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In this work, we give a geometric interpretation to the Generative Adversarial Networks 
(GANs). The geometric view is based on the intrinsic relation between Optimal Mass 
Transportation (OMT) theory and convex geometry, and leads to a variational approach 
to solve the Alexandrov problem: constructing a convex polytope with prescribed face 
normals and volumes.
By using the optimal transportation view of GAN model, we show that the discriminator 
computes the Wasserstein distance via the Kantorovich potential, the generator calculates 
the transportation map. For a large class of transportation costs, the Kantorovich potential 
can give the optimal transportation map by a close-form formula. Therefore, it is sufficient 
to solely optimize the discriminator. This shows the adversarial competition can be 
avoided, and the computational architecture can be simplified.
Preliminary experimental results show the geometric method outperforms the traditional 
Wasserstein GAN for approximating probability measures with multiple clusters in low 
dimensional space.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

GAN model Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) aim at learning a mapping from a simple 
distribution to a given distribution. A GAN model consists of a generator G and a discriminator D , both are represented 
as deep neural networks (DNNs). The generator captures the data distribution and generates samples, the discriminator 
estimates the probability that a sample came from the training data rather than the generator. Both the generator and 
the discriminator are trained simultaneously. The competition drives both of them to improve their performance until the 
generated samples are indistinguishable from the genuine data samples. At the Nash equilibrium (Zhao et al., 2016), the 
distribution generated by G equals to the real data distribution. GANs have several advantages: they can automatically 
generate samples and reduce the amount of real data samples; furthermore, GANs do not need the explicit expression of 
the distribution of given data.
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Fig. 1. Wasserstein Generative Adversarial Networks (W-GAN) framework.

Fig. 2. The GAN model, OMT theory and convex geometry has intrinsic relations.

Recently, GANs receive an exploding amount of attention. For examples, GANs have been widely applied to numer-
ous computer vision tasks such as image inpainting (Pathak et al., 2016; Yeh et al., 2017; Li et al., 2017b), image super 
resolution (Ledig et al., 2016; Iizuka et al., 2017), semantic segmentation (Zhu and Xie, 2016; Luc et al., 2016), object de-
tection (Radford et al., 2015; Li et al., 2017a; Wang et al., 2017), video prediction (Mathieu et al., 2015; Vondrick et al., 
2016), image translation (Isola et al., 2016; Zhu et al., 2017; Dong et al., 2017; Liu et al., 2017), 3D vision (Wu et al., 2016; 
Park et al., 2017), face editing (Larsen et al., 2015; Liu and Tuzel, 2016; Perarnau et al., 2016; Shen and Liu, 2017; Brock 
et al., 2017; Shu et al., 2017; Huang et al., 2017), etc. Also, in machine learning field, GANs have been applied to semi-
supervised learning (Odena, 2016; Kumar et al., 2017; Salimans et al., 2016), clustering (Springenberg, 2016), cross domain 
learning (Taigman et al., 2016; Kim et al., 2017), and ensemble learning (Tolstikhin et al., 2017).

Optimal transportation view In deep learning, the “data distribution hypothesis” is well accepted: natural data sets dis-
tribute close to low dimensional manifolds. Therefore, the central goal of deep learning is to learn these manifolds and 
the distributions on them. Generative models, such as Generative Adversarial Networks (GAN) and Variational Autoencoders 
(VAE), achieve this by mapping a data manifold embedded in the ambient space to the low dimensional latent space and 
manipulating the mapping to adjust the push forward distributions on the latent space.

Recently, Optimal Mass Transportation (OMT) theory has been applied to improve VAEs and GANs. The Wasserstein 
distance has been adapted by GANs as the loss function as the discriminator, such as WGAN (Arjovsky et al., 2017), 
WGAN-GP (Gulrajani et al., 2017) and RWGAN (Guo et al., 2017). When the supports of two distributions have no over-
lap, Wasserstein distance still provides a suitable gradient for the generator to update. The Wasserstein distance in VAE is 
calculated using linear programming method in Liu et al. (2018), which gives more transparent and accurate results.

Fig. 1 shows the optimal mass transportation point of view of WGAN (Arjovsky et al., 2017). The ambient image space 
is X , with the real data distribution ν . The latent space is Z with much lower dimension. The generator G can be treated 
as a “decoding map” from the latent space to the sample space, gθ : Z → X , realized by a deep neural network with 
parameter θ . Let ζ be a fixed distribution in the latent space, such as uniform distribution or Gaussian distribution. The 
generator G pushes forward ζ to a distribution μθ = gθ#ζ in the ambient space X . The discriminator D uses the power 
of Euclidean distance as the cost function and computes the Wasserstein distance between μθ and ν , Wc(μθ , ν), realized 
by another deep neural network with parameter ξ . Calculating the Wasserstein distance Wc(μθ , ν) is equivalent to finding 
the so-called Kantorovich potential ϕξ . Therefore, G improves the decoding map gθ to approximate ν by gθ#ζ ; D improves 
the Kantorovich potential ϕξ to increase the approximation accuracy to the Wasserstein distance. The generator G and the 
discriminator D are trained alternatively, until the competition reaches an equilibrium.

In summary, the Generative Adversarial Network model (GAN) has natural connection with the Optimal Mass Transporta-
tion (OMT) theory:

1. In generator G , the generating map gθ in GAN is equivalent to the optimal transportation map in OMT;
2. In discriminator D , the Wasserstein distance between distributions is equivalent to the Kantorovich potential ϕξ .
3. The alternative training process of W-GAN is the min-max optimization of expectations:

min
θ

max
ξ

Ez∼ζ (ϕξ (gθ (z))) +Ey∼ν(ϕc
ξ (y)).

The deep neural network of D computes the Wasserstein distance by the maximization process to approximate Kan-
torovich potentials ϕξ , parameterized by ξ ; the network G calculates the optimal transportation map gθ by the 
minimization process, parameterized by θ (see Fig. 1).

The GAN model and the convex geometry are connected by the optimal transportation theory (see Fig. 2).
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Geometric interpretation The Optimal Mass Transportation theory has intrinsic connections with the convex geometry. A 
special type of OMT problem is equivalent to the Alexandrov problem in convex geometry, specifically, finding the optimal 
transportation map with L2 cost is equivalent to constructing a convex polytope with user prescribed normals and face 
volumes. The geometric view leads to a practical algorithm, which finds the generating map gθ by a convex optimization. 
Furthermore, the optimization can be carried out using Newton’s method with explicit geometric meaning. The geometric 
interpretation also gives the direct relation between the transportation map gθ for G and the Kantorovich potential ϕξ

for D .
These concepts can be explained using the plain language in computational geometry (Edelsbrunner, 1987),

1. the Kantorovich potential ϕξ corresponds to the power distance;
2. the optimal transportation map gθ represents the mapping from the power diagram to the power centers, each power 

cell is mapped to the corresponding site.

