
ON THE CR ANALOGUE OF REILLY FORMULA AND YAU
EIGENVALUE CONJECTURE

�SHU-CHENG CHANG1, �CHIH-WEI CHEN2, AND �CHIN-TUNG WU3

Abstract. In this paper, we derive the CR Reilly�s formula and its applications to studying of

the �rst eigenvalue estimate for CR Dirichlet eigenvalue problem and embedded p-minimal hy-

persurfaces. In particular, we obtain the �rst Dirichlet eigenvalue estimate in a compact pseudo-

hermitian (2n + 1)-manifold with boundary and the �rst eigenvalue estimate of the tangential

sublaplacian on closed oriented embedded p-minimal hypersurfaces in a closed pseudohermitian

(2n+ 1)-manifold of vanishing torsion.

1. Introduction

In the paper of [Re], by integral version of Bochner-type formula, R. Reilly proved so-called

Reilly formula which has numerous applications. For example, Reilly himself applied it to

prove a Lichnerowicz type sharp lower bound for the �rst eigenvalue of Laplacian on compact

Riemannian manifolds with boundary. In this paper, we will derive the CR version of Reilly�s

formula and give some applications. In particular, we obtain the �rst Dirichlet eigenvalue

estimate in a compact pseudohermitian (2n+1)-manifold with boundary and the �rst eigenvalue

estimate of the tangential sublaplacian on closed oriented embedded p-minimal hypersurfaces

in a closed pseudohermitian (2n+1)-manifold of vanishing torsion. Finally, we will indicate the

CR analogue of Yau conjecture ([Y]) and Lawson conjecture ([La]).

Let (M;J; �) be a pseudohermitian (2n + 1)-manifold (see next section for basic notions in

pseudohermitian geometry). The CR Reilly�s formula (1.3) is involved terms which has no

analogue in the Riemannian case. However, one can relate these extra terms to a third-order

operator P which characterizes CR-pluriharmonic functions ([L1]) and the fourth-order CR

Paneitz operator P0 ([GL]).
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De�nition 1.1. ([GL], [P]) Let (M;J; �) be a pseudohermitian (2n+ 1)-manifold. We de�ne

P' =
Pn


;�=1('



 � + inA�
'


)�� =
Pn

�=1(P�')�
�;

which is an operator that characterizes CR-pluriharmonic functions. Here

P�' =
Pn


=1('



 � + inA�
'


); � = 1; � � � ; n;

and P' =
Pn

�=1 P ��
�, the conjugate of P . The CR Paneitz operator P0 is de�ned by

(1.1) P0' = 4�b(P') + 4�b(P');

where �b is the divergence operator that takes (1; 0)-forms to functions by �b(���
�) = � �

� , and

similarly, �b(���
�) = � �

�
.

We observe that ([GL])

(1.2)

P0' = 2�b�b'� 4in(A�
'�);

= 2�b�b'+ 4in(A�
'�);

= 2(�2

b + n2T 2)'� 4nRe(iA�
'�);


for �b' = (@b@�b + @�b@b)' = (��b + inT )' = �2' �

�
.

By using integrating by parts to the CR Bochner formula (3.1), we derive the following CR

version of Reilly�s formula.

Theorem 1.1. Let (M;J; �) be a compact pseudohermitian (2n+1)-manifold with boundary �.

Then for any real smooth function ', we have

(1.3)

n+1
n

R
M
[(�b')

2 � 2n
n+1

P
�;
 j'�
j2]d�

= n+2
4n

R
M
'P0'd�+

R
M
[2Ric� (n+ 1)Tor]((rb')C; (rb')C)d�

�n+2
2n
iCn

R
�
' (Pn'� Pn') d�p +

i
2
Cn
R
�
('�Bn�'� '�Bn�')d�p

�1
4
Cn
R
�
'0'end�p +

3
4n
Cn
R
�
'e2n�b'd�p + Cn

R
�
'e2n�

t
b'd�p

+1
4
Cn
R
�
Hp:h'

2
e2n
d�p � 1

4
Cn
R
�

P2n�1
j=1



rejen; ej

�
'en'e2nd�p

+1
2
Cn
R
�
�'en'e2nd�p +

1
4
Cn
R
�

P2n�1
j;k=1



reje2n; ek

�
'ej'ekd�p:

Here P0 is the CR Paneitz operator on M; Cn := 2nn!; B�
' := '�
 � 1
n
'�

�h�
; �
t
b :=

1
2

P2n�1
j=1 [(ej)

2 � (rejej)
t] is the tangential sublaplacian of � and Hp:h is the p-mean curva-

ture of � with respect to the Legendrian normal e2n; �e2n + T 2 T� for some function � on

�nS�; the singular set S� consists of those points where the contact bundle � = ker � coincides
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with the tangent bundle T� of �: (rb')C = '�Z� is the corresponding complex (1; 0)-vector �eld

of rb' and d�p = � ^ e1 ^ en+1 ^ � � � ^ en�1 ^ e2n�1 ^ en is the p-area element on �:

If (M;J; �) is a compact pseudohermitian (2n+1)-manifold without boundary, one can check

easily that the fourth-order CR Paneitz P0 is self-adjoint. That is

(1.4)
R
M
gP0fd� =

R
M
fP0gd�

for all smooth functions f and g. However, if (M;J; �) is a compact pseudohermitian (2n+ 1)-

manifold with the smooth boundary �; it follows from (5.1) and (5.2) that (1.4) folds for all

smooth functions with the Dirichlet condition or the Neumann condition as in (1.5) and (1.6)

on �. In particular, it holds in the situation as in Theorem 1.2 and Theorem 1.3.

