ON THE SIEGEL-WEIL FORMULA OVER FUNCTION FIELDS

FU-TSUN WEI

ABSTRACT. The aim of this article is to prove the Siegel-Weil formula over function fields
for the dual reductive pair (Sp,,, O(V')), where Sp,, is the symplectic group of degree 2n
and (V,Qy) is an anisotropic quadratic space with even dimension. This is a function
field analogue of Kudla and Rallis’ result. By this formula, the theta series is identified
with the special value of the Siegel-Eisenstein series on Sp,, at a critical point.

INTRODUCTION

In the number field case, the Siegel-Weil formula, discovered by Siegel [16] and considerably
extended by Weil ([18] and [19]) in the representation theoretical language, connects special
values of Eisenstein series with theta series from quadratic spaces. In [19], Weil assumed
the critical point in question lies in the absolute convergence of the Eisenstein series. After
Weil, Kudla and Rallis ([9], [10], and [15]) explored the analytic behavior of the meromor-
phic continuation of the Eisenstein series, and extended Weil’s result to the case beyond the
convergence range for the dual reductive pair (Sp,,, O(V)). Here (V,Qv) is a non-degenerate
quadratic space with even dimension, O(V') is the associated orthogonal group, and Sp,, is the
symplectic group of degree 2n. Many extensions and variations of this formula are studied in
the number field case, and have applications to the special values of automorphic L-functions.
However, there is a lack of knowledge about this formula in thg\flmction field context, except,
Harris [4] dealt with (SLg, O(V)) (resp. (SLg, O(V)), where SLy is the metaplectic cover of
SLs) when the dimension of V' is even (resp. odd) and larger than 4. Our purpose in this
article is to show a function field analogue of the Siegel-Weil formula for the dual reductive
pair (Sp,,, O(V)) where V is an anisotropic quadratic space with even dimension, in order
to complete the author’s work ([2], [3], and [17]) on the central critical values of L-functions
coming from ”Drinfeld type” autumorphic forms.

Let k& be a global function field with odd characteristic. Let (V,Qy) be an anisotropic
quadratic space over k with even dimension. Take a Schwartz function ¢ € S(V(Ag)™),
where Ay, is the adele ring of k, the associated theta series on Sp,,(Ax) x O(V)(Ay) is defined
by

0(g,h,0) = > (wlg, h)e)(x), V(g,h) € Sp,(Ax) x O(V)(Ag).
zeV (k)
Here w is the Weil representation of Sp,,(Ax) x O(V)(Ax) on the Schwartz space S(V (Ag)™)
(cf. Section 1.3). Since V' is anisotropic, the following integral is well-defined:

F@w%=/ (g, h,p)dh.
O(V)(k)\ O(V) (Ar)

The measure dh is induced from the Haar measure on O(V)(Ay) normalized so that the
volume of O(V')(k)\ O(V)(Ag) is 1. Then the main theorem of this article is:
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Theorem 0.1. For ¢ € S(V(Ag)"™) and g € Sp,,(Ag),

E(g7 S(n)s (I)Lp) = E(TL) : In(gv 90)
Here:

(i) E(g,s,®,) is the Siegel-Eisenstein series on Sp,,(Ay) associated to the Siegel section
@, (cf. Section 3);
(ii) sy =dim(V)/2 = (n+1)/2; and
(ii)
1 ifdim(V)>n+1,
e(n) = o
2 ifdim(V)<n+1.

Note that s, could be out of the convergence region of the Siegel-Eisenstein series:
Re(s) > (n 4+ 1)/2. In particular, the functional equation of the Eisenstein series relates
the values at s and —s, which means that s(,) = 0 is the central critical point of the Eisen-
stein series when dim(V') = n + 1. This gives an application to the central critical values of
automorphic L-functions. In concrete terms, we express the L-function in which we are inter-
ested by an integral representation involving the Siegel-Fisenstein series. Then at s = s(,),
the theta series I"™(g, @) provides a plenty of arithmetic information and leads us to explicit
formulas for the special values of L-functions in question.

The strategy of the proof for Theorem 0.1 follows from [9]. The first step is to show
that I"(g, ) and E(g,s, ®,) are both concentrated on the standard Borel subgroup of Sp,,
(Proposition 2.3 and 3.2). Then we review the meromorphic continuation of the Eisenstein
series, and make sure that FE(g,s, ®,) is holomorphic at s(,). Finally, we prove the equal-
ity of the constant term of I"(g,y) and E(g, 5(,), ®,) along the Siegel-parabolic subgroup.
Therefore E(g, 8(n), ;) — €(n)I"(g, ) must be a cusp form on Sp,,(A;) which is orthogonal
to all the cusp forms on Sp,,(Ag). This assures the result. It is worth pointing out that the
dimension of V' must be 2 or 4 by Hasse-Minkowski principle. In particular:

e when dim(V) = 2, (V,Qv) = (F,a - Nrpj;) for o € k* where F/k is a quadratic
extension and Ntz is the norm form on F/k;

e when dim(V') = 4 and the discriminant of V' is a square in k, (V,Qv) = (D, Nrp ;)
where D is a division quaternion algebra over k and Nrp /j, is the reduced norm form
on D/k;

e when dim(V') = 4 and the discriminant d of V' is a non-square in k,

(‘/, QV) = (Fg D Do,a . (NrFO/k @NI’Do/k))

for o € k* where F; = k(\/&), D is a division quaternion algebra over k such that
F; cannot embed into D, and

FJ (resp. D°) = {b € F, (resp. D) : Tr(b) = 0}.

This observation simplifies the proof. However, there are several techniques used in [9] which
were not verified in the function field case. Therefore for the sake of completeness, some
further discussions are sought in the appendices, including Fourier coefficients of theta series,
the Jacquet module of the Schwartz space, and Maass-Jacquet-Shalika Eisenstein series on
GL,,. We point out that in the number field case, Kudla-Rallis use a differential operator
(introduced by Maass) at one archimedean place to obtain the continuation and also the
functional equation of the Maass-Jacquet-Shalika Eisenstein series. Our approach is to write
down directly the explicit form of the meromorphic continuation, and the functional equation
shows up accordingly.

The structure of this article is organized as follows. We set up basic notations in Section
1.1 and 1.2, and recall the Weil representation of Sp,,(Ax) x O(V)(Ax) on the Schwartz space



ON THE SIEGEL-WEIL FORMULA OVER FUNCTION FIELDS 3

S(V(Ag)™) in Section 1.3. In Section 2, we introduce the theta series I™(-, ), and show that
it is concentrated on the standard Borel subgroup of Sp,,. In Section 3, we investigate the
analytic behavior of Siegel-Eisenstein series by studying the constant terms along standard
parabolic subgroups. Also shown in Section 3 is that the Eisenstein series are concentrated
on the Borel subgroup of Sp,,. We recall in Section 4 the meromorphic continuation of the
intertwining operators on Siegel sections, and deduce in Section 5 the holomorphic property
of Siegel-Eisenstein series at s(,) by using Maass-Jacquet-Shalika Eisenstein series on GL,,.
Finally, we show the Siegel-Weil formula for the case when dim(V) = n + 1 in Section 6.1,
and prove the other cases by a finite induction process in Section 6.2 and 6.3. In Appendix A,
we follow Rallis [15] to study the non-singular Fourier coefficients of 1" (g, ¢) and E(g, s, ®,).
Appendix B is a review of the Jordan structure of the Jacquet module of the Schwartz space
S(V (ky)™) (where k, is the completion of k at a place v). Finally, we show the meromorphic
continuation and functional equation of the Maass-Jacquet-Shalika Eisenstein series on GL,,
in Appendix C.

1. PRELIMINARY

1.1. Basic setting. Let k be a global function field with finite constant field Fy, i.e. k is a
finitely generated field extension of transcendence degree one over F, and [F, is algebraically
closed in k. In this article we always assume that ¢ is odd. For each place v of k, the
completion of k at v is denoted by k,,, and O,, is the valuation ring in k,. Take a uniformizer
7y in O,. We set F,, := O, /m,0,, the residue field at v. The cardinality of F, is denoted by

¢y. For each a € k,,
|a|v — q; ordu(oz).
The adele ring of k is denoted by Aj. We let Oa,, := [[, O, the maximal compact subring
of Ay. For any element o = (), € A}, the norm ||y, is defined to be

‘a|Ak = H |av|v~
v

We fix a non-trivial additive character ¥ = ®,1, : Ay — C* which is trivial on k (here
Uy (xy) == (0, ...,0,2,,0,...), for all =, in k,).

1.2. The symplectic group Sp,,. For a positive integer n, let

(0 L\ [0 I,
I\-r, o)9=\=1, o) ("

We view Sp,, as an affine algebraic group over k. Let B,, = T), - U, be the standard Borel
subgroup of Sp,, where

Sp,, = {g € GLo,

t
T, = (8 ta01> a= (=: diag(t1, ..., tn)), t;: € G
tn
and
1 *
U, = (8 ta*1> €Sp, |a= € GL,
0 1

A parabolic subgroup P of Sp,, is called standard if B,, is a subgroup of P. The Siegel-parabolic
subgroup P, is equal to M, - N,, where

M, = {m(a) — (g tao_l)

a € GLn}
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N, = {n(b): <Ig IZ) 'b:tbeMatn}.

Sym,, := {b = 'b € Mat,, }.
Note that GL,, and Sym,, are isomorphic to M,, and N,, by the map m and n respectively.
For 0 < r < n we let P, = M, N, be the maximal proper parabolic subgroup of Sp,, where

and

Let

I, T Y z
0 I,., ‘z 0

Ne=31lo o 1, o |€5ap:
0 0 —ty I,_,
a 0 0 0
0 a 0 b a b
M, = 0 0 ta-l 0 a € GL,, <C d) € Spp_r
0 ¢ 0 d

The above description of M, gives us a natural isomorphism between M, and GL, x Sp,,_,.

Let Ngp, (T,,) be the normalizer of T}, in Sp,,. The Wyel group Nsp (Ty)/T, is denoted
by Wsp, . We shall use the same symbol for an element of Ngp, (T),) and its image in Wgp, .
The Bruhat decomposition says that

Sp,= [] BawBn.
’wEWSpn
Let X (T,,) be the group of (algebraic) characters on T,,. Then X(7T,) = @} ,Zx;, where
x; is the character on T;, satisfying
xi(diag(tl, caey tn)) = ti.
We define an R-bilinear form < -,- > on X(7,,) ®z R by setting

1 ifi=jy,
<X T; >= .
0 otherwise,

and extending bilinearly. The left action of Wg, on X(T,) ®zR (induced by conjugation on
T,) is orthogonal with respect to < -,+ >, i.e.,

<wz,wy >=<x,y > forallwe Wy, andz,yc X(T,) 2z R.

The set of roots of Sp,, with respect to T), is denoted by A,,. For each root oo € A,,, let
N, be the unipotent subgroup of Sp,, associated to «, and the reflection associated to « is
denoted by w,. We let A be the set of positive roots (with respect to B,,), and the simple
roots are

ap = T;— T, 1 <<,
o = 2T,

It is known that the Wyel group Wg;, is generated by we, .

1.3. The Weil representation of Sp,, x O(V). Let (V,Qy) be an anisotropic quadratic
space over k which has even dimension. By Hasse-Minkowski principle (cf. Theorem 2.12 and
Section 3.1 in [11]), the dimension of V must be 2 or 4. Set

<33,y >yi= QV(-T+y)_QV(~r)_QV(y)a vxvye‘/a
the bilinear form associated to Qy. The orthogonal group of V' is denoted by O(V), i.e.
O(V)={heGL(V) | Qv(hx) = Qv(z), VYxeV}.

