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Abstract

For the purpose of isogeometric analysis, one of the most commonays is
to construct structured hexahedral meshes, which have regutatensor product
structure, and t them by volumetric T-Splines. This theoretic wor k proposes a
novel surface quadrilateral meshing methodgcolorable quad-meshwhich leads to
the structured hexahedral mesh of the enclosed volume for highemus surfaces.

The work proves the equivalence relations among colorable quad-rabes,
nite measured foliations and Strebel dierentials on surfaces. This trinity
theorem lays down the theoretic foundation for quadrilateral/hexahedral mesh
generation, and leads to practical, automatic algorithms.

The work proposes the following algorithm: the user inputs a set of @joint,
simple loops on a high genus surface, and speci es a height paramet®r each
loop; a unique Strebel di erential is computed with the combinatorial type and
the heights prescribed by the user's input; the Strebel di erential assigns a at
metric on the surface and decomposes the surface into cylinders; colorable
quad-mesh is generated by splitting each cylinder into two quadrilateals, fol-
lowed by subdivision; the surface cylindrical decomposition is extened inward
to produce a solid cylindrical decomposition of the volume; the hexabedral

meshing is generated for each volumetric cylinder and then glued tagher to

Corresponding author
Email address: gu@cs.stonybrook.edu (David Xianfeng Gu)

Preprint submitted to Computer Methods in Applied Mechanic s and EngineeringOctober 14, 2016



10

15

20

form a globally consistent hex-mesh.

The method is rigorous, geometric, automatic and conformal to tle geome-
try. This work focuses on the theoretic aspects of the framewd, the algorithmic
details and practical evaluations will be given in the future expositiors.
Keywords: Hexahedral mesh, Quadrilateral mesh, Foliation, Strebel

Di erential

1. Introduction

1.1. Motivation

Mesh generation plays a fundamental role in Computer Aided Design@AD)
and Computer Aided Engineering (CAE) elds . Finite Element Method ( FEM)
requires the input solids to be tessellated with high qualities. There are main-
ly three types of volumetric meshing, the unstructured tethedral meshing, the
unstructured hexahedral meshing and the structured hexat@l meshing. Com-
paring to tetrahedral meshes, hexahedron mesh has many adveages [1]. The
most important bene ts are higher numerical accuracy, lower spa&ial complexity

and higher e ciency:

Non-uniform scaling hexahedra has much greater numerical accacy com-

pared to tetrahedra [2].

The number of elements of a hexahedral mesh is four to ten times lss
than that of a tetrahedral mesh with the complexity of the input me sh

being constant [2].

Numerical computations on hexahedral meshes are up to 75% lessemory

and time consuming in comparison to tetrahedral meshes |[3].

Automatic tetrahedral mesh generation is relatively mature, there exists reliable
tools to generate high quality tetrahedral mesh automatically [4]. In contrast,
automatic hexahedral mesh generation remains a great challengghich is the

so-called \holy grid" problem [2].
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Recent years have witnessed the rapid development of the methatbgy of
isogeometric analysisl|[5],16]. In Computer Aided Design (CAD) eld, the ge-
ometric shapes are represented as Spline surfaces/solids. The sagrominent
Spline schemes are T-Splines|[7]. In Computer Aided Engineering (CAE eld,
the isoparametric philosophy represents the solution space for geendent vari-
ables in terms of the same functions which represent the geometryin reverse
engineering eld [8], shapes in real life are often acquired by 3D scaiimg tech-
nologies and represented as point clouds. The point cloud is triangutad to
generate the boundary surface, the tetrahedral mesh is genated to tessellate
the interior using automatic tetrahedral meshing generation tools In order to
apply isogeometric analysis method, the solid needs to be parameteed and
tted by volumetric Splines.The hexahedral meshes for isogeometc analysis are
required to havetensor product structure locally, and with minimal number
of singular vertices or line segments.

There are dierent approaches for hexahedral mesh generatian One ap-
proach is to construct a quadrilateral mesh for the boundary suface, then ex-
tend the boundary mesh into the interior, and construct a hexahealral mesh for
the entire solid. The main problem the current work focuses on is asallows:
Given a closed surfaceS, with minimal user input, automatically construct a
quadrilateral meshQ on S, and extendQ to a hexahedral mesh of the enclosed
volume. Both the quadrilateral and hexahedral meshes aretWwilocal tensor prod-

uct structures, and the least number of singular vertices ash singulary lines.

1.2. Non-structured Hex-Meshing

First, we consider general non-structured hex-meshing, whichaesn't require
the hex-mesh to have local tensor-product structure. The toplogical conditions

for extending a quad-mesh to such a hex-mesh has been fully studie

De nition 1.1  (Extendable Quad-Mesh) Suppose is a volumetric domain
in R®, Q is a topological quad-mesh of its boundary surfac® . If Q is the

boundary of a topological hex-mesh of , then we sayQ is extendable
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One intriguing problem is to nd the su cient and necessary condition for
a quadrilateral surface mesh to be extendable. Thurston [9] and Nichel [10]
proved that for a genus zero closed surface, a quadrilateral mhds extendable
if and only if it has even number of cells, furthermore Mitchel generédized the
result to high genus surface cases [10]. Eppstein [11] used this exdste result
and proved that a linear number of hexahedra (in the number of quarilaterals)
are su cient in such cases.

Recently, the results of Thurston, Mitchel and Eppstein have bea general-
ized by Erickson in [12]. Erickson considers the homology of the voluméwith

Z, coe cients), and proved the odd-cycle criterion for extendable quad-meshes:

Theorem 1.2 (Erickson 2014[12]) Let be a compact subset oR® whose
boundary @ is a (possibly disconnected) 2-manifold, and leQQ be a topological
quad mesh of@ with an even number of facets. The following conditions are

equivalent:

1. Q is the boundary of a topological hex mesh of.
2. Every subgraph ofQ that is null-homologous in  has an even number of
edges.