That is, one can have the following Dirichlet eigenvalue problem or Neumann eigenvalue

problem, respectively:

(1.5)

8>>><>>>:
P0' = �

D
' on M;

' = 0 on �;

�b' = 0 on �;

and

(1.6)

8>>><>>>:
P0� = �

N
� on M;

�b� = 0 on �;

(�b�)e2n = 0 on �:

Hence

(1.7)
R
M
'P0'd� � �1

D

R
M
'2d�

for the �rst Dirichlet eigenvalue �1
D
and all smooth functions with ' = 0 = �b' on �: Similarly

(1.8)
R
M
�P0�d� � �1

N

R
M
�2d�

for the �rst Neumann eigenvalue �1
N
and all smooth functions with �b� = 0 = (�b�)e2n on �.

In general, �1
D
and �1

N
are not always nonnegative.

De�nition 1.2. Let (M;J; �) be a compact pseudohermitian (2n+1)-manifold with the smooth

boundary �: We say that the CR Paneitz operator P0 with respect to (J; �) is nonnegative ifR
M
'P0'd� � 0
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for all smooth functions with suitable boundary conditions as in Dirichlet eigenvalue problem or

Neumann eigenvalue problem of P0.

Remark 1.1. Let (M;J; �) be a compact pseudohermitian (2n+1)-manifold of vanishing torsion

with the smooth boundary �. It follows from (1.2) that the Kohn Laplacian �b and � commute
and they are diagonalized simultaneously with

P0' = 2�b�b' = 2�b�b':

Then the corresponding CR Paneitz operator P0 is nonnegative ([CCC]). That is

�1
D
= 0 = �1

N
:

For the �rst consequence of CR Reilly formula, we can consider the following Dirichlet eigen-

value problem:

(1.9)

8<: �b' = ��1' on M;

' = 0 on �:

Then we have the following �rst Dirichlet eigenvalue estimate:

Theorem 1.2. Let (M;J; �) be a compact pseudohermitian (2n + 1)-manifold with the smooth

boundary �. If the pseudohermitian mean curvature Hp:h is nonnegative, Hp:h + ~!
n
n (en) is also

nonnegative and

[Ric� n+1
2
Tor](Z;Z) � k hZ;Zi

for all Z 2 T1;0 and a positive constant k, then
(i) For n � 2;

�1 � nk
n+1
;

(ii) For n = 1;

�1 �
k+
p
k2+6�1

D

4

with �1
D
� �k2

6
. In addition if P0 is nonnegative, in particular if the torsion is vanishing, then

�1 � k
2
:

Remark 1.2. It is known that the sharp �rst eigenvalue estimate is obtained as in [Gr], [LL],

[Ch], [CC2] and [FK] in a closed pseudohermitian (2n+ 1)-manifold.
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Next we can state the second consequence of the CR Reilly formula (1.3) which served as

a CR analogue of Yau conjecture ([Y]) on the �rst eigenvalue estimate of embedded oriented

minimal hypersurfaces. We refer to papers of Choi-Wang [CW] and Tang-Yan [TY] which are

related to Yau conjecture.

As before, fe1; e2; � � � ; en; en+1; � � � ; e2n�1; �e2n+ Tg is the base of T� for some function � on
�nS�. It follows from (3.11) that �t

b + �en is a self-adjoint operator with respect to the p-area

element d�p on �. Hence it is natural to consider the following CR analogue of eigenvalue prob-

lem on the embedded closed p-minimal (Hp:h = 0) hypersurface � in a closed pseudohermitian

(2n+ 1)-manifold (M;J; �):

(1.10) L�u = ��1u;

here

(1.11) L� := �
t
b + �en:

In this paper, we consider the particular case that fe1; e2; � � � ; en; en+1; � � � ; e2n�1; Tg are al-
ways tangent to � (� = 0) as following:

(1.12) L0 := �
t
b:

That is, we have the �rst eigenvalue estimate of L0 on embedded oriented hypersurfaces of

nonnegative pseudohermitian mean curvature:

Theorem 1.3. Let � be a compact embedded oriented p-minimal hypersurface with � = 0 in

a closed pseudohermitian (2n + 1)-manifold (M;J; �) of vanishing torsion. Suppose that the

pseudohermitian Ricci curvature of M is bounded from below by a positive constant k. Then

(i) The �rst non-zero eigenvalue �1 of L0 on � has a lower bound given by

�1 � k
2
:

(ii) In case of n = 1 if the equality holds, (M;J; �) must be a closed spherical pseudohermitian

3-manifold and � be a compact embedded oriented p-minimal surface of genus � 1: Moreover,

(M;J; �) is the the standard CR 3-sphere (S3; bJ;b�) if it is simply connected.
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Let (M;J; �) be a closed spherical pseudohermitian 3-manifold. Recall ([CC1]) that we call a

CR structure J spherical if Cartan curvature tensor Q11 vanishes identically. Here

Q11 =
1
6
W11 +

i
2
WA11 � A11;0 � 2i

3
A
11;

_
11
:

Note that (M;J; �) is called a spherical pseudohermitian 3-manifold if J is a spherical structure.

We observe that the spherical structure is CR invariant and a closed spherical pseudohermitian

3-manifold (M;J; �) is locally CR equivalent to the standard pseudohermitian 3-sphere (S3; bJ;b�):
Note that for an p-minimal Cli¤ord torus �0 = S1(

p
2
2
) � S1(

p
2
2
) � R2 � R2 in the standard

CR 3-sphere S3 (i.e. k = 2 and A11 = 0), T is always tangent to �0 (i.e. � = 0). Furthermore,

the coordinate function xi of �0 is the eigenfunction of the tangential sublaplacian �t
b with

�t
bxi = �xi; i = 1; :::4:

Then in view of Theorem 1.3, we have the following CR analogue of Yau conjecture on the

�rst eigenvalue estimate of embedded oriented p-minimal surfaces.

