, if (dim(V ), r) = (4, 2) and χV is non-trivial,

+1, if dim(V ) = 4 and r ≥ 3.

Moreover, by Theorem 5.1,

ords=s(n)
E(a, µ1,s, µ2,s, fj) ≥


−1 if (dim(V ), r) = (2, 1), (4, 2), or (4, 3),

−1 if n = 2 and (dim(V ), r) = (4, 1),

0 otherwise.
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Suppose dim(V ) = 2. Then E
(r)
Pn

(m(a), s,Φϕ) is holomorphic at s = s(n) and vanishes when

r > 1. Suppose dim(V ) = 4. We have that E
(r)
Pn

(m(a), s,Φϕ) is holomorphic (resp. vanishes)
at s = s(n) when r = 3 (resp. r > 3). Suppose r = 1 or 2. Since (V,QV ) is anisotropic over
k, there exists at least one (resp. two) place v of k such that (V,QV ) is still anisotropic over
kv when dim(V ) = 4 and χV is trivial (resp. other cases). Therefore by Lemma 4.4 (ii) and
Proposition 5.4 (ii), we always can choose βj such that

ords=s(n)
βj ≥ 1 (resp. 2).

Therefore E
(r)
Pn

(m(a), s,Φϕ) is still holomorphic at s(n) and vanishes for the case when r = 2
or n− 1 > r = 1. We conclude that

Proposition 5.6. Fix an integer r with 0 < r < n. For each a ∈ GLn(Ak), E
(r)
Pn

(m(a), s,Φϕ)

is holomorphic at s = s(n). Moreover, E
(r)
Pn

(m(a), s(n),Φϕ) = 0 except for the following cases:

(i) when dim(V ) = 2, r = 1;
(ii) when dim(V ) = 4, n = 2 = r + 1;
(iii) when dim(V ) = 4, r = 3.

Together with the result in Proposition 4.6, we obtain:

Corollary 5.7. For 0 ≤ r ≤ n, E
(r)
Pn

(m(a), s(n),Φϕ) = 0 except for the following cases:

(i) when r = 0;
(ii) when dim(V ) = 2, n ≥ r = 1;
(iii) when dim(V ) = 4, n = 2 ≥ r ≥ 1;
(iv) when dim(V ) = 4, n ≥ r = 3.

6. Siegel-Weil formula

The aim of this section is to prove the Siegel-Weil formula over function fields:

Theorem 6.1. Let ϕ ∈ S(V (Ak)n). Then for g ∈ Spn(Ak),

E(g, s(n),Φϕ) = ε(n) · I(g, ϕ),

where s(n) = dim(V )/2− (n+ 1)/2 and

ε(n) =

{
1 if dim(V ) > n+ 1,

2 if dim(V ) ≤ n+ 1.

The proof is divided into three cases:

(i) dim(V ) = n+ 1;
(ii) dim(V ) > n+ 1;
(iii) dim(V ) < n+ 1.

We deal with these cases in Section 6.1, 6.2, and 6.3, separately.

6.1. Special case: dim(V ) = n+ 1. We first show that

Lemma 6.2. When dim(V ) = n+ 1,

M(0)Φϕ(g, 0) = Φϕ(g, 0)

for every Siegel section Φϕ and g ∈ Spn(Ak) when dim(V ) = n+ 1. In particular, for every
a ∈ GLn(Ak),

E
(n)
Pn

(m(a), 0,Φϕ) = (M(0)Φϕ)(m(a), 0) = Φϕ(m(a), 0) = (ω(m(a))ϕ)(0).
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Proof. For each place v of k, the maps

T1,v =
(
ϕv 7→ Φϕ(·, 0)

)
and T2,v =

(
ϕv 7→

bn,v(0)

an,v(0)
Mv(0)Φϕ(·, 0)

)
are both lie in HomSpn(kv)×Ø(V )(kv)(S(V (kv)

n), IAk(0) ⊗ 1). Lemma 4.4 implies that there
exists µv ∈ C such that T2,v = µvT1,v. Recall that for every Φ = ⊗vΦv ∈ IAk(s), M(s)Φ(g, s)
can be expressed by

an(s)

bn(s)
·
[(
⊗v/∈Σ(Φ,dn)Φ

0
v(gv,−s)

)
⊗
(
⊗v∈Σ(Φ,dn)

bn,v(s)

an,v(s)
Mv(s)Φv(gv, s)

)]
.

Hence we can find µ ∈ C such that M(0)Φϕ(·, 0) = µΦϕ(·, 0) for every ϕ ∈ S(V (Ak)n). It is
known that M(0) ◦M(0) : IAk(0)→ IAk(0) is the identity map. Thus µ = ±1. By Theorem
A.4, we can choose a Siegel section Φϕ such that the Siegel-Eisenstein series E(·, 0,Φϕ) is not
zero. Its constant term EPn(g, s,Φϕ) is equal to

Φϕ(g, 0) +M(0)Φϕ(g, 0) = (1 + µ)
(
ω(g)ϕ

)
(0).

Suppose µ = −1. Then EPn(·, 0,Φϕ) ≡ 0. By Corollary 3.3 we have E(·, 0,Φϕ) ≡ 0, which
gives us a contradiction. Therefore µ = 1 and the proof is complete. �

Corollary 6.3. The Siegel-Weil formula (Theorem 6.1) holds when dim(V ) = n+ 1.

Proof. It suffices to show that for ϕ ∈ S(V (Ak)n) and g ∈ Spn(Ak),

EBn(g, s(n),Φϕ) = 2 · IBn(g, ϕ).(6.1)

Indeed, Proposition 2.3 and Proposition 3.2 say that E(g, s(n),Φϕ) and I(g, ϕ) are both con-
centrated on the Borel subgroup Bn. Then by (6.1), it can be shown that E(·, s(n),Φϕ) −
2I(·, ϕ) is a cusp form on Spn(Ak) which is also orthogonal to all the cusp forms on Spn(Ak).
Therefore the result holds.

Note that

EBn(g, s(n),Φϕ) =

∫
UMn (k)\UMn (Ak)

EPn(ug, s(n),Φϕ)du

and

IBn(g, ϕ) =

∫
UMn (k)\UMn (Ak)

IPn(ug, ϕ)du

where UMn
:= Un ∩ Mn. Write g = n(b)m(a)κ where n(b) ∈ Nn(Ak), m(a) ∈ Mn(Ak),

κ ∈ Spn(OAk), then

EPn(g, s(n),Φϕ) = EPn(m(a), s(n),Φω(κ)ϕ)

and

(ω(g)ϕ)(0) = ω(m(a))
(
ω(κ)ϕ

)
(0).

To show (6.1), it is enough to prove that for every ϕ ∈ S(V (Ak)n) and a ∈ GLn(Ak),

EPn(m(a), s(n),Φϕ) = Φϕ(m(a), 0) +M(0)Φϕ(m(a), 0) = 2(ω(m(a))ϕ)(0).