Here we view O(V') as an affine algebraic group over k.
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For each place v of k, we have fixed an additive character v, on k, in Section 1.1. Let
V(ky) :=V ®p k, and let S(V(k,)™) be the space of Schwartz functions on V (k,)", i.e. the
space of functions on V' (k,) which are locally constant and compactly supported. The (local)
Weil representation wy(= wy.,qyp,) of Sp,(ky) x O(V)(ky) on S(V(k,)™) is determined by the
following: for every ¢, € S(V(k,)") and = € V(k,)",

(wo(h)po)(x) = @o(h a1, ....;h  ay,), Yh € O(V)(ky),;

a 0 dim (V)
(wv (0 ta_1> g01,> () = xve(deta)|detal, > - @u(z-a), Ya € GL,(ky);

(o (5 £)e)@ = w(Trace(v- QP (@) ou(e), Wb e Sym, (ko)

n

(o (] §)e)@ = amr-pw.

Here:

o xv.: kS — {£1} is the quadratic character associated to V at v, i.e.
dim(V)
Xvo() = (a,(—l) 2 det(V))v,
where (-, ), 1 kS x kX — {£1} is the Hilbert quadratic symbol and
1
det(V) := det ((5 <@y, >v)1§i,j§dim(v)) € kX /(k*)?

for any k-basis {1, ..., Zqim(v)} of V.

. Q%}l) : V™ — Sym,, is the moment map, i.e. for any « = (z1, ..., z,) € V",

n 1
§,)(z) = <2 < X4, T4 >V>

e , is the Fourier transform of ¢, (with respect to 1, ):

1<i,j<n

L/»51)<37) = / (Pv(y) %(Z < T, Yi >V)dy7 Ve = (3317 7-'1771) € V(kv)n
V(ky)™ i=1
The Haar measure dy = dy; - - - dyy, is chosen to be self dual, i.e.
Py(1) = @u(—2), Ve V(k,)"
e £,(V) is the Weil index of V at v, i.e.

eo(V) = /L o (Qu () da

for any sufficiently large O,-lattice L, in V(k,). The Haar measure dz is also chosen
to be self dual.

We denote xv to be the character ®,xv,, : K*\A; — {£1}.

Fix an arbitrary k-basis A of V. For each place v of k, let ¢©0 be the characteristic function
A? C V(k,)", where A, C V(k,) is the O,-lattice generated by the elements in A. Then for
almost all places v of k, it is known that

Wy (Ko, I@'i,)(pg = 902 V(’fw’ii;) € Sp,,(Oy) x O(V)(Oy).

Let V(Agr) := V @ A, and let S(V(Ag)) be the space of Schwartz functions on V(Ay).
Viewing S(V (Ax)™) as the restricted tensor product ®’S(V(k,)"™) with respect to {¢9},,
we have the (global) Weil representation w = ®,w, of Sp,, (Ax) x O(V)(Ag) on the space
S(V(Ag)™): for every ¢ = ®,p, € S(V(Ar)™) and (g, h) = (gu, hv)» in Sp,,(Ag) X O(V)(Ag),

w(g, h)@ = ®vwv(9va hy) -
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2. THETA SERIES

Take a Schwartz function ¢ € S(V(Ag)™). For (g,h) € Sp,,(Ax) x O(V)(Ag), the theta

series

0(g,h,0) == Y (w(g)p)(h 'x),

zeV (k)"
as a function on Sp,, (Ag) x O(V)(Ag), is left Sp,, (k) x O(V)(k)-invariant. We define

I"(g, ) (g, h,)dh.

’ /0<V><k>\O<V)<Ak)

This integral is absolutely convergent, as O(V)(k)\ O(V)(Ay) is compact. The measure dh
is induced from the Haar measure on O(V)(Ay) which is normalized so that the volume of
O(V)(R)\O(V)(Ag) is 1.

Let P be a standard parabolic subgroup of Sp,,. Write P = M-N, where N is the unipotent
radical of P and M is its standard Levi subgroup. Define

39, ¢) = / I"(ng, p)dn, Vg € Sp,(A),
N(E)\N(Ar)

where the measure dn on N(k)\N(Ay) is chosen so that the total mass is 1. It is clear that
Lemma 2.1. I3 (g,¢) = (w(9)#)(0)-
Let Zjs denotes the center of M, which is contained in T,.

Lemma 2.2. For every standard parabolic subgroup P of Sp,,, there exists a character vp on
Zat(k)\Zns (By) such that for every = € Zar(Ax), g € Spo(Ar), @ € S(V(Ap)"),

It (zg,¢) = vp(2)Ip(g,9).

Proof. Tt is clear when P = Sp,,, as the center of Sp,, is {1}. Next, we consider the case
when P = F,, 0 <r <n. Then M, = GL, x Sp,,_,., and

w(9)(0, A~ z)dh.
eV (k)n—r

Ip (9,9) = /
O(V)(k)\ O(V) (Ar)

Therefore for m = (a,g’) € GL,(Ag) X Sp,,_,.(Ax) = M, (Ay), we get

dim V

I (mg, ) = xv(deta)|detal, > I"7"(¢',9),
where ¢ € S(V(Ag)"") is defined by

P(x) = w(g)p(0, z).
This assures the result for P = P,.

In general, we can assume that P is contained in P,, 0 < r < n, and the Levi subgroup M
of P is isomorphic to

GL,, x---x GL,, xSp,,_,,

where 71 + --- + 1y = r. Note that N = U - N,. where U is a unipotent subgroup of M,..
Therefore

I5(g9,9) = Ip (9, 0),

which completes the proof immediately. ([

The next proposition shows that I"(g, ) is concentrated on the Borel subgroup B,,:
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Proposition 2.3. Take a standard parabolic subgroup P = M - N of Sp,, which is not equal
to By,. Let vp be the character of Zp(k)\Zn(Ay) in Lemma 2.2. Then for every cusp form
f on M(Ay) with central character vp"', ¢ € S(V(Ag)™), and g € Sp,,(A), we have

/ I3(mg, @) f(m)dm = 0.
Zng (Ag)M (k)\ M (Ay)

Proof. Suppose P is contained in P, 0 < r <mn, and M C M, = GL, X Sp,,_,. is isomorphic
to

GL,, x--- x GL,, x Sp,,_,,
where ry + - - -+, = r. From the proof of Lemma 2.2, we have known that for every element
m = (a1,...,as,g') € M(Ag), g € Sp,,(Ag), and p € S(V(Ag)"),

Ip(mg, ) = Ip (mg,¢)

¢
dim V. -
(H xv(deta;)| det a;|,,* ) I""(g', 2).

i=1

(2.1)

Suppose 7; > 1 for some i. Then I is left invariant under U;(Ay), where U; is the unipotent
radical of a proper parabolic subgroup Py of M. Note that for every cusp form f on M(Ay),

/ f(ug)du = 0.
Ui (k)\Ui (Ar)

Therefore (m +— I%(mg, ¢)) is orthogonal to all cusp forms on M (Ay).

In the case when r; = 1 for all 1 < ¢ < ¢, we must have r < n (as P # B,,). From Equation
(2.1) we reduce to the case when P = Sp,,. By Theorem A.5 in the Appendix A, we have
that for every cusp form f on Sp,,(Ax),

/ I"(0.9) 1) dg =0,
Sp,, (k)\ Sp,, (Ak)
This completes the proof. (I

3. SIEGEL-EISENSTEIN SERIES

Let I, (s) be the space of smooth functions ® on Sp,(Ay) satisfying that for elements

g € Sp,,(Ar) and (g ta*1> € Py(Ar),

* s ntl
o (5 15)9) = xwtaetaaeeal;; - afo)

a

For g € Sp,,(A;) and ® € I, (s), it is known that the Eisenstein series
E(g,5®):= >  ®(yg)
YEP, (k)\ Sp,, (k)

converges absolutely for Re(s) > (n + 1)/2. From the Iwasawa decomposition

Sp,,(Ak) = Pu(Ar) - Sp,,(Oay ),

we can extend ® to a standard section (which is still denoted by ®), i.e. for all s’ € C,
a € GL,(Ag), k € Sp,,(Oa, ),

Iy nt1
? ((8 ta*—1> KZ,S/> = xv(deta)|det a@k+ 2 P(k).

It is known that for g € Sp,,(Ax), E(g, s, ®) can be extended to a meromorphic function of
s € C (in fact, a rational function in ¢—*).

In this section, our aim is to show that E(g, s, ®) is also concentrated on the Borel subgroup
B,, for every section ® € I, (s) (in Proposition 3.2).
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3.1. Constant terms of Eisenstein series. Let P be a standard parabolic subgroup of
Sp,,, i.e. P is a parabolic subgroup of Sp,, containing B,,. Then P = M - N, where M is the
Levi subgroup of P and N is the unipotent radical of P. For g € Sp,,(A;) and ® € I, (s),
the constant term of E along P is defined by

Ep(g,s,®) := / Ep(ng, s, @)dn.
N(k)\N(Ar)

Here the measure dn is induced from the Haar measure of N(Ay) normalized so that the
volume of N(k)\N(Ay) is 1. Let Wy be the Weyl group of M with respect to T},, and denote
by AL the set of positive roots with respect to the Borel subgroup B, N M of M. Then it
is known that

W, v = {w € Wep [w™'a € Af for all a € A, | and wa € A for all @ € A}, }
forms a set of double coset representatives of Wz, \Wsp, /Way.

Lemma 3.1. For eachw € Wy, ar, let M) := w™ ' P,wNM and N!! := w™'P,wNN. Then

EP(gvstI)) = Z Z (I)w(’ylg) )

wEWn,, ,m \v' €M (E)\M (k)
where

D,(9) := O (wng)dn.

/N{U'(Ak-)\N(Ak)

Proof. Note that Wy, a also forms a set of double coset representatives of P, (k)\ Sp,, (k)/P(k).
Moreover, for each w € Wy, a we have the following bijection

(N (B)\N (k) x (M, (k)\M (k)) = w™" P(k)w 0 P(k)\P(k).
Therefore
FEp(g,s,®) = P (wywng)dn
(g, 5, ) /N(k)\N(Ak) > > (wywng)

wE Pr (K)\ Sp,, (k)/ P (k) vw €w ™" P (k)wNP(k)\ P (k)

— Z Z / Z ®(wn'y'ng)dn

WEWnr, v \y €M (k\M (k) T NENNAE) e o)\ N (k)

It is observed that

/ ®(wn'y'ng)dn
N \N(Ak) n EN”(k))\N(k)
= / Z ®(w(n'n)y g)dn
NN (AE) 17 e N7z (k)\N (k)

w

('9)-

= / & (wnvy'g)dn
b (K)\N (Ar)
= ¢,
The last equality is from
d(wng) = ®(wg), Vn" € N/'(Ag).
(]

For w € Wy, ., there exists a character u,, on M) (Ay) trivial on M/ (k) such that for
m € M (Ag)

D (mg) = frw(m) Py (g).
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Note that M/ is a standard parabolic subgroup of M (with respect to B, N M) for any
w € Wy, a- Let vy, be the restriction of p,, on the center Zys(Ax) of M(Ay). Then we can
write

EP(gvsv(I)) = Z EP,V(gvsa(I))y

character v on Zns(Ay)

where

Ep,(g,s,®) := Z Z @y (v9)

wEWN, M vw=v \YEM(k)\M (k)

Since pu,, is trivial on Upsr(Ag) where Uy is the unipotent radical of M, when M, # M
and we take Uy = B, N M if M;; = M, we have the following result.

