ON THE p-PSEUDOHARMONIC MAP HEAT FLOW

*SHU-CHENG CHANG!, {YUXIN DONG2, AND TYINGBO HAN3

ABSTRACT. In this paper, we consider the heat flow for p-pseudoharmonic maps from a
closed Sasakian manifold (M?"*1, ], 0) into a compact Riemannian manifold (N™, g;;). We
prove global existence and asymptotic convergence of the solution for the p-pseudoharmonic
map heat flow, provided that the sectional curvature of the target manifold NV is nonpositive.
Moreover, without the curvature assumption on the target manifold, we obtain global
existence and asymptotic convergence of the p-pseudoharmonic map heat flow as well when

its initial p-energy is sufficiently small.

1. INTRODUCTION

In the seminal paper of J. Eells and J. H. Sampson ([ES]), they proved the existence theo-
rem of harmonic maps between compact Riemannian manifolds via the harmonic map heat
flow when the target manifold with nonpositive sectional curvature. In our previous papers
([CC1], [CC2]), we considered the following pseudoharmonic map heat flow from a closed
pseudohermitian manifold (M?**! J,6) into a compact Riemannian manifold (N™, g;;) on
M x[0,7T) :

dp" k BTk i d
= Ay 2RPTE O YL k=1, m,
(1.1) ot vrers

o(w,0) = up(w), uy € C*°(M;N),
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for p € C*°(M x [0,T); N). Here A, is the sub-Laplace operator and ff] are the Christoffel
symbols of N. Then we proved the pseudoharmonic map heat flow (1.1) admits a unique,
smooth solution ¢ € C®°(M x [0,00); N) with subconverges to a pseudoharmonic maps
Yoo € C®°(M,N) as t — oo, provided that M is Sasakian (i.e. vanishing pseudohermitian
torsion) and the sectional curvature K% is nonpositive. This served as the CR analogue
to Eells-Sampson’s Theorem ([ES]) for the harmonic map heat flow. Secondly, without the
curvature assumption on the target manifold ([CS], [CD]), we showed that there exists ¢ > 0
depending on n, M, N and ||Vyuo||ze(r) such that for any initial data ug € C*°(M; N), if

the energy is small enough
E(Uo) = / |Vbu0|2d,u < g,
M

then the solution ¢ of (1.1) exists for all ¢ > 0. Moreover, as t — 00, ¢(t) converges to a
constant map. Here V, is the subgradient on the holomorphic subbundle 77 M @& Tj 1 M.
In this paper, we extend the above results to the p-pseudoharmonic map heat flow (1.4)
on M x [0,T). Let (M?**! J,6) be a closed pseudohermitian manifold and (N™,g;;) be a
compact Riemannian manifold. At each point x € M, we may take a local coordinate chart
U, C M of x and a local coordinate chart V,,;) C N of ¢(x) such that p(U,) C V. For a

C'-map ¢ : M — N, we define the energy density e(y) of ¢ at the point w € U, by
1 o i J
e(p)(w) = §h (W)gij(so(W))%%-

Here h,5 is the Levi metric on (M2 J 0). Tt can be checked that the energy density is
intrinsically defined, i.e., independent of the choice of local coordinates. Its p-energy E,(¢)

of ¢ is defined by

1 » 1
(1.2) Ey(p) = —/ e(p)2dp = —/ [VeplPdp, p>1
M PJm

where du = 0 A (df)™ is the volume element on M. The p-pseudoharmonic map is the

critical point of (1.2) which is the solution of the Euler-Lagrange equation associated to its
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p-energy £,(p)

(1.3) Dyt + 2Vl gk =0, k=1,..m,

tj
where Ffj are the Christoffel symbols of (N, g;;) and A, is the p-sublaplacian
Dy p® = divy (| Vo2 Vie").

For p = 2, Ay is the usual sublaplacian. It is singular for p # 2 at points where V,p = 0.
Let S'P(M, N) be the Folland-Stein space (see next section for definition). We call a map
© € SYP(M, N) is a weakly pseudoharmonic map if it is a weak solution of (1.3). In general
it is far from understood about the regularity of the weak p-pseudoharmonic map ([F], [FS,
Theorem 21.1.], [JL], [HS], [DT], [XZ]).

In this paper, we consider the associated p-pseudoharmonic map heat flow on M x [0,T) :

1.9 228 — divy(| Vol 2Vig®) + 2|Vl 2hePTh il k=1,--+,m
p(w, 0) = uo(w),

where ug : M — N is the initial data which to be of class C*% for 0 < a < 1. We
will follow methods of [CC1], [FR1] and [FR2] to study the global weak solutions to the
p-pseudoharmonic map heat flow (1.4) from a closed Sasakian (M?***1 J #) to a compact
Riemannian manifold (N, g;;). In fact, we first consider the following regularized problem of

(1.4) for 0 < 6 < 1,

L5 Pe- = divy([|Vapl? + 0]"F V") + 2[| Vil + 0] T hefTh il k=1,--+,m
QO(LU, O) = UO(W),
on M x [0,Ty) for the regularized p-energy E,, s :

1 »
E,s(p) = —/ IV +6)2dp
PJm

with the regularized energy density es(p) := |Vyp|? + 4.
The main difficulty comes from the CR Bochner formula (3.2) with a mixed term (J V¢, Vo) L,

involving the covariant derivative of ¢ in the direction of the characteristic vector field T,
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which has no analogue in the Riemannian case. However, by adding an T-energy density
eo(p), we are able to overcome such a difficulty and conclude that the p-pseudoharmonic
map heat flow has a global smooth solution from a closed Sasakian manifold (M?***1 J 0)
into a compact Riemannian manifold (N™, ¢;;). More precisely, with the same spirit as in

[CC1], instead of the original energy density es(), we estimate the total energy density

~

es(p) = es(p) +eeo(yp)

by adding an T-energy density

eo(p) = gij%%
for some positive constant ¢ which to be determined later. We first are able to derive
the Moser type Harnack inequality (Lemma 3.3 and [CC1, Theorem 1.1.]) for the total
(regularized) energy density e(y) if M is Sasakian. Secondly, based on [CC1], [FR1] and

[FR2], we show the energy density of the regularized p-pseudoharmonic map heat flow (1.5)

is uniformly bounded as following :

Theorem 1.1. Let (M*"™' J,0) be a closed Sasakian manifold and (N,g) be a compact
Riemannian manifold. Let ug € C**(M,N), 0 < o < 1 and ||Vyuo||peo(ar) < K.