3. The dual curve arrangementQ is null-homologous in

The concept of spacial twist continuum (STC) plays an important role in
hexahedral mesh generation from a quadrilateral mesh. Given a aqdrilateral
meshQ, we construct its combinatorial dual @, and connect each pair of edges
in @, which are dual to the opposite edges in a quad-face i. Each connected
component is called aSTC chord. On a closed surface, all STC chords are
loops. Mdller-Hannemann [13,114], Folwell and Mitchel [15] proposedo use
curve contraction method for hexahedral mesh generation fromguadrilateral
meshes without self-intersecting STC loops. Erickson [12] gave aoostructive
proof which leads to an algorithm to produce a hex-mesh from an exndable

quad-mesh.
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1.3. Structured Hex-Meshing

For the purpose of isogeometric analysis, the surface and volume@agener-
ally represented as T-Splines. The surface T-Spline should be the stiction of
the volume T-Spline on the boundary. This requires themore structured  sur-
face quad-mesh and volume hex-mesh, namely, the meshes haveder product
structure as global as possible. In this work, we focus on studyingtructured

hex-meshing.
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(d) Solid bunny (e) Solid ball mapping (f) Solid cube mapping

Figure 1: A solid with a genus zero boundary surface can be map ped onto a solid cube, using
the method in [Q.

1.3.1. Genus Zero Case

As shown in Fig. [, given a solid ball embedded in R3, its boundary
surfaceS = @is a closed surface with the induced Euclidean metric. According
to surface uniformization theorem EJV], if the genus ofS is zero (a), thenS can

be conformally mapped onto the unit sphere (b), then to the unit cube (c).



The cube is an extendable quad-mesh, therefore the hexahedratesh can be
constructed for the interior solid. In fact, the boundary map can be extended
into the interior, the solid can be mapped onto the solid ball di eomorphically

(e) and the solid cube (f). The hexahedral mesh can be construetl on the solid

ss cube directly, then pull back to the input solid.

(a) Kitten surface (b) Flat torus (c) Quadrilateral mesh

Figure 2: A genus one closed surface can be conformally and periodically mapped onto the
plane, each fundamental domain is a parallelogram. The subi dvision of the parallelogram
induces a extendable quad-mesh of the surface.

¥ 4
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Figure 3: The interior of the kitten surface in Fig. 2 iElmappe d onto a canonical solid cylinder.

1.3.2. Genus One Case

As shown in Fig.[2, a genus one closed surface (a) can be conformathapped

onto a at torus E?=, where is a lattice

= fm+n jmn22Z;, 2Cg;
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according to surface uniformization theorem [17]. Each fundameral domain
is a parallelogram (b). We subdivide the parallelogram to obtain a regula
quadrilateral mesh Q (c), where Q is extendable. Then the interior volume of
the Kitten surface is mapped onto a canonical solid cylinder in Fig. 3.
Therefore, in the following discussion, we only focus on surfaces viitgenus

greater than one.

1.3.3. High Genus Cases: Trinity

For high genus surfaces, we introduce the concept oéd-blue quad mestor

colorable quad-mesh

o) | o |

(a) Colorable quad-mesh. (b) Non-colorable quad-mesh

Figure 4: Quadrilateral meshes of a multiply connected plan ar domain. The left quad mesh

is colorable, the right one is non-colorable.

De nition 1.3  (Colorable Quad-Mesh) A quad-meshQ on a compact surface
with genus greater thanO is called colorable if the edges ofQ are colored in
either red or blue, such that each quad-face has two opposited edges and two

opposite blue edges.

As shown in Fig. 4, the left frame is a colorable quad-mesh of a multiply
connected planar domain; the right frame shows a non-colorable qd-mesh.

A foliation F of S is a local product structure as shown in Fig. 5. That is, at
each regular pointp 2 S, there exists a neighborhoodU and a di eomorphism
U! R R such that the overlap maps take eachp R to someq R. The
equivalence classes generated by the relation of lying in the sanpe R are the
leaves of the foliation. One can associate a measurewith a foliation F, for an

arc transverse to leaves, ( ) represents how many leaves the arc crosses.
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Figure 5: A nite measured foliation on a genus three surface

The pair (F; ) is called a measured foliation If all the leaves are nite loops,
the foliation is called a nite measured foliation .
All surfaces in real life are Riemann surfaces, which has complex lokao-
ordinate chart. On a Riemann surfaceS, a holomorphic quadratic di erential
has local representation = ' (z)dz?, where' (z) is a holomorphic func-
tion. A holomorphic quadratic di erential induces a local complex coordinates
(p) = RpP "()d in neighborhoods away zeros, the horizontal parametric
lines fRe( ) = constg de ne a foliation of S, the vertical coordinate gives the
measure to the foliation. Therefore, a holomorphic quadratic di erential induces
a measured horizontal foliationF . If the measured foliation F is nite, then
is called a Strebel di erential .
The goal of the current work is to prove the following three conceps are

equivalent
f Colorable Quad-Mesly $ f Finite Measured Foliationg $ f Strebel Di erential g:

which is called the trinity relation , as summarized in the main theorem:

Theorem 1.4 (Trinity) . SupposeS is a closed Riemann surface with genus
greater than one. Given an colorable quadrilateral mesi), there is a nite

measured foliation (Fg; o) induced byQ, and there exits a unique Strebel dif-
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ferent , such that the horizontal measured foliation induced by , (F ; ) is

equivalent to(Fo; o).

Inversely, given a Strebel di erential , it is associated with a nite measured

foliation (F ; ), and induces a colorable quadrilateral mesl@.

This theoretic framework allows us to use the Strebel di erentials to con-
struct colorable quad-meshes, then extend to hexahedral mesk of the interior.
The Strebel di erentials can be constructed by variational method directly. This
gives us a practical way to generate all possible colorable quad-mgss on a sur-

face, and an automatic method for hexahedral mesh generation.

1.4. Pipeline

Figures 6 and 7 illustrate our proposed pipeline.The input to the algorithm
is the boundary surface of the volume, which is represented leither a CAD
model or a triangle mesh. We assume the surface is converted fa triangle
mesh, which is a closed manifold with genug > 1 as shown in (a). The
user input includes3g 3 disjoint loops, namely an admissible curve system as
de ned in Def 5.2, and 3g 3 positive real numbers. A Strebel di erential is
constructed automatically based on the user input as shown in (c)which leads
to a colorable (red-blue) quad-mesh (e). The critical trajectories of the Strebal
di erential segment the surface into 3g 3 cylinders with quad-meshes (b), (d)
and (f). The volume inside each cylinder surface is mapped onto a camical
solid cylinder with a hexahedral mesh, the mapping pulls back the hexhaedral
mesh to the original volume to produce the hexahedral mesh of thaput solid,
as shown in 7. The hexahedral mesh has local tensor product steture, with

2g 2 singular lines.

