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Abstract. In this paper, we �rst obtain the sub-Laplacian comparison theorem in a com-

plete noncompact pseudohermitian manifold of vanishing torsion (i.e. Sasakian manifold).

Secondly, we derive the sub-gradient estimate for positive pseudoharmonic functions in

a complete noncompact pseudohermitian manifold which satis�es the CR sub-Laplacian

comparison property. It is served as the CR analogue of Yau�s gradient estimate. As a

consequence, we have the natural CR analogue of Liouville-type theorems in a complete

noncompact Sasakian manifold of nonnegative pseudohermitian Ricci curvature tensors.

1. Introduction

In [Y1] and [CY], S.-Y. Cheng and S.-T. Yau derived a well known gradient estimate for

positive harmonic functions in a complete noncompact Riemannian manifold.

Proposition 1.1. ([Y1], [CY]) Let M be a complete noncompact Riemannian m-manifold

with Ricci curvature bounded from below by �K (K � 0): If u (x) is a positive harmonic

function on M; then there exists a positive constant C = C(m) such that

(1.1) jrf(x)j2 � C(
p
K +

1

R
)

on the ball B (R) with f(x) = lnu(x): As a consequence, the Liouville theorem holds for

complete noncompact Riemannian m-manifolds of nonnegative Ricci curvature.
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In this paper, by modifying the arguments of [Y1], [CY] and [CKL], we derive a sub-

gradient estimate for positive pseudoharmonic functions in a complete noncompact pseudo-

hermitian (2n + 1)-manifold (M;J; �) of vanishing pseudohermitian torsion (i.e. Sasakian

manifold) which is an odd dimensional counterpart of Kähler geometry. It is served as the

CR version of Yau�s gradient estimate. As a consequence, we prove that the CR analogue

of Liouville-type theorem holds for complete noncompact Sasakian manifolds of nonnegative

pseudohermitian Ricci curvature.

We �rst de�ne Ric and Tor on T1;0 by

(1.2) Ric(X; Y ) = R���X
�Y

��

and

(1.3) Tor(X; Y ) = i
P

�;�(A����X
��Y

�� � A��X�Y �):

Here X = X�Z� , Y = Y �Z� for a frame fT; Z�; Z��g of TM 
 C =T1;0 �T0;1 with Z� 2

T1;0 and Z�� = Z� 2 T0;1. R

��� is the pseudohermitian curvature tensor, R��� = R
���� is the

pseudohermitian Ricci curvature tensor and A�� is the torsion tensor. We refer to section

2 for more details about the notions of pseudohermitian geometry.

In Yau�s method for the proof of gradient estimates, one can estimate �(� (x) jrf(x)j2)

for a nonegative cut-o¤ function � (x) on B (2R) via Bochner formula and Laplacian com-

parison. At the end, one has gradient estimate (1.1) by applying the maximum principle to

� (x) jrf(x)j2:

However in order to derive the CR subgradient estimate, one of di¢ culties is to deal with

the following CR Bochner formula (Lemma 2.1) which involving a term hJrb'; rb'0i that

has no analogue in the Riemannian case.

�b jrb'j2 = 2
����rH

�2
'
���2 + 2 hrb'; rb�b'i

+ (4Ric� 2 (n� 2)Tor) ((rb')C ; (rb')C) + 4 hJrb'; rb'0i :
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Here
�
rH
�2
; �b, rb are the subhessian, sub-Laplacian and sub-gradient respectively. We

also denote '0 = T'. In order to overcome this di¢ culty, we introduce a real-valued function

F (x; t; R; b) : M � [0; 1] � (0; 1) � (0; 1) ! R by adding an extra term t� (x) f 20 (x)

to jrbf(x)j2 as following

F (x; t; R; b) = t
�
jrbf(x)j2 + bt� (x) f 20 (x)

�
on the Carnot-Carathéodory ball B (2R) with a constant b to be determined. In section 4,

we derive the CR subgradient estimate (1.11) and (1.7) by applying the maximum principle

to � (x)F (x; t) for each �xed t 2 (0; 1] if the CR sub-Laplacian comparison property ( 1.1)

holds on (M;J; �) which is the case when M is Sasakian (Theorem 1.2).

