
A LOCAL-GLOBAL EQUALITY ON EVERY AFFINE VARIETY

ADMITTING POINTS IN AN ARBITRARY RANK-ONE

SUBGROUP OF A GLOBAL FUNCTION FIELD

CHIA-LIANG SUN

Abstract. For every affine variety over a global function field, we show that

the set of its points with coordinates in an arbitrary rank-one multiplicative

subgroup of this function field is topologically dense in the set of its points

with coordinates in the topological closure of this subgroup in the product of

the multiplicative group of those local completions of this function field over

all but finitely many places.

1. Introduction

Let K be a global function field over a finite field k of positive characteristic

p. We denote by kalg the algebraic closure of k inside a fixed algebraic closure

Kalg of K. Let ΣK be the set of all places of K. For each v ∈ ΣK , denote by

Kv the completion of K at v; by Ov, mv, and Fv respectively the valuation ring,

the maximal ideal, and the residue field associated to v. For each finite subset

S ⊂ ΣK , we denote by OS the ring of S-integers in K. For any commutative ring

R with unity, denote by R∗ the group of its units. We fix a subgroup Γ ⊂ O∗S

for some finite S ⊂ ΣK . Let M be a natural number, and AM be the affine M -

space, whose coordinate is denoted by X = (X1, . . . , XM ). For each polynomial

f ∈ K[X1, . . . , XM ], we denote by Hf the hypersurface in AM defined by f . If the

total degree of f is one, we say that Hf is a hyperplane. By a linear K-variety in

AM , we mean an intersection of K-hyperplanes. We say that a closed K-variety W

in AM is homogeneous if W can be defined by homogeneous polynomials.

For any closed K-variety W in AM and any subset Θ of some ring containing K,

let W (Θ) denote the set of points on W with each coordinate in Θ. For each subset
1
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S̃ ⊂ ΣK , we endow
∏
v∈S̃ K

∗
v with the natural product topology; via the diagonal

embedding, we identify W (Γ) with its image W (Γ)S̃ in W
(∏

v∈S̃ K
∗
v

)
and denote

by W (Γ)S̃ its topological closure. We naturally identify Γ with A1(Γ), and write ΓS̃

for A1(Γ)S̃ . For each place v ∈ ΣK , we write Γv for Γ{v}. Note that ΓS̃ ⊂
∏
v∈S̃ Γv.

We fix a cofinite subset Σ ⊂ ΣK , and drop the lower subscript Σ in the notation of

topological closure; for example, we simply write Γ for ΓΣ.

For any closed K-variety W in AM , we consider the following conjecture.

Conjecture 1. W (Γ) = W (Γ).

First formulated in this form by the author [Sun14], Conjecture 1 is an analog

for split algebraic tori to Conjecture C in [PV10] for Abelian varieties. One of the

deepest aspects of Conjecture 1 is explained as follows. If W =
⋃
i∈IWi is a finite

union of closed K-varieties in AM , then it is easy to see that

W (Γ) ⊃
⋃
i∈I

Wi(Γ) ⊃
⋃
i∈I

Wi(Γ) = W (Γ);

thus if Conjecture 1 holds for W , then we must have W (Γ) =
⋃
i∈IWi(Γ). In fact,

following the idea proposed by Stoll (Question 3.12 in [Sto07], so-called “Adelic

Mordell-Lang Conjecture”) and first realized by Poonen and Voloch [PV10], all

previous results [Sun13, Sun14] dealing with Conjecture 1 for reducible W are estab-

lished by reducing it to the assertion that Z(Γ) =
⋃
i∈I Zi(Γ) for every finite union

Z =
⋃
i∈I Zi of irreducible zero-dimensional K-varieties in AM , and proving this

assertion via an argument invented by Poonen and Voloch [PV10], who managed to

bypass the difficulty encountered when one tries to develop the function-field analog

of the proof by Stoll [Sto07] of the number-field counterpart of this assertion. In

the present setting, the Mordell-Lang Conjecture is treated by Derksen and Masser

[DM12] in full generalities. The author [Sun14] establishes some “adelic analog”

(restated as Proposition 3 below) of their result in certain case, and completes the

aforementioned reduction under the artificial hypothesis induced from this analog;

this hypothesis is then put in the main result in [Sun14] on Conjecture 1. In the
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remaining case, however, no adelic analog exists (see Remark 4); thus it is hopeless

to completely solve Conjecture 1 via this “Mordell-Lang approach”.