Therefore Lemma 6.2 completes the proof. �

6.2. Special case: dim(V ) > n + 1. Let ϕ0 ∈ S(V (Ak)) such that ϕ0(0) = 1. For every
ϕ ∈ S(V (Ak)n), take ϕ̃ := ϕ0 ⊗ ϕ ∈ S(V (Ak)n+1). Then it is clear that for g ∈ Spn(Ak),

(i∗Φϕ̃)(g, s) = Φϕ̃(i(g), s− 1/2) = Φϕ(g, s),

where i : Spn ↪→ Spn+1 is the embedding introduced in Section 4.2. Consider the max-
imal standard parabolic subgroup P1 of Spn+1 whose Levi subgroup M1 is isomorphic to
GL1×Spn. By Lemma 3.1, we have
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Lemma 6.4. For every standard section Φ ∈ In+1
Ak (s) and g ∈ Spn(Ak),

En+1
P1

(i(g), s,Φ) = En(g, s+
1

2
, i∗Φ) + En(g,

1

2
− s, i∗Mn+1(s)Φ).

Proof. By Lemma 3.1, we get

En+1
P1

(i(g), s,Φ) = En(g, s+
1

2
, i∗Φ) + En(g, s− 1

2
, i∗Φw).

where

w = wn+1w
−1
n =


0 0 1 0
0 In 0 0
−1 0 0 0
0 0 0 In

 ∈ Spn+1(k).

Recall the functional equation of Siegel-Eisenstein series:

En(g, s,Φ) = En(g,−s,M(s)Φ), ∀g ∈ Spn(Ak), Φ ∈ InAk(s).

By straightforward calculation, Mn(s − 1/2)
(
i∗Φw

)
= i∗

(
Mn+1(s)Φ

)
. Therefore the result

holds. �

When dim(V ) = 4 and n = 2, by Lemma 6.2, it can be observed that for every g ∈ Sp2(Ak)

E2
(
g,

1

2
, i∗M3(0)Φϕ̃

)
= E2(g,

1

2
, i∗Φϕ̃).

In particular,

E3
P1

(i(g), 0,Φϕ̃) = 2E2(g,
1

2
, i∗Φϕ̃) = 2E2(g,

1

2
,Φϕ).

On the other hand, by Corollary 6.3 we get

E3
P1

(i(g), 0,Φϕ̃) = 2I3
P1

(i(g), ϕ̃) = 2I2(g, ϕ).

Therefore

Corollary 6.5. The Siegel-Weil formula (Theorem 6.1) holds when dim(V ) = 4 and n = 2.

When dim(V ) = 4 and n = 1, by the same argument in Corollary 6.3, it is enough to show
that for a ∈ GL1(Ak)

EP1(m(a), 0,Φϕ) = (ω(m(a))ϕ)(0).

By Corollary 5.7 we have E
(1)
P1

(m(a), 0,Φϕ) = 0. Hence

EP1(m(a), 0,Φϕ) = E
(0)
P1

(m(a), 0,Φϕ) = (ω(m(a))ϕ)(0).

We conclude that

Corollary 6.6. The Siegel-Weil formula (Theorem 6.1) holds when dim(V ) > n+ 1.

6.3. Special case: dim(V ) < n + 1. Set ` := n + 1 − dim(V ). The case when ` = 0 was
shown in Corollary 6.3. The remaining case is proven by an induction process on `.

By the same argument in Corollary 6.3, we only need to show that for a ∈ GLn(Ak)

EPn(m(a), s(n),Φϕ) = 2(ω(m(a))ϕ)(0).

Note that when dim(V ) ≤ n+ 1, by Corollary 5.7 we have that for a ∈ GLn(Ak)

EPn(m(a), s(n),Φϕ) = Φϕ(m(a), s(n)) + E
(dim(V )−1)
Pn

(m(a), s(n),Φϕ).

Then it is clear that
(
a 7→ EPn(m(a), s(n),Φϕ)

)
is concentrated on the Borel subgroup of

GLn. On the other hand, the function
(
a 7→ χV (a)|det(a)|

dim(V )
2

Ak ϕ(0)
)

is also concentrated
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on the Borel subgroup of GLn. Therefore it is enough to show the equality for their constant
terms (along Qn−1):(

EPn
)
Qn−1

(m(a), s(n),Φϕ) = 2χV (a)|det(a)|
dim(V )

2

Ak ϕ(0).

Here Qr, 0 < r < n, is the maximal parabolic subgroup of GLn introduced in Section 5.
Without loss of generality, we only need to consider the case when

a ∈ GLn−1(Ak) ↪→ GL1(Ak)×GLn−1(Ak).

Note that Qn−1 ⊂ P1 ∩ Pn, and(
EPn

)
Qn−1

(m(a), s(n),Φϕ) =
(
EP1

)
Pn−1
n−1

(m(a), s(n),Φϕ).

Here Pn−1
n−1 is the Siegel parabolic subgroup of Spn−1. By Lemma 6.4, we have that for

a ∈ GLn−1(Ak).

EP1(m(a), s(n),Φϕ) = En−1(m(a), s(n−1), i
∗Φϕ) + En−1(m(a),

1

2
− s(n), i

∗Mn(s(n))Φϕ).

Since Mn(s)Φϕ ≡ 0 when s = s(n) and ` > 0, it is observed that for a ∈ GLn−1(Ak),

En−1(m(a),
1

2
− s(n), i

∗Mn(s(n))Φϕ) = 0.

By induction we have that for a ∈ GLn−1(Ak),(
EPn

)
Qn−1

(m(a), s(n),Φϕ) =
(
EP1

)
Pn−1
n−1

(m(a), s(n),Φϕ) = 2χV (a)|det(a)|
dim(V )

2

Ak ϕ(0).

Therefore we conclude that

Corollary 6.7. The Siegel-Weil formula (Theorem 6.1) holds when dim(V ) < n+ 1.

Appendix A. Fourier coefficients of theta series

Let f be an automorphic form on Spn(Ak). For each β ∈ Symn(k), the β-th Fourier
coefficient of f is

fβ(g) :=

∫
Symn(k)\ Symn(Ak)

f(n(b)g)ψ
(

Tr(−bβ)
)
db,

where Tr is the trace map and the Haar measure db is normalized so that the total mass is 1.
The aim of this section is to compare Eβ(g, s(n), ϕ) with Inβ (g, ϕ) when detβ 6= 0, and prove

an analogous result (Theorem A.5) of Proposition 4.2 in [15] by the same strategy.

It is clear that

Inβ (g, ϕ) =

∫
Symn(k)\ Symn(Ak)

I(n(b)g, ϕ)ψ(Tr(−bβ))db

=

∫
O(V )(k)\O(V )(Ak)

∑
x∈V (k)n

Q
(n)
V

(x)=β

ω(g)ϕ(h−1x)dh.

