ON THE CR ANALOGUE OF REILLY FORMULA AND YAU
EIGENVALUE CONJECTURE

*SHU-CHENG CHANG!, *CHIH-WEI CHEN?, AND *CHIN-TUNG WU?3

ABSTRACT. In this paper, we derive the CR Reilly’s formula and its applications to studying of
the first eigenvalue estimate for CR Dirichlet eigenvalue problem and embedded p-minimal hy-
persurfaces. In particular, we obtain the first Dirichlet eigenvalue estimate in a compact pseudo-
hermitian (2n + 1)-manifold with boundary and the first eigenvalue estimate of the tangential
sublaplacian on closed oriented embedded p-minimal hypersurfaces in a closed pseudohermitian

(2n + 1)-manifold of vanishing torsion.

1. INTRODUCTION

In the paper of [Re], by integral version of Bochner-type formula, R. Reilly proved so-called
Reilly formula which has numerous applications. For example, Reilly himself applied it to
prove a Lichnerowicz type sharp lower bound for the first eigenvalue of Laplacian on compact
Riemannian manifolds with boundary. In this paper, we will derive the CR version of Reilly’s
formula and give some applications. In particular, we obtain the first Dirichlet eigenvalue
estimate in a compact pseudohermitian (2n+ 1)-manifold with boundary and the first eigenvalue
estimate of the tangential sublaplacian on closed oriented embedded p-minimal hypersurfaces
in a closed pseudohermitian (2n + 1)-manifold of vanishing torsion. Finally, we will indicate the
CR analogue of Yau conjecture ([Y]) and Lawson conjecture ([La]).

Let (M, J,0) be a pseudohermitian (2n + 1)-manifold (see next section for basic notions in
pseudohermitian geometry). The CR Reilly’s formula (1.3) is involved terms which has no
analogue in the Riemannian case. However, one can relate these extra terms to a third-order
operator P which characterizes CR-pluriharmonic functions ([L1]) and the fourth-order CR
Paneitz operator Py ([GL]).
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Definition 1.1. ([GL], [P]) Let (M, J,0) be a pseudohermitian (2n + 1)-manifold. We define

Py = Z:ﬁ:l@?ﬁ + inA57g07) ZB (P,BSO)

which is an operator that characterizes CR-pluriharmonic functions. Here

PB¢ = 23:1(30;5 + inA57¢7)7 ﬁ =1,---,n,
and Py = > 51 FBQE, the conjugate of P. The CR Paneitz operator Fy is defined by
(1) Pogp = 46,(Py) + 45,(Pyp),

where 0y is the divergence operator that takes (1,0)-forms to functions by 6y(c50°) = 056, and

similarly, Sb(ageg) = 036 .

We observe that ([GL])

Py = 20,040 — 4@'71(145%013)W
= 2(A7+n?T?)p —4nRe(iAPpp),,

for DbQO = (Ebﬁb + Ebgb)(p = (—Ab + mT)go = —QQDEB
By using integrating by parts to the CR Bochner formula (3.1), we derive the following CR

version of Reilly’s formula.

Theorem 1.1. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold with boundary 3.

Then for any real smooth function ¢, we have

2 [ l(Qvp)? = 25 575 s, Pldpe

= 2 [ oPyedu + fM [2Ric — (n+ 1)Tor]((Vsp)c, (Vep)c)du
”*220 Js; ¢ (Puip = Pap) A% + G [5(#"B,gp — 0" Brsp)dS,

—1C, [5 gpogoende + 200 [5 ey, DopdSy, + Cy [5 00, AbpdS,

+1C, [ Hyng?, dS, — 1C, [0 30 1<V€Jen,ej>gpen<p62nd2

+3Cn [, 000, 0y, A8y + 1Cn [ f’i 1(Ve,€am, €) @0, 00,45,
Here Py is the CR Paneilz operator on M, C, = 2"nl; Bgyp = @z — ;gpg"h[ﬁ, Al =
5 Z2n Y(e;)? — (Ve,e;)'] is the tangential sublaplacian of ¥ and H, is the p-mean curva-
ture of 3 with respect to the Legendrian normal es,, aes, + 1T € TY for some function o on

Y\ Sy, the singular set Sx, consists of those points where the contact bundle & = ker 0 coincides
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with the tangent bundle TY of 3. (Vyp)c = P Zs is the corresponding complez (1,0)-vector field
of Vo and dX, = O Net Ne™ TN Ne"TE A e Ae™ is the p-area element on 3.

If (M, J,0) is a compact pseudohermitian (2n + 1)-manifold without boundary, one can check

easily that the fourth-order CR Paneitz F is self-adjoint. That is

(1.4) Sy 9Pofdp = [, fPogdp

for all smooth functions f and g. However, if (M, J, 0) is a compact pseudohermitian (2n + 1)-
manifold with the smooth boundary ¥, it follows from (5.1) and (5.2) that (1.4) folds for all
smooth functions with the Dirichlet condition or the Neumann condition as in (1.5) and (1.6)
on Y. In particular, it holds in the situation as in Theorem 1.2 and Theorem 1.3.