In this paper, we tackle Conjecture 1 in a different approach; although we still

need Proposition 3, its present usage is to reduce Conjecture 1 to the situation

where W is defined over a hopefully smaller subfield of K without putting on any

assumption on W . In the case where Γ has rank one, we directly prove Conjecture 1

in this situation by generalizing of Proposition 24 in the author’s recent work [Sunar]

via introducing Lemma 10, which is an elementary linear-algebra argument. Our

approach leads to the following main result, in which no hypothesis is put on W .

Theorem 2. Suppose that Γ∩O∗S has rank at most one, where S = ΣK \Σ. Then

for every closed K-variety W in AM , we have that W (Γ) = W (Γ).

2. The proof of Theorem 2

For any subgroup ∆ ⊂ K∗, we denote by k(∆) the smallest subfield of K con-

taining k and ∆, by ρ(∆) the subgroup
⋂
m≥0(Kpm)∗∆ of K∗, and by

K√
∆ the

subgroup {x ∈ K∗ : xn ∈ ∆ for some n ∈ N} of K∗. The following result is a

special case of Proposition 6 in [Sun14].

Proposition 3. Let d be the dimension of W . Suppose that W is a union of

homogeneous linear K-varieties, and that each d-dimensional irreducible component

of W is not ρ(Γ)-isotrivial. Then there exists a finite union V of homogeneous linear

K-subvarieties of W with dimension smaller than d such that W (Γv) = V (Γv) for

every v ∈ ΣK ; in particular, we have W (Γ) = V (Γ).

Remark 4. Proposition 3 is an analog for W (Γ) to the qualitative part of conclusion

(a) in Main Estimate of Section 9 in [DM12]. However, there is no analog for

W (Γ) to the qualitative part of conclusion (b). To be precise, we consider the

example where W = Hf ⊂ A2 with f(X1, X2) = X1 + X2 − 1 ∈ k[X1, X2]. Note

that W is irreducible of dimension one. By the qualitative part of conclusion

(b), there is a finite set V of irreducible proper K-subvarieties of W such that
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W
(
K√

Γ
)

=
⋃
V ∈V

⋃
e∈N∪{0}

(
V
(
K√

Γ
))pe

. Considering the proper K-subvariety

Z0 =
⋃
V ∈V V of W , we see that

⋃
V ∈V

(
V
(
K√

Γ
))pe

=
(
Z
(
K√

Γ
))pe

for each

e ∈ N ∪ {0}; it follows that

W
(
K√

Γ
)

=
⋃

e∈N∪{0}

(
Z
(
K√

Γ
))pe

.

Nevertheless, in the case whereK = Fp(T ) and Γ = {cTn(1−T )m : c ∈ F∗p, (n,m) ∈

Z2} =
K√

Γ and Σ is the maximal subset of ΣK such that Γ ⊂ O∗v for each v ∈ Σ,

we claim that

W
(
Γ
)
6⊂

⋃
e∈N∪{0}

(
Z
(
Γ
))pe

for every proper K-subvariety Z of W . To see this, first note that such Z must

have dimension zero. Moreover, the sequence (T p
n!

)n≥0 converges to some element

α = (αv)v∈Σ ∈ ΓT ⊂ Γ, where ΓT ⊂ Γ is the cyclic subgroup generated by T .

(Example 1 in [Sun13]) Similarly, we see that 1−α ∈ Γ1−T ⊂ Γ, where Γ1−T ⊂ Γ is

the cyclic subgroup generated by T . Thus we have that (α, 1− α) ∈W (Γ). Based

on these facts, our claim can be proved by either of the two following arguments.

(1) Example 1 in [Sun13] also shows that α /∈ K∗, thus (α, 1 − α) 6∈ W (K∗).

However, since Z has dimension zero, we have that Z
(
Γ
)

= Z (Γ). (Propo-

sition 2 in [Sun14]) Because Z (Γ) ⊂ Z(K∗) ⊂ W (K∗), this proves our

claim.

(2) For each v ∈ Σ, note that αv ∈ O∗v and let Pv(T ) ∈ Fp[T ] be the unique

irreducible polynomial such that Pv(T ) ∈ mv; thus we have that Pv(T
pn!