Here Q
(n)
V is the moment map from V n to Symn introduced in Section 1.3. Thus Inβ (g, ϕ) = 0

if (Q
(n)
V )−1(β) is empty.

Recall that a gauge form on a given smooth variety V over k is a differential ν-form over
k (where ν = dim(V)) which is regular and non-vanishing everywhere. We refer the reader
to [20] for further discussions of the gauge forms on varieties. Let dx and db be the standard
gauge forms on the vector spaces V n and Symn over k, respectively. The corresponding
measures (i.e. Tamagawa measures) on V n(Ak) and Symn(Ak) (resp. V n(kv) and Symn(kv))
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are also denoted by dx and db (resp. dxv and dbv). For every β in Symn(k) (resp. in Symn(kv)),
let

(Q
(n)
V )−1

reg(β) := {x ∈ (Q
(n)
V )−1(β) | dQ(n)

V (x) : V n → Symn is sujective},

which is a smooth variety over k (resp. kv), and there exists a gauge form δβ on (Q
(n)
V )−1

reg(β)
which is compatible with the choice of dx and db (resp. dxv and dbv) on V n and Symn

respectively. In concrete terms, δβ induces a local measure on (Q
(n)
V )−1(β)(kv) so that for

any L1-function fv on V (kv)
n (cf. [19] §6),∫

V (kv)n
fvdxv =

∫
Symn(kv)

(∫
(Q

(n)
V )−1

reg(bv)(kv)

fvδbv

)
dbv.

In particular, suppose β ∈ Symn(k) with detβ 6= 0 and (Q
(n)
V )−1(β)(k) is not empty, which

implies that dim(V ) ≥ n. Then

(Q
(n)
V )−1

reg(β) = (Q
(n)
V )−1(β),

and O(V ) acts transitively on (Q
(n)
V )−1(β). Take any element x ∈ (Q

(n)
V )−1(β). Let

StO(V )(x) := {h ∈ O(V ) : hx = x}.

Then StO(V )(x)\O(V ) is isomorphic (as a variety over k) to (Q
(n)
V )−1(β) by

h 7−→ h−1x.

We take the measure d̃h on StO(V )(x)(Ak)\O(V )(Ak) to be the measure on (Q
(n)
V )−1(β)(Ak)

determined by the gauge form δβ , with a set {λv(β)}v of convergence factors. The mea-

sures dh on O(V )(Ak) and d̃h on StO(V )(x)(Ak)\O(V )(Ak) induce a unique measure dh′ on
StO(V )(x)(Ak) such that

dh = dh′d̃h.

Then we can write

Iβ(g, ϕ) = vol
(
StO(V )(x)(k)\StO(V )(Ak), dh′

)
·
∫

StO(V )(x)(Ak)\O(V )(Ak)

ω(g)ϕ(h−1x)d̃h.

When ϕ is a pure tensor, say ϕ = ⊗vϕv, write d̃h as
∏
v λv(β)−1d̃hv we get

Iβ(g, ϕ) = vol
(
StO(V )(x)(k)\StO(V )(Ak), dh′

)
·
∏
v

(
λv(β)−1

∫
StO(V )(x)(kv)\O(V )(kv)

ωv(gv)ϕv(h
−1
v x)d̃hv

)
.

Lemma A.1. Suppose dim(V ) ≥ n. For each βv ∈ Symn(kv) with detβv 6= 0, let

Tβv :=

{
T ∈ HomC(S(V (kv)

n),C)

∣∣∣∣ T (ωv(n(b), h)ϕv) = ψv(Tr(bβv))T (ϕv),
∀b ∈ Symn(kv), h ∈ O(V )(kv), ϕv ∈ S(V (kv)

n)

}
.

Then Tβv = 0 if (Q
(n)
V )−1(βv)(kv) is empty. When (Q

(n)
V )−1(βv)(kv) is not empty, Tβv is a

one dimensional C-vector space spanned by the following functional

Tβv : ϕv 7−→
∫

(Q
(n)
V )−1(βv)(kv)

ϕvδβv =

∫
StO(V )(x0

v)(kv)\O(V )(kv)

ϕv(h
−1
v x0

v)d̃hv

where x0
v is in (Q

(n)
V )−1(βv)(kv).

Proof. It is observed that the restriction map S(V (kv)
n) → S

(
(Q

(n)
V )−1(βv)

)
induces an

embedding from Tβv into HomC

(
S
(
(Q

(n)
V )−1(βv)

)
,C
)

. Since every O(V )(kv)-invariant func-

tional on S
(
(Q

(n)
V )−1(βv)

)
must be a scalar multiple of Tβv , the result holds. �
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Remark A.2. Given x ∈ V n, Q
(n)
V is submersive at x if dQ

(n)
V (x) : V n → Symn is surjective.

Take ϕv ∈ S(V (kv)
n) which is supported on the vectors in V (kv)

n where dQ
(n)
V is submersive.

Define the function Tϕv ∈ S(Symn(kv)) by

Tϕv (bv) =

{
0, if (Q

(n)
V )−1(bv)(kv) is empty,∫

(Q
(n)
V )−1

reg(bv)(kv)
ϕvδbv , otherwise.

Then for every β ∈ Symn(k) with detβ 6= 0 and av ∈ GLn(kv),∫
Symn(kv)

Φϕv (wnn(bv)m(av), s(n))ψv(−Tr(bvβ))dbv

=

∫
Symn(kv)

T∧ϕv (bv)ψv(−Tr(bv · tavβav))dbv

= Tϕv (tavβav).

Here T∧ϕv (bv) is the Fourier transform of Tϕv , i.e.

T∧ϕv (bv) =

∫
Symn(kv)

Tϕv (b′v)ψv
(

Tr(bvb
′
v)
)
db′v.

On the other hand, we have

Lemma A.3. For g ∈ Spn(Ak), Φ ∈ IAk(s), and β =

(
0 0
0 β0

)
with β0 ∈ Symn−r(kv),

0 ≤ r < n, and detβ0 6= 0,

Eβ(g, s,Φ)

=
∑
i≤r

∑
a′∈Q(r)

r−i(k)\GLr(k)

∫
Symn−i(Ak)

Φ(wn−in(b′)γ(a′)g, s)ψ(−Tr(b′β0))db′.

Here γ(a′) = m

(
a′ 0
0 In−r

)
and we embed Symn−i into Symn by sending b′ to

(
0 0
0 b′

)
.

Proof. The argument is similar to Lemma 3.1. Therefore we omit the proof. �

Now, we arrive at the main result of this section.