Conjecture 1.1. The �rst eigenvalue of L0 on any closed embedded p-minimal surface of genus

� 1 in the standard CR 3-sphere (S3; bJ;b�) is just 1.
Finally, we propose a CR analogue of Lawson conjecture ([La]):

Conjecture 1.2. Any closed embedded p-minimal torus (with � = 0) in the standard CR 3-

sphere S3 is the Cli¤ord torus.

If the Yau conjecture is true for the 2-torus, it was proved in [MR] that the Lawson conjecture

holds which is to say that the only minimally embedded torus in S3 is the Cli¤ord torus. However,

Lawson conjecture was solved by S. Brendle [B] recently.

We brie�y describe the methods used in our proofs. In section 3, by using integrating by

parts to the CR Bochner formula (3.1), we can derive the CR version of Reilly�s formula which

involving a third order operator P which characterizes CR-pluriharmonic functions and the

CR Paneitz operator P0: By applying the CR Reilly�s formula, we are able to obtain the �rst

Dirichlet eigenvalue estimate as in section 4 and derive the �rst non-zero eigenvalue estimate

of (1.10) on compact oriented embedded p-minimal hypersurfaces in a closed pseudohermitian

(2n+ 1)-manifold of vanishing torsion as in section 5.
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2. Basic Notions in Pseudohermitian Geometry

We �rst introduce some basic materials in a pseudohermitian (2n+1)-manifold. Let (M;J; �)

be a (2n + 1)-dimensional, orientable, contact manifold with contact structure � = ker �. A

CR structure compatible with � is an endomorphism J : � ! � such that J2 = �1. We also
assume that J satis�es the following integrability condition: If X and Y are in �, then so is

[JX; Y ]+ [X; JY ] and J([JX; Y ]+ [X; JY ]) = [JX; JY ]� [X;Y ]. A CR structure J can extend
to C
� and decomposes C
� into the direct sum of T1;0 and T0;1 which are eigenspaces of J

with respect to eigenvalues i and �i, respectively. A manifold M with a CR structure is called

a CR manifold. A pseudohermitian structure compatible with � is a CR structure J compatible

with � together with a choice of contact form �. Such a choice determines a unique real vector

�eld T transverse to �, which is called the characteristic vector �eld of �, such that �(T ) = 1

and LT � = 0 or d�(T; �) = 0. Let
�
T; Z�; Z�

	
be a frame of TM 
 C, where Z� is any local

frame of T1;0; Z� = Z� 2 T0;1 and T is the characteristic vector �eld. Then
n
�; ��; ��

o
, which

is the coframe dual to
�
T; Z�; Z�

	
, satis�es

(2.1) d� = ih�
�
� ^ �
;

for some positive de�nite Hermitian matrix of functions (h�
). Actually we can always choose

Z� such that h�
 = ��
; hence, throughout this note, we assume h�
 = ��
.

The Levi form h ; i is the Hermitian form on T1;0 de�ned by

hZ;W i = �i


d�; Z ^W

�
:

We can extend h ; i to T0;1 by de�ning


Z;W

�
= hZ;W i for all Z;W 2 T1;0. The Levi form

induces naturally a Hermitian form on the dual bundle of T1;0, also denoted by h ; i, and hence
on all the induced tensor bundles. Integrating the Hermitian form (when acting on sections)

over M with respect to the volume form d� = � ^ (d�)n, we get an inner product on the space
of sections of each tensor bundle.

The pseudohermitian connection of (J; �) is the connection r on TM 
 C (and extended to
tensors) given in terms of a local frame Z� 2 T1;0 by

rZ� = ��

 
 Z
; rZ� = ��


 
 Z
; rT = 0;
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where ��
 are the 1-forms uniquely determined by the following equations:

d�� = �
 ^ �
� + � ^ ��;

0 = �� ^ ��;

0 = ��

 + �


�;

(2.2)

We can write (by Cartan lemma) �� = A�
�

 with A�
 = A
�. The curvature of the Tanaka-

Webster connection, expressed in terms of the coframe f� = �0; ��; ��g, is

��

 = ���


 = d��

 � ��

� ^ ��
;

�0
� = ��

0 = �0
�� = ���

0 = �0
0 = 0:

Webster showed that ��
 can be written

��

 = R�



����

� ^ ��� +W�


��
� ^ � �W 


����
�� ^ � + i�� ^ � 
 � i�� ^ �


where the coe¢ cients satisfy

R�
��� = R
����� = R
���� = R�
���; W�
� = W�
�:

We will denote components of covariant derivatives with indices preceded by comma; thus

write A��;
. The indices f0; �; �g indicate derivatives with respect to fT; Z�; Z�g. For derivatives
of a scalar function, we will often omit the comma, for instance, u� = Z�u; u
�� = Z��Z
u �
�

�(Z��)Z�u; u0 = Tu for a smooth function u .

For a real function u, the subgradient rb is de�ned by rbu 2 � and hZ;rbui = du(Z) for

all vector �elds Z tangent to contact plane. Locally rbu = u�Z� + u�Z�. We can use the

connection to de�ne the subhessian as the complex linear map

(rH)2u : T1;0 � T0;1 ! T1;0 � T0;1 by (rH)2u(Z) = rZrbu:

In particular,

jrbuj2 = 2
P

� u�u
�; jr2

buj2 = 2
P

�;
(u�
u
�
 + u�
u

�
):

Also the sublaplacian is de�ned by

�bu = Tr
�
(rH)2u

�
=
P

�(u�
� + u�

�):
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The pseudohermitian Ricci tensor and the torsion tensor on T1;0 are de�ned by

Ric(X; Y ) = R
��X

Y

��

Tor(X; Y ) = i
P


;�(A
��X

Y

�� � A
�X

Y �);

where X = X
Z
; Y = Y �Z�.