Imaginary adversary In the current work, we use Optimal Mass Transportation theory to show the fact that: by carefully 
designing the model and choosing special distance functions c, the generator map gθ and the discriminator function (Kan-
torovich potential) ϕξ are equivalent, one can be deduced from the other by a simple closed formula. Therefore, once the 
Kantorovich potential reaches the optimum, the generator map can be obtained directly without training. One of the deep 
neural networks for G or D is redundant, one of the training processes is wasteful. The competition between the generator 
G and the discriminator D is unnecessary, and imaginary.

Contributions The major contributions of the current work are as follows:

1. Based on the connection between convex geometry and Optimal Transportation, develop an explicit geometric construc-
tion for optimal transportation map for the purpose of Generative Adversarial Networks;

2. Demonstrate in Theorem 3.7 that if the cost function c(x, y) = h(x − y), where h is a strictly convex function, then 
once the optimal discriminator is obtained, the generator can be written down in an explicit formula. In this situation, 
the competition between the discriminator and the generator is unnecessary and the computational architecture can be 
simplified;

3. Propose a novel framework for generative model, which uses geometric construction of the optimal mass transportation 
map;

4. Conduct preliminary experiments for the proof of concepts.

Organization The article is organized as follows: section 2 explains the Optimal Mass Transportation view of WGAN in 
details; section 3 lists the main theory of OMT; section 4 gives the detailed exposition of Minkowski and Alexandrov 
theorems in convex geometry, and its close relation with power diagram theory in computational geometry, an explicit 
computational algorithm is given to solve Alexandrov’s problem; section 5 analyzes semi-discrete optimal transportation 
problem, and connects Alexandrov problem with the optimal transportation map; preliminary experiments are conducted 
for proof of concept, which are reported in section 6. The work concludes in the section 7.

2. Optimal transportation view of GAN

In this section, the GAN model is interpreted from the optimal transportation point of view. We show that the discrimi-
nator mainly looks for the Kantorovich potential.

Let X ⊂R
n be the (ambient) image space, P(X ) be the Wasserstein space of all probability measures on X . Assume the 

real data distribution is ν ∈P(X ), in practice approximated by an empirical distribution

ν := 1

n

n∑
j=1

δy j , (1)

where y j ∈ X , j = 1, . . . , n are data samples, δy j is the Dirac function. A generative model produces a parametric family of 
probability distributions μθ , θ ∈ �, a Minimum Kantorovitch Estimator for θ is defined as any solution to the problem

min
θ

Wc(μθ , ν),

where Wc is the Kantorovich cost on P(X ) and the ground cost function c : X × X → R. When c is a power of the 
Euclidean distance, Wc is the Wasserstein distance between μ and ν ,

Wc(μ,ν) = min
ρ∈P(X×X )

⎧⎨
⎩

∫
c(x, y)dρ(x, y)|πx#ρ = μ,πy#ρ = ν

⎫⎬
⎭ (2)
X×X
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where πx and πy are projectors, πx# and πy# are marginalization operators. In a generative model, the image samples are 
encoded to a low dimensional latent space (or a feature space) Z ⊂ R

m , m � n. Let ζ be a fixed distribution supported 
on Z . A Wasserstein GAN (WGAN) produces a parametric mapping gθ :Z →X , which is treated as a “decoding map” from 
the latent space Z to the original image space X . gθ pushes ζ forward to μθ ∈P(X ), μθ = gθ#ζ . The minimal Kantorovich 
estimator in WGAN is formulated as

min
θ

E(θ) := min
θ

Wc(gθ#ζ, ν).

According to the optimal transportation theory (Villani, 2003), the Kantorovich problem has a dual formulation

E(θ) = max
ϕ,ψ

⎧⎨
⎩

∫
Z

ϕ(gθ (z))dζ(z) +
∫
X

ψ(y)dν(y) : ϕ(x) + ψ(y) ≤ c(x, y)

⎫⎬
⎭ (3)

The gradient of the dual energy with respect to θ can be written as

∇E(θ) =
∫
Z

[∂θ gθ (z)]T ∇ϕ(gθ (z))dζ(z),

where ϕ is the optimal Kantorovich potential. In practice, ψ can be replaced by the c-transform of ϕ , defined as

ϕc(y) := inf
x

c(x, y) − ϕ(x).

The function ϕ is called the Kantorovich potential. According to the optimal transportation theory (Villani, 2003, 2008), 
ψ = ϕc and symmetrically ϕ = ψc . Since ν is discrete, ψ is just defined on the support Y := {yi} of ν , and ψc = ϕ . Let 
ψ(yi) = ψi , the optimization over {ψi} can then be achieved using stochastic gradient descent, as in Genevay et al. (2016).

In WGAN (Arjovsky et al., 2017), the dual problem Eqn. (3) is solved by approximating the Kantorovich potential ϕ by 
the so-called “adversarial” map, ϕξ : X → R, where ξ is represented by a discriminative deep network. This leads to the 
Wasserstein-GAN problem

min
θ

max
ξ

∫
Z

ϕξ ◦ gθ (z)dζ(z) + 1

n

n∑
j=1

ϕc
ξ (y j). (4)

The generator produces gθ , the discriminator estimates ϕξ , by simultaneous training, the competition reaches the equilib-
rium. In WGAN (Arjovsky et al., 2017), c(x, y) = |x − y|, then the c-transform of ϕξ equals to −ϕξ , subject to ϕξ being 
a 1-Lipschitz function. This is used to replace ϕc

ξ by −ϕξ in Eqn. (4) and use deep network made of ReLu units whose 
Lipschitz constant is upper-bounded by 1.

3. Optimal mass transport theory

In this section, we give a brief review for the classical optimal mass transportation theory for engineering purposes, 
neglecting the technical and delicate aspects of the theory, such as the conditions for the existence of a feasible plan, the 
existence of optimal Kantorovich potentials and their regularities. For more rigorous and thorough treatments, we refer 
readers to Villani’s books (Villani, 2003, 2008). Theorem 3.7 shows the intrinsic relation between the Wasserstein distance 
(equivalent to the Kantorovich potential) and the optimal transportation map (equivalent to the Brenier potential), this 
demonstrates that once the optimal discriminator is known, the generator is automatically obtained. The game between the 
discriminator and the generator is unnecessary.