Theorem A.4. There exists a non-zero constant c such that the function

(In)′(g, ϕ) := I(g, ϕ)− cE(g, s(n),Φϕ)

satisfies (In)′β(g, ϕ) = 0 for every g ∈ Spn(Ak), ϕ ∈ S(V (Ak)n), and β ∈ Symn(k) with
detβ 6= 0.

Proof. Without loss of generality, assume g = m(a) for a ∈ GLn(Ak) and ϕ = ⊗vϕv is a pure
tensor. It is clear that the functional

T ′a :=
(
ϕ 7−→ Eβ(m(a), s(n),Φϕ), ∀ϕ ∈ S(V (Ak)n)

)
satisfies that

T ′a
(
ω(n(b))ϕ

)
= ψ(Tr(b · taβa))T ′a(ϕ), ∀b ∈ Symn(Ak).

Therefore Lemma A.1 implies that

Eβ(m(a), s(n),Φϕ) = Inβ (m(a), ϕ) = 0

if (Q
(n)
V )−1(β)(k) is empty.

When (Q
(n)
V )−1(β)(k) is not empty, dim(V ) ≥ n and by Lemma A.1 again we can find a

constant c = c(β, a) ∈ C such that

Eβ(m(a), s(n),Φϕ) = c(β, a) · Inβ (m(a), ϕ).
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It remains to show that c is non-zero and is independent of the choices of β and a.
Lemma A.3 says that

Eβ(m(a), s(n),Φϕ) =
∏
v

(∫
Symn(kv)

Φϕ(wnn(bv)m(av), s(n))ψv(−Tr(bvβ))dbv

)
.

Let Σ(a,QV , db) be the finite set of places of k such that when v /∈ Σ(a,QV , db), we have
av ∈ GLn(Ov), βv ∈ Symn(Ov)∩GLn(Ov), QV is unramified at v and vol(Symn(Ov), dbv) = 1.
For v /∈ Σ(a,QV , db), take ϕ0

v ∈ S(V (kv)
n) such that Φϕ0

v
= Φ0

v (recall that Φ0
v(κv, s) = 1 for

all κv ∈ Spn(Ov)). Then we get∫
Symn(kv)

Φϕ0
v
(wnn(bv)m(av), s)ψv(−Tr(bvβ))dbv

= Lv(s+
n+ 1

2
, χV,v)

−1

bn2 c∏
i=1

ζv(2s+ n+ 1− 2i)−1

·

{
Lv(s+ 1/2, χV,vχβ,n,v), if n is even,

1, if n is odd.

Here χβ,n,v : k×v → {±1} is defined by

χβ,n,v(αv) := ((−1)n/2 detβ, αv)v, ∀αv ∈ k×v .

Given a1, a2 ∈ GLn(Ak), we choose ϕ1
v, ϕ

2
v ∈ S(V (kv)

n) for every place v as follows. Let
Σ := Σ(a1, QV , db) ∪ Σ(a2, QV , db). For v /∈ Σ we let ϕ1

v = ϕ2
v = ϕ0

v; and for v ∈ Σ we

choose ϕiv which are supported on the vectors in V (kv)
n where dQ

(n)
V is submersive and

Tϕiv (tav,iβav,i) 6= 0. Define

ΛΣ(s) := LΣ(s+
n+ 1

2
, χV )−1

bn2 c∏
i=1

ζΣ(2s+ n+ 1− 2i)−1

·

{
LΣ(s+ 1/2, χV χβ,n), if n is even,

1, if n is odd.

Then the discussion in Remark A.2 implies that

ΛΣ(s(n)) = c(β, ai)

(∏
v∈Σ

1

λv(β)

)
vol
(
StO(V )(x)(k)\StO(V )(Ak), dh′

) ∏
v/∈Σ

Tβv (ϕ0
v)

λv(β)
,

where {λv(β)} is a convenient set of convergent factors for the gauge on (Q
(n)
V )−1(β) and x is a

chosen element in (Q
(n)
V )−1(β). Hence c is independent of the choice of a. Finally, let {λ′v} be

a set of convergence factors for the measure dh on O(V )(Ak), then {λ′′v := λ′v/λv(β)} is a set
of convergence factors for the measure dh′ on StO(V )(x)(Ak). Choosing suitable convergence
factors {λ′′v} for the measure dh′ on StO(V )(x)(Ak), it can be shown that c is also independent
of the choice of β. Therefore the proof is complete. �

One consequence of Theorem A.4 is:

Theorem A.5. Given a Schwartz function ϕ ∈ S(V (Ak)n), we have that for every cusp form
f on Spn(Ak), ∫

Spn(k)\ Spn(Ak)

In(g, ϕ)f(g)dg = 0.
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Proof. The argument is similar to Theorem 2.7 in [9]. We recall the key steps for the sake of
completeness.

Consider the auxiliary Eisenstein series on Spn(Ak):

E0(g, s) :=
∑

γ∈Pn(k)\ Spn(k)

Φ0(γg, s)

where for g =

(
a ∗
0 ta−1

)
κ with a ∈ GLn(Ak) and κ ∈ Spn(OAk),

Φ0(g, s) := |det a|s+(n+1)/2
Ak .

It is known that E0(g, s) has meromorphic continuation to the whole s-plane, and has a simple
pole at s = (n+1)/2 with residue c1 independent of g. Then for any cusp form f on Spn(Ak),

Ress=(n+1)/2 〈(In)′(ϕ), E0(s)f〉 = c1〈(In)′(ϕ), f〉 = c1〈In(ϕ), f〉.(A.1)

Here

〈f1, f2〉 :=

∫
Spn(k)\ Spn(Ak)

f1(g)f2(g)dg.

The second equality in (A.1) holds by Proposition 3.2. It suffices to show that

〈(In)′(ϕ), E0(s)f〉 = 0.

It is observed that

〈(In)′(ϕ), E0(s)f〉

=
∑

β mod GLn(k)

∫
Mβ(Ak)Nn(Ak)\ Spn(Ak)

∫
Mβ(k)\Mβ(Ak)

(In)′β(mg)f−β(mg)Φ0(mg, s)dmdg.

The sum runs over representatives β mod GLn(k) in Symn(k). The action of GLn(k) on
Symn(k) is defined by a ∗ β := taβa, and

Mβ := {m(a) ∈Mn : a ∈ GLn such that a ∗ β = β}.
Theorem A.5 tells us that the sum runs over singular β. For convention, we choose β to be

of the form

(
0 0
0 β0

)
where β0 ∈ Symn−r(k) with 0 < r ≤ n. Note that Mβ = Lβ ·Uβ where

Uβ ∼=
{
u(x) =

(
Ir x
0 In−r

) ∣∣∣∣ x ∈ Matr×(n−r)

}
and

Lβ ∼=
{(

a 0
0 d

) ∣∣∣∣ a ∈ GLr, d ∈ GLn−r with tdβ0d = β0

}
.