3. The CR Reilly�s Formula

Let M be a compact pseudohermitian (2n + 1)-manifold with boundary �. We write � �

 =

! �

 + i~!

�

 with ! �


 = Re(� �

 ), ~!

�

 = Im(� �


 ) and Z� =
1
2
(e�� ien+�) for real vectors e�, en+�,

� = 1; � � � ; n. It follows that en+� = Je�. Let e� = Re(�
�), en+� = Im(��), � = 1; � � � ; n. Then

f�; e�; en+�g is dual to fT; e�; en+�g. Now in view of (2.1) and (2.2), we have the following real
version of structure equations:8>>>>><>>>>>:

d� = 2
P
�

e� ^ en+�;

re
 = ! �

 
 e� + ~!

�

 
 en+�; ren+
 = ! �


 
 en+� � ~! �

 
 e�;

de
 = e� ^ ! 

� � en+� ^ ~! 


� mod �; den+
 = e� ^ ~! 

� + en+� ^ ! 


� mod �:

Let � be a surface contained in M . The singular set S� consists of those points where �

coincides with the tangent bundle T� of �. It is easy to see that S� is a closed set. On �; we

can associate a natural metric h ; i = 1
2
d�(�; J �) call the Levi metric. For a vector v 2 �; we

de�ne the length of v by jvj2 = hv; vi: With respect to the Levi metric, we can take unit vector
�elds e1; � � � ; e2n�1 2 � \ T� on �nS�, called the characteristic �elds and e2n = Jen, called the

Legendrian normal. The p(pseudohermitian)-mean curvature Hp:h on �nS� is de�ned by

Hp:h =
P2n�1

j=1



reje2n; ej

�
= �

P2n�1
j=1



rejej; e2n

�
:

For e1; � � � ; e2n�1 being characteristic �elds, we have the p-area element

d�p = � ^ e1 ^ en+1 ^ � � � ^ en�1 ^ e2n�1 ^ en

on � and all surface integrals over � are with respect to this 2n-form d�p. Note that d�p

continuously extends over the singular set S� and vanishes on S�.

We also write 'ej = ej' and rb' = 1
2
('e�e� + 'en+�en+�). Moreover, 'ejek = ekej' �

rekej' and �b' =
1
2

P
�('e�e� + 'en+�en+�). Next we de�ne the subdivergence operator divb(�)

by divb(W ) = W �;� +W
�;� for all vector �elds W = W �Z� + W �Z� and its real version is
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divb(W ) = '�;e� +  n+�;en+� for W = '�e� +  n+�en+�. We de�ne the tangential subgradient

rt
b of a function ' by rt

b' = rb' � hrb'; e2niGe2n and the tangent sublaplacian �t
b of ' by

�t
b' =

1
2

P2n�1
j=1 [(ej)

2'� (rejej)
t']; where (rejej)

t is the tangential part of rejej.

We �rst recall the following CR Bochner formula.

Lemma 3.1. Let (M;J; �) be a pseudohermitian (2n + 1)-manifold. For a real function ', we

have

(3.1)
1
2
�bjrb'j2 = jr2

b'j2 + hrb';rb�b'i
+[2Ric� (n� 2)Tor]((rb')C; (rb')C) + 2hJrb';rb'0i;

where (rb')C = '�Z� is the corresponding complex (1; 0)-vector �eld of rb'.

The proof of the above formula follows from the Bochner formula (Lemma 3 in [Gr]) derived

by A. Greenleaf and using the commutation relation (see Lemma 2.2 in [CC1])

i
P

�('�'�0 � '�'�0) = i
P

�('�'0� � '�'0�)� Tor((rb')C; (rb')C):

From [CC1], we can relate hJrb';rb'0i with hrb';rb�b'i by

(3.2) hJrb';rb'0i = 1
n
hrb';rb�b'i � 2Tor((rb')C; (rb')C)� 2

n
hP'+ P'; db'i:

For the proof of Reilly�s formula, we �rst need a series of formulae. In particular, one derives

the following CR version of divergence theorem and Green�s identity for a compact pseudoher-

mitian (2n+ 1)-manifold M with boundary �. Note that d�p vanishes on S�.

Lemma 3.2. (Divergence Theorem) Let (M;J; �) be a compact pseudohermitian (2n + 1)-

manifold with boundary �: For a real function ', we have

(3.3)
R
M
�b'd� =

R
M
divb(rb')d� =

1
2
Cn
R
�
'e2nd�p = Cn

R
�
hrb'; e2nid�p;

(3.4)
R
M
''00d�+

R
M
'20d� = �Cn

R
�
�''0d�p:

Here d�p = � ^ e1 ^ en+1 ^ � � � ^ en�1 ^ e2n�1 ^ en is the p-area element of � and Cn = 2nn!.
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Proof. By the Stoke�s theorem, we haveR
M
�b'd� = 1

2

R
M

P
�('e�e� + 'en+�en+�)2

nn!� ^ e1 ^ en+1 ^ � � � ^ en ^ e2n

= 2n�1n!
R
M

P
� d[�'e�� ^ e

1 ^ en+1 ^ � � � ^ be� ^ en+� ^ � � � ^ en ^ e2n
+ 'en+�� ^ e

1 ^ en+1 ^ � � � ^ e� ^ den+� ^ � � � ^ en ^ e2n]
= 2n�1n!