Proposition 3.2. Suppose a function ® € Iy, (s) and g € Sp,,(Ar) are given. Let P 2 B,
be a standard parabolic subgroup of Sp,,. Then for any cusp form f on M(Ay) (where M is
the Levi subgroup of P) with central character v—!, we have

/ EP»V(mga S, (I))f(m)dm = 0.
Zn (M) M (k)\M (Ar)

Corollary 3.3. For every section ® and every standard parabolic subgroup P of Sp,,, E(g, s, ®)
and Ep(g, s, ®) have the same set of poles. More precisely, for sg € C, let

ords—s, E(-,5,®) = min ){ords:S0 E(g,s,®)}

9ESP,, (A
and
ords—s, Ep(-,8,®) = min {ords—s, Fp(g,s,P)}.
9E€SP,, (Ak)
Then

ords—s, E(-,8,®) = ords—s, Ep(-, 8, P), Vsoe€C.
Proof. From the definition of Ep(g, s, ®), it is clear that
ords—s, Ep(+,s,®) > ords—s, E(-, 5, D).

Write P = M - N, where N is the unipotent radical of P and M is the Levi subgroup. We
also have

Ords:sg EBn ('a S, q)) > Ords:so EP('; S, (I))7
as for every g € Sp,,(Ay)

Ep,. (9,5, ®) = / Ep(ng,s, ®)dn.
By (k)N (Ak)\Bn(Ak)

It suffices to show that
ords—s, E(-,s,®) > ords—s, EB, (-, 5, D).

Let ¢ = ords—s, E(-,5,®) and ¢ = ords—s, Ep, (+,s,®). If £ < ¢, then the function
f(g) :=limg_, (s — s0)"“E(g, s, ®) would have

IB.(9) = / flug)du = 0.
Un (K)\Un (Ak)

By Proposition 3.2, f is also concentrated on B,,. Therefore f = 0 (as f is a cusp form on
Sp,, (Ag) which is also orthogonal to all cusp forms). Therefore the proof is complete. O
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a  *
0 ta—l
a € GLy,(Ay) and & € Sp,,(On, ), set s5(,) := dim(V)/2 — (n +1)/2 and

(g, 5) = |detaly, " - (w(g)¢)(0).

Then @, is in I, (s). We call @, the Siegel section associated to ¢ and E(g, s, ®,) the Siegel-
Eisenstein series associated to . To show that E(g,s,®,) is holomorphic at s = s, for
every Siegel section ®,, by Corollary 3.3 it suffices to get

ords—s,, Ep,(-,5,®,) > 0.

Take a Schwartz function ¢ € S(V(Ag)™). For any g = -k € Sp,,(Ay) where

In the next two sections, we study the analytic behavior of Ep, (g,s, ®,) at s = s(,), and
prove its holomorphic property.

4. THE ANALYTIC BEHAVIOR OF Ep (g,s,®,) I: INTERTWINING OPERATORS

For 0 < r < n, let
I O 0 0
w. 0 0 0 I € Sp
n 0 0 I, O "
o -I, 0 0
Then {wo, ..., w,} is a set of double coset representatives of Wi, \Wsp, /Wy, , and we have
Sp,, = [1I_o PawyP,. Moreover, M} = w'Pyw, N M, ={m(a) : a € Q,} where

Q= {(g ;) e GL,,

Ngr =w, 'P,w, NN, = {n (ty 8) ’ y € Sym,,_,., 2z € Mat(nT)Xr} ,

3

a€GL,_,, de GLT} ,
and

z

N/ \N, & N := {n (8 2) ’bESymr}.

Here m and n are the isomorphisms introduced in Section 1.2.

Take a section ® € Iy, (s). By Lemma 3.1, we can write Ep,_ (g, s, ®) as

Y ER)g.5,9),
r=0

where

E}(;:L)(g7s7®) = Z o™ (m(7)g, s)
YEQr(k)\ GL (k)
with
@(T)(g,s) ::/ ®(w,ng, s)dn.
N7(Ax)
Notice that
g (9.5,9) = ®(g,5),  Ep)(9,5,9) = (M(s)®)(g, s)

where M (s) : Ia, (s) — I, (—s) is the intertwining operator defined by

(M(s)®)(g,s) == / ®(wyng, s)dn,

N (Ak)

and

ar EY)(m(a)g,s,®), Va € GL,(Ar)

is an Eisenstein series on GL,(Ay) for 0 < r < n.
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In this section, we review the meromorphic continuation of the intertwining operator M (s),
and show that EI(;;) (9,5, ®) is holomorphic at s = s,y when ® = @, is a Siegel section.

4.1. The intertwining operator M (s). For each place v of k, let I,(s) be the space of

smooth functions ®, on Sp,, (k,) satisfying that for g € Sp,,(k,) and <8 ta*1> € P,(ky),

a * s+l
o <(O ta,—1> g) - XV,v(det a)|deta|v+ 2 (I)v(g)'

Given @, € I,,(s), we can extend ®, to be a standard section, i.e. for s’ € C,
a * s'+oft
®, 0 ta-1)fv) = Xv,v(det a)|det aly D, (ky), Va € GLy(ky), Ky € Sp,,(Oy).
Define the intertwining operator M,(s) : I,(s) — I,(—s) by
Mv(s)q)v(g) ::/ (I)v(wnnvg)dnv7

which converges when s > (n — 1)/2. We state the known facts we need in the following:

Lemma 4.1. (cf. [5]) Let

n+1 [n/2]
Un o (8) == Ly(s + — N, XV,v) H Chw(28 —n + 20)
i=1
and
n+1 [n/2]
bnﬂ)(s) = LU(S + T7XV,U) H Ck,'u(23 +n— 2+ 1),
i=1
where
Ck,v(s) = (1 - qv_s)_l and Lu(&Xv,u) = (1 - av(XV,v)Qv_s)_l
with

Jxve(m), if xve is unramified,
av(XV,v) = .
0, otherwise.
(i) For any standard section ®, € I,(s) and g € Sp,,(ky),
1
.o (5)
can be extended to an entire function of s.

(ii) Suppose xv., is unramified. Let ®°(g,s) € I,(s) be the standard section such that

fI)?,(/%,s) =1, V&, € Sp,(0y).

M,(s)®,(g,5)

Then we have
an,v(8)
bnw(S)

Recall that Iy, (s) is the restricted tensor product of I,(s) with respect to {®)}. We
normalize the Haar measure dn, on N, (k,) such that vol(N,(0,)) =1 for almosrt all places
v and the Haar measure dn = [], dn, on N,(Ay) satisfies vol(N, (k)\Nn(Ag),dn) = 1.
Then M(s) = ®M,(s), which converges absolutely on Re(s) > (n + 1)/2. In particular, for
a factorizable section ® = ®,P, € I, (s), let X(®,dn) be the finite set of places v of k
such that ®, # ®% or vol(N,(0,),dn,) # 1. Then by Lemma 4.1 (ii), M(s)®(g,s) can be
expressed by

an(s)

by (s)

MU(S)q)g(gvs) = VOI(NR(OU)’dnU) : ’ (I)g(gv _5)’ Vg € Spn(kv)

bn,o(s)
N (®vgs(@,dn) P0Gy, —5)) @ <®UEE(¢’d”)av(s)

M50, (0,.5)) |
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where
an(s) := Hanw(s) and  by(s) := an,v(s).
By Lemma 4.1 (i), we have the meromorphic continuation of M (s)®(g,s) for each element
g < Spn (Ak)
Lemma 4.2.

(i) Suppose xv is non-trivial. Then when dim (V') = 2 we have

an(s) 0, ifn=1,
ords—g = .
™ b (s) +1, ifn>1;
when dim(V) = 4,
0, ifn=1 or3,
ordg—, GL(S)Z -1 ifn=2
8=5(n) bn(s) 9 ’

1, ifn > 3.

(ii) When v is trivial, we have dim(V') = 4 and

-1, ifn=1,

ord,_, an(s) _ )2 ifn=2
™ bn(s) |0, ifn=3,

+1, ifn>3.

Recall that S(V(Ag)™) can be viewed as the restricted tensor product ®,.S(V (k,)™) with
respect to {0}, where the functions ¢ are chosen in Section 1.3. Suppose a factorizable
Schwartz function ¢ = ®,¢, € S(V(Ay)") is given. Then the associated section ®, = ®,P,,,
is also factorizable.

Proposition 4.3. For each place v of k,
bnw(S)
Anp(8)

is holomorphic at s = s, for all g € Sp,,(k,) and @, € S(V(ky,)").

My (5)®q, (gu, 5)

Remark. The above proposition does not hold for all sections of I,(s) in general, as

-1, ifdim(V)<n+1,

ds:s bnv =
Ords=s(s) br.o(5) {o, if dim(V) >n + 1.

Proof. We define an intertwining operator T}, from S(V (k,)") to I,(—s(y)) (as representations
of Sp,, (kv)) by

1
an,v(s(n))
When dim(V) < n + 1, this intertwining operator T,, must be zero by the following lemma
(Lemma 4.4), which tells us that an ,(s)"' My no(s)Py, (9, 5) has a zero at s = s(,,) for all
w € S(V(ky,)") and g € Sp,, (k). Therefore the result holds.

Oy —> My (5(n)) Py, -

Lemma 4.4. Let
{(n,v) := dimc Homgy (k,)x0(V)(ky) (S(V(kv)”)Jv(*S(n)) ® 1),

where 1 is the trivial representation of O(V)(k,). Then
(i) When dim(V) < n+ 1, we have £(n,v) = 0.
(ii) When dim(V) =2 and n =1, {(n,v) < 1.
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(iii) When dim(V) =4 andn =1 or 2,

U, v) < n, zf V(ky) %s zso?mpzc,l
0, if V(ky) is anisotropic.
(iv) When dim(V) =4 and n = 3, we have {(n,v) < 1.

Proof. This is a consequence of Proposition B.1. The proof is given in Appendix B (cf.
Corollary B.3 and Remark B.4). O

The above lemma implies immediately that:

Corollary 4.5. If dim(V) > n+1 and {(n,v) = 0, then the meromorphic function

bnﬂ,(s) S S
o (8) Mn,n,v( )(I)go(ga )

has a zero at s = s,y for all g € Sp,,(ky) and ¢ € S(V(k,)").

Recall that given ¢ = ®,¢, € S(V(Ag)™), M(s)®,(g,s) can be expressed by

B (50, 509 |

no(8)
Note that when dim (V) = 4 and v is non-trivial (resp. other cases), there exists at least one
(resp. two) places of k such that (V, Qv ) is anisotropic over k,. Since any Schwartz function
v € S(V(Ag)™) is a linear combination of factorizable functions, we finally arrive at:

an(S
b ((5)) . (®u¢2(¢>¢,dn)®?ou (gvv_s)) ® <®UEE(©‘P”’dH)

Proposition 4.6. For each Siegel section ®, € Ia, (s), M(s)®,(g,s) is holomorphic at
5= 8(n) for all g € Sp,,(Ay,). Moreover,
M(5(2))Pp(9,5(m)) =0  for all g € Sp,,(Ag)

except for the following cases:

(i) when dim(V) =2 and n = 1;

(ii) when dim(V) =4 and n =2 or 3.
4.2. The intertwining operator M, ,.(s). Fix an integer r with 0 < r < n. We consider
the standard parabolic subgroup PT(LT) = M,(f)NT(LT) contained in P,,, where the Levi subgroup
My(f) C M, is equal to

(5 )

For each pair of Hecke characters p; and pp on k*\A}, Let I, ,(u1,pn2) be the space of
smooth functions f on Sp,, (Aj) satisfying that for (a1, a2) € GL,,—, x GL, and n’ € N,

detayl, >
F(m (o) aa) = m(onmatan o)

=y
|det ag|,?

ay € GL,_,, as € GLT} .