We recall that a piecewise smooth curve 
 : [0; 1]!M is said to be horizontal if 
0(t) 2 �

whenever 
0(t) exists. The length of 
 is then de�ned by

l(
) =

Z 1

0

h
0(t); 
0(t)i
1
2
L�
dt:

Here h ; iL� is the Levi form as in (2.2). The Carnot-Carathéodory distance between two

points p, q 2M is

dc(p; q) = inffl(
) j 
 2 Cp;qg

where Cp;q is the set of all horizontal curves joining p and q. We say M is complete if

it is complete as a metric space. We refer to [S] for some details. By Chow connectivity

theorem [Cho], there always exists a horizontal curve joining p and q, so the distance is �nite.

Furthermore, there is a minimizing geodesic joining p and q so that its length is equal to the

distance dc(p; q).

Firstly, by applying the Ricatti inequality for sub-Laplacian of Carnot-Caratheodory dis-

tance as in Lemma 3.1 and Theorem 3.2, we have the following Bishop-type sub-Laplacian

comparison property in a complete noncompact pseudohermitian (2n + 1)-manifold of van-

ishing pseudohermitian torsion tensors.
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Theorem 1.2. Let (M; J; �) be a complete noncompact pseudohermitian (2n+1)-manifold

of vanishing pseudohermitian torsion tensors with

Ric (Z; Z) � �k jZj2

for all Z 2 T1;0 and k is an nonnegative constant. Then

(i) n = 1

�br �
1

r
+
p
k:

(ii) n � 2

�br �
2n

r
+
p
2n
p
k:

in the sense of distributions.

In the case of nonvanishing torsion, we make the following assumption:

De�nition 1.1. Let (M; J; �) be a complete noncompact pseudohermitian (2n+1)-manifold

with

(1.4) (2Ric� (n� 2)Tor) (Z; Z) � �2k jZj2

for all Z 2 T1;0, and k is an nonnegative constant. We say that (M; J; �) satis�es the CR

sub-Laplacian comparison property if there exists a positive constant C0 = C0(k; n) such

that

(1.5) �br � C0(
1

r
+
p
k)

We now state the following general sub-gradient estimate for positive pseudoharmonic

functions u:

Theorem 1.3. Let (M; J; �) be a complete noncompact pseudohermitian (2n+1)-manifold

with

(2Ric� (n� 2)Tor) (Z; Z) � �2k jZj2
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for all Z 2 T1;0, and k � 0: Furthermore, we assume that (M; J; �) satis�es the CR sub-

Laplacian comparison property (1.5). If u (x) is a positive pseudoharmonic function (i.e.

�bu = 0) with

(1.6) [�b; T ]u = 0

on M . Then for each constant b > 0, there exists a positive constant C2 = C2(k) such that

(1.7)
jrbuj2

u2
+ b

u20
u2
<
(n+ 5 + 2bk)2

(5 + 2bk)

�
k +

2

b
+
C2
R

�
on the ball B (R) of a large enough radius R which depends only on b, k.

Remark 1.1. It is shown that (Lemma 2.3)

(1.8) [�b; T ]u = 4 Im[i
nX

�;�=1

(A����u�);� ]:

If (M; J; �) is a complete noncompact pseudohermitian (2n+1)-manifold of vanishing tor-

sion. Then

[�b; T ]u = 0:

It follows easily from the Theorem 1.2 and Theorem 1.3 that we have our main results on

the CR Yau�s gradient estimate (1.9) and Liouville-type theorem on a complete noncompact

Sasakian (2n+ 1)-manifold in this paper.

Theorem 1.4. Let (M; J; �) be a complete noncompact pseudohermitian (2n+1)-manifold

of vanishing pseudohermitian torsion and

Ric (Z; Z) � �k jZj2

for all Z 2 T1;0, and k � 0: Let u (x) be a positive pseudoharmonic function. Then for each

constant b > 0, there exists a positive constant C2 = C2(k) such that

(1.9)
jrbuj2

u2
+ b

u20
u2
<
(n+ 5 + 2bk)2

(5 + 2bk)

�
k +

2

b
+
C2
R

�
on the ball B (R) of a large enough radius R which depends only on b, k.
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As a consequence, let R !1 and then b!1 with k = 0 in (1.9);we have the following

CR Liouville-type theorem.