(i) There exists g > 0 depending on K, M, N such that if

1
(1.6) B (u) = ~ / VyuoPdpt < zo,
PJm
then the solution @s of (1.5) satisfies
(1.7) Vs || Lo o)y < € and || Ts] | oo 0,50y < C,

where C' 1s a constant depending on K, M and N.

(i1) In addition, if the sectional curvature of (N, gi;) is nonpositive

KN <0

— Y

then (1.7) holds without the smallness assumption (1.6).
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at

(17i) The energy inequality will be

(1.8) /0 /M s 2(x, 8)dpds + By p(0s(,8) = Eya(uo) < Epa(uo), Vi € [0,T).

Based on (1.7), (1.8) and the CR divergence theorem and CR Green’s identity as in [CCW,
Lemma 3.2. and Corollary 3.1.], it follows from [DF], [D], [Ch], [HS] and [LSU] that we can
prove the global existence and asymptotic convergence of the p-pseudoharmonic map heat

flow, provided that the sectional curvature of the target manifold NV is nonpositive.

Theorem 1.2. Let (M?"™' J,0) be a closed Sasakian manifold and (N,g) be a compact

Riemannian manifold. If the sectional curvature is nonpositive

KN <0

and ug € C**(M,N), 0 < a < 1, then there is a unique global weak solution ¢ of (1.4)
with Oy € L*(M x [0,00)) and o, Vyp € CP(M x [0,00), N), where 0 < 3 < 1. Moreover,
there exists a sequence t, — oo such that o(t;) converges in CH% (M, N) for all ' < 3, to

a weakly p-pseudoharmonic map o € CYP(M, N) satisfying
Ep(pso) < Ep(uo).

Moreover, without the curvature assumption on the target manifold but with small initial

p-energy, we have

Theorem 1.3. Let (M?"™', J,0) be a closed Sasakian manifold and (N,g) be a compact
Riemannian manifold. Let ug € C**(M,N), 0 < o < 1 and ||Vyuo||peory < K. There

exists g > 0 depending only on K, M, N such that if

1
B, () = + / VyuolPdp < <o,
P Jm

then there is a unique global weak solution @ of (1.4) with d;p € L*(M x[0,00)) and @, Vyp €

CP(M x [0,00), N), where 0 < 3 < 1. Moreover, there erists a sequence t,, — oo such that
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©(ty) converges in CY% (M, N) for all 3 < 3, to a weakly p-pseudoharmonic map pos €
CYP(M, N) satisfying

Ep(pos) < Ep(uo).

Moreover, there exists €g > 0 depending only on K, M, N and p such that if in addition

E,(ug) < &g, then po is a constant map.

Remark 1.1. 1. One may also compare (1.4) to the well-known p-harmonic map heat flow

from a closed Riemannian manifold (M, h;;) to compact Riemannian manifold (N™, g;;) :

1.9) ‘?)—? = Aé”u + |VulP72A(u)(Vu, Vu),
u(w, 0) = uo(w),

where A is the second fundamental form of N in R™*. In the papers of [FR1] and [FR2],
A. Fardoun and R. Regabaoui proved that if the sectional curvature K” is nonpositive, then
the heat flow (1.9) has a unique global weak solution u. Moreover, u(t) converges to a p-
harmonic map us,. Without the curvature assumption on the target manifold, they showed
that if ug € C?%(M,N), 0 < a < 1 with the small p-energy for p < dim M, then there
exists a unique global weak solution u of (1.9). Moreover, as t — oo, u(t) converges to a
constant map. For the further study of global weak solutions to the p-harmonic map heat
flow (1.9), we refer to [CHH], [H1], [H2], etc for some details. We also refer to [HL] for the
gradient estimate of the minimizing p-harmonic map.

2. Since (2n + 2) is homogeneous dimnesion of a pseudohermitian manifold M?"*!  then
when p > 2n + 2, we do not need the smallness assumption in Theorem 1.3. By following
the same steps, the result of Theorem 1.3 holds for any smooth initial data. Thus we may
assume that p < 2n + 2 in the proof.

3. In the paper of [CDRY, Remark 5.3.], the second named author proved that f : M —
N is harmonic if and only if f is pseudoharmonic whenever M is Sasakian and N is a
Riemannian manifold with nonpositive curvature. It is interesting to know whether it is true

for p-harmonic maps and p-pseudoharmonic maps.
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2. PRELIMINARIES

We first introduce some basic materials on pseudohermitian (2n + 1)-manifolds ([L]). Let
(M, &) be a (2n + 1)-dimensional, orientable, contact manifold with contact structure &,
dimgé = 2n. A CR structure compatible with ¢ is an endomorphism J : ¢ — ¢ such that
J? = —id. We also assume that J satisfies the following integrability condition: if X and Y
are in &, then so are [JX,Y] + [X,JY] and J([JX,Y] + [X,JY]) = [JX,JY] - [X,Y]. A
CR structure J can extend to C' ® &, and decomposes C' ® £ into the direct sum of T3 oM
and Tp 1M, which are eigenspaces of J with respect to eigenvalues i and —¢, respectively.
A manifold M with a CR structure is called a CR manifold. A pseudohermitian structure
compatible with ¢ is a CR structure .J with £ together with a choice of contact form 6.
Such a choice determines a unique real vector field T" transverse to &£, which is called the
characteristic vector field of 6, such that §(7') = 1 and Ly = 0. Let {T', Z,,, Z5} be a frame of
TM®C, where Z, is any local frame of T oM, Z5 € Ty1 M, and T is the charecteristic vector
field. Then, {6, 6, 05}, which is the coframe dual to {T, Z,, Z5}, satisfies dff = ih,z0% A 05,
for some positive definite hermitian matrix of functions (h,3). Locally, one can choose Z,
appropriately so that h,5 = d.p to simplify tensorial calculation.

The Levi form (, )y, is the Hermitian form on T} ¢M defined by
(Z, W), = —i(d0,Z NW).

We can extend (, )1, to To1 M by defining (Z, W), = (, Z, W>L9 for all Z,W € Ty oM. The
Levi form induces naturally a Hermitian form on the dual bundle of T} M, denoted by (; )z,
and hence on all the induced tensor bundles. Integrating the Hermitian form over M with

respect to the volume form du = 6 A (df)™, we get an inner product on the space of sections
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of each tensor bundle. We denote the inner product by notation (,). For example,

(u,v) = / uvdp,
M

for functions v and v.