That is, one can have the following Dirichlet eigenvalue problem or Neumann eigenvalue

problem, respectively:

Pop = p,p on M,
(1.5) e =0 on X,
App = 0 on X,

and
P0¢ - :uN¢ on M7
(16) Abe = 0 on 27
(ApP)e,, = O on .
Hence
(1.7) Sy ePoedu > it [, o*du

for the first Dirichlet eigenvalue p- and all smooth functions with ¢ = 0 = A on ¥. Similarly

(1.8) Ju OPoddp > pil, [, ¢°dps

for the first Neumann eigenvalue 4! and all smooth functions with Ayp = 0 = (Ay¢)e,, on X.

In general, 111 and p) are not always nonnegative.

Definition 1.2. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold with the smooth
boundary . We say that the CR Paneitz operator Py with respect to (J,0) is nonnegative if

Jyy ePoedp >0
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for all smooth functions with suitable boundary conditions as in Dirichlet eigenvalue problem or

Neumann eigenvalue problem of Fy.

Remark 1.1. Let (M, J,0) be a compact pseudohermitian (2n+1)-manifold of vanishing torsion
with the smooth boundary . It follows from (1.2) that the Kohn Laplacian O, and O commute

and they are diagonalized simultaneously with
Pop = 20,0y = 200,00
Then the corresponding CR Paneitz operator Py is nonnegative ([CCC|). That is

Hy, = 0=

For the first consequence of CR Reilly formula, we can consider the following Dirichlet eigen-

value problem:

A = —A on M,
(1.9) W v

e =0 on X.

Then we have the following first Dirichlet eigenvalue estimate:

Theorem 1.2. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold with the smooth
boundary . If the pseudohermitian mean curvature H, ), is nonnegative, H,, + @,'(e,) is also

nonnegative and
[Ric — "2 Tor(Z,2) > k{2, Z)

forall Z € Ty and a positive constant k, then
(i) Forn > 2,

nk .
AL 2 T

(ii) Forn =1,
N> kot /K261

4

with pJ]lD > —%. In addition if Py is nonnegative, in particular if the torsion is vanishing, then

AL >

SRS

Remark 1.2. It is known that the sharp first eigenvalue estimate is obtained as in [Gr], [LL],
[Ch], [CC2] and [FK] in a closed pseudohermitian (2n + 1)-manifold.
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Next we can state the second consequence of the CR Reilly formula (1.3) which served as
a CR analogue of Yau conjecture ([Y]) on the first eigenvalue estimate of embedded oriented
minimal hypersurfaces. We refer to papers of Choi-Wang [CW] and Tang-Yan [TY] which are
related to Yau conjecture.

As before, {e1, e, ,€n,€n11," ", €2n_1, @2, + T} is the base of TY for some function o on
Y\ Sx. It follows from (3.11) that Al + ae,, is a self-adjoint operator with respect to the p-area
element dX, on . Hence it is natural to consider the following CR analogue of eigenvalue prob-
lem on the embedded closed p-minimal (H,; = 0) hypersurface ¥ in a closed pseudohermitian

(2n + 1)-manifold (M, J, 0):

(1.10) Lou = —\u,
here
(1.11) L, = Al + ae,.
In this paper, we consider the particular case that {ej, e, -+ ,en, €411, ,€2,1, T} are al-

ways tangent to X (o = 0) as following:
(1.12) Lo == AL

That is, we have the first eigenvalue estimate of Ly on embedded oriented hypersurfaces of

nonnegative pseudohermitian mean curvature:

Theorem 1.3. Let ¥ be a compact embedded oriented p-minimal hypersurface with o = 0 in
a closed pseudohermitian (2n + 1)-manifold (M, J,0) of vanishing torsion. Suppose that the
pseudohermitian Ricci curvature of M is bounded from below by a positive constant k. Then

(i) The first non-zero eigenvalue \; of Ly on ¥ has a lower bound given by

AL >

SRS

(ii) In case of n = 1 if the equality holds, (M, J,0) must be a closed spherical pseudohermitian
3-manifold and X be a compact embedded oriented p-minimal surface of genus < 1. Moreover,

(M, J,0) is the the standard CR 3-sphere (S3, f,@) if it is simply connected.
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Let (M, J,0) be a closed spherical pseudohermitian 3-manifold. Recall ([CC1]) that we call a

CR structure J spherical if Cartan curvature tensor ();; vanishes identically. Here

Qu = Wi+ WAL — Ao — A

11,11°

Note that (M, J,0) is called a spherical pseudohermitian 3-manifold if .J is a spherical structure.
We observe that the spherical structure is CR invariant and a closed spherical pseudohermitian
3-manifold (M, J, 6) is locally CR equivalent to the standard pseudohermitian 3-sphere (S?, j, 5)

Note that for an p-minimal Clifford torus Sy = S'(*%2) x S'(*%2) C R? x R? in the standard
CR 3-sphere S? (i.e. k =2 and A;; = 0), T is always tangent to Xy (i.e. @ = 0). Furthermore,

the coordinate function x; of ¥y is the eigenfunction of the tangential sublaplacian A} with

Then in view of Theorem 1.3, we have the following CR analogue of Yau conjecture on the

first eigenvalue estimate of embedded oriented p-minimal surfaces.