The problem of finding a map that minimizes the inter-domain transportation cost while preserves measure quantities 
was first studied by Bonnotte (2012) in the 18th century. Let X and Y be two metric spaces with probability measures μ
and ν respectively. Assume X and Y have equal total measure∫

X

dμ =
∫
Y

dν.

Definition 3.1 (Push-forward measure). A map T : X → Y is given, if for any measurable set B ⊂ Y ,

μ(T −1(B)) = ν(B), (5)

then ν is said to be the push-forward of μ by T , and we write ν = T#μ.
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If the mapping T : X → Y is differentiable, X and Y are the same Euclidean space Rd , μ and ν have Lebesgue densities, 
which are identified with the measures themselves, then Eqn. (5) can be formulated as the following Jacobian equation, 
μ(x)dx = ν(T (x))dT (x),

det(DT (x)) = μ(x)

ν ◦ T (x)
. (6)

Let us denote the transportation cost for sending x ∈ X to y ∈ Y by c(x, y), then the total transportation cost is given by

C(T ) :=
∫
X

c(x, T (x))dμ(x). (7)

Problem 3.2 (Monge’s Optimal Mass Transportation, Bonnotte, 2012). Given measures μ and ν , and a transportation cost func-
tion c : X × Y →R, find the transportation map T : X → Y that minimizes the total transportation cost

(M P ) Wc(μ,ν) = inf
T :X→Y

⎧⎨
⎩

∫
X

c(x, T (x))dμ(x) : T#μ = ν

⎫⎬
⎭ . (8)

If c is the power of the Euclidean distance, the total transportation cost Wc(μ, ν) is called the Wasserstein distance
between the two measures μ and ν .

3.1. Kantorovich’s approach

In the Monge formulation the infimum is not attained in general. In the 1940s, Kantorovich introduced the relaxation of 
Monge’s problem (Kantorovich, 1948). Any strategy sending μ onto ν can be represented by a joint measure ρ on X × Y , 
such that for every A, B Borel subsets of X, Y respectively,

ρ(A × Y ) = μ(A),ρ(X × B) = ν(B), (9)

ρ(A × B) is called a transportation plan, which represents the share to be moved from A to B . We denote the projection to 
X and Y as πx and πy respectively, then πx#ρ = μ and πy#ρ = ν . The total cost of the transportation plan ρ is

C(ρ) :=
∫

X×Y

c(x, y)dρ(x, y). (10)

The Monge–Kantorovich problem consists in finding the ρ , among all the suitable transportation plans with marginals μ
and ν , minimizing C(ρ) in Eqn. (10),

(K P ) Wc(μ,ν) := min
ρ

⎧⎨
⎩

∫
X×Y

c(x, y)dρ(x, y) : πx#ρ = μ,πy#ρ = ν

⎫⎬
⎭ (11)

When μ is a diffuse measure (i.e. μ({x}) = 0 for every x ∈ X) and c is continuous, the infimum of (MP) is equals to the 
minimum of (KP).

3.2. Kantorovich dual formulation

Because Eqn. (11) is a linear program, it has a dual formulation, known as the Kantorovich problem (Villani, 2008):

(D P ) Wc(μ,ν) := max
ϕ,ψ

⎧⎨
⎩

∫
X

ϕ(x)dμ(x) +
∫
Y

ψ(y)dν(y) : ϕ(x) + ψ(y) ≤ c(x, y)

⎫⎬
⎭ (12)

where ϕ : X → R and ψ : Y → R are real functions defined on X and Y respectively. Equivalently, we can replace ψ by the 
c-transform of ϕ .

Definition 3.3 (c-transform). Given a real function ϕ : X →R, the c-transform of ϕ is defined by

ϕc(y) = inf
x∈X

(c(x, y) − ϕ(x)) .
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Then the Kantorovich problem can be reformulated as the following dual problem:

(D P ) Wc(μ,ν) := max
ϕ

⎧⎨
⎩

∫
X

ϕ(x)dμ(x) +
∫
Y

ϕc(y)dν(y)

⎫⎬
⎭ , (13)

any optimal ϕ where the maximum is attained in Eqn. (13) is called a Kantorovich potential. ϕ and ψ plays a symmetric 
role in Eqn. (12), ψ can be treated as the Kantorovich potential as well. Computing the Wasserstein distance is equivalent 
to finding a Kantorovich potential.

When X = Y , for L1 transportation cost c(x, y) = |x − y| in Rn , if the Kantorovich potential ϕ is 1-Lipschitz, then its 
c-transform has a special relation ϕc = −ϕ . The Wasserstein distance is given by

Wc(μ,ν) := max
ϕ

⎧⎨
⎩

∫
X

ϕ(x)dμ(x) −
∫
Y

ϕ(y)dν(y)

⎫⎬
⎭ . (14)

For L2 transportation cost c(x, y) = 1/2|x − y|2 in Rn , the c-transform and the classical Legendre transform have special 
relations.

Definition 3.4. Given a function ϕ : Rn → R, its Legendre transform is defined as

ϕ∗(y) := sup
x

(〈x, y〉 − ϕ(x)) . (15)

We can show the following relation holds when c = 1/2|x − y|2,

1

2
|y|2 − ϕc =

(
1

2
|x|2 − ϕ

)∗
. (16)

3.3. Brenier’s approach

At the end of 1980’s, Brenier (1991) discovered the intrinsic connection between optimal mass transport map and convex 
geometry (see also for instance Villani, 2003, Theorem 2.12(ii), and Theorem 2.32).

Assume X = Y = R
n , function u : X → R is a C2 continuous convex function, namely its Hessian matrix is semi-positive 

definite. Its gradient map ∇u : X → Y is defined as x → ∇u(x).

Theorem 3.5 (Brenier, 1991). Suppose X and Y are the Euclidean space Rn, and the transportation cost is the quadratic Euclidean 
distance c(x, y) = |x − y|2 . If μ is absolutely continuous and μ and ν have finite second order moments, then there exists a convex 
function u : X → R, such that the gradient map ∇u gives the unique solution to the Monge’s problem, where u is called Brenier’s 
potential, ∇u is called Brenier map or the optimal mass transportation map. In general, u is not unique.