The pseudohermitian connection of (.J, ) is the connection V on TM ® C' (and extended
to tensors) given in terms of local frames Z, € Ty oM by VZ = wP? ® Zs, VZ5 = wg_ ® Zgz,
VT = 0, where w” are the 1-forms uniquely determined by the following equations:

Ao’ =0 Nwl +ONTP
0=7,AN0O%

0=wl+w

IR

We can write (by Cartan lemma) 7, = A,,6”, with A,, = A, the pseudohermitian torsion
of (M, J,0). The curvature of this Tanaka-Webster connection, expressed in terms of the

coframe {0 = 0° = 0,0%,0%}, is
gzﬂ_%:dwg—wg/\wg,
1§ = 115, =TIy = 15 = 11§ = 0.
Webster showed that II§ can be written
5 = R§,50" \ 07 + W50 N O — Wgﬁeﬁ NG+ 105 N T —iTgppe,
where the coefficients satisfy
Rsaps = Rajsp = Rapop = Rpaps,  Waay = Apya-

We will denote components of covariant derivatives with indices preceded by comma; thus
write Anp,. The indices {0,,a} indicate derivatives with respect to {7, Z,, Z5}. For
derivatives of a scalar function, we will often omit the comma, for instance, ¢, = Z,p,

op = Z5Zatp — w)(Z35)Zyp, po = Ty for a smooth function ¢.
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For a smooth real function ¢, the subgradient V, is defined by V,p € € and < Z, Vi), =
dy(Z) for all vector fields Z tangent to contact plane. Locally Viyp = > (vaZa + ¢aa)-

We can use the connection to define the subhessian as the complex linear map

(VY20 : Ty o @ Tox — Tio ® Toa

(V2p(Z) = V2 V.

We also define the subdivergence operator divy(-) by
divy, (W) = W 5 +W7 5
for all vector fields W = WFZ; + WBZB. In particular

IVool* = 20aa,  |Viol* = 2(0asPas + Cappas)

and
Ayp = divy(Vep) = (Yaa + Paa)-

We also recall below what the Folland-Stein space S*? is. Let D denote a differential
operator acting on functions. We say D has weight m, denoted w(D) = m, if m is the
smallest integer such that D can be locally expressed as a polynomial of degree m in vector
fields tangent to the contact bundle £. We define the Folland-Stein space S*? of functions

on M by

ShP={feLP:Df € L’ whenever w(D) < k}.

We define the L” norm of Vyf, Vif, ... to be ([ |V, f[P0 A (d0)™)VP, ([|V2f[PO A (dO)™)V/?,

..., respectively, as usual. So it is natural to define the S*? norm of f € S*? as follows:

1fllseo = O3 1IVAFIR)YP.

0<j<k
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The function space S*? with the above norm is a Banach space for k > 0, 1 < p < co. There
are also embedding theorems of Sobolev type. The reader can make reference to [F] and [F'S]
for more details of these spaces.

In this paper, we embed N isometrically into the Euclidean space R! with [ large enough
and then S*? = SkP(M RY). Let 7 : R* — N be a smooth projection. Define S*?(M, N)
by W(Sk’p) (similarly, Lip(M,N) := W(Lip(]\/[, Rl)) and so do other spaces of maps from M
to N). From now on, the upper indices j’s of {¢/,dy’,---} start from 1 to [ if we do not

specify them.

3. MOSER-TYPE HARNACK INEQUALITY
In this section, we derive the Moser-type Harnack inequality ([M], [CC1]) for the total
regularized energy density
g = f5s+eeo
with
fs = |Vsel* +6.

Let ¢ : (M, J,0) — (N,g;) be a map from (M, J,0) to (N,g;;). We first derive the

Euler-Lagrange equation associated to its p-energy E,(p).

Lemma 3.1. Let (M, J,0) be a closed pseudohermitian manifold and (N™, g) be a Riemann-
ian manifold. A C? map ¢ : (M, J,0) — (N, g) is p-pseudoharmonic if and only if it satisfies

the Euler-Lagrangian equations

(3.1) Dyt + 2Vl Thglph =0, k=1,.,m

where Ay " = divy(|Vyp|P 2 V).
Proof. Let ¢y, —e <t < ¢, be a smooth variation of ¢ so that

d _
wo = ¢ and %h:o:‘/ef(@ 'TN).
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¢y may be viewed as a map from (—e,e) x M into N. By direct computations, we have

dE,(
P
dt pdt/ [Voel"dps
1 - ) '
=3/ |Veer| @wbm dp = IVMI [gmota@m]du
d} de; del.
/ ’vb% QZJkSOtaSOta dtt +9w( dtt)ta%a‘i‘g (dtt) Pa ]dﬂ
_ d}
= —/MHVb%\p 2Ab<Pt + (V| Vo[~ ? Vb%> + 2|V |P™ 2Fzg()0to¢<10ta] dtt dp
d¥
= - / (L4008 + 2| Voo P2TE 0t o) dtt dp
M

dpy
= — d
/ S CNL
Thus, the first variational formula is given by

d

GBele == [ Vrlehdn

where 7,() is called the p-tension field of ¢, which is defined by
m 2 )
= Z Abp@ + 2|v S0| Fzyspagpa}a_‘
—1 Yk

Therefore ¢ € C*(M; N) is a critical point of the p-energy functional E,(¢) if and only if
its p-tension field 7,(u) vanishes identically. That is, ¢ is p-pseudoharmonic if and only if it

satisfies the Euler-Lagrange equations (3.1). O

Next we recall the CR version of Bochner formula for a real smooth function on a closed

pseudohermitian manifold (M?*+1 ], 0).

Lemma 3.2. ([G]) Let (M?"*1 ], 0) be a closed pseudohermitian manifold. For a real smooth
function w on (M, J,0),

1

§Ab\va’2 = [(V)?ul® + (Vyu, Vidyu) r,

(3.2)
+ [2Ric — (n — 2)Tor] ((Vbu)c, (Vbu)c) + 2(JVpu, Vo),
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Here (Vyu)c = ugZa is the corresponding complexr (1,0)-vector field of Vyu and dyu =
/U/aea + 'U/aea.

Since f5 and ep(p) are independent of the choice of local coordinates, for each point (z,t)
one may choose a normal coordinate chart U at (z,t) and a normal coordinate chart at
o(z,t) such that p(U) C V and then fulfill the following computations at the point (x,t).

Now we are ready to derive the Moser type Harnack inequality for the total regularized

energy density.