1.5. Contributions

This work bridges the quadrilateral and hexahedral meshing with masured

foliations and holomorphic di erentials, the theoretic framework leads to a con-



(a) a genus two mesh (b) the left cylinder

(c) a Strebel di erential with trajectories (d) the middle cylinder

(e) the quad mesh induced by (c) (f) the right cylinder

Figure 6: A Strebel di erential (c) on a genus two surface (a) induces a quad meshing (e); the
horizontal, vertical trajectories are shown as red and blue curves in (c); the critical horizontal
trajectories are labeled as black curves in (c). The surface is segmented into three cylinders

(b),(d), (f) by slicing along the critical horizontal traje ctories.

s Structive algorithm for quadrilateral and hexahedral mesh geneations. It has

the following merits:

1. Rigorous This framework lays down a solid theoretic foundation for struc-

10
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Figure 7: The hexahedral mesh of the solid induced by the quad rilateral mesh on the surface.

tured quadrilateral and hexahedral mesh generation.

. Automatic The algorithm pipeline requires minimal user input, only 3g 3

loops and 33 3 positive numbers. All the other steps of computations

are automatic.

. Geometric The quadrilateral and hexahedral meshing methods are geo-

metric, not only topological/combinatorial.

. Regular The hexahedral meshes have very regular tensor product struc

tures with 2g 2 singular lines, which is valuable for constructing volu-

metric/surface T-Splines.

. Conformal The quadrilateral meshes are produces by the horizontal folia-

tions of a Strebel di erential, therefore, the shapes of quad-faes are with
minimal angle distortions. This improves the robustness and numerial

stability/accuracy for downstream analysis.

The work is organized as follows: Section 2 brie y review the related wrks;

Section 3 explains the prerequisites and basic terminologies. Readefamiliar

11
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Figure 8: Two conjugate Strebel di erentials induce quad-m eshes on a genus 3 mesh (top

row) and a genus 5 mesh (bottom row).

with Riemann surface theory can skip this section; Section 4 provea colorable
quad-mesh induces a foliation, and then a Strebel di erential; Sedbn 5 proves a
Strebel di erential produces a colorable quad-mesh; the main therem is summa-
rized in Section 6; Section 7 discusses the topological aspects oktframework
and the future directions; the work concludes in Section 8.

This work involves complex symbols and advanced mathematical corapts,

we summarize all the main symbols in the table 1.

12



S a compact Riemann surface embedded iR®
I the volume inside S
o the volume outside S
(F; ) a measured foliation
a holomorphic quadratic di erential, generally a Strebel di erentia |
natural coordinates of
i the at metric with cone singularities induced by
Z zeros of a holomorphic quadratic di erential
Q a quadrilateral mesh onS induced by a Strebel di erential
Ck a cylinder obtained by cutting S by the critical graph of
hi the height of cylinder Cy
i edges onQ on critical graph of
i edges onQ connecting zeros inside each cylinder
simple loop
an admissible curve system
G pants decomposition graph induced by an admissible curve system
Dehn twisting angle
(G;h;l; ) poly-cylinder surface model
D; cutting half-disk
d singular line, connecting two zeros

Table 1: Symbol List

13
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2. Previous Works

The literature for quadrilateral and hexahedral meshing is vast, acomplete
review is beyond the scope of the current work, we refer reader® [2] for a
thorough overview. In the following, we only brie y review some of the most
related existing hex-meshing approaches.

The \sweeping" approach [18, 19] builds hexahedral mesh primitivesby
sweeping a surface quad-mesh along an arbitrary path generatingexahedral
meshes with constant cross-section topology. This method requis the volume
can be decomposed into a direct product of the surface and the pla The
decomposition usually requires high manual e orts for complex shaps.

The \decomposition" or \multi-sweeping" approach generates hexahedral
meshes by decomposing the original surface mesh into several silap units.
The decomposition can be performed using geometric decompositieras in [20,
21], or integrally during the meshing process by using an interior mestas the
cutting mechanism [22, 23, 24, 25]. This approach needs manual milkvel

shape detection for the decomposition.
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prescribed singularity structure is unsolved. The low quality frame elds may
lead to invalid hexahedral meshes.The theoretic analysis for the singular struc-
ture hasn't been established. Our proposed method is based fwliations, which

is a generalization of vector eld. Namely, a vector eld induces a foliation,

but a general foliation can not be represented by a vector dl Furthermore,

the singular structure in the hex-mesh produced by our metdohas been ana-
lyzed completely. The heuristic method proposed in vectoeld based method
cannot handle complicated geometries, our method is more lboist to deal with
handle-bodies with theoretic guarantee.

In \grid-based" approaches, the embedding space of the given nuel is rst
decomposed into a set of cells, which will then be projected or defared to
conform to the boundary geometry of the model. Marechal [33] pposed to
generate hex meshes through an octree-based method througtual mesh gen-
eration and bu er-layers insertion. Ito et al. [34] developed a set 6 templates
to optimize the octree-based hex meshing. Levy and Liu [35] introdoed LP
centroidal tessellation to generate anisotropic hex-dominant meses. One of the
drawbacks of octree-based approaches is its pose-sensitivity,small orientation
change of the input model can produce di erent meshing results.

The \polycube-based" methods map the input model to a regular danain,
then transfer the hexahedral grid (induced from the regular donain) back to
the model. Due to its natural regularity and geometric similarity to th e model,
the polycube can be a suitable canonical domain for hex mesh gendien [36,
37]. Singularity curves inside the polycube domain can be introducedd reduce
the distortion [38, 39, 40]. Challenges of these volumetric paramete&ations
in hexahedral meshing are that either the cross-frame elds needo be given
manually [38] or they need to be solved through expensive optimizaties [39, 40],
that cannot guarantee the nding of valid solutions.