) =

Pv(T )p
n! ∈ mp

n!

v for each n ≥ 0, which implies that Pv(αv) ∈ ∩n≥0m
pn!

v =

{0}; it follows that Pv is the minimal polynomial for αv over Fp. On the

other hand, for any α ∈ kalg and any e ∈ N ∪ {0}, the element αp
e

is

a zero of the minimal point for α over FP . As Z is a zero-dimensional

K-variety, it follows that the degrees of minimal polynomials of torsion

points in
(
Z
(
Γv
))pe

are uniformly bounded over all (v, e) ∈ Σ× (N∪ {0}).

Because the degree of Pv can be arbitrarily large as v ranges over Σ, there
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must be some v0 ∈ Σ such that αv0 /∈
⋃
e∈N∪{0}

(
Z
(
Γv0

))pe
; since Z

(
Γ
)
⊂∏

v∈Σ Z
(
Γv
)
, this proves our claim.

Proposition 5. For any closed K-variety W ⊂ AM , there exists some closed

k(ρ(Γ))-subvariety V of W such that W (Γv) = V (Γv) for every v ∈ ΣK ; in partic-

ular, we have W (Γ) = V (Γ).

Proof. Let {fj : 1 ≤ j ≤ J} ⊂ K[X1, . . . , XM ] be a set of polynomials defining W .

Choose D ∈ N such that for each j ∈ {1, . . . , J}, we may write

fj(X1, . . . , XM ) =
∑

(d1,··· ,dM )∈{0,1,··· ,D}M
c(j,d1,··· ,dM )X

d1
1 · · ·X

dM
M

with each c(j,d1,··· ,dM ) ∈ K. Consider the tuple Y = (Y(d1,··· ,dM ))(d1,··· ,dM )∈{0,1,··· ,D}M

of new variables, in which we define linear forms

`j(Y) =
∑

(d1,··· ,dM )∈{0,1,··· ,D}M
c(j,d1,··· ,dM )Y(d1,··· ,dM )

for each j ∈ {1, . . . , J}. Let N = (D + 1)M and W ′ ⊂ AN be the homogeneous

linear variety defined by {`j : 1 ≤ j ≤ J}. By Proposition 3, there exists a finite

union V ′ of homogeneous linear K-subvarieties of W ′ such that each irreducible

component of V ′ is ρ(Γ)-isotrivial and that W ′(Γv) = V ′(Γv) for every v ∈ ΣK .

In particular, each irreducible component of V ′ is defined over k(ρ(Γ)), thus so

is V ′. Let {g′j : 1 ≤ j ≤ J ′} ⊂ k(ρ(Γ))[Y] be a set of polynomials defining

V ′. For each j ∈ {1, . . . , J ′}, we construct f ′j(X1, . . . , XM ) by substituting each

variable Y(d1,··· ,dM ) in g′j(Y) by the monomial Xd1
1 · · ·X

dM
M , thus we have that

f ′j(X1, . . . , XM ) ∈ k(ρ(Γ))[X1, . . . , XM ]. Let V ⊂ AM be the k(ρ(Γ))-variety whose

vanishing ideal is generated defined by {f ′j : 1 ≤ j ≤ J ′}. For every j ∈ {1, . . . , J ′}

and every (x1, . . . , xM ) ∈ V (Kalg), we have f ′j(x1, . . . , xM ) = 0, thus the point

(xd1
1 · · ·x

dM
M )(d1,··· ,dM )∈{0,1,··· ,D}M ∈ AN (Kalg) is a zero of g′j(Y) by construction;

this shows that (xd1
1 · · ·x

dM
M )(d1,··· ,dM )∈{0,1,··· ,D}M ∈ V ′(Kalg) ⊂W ′(Kalg) and thus

the construction yields (x1, . . . , xM ) ∈ W (Kalg). Hence we see that V ⊂ W .
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Similar reasonings gives the other desired conclusion that W (Γv) = V (Γv) for

every v ∈ ΣK . �

For any finitely generated subgroup ∆ ⊂ K∗, Lemma 3 of [Vol98] shows that

ρ(∆) ⊂
K√

∆, and thus that ∆ and ρ(∆) have the same rank; we also note that

∆ ⊂ ρ(∆) = ρ(ρ(∆)) by definition.

Proposition 6. Letting S = ΣK \Σ, there exists a free subgroup Φ ⊂ O∗S which has

the same rank as Γ ∩ O∗S and satisfies the following property: if V (Φ) = V (Φ) for

every closed k(Φ)-variety V ⊂ AM , then W (Γ) = W (Γ) for every closed K-variety

W ⊂ AM .