Lemma 3.3. Let (M*"*! ] 0) be a closed Sasakian manifold and (N, g;;) be a compact Rie-
mannian manifold. The solution ¢ of the reqularized equation (1.5) satisfying the following
inequalities:

(i) For g = f5s +ceq = |Vyp|? + 0 + ee,

0 ) p=2 . p—d
5 — Al Viog) = (0 = 2)divi(f; 7 (Vs Vi) Vi)
) p=2 — 2 p-4 p=2 p=2
(3.3) — 2 leb((f5 : )OVbQOk)SOg + pra : ’be5|2 +2f5° |vz390k|2 + 2ef;? |Vb90§|2

p+2
2

SC(fZ+ 57 )+ Cefreg—Afs 2 (JVyb, Viph).

(i1) If the sectional curvature of (N, gi;) is nonpositive

KN <o,
then
dg . 22 : 2t k k
5 divy(fs* Veg) — (p— 2)dive(fs* (Vifs, Vee") Vie")
] p=2 — 9 p-1 p—2 p=2
(3.4) — 2 leb((fa : )OvbSﬁk)@g + pra : |be<5|2 +2f5° |V§S0k|2 + 2efs® |vb90§|2

< Cff —4f;7 (JV", Vigh).

By Young’s inequality, the bad term (JV 0", V,0E) in the RHS of (3.3) will be dominated

by the good term |Vypo|? in LHS. As a consequence, we have
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Corollary 3.1. Let (M*'*1 ] 0) be a closed Sasakian manifold and (N, g;;) be a compact
Riemannian manifold. The solution ¢ of the reqularized equation (1.5) satisfying the follow-
g inequalities:

(2) For g = fs +eey = \Vb<p!2 + 0 + eep,

0 =2 B
8_i —divy(f5* Vig) — (p = 2)divy(f5 7 (Vafs, Vig") Vip"

p—2

: = p—2 23 B2
— 2¢e dlvb((fé )()ngﬁk)@]g + Tf(; ’vbf6|2 + 2f5 ’V%gp’ﬂ + gfd |ng0 |

< C(f(; + f(s ) + Cgf(s €o-
(i1) If the sectional curvature of (N, gi;) is nonpositive
KN <o,

then

0 .
8_~‘t’_dwb< 17 Vig) — (0 — 2)divy(f,7 (Vofs, Vo) Vist)

— 2z divy((f,? Vit + —f5 = Vafsf + 2,7 V3P tefy” Va0l

< Cfag-

p—2
Proof. (i) We first compute % fs — divp(fs? Vifs)

Note that |Vye|? = 2g;;¢%@%. Tt is straightforward to compute as

2] i g
G = (20005 +0)

= 2g;(% )asoa+2gm( )a%

= 2guldiv(f,” Vb¢)+2f52 ”%wi{]w%
+2guldiv(fy* Vbso )+ 2f,7 IR AR

= <Vb90 Vbdw(fa VbSO )

+2f, 7 [QFU 1Pkl + ok, e
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and from the CR Bochner formula (3.2)

divy(f5? Vufs)
—2
:p2 |be5| +f5 Abfzi
_p_2 pT_4 2 2 A
= Is = |V fs|® + f5 b[gij 0L 0%]
p—2 55

b2 1 Z.
Vo fsl” +2f5 2 [—Ab\vb¢k|2 + 0oalNpgij]

p—2 250 i
= fs |be6|2+2f5 [|V 12+ (V" Vlpo™) + @hpalNugi

+ (2Ric — (n = 2)Tor)((Vey")c, (Vee")e) + 20T V", Vipp)]

Thus, based on [CC1, (3.2) and (3.3)]

Ofs 1. o2 e
g —divy(f5? Vo fs) — (p—2)dive(f5® (Vufs, vb@pk>vb(’0k)
— 9 pa
(3.5) + pr(; S \Vafsl? + 2£,7 [V

p=2 ~ . . ~ . . .
=2f;7 2% bl hil + 2% bl Phok — ipaliogs
— (2Ric— (n — 2)Tor) (Voo (Vo)) — 4fs 7 (TV0, Vool

=2f," [QRW%%%% + 2Riu el okl

— (2Ric - (n—2)T0T)((Vb@k)c;(wak)c)]] af,” IV, Voos)

50f5§+0f5 _4f5 <va<ﬂ Vi)

This implies

% - leb<f§¥vbf5) —(p—2) diVb(fapT%<be5> V") V")
(3.6) + —ff |vbf5|2 +21,7 V3P

ngerCf[; —4f5 <va90 Vo)

Next we compute 2eq(p) — divb(f;%vbeg(go)) :
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We observe from ([CC2]) that for any smooth function u

Thus for any Sasakian manifold (M?"*! J 6) (i.e. vanishing pseudohermitian torsion)

(3.7) [Ay, Tlu = 0.

We first compute

860(@) Iy’

i, o
5 29@'(@)0% = 2gia[divy(f5 7 V") + 2fa > FU%%]O%

and

divy(f5> Vieo(w)) = <be5 Vb€0> + fa [2900Ab900 + 2| Vb | + bt Dogis]

Based on [CC1, (3.4)] and (3.7), one can derive
0 . p=2 . p—2
5760() = divy(f57 Vieo(9)) = 2diva((f5 )o V") e
= f57 U el ohebich — e tug] — 257 [Vagol?

On the other hand ( [CC1, (3.5)]),

4 Z Zfzgma%%% Z%%Ab (9:5)

=4 Z Z Rijred ohipkch,
1,5,k =1 a=1 i,j=1 1,5,k =1 a=1
Hence
9 . : p32 Ky k
@60( @) —divy(fs > Vieo(p)) — 2divi((f5* )oVep")e
. p—2
(3.8) = £,7 ARy ool — 2,7 [Vigol?

< Cf5 €0 — 2fa \VWO’ :
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From (3.6) and (3.8), we have

0 . p=2 . p—4
S~ divi(fs? Vig) = (p = 2 dive(fs? (Vas, Vi) Vi)

p—2
2

. p—2 b=t p—2 p=2
— 2e divy((f; )OvbSDk)SDISWLTfaQ Vo fsl” +2f5 Vil +2¢£57 [Vipol®

p+2
2

S CO(f2 4+ fs2 )+ Ccfieq —4fs 7 (JVu", Viol).
(1) However, if the sectional curvature of (NN, g;;) is nonpositive

KN <0,

it follows from (3.5) and (3.8) that

0 g2 o
5§_dwm32vg@—«p—mdwaﬁ2<vu@Vw@Vwﬁ
— 2 p—4 p—2
(3.9) + ST Vs 2057 [ViP
<CfE — 4f5%<JVb<Pk, Vu5)-
and
0 . =5
(3.10) 5c0(9) —divi(f;? 2

Vieo(9)) — 2dive((f52 )oVie®)eg

22 2
< =2f5° Vol ”.