For a section @ € I, (s), define
M, »(s)®(g,s) ::/ @ (w,ng, s)dn,
N/ (Ar)
where the Haar measure dn is normalized so that the volume of N/(k)\N/(Aj) is 1. When
Re(s) > (n+1)/2, it is clear that M, ,(s)®(-,s) is a section in I, ,(s), where
s—L —s+ 2T
In,r(s) = In,T(|.|Ak27"|Ak 2 )

We also set I, o(s) = I, (s) and I, n(s) = Is,(—s), and M, ,(s) := M(s) introduced in
Section 4.1.
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For any x € Sp, (04, ), let p(k) denote the left action of k by right multiplication on
Ip, (s) and I, -(s). This action is independent of s. Let ® € I, (s) be a standard section.
Given k € Sp,,(Oa, ), let @' := p(x)®P, which is also a standard section. Define the inclusion
i:Sp, — Sp,, by

Iy
a b a b
(c d) — In_»
c d

Then we have the following commutative diagram:

M, (s
I,,0(s) 4()> I, ()

InO(S/) IT,T(S/)

Mrm(s/)
where s’ = s 4 25T, For each g € Sp, (Ax), write g = n(b)m(a)s where n(b) € Np(Ay),

a= (%1 :) € Qr(Ay), and s € Sp,, (04, ). Then
2

s+ n;»l

_spntl
M, (s)®(g,s) = |det a1|Ak - | det a2|A:+ 2 My (s)(p(r)®)(1, )
s4ntl —s+ 2L YL !
= Jdetarl]T - Jdetagl T My () (i (0(0)D)) (1, 8).
This gives the meromorphic continuation of M, ,(s)® for each standard section ®, and
Ords:s(n) Mn,r(s)q)(ga 3) = Ords’:s(r) MT,T(S/) (i*(p(ﬁ,)q)))(l, 8/)'

In particular, suppose ® is factorizable. Write & = ®,®,,. Recall that 3(®, dn) is the finite
set of places of k such that ®, = 9 and vol(N,,(0,)) = 1 when v ¢ X(®,dn). Then M,, .(s)®
is equal to

byu(s")

: [( Qv s (,dn) <I>2> ® (®vez(<1>,dn) am(s,)Mn,r,v(s)q)v)] .

5. THE ANALYTIC BEHAVIOR OF Ep, (g,s, ®,) II: MASS-JACQUET-SHALIKA EISENSTEIN
SERIES

Recall that when Re(s) > (n+1)/2, for g € Sp,,(Ax) and a section ® € I, (s) we defined

EY)(g,5.@) = > 2" (vg,s)
'YeQr(k)\ GLn(k)

where ®()(g,s) = M, ,(s)®(g,s) € I.,(s). The discussion in Section 4.2 gives us the
meromorphic continuation of ®(). Moreover, for each g € Sp,,(Ag), the function (a —
Egn) (m(a)g, s, ®)) can be viewed as a Mass-Jacquet-Shalika Fisenstein series on GLy, (Ag).
In this section, we recall the analytic behavior of this kind of Eisenstein series, and show that
EI(DTn) (m(a), s, @) is holomorphic at s = s, for every a € GL,(Ay) when ® = &, is a Siegel
section.

Fix an integer r with 0 < 7 < m. Set X, := Mat,«, (as an affine space over k). Let
1, p2 be two Hecke characters on k*\A;. For any g € GL,(Aj) and Schwartz function
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f € S(X,(Ag)), define
F(g) = F(g,u1, 2, ) := p1(det g)| det g&f/(; " )f(h_l(O,Ir)g)M_l(det h)d* h.
Ly (Ag

Here p = u1u51| : |X£2 and the Haar measure d*h is normalized so that the volume of

GL,(Oy,) is 1. This integral is absolutely convergent if |uypy | = | - |7, where 0 > 1 —n/2.

Recall that
_ al *
{3 i)eon

For g € GL,,(Ag) and b = (%1 :) € Q-(Ag), we have
2

ay € GL,_,, as € GLT} .

F(bg) = m(det ar)po(det a)dg, (b)/*F(g)
where 0, (b) = |det a1|g{€2 - | det a2|gk_n)/2. The Maass-Jacquet-Shalika Eisenstein series
associated to f, p1, pe is defined by

E(g,p, pa, f) = > F(yg).

’YEQT(k)\ GLn(k))

This series converges absolutely when |15 !4, = ||, with o > n/2. The following theorem
gives us the meromorphic continuation of such Eisenstein series (the proof is given in Theorem

C.3):
Theorem 5.1. Suppose -,u;l = |j§k Then

(1) (Continuation) E(g, p1, k2, f) can be extended to a meromorphic function in o (in

fact, a rational function in ¢~%), and every possible pole can only be a simple pole.
Let P(c) := Pt (o) - P~ (o), where

r—1

P*(o) = [[(1 - g o*E79).
=0

Then P(c) - E(g, 1, pe, f) is entire.
(2) (Functional equation) For each f € S(X,(Ag)), we have

E(g,p1,pi2, f) = E('g™  uy st f)

where f is the Fourier transform of f:
f@)i= [ (- Trla"y)d.
XT(Ak)

The Haar measure dy is chosen to be self-dual, i.e. f(z) = f(—z).
(3) Suppose that there exists a place v of k such that the support of the restriction of f
on X.(ky) is contained in the set of elements with rank r in X,.(k,). Then

P (o) E(g, 1, 2, f) is entire.

Now, we set

pn=rtl gyl
s =l = and pog = [0 7
Let fnﬁr(s) be the space of smooth functions ¥ on GL,(Ay) such that for every element

p= “01 *) € Qr(Ay) and g € GL,(Ay),
az

U(pg) = p,s(det ar) - pa s (det ag) - (| det af, - \detaﬂg) - U(g).
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It is clear that I, ,(s) = &/ I,,.(s), and given f = ®,f, € S(X,(A})) = ®S(X,(k,)) we
have,
F(gv H1,s5 12,5, f) = ®UE)(gva H1,5,05 H2,5,v5 fv)
for g = (gv)v» € GL,(Ag). Here
Fy(gv, H1,s,05 H2,5,05 fo) = ﬂl,s,v(det guv)| det 9v|:;/2 / k) fv(hgl((), Ir)gv)ﬂgﬂl;(hv)dxhv
Xy (ko

n/2

and s, = M1, 'M;,i,v - We have (cf. Lemma C.2)

Lemma 5.2. (1) For any standard section ¥, € fn,m(s), there exists a Schwartz function
f on X, (k,) supported on elements of rank r such that

Fv (gv7 H1v,s5 H2,0,s5 fv) = \I’v (gU7 S)-
(2) Let fO be the charateristic function of X,.(O,). Then

Fq())(gv) =F, (ga H1,s,05 12,505 fq[;)) = H Cv(25 —2n—r— Z)\I’g

where W9 € fIVn,m(s) is the standard section such that

0(k,) = 1, Yy € GLo(O).

For any ® (res. ®,) € I,,.(s), we denote by ® (res. ®,) the restriction of ® (res. ®,) on
M, (Ag) (Mn(ky)). Then via the isomorphism m between GL,, and M,, d (res. ®,) can be
viewed as a function in Inm( s) (res. I, M( ))- Let ¢.(s) :=[], ¢rv(s) where

Cro($) = H Cho(2s +n —1 —1).
i=0

For each factorizable Schwartz function ¢ = ®,¢, € S(V(Ag)™), from the discussion in
Section 4.2 and Lemma 5.2 we get

ar(s o byy(s') —_—
= <( Qugs(®,,dn) \va> ® (@vez(%,dn) mMn,r,v(S)(btpu)

Crv(8)bru(8) —_ )

Mn'f‘v @
A (s") () “0”)

where s’ = s+ (7" —n)/2, B(®,dn) is the finite set of places v of k such that ®, # @Y or
vol(N,(0y)) # 1, and FO% = ®v¢2(q>¢7dn)F3'

Lemma 5.3. For any ¢, € S(V(k,)"), there exists a finite collection of standard sections
®J in I,(s) such that

br,'u(Sl) - B br,v(Sl) /-\_; ; . ; o
am(s/)Mn,r,v(s)qhov (M, 8) = EJ: (aT,U(s’)M"’T’”( YBI(1, )) W (1m0, 5)

<F0W ® ( Quex(d,,dn)

for all m, € M,,(k,), where ¥J € Tnmv(s) s a standard section for each j.
Then Lemma 5.2 and 5.3 lead us to the following result:

Proposition 5.4. (1) For each Siegel section ®,, € I,(s), there exists a finite collection of
Schwartz functions f, ; € S(X,(ky)) such that

Cro(8)bru(s)) M Z 5
— n,r, 71 v ] v,j9

arw(s')
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where for each j, By, ; is a rational function in q¢—°

E),j (gv) = F(gv7ﬂll,s,1)7ﬂ2,s,va fv,j)7 fO’I‘ go € GLn(kv)

(2) Moreover, suppose ar,(s') " My ro(5)Py, (g0, 8) has a zero at s = s(,) for all elements
9v € Sp,,(ky). Then we are able to choose suitable f, ; and B, ; such that either 5, ; has a
zero at s = s for all j or the support of f, ; is contained in the set of elements of rank r
in X, (k) for all j.

which is holomorphic at s = sy, and

The above proposition describes the analytic behavior of the local factors at each place
v € X(®y,,dn). Immediately, we have

Corollary 5.5. For any factorizable ¢ = Q,p, € S(V(Ag)™), there exists a finite collection
of Schwartz functions f; € S(X,(Ag)) such that

=y ar T ar(sl) ) )
(I)Sa) = Mn,T(s)(I)g, = W zj:ﬁ] (S)FJ (s)

S

where for each j, B; is a rational function in q—* which is holomorphic at s(,), and FJ s the

section of fn,r(s) corresponding to f;.

5.1. The order of Egg(m(a),s,@@) at s = s(,,) for 0 < r < n. By Corollary 5.5 we have
that for a € GLa(Ay),

El({n)(m(a%'s’q)“’) = m : Zﬂj(s) ' E(ahu“LSuu‘?,Svfj)-

Recall that s(,) = dim(V)/2 — (n+1)/2, s' = s+ (n —r)/2, and

1 [r/2]
ar(s) = L(s+ —roxv) [ ¢r(2s —r+2i),
i=1
[r/2]
r+1 .
br(s) = L(S+T7XV) };[1 Ck(23+T_2’L+1)a

r—1
cr(s) = H C(2s+n—1r—1i).
i=0
Therefore
+2, if dim(V) =4 and r = 2,
ords—s,, cr(s)"h =< #1, if (dim(V),7) = (2,1) or (4,3),
0, otherwise.

By Lemma 4.2 we have

1) and xv is trivial,
1) and xy is non-trivial,
4,2) and xy is trivial,

+1, ifdim(V) =
Moreover, by Theorem 5.1,
-1 if (dim(V),r) = (2,1), (4,2), or (4,3),
ords=s,, E(a, pi1,s; p2s, f5) > § =1 if n =2 and (dim(V),r) = (4,1),
0 otherwise.
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Suppose dim(V') = 2. Then EI(:) (m(a), s, ®,) is holomorphic at s = 5(,,) and vanishes when

r > 1. Suppose dim(V) = 4. We have that El(fn) (m(a), s, ®,) is holomorphic (resp. vanishes)
at s = 8¢,y when r = 3 (resp. r > 3). Suppose r = 1 or 2. Since (V,Qy) is anisotropic over
k, there exists at least one (resp. two) place v of k such that (V,Qy) is still anisotropic over
k, when dim(V) = 4 and xv is trivial (resp. other cases). Therefore by Lemma 4.4 (ii) and
Proposition 5.4 (ii), we always can choose ; such that

ords—s,, B > 1 (resp. 2).