Proof. Let Φ be a maximal free subgroup of the finitely generated abelian group

ρ(Γ ∩ O∗S). Since Φ ⊂ ρ(Φ) ⊂ ρ(ρ(Γ ∩ O∗S)) = ρ(Γ ∩ O∗S), it follows that Φ is a

maximal free subgroup of ρ(Φ), and this implies that ρ(Φ) = Tor(ρ(Φ))Φ = k∗Φ.

Letting S0 ⊂ ΣK be a finite subset such that Γ ⊂ O∗S0
, we see that the image of

Γ in
∏
v∈ΣK

∗
v is contained in

(∏
v∈Σ∩S0

K∗v
)
×
(∏

v∈Σ\S0
O∗v

)
; since S = ΣK \ Σ,

this shows that the image of Γ ∩ O∗S in
∏
v∈ΣK

∗
v is exactly the intersection of the

image of Γ in
∏
v∈ΣK

∗
v with the open subgroup

(∏
v∈Σ∩S0

O∗v
)
×
(∏

v∈Σ\S0
K∗v

)
of
∏
v∈ΣK

∗
v . It follows that Γ ∩O∗S is open in Γ. Since the index of Φ ∩ Γ ∩O∗S in

Γ ∩ O∗S is finite, Corollary 2 of [Sun14] shows that Φ ∩ Γ ∩ O∗S is open in Γ ∩ O∗S ,

and thus is open in Γ. We note that Φ ∩ Γ ∩O∗S = Φ ∩ Γ since Φ ⊂ O∗S .

Fix a closed K-variety W ⊂ AM . Consider an arbitrary x ∈W (Γ), which is the

limit of a sequence (xn)n∈N in AM (Γ). Since Φ ∩ Γ is open in Γ, we may assume

that xn = ryn with some r ∈ AM (Γ) and a sequence (yn)n∈N in AM (Φ ∩ Γ).

Note that the sequence (yn)n∈N converges to r−1x ∈ (r−1W )(Φ). Recalling that

ρ(Φ) = k∗Φ, Proposition 5 says that there exist some closed k(Φ)-subvariety V

of r−1W such that (r−1W )(Φ) = V (Φ). Assuming V (Φ) = V (Φ), we see that

r−1x ∈ (r−1W )(Φ) = V (Φ) = V (Φ) ⊂ (r−1W )(Φ) ⊂ r−1
(
W (Φ)

)
, i.e. x ∈ W (Φ)

is the limit of some sequence (x′n)n∈N in W (Φ). Letting (x′′n)n∈N ⊂ AM (ΦΓ) be

the sequence defined by x′′2n−1 = xn and x′′2n = x′n, we see that the sequence
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(x′′n)n∈N ⊂ AM (ΦΓ) is Cauchy. As abelian groups, ΦΓ/Γ is isomorphic to Φ/(Γ∩Φ),

which is finite by the construction of Φ; thus Corollary 2 of [Sun14] shows that

Γ is open in ΦΓ. It follows that Φ ∩ Γ is open in ΦΓ. Hence, for sufficiently

large n ∈ N, we have that (r−1xn)−1(r−1x′n) = (x′′2n−1)−1x′′2n ∈ AM (Φ ∩ Γ);

since r−1xn = yn ∈ AM (Φ ∩ Γ), we conclude that r−1x′n ∈ AM (Φ ∩ Γ) and thus

x′n ∈ AM (Γ) ∩W (Φ) ⊂W (Γ), i.e. x ∈W (Γ). This finishes the proof.

�

For any a ∈ N and b ∈ N \ pN, consider the polynomial

ga,b(T ) =
T ab − 1

T a − 1
∈ k[T ].

We make the following convention. For a polynomial Q(T ) ∈ k[T ] and a rational

function P (T ) ∈ k(T ), we say that Q(T ) divides P (T ) if any zero of Q(T ) in kalg is

not a pole of P (T )
Q(T ) . The long proof of the following proposition, which is the core

in the proof of Theorem 2, is postponed to Section 3.

Proposition 7. Let S be a finite set of irreducible polynomials in k[T ]. Let J be a

natural number. For each j ∈ {1, . . . , J}, let fj(X1, . . . , XM ) ∈ k[T ][X1, . . . , XM ].

Assume that there exists a sequence {(e1,n, . . . , eM,n)}n≥1 in AM (Z) satisfying

the following conditions:

For every Q(T ) ∈ k[T ] not divisible by any element in S, there is an NQ ∈ N

such that for any n ≥ NQ we have that Q(T ) divides fj(T
e1,n , . . . , T eM,n) for all

j ∈ {1, . . . , J}.