Conjecture 1.1. The first eigenvalue of Ly on any closed embedded p-minimal surface of genus

<1 in the standard CR 3-sphere (S3, j,@) is just 1.
Finally, we propose a CR analogue of Lawson conjecture ([Lal):

Conjecture 1.2. Any closed embedded p-minimal torus (with o = 0) in the standard CR 3-
sphere S3 is the Clifford torus.

If the Yau conjecture is true for the 2-torus, it was proved in [MR] that the Lawson conjecture
holds which is to say that the only minimally embedded torus in S is the Clifford torus. However,
Lawson conjecture was solved by S. Brendle [B] recently.

We briefly describe the methods used in our proofs. In section 3, by using integrating by
parts to the CR Bochner formula (3.1), we can derive the CR version of Reilly’s formula which
involving a third order operator P which characterizes CR-pluriharmonic functions and the
CR Paneitz operator F,. By applying the CR Reilly’s formula, we are able to obtain the first
Dirichlet eigenvalue estimate as in section 4 and derive the first non-zero eigenvalue estimate
of (1.10) on compact oriented embedded p-minimal hypersurfaces in a closed pseudohermitian

(2n + 1)-manifold of vanishing torsion as in section 5.
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2. BAsiCc NOTIONS IN PSEUDOHERMITIAN GEOMETRY

We first introduce some basic materials in a pseudohermitian (2n+ 1)-manifold. Let (M, J, 0)
be a (2n + 1)-dimensional, orientable, contact manifold with contact structure £ = kerf. A
CR structure compatible with ¢ is an endomorphism J : ¢ — £ such that J? = —1. We also
assume that J satisfies the following integrability condition: If X and Y are in &, then so is
[JX,Y]+[X,JY] and J([JX,Y]|+[X,JY]) = [JX,JY]—[X,Y]. A CR structure J can extend
to C®¢ and decomposes C®¢ into the direct sum of T and Tp; which are eigenspaces of J
with respect to eigenvalues i and —i, respectively. A manifold M with a CR structure is called
a CR manifold. A pseudohermitian structure compatible with £ is a C'R structure J compatible
with £ together with a choice of contact form #. Such a choice determines a unique real vector
field T transverse to £, which is called the characteristic vector field of 6, such that 6(T) = 1
and L7060 = 0 or dO(T,-) = 0. Let {T, ZBaZE} be a frame of TM ® C, where Z3 is any local
frame of T, ZB = Z_,B € Tp,1 and T is the characteristic vector field. Then {0, 08 , 93}, which
is the coframe dual to {T, Zg, Zg}, satisfies

2.1 do = ihg-0° N7,
( ) B

for some positive definite Hermitian matrix of functions (hgs). Actually we can always choose
Zg such that hgy = dg,; hence, throughout this note, we assume hgy = d3,.
The Levi form ( , ) is the Hermitian form on 77 defined by

(Z,W) =—i{(d0,Z NW).

We can extend ( , ) to Tj; by defining <7, W> = (Z, W) for all Z,W € T1o. The Levi form
induces naturally a Hermitian form on the dual bundle of 7} g, also denoted by ( , ), and hence
on all the induced tensor bundles. Integrating the Hermitian form (when acting on sections)
over M with respect to the volume form du = 6 A (d)™, we get an inner product on the space
of sections of each tensor bundle.

The pseudohermitian connection of (.J,#) is the connection V on TM ® C (and extended to

tensors) given in terms of a local frame Zz € T} o by

VZ3=05"®Z, ViZzg=05 ®Zy, VT =0,
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where 037 are the 1-forms uniquely determined by the following equations:
a0’ =" N0 +ONTE
(2.2) 0=r15N0"
0=04"+ 05"

We can write (by Cartan lemma) 75 = Ag,§” with Ag, = A,3. The curvature of the Tanaka-

Webster connection, expressed in terms of the coframe {6 = 6°, 0°, 93}, is
5" = H_Eﬁ =dbg" —05° NG,
My? = 11° = I,” = I13° = I1,° = 0.
Webster showed that 115" can be written
" = RgY 50" NO7 + W57 ,0° NO — W7 5,0 NO+ il ANT7 —iTs A O
where the coefficients satisfy
Remps = % = Iyp5p = Rimpas Wemp = Wirp.

We will denote components of covariant derivatives with indices preceded by comma; thus
write A,5.,. The indices {0, 3, 3} indicate derivatives with respect to {7, Z5, Zz}. For derivatives
of a scalar function, we will often omit the comma, for instance, ug = Zgu, u,5 = ZzZu —
0,°(Z3)Zyu, uo = Tu for a smooth function v .