Corollary 1.5. Let (M; J; �) be a complete noncompact pseudohermitian (2n+1)-manifold

of nonnegative pseudohermitian Ricci curvature tensors and vanishing torsion. Then any

positive pseudoharmonic function is constant.

Corollary 1.6. There does not exist any positive nonconstant pseudoharmonic function in

a standard Heisenberg (2n+ 1)-manifold (Hn; J; �).

Remark 1.2. Koranyi and Stanton ([KS]) proved the Liouville theorem in (Hn; J; �) by a

di¤erent method.

In general if the positive pseudoharmonic function u does not satisfy the condition [�b; T ]u =

0, we have the following weak sub-gradient estimate.

Theorem 1.7. Let (M; J; �) be a complete noncompact pseudohermitian (2n+1)-manifold

with

(2Ric� (n� 2)Tor) (Z; Z) � �2k jZj2

and

(1.10) max fjA��j ; jA��;��jg � k1

for all Z 2 T1;0 and k � 0; k1 > 0: Furthermore, we assume that (M; J; �) satis�es the CR

sub-Laplacian comparison property. If u (x) is a positive pseudoharmonic function on M .

Then there exists a small constant b0 = b0(n; k; k1) > 0 and C3 = C4(k; k1; k2) such that

for any 0 < b � b0,

(1.11)
jrbuj2

u2
+ b

u20
u2
<
(n+ 5)2

5

�
k + n (1 + b) k1 +

2

b
+
C3
R

�
on the ball B (R) of a large enough radius R which depends only on b.
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Remark 1.3. By comparing the Yau�s gradient estimate (1.1), we need an extra assumption

(1.10) to obtain the CR subgradient estimate (1.11) due to the natural of sub-Laplacian in

pseudohermitian geometry. However, we do obtain an extra estimate on the derivative of

pseudoharmonic functions u(x) along the missing direction of characteristic vector �eld T .

We brie�y describe the methods used in our proofs. In section 2, we �rst introduce some

basic materials in a pseudohermitian (2n + 1)-manifold. Then we are able to get the CR

Bochner-type estimate and derive some key Lemmas. In section 3, we give a proof of sub-

Laplacian comparison theorem in a complete noncompact pseudohermitian (2n+1)-manifold

of vanishing pseudohermitian torsion tensors. In section 4, let (M; J; �) be a complete non-

compact pseudohermitian (2n+1)-manifold with the CR sub-Laplacian comparison property,

we obtain subgradient estimates for positive pseudoharmonic functions. As a consequence,

the natural analogue of Liouville-type theorem for the sub-Laplacian holds in a complete non-

compact pseudohermitian (2n+1)-manifold of nonnegative pseudohermitian Ricci curvature

tensor and vanishing torsion.

Acknowledgments. The �rst author would like to express his thanks to Prof. S.-

T. Yau for the inspiration, Prof. C.-S. Lin, director of Taida Institute for Mathematical

Sciences, NTU, for constant encouragement and supports, and Prof. J.-P. Wang for his

inspiration of sublaplacian comparison geometry. The work would be not possible without

their inspirations and supports. Part of the project was done during J. Tie�s visits to Taida

Institute for Mathematical Sciences.

2. CR Bochner-Type Estimate

In this section, we derive some key lemmas. In particular, we obtain the CR Bochner-type

estimate as in Lemma 2.2. We �rst introduce some basic materials in a pseudohermitian

(2n+ 1)-manifold (see [L1], [L2] for more details).
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Let (M; �) be a (2n+ 1)-dimensional, orientable, contact manifold with contact structure

�. A CR structure compatible with � is an endomorphism J : � ! � such that J2 = �1. We

also assume that J satis�es the following integrability condition: If X and Y are in �, then

so are [JX; Y ] + [X; JY ] and J([JX; Y ] + [X; JY ]) = [JX; JY ]� [X; Y ].