Thus ∫
Mβ(k)\Mβ(Ak)

(In)′β(mg)f−β(mg)Φ0(mg, s)dm

=

∫
Lβ(k)\Lβ(Ak)

 ∫
Uβ(k)\Uβ(Ak)

(In)′β(ulg)f−β(ulg)du

Φ0(lg, s)dl.

For α ∈ Matr×(n−r)(k), denote

(In)′α,β(g) :=

∫
Matr×(n−r)(k)\Matr×(n−r)(Ak)

(In)′β(u(x)g)ψ(−Tr(tαx))dx.



26 FU-TSUN WEI

Then ∫
Uβ(k)\Uβ(Ak)

(In)′β(ulg)f−β(ulg)du =
∑

α∈Matr×(n−r)(k)

(In)′α,β(lg)f−α,−β(lg).

By straightforward calculation, we obtain:

(i) If β = 0, then fβ = 0.
(ii) If singular β 6= 0, then f0,β = 0.
(iii) If β is singular and α 6= 0, then Eα,β(·, s,Φϕ) = 0.
(iv) If β is singular and α 6= 0, then Inα,β(·, ϕ) = 0.

We point out that (iii) is deduced from the expression of Eβ(·, s,Φϕ) in Lemma A.3. These
observation completes the proof. �

Appendix B. On the Jacquet module of S(V (kv)
n) with respect to Pn

In this section, we describe the Jordan structure of the Jacquet module of S(V (kv)
n) (which

is studied in [8] for the number field case). Recall that (V,QV ) is an anisotropic quadratic
space over k, and ωv is the Weil representation of Spn(kv)×O(V )(kv) on the Schwartz space
S(V (kv)

n) for each place v of k. The Jacquet module Jn of S(V (kv)
n) with respect to Pn is

the quotient space

S(V (kv)
n)

Span
{
ωv(n(b))ϕ− ϕ

∣∣ b ∈ Symn(kv), ϕ ∈ S(V (kv)
n)
} .

We modify the action of GLn(kv) on Jn by:

ω̃v(a)ϕ̄ := |det a|−
n+1
2

v · ωv(m(a))ϕ, ∀a ∈ GLn(kv) and ϕ̄ ∈ Jn.

Define V (kv)
n
0 := {x ∈ V (kv)

n | Q(n)
V (x) = 0}, where Q

(n)
V : V n → Symn is the moment

map introduced in Section 1.3. The Schwartz space S(V (kv)
n
0 ) is invariant under the action

of GLn(kv)×O(V )(kv) defined by

(a, h) · ϕ(x) = χV,v(det a)|det a|
dim(V )−(n+1)

2
v ϕ(h−1xa).

Let l0 := min(l, n) where l is the dimension of a maximal isotropic subspace of V (kv) (which
is 0 or dim(V )/2). It is clear that every x = (x1, ..., xn) ∈ V (kv)

n
0 satisfies dim(Span x) ≤ l0,

where Span x := Span{x1, ..., xn} . Thus

V (kv)
n
0 =

l0∐
i=0

V (kv)
n
0,i

where

V (kv)
n
0,i :=

{
x ∈ V (kv)

n
0

∣∣ dim(Span x) = i
}
.

Proposition B.1. (1) As a GLn(kv) × O(V )(kv)-module, Jn is isomorphic to S(V (kv)
n
0 ),

where the isomorphism is induced by the restriction from S(V (kv)
n) to S(V (kv)

n
0 ).

(2) We have a GLn(kv)×O(V )(kv)-invariant filtration

Jn = J (0)
n ⊃ J (1)

n ⊃ · · · ⊃ J (l0)
n ⊃ J (l0+1)

n = {0}

such that as GLn(kv)×O(V )(kv)-modules,

J̃ (i)
n := J (i)

n /J (i+1)
n

∼= S(V (kv)
n
0,i).
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Proof. Consider the following exact sequence:

0→ S(V (kv)
n − V (kv)

n
0 )→ S(V (kv)

n)→ S(V (kv)
n
0 )→ 0.

It is clear that ωv(n(b))ϕ − ϕ ∈ S(V (kv)
n − V (kv)

n
0 ) for every b ∈ Symn(kv) and ϕ ∈

S(V (kv)
n). On the other hand, for x ∈ V (kv)

n − V (kv)
n
0 , we can find b ∈ Symn(kv) such

that ψv
(
Trace(bQ

(n)
V (x))

)
6= 1. Choose a sufficiently small neighborhood Ux of x in V (kv)

n−
V (kv)

n
0 such that

ψv
(
Trace(bQ

(n)
V (x′))

)
= ψv

(
Trace(bQ

(n)
V (x))

)
, ∀x′ ∈ Ux.

Let ϕx be the characteristic function of Ux. Then

ωv(n(b))ϕx − ϕx =
(
ψv
(
Trace(bQ

(n)
V (x))

)
− 1
)
ϕx.

This implies that the Schwartz space S(V (kv)
n − V (kv)

n
0 ) coincides with

Span
{
ωv(n(b))ϕ− ϕ

∣∣ b ∈ Symn(kv), ϕ ∈ S(V (kv)
n)
}
.

Therefore the proof of (1) is complete.

Identifying Jn = J (0)
n with S(V (kv)

n
0 ), for 0 < i ≤ l0 we let

J (i)
n :=

ϕ ∈ S(V (kv)
n
0 )

∣∣∣∣ ϕ(x) = 0, ∀x ∈
i−1∐
j=0

V (kv)
n
0,j ,

 .

Then for 0 ≤ i ≤ l0,

Jn/J (i+1)
n

∼= S
( i∐
j=0

V (kv)
n
0,j

)
.

This assures that for 0 ≤ i ≤ l0,

J (i)
n /J (i+1)

n
∼= S(V (kv)

n
0,i)

and completes the proof of (2). �

Choose x1, ..., xl ∈ V (kv) such that Span{x1, ..., xl} is a maximal isotropic subspace. Then
there exist x′1, ..., x

′
l ∈ V (kv) such that

< x′i, x
′
j >V = 0, 1 ≤ i, j ≤ l,

< xi, x
′
j >V = 0, i 6= j, and < xi, x

′
i >V = 1.

For 0 ≤ i ≤ l, let V (kv)
(i) be the orthogonal complement of Span{x1, ..., xi, x

′
1, ..., x

′
i} in

V (kv). Define

P ′i :=
{
h ∈ O(V )(kv)

∣∣ h · Span{x1, ..., xi} = Span{x1, ..., xi}
}
,

which is a parabolic subgroup of O(V )(kv) whose Levi subgroupM ′i is isomorphic to GLi(kv)×
O(V (kv)

(i)). More precisely, let {x′1, ..., x′l, x′′1 , ..., x′′dim(V )−2l, x1, ..., xl} be a basis of V . Then

with respect to this basis, elements in M ′i are of the form

(a, b) =

ta−1 0 0
0 b 0
0 0 a

 ,

where a ∈ GLi(kv) and b ∈ O(V (kv)
(i)).