For a real function u, the subgradient V, is defined by V,u € ¢ and (Z, Vyu) = du(Z) for
all vector fields Z tangent to contact plane. Locally Vyu = u’Z5 + UEZB. We can use the

connection to define the subhessian as the complex linear map
(VTu:Tiog®Tor — Tio®Tox by (VT)u(Z) = VzVu.
In particular,
IVoul? =23 supu’,  |Viul? =237, (ugyu” + ugsu™).
Also the sublaplacian is defined by

Ayu=Tr (V7)2u) = 3 5(us” + uEE).
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The pseudohermitian Ricci tensor and the torsion tensor on T o are defined by

Ric(X,Y) = R 3X"Y"?
Tor(X,Y) =i} 4(ApXTYP — A sX7YF),

5

where X = X7Z, Y =YFPZ;.

3. THE CR REILLY’S FORMULA

Let M be a compact pseudohermitian (2n + 1)-manifold with boundary ¥. We write 07/3 =
w,f —H‘ijﬁ with w_f = Re(@vﬂ), @75 = Im(@wﬁ) and Zz = $(eg — ie,1 ) for real vectors eg, €n13,
B =1,---,n. It follows that e, 5 = Jes. Let €’ = Re(6?), "t = Im(6°), 3 =1,--- ,n. Then
{6,eP,e"P} is dual to {T, eg, entp}. Now in view of (2.1) and (2.2), we have the following real

version of structure equations:

(d9:2266/\€n+6,
B

Ve, = wf ®eg + LDVB ® €niB, Veniy = wwﬂ ® enyg — d}f ® eg,

de’ = e’ A wg' — enth A @," mod 0; de"™ = &8 N@g" + el A wg” mod 0.

\
Let ¥ be a surface contained in M. The singular set Sy consists of those points where &

coincides with the tangent bundle T3 of X. It is easy to see that Sy is a closed set. On &, we

can associate a natural metric ( , ) = 2df(-,J-) call the Levi metric. For a vector v € &, we

define the length of v by |v|> = (v,v). With respect to the Levi metric, we can take unit vector

fields ey, ,e9,-1 € ENTY on X\ Sy, called the characteristic fields and es, = Je,, called the

Legendrian normal. The p(pseudohermitian)-mean curvature H,; on X\Sy is defined by

2n—1 2n—1
Hyp = 2321 <V€j€2n7 ej> - 2321 <v€jej’ e2n> :
For ey, - - ,e9,_1 being characteristic fields, we have the p-area element

dzp:9/\61/\€n+1/\.../\en_1/\e2n—1/\en

on ¥ and all surface integrals over ¥ are with respect to this 2n-form d3,. Note that d¥,
continuously extends over the singular set Sy, and vanishes on Sy.

We also write ¢, = e;o and Vyp = %(90%65 + goenwen%). Moreover, ¢, ., = eyejp —
Veejp and Ayp = 3 > 5(Peges T Pepspenss)- Next we define the subdivergence operator divy(-)
by divy(W) = W5 5 +W?P = for all vector fields W = W7 Zg + WBZE and its real version is
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divy(W) = @, + Ynyipe,,, ot W = pges + ¥, gent5. We define the tangential subgradient
V; of a function ¢ by Vip = Vo — (Vip, €an)cea, and the tangent sublaplacian Af of ¢ by

Al = %E?Zﬂ(q)%p — (Ve,e5)'¢], where (V,e;)" is the tangential part of V., e;.

We first recall the following CR Bochner formula.

Lemma 3.1. Let (M, J,0) be a pseudohermitian (2n + 1)-manifold. For a real function ¢, we

have

NIVl = | Viel? + Ve, ViAyp)

3.1
(31) +[2Ric — (n — 2)Tor]((Vep)c, (Vee)c) + 2(IVie, Vipy),

where (Vyp)c = ¢PZg is the corresponding complex (1,0)-vector field of V.

The proof of the above formula follows from the Bochner formula (Lemma 3 in [Gr]) derived

by A. Greenleaf and using the commutation relation (see Lemma 2.2 in [CC1])

i _5(PsP50 — P5Ps0) = 1 2_5(0pPe5 — P5P0s) — Tor((Vew)e, (Vop)c)-
From [CC1], we can relate (JVyp, Vi) with (Vip, ViApp) by
(3.2) (JVp, Vipo) = (Vo Vy) — 2Tor((Vep)c, (Vop)c) — 2(Pp + Pp, dyp).

For the proof of Reilly’s formula, we first need a series of formulae. In particular, one derives
the following CR version of divergence theorem and Green’s identity for a compact pseudoher-

mitian (2n + 1)-manifold M with boundary ¥. Note that d¥, vanishes on Sy.

Lemma 3.2. (Divergence Theorem) Let (M, J,0) be a compact pseudohermitian (2n + 1)-

manifold with boundary X. For a real function p, we have

(3.3) Jor Dopdp = [, divy(Vop)dp = 3C, [ ¢e, A8, = Cr [(Vip, €2,)dE,,

(3.4) Jar e000dp + [y 05dp = —Ch [ appody,,.