R
�
'e2n� ^ e1 ^ en+1 ^ � � � ^ en�1 ^ e2n�1 ^ en

= Cn
R
�
hrb'; e2nid�p:

Here we used d� = � ^ (d�)n = Cn� ^ e1 ^ en+1 ^ � � � ^ en ^ e2n and the fact that the 2n-
forms � ^ e1 ^ en+1 ^ � � � ^ be� ^ en+� ^ � � � ^ en ^ e2n vanish on S� for � = 1; � � � ; n and so are
� ^ e1 ^ en+1 ^ � � � ^ e� ^ den+� ^ � � � ^ en ^ e2n for � = 1; � � � ; n� 1, since ej are tangent along �
for j = 1; � � � ; 2n� 1.
The second equation follows easily from Stoke�s theorem as aboveR

M
''00d�+

R
M
'20d� = Cn

R
M
d(''0e

1 ^ en+1 ^ � � � ^ en ^ e2n)
= Cn

R
�
''0e

1 ^ en+1 ^ � � � ^ en ^ e2n

and the help of the identity e2n ^ en = �� ^ en on �nS�: �

Corollary 3.1. (Green�s identity) Let (M;J; �) be a compact pseudohermitian (2n+1)-manifold

with boundary �: For real functions ' and  ,

(3.5)
R
M
 �b'd�+

R
M
hrb';rb id� = 1

2
Cn
R
�
 'e2nd�p:

Proof. It is easy to check that divb( rb') =  �b' + hrb';rb i and then the result follows
from the CR version of divergence theorem. �

Lemma 3.3. Let (M;J; �) be a compact pseudohermitian (2n + 1)-manifold with boundary �:

For any real smooth function ',

(3.6)
R
M
hJrb';rb'0id�+ n

R
M
'20d� =

1
2
Cn
R
�
'0'end�p:

Proof. Since divb((Jrb')'0) = hJrb';rb'0i + n'20 and by the divergence theorem (3.3), we

have R
M
hJrb';rb'0id�+ n

R
M
'20d�

=
R
M
divb((Jrb')'0)d� = Cn

R
�
h(Jrb')'0; e2nid�p = 1

2
Cn
R
�
'0'end�p:

�
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Lemma 3.4. Let (M;J; �) be a compact pseudohermitian (2n + 1)-manifold with boundary �:

For any real smooth function ',

(3.7)
R
M
hP'+ P'; db'id�+ 1

4

R
M
(P0')'d� =

1
2
iCn

R
�
' (Pn'� Pn') d�p:

Proof. It can be easily checked that

divb

�
('P �')Z� + ('P

�')Z�

�
= hP'+ P'; db'i+ 1

4
'P0':

We then have by the divergence theorem (3.3)

R
M
hP'+ P'; db'id�+ 1

4

R
M
(P0')'d�

= Cn
R
�
h('P �')Z� + ('P �')Z�; e2nid�p = 1

2
iCn

R
�
' (Pn'� Pn') d�p:

�

Lemma 3.5. Let (M;J; �) be a compact pseudohermitian (2n + 1)-manifold with boundary �.

For real-valued functions ' on �;

(3.8)
R
�

�
'en + 2�'

�
d�p = 0;

(3.9)
R
�
['� + (

P

 6=n �




�
(Z
) +

1
2
� n
�
(en))']d�p = 0 for any � 6= n;

(3.10)
R
�
['0 + �'e2n � (�~!

n
n (en)� ReAnn)']d�p = 0:

Proof. By the Stoke�s theorem, we have

1
2
Cn
R
�
'end�p =

R
�
'en� ^ (d�)

n�1 ^ en

= �
R
�
d' ^ � ^ (d�)n�1 +

R
�
'e2ne

2n ^ � ^ (d�)n�1

= �
R
�
d('� ^ (d�)n�1) +

R
�
'd� ^ (d�)n�1

=
R
�
2'en ^ e2n ^ (d�)n�1 = �

R
�
2�'� ^ en ^ (d�)n�1

= �Cn
R
�
�'d�p;

where we used the identities � ^ (d�)n�1 ^ e2n = 0 on � since en is tangent along �; d� =

2
Pn

�=1 e
� ^ en+� and e2n ^ en = �� ^ en on �nS�:
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For the second equation, we computeR
�
'�� ^ (d�)

n�1 ^ en =
R
�
'�� ^ �� ^ �� ^ (

Pn�1
j=1 ^

j 6=�
�j ^ �j) ^ en

=
R
�
d' ^ � ^ �� ^ (

Pn�1
j=1 ^

j 6=�
�j ^ �j) ^ en = �

R
�
'd[� ^ �� ^ ((d�)n�2) ^ en]

=
R
�
'[� ^ d�� ^ ((d�)n�2) ^ en]�

R
�
'[� ^ �� ^ ((d�)n�2) ^ den]

=
R
�
'[� ^ (�
 ^ �
� + � ^ ��) ^ (

Pn�1
j=1 ^

j 6=

�j ^ �j) ^ en]

�
R
�
1
2
'[� ^ �� ^ (

Pn�1
j=1 ^

j 6=�
�j ^ �j) ^ (

P

 6=n �


n(en)�

) ^ en]

=
R
�

�P

 6=n �


�(Z
)� 1
2
��
n(en)

�
'� ^ �� ^ �� ^ (

Pn�1
j=1 ^

j 6=�
�j ^ �j) ^ en

= �
R
�

�P

 6=n ��


(Z
) +
1
2
��
n(en)

�
'� ^ (d�)n�1 ^ en;

where we used den = 1
2
(�
 ^ �
n + �
 ^ �
n) = 1

2

P

 6=n �


n(en)�

 ^ en mod �; e2n on �:

The same compute for the third equation yieldsR
�
'0� ^ (d�)

n�1 ^ en

=
R
�
d' ^ (d�)n�1 ^ en �

R
�
'e2ne

2n ^ en ^ (d�)n�1

=
R
�
d(' (d�)n�1 ^ en)�

R
�
' (d�)n�1 ^ den �

R
�
�'e2n� ^ (d�)

n�1 ^ en

=
R
�
' (d�)n�1 ^ [~! n

n (en)e
2n ^ en � ReAnn� ^ en]�

R
�
�'e2n� ^ (d�)

n�1 ^ en

=
R
�
[(�~! n

n (en)� ReAnn)'� �'e2n ]� ^ (d�)
n�1 ^ en:

�

Lemma 3.6. Let (M;J; �) be a compact pseudohermitian (2n + 1)-manifold with boundary �.