This theorem converts the Monge’s problem to solving the following Monge–Ampère partial differential equation:

det

(
∂2u

∂xi∂x j

)
(x) = μ(x)

ν ◦ ∇u(x)
. (17)

The function u : X →R is called the Brenier potential. Brenier proved the polar factorization theorem.

Theorem 3.6 (Brenier factorization, Brenier, 1991). Suppose X and Y are the Euclidean space Rn, μ is absolutely continuous with 
respect to Lebesgue measure, a mapping ϕ : X → Y pushes μ forward to ν , ϕ#μ = ν . Then there exists a convex function u : X → R, 
such that

ϕ = ∇u ◦ s,

where s : X → X is measure-preserving, s#μ = μ. Furthermore, this factorization is unique.

The following theorem is well known in optimal transportation theory, the proof can be found in Villani’s book (Villani, 
2003) and in the book of Ambrosio et al. (2008). We apply this theorem to Deep Learning and show that the generator and 
the discriminator in WGAN model with L2 cost are equivalent. For the completeness, we give the detailed proof here.
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Theorem 3.7 (Generator–discriminator equivalence). Given μ and ν on a compact domain � ⊂ R
n there exists an optimal transport 

plan ρ for the cost c(x, y) = h(x − y) with h strictly convex. It is unique and of the form (id, T#)μ, provided μ is absolutely continuous 
and ∂� is negligible. More over, there exists a Kantorovich potential ϕ , and T can be represented as

T (x) = x − (∇h)−1(∇ϕ(x)).

Proof. Assume ρ is the joint probability, satisfying the conditions πx#ρ = μ, πy#ρ = ν , (x0, y0) is a point in the support 
of ρ , by definition ϕc(y0) = infx(c(x, y0) − ϕ(x)), hence ∇x(c(x, y0) − ϕ(x))|x=x0 = 0,

∇ϕ(x0) = ∇xc(x0, y0) = ∇h(x0 − y0).

Because h is strictly convex, therefore ∇h is invertible,

x0 − y0 = (∇h)−1(∇ϕ(x0)),

hence y0 = x0 − (∇h)−1(∇ϕ(x0)). �
When c(x, y) = 1

2 |x − y|2, we have

T (x) = x − ∇ϕ(x) = ∇
(

x2

2
− ϕ(x)

)
= ∇u(x).

In this case, the Brenier’s potential u and the Kantorovich’s potential ϕ is related by

u(x) = x2

2
− ϕ(x). (18)

As discussed in section 2, in Wasserstein GAN framework, the discriminator D computes the Wasserstein distance, which 
is equivalent to find the Kantorovich potential ϕ; the generator G computes the optimal transportation map ∇u, which is 
equivalent to find the Brenier potential u. This shows the computational results of the discriminator and the generator are 
closely related, the result obtained by the discriminator can be used directly by the generator, and vice versa.

Corollary 3.8. Under the conditions of Brenier theorem, the Monge–Kantorovich problem

min
ρ

⎧⎨
⎩

∫
X×Y

c(x, y)dρ(x, y) : (πx)#ρ = μ, (πy)#ρ = ν

⎫⎬
⎭ ,

is equivalent to the Kantorovich dual problem,

max
ϕ,ψ

⎧⎨
⎩

∫
X

ϕ(x)dμ(x) +
∫
Y

ψ(y)dν(y) : ϕ(x) + ψ(y) ≤ c(x, y)

⎫⎬
⎭ .

Proof. The quadratic cost of a general transport plan can be written as

1

2

∫
X×Y

|x − y|2dρ = 1

2

∫
X×Y

|x|2dρ + 1

2

∫
X×Y

|y|2dρ −
∫

X×Y

〈x, y〉dρ

= 1

2

∫
X

|x|2dμ(x) + 1

2

∫
Y

|y|2dν(y) −
∫

X×Y

〈x, y〉dρ

up to substracting the quadratic moments of μ and ν , it is equivalent to minimize the cost c(x, y) = −〈x, y〉. The inverse of 
the optimal transportation map T : X → Y , T −1 : Y → X is also optimal, by Briener theorem, there exists a convex function 
v : Y → R, such that ∇v = T −1. Furthermore, the following relations hold

u(x) = 1

2
|x|2 − ϕ(x), v(y) = 1

2
|y|2 − ψ(y).

A similar decomposition holds for the dual problem:
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Fig. 3. Minkowski and Alexandrov theorems for convex polytopes with prescribed normals and areas.∫
X

ϕ(x)dμ(x) +
∫
Y

ψ(y)dν(y) =
∫
X

(
1

2
|x|2 − u(x)

)
dμ(x) +

∫
Y

(
1

2
|y|2 − v(y)

)
dν(y)

= 1

2

∫
X

|x|2dμ(x) + 1

2

∫
Y

|y|2dν(y) −
⎛
⎝∫

X

u(x)dμ(x) +
∫
Y

v(y)dν(y)

⎞
⎠

= 1

2

∫
X

|x|2dμ(x) + 1

2

∫
Y

|y|2dν(y) −
∫

X×Y

(u(x) + v(y))dρ

from the condition

ϕ(x) + ψ(y) ≤ 1

2
|x − y|2

we obtain

u(x) + v(y) = 1

2
|x|2 − ϕ(x) + 1

2
|y|2 − ψ(y)

≥ 〈x, y〉
Hence∫

X

ϕ(x)dμ(x) +
∫
Y

ψ(y)dν(y) ≤ 1

2

∫
X

|x|2dμ(x) + 1

2

∫
Y

|y|2dν(y) −
∫

X×Y

〈x, y〉dρ �

4. Convex geometry

This section introduces Minkowski and Alexandrov problems in convex geometry, which can be described by Monge–
Ampère equation as well. This intrinsic connection gives a geometric interpretation to optimal mass transportation map 
with L2 transportation cost.

4.1. Alexandrov’s theorem

Minkowski proved the existence and the uniqueness of convex polytope with user prescribed face normals and areas
(see Fig. 3 left frame).

Theorem 4.1 (Minkowski). Suppose n1, ..., nk are unit vectors which span Rn and ν1, ..., νk > 0 so that 
∑k

i=1 νini = 0. There exists a 
compact convex polytope P ⊂ R

n with exactly k codimension-1 faces F1, ..., Fk so that ni is the outward normal vector to Fi and the 
volume of Fi is νi . Furthermore, such P is unique up to parallel translation.