Take 0 ≤ i ≤ l0. Recall

Qi =

{(
a1 ∗
0 a2

)
∈ GLn

∣∣∣a1 ∈ GLn−i, a2 ∈ GLi

}
.
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Define an action ρi of Qi(kv)× P ′i on S(GLi(kv)) by

ρi

(((
a1 ∗
0 a2

)
, (a′2, h

′) · n′
)
ϕ

)
(g) = ϕ(a′−1

2 ga2),

where (a′2, h
′) ∈ M ′i and n′ is in the unipotent radical of P ′i . Let Ind

(
S(GLi(kv))

)
be the

space of smooth functions f from GLn(kv)×O(V )(kv) to S(GLi(kv)) satisfying that for every
element (g, h) ∈ GLn(kv)×O(V )(kv),

f
(
(b, b′)(g, h)

)
= µi(b) · ρi(b, b′)

(
f(g, h)

)
, ∀(b, b′) ∈ Qi × P ′i ,

where for b =

(
a1 ∗
0 a2

)
∈ Qi(kv),

µi(b) = χV,v(det a1 det a2)|det a1 det a2|
dim(V )−(n+1)

2
v .

The action of GLn(kv)×O(V )(kv) on Ind
(
S(GLi(kv))

)
is defined by right translation.

Proposition B.2. For 0 ≤ i ≤ l0, we have

J̃ (i)
n
∼= S(V (kv)

n
0,i)
∼= Ind

(
S(GLi(kv))

)
as GLn(kv)×O(V )(kv) modules.

Proof. For 0 ≤ i ≤ l0, Set x(i) := (0, ..., 0, x1, x2, ..., xi) ∈ V (kv)
n
0,i. Let ι1 and ι2 be the

embeddings from GLi(kv) into P ′i ⊂ O(V )(kv) and Qi(kv) ⊂ GLn(kv), respectively. Then we
have

ι1(g′)x(i) = x(i)ι2(g′), ∀g′ ∈ GLi(kv).

Define a map F from S(V (kv)
n
0,i) to Ind

(
S(GLi(kv))

)
by

ϕ 7−→ Fϕ,

where for (g, h) ∈ GLn(kv)×O(V )(kv),

Fϕ(g, h) =
(
g′ 7→ χV,v(det g)|det g|

dim(V )−(n+1)
2

v · ϕ(h−1x(i)ι2(g′)g)
)
∈ S(GLi(kv)).

Then it is clear that F is GLn(kv) × O(V )(kv)-equivariant. Since for every element x ∈
V (kv)

n
0,i we can find (g, h) ∈ GLn(kv) × O(V )(kv) such that x = h−1x(i)g, the inverse

map F−1 : Ind
(
S(GLi(kv))

)
→ S(V (kv)

n
0,i) can be defined by the following: for f ∈

Ind
(
S(GLi(kv))

)
,

F−1
f (x) := χV,v(det g)−1|det g|

− dim(V )+(n+1)
2

v · f(g, h)(1), ∀x = h−1x(i)g ∈ V (kv)
n
0,i.

�

We remark that the modulus character δi of the parabolic subgroup Qi(kv)× P ′i is:

δi

(a1 ∗
0 a2

)
,

ta′−1
2 ∗ ∗
0 h′ ∗
0 0 a′2

 =
|det a1|iv
|det a2|n−iv

· | det a′2|− dim(V )+i+1
v .

Recall that s(n) = dim(V )/2 − (n + 1)/2, and Iv(−s(n)) is the space of smooth functions
f on Spn(kv) satisfying that

f

((
a ∗
0 ta−1

)
g

)
= χV,v(det a)|det a|−

dim(V )
2

v f(g), ∀a ∈ GLn(kv), g ∈ Spn(kv).

YFWFC
螢光標示
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In other words, Iv(−s(n)) is the Siegel-parabolic induction from the character | · |−s(n)
v on

Pn(kv). Therefore the Frobenius reciprocity (cf. [1] Proposition 4.5.1) gives us

HomSpn(kv)×O(V )(kv)

(
S(V (kv)

n), Iv(−s(n))⊗ 1
)

= HomGLn(kv)×O(V )(kv)

(
Jn, | · |

−s(n)
v ⊗ 1

)
.

Note that `(n, v) = dim
(

HomGLn(kv)×O(V )(kv)

(
Jn, | · |

−s(n)
v ⊗ 1

))
is bounded by

l0∑
i=0

dim
(

HomGLn(kv)×O(V )(kv)

(
J̃ (i)
n , | · |−s(n)

v ⊗ 1
))
.

For each i, Proposition B.2 tells us that J̃ (i)
n is also a parabolic induction. Hence by Frobenius

reciprocity again, we get

HomGLn(kv)×O(V )(kv)

(
J̃ (i)
n , | · |−s(n)

v ⊗ 1
)

= HomRi

(
(µiδ

−1
i )⊗ ρi, | · |

−s(n)
v ⊗ 1

)
,

where Ri =
(

GLn−i(kv) × GLi(kv)
)
×
(

GLi(kv) × O(V (kv)
(i))
)

is the Levi subgroup of

Qi(kv)× P ′i .
For m = (a1, a2, a

′
2, h) ∈ Ri,

µiδ
−1
i (m) = χV,v(det a1 det a2)|det a1|

s(n)−i
v |det a2|

s(n)+n−i
v · | det a′2|dim(V )−i−1

v .

Hence HomRi

(
(µiδ

−1
i )⊗ ρi, | · |

−s(n)
v ⊗ 1

)
= 0 unless (i) i = 2s(n) = dim(V )− (n+ 1) or (ii)

i = n. In both cases we can get

dim
(

HomRi

(
(µiδ

−1
i )⊗ ρi, | · |

−s(n)
v ⊗ 1

))
= 1.

Note that i is bounded by l0 = min(l, n). We then arrive at

Lemma B.3. Let

`(n, v) := dimC HomSpn(kv)×O(V )(kv)

(
S(V (kv)

n), Iv(−s(n))⊗ 1
)
,

where 1 is the trivial representation of O(V )(kv). Then

(i) When dim(V ) < n+ 1, we have `(n, v) = 0.
(ii) When dim(V ) = 2 and n = 1,

`(n, v) ≤

{
1, if V (kv) is anisotropic,

2, if V (kv) is isotropic.

(iii) When dim(V ) = 4 and n = 1 or 2,

`(n, v) ≤

{
n, if V (kv) is isotropic,

0, if V (kv) is anisotropic.

(iv) When dim(V ) = 4 and n = 3, we have `(n, v) ≤ 1.

Remark B.4. When dim(V ) = 2, n = 1, and V (kv) is isotropic, the above discussion says
that

`(n, v) = dimC HomGL1(kv)×GL1(kv)

(
J1(kv),1

)
.