For real-valued functions ' and  on �; we have

(3.11)
R
�
 (�t

b + �en)'d�p =
R
�
'(�t

b + �en) d�p:

This Lemma implies that �t
b+�en is a self-adjoint operator with respect to the p-area element

d�p on �:

The Proof of Theorem 1.1:

Proof. By integrating the CR version of Bochner formula (3.1), we have

1
2

R
M
�bjrb'j2d� =

R
M
jr2

b'j2d�+
R
M
hrb';rb�b'id�

+
R
M
[2Ric� (n� 2)Tor]((rb')C; (rb')C)d�

+2
R
M
hJrb';rb'0id�:
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Note that P
�;
 j'�
j2 =

P
�;
 j'�
 � 1

n
'�

�h�
j2 + 1
4n
(�b')

2 + n
4
'20:

It follows from the CR Green�s identity (3.5) with  = �b' and (3.6), that

(3.12)

1
2

R
M
�bjrb'j2d�

= 2
R
M

P
�;
 j'�
j2d�+ 2

R
M

P

;� j'�
 � 1

n
'�

�h�
j2d�
�3n

2

R
M
'20d�+ Cn

R
�
'0'end�p +

1
2
Cn
R
�
(�b')'e2nd�p

�2n�1
2n

R
M
(�b')

2d�+
R
M
[2Ric� (n� 2)Tor]((rb')C; (rb')C):

By combining (3.6), (3.2), (3.5) and (3.7), we have

(3.13)

n
R
M
'20d� = 1

n

R
M
(�b')

2d�� 1
2n
Cn
R
�
(�b')'e2nd�p

� 1
2n

R
M
'P0'd�+

1
n
iCn

R
�
' (Pn'� Pn') d�p

+1
2
Cn
R
�
'0'end�p + 2

R
M
Tor ((rb')C; (rb')C) d�:

Also applying the divergence Theorem to the equation

(B�
')(B�
') = ('
�B�
');


 �n�1
n
('P�');

� +n�1
8n
'P0'

with B�
' = '�
 � 1
n
'�

�h�
; we obtain

(3.14)

R
M

P
�;
 j'�
 � 1

n
'�

�h�
j2d�
= n�1

8n

R
M
'P0'd�� n�1

4n
iCn

R
�
' (Pn'� Pn') d�p

+1
4
iCn

R
�
('�Bn�'� '�Bn�')d�p:

Here

i('�Bn�'� '�Bn�')

= 1
4

P
� 6=n['en+�('e�en + 'en+�e2n) + 'e�('e�e2n � 'en+�en)]

+1
4
'e2n [('enen + 'e2ne2n)�

2
n
�b']:

Substituting these into the right hand side of (3.12), we get

(3.15)

1
2

R
M
�bjrb'j2d�

= 2
R
M

P
�;
 j'�
j2d�� n+1

n

R
M
(�b')

2d�

+n+2
4n

R
M
'P0'd�� n+2

2n
iCn

R
�
' (Pn'� Pn') d�p

+
R
M
[2Ric� (n+ 1)Tor]((rb')C; (rb')C)d�+

1
4
Cn
R
�
'0'end�p

+1
2
iCn

R
�
('�Bn�'� '�Bn�')d�p +

2n+3
4n

Cn
R
�
(�b')'e2nd�p:
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On the other hand, the divergence theorem (3.3) implies thatR
M
�bjrb'j2d� = 1

2
Cn
R
�
(jrb'j2)e2n d�p

= 1
2
Cn
R
�

P
� 6=n

�
'e�'e�e2n + 'en+�'en+�e2n

�
d�p

+1
2
Cn
R
�

�
'en'ene2n + 'e2n'e2ne2n

�
d�p:

Substituting the commutation relations

'e�en+
 = 'en+
e� ; 'en+�en+
 = 'en+
en+� for all � 6= 
;

'ene2n = 'e2nen + 2'0;

and

(3.16)

P
� 6=n 2('�� + '��) + 'enen =

P2n�1
j=1 'ejej = 2�

t
b'+Hp:h'e2n

'e2ne2n = 2�b'�
P2n�1

j=1 'ejej

into the above equation, also integrating by parts from (3.8) and (3.9) yields

(3.17)

R
M
�bjrb'j2d�

= 1
2
Cn
R
�

P
� 6=n('e�'e2ne� + 'en+�'e2nen+�

)d�p

+1
2
Cn
R
�
'en('e2nen + 2'0)d�p +

1
2
Cn
R
�
'e2n'e2ne2nd�p

= 1
2
Cn
R
�
[
P

� 6=n 2('�'e2nZ� + '�'e2nZ�

) + 'en'e2nen ]d�p

+Cn
R
�
'en'0d�p +

1
2
Cn
R
�
'e2n'e2ne2nd�p

= �1
2
Cn
R
�
'e2n [

P
� 6=n 2('�� + '��) + 'enen ]d�p

�1
2
Cn
R
�
['en(rene2n)'+ 'e2n(renen)']d�p

+Cn
R
�
'en ['0 � �'e2n ]d�p +

1
2
Cn
R
�
'e2n'e2ne2nd�p

+Cn
R
�

P
� 6=n[�n

�(Z�)'n � 1
2
��
n(en)'�]'e2nd�p

+Cn
R
�

P
� 6=n[�n

�(Z�)'n � 1
2
��
n(en)'�]'e2nd�p

�Cn
R
�

P
� 6=n['�(rZ�

e2n)'+ '�(rZ�e2n)']d�p

= Cn
R
�
'e2n (�b'� 2�t

b') d�p � 1
2
Cn
R
�
Hp:h'