Then there exists a sequence {(e′1,n, . . . , e′M,n)}n∈N in AM (Z) indexed by an in-

finite subset N ⊂ N with the following properties:

(1) For each n ∈ N we have fj(T
e′1,n , . . . , T e

′
M,n) = 0 for all j ∈ {1, . . . , J}.

(2) For every Q̃(T ) ∈ k[T ] not divisible by T , there is an ÑQ̃ ∈ N such that for

any n ∈ N with n ≥ ÑQ̃ we have that Q̃(T ) divides T ei,n − T e
′
i,n for all i.

The next theorem, which follows formally from Proposition 7, is proved in the

same way that in [Sunar] Theorem 25 is formally deduced from Proposition 24.
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Theorem 8. Let W be a closed k(Γ)-variety in AM . Suppose that Γ is free with

rank one, and that is contained in O∗S, where S = ΣK \ Σ. Then we have that

W (Γ) = W (Γ).

Proof. Let γ be a generator of Γ. Let Σ|k(γ) ⊂ Σ be the subset satisfying the

following property that for each v ∈ Σ there exists a unique w ∈ Σ|k(γ) such that

both v and w restrict to the same place of k(γ). Consider the k-isomorphism

between fields

(2.1) k(T )→ k(γ), T 7→ γ.

Through the isomorphism (2.1), the set Σ|k(γ) is injectively mapped onto a subset of

the set of places of k(T ). For each v ∈ Σ|k(γ), we have that γ ∈ O∗v ; let Pv(T ) ∈ k[T ]

be the irreducible polynomial corresponding to the image of v under this map. Let

S be the complement of the subset {Pv(T ) : v ∈ Σ|k(γ)} of the set of all irreducible

polynomials in k[T ]. Note that S is a finite set containing the polynomial T , and

that k[Γ] ⊂
∏
v∈ΣOv, where k[Γ] is the smallest subring of K containing both k

and Γ.

Write W =
⋂J
j=1Hfj , where fj(X1, . . . , XM ) ∈ k[γ][X1, . . . , XM ] for each j.

Let {(γe1,n , . . . , γeM,n)}n≥1 be a sequence in AM (Γ) which converges to a point

(x1, . . . , xM ) ∈ W (Γ) ⊂ AM
(∏

v∈ΣK
∗
v

)
, where ei,n ∈ Z. In fact, this sequence

lies in the image of AM
(∏

v∈Σ|k(γ)
k(γ)∗v

)
in AM

(∏
v∈ΣK

∗
v

)
under the natural

map, where k(γ)v denotes the topological closure of the subfield k(γ) in Kv. Note

that this image is a closed subset. The topology on Γ is induced from the usual

product topology on
∏
v∈Σ k(γ)∗v, and the latter topology is the same as the sub-

space topology restricted from the usual product topology on
∏
v∈Σ k(γ)v. Thus

for each i ∈ {1, . . . ,M} the sequence (γei,n)n≥1 converges to xi in
∏
v∈Σ k(γ)v

Therefore, from the continuity of each fj at (x1, . . . , xM ) ∈ AM
(∏

v∈Σ k(γ)v
)
, we

see that each sequence (fj(γ
e1,n , . . . , γeM,n))n≥1 converges to fj(x1, . . . , xM ) = 0

in
∏
v∈Σ k(γ)v. Consider the sequence {(e1,n, . . . , eM,n)}n≥1 in AM (Z). Fix an

arbitrary Q(T ) ∈ k[T ] not divisible by any element in S. Thus we have the prime
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decomposition Q(T ) =
∏
v∈Σ|k(γ)

Pv(T )nv in k[T ], where there are only finitely

many v ∈ Σ|k(γ) with nv > 0. In particular,

UQ =
∏

v ∈ Σ|k(γ)

nv = 0

k(γ)v ×
∏

v ∈ Σ|k(γ)

nv > 0

(mv ∩ k(γ)v)
nv

is an open subset in
∏
v∈Σ|k(γ)

k(γ)v endowed with the the product topology. Note

that fj(γ
e1,n , . . . , γeM,n) ∈ k[γ, γ−1] for each j ∈ {1, . . . , J} and n ∈ N. The in-

tersection of UQ with the image of k[γ, γ−1] in
∏
v∈Σ|k(γ)

k(γ)v is the image of

Q[γ]k[γ, γ−1], which is thus an open subset of k[γ, γ−1] containing zero with re-