Let fT; Z�; Z��g be a frame of TM
C, where Z� is any local frame of T1;0; Z�� = Z� 2 T0;1

and T is the characteristic vector �eld. Then
�
�; ��; ���

	
, which is the coframe dual to

fT; Z�; Z��g, satis�es

(2.1) d� = ih���
� ^ ��

for some positive de�nite hermitian matrix of functions (h���). Actually we can always choose

Z� such that h��� = ���; hence, throughout this note, we assume h��� = ���.

The Levi form h ; iL� is the Hermitian form on T1;0 de�ned by

(2.2) hZ;W iL� = �i


d�; Z ^W

�
:

We can extend h ; iL� to T0;1 by de�ning


Z;W

�
L�
= hZ;W iL� for all Z;W 2 T1;0. The Levi

form induces naturally a Hermitian form on the dual bundle of T1;0, denoted by h ; iL�� , and

hence on all the induced tensor bundles. Integrating the Hermitian form (when acting on

sections) over M with respect to the volume form d� = � ^ (d�)n, we get an inner product

on the space of sections of each tensor bundle. We denote the inner product by the notation

h ; i. For example

hu; vi =
Z
M

uv d�;

for functions u and v.

The pseudohermitian connection of (J; �) is the connection r on TM 
C (and extended

to tensors) given in terms of a local frame Z� 2 T1;0 by

rZ� = ��� 
 Z�; rZ�� = ���
�� 
 Z��; rT = 0;

where ��� are the 1-forms uniquely determined by the following equations:



CR SUB-LAPLACIAN COMPARISON AND LIOUVILLE-TYPE THEOREM 9

d�� = �� ^ ��� + � ^ ��;

0 = �� ^ ��;

0 = ��
� + ���

��;

(2.3)

We can write (by Cartan lemma) �� = A�
�

 with A�
 = A
�. The curvature of Tanaka-

Webster connection, expressed in terms of the coframe f� = �0; ��; ���g, is

��
� = ���

�� = d!�
� � !�
 ^ !
�;

�0
� = ��

0 = �0
�� = ���

0 = �0
0 = 0:

Webster showed that ��� can be written

(2.4) ��
� = R�

�
����

� ^ ��� +W�
�
��
� ^ � �W�

����
�� ^ � + i�� ^ �� � i�� ^ ��

where the coe¢ cients satisfy

R������ = R������ = R������ = R������; W���
 = W
���:

We will denote components of covariant derivatives with indices preceded by a comma;

thus write A��;
. The indices f0; �; ��g indicate derivatives with respect to fT; Z�; Z��g. For

derivatives of a scalar function, we will often omit the comma, for instance, u� = Z�u; u��� =

Z��Z�u� !�
(Z��)Z
u:

For a real function u, the subgradient rb is de�ned by rbu 2 � and hZ;rbuiL� = du(Z)

for all vector �elds Z tangent to contact plane. Locally rbu =
P

� u��Z� + u�Z��. We can

use the connection to de�ne the subhessian as the complex linear map

(rH)2u : T1;0 � T0;1 ! T1;0 � T0;1

by

(rH)2u(Z) = rZrbu:

In particular,
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jrbuj2 = 2u�u�; jr2
buj2 = 2(u��u�� + u��u��):

Also

�bu = Tr
�
(rH)2u

�
=
P

�(u��� + u���):

Next we recall the following commutation relations ([L1]). Let ' be a scalar function and

� = ���
� be a (1; 0) form, then we have

(2.5)

'�� = '��;

'��� � '��� = ih��'0;

'0� � '�0 = A��'��;

��;0� � ��;�0 = ��;�
A
� � �
A��;�
;

��;0�� � ��;��0 = ��;
A�
�� + �
A�
��;�;

and

(2.6)

��;�
 � ��;
� = iA�
�� � iA���
;

��;���
 � ��;�
�� = ih��A�
���� � ih�
A������;

��;��
 � ��;�
� = ih�
��;0 +R�����
��:

Now we recall a lemma from A. Greenleaf ([Gr]) and also ([CC2]).

Lemma 2.1. For a real function ',

(2.7)
�b jrb'j2 = 2

����rH
�2
'
���2 + 2 hrb'; rb�b'i

+ (4Ric� 2 (n� 2)Tor) ((rb')C ; (rb')C) + 4 hJrb'; rb'0i ;

where (rb')C = '��Z� is the corresponding complex (1; 0)-vector of rb'.