Minkowski’s proof is variational and suggests an algorithm to find the polytope. Minkowski theorem for unbounded con-
vex polytopes was considered and solved by A.D. Alexandrov and his student A. Pogorelov. In his book on convex polyhedra 
(Alexandrov, 2005), Alexandrov proved the following fundamental theorem (Theorem 7.3.2 and theorem 6.4.2 in Alexandrov, 
2005):



N. Lei et al. / Computer Aided Geometric Design 68 (2019) 1–21 9
Theorem 4.2 (Alexandrov, 2005). Suppose � is a compact convex polytope with non-empty interior in Rn, n1, ..., nk ⊂ R
n+1 are 

distinct k unit vectors, the (n + 1)-th coordinates are negative, and ν1, ..., νk > 0 so that 
∑k

i=1 νi = vol(�). Then there exists convex 
polytope P ⊂ R

n+1 with exact k codimension-1 faces F1, . . . , Fk, so that ni is the normal vector to Fi and the intersection between �
and the projection of Fi is with volume νi . Furthermore, such P is unique up to vertical translation (see Fig. 3 right frame).

Alexandrov’s proof is based on algebraic topology and non-constructive. Gu et al. (2016) gave a variational proof for the 
generalized Alexandrov theorem stated in terms of convex functions.

Given y1, . . . , yk ∈R
n and h = (h1, . . . , hk) ∈R

k , we define a piecewise linear convex function uh(x) as

uh(x) = k
max
i=1

{〈x, yi〉 + hi} .

The graph of uh is a convex polytope in Rn+1, the projection induces a cell decomposition of Rn . Each cell is a closed 
convex polytope,

W i(h) = {
x ∈R

n|∇uh(x) = yi
}
.

Some cells may be empty or unbounded. Given a probability measure μ defined on �, the μ-volume of W i(h) is defined 
as

wi(h) := μ(W i(h) ∩ �) =
∫

W i(h)∩�

dμ.

Theorem 4.3 (Gu et al., 2016). Let � be a compact convex domain in Rn, {y1, ..., yk} be a set of distinct points in Rn and μ a 
probability measure on �. Then for any ν1, ..., νk > 0 with 

∑k
i=1 νi = μ(�), there exists h = (h1, ..., hk) ∈ R

k, unique up to adding a 
constant (c, ..., c), so that wi(h) = νi , for all i. The vectors h are exactly maximum points of the concave function

E(h) =
k∑

i=1

hiνi −
h∫

0

k∑
i=1

wi(η)dηi (19)

on the open convex set

H = {h ∈R
k|wi(h) > 0,∀i}.

Furthermore, ∇uh minimizes the quadratic cost∫
�

|x − T (x)|2dμ(x)

among all transport maps T#μ = ν , where the Dirac measure ν = ∑k
i=1 νiδ(y − yi).

For the convenience of discussion, we define the Alexandrov’s potential as follows:

Definition 4.4 (Alexandrov potential). Under the above condition, the convex function

A(h) =
h∫ k∑

i=1

wi(η)dηi (20)

is called the Alexandrov potential.

We define the admissible space for the height vector h

H :=
{

h ∈R
k|wi(h) > 0

}
∩

{
k∑

i=1

hk = 0

}

By Brunn–Minkowski inequality, we can show that H is a convex open set in Rk .
From Eqn. (24), it is easy to show the following symmetric relation:

∂ wi(h)

∂h
= ∂ w j(h)

∂h
,

j i
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Fig. 4. Geometric Interpretation to Optimal Transport Map: Brenier potential uh : � → R, Legendre dual u∗
h , optimal transportation map ∇uh : W i(h) → yi , 

power diagram V , weighted Delaunay triangulation T .

therefore the differential form

ω :=
k∑

i=1

wi(h)dhi

is a closed one form. Because H is simply connected, ω is exact, hence the Alexandrov potential Eqn. (20) is well-defined. 
The geometric meaning of A(h) is the volume under the upper envelope. Details can be found in Gu et al. (2016).

4.2. Power diagram

Alexandrov’s theorem has close relation with the conventional power diagram. We can use power diagram algorithm to 
solve the Alexandrov’s problem.

Definition 4.5 (power distance). Given a point yi ∈R
n with a power weight ψi , the power distance is given by

pow(x, yi) = 1

2
|x − yi|2 − ψi .

Definition 4.6 (power diagram). Given weighted points {(y1, ψ1), (y2, ψ2), . . . , (yk, ψk)}, the power diagram is the cell de-
composition of Rn , denoted as V(ψ),

R
n =

k⋃
i=1

W i(ψ),

where each cell is a convex polytope

W i(ψ) = {x ∈R
n|pow(x, yi) ≤ pow(x, y j),∀ j}.

The weighted Delaunay triangulation, denoted as T (ψ), is the Poincaré dual to the power diagram, if W i(ψ) ∩ W j(ψ) �= ∅
then there is an edge connecting yi and y j in the weighted Delaunay triangulation (see Fig. 5).

Note that pow(x, yi) ≤ pow(x, y j) is equivalent to

〈x, yi〉 + 1

2
(ψi − |yi|2) ≥ 〈x, y j〉 + 1

2
(ψ j − |y j|2),

let

hi = 1/2(ψi − |yi|2), (21)

then pow(x, yi) ≤ pow(x, y j) is equivalent to 〈x, yi〉 + hi ≥ 〈x, y j〉 + h j . The upper envelope of the planes {〈x, yi〉 + hi = 0} is 
the graph of the convex function

uh(x) = max
i

{〈x, yi〉 + hi}. (22)

The projection of the graph of uh gives the power diagram V(ψ).
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Fig. 5. Power diagram (blue) and its dual weighted Delaunay triangulation (black), the power weight ψi equal to the square of radius ri (red circle). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4.3. Convex optimization

Now, we can use the power diagram to explain the gradient and the Hessian of the energy Eqn. (19), by definition

∇E(h) = (ν1 − w1(h), ν2 − w2(h), · · · , νk − wk(h))T . (23)

The Hessian matrix is given by power diagram – weighted Delaunay triangulation, for adjacent cells in the power diagram,

∂2 E(h)

∂hi∂h j
= ∂ wi(h)

∂h j
= −μ(W i(h) ∩ W j(h) ∩ �)

|y j − yi| (24)

Suppose edge ei j is in the weighted Delaunay triangulation, connecting yi and y j . It has a unique dual cell Dij in the power 
diagram, then

∂ wi(h)

∂h j
= −μ(Dij)

|eij| ,

the volume ratio between the dual cells. The diagonal element in the Hessian is

∂2 E(h)

∂h2
i

= ∂ wi(h)

∂hi
= −

∑
j �=i

∂ wi(h)

∂h j
. (25)

Therefore, in order to solve Alexandrov’s problem to construct the convex polytope with user prescribed normal and face 
volume, we can optimize the energy in Eqn. (19) using classical Newton’s method directly.