Therefore El(fn) (m(a),s, ®,) is still holomorphic at s(,) and vanishes for the case when 7 = 2
orn—1>r=1. We conclude that

Proposition 5.6. Fiz an integer r with 0 < r < n. For each a € GL,(Ay), EI(IH) (m(a),s, ®,)
is holomorphic at s = s(,). Moreover, El(grn) (m(a), s(n), ®,) = 0 except for the following cases:

(i) when dim(V) =2, r=1;
(ii) when dim(V) =4, n=2=r+1;
(iii) when dim(V) =4, r = 3.

Together with the result in Proposition 4.6, we obtain:

Corollary 5.7. For 0 <r <n, Egn) (m(a), 8(n), ®,) = 0 except for the following cases:

(i) when r =0;

(ii) when dim(V) =2, n>r=1;

iii) when dm(V)=4,n=2>r>1;
iv) when dim(V) =4, n >r = 3.

(
(
6. SIEGEL-WEIL FORMULA
The aim of this section is to prove the Siegel-Weil formula over function fields:
Theorem 6.1. Let ¢ € S(V(Ag)™). Then for g € Sp,,(Ax),
E(ga S(n)7 écp) = e(n) ' I(gv 90))
where 8(y = dim(V)/2 — (n 4 1)/2 and
1 ifdim(V)>n+1,
e(n) = o
2 ifdim(V) <n-+1.

The proof is divided into three cases:
(i) dim(V) =n+1;
(ii) dim(V) > n+ 1;
(iii) dim(V) <n+ 1.
We deal with these cases in Section 6.1, 6.2, and 6.3, separately.
6.1. Special case: dim(V) =n+ 1. We first show that
Lemma 6.2. When dim(V)=n+1,
M(0)®y,(g,0) = D, (g,0)

for every Stiegel section ®, and g € Sp,,(Ax) when dim(V) =n+ 1. In particular, for every
a € GL, (Ak),

Ef) (m(a),0,®,) = (M(0)®,)(m(a),0) = @, (m(a), 0) = (w(m(a))p)(0).



ON THE SIEGEL-WEIL FORMULA OVER FUNCTION FIELDS 19

Proof. For each place v of k, the maps

bnv(0
T = (v #,(,0) and Ty = (= L0, 0)8,(,0)
are both lie in Homg, (x,)x0(v)k,)(S(V (ky)"™), 14, (0) ® 1). Lemma 4.4 implies that there
exists p, € C such that T5, = p,T1,,. Recall that for every ® = ®,®, € Iy, (s), M(s)®(g, s)

can be expressed by

an(s) bnv(8)
’ M, (s)®, (g, .
bn(s) an,v(s) ¢ (S) U(gT 8)
Hence we can find p € C such that M(0)®,(-,0) = u®,(-,0) for every p € S(V(Ar)"). It is
known that M(0) o M(0) : I, (0) — I, (0) is the identity map. Thus y = +1. By Theorem
A 4, we can choose a Siegel section @, such that the Siegel-Eisenstein series E(-,0, ®,) is not
zero. Its constant term Ep, (g, s, ®,) is equal to

Dy(g,0) + M(0)y(g,0) = (1 + 1) (w(g)¢)(0).

Suppose p = —1. Then Ep, (-,0,®,) = 0. By Corollary 3.3 we have E(-,0,®,) = 0, which
gives us a contradiction. Therefore u = 1 and the proof is complete. O

| (Ovgs(@,dn) P0Gy, —5)) @ <®vez(q>,dn)

Corollary 6.3. The Siegel-Weil formula (Theorem 6.1) holds when dim(V) =n + 1.
Proof. It suffices to show that for ¢ € S(V(Ay)") and g € Sp,,(Ag),

(6.1) Ep,(9:5m), ®p) = 2-1Ip,(9,9)

Indeed, Proposition 2.3 and Proposition 3.2 say that E(g, s(,), ®,) and I(g, ) are both con-
centrated on the Borel subgroup B,. Then by (6.1), it can be shown that E(-,s(,), ®,) —
2I(-, ) is a cusp form on Sp,, (Aj) which is also orthogonal to all the cusp forms on Sp,,(Ag).
Therefore the result holds.

Note that

EB” (ga S(n)v(btp) = EP7L(Ug7S(n)7(I)50>dU

/UMn(k)\UMn(Ak)
and

Ip, (9,0) = Ip, (ug, p)du

/UIVIn(k)\UIVIn (Ak)
where Uy, = U, N M,. Write g = n(b)m(a)x where n(b) € N,(Ag), m(a) € M,(A),
K € Sp,,(Oa, ), then
Ep,(9,5(n): ®p) = Ep, (m(a), (n), Pus(ie)p)
and
(w(9)#)(0) = w(m(a)) (w(x)p)(0).
To show (6.1), it is enough to prove that for every ¢ € S(V(A;)") and a € GL,,(Ay),
Ep,(m(a), s(n), ) = Pp(m(a),0) + M(0) Py (m(a),0) = 2(w(m(a))e)(0).
Therefore Lemma 6.2 completes the proof. (]

6.2. Special case: dim(V) > n+ 1. Let ¢o € S(V(Ag)) such that ¢o(0) = 1. For every
0 € S(V(AR)"), take ¢ := o ® p € S(V(Ag)"*1). Then it is clear that for g € Sp,,(Ax),

(1"®5)(g, 5) = Pg(i(g), s — 1/2) = Dy (g, 5),
where ¢ : Sp,, < Sp,,; is the embedding introduced in Section 4.2. Consider the max-

imal standard parabolic subgroup P of Sp,,; whose Levi subgroup M; is isomorphic to
GL; x Sp,,. By Lemma 3.1, we have
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Lemma 6.4. For every standard section ® € Igzrl(s) and g € Sp,,(Ak),

1 1
EE(i(g),s,®) = E"(g,s + =,i*®) + E"(g, =

5 5~ 8,1 Mp11(5)®).

Proof. By Lemma 3.1, we get

1 1
B (ilg), 5, @) = B"(g,5+ 5,8"®) + E" (9,5 — 5,i"®u).
where
0 0 1 O
_ 0 I, 0 O
w=wpw, = 1 0 0 0 € Sp,, 11 (k).
0 0 0 I,

Recall the functional equation of Siegel-Eisenstein series:
E"(g,s,®) = E"(g,—s, M (s)®), Vg€ Sp,(Ag), ¢ € I, (s).

By straightforward calculation, M, (s — 1/2)(i*®,,) = i*(My41(s)®). Therefore the result
holds. O

When dim(V) =4 and n = 2, by Lemma 6.2, it can be observed that for every g € Spy(Ay)
E*(g, %,i*Mg(O)q)@) = E*(y, %,i*%).
In particular,
B3, (i(0),0, ®5) = 25%(g, ., i°®5) = 26%(g, 1, @,.).
On the other hand, by Corollary 6.3 we get
E}, (i(9),0, ®g) = 21}, (i(9), #) = 2 (9, ¢).

Therefore
Corollary 6.5. The Siegel-Weil formula (Theorem 6.1) holds when dim(V) = 4 and n = 2.

When dim(V) =4 and n = 1, by the same argument in Corollary 6.3, it is enough to show
that for a € GL1(Ag)

Ep,(m(a),0,®y) = (w(m(a))p)(0).
By Corollary 5.7 we have E}}l) (m(a),0,®,) = 0. Hence
Ep,(m(a),0,8,) = Ep) (m(a),0,8,) = (w(m(a))¢)(0).
We conclude that
Corollary 6.6. The Siegel-Weil formula (Theorem 6.1) holds when dim(V) > n + 1.

6.3. Special case: dim(V) < n+ 1. Set £ :=n+ 1 —dim(V). The case when ¢ = 0 was
shown in Corollary 6.3. The remaining case is proven by an induction process on /.
By the same argument in Corollary 6.3, we only need to show that for a € GL, (Ag)

Ep, (m(a), $(n), Py) = 2(w(m(a))¢)(0).
Note that when dim(V) < n + 1, by Corollary 5.7 we have that for a € GL,,(Ag)
dim(V)—
Ep, (m(a), 5(n), @) = @, (m(a), sn)) + B 7 (m(a), 500, @,).

Then it is clear that (a = Ep,(m(a), sm), <I>¢)) is concentrated on the Borel subgroup of

dim(V)

GL,,. On the other hand, the function (a — xv(a)| det(a)ly, ® ©(0)) is also concentrated
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on the Borel subgroup of GL,,. Therefore it is enough to show the equality for their constant
terms (along Q,,—1):

dim(V)
(Er,)q, . (m(a), 50, ®,) = 2xv(a)| det(a)],*  (0).

Here Q,, 0 < r < n, is the maximal parabolic subgroup of GL,, introduced in Section 5.
Without loss of generality, we only need to consider the case when

a € GLn_l(Ak) — GLl(Ak) X GLn_l(Ak).
Note that Q,_1 C P N P,, and
(EPn)Qn71 (m(a')a S(n)>» q)ip) = (EPI)PS:f (m(a)v S(n)s (I)sa)'

Here P:_—11 is the Siegel parabolic subgroup of Sp,,_;. By Lemma 6.4, we have that for
a € GLn_l(Ak).

n— - n— 1 -
EP] (m(a)as(n)7q)tp) =K 1(‘“(6075(7171)7Z (I)K,D) +F 1(m(a‘)7§ — S(n),? Mn(s(n))q)ip)

Since My(s)®, =0 when s = s,y and £ > 0, it is observed that for a € GL,,_1(Ax),

n— 1 -k
E 1(m(a), 5 — S(n), 1 Mn(S(n))fpw) =0.

By induction we have that for a € GL,,—1(Ag),

dim (V)

(Er,) g, (@), 50 @) = (Bp,) s (mla), 500y, @) = 2xv(@)] det(@)],* (0),
Therefore we conclude that

Corollary 6.7. The Siegel-Weil formula (Theorem 6.1) holds when dim(V) < n + 1.

APPENDIX A. FOURIER COEFFICIENTS OF THETA SERIES

Let f be an automorphic form on Sp, (Ay). For each 8 € Sym, (k), the S-th Fourier
coeflicient of f is

folg) = / F(n(b)g)o( Tr(~b8))db,
Sym,, (k)\ Sym,, (Ag)

where Tr is the trace map and the Haar measure db is normalized so that the total mass is 1.
The aim of this section is to compare Eg(g, $(n), ) With I3 (g, ¢) when det 8 # 0, and prove
an analogous result (Theorem A.5) of Proposition 4.2 in [15] by the same strategy.

It is clear that

I5(g,9) = I(n(b)g, )¢ (Tr(=bp))db

/Symn(k)\ Sym,, (Ax)
w(g)p(h~"x)dh.

/O(V)(’f)\O(V)(Ak) zeV (k)

QM (2)=p

Here Q&;L) is the moment map from V" to Sym,, introduced in Section 1.3. Thus Iy (g,0)=0
if (Q4")~1(B) is empty.