spect to the subspace topology restricted from
∏
v∈Σ|k(γ)

k(γ)v. Therefore, from

the fact each sequence (fj(γ
e1,n , . . . , γeM,n))n≥1 converges to zero in

∏
v∈Σ k(γ)v,

it follows that there is an NQ ∈ N such that for any n ≥ NQ we have that

fj(γ
e1,n , . . . , γeM,n) ∈ Q[γ]k[γ, γ−1] for each j ∈ {1, . . . , J}; thus by the isomor-

phism (2.1) we have that Q(T ) divides fj(T
e1,n , . . . , T eM,n), because 0 is not a

zero of Q(T ). Therefore the assumption of Proposition 7 is verified. Applying the

isomorphism (2.1) to the conclusion of Proposition 7, we see that there exists a

sequence {(e′1,n, . . . , e′M,n)}n∈N in AM (Z) indexed by an infinite subset N ⊂ N sat-

isfying the following properties: for each n ∈ N we have fj(γ
e′1,n , . . . , γe

′
M,n) = 0 for

all j ∈ {1, . . . , J}, and for every Q̃(T ) ∈ k[T ] not divisible by T , there is an ÑQ̃ ∈ N

such that for any n ∈ N with n ≥ ÑQ̃ we have that γei,n − γe
′
i,n ∈ Q̃(γ)k[γ, γ−1]

for all i ∈ {1, . . . ,M}. The first property says that (γe
′
1,n , . . . , γe

′
M,n) ∈ W (Γ) for

each n ∈ N . On the other hand, because the image of k[γ, γ−1] in
∏
v∈Σ|k(γ)

k(γ)v

lies in
∏
v∈Σ|k(γ)

(Ov ∩ k(γ)v), one may argue similarly as above that the topology

on k[γ, γ−1], which is induced from the usual product topology on
∏
v∈Σ k(γ)v, is

generated by those subset Q̃(γ)k[γ, γ−1] with Q̃(T ) ∈ k[T ] not divisible by any ele-

ment in the set S. Since S contains the polynomial T , the second property implies

that for each i ∈ {1, . . . ,M} the sequence (γei,n − γe
′
i,n)n∈N converges to zero in∏

v∈Σ k(γ)v; this shows that the two sequences (γei,n)n∈N and (γe
′
i,n)n∈N converge
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to the same element in
∏
v∈Σ k(γ)v. Hence, for each i ∈ {1, . . . ,M}, the sequence

(γe
′
i,n)n∈N converges to xi in

∏
v∈Σ k(γ)v; since xi ∈

∏
v∈Σ k(γ)∗v, it follows from

what is explained above that the same convergence also happens in
∏
v∈Σ k(γ)∗v.

This shows that (x1, . . . , xM ) ∈ {(γe′1,n , . . . , γe′M,n)}n∈N ⊂ W (Γ), which completes

the proof. �

Proof of Theorem 2. Combine Proposition 6 and Theorem 8. �

3. The Proof of Proposition 7

The following result is proved in the author’s recent work [Sunar].

Lemma 9. Let f(T ) =
∑
i∈I ciT

ei ∈ k(T ) with each ci ∈ k and ei ∈ Z, where I

is a finite index set. Let a ∈ N, b ∈ N \ pN with b greater than the cardinality of I.

Denote by C the collection of those partitions P of the set I such that for each set

Ω ∈P we have
∑
i∈Ω ci = 0 and for each nonempty proper subset Ω′ ⊂ Ω we have∑

i∈Ω′ ci 6= 0. Suppose that ga,b(T ) divides f(T ). Then there is some P ∈ C such

that for each set Ω ∈P and each i1, i2 ∈ Ω we have that ab divides ei1 − ei2 .

Proved by an elementary linear-algebra argument, the following result plays

a crucial role so that Proposition 24 in the author’s recent work [Sunar] can be

generalized to Proposition 7, which is the core in the proof of Theorem 2.

Lemma 10. Let N ⊂ N be a subset such that for each m ∈ N there is some n ∈ N

divisible by m. Let aj,i ∈ Z and bj ∈ Z, (j, i) ∈ {1, . . . , J} × {1, . . . ,M} be fixed

integers. Suppose that for each n ∈ N there are some ei,n, i ∈ {1, . . . ,M} such that

n divides bj−
∑M
i=1 aj,iei,n for each j. Then there is some n0 ∈ N with the following

property: for each n ∈ N divisible by n0, there are some e′i,n, i ∈ {1, . . . ,M}, such

that n
n0

divides ei,n − e′i,n and that bj =
∑M
i=1 aj,ie

′
i,n for each j.