Let’s observe the convex function u∗
h , its graph is the convex hull C(h). Then the discrete Hessian determinant of u∗

h
assigns each vertex v of C(h) the volume of the convex hull of the gradients of u∗

h at top-dimensional cells adjacent to v . 
Therefore, solving Alexandrov’s problem is equivalent to solve a discrete Monge–Ampère equation.

5. Semi-discrete optimal mass transport

In this section, we solve the semi-discrete optimal transportation problem from geometric point of view. This special 
case is useful in practice.

Suppose the closure of μ, � is a compact convex subset of the Euclidean space X ,

� = supp μ = {x ∈ X |μ(x) > 0}.
The space Y is discretized to Y = {y1, y2, · · · , yk} with Dirac measure ν = ∑k

j=1 ν jδy j . The total mass is equal

∫
�

dμ(x) =
k∑

i=1

νi .

5.1. Kantorovich dual approach

We define the discrete Kantorovich potential ψ : Y →R, ψ j := ψ(y j), here Y is a discrete set in X =R
n , then

∫
ψdν =

k∑
j=1

ψ jν j . (26)
Y
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The c-transformation of ψ is given by

ψc(x) = min
1≤ j≤k

{c(x, y j) − ψ j}. (27)

This induces a cell decomposition of X ,

X =
k⋃

i=1

W i(ψ),

where each cell is given by

W i(ψ) = {
x ∈ X |c(x, yi) − ψi ≤ c(x, y j) − ψ j,∀1 ≤ j ≤ k

}
.

According to the dual formulation of the Wasserstein distance Eqn. (13) and integration Eqn. (26), we define the energy

E(ψ) =
∫
X

ψcdμ +
∫
Y

ψdν

then obtain the formula

E(ψ) =
k∑

i=1

ψi (νi − wi(ψ)) +
k∑

j=1

∫
W j(ψ)

c(x, y j)dμ, (28)

where wi(ψ) is the measure of the cell W i(ψ),

wi(ψ) = μ(W i(ψ)) =
∫

W i(ψ)

dμ(x). (29)

Then the Wasserstein distance between μ and ν equals to

Wc(μ,ν) = max
ψ

E(ψ).

5.2. Brenier’s approach

Kantorovich’s dual approach is for general cost functions. When the cost function is the L2 distance c(x, y) = 1/2|x − y|2, 
we can apply Brenier’s approach directly.

We define a height vector h = (h1, h2, · · · , hk) ∈ R
n , consisting of k real numbers. For each yi ∈ Y , we construct a hyper-

plane defined on X , πi(h) : 〈x, yi〉 + hi = 0. We define the Brenier potential function as

uh(x) = k
max
i=1

{〈x, yi〉 + hi}, (30)

then uh(x) is a convex function. The graph of uh(x) is an infinite convex polyhedron with supporting planes πi(h). The 
projection of the graph induces a polygonal partition of �,

� =
k⋃

i=1

W i(h), (31)

where each cell W i(h) is the projection of a facet of the graph of uh onto �,

W i(h) = {x ∈ X |∇uh(x) = yi} ∩ �. (32)

The measure of W i(h) is given by

wi(h) =
∫

W i(h)

dμ. (33)

The convex function uh on each cell W i(h) is a linear function πi(h), therefore, the gradient map

∇uh : W i(h) → yi, i = 1,2, · · · ,k, (34)

maps each W i(h) to a single point yi . According to Alexandrov’s theorem, and the Gu–Luo–Yau theorem, we obtain the 
following corollary:
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Fig. 6. Variation of the volume of top-dimensional cells.

Corollary 5.1. Let � be a compact convex domain in Rn, {y1, ..., yk} be a set of distinct points in Rn and μ a probability measure 
on �. Then for any ν = ∑k

i=1 νiδyi , with 
∑k

i=1 νi = μ(�), there exists h = (h1, ..., hk) ∈R
k, unique up to adding a constant (c, ..., c), 

so that wi(h) = νi , for all i. The vectors h are exactly maximum points of the concave function

E B(h) =
k∑

i=1

hiνi −
h∫

0

k∑
i=1

wi(η)dηi (35)

Furthermore, T = ∇uh minimizes the quadratic cost

1

2

∫
�

|x − T (x)|2dμ

among all transport maps T#μ = ν .

Fig. 6 shows the top-dimensional cell volumes depend on the heights smoothly.

5.3. Equivalence

For c(x, y) = 1/2|x − y|2 cost case, we have introduced two approaches: Kantorovich’s dual approach and Brenier’s ap-
proach. In the following, we show these two approaches are equivalent.

In Kantorovich’s dual approach, finding the optimal mass transportation is equivalent to maximize the following energy:

E D(ψ) =
k∑

i=1

ψi(νi − wi(ψ)) +
k∑

j=1

∫
W j(ψ)

c(x, y j)dμ. (36)

In Brenier’s approach, finding the optimal transportation map boils down to maximize

E B(h) =
k∑

i=1

hiνi −
h∫ k∑

i=1

wi(η)dη. (37)

Lemma 5.2. Let � be a compact convex domain in Rn, {y1, ..., yk} be a set of distinct points in Rn. Given μ a probability measure 
on �, ν = ∑k

i=1 νiδyi , with 
∑k

i=1 νi = μ(�). If c(x, y) = 1/2|x − y|2 , then

hi = ψi − 1

2
|yi|2, ∀i

and

E D(ψ) − E B(h) = Const

Here, E D is the energy in Kantorovich’s dual problem, E B is the volume under the upper envelope (the graph of uh).
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Proof. Consider the power cell

c(x, yi) − ψi ≤ c(x, y j) − ψ j

is equivalent to

〈x, yi〉 +
(

ψi − 1

2
|yi|2

)
≥ 〈x, y j〉 +

(
ψ j − 1

2
|y j|2

)

therefore

hi = ψi − 1/2|yi|2. (38)

Let the transportation cost to be defined as

C(ψ) =
k∑

j=1

∫
W j(ψ)

c(x, y j)dμ,

then from Eqn. (36), we obtain

E D(ψ) =
k∑

i=1

ψi(νi − wi(ψ)) + C(ψ). (39)

Suppose we infinitesimally change h to h + dh, then we define

Dij = W j(h) ∩ W i(h + dh) ∩ �.