All these imply

0 ) p=2 ) p—4
5~ divi(fs? Vig) = (p = 2 dive(fs 7 (Vas, Vo) Vi)
e divy((f,T

Vieh )k + Lo 2 1 (Dol 4 2007 V3 + 26,7 Vol
oV )en + =5 f5 7 [Vofsl” + 2157 [Vipl + 257 [Viwol

< CfE —4f57 (JV", Viph).

This completes the proof of this lemma.
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4. PROOF OF MAIN RESULTS

In this section, we will prove a uniform estimate for the p-energy density and then the

global existence and asymptotic convergence of the p-pseudoharmonic map heat flow.

Lemma 4.1. Let (M*"™,J,0) be a closed Sasakian manifold and (N,g;;) be a compact
Riemannian manifold. Let ug € C**(M,N), 0 < a < 1, ||Vuo||r=) < K and s is the
solution of the regularized equation (1.5).

(i) For g = |Vyps|* 4+ 0 +ceq and all ¢ > &, there exists 1 > 0 depending on M, N and g
such that if

(4.1) sup ||g(t, )||rt1an) < €1,
0<t<T"
then
(4.2) sup ||g/|ra-1,uxa) < C,  when T >1
1<t <T"
and
(43) ||gHLq([0,T’)><M) < C, when T/ < 1,

where C' is a constant depending on K, M, N and q.

(1) In addition, if the sectional curvature of (N, g;;) is nonpositive
KN <o,
then (4.2) and (4.3) hold without assumption (4.1).

Proof. (i) Let us first prove (4.2). Fix tg > 1 and 29 € M. Let p < R < Ry = inf(Ry, 1)
where R); denotes the radius of ball on which CR Sobolev inequality (4.22) holds and set
Qr = (to — R, t9) X B(xg, R). We choose ¢ € Cy(B(xg, R)) such that ¢ =1, B(zg,p); 0<
P < 1; V| < ce(R—p)~t, and let n € C®°(R) with n(t) =0, t <to—R; n(t) =1, t >
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to—p; 0< i) <1; || <c(R—p)~t. Weset ¢(x,t) = (z)n(t). Multiply inequality (3.3)
by g"¢*, r > 0, k € N, and integrate on [ty — R, t] x B(xo, R), to — R <t < ty, we have

1 e
su p/ g e du+r fﬁ g " Vg Pdudt
r+ 1 i< 20 (R)

+p—=2r | f7 C(Vofs, Vo) 2g Nk dpdt + (p — 2)e 5 (f3)2g" ¢ dudt
Qr Qr
p— 2 et r
+T fs 7 g "V fs|Pdudt + 2 f52 Vo' |2g" " dudt
Qr Qr

p—2
+2€/ f5% g " VugpPdudt
Qr

p—2
(4.4) gr“ i 1! Id dt — k ; fs 2 970" Vg, Vo) dudt
R

<
“ 1+

=2k [ £ (Vs V) (Vag, Vi) g dpdt

Qr
—(p—2)ke S 157 (f)oha™ 01 (Vop!, Vi) dudt
—(p—2)re ; £7 (fg) Tl R (V! Vg ) dpdt

—(p—2)re f5 <be5; Voo Y (Vi Vieo) g™ o dpudt
p—2
/(h-ﬁ& Feffegdtdudt—4 [ £ g6 IV, Vahydpdt
R QR

By using Young’s inequalities, we have

—(p—2)re f5 (bezs’ Vo' Y (Voip!, Vieo) g’ ¢ dpdt

N S A e
Qr
(4.5) + (p — 2)re? , f5 (ngo Vieo)2g" L oFdpdt
<=2 [ G Ul

4 Qr

p—2
+4(p — 2)7"62 f5? |Vb<pf)|zeogr_1gbkd,udt
QRr
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and
—(p—2)re . 117 (o0 b (Vi Viag)dpudt
= —(p—2)re QRfa (fa) "o (Ve Vi fs) ¢Fdpdt
—(p—2)re QRf5 (fa) "o (Ve eVieo) o dpudt
as) <P [ it -2 [ e Vit
+@ Mfﬁ(f(s)?)grqb’“dw(p—?)?"zé?’ 17 7 2e0 5| Vb PRt dpudt
= B2 [ et =2 [ 17 0 (Wit Vg
+(p—2)r2e’ Mf;;l e fs| Vol e ¢’“dudt
and
(4.7) — (p—2)ke ) 157 (f)opha™ 61 (Vo' Vi) dpdt
<U2E [ R it du e (-2 |17 e 9ot S
and
—(p—2)k . 17 (Vofo, Vi) (Void!, Vi) g7 dudt
(4.8) <p-2 [ 57 0N (Vs Vi) 6 dpdt
L A N
and |

! / 17 g 6 (Vog, Vod)dpudt
Qr

o
w9 <. /Q 17 g Vag Pt dpdt + 2 / 2 V6P dudt
R
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and
—4 fa%grﬁbkuvwl, Vb Ydudt
Qr
< 16
10 <3| BT Pt 2 [T
R

From (4.4)-(4.10), we have

1 , r 2z
1 sup,, / g+ / 17 G Vgl dudt
]_ +7r B(J:O,R) 2 Qr
3r p=4
+(p— 2)<Z —1) [ 57 9NV fs, V'Y ¢Fdudt
Qr

p—4
— (p—2)r’e . f52 9" %eo(Vo, Vi f5)? ¢  dpdt
R

p—2 Pt p=2 i
L p2 / 17 MV, fy 2t + 2 / 1T V20 g ¢ dpudt
2 Qr QR

e 22 . e
1 Voo g o dudt — (p — 2)r°e* | f; 2eg| Vo[ ¢* dudt
Qr Qr
—A(p—2re? | f5T Vi Peog dFdpdt
Qr
) < [ e -2k [T el Voot
ka 1+T k—2 k2 1+T k—2
+ - fa Voo *¢" 2 dpdt + (p — 2)— 1 fa Voo *¢"2dpdt
16 5 r .k r
+? f5g¢ dﬂdt+0 [f5 +f5 +€f5 60] ¢ dudt
Qr

For any fixed ¢, then we choose 1 <e< 3 L such that
(4.12) (r? — c)eeg < cfs
for some positive constant ¢ and

erley < cfs + ceeg.

That is
€eg < < 317« -1
fs+eeg — r2 T

IN

r2
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for some r is large enough and then

3
(4.13) (Zr —1)g — rceq > 0.