2
e2n
d�p

�Cn
R
�
'0'end�p +

1
2
Cn
R
�

P2n�1
j=1



rejen; ej

�
'en'e2nd�p

+Cn
R
�
�'en'e2nd�p �

1
2
Cn
R
�

P2n�1
j;k=1



reje2n; ek

�
'ej'ekd�p:

Here we use

2
P

� 6=n[�n
�(Z�)'n � 1

2
��
n(en)'� + �n

�(Z�)'n � 1
2
��
n(en)'�]

=
P2n�1

j=1



rejen; ej

�
'en + (renen)'+Hp:h'e2n
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and P
� 6=n 2['�(rZ�

e2n)'+ '�(rZ�e2n)'] + 'en(rene2n)' =
P2n�1

j;k=1



reje2n; ek

�
'ej'ek ;

the fact that (3.16) holds only on �nS�: However, d�p can be continuously extends over the
singular set S� and vanishes on S�: Finally, by combining the equations (3.15) and (3.17), we

can then obtain (1.3). This completes the proof of Theorem. �

4. The CR First Non-Zero Dirichlet Eigenvalue Estimate

In this section, we derive the �rst Dirichlet eigenvalue estimate in a compact pseudohermitian

(2n+ 1)-manifold (M;J; �) with boundary �.

Lemma 4.1. Let (M;J; �) be a compact pseudohermitian (2n + 1)-manifold with the smooth

boundary � of pseudohermitian mean curvature Hp:h for n � 2. For the �rst eigenfunction ' of
Dirichlet eigenvalue problem (1.9), we have

n�1
8n

R
M
'P0'd� =

R
M

P
�;
 j'�
 � 1

n
'�

�h�
j2d�+ 1
16
Cn
R
�
(Hp:h + ~!

n
n (en))'

2
e2n
d�p

which implies

(4.1)
R
M
'P0'd� � 0

if Hp:h + ~!
n
n (en) is nonnegative.

Proof. Since ' = 0 on � and ej is tangent along � for 1 � j � 2n� 1, then 'ej = 0 for 1 � j �
2n� 1 and �t

b' =
1
2

P2n�1
j=1 [(ej)

2 '� (rejej)
t'] = 0 on �: Furthermore, since �b' = �1' on M

and ' = 0 on �; then �b' = 0 on �. It follows from (3.16) that

4iCn
R
�
('�Bn�'� '�Bn�')d�p

= Cn
R
�

P
� 6=n['en+�('e�en + 'en+�e2n) + 'e�('e�e2n � 'en+�en)]d�p

+Cn
R
�
'e2n [('enen + 'e2ne2n)�

2
n
�b']d�p

= Cn
R
�
'e2nf[(en)

2 � (ren
en)]'+ (2�b'� 2�t

b'�Hp:h'e2n)gd�p
= �Cn

R
�
(Hp:h + ~!

n
n (en))'

2
e2n
d�p:

Substituting the above equation into (3.14), we get

n�1
8n

R
M
'P0'd� =

R
M

P
�;
 j'�
 � 1

n
'�

�h�
j2d�+ n�1
4n
iCn

R
�
' (Pn'� Pn') d�p

�1
4
iCn

R
�
('�Bn�'� '�Bn�')d�p

=
R
M

P
�;
 j'�
 � 1

n
'�

�h�
j2d�+ 1
16
Cn
R
�
(Hp:h + ~!

n
n (en))'

2
e2n
d�p:
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�

Now we are ready to prove Theorem 1.2.

The Proof of Theorem 1.2:

Proof. It follows the CR Reilly formula (1.3) that

(4.2) n+1
n

R
M
(�b')

2d� � n+2
4n

R
M
'P0'd�+

R
M
[2Ric� (n+ 1)Tor]((rb')C; (rb')C)d�:

Since

' = 0 and �b' = 0 on �;

(1.7) and (4.2) imply

n+1
n

R
M
(�b')

2d� � n+2
4n
�1
D

R
M
'2d�+

R
M
[2Ric� (n+ 1)Tor]((rb')C; (rb')C)d�:

Moreover, by using

[2Ric� (n+ 1)Tor]((rb')C; (rb')C) � kjrb'j2

and R
M
jrb'j2d� = �1

R
M
'2d�;

we obtain

n+1
n
�21
R
M
'2d� � (k�1 + n+2

4n
�1
D
)
R
M
'2d�:

Hence

n+1
n
�21 � k�1 � n+2

4n
�1
D
� 0

and thus

�1 �
nk+
p
n2k2+(n+1)(n+2)�1

D

2(n+1)
:

(i) In case for n = 1; we have

�1 �
k+
p
k2+6�1

D

4
;

for �1
D
� �k2

6
. In addition if P0 is nonnegative, we have

�1 � k
2
:

(ii) In case for n � 2; it follows from (4.1) and (4.2) that

n+1
n
�21 � k�1 � 0
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and then

�1 � nk
n+1

:

�

5. The First Eigenvalue Estimate of Embedded P -minimal hypersurfaces

In this section, we study a CR analogue of Yau conjecture [Y] on the �rst eigenvalue estimate

of embedded p-minimal hypersurfaces.