Here d¥, =0 ANet Ne" ™A~ Ae™ P Ae® L Nem is the p-area element of ¥ and C,, = 2"n!.
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Proof. By the Stoke’s theorem, we have
JuBvedie = 5 [ 305 Pepes + Pepspen )20 ALt AN AT A
= 2l [ S dl—p O AE AN AP AN A AT
—i—goenwﬁ/\el/\e”“/\~~-/\eﬁ/\6"/+\5/\---/\e”/\62”]
= 2" Inl [, 0N Ae"TEA - AeTE AT N e

Cn fE<VbQ0, €2n>d2p-

Here we used du = 0 A (dO)" = C,0 Aet Ae™™ Ao Ae™ Ae*™ and the fact that the 2n-

forms O A et Ae"TEA - AP Ae™P A Ae™ A e vanish on Sy for 3 =1,--- ,n and so are
ONe Ne" TN AP NertB A Net Ae? for B=1,--- ,n — 1, since e; are tangent along ¥

fory=1,---,2n—1.

The second equation follows easily from Stoke’s theorem as above

Jar o000l + [ e0dpn = Cn [y, d(opget Ae™ A= Ae™ Ae?™)
= C, [yopeet Ne"TEA Nt A e

and the help of the identity e*® A e” = af A e" on ¥\ Sx. O

Corollary 3.1. (Green’s identity) Let (M, J,0) be a compact pseudohermitian (2n+1)-manifold
with boundary . For real functions ¢ and 1,

(3.5) Ju Bvodp + [ (Vop, Vip)dpu = 5C, [ b, dS,.

Proof. Tt is easy to check that divy(¢¥Vyp) = VA + (Vye, Vipp) and then the result follows

from the CR version of divergence theorem. OJ

Lemma 3.3. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold with boundary X.

For any real smooth function ,

(3.6) LIV, Vepo)dp +n [, 05dp = 5Cy [ 0ope, d5y.

Proof. Since divy((JVyp) ¢) = (JVp, Vo) + ngi and by the divergence theorem (3.3), we
have
Sl Ve, Vigg)dpn + n [, pfdp
= Jar dive(JVep) o)dpn = Co [ (V) 0, €20)d%p = 5C0 [ potpe, d5p-
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Lemma 3.4. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold with boundary X.

For any real smooth function ,

(3.7) Ju(Pe + P, dyp)dn + § [ (Pop)pdp = 3iCy [ ¢ (P — Prp) d%,.
Proof. Tt can be easily checked that

divy, ((@Pﬁ 0)Zp + (sDPEsD)Z@ = (Pp + Py, dyp) + 2o Pop.
We then have by the divergence theorem (3.3)

Ju (P + Po,dyp)dp+ 1 [ (Pop)pdu
= Co [5((0PP0)Zs + (0PP ) Z5, €2,)d%, = 3iC, [5, 0 (Pap — Prp) d,.

O

Lemma 3.5. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold with boundary 3.

For real-valued functions ¢ on 3,

(3.8) [ (pe, +20¢) d5, = 0;
(3.9) Jsleg + (32,4057 (Z7) + 505" (en))pldS, = 0 for any B # n;
(3.10) Jsleo + ag.,, — (a@,"(en) — Re Azz)@]d%, = 0.

Proof. By the Stoke’s theorem, we have

10, [0 dSy = [op. 0N ()" Aem
= — [odpAOA )"+ [Lp., e AOA (D)
= — [od(@d A ()Y + [o pdf A (d6)"
= [ 2pe" A2 A(dO)" T = — [ 2000 A e A (dB)"
= —C, [; apd,,

where we used the identities 6 A (d6)"" A e = 0 on ¥ since e, is tangent along X, df =

23 5, €? AertPand € Ae" = af A e on ¥\ Sy.
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For the second equation, we compute

Js @0 A(dO)" T Nem = [ g0 AOT AT A (S »Qgej AG) A e
J
= JdoANONGT A (Y 11 " 0NN et = — [pdld AOP A ((dO)") A €]
= [0 AdO® A ((dO)" 2) Ae] — [ool0 AO% A ((d6)"2) A dem]
= [ool0A @O A0S +ONTE)A (z@:l Qeﬂ' A7) A e
Y

— Js3el0 A 07 A (0 s 6 NOT) A (34 057 (€0)67) N €]
_ _7 LN n—1 A pT
= fz( in 07 (Z5) = 505" (e n)) ©ONO” NO /\(ijlj;\ﬂef/\ej)/\e
= = Jy (0 057(Z5) + 3057(e2) ) 0 A (d0)" " e

where we used de” = (67 A 6," + 07 A 65™) = 1 Z#n "(e,)07 Ae™ mod 0, e* on X.