Then μ(Dij) = dwi , also μ(Dij) = −dw j . For each x ∈ Dij , c(x, yi) − ψi = c(x, y j) − ψ j , then c(x, yi) − c(x, y j) = ψi − ψ j , 
hence ∫

Dij

(c(x, yi) − c(x, y j))dμ = ψidwi + ψ jdw j.

This shows dC = ∑k
i=1 ψidwi . Because the mapping ψ → w is bijective, we change the parameter ψ to w and change C(ψ)

to C(w), hence

C(w) =
w∫ k∑

i=1

ψidwi .

Therefore, from Eqn. (39) we obtain

E D(w) =
k∑

i=1

ψi(w)(νi − wi) + C(w). (40)

The Legendre dual of C(w) is

C∗(ψ) =
ψ∫ k∑

i=1

widψi .

Hence by the definition of Legendre dual, we have

C(w) + C∗(ψ) =
k∑

i=1

wiψi . (41)

From Eqn. (38), we change parameter h to ψ . By Eqn. (37), we get

E B(ψ) =
k∑

i=1

hiνi − C∗(ψ). (42)

We put everything together, from Eqn. (40) and Eqn. (42),
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E D(w) − E B(h) =
(

k∑
i=1

ψi(νi − wi) + C(w)

)
−

(
k∑

i=1

hiνi − C∗(ψ)

)

=
k∑

i=1

(ψi − hi)νi −
(

k∑
i=1

ψi wi − C(w) − C∗(ψ)

)

= 1

2

k∑
i=1

|yi |2νi,

which is a constant. �
This shows Kantorovich’s dual approach and Brienier’s approach are equivalent. At the optimal point, νi = wi(ψ), there-

fore E D(ψ) equals to the transportation cost C(ψ). Furthermore, the Brenier’s potential is

uh(x) = k
max
i=1

{〈x, pi〉 + hi},

where hi is given by the power weight ψi . The Kantorovich’s potential is the power distance

ϕ(x) = ψc(x) = min
j

{c(x, y j) − ψ j} = min
j

{pow(x, y j)} = 1

2
|x|2 − max

j
{〈x, y j〉 + (ψ j − 1

2
|y j|2)}

hence at the optimum, the Brenier potential and the Kantorovich potential are related by

uh(x) = 1

2
|x|2 − ϕ(x). (43)

The optimal transportation map is ∇uh , which maps each power cell W j(ψ) to y j .

6. Experiments

In order to demonstrate in principle the potential of our proposed method, we have designed and conducted the prelim-
inary experiments.

6.1. Comparison with WGAN

In the first experiment, we use Wasserstein Generative Adversarial Networks (WGANs) (Arjovsky et al., 2017) to learn 
the mixed Gaussian distribution as shown in Fig. 7.

Dataset The distribution of data ν is described by a point cloud on a 2d plane. We sample 128 data points as real data from 
two Gaussian distributions, N (pk, σ 2

k ), k = 1, 2, where p1 = (0, 0) and σ1 = 3, p2 = (40, 40) and σ2 = 3. The latent space Z
is a square on the 2d plane [1k, 3k] × [1k, 3k], the input distribution ζ is the uniform distribution on Z . We generate 128
samples from ζ to approximate the data distribution ν .

Network structure The structure of the discriminator is 2-layer (2 × 10 FC)-ReLU-(10 × 1 FC) network, where FC denotes the 
fully connected layer. The number of inputs is 2 and the number of outputs is 1. The number of nodes of the hidden layer 
is 10.

The structure of the generator is a 6-layer (2 ×10 FC)-ReLU-(10 ×10 FC)-ReLU-(10 ×10 FC)-ReLU-(10 ×10 FC)-ReLU-(10 ×
10 FC)-ReLU-(10 × 2 FC) network. The number of inputs is 2 and the number of outputs is 2. The number of nodes of all 
the hidden layer is 10.

Parameter setting For WGAN, we clip all the weights to [−0.5, 0.5]. We use the RMSprop (Hinton et al., 2012) as the 
optimizer for both discriminator and generator. The learning rate of both the discriminator and the generator are set to 
1e − 3.

Deep learning framework and hardware We use the PyTorch (http://pytorch .org/) as our deep learning tool. Since the toy 
dataset is small, we do experiments on CPU. We perform experiments on a cluster with 48 cores and 193G B RAM. However, 
for this toy data, the running code only consumes 1 core with less than 500M B RAM, which means that it can run on a 
personal computer.

http://pytorch.org/
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Fig. 7. WGAN learns the Gaussian mixture distribution.

Results analysis In Fig. 7, the blue points represent the real data distribution and the orange points represent the generated 
distribution. The left upper frame shows the initial stage, the right lower frame illustrates the stage after 1000 iterations. 
It seems that WGAN cannot capture the Gaussian mixture distribution. Generated data tend to lie in the middle of the 
two Gaussians. One reason is the well known mode collapse problem in GAN, meaning that if the data distribution has 
multiple clusters or data is distributed in multiple isolated manifolds, then the generator is hard to learn multiple modes 
well. Although there are efforts to deal with this problem (Gurumurthy et al., 2017; Hoang et al., 2017), it still remains 
open in machine learning community.

Geometric OMT Fig. 8 shows the geometric method to solve the same problem. The left frame shows the Brenier potential 
uh , namely the upper envelope, which projects to the power diagram V on a unit disk D ⊂ Z , V = ⋃

k W i(h). The right 
frame shows the discrete optimal transportation map T : D → {yi}, which maps each cell W i(h) ∩ D to a sample yi , the 
cell W i(h) and the sample yi have the same color. All the cells have the same area, this demonstrates that T pushes the 
uniform distribution ζ to the exact empirical distribution T#ζ = 1/n 

∑
i δyi .

The samples {yi} are generated according to the same Gauss mixture distribution, therefore there are two clusters. This 
doesn’t cause any difficulty for the geometric method. In the left frame, we can see the upper envelope has a sharp ridge, the 
gradients point to the two clusters. Hence, the geometric method outperforms the WGAN model in the current experiment.

It is difficult for conventional deep learning methods to handle multiple modal distributions. This example demonstrates 
the geometric method has the potential to tackle this problem.

6.2. Geometric method

In this experiment, we use the pure geometric method to generate uniform distribution on a surface � with complicated 
geometry. As shown in Fig. 9, the image space X is the 3 dimensional Euclidean space R3. The real data samples are 
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Fig. 8. Geometric model learns the Gaussian mixture distribution.