Recall that a gauge form on a given smooth variety V over k is a differential v-form over
k (where v = dim()V)) which is regular and non-vanishing everywhere. We refer the reader
to [20] for further discussions of the gauge forms on varieties. Let dz and db be the standard
gauge forms on the vector spaces V™ and Sym,, over k, respectively. The corresponding
measures (i.e. Tamagawa measures) on V"(A) and Sym,, (A) (resp. V™ (k,) and Sym,, (k,))
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are also denoted by dx and db (resp. dz,, and db,). For every /3 in Sym,, (k) (resp. in Sym,, (ky)),
let

(QU)el(8) = {z € Q) "1(8) | dQ (x) : V™ — Sym,, is sujective},

which is a smooth variety over k (resp. k), and there exists a gauge form dg on ( %,"));eé(b’)

which is compatible with the choice of dx and db (resp. dz, and db,) on V™ and Sym,,

respectively. In concrete terms, dg induces a local measure on (QE? ))*1(ﬁ)(kv) so that for
any L!-function f, on V(k,)™ (cf. [19] §6),

/ fodz, = / ( / fvébv> db,.
V (ko)™ sym,, (kv) \J(QU)reg (b0) (ko)

In particular, suppose § € Sym,, (k) with det 8 # 0 and ( &7 ))_1(6)(k) is not empty, which
implies that dim(V') > n. Then
(QV)e(8) = (@) 7H(8B),
and O(V) acts transitively on (Q&;L))’l(ﬂ). Take any element z € ( 81))71(@. Let
Stov)(z) :=={h € O(V) : hx = x}.
Then Stovy(2)\ O(V) is isomorphic (as a variety over k) to ( 3”)’1(5) by
h+— h™ 2.

We take the measure dh on Stov) (7)(Ax)\ O(V)(A) to be the measure on (Qg))*l(ﬂ)(Ak)
determined by the gauge form dg, with a set {A,(8)}, of convergence factors. The mea-
sures dh on O(V)(Ay) and dh on Stov)(#)(Ar)\ O(V)(Ax) induce a unique measure dh’ on
Sto(vy(z)(Ag) such that

dh = dh'dh.

Then we can write

I5(g. ) = vol(Stov) () (k)\Stov) (Ar), dh) / w(g)p(h™ x)dh.
Stovy (@) (Ax)\ O(V)(Ak)

When ¢ is a pure tensor, say ¢ = ®,p,, write dh as IL Ao (B)_lcfhv we get
Is(g,9) = vol(Stocv)(x)(k)\Stow)(Ar),dn’)

H (A”(B)_l/ wv(gv)ipv(hglx)dhv> .
Stov) () (ko)\O(V) (kv)

v

Lemma A.1. Suppose dim(V') > n. For each 8, € Sym,,(k,) with det 3, # 0, let

. n T(wv( (b),h) v):wv(Tr(va))T( v)7
To, = {T € Home (S(V (kv)"), ©) ‘ Wb € Sy (k. h e OV (k). oo & SOV (h)™) }

Then Tg, = 0 if ( 81))*1(61,)(1%) is empty. When (Q&,"))*l(ﬂv)(kv) is not empty, Tg, is a

one dimensional C-vector space spanned by the following functional

TBU:SDU'—>/() vaaﬁv:/
(QV7)~1(Bu) (ko) Stov) (#9) (k)\ O(V) (kv)

Sov(hqjlxg)dhv

where x9 is in ( gl))_l(ﬂv)(k‘v).

Proof. 1t is observed that the restriction map S(V (ky,)") — S(( 3”)‘1(6@)) induces an
embedding from Tpg, into Homc (S(( E,"))*l(ﬁv)) , (C). Since every O(V')(k,)-invariant func-

tional on S(( g))_l(ﬁv)) must be a scalar multiple of T, , the result holds. O
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Remark A.2. Given x € V'™, §/n) is submersive at x if ng/n) (z) : V™ — Sym,, is surjective.

Take ¢, € S(V (k,)™) which is supported on the vectors in V' (k,)™ where ngL ) is submersive.
Define the function T,, € S(Sym,,(k,)) by

i (n)y—1 s om
TSDU (bv) = {07 f(QV ) (bv)(kv) S empty,

otherwise.
Then for every 8 € Sym,, (k) with det 8 # 0 and a, € GL,(k,),

Lo BortmnoIm (@) s T )i

f(Q(vn))Fc}g(b,u)(kv) ©u0b,,

- / TL;\’U (bv)wu(_ T’f’(bv : ta'vﬁav))dbv
Sym,, (k)

- TLPU (tavﬁav)'

Here T (b,) is the Fourier transform of T, i.e.

To0) = [ T )b T (b)),
Sym,, (kv)

On the other hand, we have

0 0

Lemma A.3. For g € Sp,,(Ag), ® € I, (s), and f = (O 3
0

0<r<mn, and det 5y # 0,

> with By € Symn_r(ku),

Eg(g,s, )
-> x| D(wn_ vt )1(a')g, 5)ib(— Tr(b!Bo)) b
<7 01eQ™ )\ GL..(k) Sym,, _; (Ax)
, a 0 . N 0 0
Here y(a') =m 0 I and we embed Sym,, _; into Sym,, by sending b’ to 0 v/
Proof. The argument is similar to Lemma 3.1. Therefore we omit the proof. U

Now, we arrive at the main result of this section.
Theorem A.4. There exists a non-zero constant ¢ such that the function
(In)l(gv SD) = I(g7 90) - CE(g7 S(n)s (I)w)

satisfies (I")j(g,%) = 0 for every g € Sp,(Ax), » € S(V(Ar)"), and B € Sym,, (k) with
det g # 0.

Proof. Without loss of generality, assume g = m(a) for a € GL,,(Ag) and ¢ = ®,¢, is a pure
tensor. It is clear that the functional

Ty = (91— Ea(m(a), s, @p), Vi € S(V(Ar)"))

satisfies that
Ty (w(n(®))p) = »(Tr(b-"aBa))T,(p), Vb€ Sym, (Ay).
Therefore Lemma A.1 implies that

Eﬁ(m(a)v S(n)» (I)so) = Ig(m(a)a 90) =0
if (QV))1(8)(k) is empty.

When ( gl))’l(ﬂ)(k) is not empty, dim(V) > n and by Lemma A.1 again we can find a
constant ¢ = ¢(8,a) € C such that

Eﬁ(m(a)v S(n)s (I)QD) = C(ﬂa a) : Ig(m(a)v 90)
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It remains to show that ¢ is non-zero and is independent of the choices of 5 and a.
Lemma A.3 says that

Eﬁ(m(a), S(n)v (I)LP) = H </S k )(I)tp(wnn(bv)m(av)v S(n))@/}v(* T?"(bvﬂ))dbv> .

v

Let 3(a,Qv,db) be the finite set of places of k such that when v ¢ X(a, Qv,db), we have
ay € GL,(0,), By € Sym,, (0,)NGL,(0,), Qv is unramified at v and vol(Sym,, (O,,), db,) = 1.
For v ¢ ¥(a, Qv, db), take ©Y € S(V (k,)™) such that @0 = &) (recall that & (k,,s) =1 for
all k, € Sp,,(Oy)). Then we get

/ B g0 (wan (bo)m(ay), 8)iou (— Tr(boB))db,
Sym,, (kv)
L3

]
1
= Ly(s+ %J(v,v)_l };[1 Co(2s+n+1—2i)"

Ly(s+1/2,xv.vX8nwv), if niseven,
1, if n is odd.

Here xgnw : kS — {£1} is defined by

Xﬁ,n,v(av) = ((71)’”/2 det ﬁaa’u)’ua VOAU S kf;(

Given ay, as € GL,(Ag), we choose oL, »2 € S(V(k,)") for every place v as follows. Let
¥ = X(a1,Qv,db) UX(az, Qv,db). For v & ¥ we let pl = 02 = ¢¥; and for v € ¥ we

choose ! which are supported on the vectors in V(k,)" where ng;l) is submersive and
T, ("ay,iBay,;) # 0. Define

Lz
n+1 _ N—
As(s) = Ls(s+——xv) "I ¢e@s+n+1-2i)7"
i=1
Ls(s+1/2,xvXxsn), if niseven,
1, if n is odd.

Then the discussion in Remark A.2 implies that

Ts.(20)

1
AE(S(n)) = C(ﬁ,ai) <v1;£ )w(ﬁ)) VOl(Sto(V)(x)(k)\StO(V)(Ak)7dh/) H )\U(B) ’

vgS

where {\,(8)} is a convenient set of convergent factors for the gauge on ( 81 ))*1 (B)and z is a
chosen element in (ng ))_1(6 ). Hence c is independent of the choice of a. Finally, let {\!} be
a set of convergence factors for the measure dh on O(V')(Ay), then {\) := X /A, (5)} is a set
of convergence factors for the measure dh’ on Sto(y)(z)(Ax). Choosing suitable convergence
factors {7} for the measure dh’ on Sto vy (2)(Ag), it can be shown that c is also independent
of the choice of 3. Therefore the proof is complete. O

One consequence of Theorem A .4 is:

Theorem A.5. Given a Schwartz function ¢ € S(V(Ar)™), we have that for every cusp form
f on Sp,(Ax),

/ I"(g,9)f(g)dg = 0.
S, (k)\ Sp,, (Ar)
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Proof. The argument is similar to Theorem 2.7 in [9]. We recall the key steps for the sake of
completeness.

Consider the auxiliary Eisenstein series on Sp,,(A):

80(975) = Z (I)O(’yg,s)

YEPn (k)\ Sp, (k)
where for g = (g ta*_1> k with a € GL,,(Ay) and & € Sp,,(O4,),

(g, 5) == | detalj "D/,

It is known that £°(g, s) has meromorphic continuation to the whole s-plane, and has a simple
pole at s = (n+1)/2 with residue ¢; independent of g. Then for any cusp form f on Sp,,(Ax),

(A1) Reso—(ni1)/2 (I") (), £°(8)f) = er{(I")'(¢), f) = ex{I" (), ).

Here

(ot = [ £1(9) F2lg)dg.
Sp, (k)\ Sp,, (Ak)
The second equality in (A.1) holds by Proposition 3.2. It suffices to show that
((I") (), E%(5)f) = 0.
It is observed that
(1) (), E%(5) )
- ¥ [ @smg)ssmg) 2 g, s)dmds.

B mod Gl (R)agy (A1) N (h)\ Sp,, (hr) Mg (k)\ Mg (A1)

The sum runs over representatives 8 mod GL, (k) in Sym, (k). The action of GL, (k) on
Sym,, (k) is defined by a * 3 := tafa, and

Mg :={m(a) € M,, : a € GL,, such that a x 8 = 8}.
Theorem A.5 tells us that the sum runs over singular 5. For convention, we choose 5 to be

of the form (0 ) where By € Sym,,_,.(k) with 0 < r < n. Note that Mg = Lg - Ug where

0
0 Bo
Us = {“(m) - (Ior I:ir>

{3
(I")5(mg) f-p(mg)®° (ng, s)dm

Mg (kK)\Mp (Ax)

x € Mat, (n—r) }

and

a € CGL,, d € GL,_, with ‘dByd = ﬂo} .
Thus

- / / (1", (ulg) f—p(ulg)du | ®°(lg, s)dl.
Lg(K)\Lg(Ax) Upg(k)\Ug(Ak)

For o € Mat,. (n—r)(k), denote

(™), 5(g) == / (I, (u(@)g) i (— Tr(‘az))de.

Maty. s (n—r) (k) \ Mat,. x (n—r) (Ak)
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Then

(I")s(ulg) f—p(ulg)du = > UM)hp(9) f-a—s(lg).