In this case, J1(kv) ∼= S(kv), and every homomorphism in Homk×v ×k×v

(
S(kv),1

)
must be of

the form

c · (ϕ 7−→ ϕ(0)), c ∈ C.

Therefore `(n, v) = 1 in this case, and the proof of Lemma 4.4 is complete.

YFWFC
螢光標示
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Appendix C. Maass-Jacquet-Shalika Eisenstein series on GLn(Ak)

Fix an integer r with 0 < r < n. Set Xr := Matr×n as an affine algebraic variety over
k. Let µ1,v, µ2,v be two characters on k×v . For any g ∈ GLn(kv) and Schwartz function
fv ∈ S(Xr(kv)), define Fv(g) = Fv(g, µ1,v, µ2,v, fv) to be

µ1,v(det g)|det g|r/2v

∫
GLr(kv)

fv(h
−1
v (0, Ir)g)µ−1

v (dethv)d
×hv.

Here µv = µ1,vµ
−1
2,v| · |

n/2
v and the Haar measure d×hv is normalized so that the volume of

GLr(Ov) is 1 for all v.

Lemma C.1. The integral Fv(g) is absolutely convergent for every g ∈ GLn(kv) if |µ1,vµ
−1
2,v| =

| · |σv where σ > r − n/2− 1.

Proof. Without loss of generality, assume fv is the characteristic function of Xr(Ov) and
g = 1. Then by straightforward computation we get∫

GLr(kv)

∣∣fv(h−1
v (0, Ir))µ

−1
v (dethv)

∣∣d×hv
=

∫
GLr(kv)∩Matr(Ov)

|µv|−1d×hv

=

r−1∏
i=0

ζv(σ −
n

2
− i).

This assures the result. �

Recall that

Qr =

{(
a1 ∗
0 a2

)
∈ GLn

∣∣∣∣a1 ∈ GLn−r, a2 ∈ GLr

}
.

For g ∈ GLn(kv) and b =

(
a1 ∗
0 a2

)
∈ Qr(kv), it is clear that

Fv(bg) = µ1,v(det a1)µ2,v(det a2)|δQr (b)|1/2v Fv(g)

where δQr (b) = (det a1)r · (det a2)r−n. Let Ĩv(µ1,v, µ2,v) be the space of smooth functions Ψv

on GLn(kv) satisfying that for g ∈ GLn(kv) and b =

(
a1 ∗
0 a2

)
∈ Qr(kv),

Ψv(bg) = µ1,v(det a1)µ2,v(det a2)|δQr (b)|1/2v Ψv(g).

Then the map (fv 7→ Fv) gives us a GLn(kv)-equivariant homomorphism from S(Xr(kv)) to

Ĩv(µ1,v, µ2,v).

Lemma C.2. (1) Given Ψv ∈ Ĩv(µ1,v, µ2,v), there exists a Schwartz function f on Xr(kv)
supported on elements of rank r such that

Fv(g, µ1,v, µ2,v, fv) = Ψv(g), ∀g ∈ GLn(kv).

In other words, the map (fv 7→ Fv) from S(Xr(kv)) to Ĩv(µ1,v, µ2,v) is surjective.
(2) Suppose µ1,v and µ2,v are both unramified, i.e. µ1,v(Ov) = µ2,v(Ov) = 1. Let f0

v be the
charateristic function of Xr(Ov). Then for g ∈ GLn(kv)

F 0
v (g) := Fv(g, µ1,v, µ2,v, f

0
v ) =

r−1∏
i=0

ζv(σ −
n

2
− r − i)Ψ0

v(g)

where µ1,vµ
−1
2,v = | · |σv and Ψ0

v ∈ Ĩv(µ1,v, µ2,v) satisfies

Ψ0
v(κ) = 1, ∀κ ∈ GLn(Ov).
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Proof. The Iwasawa decomposition allows us to write g as bκ, where b ∈ Qr(kv) and κ ∈
GLn(Ov). Hence we can assume g = κ ∈ GLn(OV ). Then (2) follows from the proof of
Lemma C.1. To prove (1), we take fv ∈ S(Xr(kv)) such that the support of fv is contained
in (0, Ir) ·GLn(Ov) and

fv((0, Ir)κ) := µ1,v(detκ)−1ψv(κ).

Then for each κ ∈ GLn(Ov),

Fv(κ) = µ1,v(κ)

∫
GLr(kv)

fv(h
−1
v (0, Ir)κ)µ−1

v (dethv)d
×hv

= µ1,v(κ)

∫
GLr(Ov)

µ1,v(deth−1
v detκ)−1Ψv

((
In−r 0

0 h−1
v

)
κ

)
µ−1
v (dethv)d

×hv

= Ψv(κ).

Therefore the proof is complete. �

Let µ1, µ2 be two Hecke characters on k×\A×k . For any g ∈ GLn(Ak) and Schwartz function
f ∈ S(Xr(Ak)), we set

F (g) = F (g, µ1, µ2, f) := µ1(det g)|det g|r/2Ak

∫
GLr(Ak)

f(h−1(0, Ir)g)µ−1(deth)d×h.

Here µ = µ1µ
−1
2 | · |

n/2
Ak and the Haar measure d×h =

∏
v d
×hv. In particular, the volume of

GLr(OAk) is 1. By Lemma C.1, this integral is absolutely convergent if |µ1µ
−1
2 | = | · |σAk where

σ > r − n/2. The Maass-Jacquet-Shalika Eisenstein series associated to f , µ1, µ2 is defined
by (cf. [7] and [13])

E(g, µ1, µ2, f) =
∑

γ∈Qr(k)\GLn(k)

F (γg).

This series converges absolutely when |µ1µ
−1
2 |Ak = | · |σAk with σ > n/2 (cf. [14] II.1.5).

Theorem C.3. Suppose µ1 · µ−1
2 = | · |σAk . Then

(1) (Continuation) E(g, µ1, µ2, f) can be extended to a meromorphic function in σ (in
fact, a rational function in q−σ), and every possible pole can only be a simple pole.
Let P (σ) := P+(σ) · P−(σ), where

P±(σ) =
r−1∏
i=0

(1− q−σ±(n2−i)).

Then P (σ) · E(g, µ1, µ2, f) is entire.
(2) (Functional equation) For each f ∈ S(Xr(Ak)), we have

E(g, µ1, µ2, f) = E(tg−1, µ−1
1 , µ−1

2 , f∧)

where f∧ is the Fourier transform of f :

f∧(x) :=

∫
Xr(Ak)

f(y)ψ(−Tr(xty))dy.

The Haar measure dy is chosen to be self-dual, i.e. f∧∧(x) = f(−x).
(3) Suppose that there exists a place v of k such that the support of the restriction of f

on Xr(kv) is contained in the set of elements with rank r in Xr(kv). Then

P+(σ) · E(g, µ1, µ2, f) is entire.