All these methods require manual input and the resulting hexahedal meshes
might not have local tensor product structure, the user lacks diect control of
singularity structures. In our proposed approach, the user inpa is minimal,

and the whole process can be automatic, the hexahedral mesheresstructured

15
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as tensor product everywhere, except at the @ 2 singular lines.

3. Prerequisites and Terminologies

Our proposed method is based on fundamental concepts and theems in
conformal geometry. Here we brie y review the basic concepts. Btailed treat-

ments can be found in [41, 17, 42].

3.1. Riemann Surface

Riemann Surface. Riemann surface theory generalizes the complex analysis to
the surface setting. Given a complex functionf : C! C, f : x+ iy 7!

u(x;y) + iv(x;y), if f satis es the Cauchy-Riemann equation
Uy = Vy Uy = Vy

then f is a holomorphic function. If f is invertible, and f ! is also holomorphic,
then f is a bi-holomorphic function. A two dimensional manifold is called asur-
face A surface with a complex atlasA, such that all chart transition functions

are bi-holomorphic, then it is called a Riemann surface the atlas A is called a

complex structure

Holomorphic Quadratic Di erential.

De nition 3.1  (Holomorphic Quadratic Di erentials) . SupposeS is a Riemann
surface. Let be a complex di erential form, such that on each local chart \ith

the local complex parameterfz g,
= ' (z)dz?
where' (z ) is a holomorphic function.

A holomorphic quadratic di erentials on a genus zero closed surfacenust be
0. On a genus one closed surface, any holomorphic quadratic di ential must

be the square of a holomorphic 1-form. According to Riemann-Rochheorem,

16
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the dimension of the linear space of all holomorphic quadratic di erenials is
3g 3 complex dimensional, where the genug > 1.

A point z; 2 S is called azero of , if ' (z) vanishes. A holomorphic
quadratic di erential has 4g 4 zeros, as shown in Fig. 9. For any point away
from zero, we can de ne a local coordinates

Zp p
(p) := ' (z)dz: 1)
which is the so-callednatural coordinates induced by . The curves with con-
stant real natural coordinates are called thevertical trajectories, with constant
imaginary natural coordinates horizontal trajectories. The trajectories through

the zeros are called thecritical trajectories .

Figure 9: Holomorphic quadratic forms on a genus two surface .

As shown in Fig. 10, the bunny surface is of genus zero. we slice thargace
at the ear tips, and the bottom. The red and blue curves are horizatal and

vertical trajectories of a holomorphic di erential on the surface.

De nition 3.2  (Strebel[42]). Given a holomorphic quadratic di erential on
a Riemann surface S, if all of its horizontal trajectories are nite, then is

called a Strebel di erential.

A holomorphic quadratic di erential is Strebel, if and only if its critica |

horizontal trajectories form a nite graph [42]. As shown in Fig. 11, the hori-

17
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Figure 10: The horizontal (red) and vertical (blue) traject  ories of a holomorphic 1-form on a

genus zero surface with three boundaries.

(a) Non-Strebel (b) Strebel

Figure 11: A non-Strebel (a) and a Strebel di erential (b) on a genus two surface. The Strebel

di erential has nite horizontal trajectories.

zontal trajectories of a holomorphic di erential may be in nite spir als as in the

left frame, or nite loops as in the right frame.

Conformal Mapping and Teichmuller Space. Suppose 6;fz g) and (T;fw @)

are two Riemann surfaces, : S ! T is a smooth mapping between them. If

18



every local representation of' , z 7! w is holomorphic, then the mapping is

25 called aconformal mapping If the local representation is biholomorphic, then
the two Riemann surfaces areconformal equivalent

Figure 12 demonstrates a conformal mapping from a human facialwsface

onto the planar unit disk. A conformal mapping maps in nitesimal circ les to

in nitesimal circles, this shows that the tangential map of a conformal mapping

a0 IS a scaling map, therefore a conformal mapping preserves angles.

Figure 12: A conformal mapping from a human face surface onto the unit planar disk.

SupposeS is an oriented topological surface, with two conformal structures
fz gand fw g, if there exists a bi-holomorphic map' :(S;fz g)! (S;fw g)
and' is homotopic to the identity map of S, then we say §;fz g) and (S;fw @)
are Tecihmaller equivalent. All the Teichmuller equivalence classes form a space,

as  Which is called the Teichmaller space of S.

Conformal Module. Suppose Riemann surfac& is a topological annulus, name-
ly a genus zero surface with two boundaries, then there exists a oformal map-
ping from S to a canonical planar annulus. The inner and outer circles are with
radii r and R respectively. Then the conformal module of the surface is de ned
a0 as
Mod(S) = zi Iog?: 2

Equivalently, the topological annulus S can be conformally mapped to a canon-

ical cylinder C. The bottom circle of C is with radius 1 and the height is

19
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(a) a human facial surface (b) a planar annulus

with a slit

Figure 13: The human facial surface is sliced along the mouth to become a topological annulus
(a). The faical surface is conformally mapped to a planar ann ulus (b). The conformal module

of the topological annulus is given by the ratio between the o uter and inner radii.

2 Mod(S). There exists a conformal mapping between two topological annii

if and only if they share the same conformal module.

4. From Quadrilateral Mesh to Strebel Di erential

4.1. Colorable Quadrilateral Surface Mesh

SupposeS is a Riemann surface, aquadrilateral meshof S is a geometriccell
decomposition such that each cell is topological quadrilateral. More rigorously,
we can de ne a quadrilateral mesh as a geometricell complex composed of 0-
dimensional nodes, 1-dimensional edges and 2-dimensional quadtéaals, such
that

1. Each edge contains two distinct nodes;
2. Each face is contained in at least one higher-dimensional face, i.eeach
node is in an edge, each edge is in a quadrilateral.

3. Every edge is in exactly two distinct quadrilaterals.

20



330

335

340

345

350

4. Each quadrilateral is bounded by a cycle of four distinct edges.
5. Two nodes have at most one edge between them.

6. Two quadrilaterals share at most one edge.

SupposeM is a three dimensional manifold, ahexahedral meshof M is a
geometriccell decomposition such that each cell is a topological hexahedron. A

more rigorous de nition can be found in [10].