Up(k)\Ug (Ag) a€Mat .y (n_r (k)

By straightforward calculation, we obtain:
(i) If B =0, then fg = 0.
(ii) If singular S # 0, then fy 3 = 0.
(iii) If 8 is singular and « # 0, then E, (-, s, ®,) = 0.
(iv) If B is singular and a # 0, then I} 5(-, ) = 0.
We point out that (iii) is deduced from the expression of E3(-,s, ®,) in Lemma A.3. These
observation completes the proof. O

APPENDIX B. ON THE JACQUET MODULE OF S(V(k,)") WITH RESPECT TO P,

In this section, we describe the Jordan structure of the Jacquet module of S(V (k,)™) (which
is studied in [8] for the number field case). Recall that (V,Qy) is an anisotropic quadratic
space over k, and w, is the Weil representation of Sp,, (k) x O(V')(k,) on the Schwartz space
S(V (ky)™) for each place v of k. The Jacquet module J,, of S(V(k,)™) with respect to P, is
the quotient space

S(V (k,)") |
Span{w, (n(b))¢ — @ | b € Sym, (k). ¢ € SV(k,)") }

We modify the action of GL,(k,) on J, by:

S
Wy(a)p :=|detaly, * -wy(m(a))p, Vae GL,(k,) and ¢ € J,.

Define V(k,)§ := {z € V(ky,)™ | Qg,") (x) = 0}, where Q%}l) : V™ — Sym,, is the moment
map introduced in Section 1.3. The Schwartz space S(V (k,)§) is invariant under the action
of GL,(ky) x O(V)(k,) defined by

dim(V)—(n+1)

(a,h) - p(x) = xv,p(det a)| det al, 2 o(h'za).

Let Iy := min(l,n) where [ is the dimension of a maximal isotropic subspace of V (k) (which
is 0 or dim(V')/2). It is clear that every © = (x4, ...,z,) € V(k,)§ satisfies dim(Span z) < I,
where Span z := Span{z1,...,x,} . Thus

lo
Vi(ko)s = H V(kv)g,z‘
i=0
where
V(ky)g ;== {z € V(ko)§ ’ dim(Span z) = z}

Proposition B.1. (1) As a GL,(k,) x O(V)(ky)-module, J,, is isomorphic to S(V(k,)3),
where the isomorphism is induced by the restriction from S(V (k,)™) to S(V(ks)§)-
(2) We have a GLy, (k) x O(V)(ky)-invariant filtration

Tn =T > gM 505 gl 5 gt = {0}
such that as GLy,(ky) x O(V)(ky)-modules,
T =TT = S(V (k)G
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Proof. Consider the following exact sequence:

0—= S(V(ky)" = V(ky)g) = S(V(ky)") = S(V(ky)y) — O.
It is clear that w,(n(b))e — ¢ € S(V(ky,)™ — V(ky)§) for every b € Sym, (k,) and ¢ €
S(V(ky)™). On the other hand, for z € V(k,)" — V(k,)§, we can find b € Sym,, (k,) such
that v, (Trace(bQE,") (z))) # 1. Choose a sufficiently small neighborhood U, of z in V (k,)" —
V(ky)§ such that

(M) (1)) — (n) !
¥y (Trace(bQy” (') = vy (Trace(b@y (z))), Va' € U,.

Let ¢, be the characteristic function of U,. Then

won(B))pe — i = (1 (Trace(bQ{" (2))) = 1) .
This implies that the Schwartz space S(V (k,)" — V (k,)?) coincides with

Span{w, (n(b))p — ¢ | b € Sym, (k.), ¢ € S(V(k,)") }.

Therefore the proof of (1) is complete.

Identifying 7, = J,\" with S(V (k,)2), for 0 < i < Iy we let
1—1

70 = 4 € SOV | ole) =0, v € [T ViE G,
j:O

Then for 0 < i <,

i

o7 =51V ki )

7=0
This assures that for 0 < i < [,

T 1T = SV (k)g)
and completes the proof of (2). O

Choose 1, ..., x; € V(k,) such that Span{zy, ..., z;} is a maximal isotropic subspace. Then
there exist z}, ..., x] € V(k,) such that

<azp,ah >y=0, 1<4,j<lI,
<z, >y=0, i#j, and <z >y=1
For 0 < i < I, let V(k,)® be the orthogonal complement of Span{z1, ..., s, 2], ..., 25} in
V(k,). Define
P .= {h e O(V)(ky) ‘ h - Span{zy,...,z;} = Span{z1, ...7xi}},

which is a parabolic subgroup of O(V)(k, ) whose Levi subgroup M/ is isomorphic to GL; (k) x
O(V (k,)@). More precisely, let {2, oz, "'7xgim(V)721’x17 .., 21} be a basis of V. Then
with respect to this basis, elements in M/ are of the form

ta™l 0 0
(a,)= 0 b 0],
0 0 a

where a € GL;(k,) and b € O(V (k,)®).
Take 0 < i <ly. Recall

o-{(i 5)eo

ay € GL,_;, as € GLl} .
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Define an action p; of Q;(k,) x P/ on S(GL;(k,)) by

pi <(<%1 ;2) , (a5, h) -n’> @) (9) = play *gaz),

where (ah,h') € M/ and n’ is in the unipotent radical of P;/. Let Ind (S(GLZ'(]{?U))) be the

space of smooth functions f from GL,, (k,) x O(V)(k,) to S(GL;(k,)) satisfying that for every
element (g, h) € GL,,(ky) x O(V)(ky),

F((0.6)(g.h)) = pi(b) - pi(b,) (f(g: ), V(b,b) € Qi x P,
where for b = (Cg :2) € Qi(ky),

wi(b) = xv(det aq det ag)| det aq det azly
The action of GLy (ky) x O(V)(k,) on Ind (S(GLi(kq,))) is defined by right translation.
Proposition B.2. For 0 <i <y, we have
T = S(V (k)i,) = nd (S(GLi(k,))
as GL, (ky) x O(V)(k,) modules.

Proof. For 0 < i < Iy, Set 2 := (0,...,0, 21,22, ..., ;) € V(ky)p ;- Let 11 and 1z be the
embeddings from GL;(k,) into P/ € O(V)(k,) and Q;(k,) C GL,,(k,), respectively. Then we
have

n(g)2 =2Wia(g), Vo' € GLi(ky).
Define a map F' from S(V (k,)g ;) to Ind (S(GLA/@,))) by
pr— Iy,

where for (g, h) € GL, (k) x O(V)(k,),

dim(V)—(n+1)

Folg.h) = (9= xvaldetg)ldetgl 7 - p(h™'aWi(g)g)) € S(GLa(k,)).

Then it is clear that F' is GL,(k,) x O(V)(ky)-equivariant. Since for every element z €
V(ky)g,; we can find (g,h) € GLu(ky) x O(V)(k,) such that x = h='z®g, the inverse

map F~1 : Ind(S(GLi(k:v))) S(V(ky)p,;) can be defined by the following: for f €
Ind(S(GLi(kv))>7

= dim(V)+(n+1)

Ff_l(m) = xv.(det g) 7t det g|o flg,h)(Q), VYe=h"tzWge V(ko)oi

We remark that the modulus character d; of the parabolic subgroup Q;(k,) x P/ is:

tahl b % i
| (6 m) [ 0w ) ) = e ey e
2 0 0 d | det as|y

Recall that s,y = dim(V')/2 — (n +1)/2, and I,(—5(y)) is the space of smooth functions
f on Sp,,(k,) satisfying that

* — (7))
f <<g . _1) g) = yvo(deta)|detaly  *  f(g), Va€GLn(ky), g € Sp, (k).

a
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In other words, I,,(—s(y)) is the Siegel-parabolic induction from the character |- |, *™ on
P, (ky). Therefore the Frobenius reciprocity (cf. [1] Proposition 4.5.1) gives us

—S(n)

Homsy, (k,)x0(v) (k) (S(V(ko)"), Lo(=8(n)) ® 1) = Homar,, (k) x0(v) (k) (Tns| [0 @ 1).
Note that ¢(n,v) = dim (HomGLn(kv)XO(V)(k“) (Tns | - " @ 1)) is bounded by

lo

> dim (Homar, (k) xo(ven) (G470 277 ©11)).
1=0

For each ¢, Proposition B.2 tells us that jr(f) is also a parabolic induction. Hence by Frobenius
reciprocity again, we get

Homgr, (k) x0(v)(k,) (T2, ]+ 10" @ 1) = Homp, ((n:d; ") @ pi,| - [ @ 1),

where R; = (GLn,i(k‘v) X GLi(kv)) X (GLi(kv) X O(V(kv)(i))) is the Levi subgroup of

For m = (a1, a2, a%,h) € Ry,

16, (m) = xv.o(det ag det as)| det ag [3™ | det as[s™ " - | det afdImV)=i=1,
Hence Homp, ((1:6; ") ® ps, | - e 1) = 0 unless (i) i = 2s(,) = dim(V) — (n + 1) or (ii)
i = n. In both cases we can get
dim (HomRi (o) ® pis |- 155 ® 1)) ~ 1.
Note that 4 is bounded by Iy = min(l,n). We then arrive at
Lemma B.3. Let

ﬁ(n,v) := dimc HomSpn(kv)XO(V)(ku) (S(V(kv)n)ij(_s(n)) ® 1),

where 1 is the trivial representation of O(V)(k,). Then

(i) When dim(V) < n+ 1, we have £(n,v) = 0.
(ii) When dim(V) =2 andn =1,

E(nﬂ)) < L, va(kv) 1:5 C'lniSOtr.opz'g
2, if V(ky) is isotropic.

(iii) When dim(V) =4 andn =1 or 2,

U, v) < n, if V(k,) is isotropic,
n? v — . . . .
0, if V(ky) is anisotropic.

(iv) When dim(V) =4 and n = 3, we have {(n,v) < 1.
Remark B.4. When dim(V) = 2, n = 1, and V(k,) is isotropic, the above discussion says
that
{(n,v) = dim¢ Homgr,, (k,)xGL; (ky) (T2 (ko) 1).

In this case, Ji(ky) = S(k,), and every homomorphism in Hom, x .« (S(k,), 1) must be of
the form

c- (¢ — (0)), ceC.

Therefore £(n,v) =1 in this case, and the proof of Lemma 4.4 is complete.
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APPENDIX C. MAASS-JACQUET-SHALIKA EISENSTEIN SERIES ON GL, (Ay)

Fix an integer r with 0 < r < n. Set X, := Mat,«, as an affine algebraic variety over
k. Let p1.4, p2n be two characters on k. For any g € GL,(k,) and Schwartz function
fv € S(Xr(kv))a define Fv(g> = Fv(gaﬂl,mﬂlmfv) to be

j11.0(det g)]| det g[1/2 / Folh (0, 1)) (et by ) .
GL, (k)

Here Moy = Hl,vﬂq_ﬂﬂ : |TUL/

GL,(0,) is 1 for all v.

2 and the Haar measure d* h, is normalized so that the volume of

Lemma C.1. The integral F,(g) is absolutely convergent for every g € GL,, (k) if|u1,vu2_ﬂl} =
|- 19 where o >1r—n/2—1.

Proof. Without loss of generality, assume f, is the characteristic function of X,.(O,) and
g = 1. Then by straightforward computation we get

/ £ (B (0, 1)) (dlet hy) [d7 B,
GL(kv)

/ |Mv|_1dxhv
GL, (ko )NMat,.(Oy)

r—1
= JT6-5-0.
i=0

This assures the result. t

_ ay *
o {(n D)o

For g € GLy(ky) and b= (a1 : ) € Qr(ky), it is clear that
2

Recall that

a, € GL,_,, as € GL.,} .