Lemma 2.2. For a smooth real-valued function ' and any � > 0, we have

�b jrb'j2 � 4

 
nP

�;�=1

��'a���2 + nP
�;�=1;� 6=�

��'a����2
!
+ 1

n
(�b')

2 + n'20 + 2 hrb'; rb�b'i

+
�
4Ric� 2 (n� 2)Tor � 4

�

�
((rb')C ; (rb')C)� 2� jrb'0j

2 :
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Proof. Since

j(rH)2'j2 = 2
Pn

�;�=1('��'�� + '��'��)

= 2
Pn

�;�=1(j'��j2 + j'��j2)

= 2(
Pn

�;�=1 j'��j2 +
Pn

�;�=1
� 6=�

j'��j2 +
Pn

�=1 j'��j2)

and from the commutation relation (2.5)Pn
�=1 j'��j2 = 1

4

Pn
�=1 (j'�� + '��j2 + '20)

= 1
4

Pn
�=1 j'�� + '��j2 + n

4
'20:

It follows that

j(rH)2'j2 = 2(
Pn

�;�=1 j'��j2 +
Pn

�;�=1
� 6=�

j'��j2) + 1
2

Pn
�=1 j'�� + '��j2 + n

2
'20

� 2(
Pn

�;�=1 j'��j2 +
Pn

�;�=1
� 6=�

j'��j2) + 1
2n
(�b')

2 + n
2
'20:

On the other hand, for all � > 0

4 hJrb'; rb'0i � �4 jrb'j jrb'0j

� � 2
�
jrb'j2 � 2� jrb'0j

2 :

Then the result follows easily from Lemma 2.1. �

De�nition 2.1. ([GL]) Let (M;J; �) be a pseudohermitian (2n+ 1)-manifold. We de�ne

the purely holomorphic second-order operator Q by

Q' = 2i
nX

�;�=1

(A����'�);� :

By apply the commutation relations (2.5), one obtains

Lemma 2.3. ([GL], [CKL]) Let ' (x) be a smooth function de�ned on M . Then

�b'0 = (�b')0 + 2

nX
�;�=1

��
A��'��

�
��
+
�
A����'�

�
�

�
:

That is

2 ImQ' = [�b; T ]':
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Proof. By direct computation and the commutation relation (2.5), we have

�b'0 = '0�� + '0��

=
�
'�0 + A��'�

�
�
+ conjugate

= '�0� +
�
A��'�

�
�
+ conjugate

= '��0 + '��0 + 2
h�
A��'�

�
�
+
�
A����'�

�
�

i
= (�b')0 + 2

h�
A��'�

�
�
+
�
A����'�

�
�

i
:

This completes the proof. �

Let u be a positive pseudoharmonic function and f (x) = lnu (x) : Then

�bf = � jrbf j2 :

We �rst de�ne

V (') =
nX

�;�=1

��
A��'��

�
��
+
�
A����'�

�
�
+ A��'��'�� + A����'�'�

�
:

Lemma 2.4. Let u be a positive pseudoharmonic function with f = lnu. Then

�bf0 = �2 hrbf; rbf0i+ 2V (f) :

Proof. From Lemma 2.3

�bf0 = (�bf)0 + 2
nX

�;�=1

��
A��'��

�
��
+
�
A����'�

�
�

�
:

Since

�bf = � jrbf j2 ;

it follows from the commutation relation (2.5) that

�bf0 = (�bf)0 + 2
nP

�;�=1

��
A��f��

�
��
+
�
A����f�

�
�

�
=

�
� jrbf j2

�
0
+ 2

nP
�;�=1

��
A��f��

�
��
+
�
A����f�

�
�

�
= �2 hrbf0; rbfi+ 2

nP
�;�=1

��
A��f��

�
��
+
�
A����f�

�
�
+ A��f��f�� + A����f�f�

�
:

�
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Lemma 2.5. Let (M;J; �) be a pseudohermitian (2n+ 1)-manifold and u be a positive func-

tion with f = lnu: Suppose that

2 ImQu = [�b; T ]u = 0:

Then

(2.8) V (f) = 0:

Proof. We compute

(2.9)

V (f) =
nP

�;�=1

��
A��f��

�
��
+
�
A����f�

�
�
+ A��f��f�� + A����f�f�

�
=

nP
�;�=1

�
A��f���� + A��;��f�� + A����f�� + A����;�f� + A��f��f�� + A����f�f�

�
=

nP
�;�=1

�
A����

�u��
u
� u�u�

u2

�
+ A��

�u����
u
� u��u��

u2

�
+A����;�

u�
u
+ A��;��

u��
u
+ A����

u�u�
u2

+ A��
u��u��
u2

	
=

nP
�;�=1

1
u

��
A��u��

�
��
+
�
A����u�

�
�

�
= 1

2u
[�b; T ]u:

This completes the proof. �

3. CR Sub-Laplacian Comparison Theorem

In this section, we give the proof of sub-Laplacian comparison theorems in a complete

noncompact pseudohermitian (2n+1)-manifold of vanishing pseudohermitian torsion tensors.

In order to prove Theorem 1.2, we �rst derive the Ricatti inequality for sub-Laplacian of

Carnot-Carathéodory distance. We refer to [CHL, Corollary 3.1.] for some of computations.

Lemma 3.1. Let (M;J; �) be a complete noncompact pseudohermitian (2n+1)-manifold of

vanishing pseudohermitian torsion with

R��� � k2h���

for some constant k2. Then, for any x 2M where r(x) is smooth, we have
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(i) For n = 1;

@r(�br) + (�br)
2 + k2 � 0:

(ii) For n � 2;

@r(�br) + 2
�n(�br)

2 + k2 � 0:

Proof. We choose
n
ej; eej; T

o
j2In

to be an orthonormal frame at q where eej = Jej and

e1 = rbr. Since the pseudohermitian torsion is vanishing, by a result in [DZ, Corollary 2.3],

we could parallel transport such frame at q to obtain the orthonormal frame along the radial

r-geodesic 
 from p to q. Then there is an orthonormal frame fZj; Zj; Tgj2In along 
 with

Zj =
1p
2

�
ej � ieej

�
:

By the fact that 
 is the r-geodesic, one can compute the following in Z1-direction as

r11 = �1
2
(ie2e1 + e2e2) r � (rZ1Z1) r

= �1
2
(ie2e1 + e2e2) r +

1
2

�
ir(Jrbr)rbr + J

�
r(Jrbr)rbr

��
and

r11 = 1
2
(ie2e1 + e2e2) r �

�
rZ1

Z1
�
r

= 1
2
(ie2e1 + e2e2) r � 1

2

�
ir(Jrbr)rbr + J

�
r(Jrbr)rbr

��
:

Therefore along 


(3.1) r11 = �r11:

Moreover, by computing

r1 = Z1r

= 1p
2
(rbr � iJrbr) r

= 1p
2

�
jrbrj2 � i hrbr; Jrbri

�
= 1p

2
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and

r11 = Z1Z1r � �111r1

= Z1Z1r � g� ([Z1; Z1] ; Z1) r1

= Z1Z1r � 1p
2
g� ([Z1; Z1] ; Z1) ;

we derive that r11 is real by the commutation formula. Therefore, we have

(3.2) r0 = 0

along the r-geodesic 
.

Now at the point q, by the facts that r1 = 1p
2
and r11 is real, the equalities (3.1), (3.2)

and the commutation formulas (2.5), (2.6), we have the following computation as well.