The Proof of Theorem 1.3:

Proof. Since M has vanishing torsion and positive pseudohermitian Ricci curvature, it follows

from [CC1] that M has positive Ricci curvature with respect to the Webster metric. Hence its

�rst homology group H1(M;R) is trivial. By an exact sequence argument, we conclude that �

divides M into two connected components M1 and M2 with @M1 = � = @M2. Let us denote D

to be one of two components to be chosen later. If u is the �rst nonconstant eigenfunction on

�, satisfying

L�u = ��1u:

We �rst let ' be the solution of

�b' = 0 on D

with the boundary condition

' = u on �:

If D is a compact pseudohermitian (2n + 1)-manifold with the smooth boundary �; then P0

is self-adjoint on the space of all smooth functions with �b' = 0 and (�b')e2n = 0 on �. In

fact, it su¢ ces to check that

(5.1)

R
D
g�2

bfd� = �
R
D
hrbg;rb�bfi d�+ Cn

R
�
g(�bf)e2nd�p

=
R
D
�bf�bgd�� Cn

R
�
ge2n�bfd�p + Cn

R
�
g(�bf)e2nd�p

=
R
D
�bf�bgd� =

R
D
f�2

bgd�

and for � = 0

(5.2)

R
D
gf00d� = �

R
D
g0f0d�+ 2Cn

R
�
�gf0d�p

=
R
D
fg00d�� 2Cn

R
�
�fg0d�p + 2Cn

R
�
�gf0d�p

=
R
D
fg00d�:
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It follows that if the pseudohermitian torsion is vanishing

(5.3)
R
D
'P0'd� � 0:

By applying the CR Reilly formula (1.1), we have

(5.4)

0 � k
R
D
jrb'j2d�� 1

4
Cn
R
�
'0'end�p �

n+2
2n
iCn

R
�
' (Pn'� Pn') d�p

+ i
2
Cn
R
�
('�Bn�'� '�Bn�')d�p +

3
4n
Cn
R
�
'e2n�b'd�p

+Cn
R
�
'e2n�

t
b'd�p � 1

4
Cn
R
�

P2n�1
j=1



rejen; ej

�
'en'e2nd�p

+1
2
Cn
R
�
�'en'e2nd�p +

1
4
Cn
R
�

P2n�1
j;k=1



reje2n; ek

�
'ej'ekd�p:

Now we are going to estimate all terms in RHS of (5.4):

(i) By the CR divergence theorem and �b'
2 = 2'�b'+ 2jrb'j2 = 2jrb'j2; we have

(5.5)

Cn
R
�
'e2n�

t
b'd�p

= �Cn
R
�
�'en'e2nd�p � �1Cn

R
�
''e2nd�p

= �Cn
R
�
�'en'e2nd�p �

1
2
�1Cn

R
�
('2)e2nd�p

= �Cn
R
�
�'en'e2nd�p � �1

R
D
�b('

2)d�

= �Cn
R
�
�'en'e2nd�p � 2�1

R
D
jrb'j2d�:

(ii) By the CR Green theorem

(5.6) Cn
R
�
'e2n�b'd�p =

R
D
(�b')

2d�+
R
D
hrb�b';rb'i d� = 0:

(iii) The computation for � = 0; the p-area element d�p is the area form d� on �,

(5.7)

2iCn
R
�
('�Bn�'� '�Bn�')d�p

= 1
2
Cn
R
�
'e2n [('enen + 'e2ne2n)�

2
n
�b'�

P
j 6=n;2n 'ejej ]d�p

+1
2
Cn
R
�

P
� 6=n('e�en+� � 'en+�e�)'end�p

= Cn
R
�
'e2n [

n�1
n
�b'�

P
j 6=n;2n 'ejej ]d�p + (n� 1)Cn

R
�
'0'end�p:

(iv) By straightforward computation, since A�
 = 0

i (Pn'� Pn') = i
�
'�

�
n � '�

�
n

�
= 1

2
[n'0en + (�b')e2n ]:

From (3.9), (5.7) and
R
�
'(�b')e2nd�p = 0 that

(5.8)
�2iCn

R
�
'(Pn'� Pn')d�p = �Cn

R
�
'[n'0en + (�b')e2n ]d�p

= nCn
R
�
'0'end�p + 2nCn

R
�
�'0'd�p:
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By combining (5.4), (5.5), (5.6), (5.7) and (5.8) for � = 0;

(5.9)

0 � (k � 2�1)
R
D
jrb'j2d�� 1

4
Cn
R
�

P2n�1
j=1



reje2n; ej

�
'en'e2nd�

+n
2
Cn
R
�
'0'end��

1
4
Cn
R
�

P
j 6=n;2n 'ejej'e2nd�

+1
4
Cn
R
�

P2n�1
j;k=1



reje2n; ek

�
'ej'ekd�:

Next we observe that T is always tangent to � due to � = 0. Then
R
�
'0'end� is indepen-

dent of the extended function '. If we choose a di¤erent component of Mn� to perform this

computation, uenu0;
P

j 6=n;2n uejejue2n ;
P2n�1

j=1



rejen; ej

�
uenue2n and

P2n�1
j;k=1



reje2n; ek

�
uejuek

will di¤er by a sign, hence we may choose a component, say M1, so that

(5.10)
2n
R
�
'0'end��

R
�

P2n�1
j=1



reje2n; ej

�
'en'e2nd�

�
R
�

P
j 6=n;2n 'ejej'e2nd� +

R
�

P2n�1
j;k=1



reje2n; ek

�
'ej'ekd� � 0:

By combining (5.9) and (5.10) that we have

0 � (k � 2�1)
R
D
jrb'j2d�

with D =M1: This implies

0 � k � 2�1

and thus

�1 � k
2

because ' has boundary value u which is nonconstant.

Now if the equality holds for n = 1:, then

W = k:

Since A11 = 0,

Q11 = 0

and then (M;J; �) is a closed spherical pseudohermitian 3-manifold. On the other hand, it follows

from ([CHMY]) that any embedded p-minimal surface in a closed spherical pseudohermitian 3-

manifold must have genus less than two. In additional, if M is simply connected, then (M;J; �)

is the standard pseudohermitian 3-sphere. This completes the proof. �
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