From (4.12), we have

€o
f5 Z ﬁ Z €e€yp,

so we have
1 1 1 1 1
4.14 = _ Zfe> Cep — =
(4.14) s 2f5+2f5_ 2f5+2€€o 59
and
7 2 2.2 2
(4.15) Z(f(; +eep)” — (p—2)r<cey — 4(p — 2)eeo(fs + €eo) > 0.

From (4.11)-(4.15),

SUD; <y, / g dp + / g2V yg | ek dpdt
~ JB(x0,R) Qr
(4.16) <C / g et 1\ \dudt+0 / g 22 Vo) 2dpdt
R R

+ 0/ (9% + g2t grdpdt,
QR

where C' is a positive constant depending on k, M, N, r, e, p. Thus

SUP, <4, / ( )g”’"fbkdwr / gV 20 dudt
B(zo,R Qr

(4.17) <C [ gttt 1| |dudt+0 g (Ve + ¢%)dpdt
QR QRr

+ C/ gr+g+1¢kdudt.
Qr
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Let h = % nd = "2 and fix k > [ large enough. By Holder’s inequality and Young’s
2

inequality, we have

r+1

/ 1+r¢k 1‘ ‘d/Ldt < (/ r+ +1¢kdudt>r+g+1
Qr Qr

w1s) ([ o521 00 daty
R
< / g rdpdt + O [ o ”SI% T dudt
R Qr
» +p+
S/Q g 2k dudt + CR(R — p)~ |B(zo, R)I,
R

where C' is a constant depending on M, p and r. By choosing & > 2(r + £ + 1), and using

Holder’s inequality and Young’s inequality, we have

(4.19) / T8 + 02 |VyoPldudt

< / g i ok dpdt + CR[1 + (R — p)~ @72 B(xo, R)|,
Qr

where C' is a constant depending on M, p and r. It follows from (4.17), (4.18) and (4.19)

that
(4.20) sup/ g R dp + / g2\ Vg 2o dudt < ¢, / g rE gk dudt
t<to (z0,R) R R
2T+p+2
+CR[1+ (R — p)~ W) (R — p)~ [|B(xo, R)I,

where (' is a constant depending on M, N,p and r. We recall the following CR Sobolev
inequality ([J], [Lu, Theorem C] or [DLS, (1.1)])

(4.21) ( / W) < o / VwlPdu)t,
B(zo,R) B(zo,R)

where w € C}(B(x, R)) and ¢ is a constant, provided that 1 < p < Q = 2n + 2 and

111 . _
rii-lot In particular for ¢ = 2, we have

(4.22) ( / Wdp) < of / Vo 2 g2
(zo,R) B(zo,R)
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r+E+1

Applying this inequality to w = g~ 2 ¢z,

/ gT+%+1wkdﬂ
B(zo,R)
p

< C(/ IVy(g— 5 w2)| 552 dp)wit

B(zo,R)

B 1 r+5- n n

— c(/ |M9 — 1¢§ng+ k T )t

B(zo,R) 2 2

2n+2 n+2
nt2 dlu) 1

rH5-1 2n+42 nt2
(423) S O(/ |g 2 17@2ng| n+2 dlu)n+1 + C’(/
B(zo,R)

B(zo,R)

1 P
< Oy / 9" dp) 7 ( / Wrg" I Vg Pdp)
B(mo,R) B(zo,R)

r+54+1 2n+42

+@q‘ g3 TV | B )
B(zo,R)

=cmm«¢mmﬂwmﬂm/’ g8 Vg Pdp)

B(zo,R)
4 Oy /
B(z‘o,R)

2n+2 n+2

n+2 d/l/) 7L+].

where C is a constant depending on M, p and r. Multiply (4.23) by n*(¢) and integrating
on [to - R, to],

/ gr+%+1¢kdudt

Qr

(129 <G wpuwwmmmmmé¢Wﬂﬂwwww
R

to—R<t<tg

to
(k=2)(n+1)  k(n+1) n
+@/ d’ gy T N VR dp)
to B(zo,R)

Set €1 = 5=—~. Suppose that

(-, O Lrt1 (Bo,R)) < €1-
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It follows from (4.20) and (4.24) that

sup / g et du + / g R dpdt
B(zo,R)

0—R<t<to Qr
tO — n n n n
S C (/ g('f‘"r +1) :iié w b i)jE2+1) 77 k(n++21) | 2’!Li22 du) 7Li§ dt
to—R J B(zo,R)
2T+p+2
+CR[L+ (R —p) """ 1 (R—p)~ " »]|B(o, R)|.

From the definition of ¢, we obtain,

sup / gl+’"du+/ gr+%+1d,udt
to—p<t<to J B(zq,p)

P

to (r+5+1)(n+1) n
<CR-p)~° / ( / g dp)iedt
R JB(x0,R)

to—

2r+p+2

(4.25) +COR[L+(R=p)" 7 +(R—p) "] B(wo, R)|

to (r+B+1)(n+1) n
<cis [T (f  pEE g,
to—R B(Z‘O ,R)

. . r+3)(n+1
where C'is a constant depending on M, N, R,r,p and p. Let d = % + n+r2(r +1). By

using Holder inequality,

to (r+B4D(tD) | nt2
/ (/ g iz e gy g
to—p J B(zo,p)

to
(4.26) < / [/ gUrtEth du(/ g’”“du)#l]dt
to—p 7 B(zo,p) B(o,p)
< sup ( / g dp) / gt e dpdt.
to—p<t<to JB(zo,p) P

From (4.25) and (4.26), we obtain

to ry P n n
(4.27) / ( / g s gy 5 g
to—p B(CI?()J))

to (r+B+1)(n+1) n n
s [C(f TR
to—R J B(zo,R)

where C' is a constant depending on M, N, R,r,p and p. We set § =1 + n_+1 and for s € N,

R, = (1427)5. Define r, = (24)6° — 1, and a, = (r,+ £ +1)255. From the definitions
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of 4, as, we have .1 = (15 + 5 + l)Z—i; + (rs + 1)n+r2 If p=Rs1, R=Rs and r = ry in

(4.27), we have

to n+2
(4.28) / (/ g tidp) nrrdt
to—Rsy1 Y B(zo,Rs+1)

to
<ciis [ (f  grawEaE,
t B($07Rs)

0o—Rs

where C is a constant depending on M, N and s. Since a; — oo when s — 00, by interating

(4.28), we have for any ¢ > 1

(4.29) <C,

||g||L<1([to—%,t0}><3(x07%))

where the constant C' depends on M, N, q and ||g(-,t)||re0(ar). Since ap = n + 1 and by
hypothesis supg<;<7 |[g(+,)||zn+1ar) < €1, then C depends only on M, N and g. Following
the same steps as in proof of (4.29) where we take ¢ (x) instead of ¢*(z,t) and we integrate

on [0,t] (for t € [0,1]) instead of [to — R, %], we can obtain the following inequality:

(4.30) royy < C,

gl |Lq([o,1]xB(gco,T

where C' depends on M, N, q and K which is any positive constant such that ||Vugl|re () <
K. Since M is compact, we know that (4.2) is true by using (4.29) and (4.30). To prove
(4.3), we proceed as in (4.30) where we integrate on [0,¢] with ¢ € [0,7").