De nition 4.1  (Colorable Quad Mesh) SupposeQ is a quadrilateral mesh on
a surface S, if there is a coloring scheme : E ! f red;blueg, which colors each
edge either red or blue, such that each quadrilateral face études two opposite
red edges and two opposite blue edges, th€nhis called a colorable (red-blue)

quadrilateral mesh.

Two quadrilateral meshes for a multi-connected planar domain are Isown
in Figure 4. The domain is a topological disk with two inner holes. The left
quad-mesh is with a color scheme. The right quad mesh is not colorahleThe

black edge in the middle can be colored neither red nor blue.

Lemma 4.2. SupposeS is an oriented closed surface@Q is a quadrilateral mesh

on S. Q is colorable if and only if the valences of all vertices are @n.

Proof. Necessary Condition Supposev is a vertex of the quad meshQ, the edges
adjacent to v are sorted counter-clock-wisely with respect to the orientation @
the surface, denoted ad ey; ey ;exg. BecauseQ is colorable, therefore, the
colors of the edges are eithefrred; blue;  ;red; bluegor f blue;red; ;blue; redg,
hence the number of edges are even. Becaugeas an arbitrary vertex of Q, the
valence of every vertex is even.

Su cient Condition Consider each vertexv in Q, if the valence ofv is 4, thenv
is a regular vertex, otherwise,v is a singular vertex. Let the set of all singular
vertices be

P :=fv2Qjdeglv) 64g:

Let
R:=SnP

21
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be the punctured surface with all singularities removed, each quadateral face
be the canonical planar square, then the punctured surface is wita at metric
g, denoted as R;g). Consider the universal covering space of the punctured
atsurface :R! (R;Qg). Then all the deck transformations of (R; g) must
be Euclidean rigid motions of the plane. Letv 2 P be a singular vertex, be a
small loop surrounding v, then the deck transformation corresponding to [ ] is
a rotation of k , wherek is an integer. All the deck transformations are with
form (x;y) 7! (x;y) +(m;n). Let e be an edge inQ, its orbit in the covering
space is
=1 & & o

where e and g diers by a deck transformation, therefore they are parallel to
each other.

We isometrically immerse (R; @) in the plane, such that each edge is either
horizontal or vertical, we color the horizontal edges red, and vetical edges blue.
Then for each edgee 2 Q, all its preimages are in the same color. Then we color

e by the same color of its orbit. This givesQ a consistent color scheme. O

Lemma 4.3. SupposeS is an oriented closed surface@Q is a quadrilateral mesh
on S. If Q is colorable, then the dual curve arrangementy of Q consists of

nite loops without self-intersections.

Proof. Suppose the quad mesh) is with a consistent color scheme. Consider
an arbitrary dual curve  of Q. Then by de nition, only intersects either
red edges, or blue edges. Assume intersects itself at a point p, p is inside

a quadrilateral face f, then transverses both the red edges and blue edges
of f, contradiction. Hence has no self-intersection, namely the dual curve

arrangement of Q consists of nite loops without self-intersection. O

4.2. Finite Measured Foliation

De nition 4.4  (Measured Foliation). Let S be a compact Riemann surface
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Figure 14: A nite measured foliation on a genus three surfac e.

functions v; de ned on U; s.t.
1. jdvij = jdv;j on Ui \ U
2. jdvij = jim(z  z)%=2dzj on Ui\ V.

The kernels kerdv; dene a Ck ! line eld on S which integrates to give a

foliation F on S f zy;:::; 70, with k; +2 pronged singularity atz; . Moreover,
given an arc S, we have a well-de ned measure ( ) given by
Z
()=1] dv

wherejdvj is de ned by jdvjy, = jdvij.

If each leaf of the measured foliation F; ) is a nite loop, then F is called
a nite measured foliation .

Two measured foliations ; ) and (G; ) are said to be equivalent if after
some Whitehead moves orF and G, there is a self-homeomorphism of which
takesF to G, and to . Here a Whitehead move is the transformation of one
foliation to another by collapsing a nite arc of a leaf between two singularities,

or the inverse procedure, as shown in Figure 15.

Lemma 4.5. SupposeS is a closed oriented surfaceQ is a colorable quadri-

lateral mesh of the surface, therQ induces two nite measured foliations.
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Figure 15: Equivalent measured foliations and Whitehead mo ves.

Proof. We remove the vertices ofQ from S, whose valences are not equal to 4,
and obtain a punctured surfaceR. Assume each quad-face is a canonical unit
square, then this de nes a at metric on R. Let :R!R be the universal
covering space of the punctured surface, the universal coverispace is equipped
with the pull-back at metric and immersed on the Euclidean plane. Because
all the singularities are with even valences, then all the deck transfrmations
have the formz 7! z + a. We can adjust the immersion, such that the red
edges of one quad-face are aligned with the real axis, and the bluelges with
the imaginary axis. This gives two local foliations (y = const;jdyj) and (x =
const jdxj). Because the holonomy consists of rotations by , wherek is an

integers, the local foliations can be extended to cover the whole sface. O

In the following, we call the foliations aligned with the red edges as the
horizontal foliation induced by Q, the one aligned with the blue edges as the

vertical foliation induced by Q.
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Figure 16: Holomorphic quadratic di erentials on a genus th  ree surface.

4.3. Strebel Di erential

Given a holomorhic quadratic di erential on a Riemman surface S, it
de nes a measured foliation in the following way: induces the natural coor-

dinates , the local measured foliations are given by
(fIm = constg;jdim j); 3)

then piece together to form a measured foliation known as théorizontal mea-

sured foliation of . Similarly, the vertical measured foliation of is given by

(fRe = constg;jdRe j): (4)

Hubbard and Masure proved the following fundamental theorem canecting

measured foliation and holomorphic quadratic di erentials.

Theorem 4.6 (Hubbard-Masur [43]). If (F; ) is a measured foliation on a
compact Riemann surfaceS, then there is a unique holomorphic quadratic dif-

ferential on S whose horizontal foliation is equivalent to(F; ).