Proof. Consider the J-by-(M + 1) matrix (aj,i | bj), where j indices rows and i

indices the first M columns. Applying a sequence of the following operations:

interchanging any two rows or any two of the first M columns, multiplying some
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row by an integer, adding some row to another one, we can transform this matrix

to (a′j,i | b′j) such that for some R ≤ min{J,M} we have that a′j,i = 0 for any

(j, i) ∈ ({1, . . . , J} × {1, . . . , R}) ∪ ({R+ 1, . . . , J} × {1, . . . ,M}) with i 6= j, and

that a′i,i 6= 0 if and only if i ∈ {1, . . . , R}. Then there is some permutation σ

on {1, . . . ,M} such that n divides b′j −
∑M
i=1 a

′
j,ieσ(i),n for each n ∈ N and each

j ∈ {1, . . . , J}. By the properties of N , there is some n0 ∈ N divisible by
∏R
i=1 a

′
i,i.

For any j ∈ {1, . . . , R} and any n ∈ N divisible by n0, from the fact that

b′j −
M∑
i=1

a′j,ieσ(i),n = b′j − a′j,jeσ(j),n −
M∑

i=R+1

a′j,ieσ(i),n

is divisible by n ∈ a′j,jZ, we see that a′j,j divides b′j −
∑M
i=R+1 a

′
j,ieσ(i),n, and thus

there exists a unique e′σ(j),n ∈ Z satisfying b′j − a′j,je′σ(j),n−
∑M
i=R+1 a

′
j,ieσ(i),n = 0;

hence n divides a′j,j(e
′
σ(j),n − eσ(j),n). For any j ∈ {1, . . . , R}, since n0 divisible

by a′j,j , we conclude that eσ(j),n − e′σ(j),n is divisible by n
a′j,j

and thus by n
n0

as

desired. For any j ∈ {R + 1, . . . , J} and any n ∈ N divisible by n0, we simply

define e′σ(j),n = eσ(j),n; thus n
n0

divides eσ(j),n − e′σ(j),n trivially. For every pair

(j, i) ∈ {R+ 1, . . . , J}× {1, . . . ,M}, we have a′j,i = 0, hence b′j is divisible by every

integer, and therefore b′j = 0. Combined with the construction of e′σ(j),n for any

j ∈ {1, . . . , R}, we see that for any j ∈ {1, . . . , J} and any n ∈ N divisible by n0,

we always have b′j −
∑M
i=1 a

′
j,ie
′
σ(i),n = 0. Transforming the matrix (a′j,i | b′j) back

to (aj,i | bj), we obtain that bj −
∑M
i=1 aj,ie

′
i,n = 0 as desired. �

We are ready to present the

Proof of Proposition 7. Choose D ∈ N such that for each j ∈ {1, . . . , J}, we may

write

fj(X1, . . . , XM ) =
∑

(d0,d1,··· ,dM )∈{0,1,··· ,D}M+1

c(j,d0,d1,··· ,dM )T
d0Xd1

1 · · ·X
dM
M

with each c(j,d0,d1,··· ,dM ) ∈ k. For each j ∈ {1, . . . , J}, denote by Cj the collection

of those partitions P of the set {0, 1, · · · , D}M+1 such that for each set Ω ∈ P

we have
∑

(d0,d1,··· ,dM )∈Ω c(j,d0,d1,··· ,dM ) = 0 and for each nonempty proper subset
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Ω′ ⊂ Ω we have
∑

(d0,d1,··· ,dM )∈Ω′ c(d0,d1,··· ,dM ) 6= 0. By Remark 14 in [Sunar], we

may choose some a0 ∈ N \ pN and b0 ∈ N \ pN with b0 > (D+ 1)M+1 such that for

any a ∈ a0N the polynomial ga,b0(T ) is not divisible by any element in S. By our

assumption, there is a strictly increasing sequence {Na}a∈a0N such that ga,b0(T )

divides

fj(T
e1,Na , . . . , T eM,Na ) =

∑
(d0,d1,··· ,dM )∈{0,1,··· ,D}M+1

c(j,d0,d1,··· ,dM )T
d0+d1e1,Na+···+dMeM,Na

for any j ∈ {1, . . . , J}. Thus, by Lemma 9, for any a ∈ a0N and any j ∈ {1, . . . , J},

there is some Pj,a ∈ Cj such that for each set Ω ∈ Pj,a, each (d0, d1, · · · , dM )

and (d′0, d
′
1, · · · , d′M ) in Ω, any i ∈ {1, . . . ,M} and any n ≥ Na, we have that ab0

divides both d0− d′0 + (d1− d′1)e1,Na + · · ·+ (dM − d′M )eM,Na . Consider the subset