The same compute for the third equation yields

Js 000 A (dO)"H A e
= Jodp A(dO)"TT A e — [ g, e A A (dD)"
= fE de n—1 A e fg%p (de)n—l A de™ — fz 0490@%9 A (de)n—l Ae
= Jse(dd)" Aoy (en)62” A€ —Re Agal Ae"] = [y ap,, 0N (dO)" T Aen
= Jslla@,(en) — Re Ama)p — e, J0 A (d0)" " Aem.

0

Lemma 3.6. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold with boundary .

For real-valued functions ¢ and i on X, we have
(3.11) Js (A} + aey)dS, = [ o(A} + ae,)pdS,.

This Lemma implies that A} + e, is a self-adjoint operator with respect to the p-area element
dX, on Y.
The Proof of Theorem 1.1:

Proof. By integrating the CR version of Bochner formula (3.1), we have

3 S Dol ViplPdu = [, IViplPdu+ [ (Vip, Velop)dp
+ [, [2Ric — (n — 2)Tor]((Voe)c, (Vop)c)dp
+2 [, (IVep, Vo) dp.
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Note that
2 _ 1 2 1 2 2
Zﬁ,’y |90ﬁ7| = Zﬁ,y ‘9%7 - ;goaghgﬂ + (App)” + 1%0-

It follows from the CR Green’s identity (3.5) with ¢ = Ayp and (3.6), that

3 Jar Dol Vgl *dp
= 2 [ 2, l0sPdn+2 [, 30 5 l0ss — nps"hoyPdp
—3 [ 98di+ Cn [ 0oPe, %y + 3Cn [ (Asp)e,,, A5,
— 2L [ (Ave)?dp + [ [2Ric — (n — 2)Tor](Vig)e, (Vep)c)-

By combining (3.6), (3.2), (3.5) and (3.7), we have

(3.12)

nfyesdn = & [y (Qep)?dp — 5.C0 [ (Aup)ge,, d5,
(3.13) —o [y PPopdp + LiC,, [ @ (Pop — Pryp) dS,
+3C [ 0pe,d5, + 2 [, Tor (Vyp)e, (Vop)c) dp.

Also applying the divergence Theorem to the equation

(BP70)(Bayp) = (¢ Barp), T —2L(0Psyp),P +% Lo Py

with Bgsp = pgs — %gog"h/gﬁ, we obtain

Jut 25 1055 — 50" ha|*dp
(3.14) = 2 [ oPeedp — LG, [ @ (Pap — Prp) dS,
+3iCh [5,(#" B30 — ¢° Brpp)dS,,.
Here
i(¢° B3¢ — ¢ Basp)
= 1 gl Pens (Pesen T Perrpen) T ey (Pegenn = Py pen)]
+5%ern[(Penen T Pernen,) — 2004).
Substituting these into the right hand side of (3.12), we get

L[ A ViePdu
= 2fM Zﬁv ’(,057‘261/1 - n+1 fM (Avp) “du
(315) n+2 fM SOPO(PdM n+ZZC fE 90 Pﬁ@) dEp
+ fM [2Ric — (n+ 1)Tor]((Vyp)c, WW’) Jp 50 s @0, 0%
+%iC’n fz<90EBnBSO — ¢ Bagp)dZ, + 2n+30 Js(Bop)pe,, Ay,
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On the other hand, the divergence theorem (3.3) implies that

Jar Dol VoelPdp = 5Cn [ (IVoel).,, A2
= %Cn fE Z,B;én (@eﬁ(peﬁegn + (pen+@¢en+562n> dzp
+%Cn fz (Qoengoenezn + Pean S0€2ne2n) dzp

Substituting the commutation relations

(Peﬁe,L+.y = (pen+7637 (pen+56n+7 = (pen+—yen+ﬁ for all /8 % ’77

Penean, = Peanen + 2S007

and

2n—1
Zﬁyén 2(3053 + QOBB) + goenen = Zj:l gpejej = QAZSO + Hp-hgpeml

(3.16) o
(lpeznegn - 2Ab@ - Z]:l SOEJ'EJ'

into the above equation, also integrating by parts from (3.8) and (3.9) yields

Jar Dol Vo Pdp
= 500 [5 3 p40(PesPesmes T PenisPuyen, s ) 050
+3Cn [ ©er(Pegnen +200)05p + 5Cn [5 00, Peyrezn @S
= 300 [5[ 2008000,z + 5%, 1) + PenPenen] ATy
+Cr [ e, 00d%p + 5Cn [5 Pey Pesnesn @0
= _%Cn fz Pean [Zﬁ;ﬁn 2(¢g5 + ¥55) T Pepnenldp
(3.17) =300 [5[¢e, (Ve,ean)p + ey, (Ve,00)0ldS,
+C0 [5 ¢, [90 = e, 14, + 5C0 [ Pey Pennea, W0
+Ch [535[07°(Z5) 05 — 2057 (en) 000, S
+Cn [ 3 52nl0n” (Z3)0n — 305" (en) 5] 00, A5,
—Cy [ Z,g;en [Spﬁ(vzgezn)@ + ¢5(Vz,620) 0]dE,
= C, fg Peon (App — QAZQO) d¥, — %Cn fz Hp.hSogzndzp
-C, fg PoPe, A + %Cn fz Zfi}l <v€j €n;s ej> PenPesnd2p
+Ch [y 00, 00y, 050 — 3C0 [5 37421 (Vey€2n, €4) P, 00 A