Corollary 4.7. SupposeS is a closed compact Riemann surfaceQQ is a col-
orable quadrilateral mesh, then there exists a unique Strebdi erential , the
horizontal measured foliation of is equivalent to the horizontal foliation in-
duced byQ.
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Proof. By lemma 4.5, the colorable quad-meshQ induces a nite measurable
foliation (Fq; o), the horizontal foliation induced by Q. By theorem 4.6, there
40 exists a unique holomorphic quadratic di erential , whose horizont al measured
foliation is equivalent to the nite measured foliation (Fq; ). Furthermore,

due to the niteness of (Fg; o), is a Strebel di erential. O

Similarly, it can be shown there is a unique Strebel di erential, whose fori-

zontal foliation is equivalent to the vertical foliation induced by Q.

N N

@) (b)

) N

(©) (d)

Figure 17: Holomorphic quadratic di erentials on the genus  two surface.
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a5 5. From Strebel Di erential to Quadrilateral Mesh

In this section, we prove that each Strebel di erential induces a olorable

quadrilateral mesh.

2 3 8 9
1 1 2 3 @ 7 11
4 7 10
O—6 O
12 O, = () 15

Figure 18: Holomorphic quadratic di erentials on the genus  two surface.

5.1. Pants Decomposition Graph

Given a genusg > 1 closed surfaces, we select 8 3 disjoint simple loop-

wm S, T 17 2 ; 3g 30, which segment the surface into 8 2 pairs of pants,
fPy;Po; ;P2g 20. Each pair of pants is a genus 0 surface with 3 boundary
loops. This is called apants decompositionof the surface. A pants decomposi-

tion can be represented as a grapks, each pair of pants is represented as a node,

27



each simple loop is denoted by an edge. Suppose the simple loopconnecting
«s  two pairs of pants P;; P, then the arc of ; connects nodes oP; and Px. In
the following discussion, we callG as the pants decomposition graph Figure 18

shows one example.

De nition 5.1  (Pants decomposition Graph). SupposeG is a graph,g > 1is
a positive integer, such that there are2g 2 nodes,3g 3 edges, the valence of
a0 each node is3. Then we call G a pants-decomposition graphg the genus of the

graph.

(c) a pair of pants (d) gluing two pairs of pants

Figure 19: Flat cylindric surface model of ( S;j j).

5.2. Existence of Strebel Di erential
All the Strebel quadratic di erentials are dense in the space of all tolo-

morphic quadratic di erentials. Given a holomorphic quadratic di ere ntial ,
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(c) a hexagon

(a) 3 rectangleslj + I > 1;

(f) a pair of pants (type I1)

Figure 20: Flat cylindric surface model of ( S;j j).
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Figure 21: The twisting angle when gluing two pair of pants.

the natural coordinates in Eqn. 1 induces a at metric with cone singularities,
which is denoted asj j. Hubbard and Masur proved the following existence of

a Strebel di erential with prescribed type and heights.

De nition 5.2  (Admissible Curve System) On a genusg surface S, a set of
non-intersecting simple loops = f 1; 2; ; ng, Wheren 3g 3is called

an admissible curve system

Theorem 5.3 (Hubbard and Masur [43]). Given non-intersecting simple loops
= f 1; 2 ; 3g 30, and positive numbersf hy; hy; ;hag 30, there exists

a unique holomorphic quadratic di erential , satisfying the following :

1. The critical graph of  partitions the surface into 3g 3 cylinders, f Cy; Cy;
such that  is the generator of Cy,

2. The height of each cylinder(Cg;j j) equals tohy, k=1;2; ;3g 3.

The geometric interpretation of Hubbard and Masur's theorem is asfollows:
given a holomorphic quadratic di erential , the natural coordinat es in Eqn. 1
induces a at metric at the regular points, and cone angles at the zeros.
Each cylinder Cx becomes a canonical at cylinder underj j, whose height is
hg. Therefore, Hubbard and Masur's theorem allows one to specify ta type of

and the height of each cylinder Cy.

As shown in Fig. 17, given three disjoint simple loops 1; »; 30 and three

30

;Cag 30,
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height parametersf hy; hy; hzg, the corresponding Strebel di erentials are illus-
trated by their horizontal trajectories. Each pair (a) and (b), ( ¢) and (d) share

the same admissible curves, but di erent height parameters.

5.3. Poly-Cylinder Surface

Given a pants decomposition graphG, we associate each arcg with a pos-
itive number hy > 0, such that there exists a Strebel di erential , the critical
trajectories of segment the surface into cylindersf Cy g, the fundamental group
generator ofCy is . The height of Cx under the metric induced by | j is hy,
assume the circumference o€y is lx. The surface S;j j) can be treated as
constructed in the following way: we usePjk to denote the pair of pants with

three boundary loops i; j; «.

Step 1. For each boundary loop ;, we construct a rectangleR; with width [;=2
and height h;=2, as shown in Fig.20 frame (a); the horizontal iso-parametric

curves are red, the vertical iso-parametric curves are blue.

Step 2. Iffl;;1;; 1k g satisfy the triangle inequality, then three rectanglesR;, R;
and Ry are glued together to form a at hexagon with cone singularity p as

shown in frame (c), where
t = Rj\ Ri; tj = Ri\ Ry; tx = R\ R;j:

The lengths are given by

_|j+|k Ii_ _|k+|i |j_ _|i+|j |k,
=1 * T = —L €

t 4 7 4 4

If fli;1;;1kg don't satisfy the triangle inequality, |; + I <1;, then three rectan-
glesR;, Rj and Ry are glued together to form a at octagon as shown in frame

(d).

Step 3. Glue two copies of the hexagons in (c) along the three blue badary

segments to form a pairs of pantsPj. in (e). Similarly, glue two copies of the

31



500

505

510

515

520

525

octagons in (d) along the 4 blue boundary segments to form a pairsfgpants
Pik in (f). The red and blue curves are horizontal and vertical trajedories of
respectively. Two cone singularises are the two zeros of . The black curves

fti;tj;tkg form the critical horizontal trajectory in (e) and (f).

Step 4. For each node in the pants decomposition graplks, we construct a pair
of pants. For each edge « in the graph, we connect two pairs of pantsPj, and

Pwm along the common boundary loop g by twisting Pxm by an angle .