Proof. Replacing f to the Schwartz function f(·g), we can assume g = 1 and set Er(σ, f) :=
E(1, µ1, µ2, f). Let

X(i)
r (k) := {x ∈ Xr(k) : rank(x) = i}, 0 ≤ i ≤ r.
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For h ∈ GLr(Ak), f ∈ S(Xr(Ak)) we define

θ(i)
r (h; f) :=

∑
x∈X(i)

r (k)

f(h−1x)

and

θr(h; f) :=

r∑
i=0

θ(i)
r (h; f) =

∑
x∈Xr(k)

f(h−1x).

Then we have

Er(σ, f) =

∫
GLr(k)\GLr(Ak)

θ(r)
r (h; f)µ−1(h)d×h.

For ∗ ∈ {>, <, ≥, ≤, =}, let

GLr(Ak)∗1 := {h ∈ GLr(Ak) : |deth|Ak ∗ 1}

Note that ∫
GLr(k)\GLr(Ak)≤1

θ(r)
r (h; f)µ−1(h)d×h

always converges absolutely for every σ. On the other hand, by Poisson summation formula
we get

θr(h; f) = |deth|nAkθr(
th−1; f∧).

Hence

θ(r)
r (h; f) =

r−1∑
i=0

(
|deth|nAkθ

(i)
r (th−1; f∧)− θ(i)

r (h; f)

)
.

Let Q
(i)
r =

{(
a1 ∗
0 a2

)
∈ GLr

∣∣∣∣ a1 ∈ GLi, a2 ∈ GLr−i

}
. It is clear that

θ(i)
r (h; f) =

∑
h(i)∈Q

(i)
r (k)\GLr(k)

 ∑
xi∈X(i)

i (k)

f

(
h−1h−1

(i)

(
xi
0

))
and

θ(i)
r (th−1; f∧) =

∑
h(i)∈Q

(i)
r (k)\GLr(k)

 ∑
xi∈X(i)

i (k)

f

(
thth(i)

(
0
xi

)) .

For each κ ∈ GLr(OAk), let fκ(x) := f(κ−1x). We then observe that

∫
GLr(k)\GLr(Ak)>1

θ(r)
r (h; f)µ−1(h)d×h

=

∫
GLr(k)\GLr(Ak)>1

θ(r)
r (th−1; f∧)µ−1(th−1)d×h

+

∫
GLr(OAk )

r−1∑
i=0

Vol
(

Mati×(r−i)(k)\Mati×(r−i)(Ak)
)
·Vol

(
GLi(k)\GLi(Ak)=1

)
·

(
Ei(i−

n

2
, (fκ)∧(i,2)) ·

∞∑
`=1

q(−σ+n
2−i)`

−Ei(i−
n

2
, (fκ)(i,1)) ·

∞∑
`=1

q(−σ−n2 +i)`

)
dκ.
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Here for every f ∈ S(Xr(Ak)), f(i,1) and f(i,2) ∈ S(Xi(Ak)) are defined by

f(i,1)(xi) := f

(
xi
0

)
, f(i,2)(xi) := f

(
0
xi

)
.

Therefore when σ > n/2,∫
GLr(k)\GLr(Ak)>1

θ(r)
r (h; f)µ−1(h)d×h

=

∫
GLr(k)\GLr(Ak)<1

θ(r)
r (h; f∧)µ−1(h)d×h

+

∫
GLr(OAk )

r−1∑
i=0

Vol
(

Mati×(r−i)(k)\Mati×(r−i)(Ak)
)
·Vol

(
GLi(k)\GLi(Ak)=1

)
·

(
Ei(i−

n

2
, (fκ)∧(i,2)) ·

q−σ+n
2−i

1− q−σ+n
2−i

+ Ei(i−
n

2
, (fκ)(i,1)) ·

1

1− qσ+n
2−i

)
dκ.

This gives the meromorphic continuation of E(σ, f) (by induction on r) and (1) holds. In
particular, suppose there is a place v of k such that the support of the restriction of f on
Xr(kv) is contained in the set of elements with rank r in Xr(kv). Then

θr(1, h; f) = θ(r)
r (1, h; f)

and

Ei(i−
n

2
, (fκ)i,1) = 0, ∀0 ≤ i ≤ r − 1.

This completes the proof of (3).

Note that∫
GLr(k)\GLr(Ak)=1

θ(r)
r (h; f)d×h

=

∫
GLr(k)\GLr(Ak)=1

θ(r)
r (h; f∧)d×h

+

∫
GLr(OAk )

r−1∑
i=0

Vol
(

Mati×(r−i)(k)\Mati×(r−i)(Ak)
)
·Vol

(
GLi(k)\GLi(Ak)=1

)
·

(
Ei(i−

n

2
, (fκ)∧(i,2))− Ei(i−

n

2
, (fκ)(i,1))

)
dκ.

Moreover, from (
xi
0

)
=

(
0 Ii
Ir−i 0

)(
0
xi

)
we get ∫

GLr(OAk )

Ei(i−
n

2
, (fκ)(i,1))dκ =

∫
GLr(OAk )

Ei(i−
n

2
, (fκ)(i,2))dκ.
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Thus by induction on r we have

E(σ, f)

=

∫
GLr(k)\GLr(Ak)<1

θ(r)
r (h; f) + θ(r)

r (h; f∧)µ−1(h)d×h

+

∫
GLr(k)\GLr(Ak)=1

θ(r)
r (h; f)d×h

+

∫
GLr(OAk )

r−1∑
i=0

Vol
(

Mati×(r−i)(k)\Mati×(r−i)(Ak)
)
·Vol

(
GLi(k)\GLi(Ak)=1

)
·

(
Ei(i−

n

2
, (fκ)∧(i,2)) ·

q−σ+n
2−i

1− q−σ+n
2−i

+ Ei(i−
n

2
, (fκ)(i,1)) ·

1

1− qσ+n
2−i

)
dκ.

=

∫
GLr(k)\GLr(Ak)<1

θ(r)
r (h; f) + θ(r)

r (h; f∧)µ−1(h)d×h

+

∫
GLr(k)\GLr(Ak)=1

θ(r)
r (h; f∧)d×h

+

∫
GLr(OAk )

r−1∑
i=0

Vol
(

Mati×(r−i)(k)\Mati×(r−i)(Ak)
)
·Vol

(
GLi(k)\GLi(Ak)=1

)
·

(
Ei(i−

n

2
, (fκ)∧(i,1)) ·

1

1− q−σ+n
2−i

+ Ei(i−
n

2
, (fκ)(i,2)) ·

qσ+n
2−i

1− qσ+n
2−i

)
dκ.

= E(−σ, f∧).

Therefore the proof of (2) is complete. �
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