(#7) Note that as in (i), we assume

sup ||g(t, )||n+1ar) < €1
0<t<T"

in order to get the control of the term fQR g tEtleFdudt as in (4.24). However, if the

sectional curvature of (NN, g;;) is nonpositive

KN <0

— Y
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it follows from (3.4) that we do not need to estimate this term any more. Then we have the
estimates (4.2) and (4.3) without assumption (4.1) if the sectional curvature of (NN, g;;) is

nonpositive. [l

Lemma 4.2. Let (M?"*1 ] 0) be a closed Sasakian manifold and (N, g) be a compact Rie-
mannian manifold. Let ug € C**(M,N), 0 < o < 1, ||[Vugl|peny < K and s is the
solution of the regularized equation (1.5).

(1) There exists e1 > 0 depending on K, M, N such that if

(4.31) sup |[g(t,)l[Lrrrany < e,
0<t<T”

then

(4.32) gl ooy < C,

where C' is a constant depending on K, M and N.

(1) In addition, if the sectional curvature of (N, gi;) is nonpositive

then (4.32) holds without the smallness assumption (4.31).
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Proof. (i) Let ¢(x,t) = ¢ (x)n(t) and Qr is as in the proof of Lemma 4.1. Multiplying
inequality (3.3) by ¢"¢?, r > 0 and similar to (4.4), we have

1 . r p—2 r_
SUP; <y, / gt du+ 5 | f57 g Vgl ¢ dpdt
L+r B(a0,R) 2 Jon

3r LI
+(P—2)(Z—1) g f5% 9NV fs, Vi) ¢ dpdt
R

— (=202 | £ g 2eo(Vod, Vo fs) 2 dpdt

Qr
p—2 R 2 P2 o 12 2
teg | ST GOVl dudt w2 | fs? Vi |Tg ¢ dpdt
QR QRr
78 p=2 r p=2 ,_
+ LT VP Gdudt — (- 2% | 57 g Vg g dpdt
Qr Qr

p—2
—4(p — 2)re? faT Vbl *eog” ™ o> dpdt
2 1+r
</ 0122t + 4(p — 2)= [ 5375l Vol

8
+o f 1+’"IV S dpdt + (p — 2) f gV Pdudt

/ grqbgd,udt +C / [ ff - f6T +e ffeo] g"p*dudt.
Qr Qr

For any fixed ¢, we choose € small enough so that

1 - r P
———SUp;y, / g du + = / g2V 2 2 dpdt
]_ + T B(me) 2 Qr

a p 4 P
433 <C [ ol ldude+ € [ g EVioPdudt+ € [ (g7 4 gt P,
Qr ot Qr Qr

where C' is a positive constant depending on M, N, r and p. Since

P 8 v p 16 P
r4+5—2 242 s+ r+5 2
9" "2 Vg P g dudt > —/ V(g2 10)| dﬂdt——/ 9" 2| V| “dpdt,
/QR (p+2r)? Jo, (p+2r)? Jog
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SO
1 147 42 / Z+E N2
— "otdp + ————— Viy(g2™4 dudt
1+rsupt§t0 /;(1‘07]2)9 ¢ I (p_|_27,)2 QR‘ b(g ¢)‘ K
(4.34) < 0/ gl+r¢|%|dgdt+(0—l—i)/ 9" 2|V P dudt
- Qr ot (p+27“)2 Qr

+C | (¢ + g e pdudt.
Qr

From the definition of ¢,

r+2
sup / g TP dp + / V(g% ¢)|pdt
B(zo,R)

t<to R

(4.35) <Cl(1+7) /

g5t + (14 7) [ g
Qr

Qr
+ (R~ p)‘l/ 9" dpdt + (R — p)‘Q/ g% dpdt),
Qr Q

R

where C'is a constant depending on M, N. Let ¢ = (1+ 27)7 + (§ + -17). By using Holder

inequality,

) o, 9'dpdt
2(n+1)

(4.36) 1 n
SSUPtgto(fB(xO,R)gl+r¢2dﬂ)m< tioiR(fB(m’R)(gi'&'qu) " dﬂ)mdt)'

From the CR Sobolev inequality (4.21) again (with p = 2), we have

(437) ([ vagms o[ wPat,
B(zo,R) B(zo,R)
for all V € C}(B(zo, R)). Let V = g2ti¢,

(4.38) ( / L

It follows from (4.36) and (4.38) that

2(n+1)

+%¢) o du)nil < c/ |vb(g%+
B(.z‘o,R)

p
4

[V

o)|dp.

_1 r4p
@) [ gt <eswpl [ gvrdan ([ VilgE o) Pud).
Qp B(ZO:R)

t<to
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and from (4.35) and (4.39) that

(4.40) / gUdpdt < Cl(1+ 1) + (R~ p)?) / o5+ dpd
P QR
+(R—p)! / G dpdt+ (1) [ P dua i
Qr Qr

By using Holder inequality and Young’s inequality in (4.40),
2r+p+2 —4r—2p—4
Jo, 9tdpdt < C{[(L+r) 2% + (R—p)” >

—2r—p—2

(R = p) 5] [y, g8 dudt + Qnl}

(4.41)

where C' depends on M, N and p. Now we use a Moser iteration process to obtain a uniform

estimate. Let Ry = (1 + 2*8)% and =1+ n+r1 Define r, and a, by

re =0°+n and aszrs—l—g—i—l

so that

P 1
s :05 5 .
Ast1 T+2+n+1

We apply (4.41) with p = R,.1, R = Ry and r = r, to find

/ gt ttdudt < C{ g dudt + C’}%,
Q

Rgyq QRs
where C' is a positive constant depending only on M, N. By Moser iteration process, we
have

(4.42) 9]l (@ ry) < C g g*dudt + C'}.
2 Ry

Now we suppose that

sup ||g(, t)||Ln+1(ar) < €1
0<t<T"

with €; = ¢, where ¢ is the constant in Lemma 3.3 corresponding to ¢ = ag = n + % + 2. By
Lemma 4.1, the right hand side of (4.42) is bounded by a constant depending on K, M, N.