We call the obtained surface aspoly-cylinder surface in fact it is isometric
to (S;j J)
De nition 5.4  (Poly-cylinder surface). Given a pants-decomposition graplG =
hV; Ei, a cylinder height functionh : E ! R*, a cylinder circumference function
| : E! R*, atwisting angle function :E ! R, the surface constructed as

above is called a poly-cylinder surface, denoted & := ( G; h;l; ).
The above argument leads to the following lemma.

Lemma 5.5. SupposeS is a closed Riemannian surface, is a Strebel di er-

ential, then it induces a poly-cylinder surface(G; h;l; ).

Inversely, if we x the pants decomposition graph G, and the cylinder height
function h, vary the circumference function| and the twisting angle function

then the poly-cylinder surface G; h;l; ) can cover the Teichmaller space.

Theorem 5.6 (Teichmuller Coordinates[44]). Given a topological surfaceS,
xing a pants decomposition graphG, and the cylinder height function h, vary
the circumference function | and the twisting angle function , then the poly-
cylinder surface (G; h;1; ) can cover a neighborhood of the Teichmuller space of
S.

5.4. Quadrilateral Mesh Generation
Lemma 5.7. Suppose is a Strebel di erential on a compact Riemann surface

S with genus greater thanO, then induces a colorable (red-blue) quadrilateral
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Figure 22: Quadrilateral meshing a cylinder.

Proof. By Lemma 5.5, the Strebel di erential induces poly-cylinder surfa ce.
SupposePj is a pair of pants, such thatl;;l;;lx doesn't satisfy the triangle
inequality, like the situation of Fig. 20 frame (f), then by the Whitehe ad move,
we can deform the critical graph as that in frame (e). The surfacds segmented
into cylinders by the modi ed critical graph, each cylinder Cy has two bound-

+

aries , and |, , each boundary traverses the singularities twice, as shown in
Fig. 22,p1;pz areon ; andc;c are on , , then we draw two curves onCy,
connectingp; and a1, pz and ¢ respectively. This form a quadrilateral meshQ
of the surface. All the vertices are the zeros of , the valence ofeach zero is 6.
By Lemma 4.2,Q is colorable. The edges on the critical graph are in red, the

edges connectingy; to g in each cylinder are in blue. O

Furthermore, in Q , we use ; to represent the edges on the critical graph of
,and ; the edges connecting zeros on each cylinder. The symbdi€y; i; ;g
are shown in Fig. 22.

6. Main Theorem

By previous discussion, we are ready to prove the main theorem ofhe

current work:
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Theorem 6.1 (Trinity) . SupposeS is a compact Riemann surface with genus

greater than one. Given a colorable quadrilateral mesk, there is a nite mea-

sured foliation (Fg; o) induced byQ, and there exits a unique Strebel di erent
, such that the horizontal measured foliation induced by , (F ; ) is equiv-

alentto (Fg; o).

Inversely, given a Strebel dierential , it is associated with a nite measured

foliation (F ; ), and induces a colorable quadrilateral mesli@.

Proof. Given a colorableQ on S, by lemma 4.5, the horizontal foliation (Fg; o)
induced by Q is a nite measured foliation. Then by corollary 4.7, there ex-
its a unique Strebel di erential , such that the horizontal measu red foliation
induced by , (F ; )isequivalentto (Fg; o).

Inversely, given a Strebel di erential , it is associated with a nite measured
foliation (F ; ) given by (fim = constg;jdim j), where is the natural
coordinates induced by as described in Eqn.1. Then by lemma 5.7, induces

a colorable quad-mesh of. O

We can systematically generate Strebel di erentials on a compact Remann
surface, each Strebel di erential induces a colorable quad-mestthen in turn a
hexahedral mesh of the interior solid.

We can show that a Strebel di erential induces a hexahedral meshA surface
S embedded inR3, separatesR? into two connected components, the enclosed
volumel and the outside spacéD. A handle-bodycan be de ned as an orientable
3-manifold with boundary containing pairwise disjoint, properly embedded 2-
discs such that the manifold resulting from cutting along the discs is a3-ball.
In other words, a handle-body can be constructed by gluing a nite number of
1-handles (solid cylinders) to a 3-ball. In the following, we assumé is a handle
body.

Theorem 6.2. SupposeS is a compact Riemann surface with genug > 1 em-

bedded inR?, the interior solid | is a handle-body, then there exists a Strebel
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h= < h=
(a) Admissible curve system (b) Cutting half-disks

Figure 23: Construction of the admissible curve system, and the cutting half-disks.

(a) Admissible curve system = f 1; 2; 30 (b) Colorable quad-meshQ

Figure 24: Given an admissible curve system (a) and the heig ht h, there exists a consistent
Strebel di erential , which induces a colorable gaud-mesh in (b). The zeros are z1;z», the
critical graph is formed by f 1; 2; 3; 4; 5; 69 The vertical STC chords of Q is shown as

f 1, 2, 30.

dierential , such that induces a colorable quad-mesk) , Q can be ex-
tended to a hexahedral mesh of the enclosed volurhe
Furthermore, the hex-mesh has tensor product structure eept at 2g 2

singular curves.

Proof. The proof is constructive, which leads to a computational algorithm di-

rectly.

Step 1. Construct the pants decomposition graph
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As shown in Fig. 23 frame (a), the handle-body hagy > 1 handles, the cutting

disks arefD1;D2;  ;Dgyg, whose boundaries are
fa20 190 i=@Bi=1;2 o

As shown in Fig. 23 frame (a), assume each handle has another geator ;,

then we obtain loops
foa 590 i= i, 5i=12 o

The k-th handle can be cut o from S by slicing along . After removing
g handles, the left part of S is a denoted asC. Cis a genus 0 surface withg
boundary loops,

@a= 1[ 22 [ ¢

If g equals to 2, 1 and , coincide,f 1; 2; 1g form an admissible curve
system. If g equals 3,f 1; 2; 3; 1; 2; 30 form an admissible curve system.
Otherwise, we nd one loop ; on Ccircling around 1 and ,, cut the surface
Calong ; to remove 1; .. This operation removes two boundary loops from
C and adds back one boundary loop, the total number of boundary lops is
reduced by one. We repeat this procedure, each time nd a loop; surrounding
two boundary loops onC, and cut the surface along ; to reduce the number of
boundary loops by one, eventuallyC has only 3 boundary loops, then we stop.