Fig. 9. Illustration of geometric generative model.

distributed on a submanifold �, which is represented as a surface, as illustrated in (a) and (b). The encoding mapping 
fθ : � →Z maps the supporting manifold to the latent space, which is a planar disk. The encoding map fθ can be computed 
using discrete surface Ricci flow method (Gu et al., 2018). We color-encode the normals to the surface, and push forward 
the color function from � to the latent space fθ (�), therefore users can directly visualize the correspondence between �
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Fig. 10. Illustration of geometric generative model.

and its image in Z as shown in (c). Suppose the Riemannian metric on � is g, the conformal map fθ parameterizes �, such 
that

g = e2λ(z)dzdz̄,

where dzdz̄ is the Euclidean metric on the plane, λ is a function defined on the disk. fθ pushes the area element of �
to the plane, and obtain a measure e2λ(z) i

2 dz ∧ dz̄, where i
2 dz ∧ dz̄ is the Euclidean area element on the plane. Then we 

construct the optimal mass transportation map T : (Z, i
2 dz ∧ dz̄) → (Z, e2λ(z) i

2 dz ∧ dz̄), the pre-image of T is shown in 
(d).

In Fig. 10, we demonstrate the generated distributions. In (a), we generate samples {z1, . . . , zk} on the latent space fθ (�)

according to the uniform distribution ζ , the samples are pulled back to the surface � as { f −1
θ (z1), . . . , f −1

θ (zk)} as shown in 
(b), which illustrate the distribution ( f −1

θ )#ζ . It is obvious that the distribution generated this way is highly non-uniform on 
the surface. In frame (c), we uniformly generate samples on (T −1 ◦ fθ )(�), and map them back to the surface � as shown 
in (d). This demonstrates the generated distribution ( f −1

θ ◦ T )#ζ on � is highly uniform as desired.

7. Discussion and conclusion

In this work, we bridge convex geometry with optimal transportation, then use optimal transportation to analyze gen-
erative models. The basic view is that the discriminator computes the Wasserstein distance or equivalently the Kantorovich 
potential ϕξ ; the generator calculates the transportation map gθ . By selecting the transportation cost, such as L2 distance, 
ϕξ and gθ are related by a closed form, hence it is sufficient to train one of them.
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L2 cost function For general transportation cost c(x, y), the explicit relation between ϕξ and gθ may not exist, it seems that 
both training processes are necessary. Hence by using the L2 distance as the cost function, the efficiency of the system can 
be improved prominently.

Optimal transportation map Current generative adversarial network model (GAN) computes the Wasserstein distance, which 
requires the optimality of the transportation map, namely the Brenier map for L2 cost function. For high dimensional setting, 
rigorous computational geometric method to compute the optimal transportation map is intractable, due to the maintenance 
of the complex geometric data structures. Instead, we can use GPU to improve the efficiency of the computational geomet-
ric method, or follow the Kantorovich’s approach to find the optimal transportation map using the conventional linear 
programming method, as described in Liu et al. (2018).

Ambient space vs. latent space In the generative models, we need to compute the distance between the data distribution ν
and the generated distribution μθ = (gθ )#ζ , where gθ : Z → X is the decoding map. Some models compute the distance 
directly in the ambient space X , such as WGAN (Arjovsky et al., 2017), Least Square GAN (Mao et al., 2017; Radford et al., 
2016) so on. Some models push ν forward to the latent space by the encoding map g−1

θ : X → Z , and compute the distance 
between (g−1

θ )#ν and ζ in the latent space, such as adversarial autoencoders (Makhzani et al., 2016) and Wasserstein 
auto-encoders (Tolstikhin et al., 2018). Because the dimension of the latent space is much smaller than that of the ambient 
space, the computation in the latent space is much more efficient.

Different type of generative models Furthermore, we can design different types of generative models, which solely com-
pute the transportation maps without the optimality requirement. There are many more economical ways to compute 
(non-optimal) transportation maps, such as stochastic method, sliced optimal transportation method, hierarchical optimal 
transportation method, Knothe–Rosenblatt maps (Villani, 2003) and so on. Recently the sink-horn method has been intro-
duced by Peyré and Cuturi in Peyré and Cuturi (2018), which greatly improves the computational efficiency.

In the future, we will explore along these directions, and implement the proposed model in a large scale.
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Appendix A

A.1. Commutative diagram

The relations among geometric/functional objects are summarized in the following diagram:

A Legendre dual−−−−−−−−→ C�⏐⏐integrate

�⏐⏐
uh

Legendre dual−−−−−−−−→ u∗
h⏐⏐�graph

⏐⏐�graph

Env({πi}) Poincare dual−−−−−−−→ Conv({π∗
i })⏐⏐�proj

⏐⏐�proj

V(ψ)
Poincare dual−−−−−−−→ T (ψ)

where each two adjacent layers are commutable. These relations can be observed from Fig. 4 as well.

A.2. Symbol list

Table 1 is the symbol list.
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Table 1
Symbol list.

X ambient space, image space

� support manifold for some distribution

Z latent space, feature space

ζ a fixed probability measure on Z
gθ generating/decoding map gθ : Z → X
ϕξ Kantorovich potential

c distance between two points c(x, y) = |x − y|p , p ≥ 1

Wc Wasserstein distance Wc(μ,ν)

X source space

Y target space

μ source probability measure

ν target probability measure

� source domain � ⊂ X

yi the i-th sample in target {y1, . . . , yk} ∈ Y

ϕ Kantorovich potential φc = ψ , ψc = φ

ψ power weight ψ = (ψ1, . . . ,ψk)

h plane heights h = (h1, . . . ,hk)

πi hyper-plane πh
i (x) = 〈yi , x〉 + hi

π∗
i dual point of πi π∗

i = (yi ,−h)

pow power distance pow(x, yi) = c(x, yi) − ψi

W i power Voronoi cell W i(ψ) = {x ∈ X |pow(x, yi) ≤ pow(x, y j)}
wi the volume of W i wi(h) = μ(W i(h) ∩ �)

u Brenier potential uh(x) = maxi{〈x, yi〉 + hi}
A Alexandrov potential A(h) = ∫ h ∑

i widhi

T transportation map T = ∇uh

C transportation cost C(T ) = ∫
X c(x, T (x))dμ

Env upper envelope of planes Env({πi}) graph of uh

Conv convex hull of points Conv({π∗
i }) graph of u∗

h

V power diagram V(ψ) : X = ⋃
i W i(ψ)

T weighted Delaunay triangulation
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