0
Fulbg) = pi1o(det an)piz,o(det az) 6, (0)| /2, (9)
where dg, (b) = (deta;)” - (det ag)” ™. Let I, (11,4, p12.0) be the space of smooth functions ¥,

on GL, (k,) satisfying that for g € GL,(k,) and b = (aol ;) € Qr(ky),

W, (bg) = p1,0(det ar) s, (det az) |3, (b)[1/* W, (9)-
Then the map (f, — F,) gives us a GL, (k,)-equivariant homomorphism from S(X,(k,)) to

I’U(Ml,’l}) H2,v)~

Lemma C.2. (1) Given U, € fv(ulw,ugw), there exists a Schwartz function f on X, (k)
supported on elements of rank r such that

Fv(gvﬂl,mﬂlvafv) = \I/q,(g), Vg € GLn(kv)-

In other words, the map (f, — F,) from S(X,(k,)) to fv(/J/Lv,MQ,U) is surjective.
(2) Suppose 1., and ps, are both unramified, i.e. p1,,(0y) = p2.,(0y) = 1. Let fO be the
charateristic function of X,.(0,). Then for g € GL, (k)

r—1
n .
Fuo(g) = Fv(g7ﬂl,v7ﬂ2,v7f8) = H CU(U - 5 —-r—= z)\Il?,(g)
=0

where ul,v,ugﬂl) =117 and ¥O € :fv(ul,v,ug,v) satisfies
W(k) =1, Ve GLL(Oy).
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Proof. The Iwasawa decomposition allows us to write g as bk, where b € Q,.(k,) and k €
GL,(O,). Hence we can assume g = k € GL,(Oy). Then (2) follows from the proof of
Lemma C.1. To prove (1), we take f, € S(X,(ky,)) such that the support of f, is contained
n (0,1,.) - GL,(O,) and

fo((0,1)k) = Ml,v(det ’ﬁ)_lwv(’i)'
Then for each k € GL,(0,),

Fulr) = pak) / Fo(h=2(0, L)) (det o )d™
GL, (ko)

= 1K) /GL o 1o (det byt det k)1, ((I"O_T h01> H) wy H(det hy)d* b,
= U,(k).
Therefore the proof is complete. O

Let 1, o be two Hecke characters on k*\A . For any g € GL,(Aj) and Schwartz function
f e S(X,(Ag)), we set

F(g) = F(g, pu, pz, f) == g1 (det g)| det |} > /GL " )f(h‘l(O,Ir)g)u_l(det h)d* h.
r(Ag

Here p = pyjiy | - |X£2 and the Haar measure d*h = [[, d*h,. In particular, the volume of
GL,(Oy,) is 1. By Lemma C.1, this integral is absolutely convergent if |y | = |-|%, where
o >r —n/2. The Maass-Jacquet-Shalika Eisenstein series associated to f, pi, ps is defined
by (cf. [7] and [13])

E(gvﬂlau%f): Z F(’)/g)
Y€Qr(k)\ GLn (k)
This series converges absolutely when |5 s, = |- |7, with o >n/2 (cf. [14] TL.1.5).
Theorem C.3. Suppose ji1 - jiy* = | - 1%, Then

(1) (Continuation) E(g, p1,pe, f) can be extended to a meromorphic function in o (in
fact, a rational function in q=7), and every possible pole can only be a simple pole.
Let P(o) := P™ (o) - P~ (), where

r—1

PHo) = [J(1—q 7).

i=0
Then P(c) - E(g, 1, pe, f) is entire.
(2) (Functional equation) For each f € S(X,(Ay)), we have
E(g,ul,ug,f) = E(tgilvul_lvuglvf/\)

where " is the Fourier transform of f:
P@i= [ e Ty,
XT(Ak)

The Haar measure dy is chosen to be self-dual, i.e. f"(z) = f(—=x).
(3) Suppose that there exists a place v of k such that the support of the restriction of f
on X, (ky) is contained in the set of elements with rank r in X, (k,). Then

Pt (o) E(g, 1, u2, f) is entire.
Proof. Replacing f to the Schwartz function f(-g), we can assume g = 1 and set E,.(o, f) :=
E(l, M1y 12, f) Let
XO(k) :={z € X,(k) : rank(z) =i}, 0<i<r

s
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For h € GL,.(Ag), f € S(X,.(Ag)) we define
00 (h; f) = > f(he)
zeX (k)

and

Zaﬁhf > fh).

zeX, (k)

B~ [ 60) (s P)u="(h)d* .
GLr(k)\ GLT(A)C)

For x € {>, <, >, <, =}, let

GLT(Ak)*l = {h € GLT(Ak) : \det h|Ak * 1}

Then we have

Note that

/ 00 (b fyu~ (h)d*h
GL, (k)\ GL,(Aj)<1

always converges absolutely for every o. On the other hand, by Poisson summation formula
we get

0r(hs f) = |det b, 0,("h™" f).

Hence

r—1
00 ) =3 ( det hl 09 ("h="; £) — 69 (I f)).
1=0
Let Q) = {(CLOI ;‘2> € GL,

AU DS 2, (h K3 <0> )

hn €QL ()\ GLr (k) \ i€ X" (k)

a1 € GL;, ag € GLr_lv}. It is clear that

and

0 (‘hh ) = > > f(thth(“ G))

hi€QW ()\ GL, (k) \@:eX( (k)

For each k € GL,(Oy,), let f.(z) := f(k~1z). We then observe that

/ 00 (hs £ (h)d*h

GLr(k)\ GLr(Ax)>?

— / Hg.r)(th_l;f/\),u_l(th_l)dxh
(k)\ GLy (Ag)>1

r—1
- Vo _ ) =1
* /GL (OAk)gVol(Matzx r—i)(k)\ Mat;y (i) (Ag)) - Vol ( GL;(k)\ GLi(Ax)~")

<Ez( NEAY (22) Zq —o+5—i)l
=1
B 5 ) 3o >>
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Here for every f € S(X,(Ag)), fu,1) and f(2) € S(Xi(Ay)) are defined by

fan(x:) = f (:f)i> s fay (@) = f <x02> .

Therefore when o > n/2,

/ 080 (b Py (W)
GL,(k)\ GL,(Ag)>1

- / 60) (hs f )i (h)d* h
GLr(k)\GLr(Ak)<1

r—1

+ /GL (OA\k)lz;VOI(Mat'LX r— l)( )\Ma‘tzx(r z)(Ak)) VOl(GLL(k)\GLL(Ak):l)

—o+5—1
.on A q 2 .n 1
(Ez(z gy (fm)(i’Q)) : [P q_"'*'%_i + E;i(i — 5 (f/{)(i,l)) : T =02t qo_i_g_i)dﬁ.

This gives the meromorphic continuation of E(o, f) (by induction on r) and (1) holds. In
particular, suppose there is a place v of k such that the support of the restriction of f on
X, (ky) is contained in the set of elements with rank r in X, (k,). Then

0,(1,h; f) = 0" (1, h; f)
and

Ei(i_gv(fn)i,l)zo, VO<i<r-—1.
This completes the proof of (3).

Note that

/ 00 (h; )"
GL,(k)\ GL,(Ag)=1

-/ 00 (s £)d*
L, (K)\ GL (Ag)=1

r—1

+ /GL (OAk)gVol(Matzx r—iy (k)\ Matyy ;i) (A)) - Vol (GL; (k)\ GL;(Ax)™")

: <Ei(i - g’ (fn)(Ai,z)) — Ei(i - gv (fn)(i,l)))dﬁ

Moreover, from

(%i) - (Iroi 6) (;S)

on on
/ Bt = 5, (fe)iy)dr = / Ei(i = 5, (fe)i,2))dr
GLT(OA\}C) GLT‘(OAk)

we get
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Thus by induction on r we have

E(o, f)
_ / 00 (h; £) + 6 (h; Y=t (R)d* h
(k)\ GL,(Ag)<?

- / 0 (h; f)d*h
GL,(k)\ GL, (Aj)=1

r—1
* /GL (OAk)gVol(Matlx r—iy (k)\ Mat; ;) (A)) - Vol (GL; (k)\ GLi(Ax)=")

—o+5—i 1

on A q .on
E;(i — 5 (fu)(i2)) - T + Ei(i — 3’ (fe)an)) - [y dk.
-/ 00 (s £) + 00 (b ) (W)
GL, (k)\ L, (Ay)<!
_l’_

/ 00) (b £ ) h
GL,(k)\ GL,(Ag)=?

r—1
- Vo _ ) =1
* /GL (OAk)gVol(Matzx r—i)(k)\ Mat;y (-3 (Ag)) - Vol ( GL;(k)\ GLi(Ax)~")

.oon A 1 .on q”*gﬂ'
Ei(i — 9 (fn)(¢,1)) I T + Ei(i — 9 (fn)(i,2)) 1 _gorioi i dk.
= E(-o,f").
Therefore the proof of (2) is complete. d

Acknowledgements. The author is grateful to Jing Yu for his steady interest and encour-
agements. This article was accomplished while the author visited Max Planck Institute for
Mathematics. He would like to thank the institution for kindly hospitality and providing a
very good working environment. This research was supported in part by National Science
Council, and also Max Planck Institute for Mathematics.

(1]
2]
(3]

REFERENCES

Bump, D., Automorphic forms and representations, Cambridge studies in advanced mathematics 55
(1997).

Chuang, C.-Y. & Wei, F.-T., Central critical values of triple product L-functions over global function
fields, in preparation.

Chuang, C.-Y. & Wei, F.-T. & Yu, J., Rankin-type L-functions over global function fields and Gross-type
formula, in preparation.

Haris, S. J., A Siegel formula for orthogonal groups over function fields, Trans. A.M.S. 190 (1974)
223-231.

Ikeda, T., On the location of poles of the triple L-functions, Compositio math., 83 (1992), 187-237.
Jacquet, H., On the residual spectrum of GL(n), Lecture notes in mathematics 1041 (1984) 185-208.
Jacquet, H. & Shalika, J., A non-vanishing theorem for zeta functions on GL(n), Invent. math. 38 (1976)
1-16.

Kudla, S. S., On the local theta correspondence, Invent. math. 83 (1986) 229-255.

Kudla, S. S. & Rallis, S., On the Weil-Siegel formula, J. Reine Angew. Math. 387 (1988), 1-68.

Kudla, S. S. & Rallis, S., On the Weil-Siegel formula II, J. Reine Angew. Math. 391 (1988), 65-84.
Lam, T. Y., Introduction to quadratic forms over fields, Graduate Studies in Mathematics vol. 67.
Langlands, R. P.; On the functional equation satisfied by Eisenstein series, Lecture notes in mathematics
514 (1976).

Maass, H., Siegel’s modular forms and Dirichlet series, Lecture notes in mathematics 216 (1971).
Moeglin, C. & Waldspurger, J.-L., Spectral decomposition and Eisenstein series, Cambridge tracts in
mathematics 113 (1995).



ON THE SIEGEL-WEIL FORMULA OVER FUNCTION FIELDS 35

[15] Rallis, S., L-functions and the oscillator representation, Lecture notes in mathematics 1245 (1987).

[16] Siegel, C. L., Uber die analytische Theorie der quadratischen Formen, Ann. of Math. 36 (1935) 527-606.
[17] Wei, F.-T., On Rankin triple product L-functions over function fields: central critical values, submitted.
[18] Weil, A., Sur certaines groups d’operateurs unitaires, Acta math., 111 (1964) 143-211

[19] Weil, A., Sur la formule de Siegel dans la theorie des groupes classiques, Acta math., 113 (1965) 1-87.
[20] Weil, A., Adeles and Algebraic groups, Progress in Mathematics 23 (1982).

DEPARTMENT OF MATHEMATICS, NATIONAL TSING-HUA UNIVERSITY, HSINCHU 30013, TAIWAN
E-mazil address: ftwei@mx.nthu.edu.tw