In total, we introduce g 3 such kind of loops
fa 20 5 g a9

Now we have obtained an admissible curve system

LG

then construct the pants decomposition graphG .
Step 2. Construct the Strebel Di erential
We set the height parametersh = fhy;hy; ;hag 30, by theorem 5.3 we can

nd the unique Strebel di erential sepcied by ( G ;h).
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Step 3. Solid Cylinder Decomposition

The critical graph segmentsS into 3g 3 cylindersfCy;Cy;  ;Czy 30, the
height of (Cx;j ]) is hx. The meridian of C; (the horizontal trajectory of
which divides C; into two equal parts) is denoted asl;. fli;ly; i lkg divide
the surfaceS into 2g 2 pairs of pants.

Fig. 23 frame (b) shows one pair of pantsPjx , @R = i [ Ij [ Ik. Pix
contains two zeros of , zi}k and 2”2k , three critical horizontal trajectories j; j
and g, which form a connected component of the critical graph of . Inside
the enclosed volumel , we can draw a curve segmentlj, connecting the two

zeros. This con guration gives three cutting-half-disks insidel , such that
@O = [ dy; @B = ;[ dy: @Y = & [ d;

shown as the shadowed regions in Fig. 23 frame (b).
The volume | is segmented by these cutting half-diskg$ Di'j‘ g into solid cylin-
ders, each solid cylinder is denoted a3y, k=1;2; ;3g 3.

Step 4. Construct the Hexahedral Mesh

By Lemma 5.7, the Strebel di erential induces a colorable quad-mesh Q
as shown in Fig. 24 frame (b). The red edges of consists of the critical
horizontal trajectories of , f ;g. The blue edges ofQ are denoted asf ;g.
As shown in Fig. 22, inside each solid cylindeiTy, we can construct the surface

k, Whose boundaries are the red and blue edges & . ¢ divides Ty into two
half-solid-cylinders.

If two half-solid-cylinders share the same cutting-half-disk Di'j‘ , then they
are glued together. In this way, all the half-solid-cylinders are glue together,
each connected component has a tensor product structur® S*, which we call
a loop of half-solid-cylinders In this way, the volume | is decomposed into a
nite set of loops of half-solid-cylinders.

The hexahdral mesh on each loop of half-solid-cylinders can be canscted
easily by \sweeping method", such that the meshing is consistent orthe cut-

ting surfacesf g, the cutting-half-disks fDi'J-‘ g and the singular curvesf djx g.
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The hexahedral meshes of all loops of half-solid-cylinders are glugdgether co-
ws herently, to form a hexahedral mesh of the entire volumel . The meshing has

tensor product structure except at the singular curvesdijy . O

(a) Strebel di erential (b) Strebel di erential (c) Colorable Qua d-mesh

Figure 25: A Strebel di erential on a genus two surface (a) an d (b) induces a quad meshing

(©.

Figure 26: The hexahedral mesh induced by the quadrilateral mesh in Fig. 25.

Fig. 25 and 26 illustrate the process. Frame (a) and (b) of Fig. 25 sbw the
Strebel di erential , frame (c) is the induced quad-mesh. Fig. 26 shows the

hexahedral mesh of the enclosed volume.

e0 7. Discussion

The current work focuses on the theoretic aspects of the fraework of the
hexahedral meshing based on foliations, the algorithmic tals will be given in
the future expositions, including the algorithm of computng the Strebel di eren-
tial from the pants decomposition graph and the heights, thalgorithm of nding

es the half-cutting disks, the half-solid-cylinder decompdson and so on.
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The input is an admissible curve system, which produces a peadecomposition
of the surface. There are ways to automatically generate pas-decomposition,
such as the algorithm described in [45]. There are in nite may number of
Strebel di erentials, hence in nite many ways of hexahedrd meshing. It is an
intriguing problem to nd the way how Strebel di erential a ects the quality of
the hex-mesh, and how to select the optimal solution. This Wibe one of our
future directions.

Current work focuses more on the topological aspect of thegdrithm pipeline.
The geometric aspects of the algorithms will be discussed the following expo-
sitions, including the ways to choose the pants-decompoiih, the height pa-
rameters, the cutting half disks, the hex-meshing for eachold cylinder and so
on.

Furthermore, the method is based on conformal geometry, theizes of the
hexahedral elements may not be uniform. In near future, we Wiinvestigate ef-
fective ways to increase the uniformity of the hexahedra, ahimprove the quality

of the hex-meshes.

8. Conclusion

For the purpose of isogeometric analaysis, one of the most commamays is
to construct structured hexahedral meshes, which have regutatensor product
structure, and t them by volumetric T-Splines. This theoretic wor k propos-
es a novel surface quadrilateral meshing method, colorable quattesh, which
leads to the structured hexahedral mesh of the enclosed volumeif high genus
surfaces.

The work proves the equivalence relations among colorable quad-rakes, -
nite measured foliations and Strebel di erentials on the surface. Tis trinity the-
orem lays down the theoretic foundation for structured quadrilateral/hexahedral
mesh generation, and leads to practical, automatic algorithms.

The work proposes the following algorithm: the user input a set of dipint,

simple loops on a high genus surface, and specify a height parametgr each
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loop; a unique Strebel di erential is computed with the combinatorial type and
the heights prescribed by the user input; the Strebel di erential assigns a at
metric on the surface and decompose the surface into cylinders; eolorable
quad-mesh is generated by splitting each cylinder into two quadrilateals, fol-
lowed by subdivision; the surface cylindrical decomposition is extened inward
to induce a solid cylindrical decomposition of the volume; the hexahexhl mesh-
ing is generated for each volumetric cylinder and then glued togetheto form a
global consistent hex-mesh. The method is rigorous, geometric,usomatic and
conformal to the geometry.

Current work focuses more on the topological aspect, and the thoretic proofs
of the existence of the solution. In near future, we will investigate further
the geometric aspects of the framework, and re ne the algorithnic pipeline to

improve the quality of the hex-meshing.
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