Here we use

2 Z,B;én [GHB(ZB)SOH - %Qgﬁ(en)ipﬁ + Qnﬁ(Zﬁ)gon — %Qﬂn(en)gpﬁ]
- Z?Z;l <vej€n7 €]> ()OGn —l— (Venen)gp + Hp.hsoezn
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and

> pzn 2108(Vizzean) o + 05(Vzye2n) 0] + @, (Ve,€20)0 = S (Ve,ons €k) 9o, Pep

the fact that (3.16) holds only on ¥\Sy. However, d¥, can be continuously extends over the

singular set Sy, and vanishes on Sy. Finally, by combining the equations (3.15) and (3.17), we

can then obtain (1.3). This completes the proof of Theorem. O

4. THE CR FIRST NON-ZERO DIRICHLET EIGENVALUE ESTIMATE

In this section, we derive the first Dirichlet eigenvalue estimate in a compact pseudohermitian

(2n + 1)-manifold (M, J,0) with boundary X.

Lemma 4.1. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold with the smooth
boundary ¥ of pseudohermitian mean curvature Hy,j, for n > 2. For the first eigenfunction ¢ of

Dirichlet eigenvalue problem (1.9), we have

ng_;l fM ePypdp = fM Zﬁ,y |9067 - %%yahﬁﬁpdﬂ + %Cn fz(Hp-h + (D#(en))gﬁgndzp

which 1mplies

(4.1) Ja ePopdp >0

if Hyn + @, (e,) is nonnegative.

Proof. Since ¢ = 0 on ¥ and e; is tangent along ¥ for 1 < j < 2n — 1, then @, =0 for1 <j <
2n — 1 and Alp = %Z?Zl[(ejf ¢ — (Ve,e;)'¢] = 0 on X. Furthermore, since Ayp = A1 on M
and ¢ = 0 on X, then Ayp = 0 on X. It follows from (3.16) that
4iC,, fz(wanggo — ¢ Brgp)d,
= Cu J5 2 pinlPens(Pegen T Penipern) T Pey(Pegern = Pensgen) |50
+Cn [ Pesn[(Penen + Penenn) = 2Du0ldS,
= O [ Per {l(€a)” = (Ve, )0 + (2809 — 2AL0 — Hynpe,, ) 15,
= —C [g(Hpn +@,'(€n)) 07, dZ,.

Substituting the above equation into (3.14), we get

o JuePovdn = [, 375 195y — 5 henPdu + HCy [ o (Pap — Prp) d%,
—LiC, [4(¢° B, 50 — ¢° Brpp)d%,
= Ju Xsn 0ss = e hiPdp+ 500 [ (Hpn + 03 (en)) 22, 5.
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Now we are ready to prove Theorem 1.2.

The Proof of Theorem 1.2:
Proof. 1t follows the CR Reilly formula (1.3) that

(42) =5 [ (Awe)du > 222 [ o Popdp + [ [2Ric — (n+ D)Tor](Vip)c, (Vip)c)dp.

Since

¢ =0 and Ayp =0 on X,

(1.7) and (4.2) imply

2B [u(Bvp)?dp = 52, [y o*du+ [y [2Ric — (n+ 1) Tor|((Vep)c, (Vep)c)dp.

Moreover, by using

2Ric — (n + 1)Tor]((Vep)e, (Vop)c) > k|Viel?

and
S IVoplPdp = M [, odp,
we obtain
PET [y ©%dn > (BA+ 52 u0) [y, oPdp.
Hence
S — kA — B2l > 0
and thus

nk+ \/n2k2+(n+1) (n+2)u}3

AL 2 2(n+1)

(i) In case for n = 1, we have

k+./k2+6ul
N> —Y—_D

4 Y

for pu! > —%. In addition if Py, is nonnegative, we have

A1 >

NI

(ii) In case for n > 2, it follows from (4.1) and (4.2) that

BEAT — kA >0
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and then

5. THE FIRST EIGENVALUE ESTIMATE OF EMBEDDED P-MINIMAL HYPERSURFACES

In this section, we study a CR analogue of Yau conjecture [Y] on the first eigenvalue estimate

of embedded p-minimal hypersurfaces.

The Proof of Theorem 1.3:

Proof. Since M has vanishing torsion and positive pseudohermitian Ricci curvature, it follows
from [CC1] that M has positive Ricci curvature with respect to the Webster metric. Hence its
first homology group H'(M,R) is trivial. By an exact sequence argument, we conclude that 3
divides M into two connected components M; and My with OM; = X = 0M,. Let us denote D
to be one of two components to be chosen later. If u is the first nonconstant eigenfunction on

3, satisfying

Lou=—\u.
We first let ¢ be the solution of
Ayp=0o0n D
with the boundary condition
© =wu on X.