{
∏a0+n
i=1 i : n ∈ N} ⊂ a0N. For each j ∈ {1, . . . , J} the collection Cj is finite

while {
∏a0+n
i=1 i : n ∈ N} is infinite; thus there is an infinite subset A of the set

{
∏a0+n
i=1 i : n ∈ N}, which is contained in a0N, such that for each j ∈ {1, . . . , J}

the collection {Pj,a : a ∈ A} consists of only one partition, denoted by Pj . Since

A ⊂ {
∏a0+n
i=1 i : n ∈ N} is an infinite subset, it has the property that for each

m ∈ N there is some a ∈ A divisible by m.

For any a ∈ A, any j ∈ {1, . . . , J}, we observe that (e1,Na , · · · , eM,Na) satisfies

the condition that for each set Ω ∈Pj , each (d0, d1, · · · , dM ) and (d′0, d
′
1, · · · , d′M )

in Ω, we have that a divides d0 − d′0 + (d1 − d′1)e1,Na + · · · + (dM − d′M )eM,Na .

Applying Lemma 10, we obtain some n0 ∈ A with the following property: for each

a ∈ A divisible by n0, there are some e′i,Na , i ∈ {1, . . . ,M}, such that a
n0

divides

ei,Na−e′i,Na and that for each j ∈ {1, . . . , J}, each set Ω ∈Pj , each (d0, d1, · · · , dM )

and (d′0, d
′
1, · · · , d′M ) in Ω, we have

d0 − d′0 + (d1 − d′1)e′1,Na + · · ·+ (dM − d′M )e′M,Na = 0;

thus we may let ma,j,Ω = d0+d1e
′
1,Na+· · ·+dMe′M,Na for any (d0, d1, · · · , dM ) ∈ Ω.

Letting N = {Na : a ∈ A∩n0N}, which is an infinite subset of N since A ⊂ a0N and

the sequence {Na}a∈a0N is strictly increasing, we now show that the constructed
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sequence {(e′1,n, . . . , e′M,n)}n∈N satisfies the desired properties. To verify Property

(1), we fix some j ∈ {1, . . . , J} and n = Na ∈ N with a ∈ A ∩ n0N. From

construction, we have

fj(T
e′1,n , . . . , T e

′
M,n)

=
∑

(d0,d1,··· ,dM )∈{0,1,··· ,D}M+1 c(j,d0,d1,··· ,dM )T
d0+d1e

′
1,Na+···+dMe′M,Na

=
∑

Ω∈Pj
Tma,j,Ω

∑
(d0,d1,··· ,dM )∈Ω c(j,d0,d1,··· ,dM )

= 0

as desired. To verify Property (2), we fix some Q̃(T ) ∈ k[T ], not divisible by T .

Since each zero of Q̃(T ) is in (kalg)∗ and thus has a finite order, we can use the

property that that for each m ∈ N there is some element of A ∩ n0N divisible by

m and get some a ∈ A ∩ n0N such that Q̃(T ) divides T a − 1. Using this property

again yields some aQ̃ ∈ A ∩ n0N divisible by an0. Let ÑQ̃ = NaQ̃ and fix some

n ∈ N with n ≥ ÑQ̃ = NaQ̃ . Then n = Na′ ∈ N with some a′ ∈ A∩n0N; the latter

condition implies, by construction, that a′

n0
divides ei,Na′−e

′
i,Na′

= ei,n−e′i,n for each

i ∈ {1, . . . ,M}. Since the sequence {Na}a∈a0N is strictly increasing, this implies

that a′ ≥ aQ̃; by construction, both a′ and aQ̃ are in the set {
∏a0+n
i=1 i : n ∈ N},

thus we get that a′ is divisible by aQ̃. Because
aQ̃
n0

is divisible by a, we conclude

that a divides a′

n0
and thus divides ei,n − e′i,n for each i ∈ {1, . . . ,M}; equivalently,

we have shown that T ei,n−T e
′
i,n is divisible by T a−1 and thus by Q̃(T ) as desired.

This completes the proof. �
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