Since M is compact, we have

|9 zoe o,y x a1y < C.
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(i7) The same proof without the smallness assumption if the sectional curvature of (N, g;;)

is nonpositive, we have the estimate (4.32). UJ

Now we are ready to the proof of Theorem 1.1 :

Proof. (i) First, let us show that

sup ||g(-, )||zr+1an) < €1,
o<t<T”

where g = f5 + ceg(p). To this end, we set

T* = sup{T € [0,7") : sup ||g(-,t)||r+1(ar) < €1}

0<t<T

We want to prove that 7* =T". If T* < T’, we have

sup |[g(-,t)||znriany < €1
0<t<T*

So from Lemma 4.2, we have
g(-, t)|| Lo o,7#)x 00y < C.
From this inequality, we have
fs <C and cey <C.
Take € small enough, we have
€
geg < 50
where ¢ satisfying
1
E,(up) = —/ |Vipuo|Pdp < .
PJm
On the other hand, we have for all ¢ € [0, T*],

n+1-%

p
(4.43) 190Dl any < N9l e olrmpan 190G DIy -
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Since (z + y)? < Cp(2? + yP) for all p > 1 and we can choose § < 5, we have

(4.44)  lgll?,

p = / HV{;SOJP + 0+ 560]%61'0 < Cp/ Hvb'&o’pd?} + €§VOZ(M> < 0180.
Lz (M) M M

From (4.43) and (4.44), we have

sup ||g(:, )Hz:il < C"1Cey.
0<t<T*

We can take gy such that [C’”_lCleo]n%l < &, so we have

€1
2
1

n 1 €
sup ||g(-, t)||zrrrary < [C"Creg) it < 5
0<t<T*

Since f is continuous, we see that there exists h > 0 such that

361
sup |[g(+, )| any < e <e
0<t<T*+h

so contradicting the definition of T*. Then T* = T" and supg<;<p- 4, ||9(-, 1)||rt1ar) < 1.

By Lemma 4.2, we have
g(-, )| oo o,y xary < C.
That is
||vb905||L°°([07T')XM) <C and ||T906HL°°([0,T')><M) <,

where C' is a constant depending on K, M and N.
(i) The same proof as in (i) except we do not need the smallness assumption (1.6) due
to K N < 0.

(77i) By integration by parts, we compute as in [CC1, Lemma 3.1.], one has

d
dsE” ws (- / 0505 (-, 8)|*dp.

Integrating the above equality over [0, t] gives

t
| [ 10 o s)duds + Bps(os(c.6) = Bps(uo) < Byalua). ¥t € [0.75).
0 M
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Now we are ready to prove the global existence and asymptotic convergence of the p-
pseudoharmonic map heat flow. We will give the proof of Theorem 1.3 which is based on
[FR2] and [CCW]. The proof of Theorem 1.2 is the similar to the proof of Theorem 1.3.

The proof of Theorem 1.3 :

Proof. We first observe that the proof is standard once we have the estimate (1.7) plus CR
divergence theorem and Green’s identity as in [CCW]. We will sketch the proof and refer
to the last section of [FR2] for more details.

(1) Global Existence : Firstly, it follows from [HS], [D], [DF| and [Ch] that there exist

constants [ € (0,1) and C' depending only on M, N, p such that

(4.45) [@sllcsarxiom),ny + I Veps|lesaxiory).ny < C.

This and the theory of parabolic equations ([LSU]) imply

sup (|los(-, t)||corar,ny + [0eps (5 t)||caar,ny < Cs
0<t<T}

for 0 < o < 1. It is clear that the maximal time will be infinite
T5 = OQ.

Moreover, by the energy inequality (1.8), there exist a sequence d; — 0 and ¢ € C?(M x
[0,00), N) and Vi € CP(M x [0,00), N) such that

(Z) Hvb(pHCﬁ(MX[O,oo),N) < C(17
(id) o € LA(M x [0, 00)),

and

(M x [0,00), N) for all 5" < g,
(M x [0,00), N) for all 5" < g,
s, — Op  weakly in L*(M x [0, 00)).

Vs, — @ in 0%

loc

Vigs, — Vip inCy,

loc
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Now by multiplying ¢ € C§°(M x [0,00)) for (1.5) and integrating on M x [0, 00), we have

Jo~ Ju Ovpdpdt + [ [ VP2 VipVibdpdt

(4.46) iR
=2 [¢° [y IVolP?h Tl ohpdpadt,

as 0, — 0. hence ¢ is a weak solution of (1.4). The uniqueness is also standard. We refer to
the last section of [FR2] for more details.

(1) Asymptotic Convergence : Since d;p € L*(M x [0,00)), it follows from (4.46) that for
almost ¢t > 0 and ¢ € C*°(M)

/ Oupddp + / Vo2 Vo Vipdu = 2 / Vopl? 2T plphddp
M M M
and then there exists a sequence t;, — oo such that

|10s0(trs )| L2(ary — 0.

Furthermore, we have
o(te, Mlerrsuny < C
and then

Oty ") = Pool(-) in C*F (M, N) for all 5 < 8.
Moreover (., is a weakly p-harmonic map and ¢, € C**#(M, N) with
Ey(poo) < Ep(u).
In addition if we choose &5 > 0 such that E,(ug) < £, then for a fixed ¢ > Q) =2n + 2
| Vpnltdn < pC7 g

and for N ¢ R/

|[Pool|s1.a(as,mY) < CFo.
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Here we apply Poincare inequality by changing the origin in R' such that | 1 Poodpp = 0. It
follows from CR Sobolev embedding theorem ([F'S, Theorem 21.1.], [JL]) that

< C%y.

||¢w‘|0%(1_%)(M,Rl)

Thus if we choose gy small enough, ¢ (M) is contained in a convex geodesic ball U of N.
By following the first name author’s previous result as in [CC2, Lemma 4.2.] (or [Gor]), we
consider the composite function G := F o ¢ with a smooth function F' defined on U. In

particular, let us choose F(y) = 3 (y;)?, where {y;}; is the coordinate system of U. Thus

divy (| Voo [P 2V G)
= 22 Fuldivi (Vo2 Vo) + 2| Vool 2he Tl o)
I VoboolP 7232 5 D0 Fij(Poc)a(@lo)a
= 3 Fildiv (| VP 2Viiek) + 2| Vol 2R Tl 0] + | Vipoo -

Since o, is a weakly p-harmonic map, we obtain by integrating both sides

/ VapuclPdpt = 0
M

and we deduce that Vyp,, = 0. This completes the proof of Theorem 1.3. 0
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