If D is a compact pseudohermitian (2n + 1)-manifold with the smooth boundary X, then P,
is self-adjoint on the space of all smooth functions with Ayp = 0 and (App)e,, = 0 on X. In
fact, it suffices to check that

Jpalifdu = — [5(Veg, Voo f) dpp + Cy [ g(Abf)es,d,
(5.1) = [ Aof Dogdp — Co [y, e Do f A5y + Cou [ (A4S )es, d
= JpDefDvgdn = [}, fALgdu

and for a =0

fD ngOdﬂ = _fD gOde,LL+ 2Cn fz agf()dzp
(5.2) = fD fagoodp — 2C, fz afgodE, +2C, fz ag fod%,
I fgoodys.
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It follows that if the pseudohermitian torsion is vanishing

(5.3) Jp pPopdp > 0.
By applying the CR Reilly formula (1.1), we have

0 > k[, |VeplPdu — 1Cn [5 0ope, d5, — H2C, [ ¢ (Pap — Pryp) d%,,
+2Ch [5(¢° B, — ¢° Bag)dS, + £Ch [ 0., AppdS,
+C [y Penn DbpdSy — 100 [ 37 (Veyen, €5) 0o e, 05
—I—%C’n fz AP P, ATy + %C’n fz 232711;11 <V€j€2n, ek> Pe; Pe, Ap.

(5.4)

Now we are going to estimate all terms in RHS of (5.4):

(i) By the CR divergence theorem and Ayp? = 20 Ay + 2|Viyp|? = 2|Vip|?, we have

Cn fz @e%Az@dzp
= _Cn fz agpen(pegndzp - )\lcn fz gOgOeQTLdEp
(55) = —C, fE OZQOEnQOGQHdEp - %Alon fg((pz)ezndzp

= -G, fz a‘:OenSOeQndEp -\ fD Ab(SOQ)dN
= _Cn fE OZ(,DenQOeQHde - 2)\1 fD |vb§0|2d:u

(ii) By the CR Green theorem

(5.6) Ch Js; ey Dopdy, = [5(Avp)?dp+ [, (VoApp, Vi) dp = 0.

(iii) The computation for a = 0, the p-area element d¥, is the area form d¥ on X,

2iC,, [5(0° B, — ©” Brgp)ds,
= 300 [5 Cern [(Penen T Pegnesn) = 2060 = D i ipon Peye, )%
500 J5 2 pin(Pesenss = Penspes) Pendp
= Co [ Pepn [ Dbp = D o Pese; 0% + (0 = 1)C, [ 0pe, dZp.

(iv) By straightforward computation, since Ag, =0

(5.7)

i (Pup = Pup) =i (03P — 05"x) = Hinoe, + (De)es, .
From (3.9), (5.7) and [5, o(App)e,,dE, = 0 that

—ZiCn fz SO(PnQO - Pﬁgp)dzp = _Cn fg Sp[ngo()en + (Abgp)ezn]dzp

(5.8)
= nC, fz gaogoende + 2nC, fz appdd,.

19
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By combining (5.4), (5.5), (5.6), (5.7) and (5.8) for a = 0,

0 > (k=2\) [ [VoplPdp — 1C0 [ 32500 (Ves€n,€5) @0, Pey, X
(59) +gCn fz @O(pendz - iCn fE Zj;én,Qn goejej (‘062nd2
+%Cn fE 232,712;11 <vej€2n7 ek> gpe]- gpekdz'

Next we observe that 7' is always tangent to ¥ due to « = 0. Then fz ©otp., dX is indepen-

dent of the extended function ¢. If we choose a different component of M\Y to perform this

. 2n—1 2n—1
computation, u.,Uo, Z#mgn Ueje; ey, 5 ijl <Vej€na €j> Ue, Ue,, and Zj,k:l <v5j€2n’ ek> Ue; Uey,

will differ by a sign, hence we may choose a component, say M, so that

2n fg %%ndz - fX} Zfi}l <Vej €2n, €j> Pen ('Dezndz

(5.10) v
- fE Zj;ﬁn,?n (pejej 9062nd2 + fE Zik:ll <v@j €2n; €k> 906]' cpekdz Z 0.

By combining (5.9) and (5.10) that we have

02> (k—2X\) [ [Vop|*du
with D = M. This implies
0>k—2)\
and thus

A1 >

[SIES

because ¢ has boundary value v which is nonconstant.

Now if the equality holds for n = 1., then
W =k.

Since A;; =0,
Q=0

and then (M, J, ) is a closed spherical pseudohermitian 3-manifold. On the other hand, it follows
from ([CHMY]) that any embedded p-minimal surface in a closed spherical pseudohermitian 3-
manifold must have genus less than two. In additional, if M is simply connected, then (M, J,0)

is the standard pseudohermitian 3-sphere. This completes the proof. ([l
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