(3.3)

0 = 1
2

�
jrbrj2

�
11

=
P
�

�
jr�1j2 + jr�1j

2 + r�11r� + r�11r�
�

� jr11j2 + jr11j
2 + r111r1 + r111r1

= 2r2
11
+
�
r111 + ir10 +R

1
111
r1
�
r1 + (r11 � ir0)1 r1

= 2r2
11
+ hrbr11;rbriL� +

1
2
R1111

� 2r2
11
+ (rbr) r11 +

1
2
R1111

= 2r2
11
+ (rr) r11 + 1

2
R1111

= 2r2
11
+

@r11
@r
+ 1

2
R1111:

(i) For n = 1 : Since

�br = r11 + r11 = 2r11;

it follows from (3.3) that

@r(�br) + (�br)
2 +R11 � 0

and then

@r(�br) + (�br)
2 + k2 � 0

as well.
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(ii) For n � 2 : The similar computation as before, for any j 6= 1,

(3.4)

0 = 1
2

�
jrbrj2

�
jj

=
P
�

�
jr�jj2 +

��r�j��2 + r�jjr� + r�jjr��
�

��rjj��2 + r1jjr1 + r1jjr1
= r2

jj
+
�
r1jj + ir10 +R

1
1jj
r1

�
r1 + r1jjr1

� r2
jj
+


rbrjj;rbr

�
L�
+ 1

2
R11jj

= r2
jj
+ (rbr) rjj +

1
2
R11jj

= r2
jj
+ @

@r
rjj +

1
2
R11jj:

It follows from the inequalities (3.3) and (3.4) that

(3.5)

0 �
�
2r2
11
+

@r11
@r
+ 1

2
R1111

�
+
P
j 6=1

�
r2
jj
+ @

@r
rjj +

1
2
R11jj

�
� 21�n

 
nX
j=1

rjj

!2
+ @

@r

nX
j=1

rjj +
1
2
R11:

Hence

@r(�br) + 2
�n(�br)

2 +R11 � 0

and then

@r(�br) + 2
�n(�br)

2 + k2 � 0

as well. �

Now Theorem 3.2 will follows from the Lemma 3.1 easily ([Li], [W]).

Theorem 3.2. Let (M;J; �) be a complete pseudohermitian (2n+ 1)-manifold of vanishing

pseudohermitian torsion with

R��� � k2h���

for some constant k2. Then, for any x 2M where r(x) is smooth, we have
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(i) n = 1

(3.6) �br �

8>>><>>>:
p
k2 cot(

p
k2r); k2 > 0;

1
r
; k2 = 0;p
jk2j coth(

p
jk2jr); k2 < 0:

(ii) n � 2 :

(3.7) �br �

8>>><>>>:
p
2nk2 cot(

p
2�nk2); k2 > 0;

2n

r
; k2 = 0;p
2njk2j coth(

p
2�njk2jr); k2 < 0:

Moreover, it holds on the whole manifold in the sense of distribution.

4. CR Analogue of Yau�s Gradient Estimate

In this section, we will prove main Theorem 1.7 and Theorem 1.3. We �rst recall a

real-valued function

F (x; t; R; b) :M � [0; 1]� (0; 1)� (0; 1)! R

de�ned by

(4.1) F (x; t; R; b) = t
�
jrbf j2 (x) + bt� (x) f 20 (x)

�
;

where � (x) :M ! [0; 1] is a smooth cut-o¤ function de�ned by

� (x) = � (r (x)) =

8<: 1; x 2 B (R)

0; x 2MnB (2R)

such that

(4.2) �C
R
�
1
2 � �0 � 0

and

(4.3)
����00��� � C

R2
;
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where we denote @
@r
� by �

0
and r(x) is the Carnot-Carathéodory distance to a �xed point x0:

In the following calculation, the universal constant C might be changed from lines to lines.

Proposition 4.1. Let (M; J; �) be a complete noncompact pseudohermitian (2n+ 1)-manifold

with

(4.4) (2Ric� (n� 2)Tor) (Z; Z) � �2k jZj2

for all Z 2 T1;0, where k is an nonnegative constant. Suppose that (M; J; �) satis�es the

CR sub-Laplacian comparison property. Then

�bF � �2 hrbf; rbF i+ t
"
4
nP

�;�=1

jfa�j2 + 4
nP

�;�=1;� 6=�

��fa����2 + 1
n
(�bf)

2

+
�
n� bCt

R

�
f 20 �

�
2k + 4

bt�

�
jrbf j2 � bCt

R
� jrbf j2 f 20 + 4bt�f0V (f)

i
:

Proof. By CR sub-Laplacian comparison property,

�b� = �
00
+ �

0
�br

� � C
R2
� C

R

�
C1
R
+ C2

�
� �C

R
:

First we compute

(4.5)

�b (bt�f
2
0 ) = bt (f 20�b� + ��bf

2
0 + 2 hrb�; rbf

2
0 i)

� bt
�
�C
R
f 20 + 2�f0�bf0 + 2� jrbf0j2 + 4f0 hrb�; rbf0i

�
� bt

�
�C
R
f 20 + 2�f0�bf0 + 2� jrbf0j2 � 4 jf0j jrb�j jrbf0j

�
� bt[�C

R
f 20 + 2�f0�bf0 +

�
2� � 2 � 1

2
�
�
jrbf0j2 � 2 � 2��1 jrb�j2 f 20 ]

� bt[�C
R
f 20 + 2�f0�bf0 +

�
2� � 2 � 1

2
�
�
jrbf0j2];

where we use the Young�s inequality and the inequality (4.2) which implies that

��1 jrb�j2 �
C

R2
:
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Second, it follows from assumption (4.4), Lemma 2.2 and (4.5) that

�bF = t
�
�b jrbf j2 +�b (bt�f

2
0 )
�

� t

 
4
nP

�;�=1

jfa�j2 + 4
nP

�;�=1;� 6=�

��fa����2 + 1
n
(�bf)

2 + nf 20 + 2 hrbf; rb�bfi

�2
�
k + 1

�

�
jrbf j2 � 2� jrbf0j2 � bCt

R
f 20 + 2bt�f0�bf0 + 2 � bt2 � jrbf0j2

�
� t

"
4
nP

�;�=1

jfa�j2 + 4
nP

�;�=1;� 6=�

��fa����2 + 1
n
(�bf)

2 +
�
n� bCt

R

�
f 20 + 2 hrbf; rb�bfi

�2
�
k + 1

�

�
jrbf j2 + 2

�
bt
2
� � �

�
jrbf0j2 + 2bt�f0�bf0

�
:

Then taking � = bt�
2
,

(4.6)
�bF � t

"
4
nP

�;�=1

jfa�j2 + 4
nP

�;�=1;� 6=�

��fa����2 + 1
n
(�bf)

2 +
�
n� bCt

R

�
f 20

�2
�
k + 2

bt�

�
jrbf j2 + 2 hrbf; rb�bfi+ 2bt�f0�bf0

i
:

Finally, by Lemma 2.4

2 hrbf; rb�bfi+ 2bt�f0�bf0

= 2


rbf; rb

�
� jrbf j2

��
+ 2bt�f0 [�2 hrbf; rbf0i+ 2V (f)]

= �2


rbf; rb

�
F
t
� bt�f 20

��
� 4bt�f0 hrbf; rbf0i+ 4bt�f0V (f)

= �2
t
hrbf; rbF i+ 2bt hrbf; rb (�f

2
0 )i � 4bt�f0 hrbf; rbf0i+ 4bt�f0V (f)

= �2
t
hrbf; rbF i+ 2btf 20 hrbf; rb�i+ 4bt�f0V (f)

Now by Young�s inequality, we have

(4.7)

2 hrbf; rb�bfi+ 2bt�f0�bf0

= �2
t
hrbf; rbF i+ 2btf 20 hrbf; rb�i+ 4bt�f0V (f)

� �2
t
hrbf; rF i � 2btf 20 jrbf j jrb�j+ 4bt�f0V (f)

� �2
t
hrbf; rF i � 2Cbt

R
f 20 jrbf j �

1
2 + 4bt�f0V (f)

� �2
t
hrbf; rF i � Cbt

R
f 20 � Cbt

R
�f 20 jrbf j2 + 4bt�f0V (f) :
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Substituting (4.7) into (4.6),

�bF � �2 hrbf; rF i+ t
"
4
nP

�;�=1

jfa�j2 + 4
nP

�;�=1;� 6=�

��fa����2 + 1
n
(�bf)

2

+
�
n� bCt

R

�
f 20 � 2

�
k + 2

bt�

�
jrbf j2 � Cbt

R
�f 20 jrbf j2 + 4bt�f0V (f)

i
:

�

Proposition 4.2. Let (M; J; �) be a complete noncompact pseudohermitian (2n+ 1)-

manifold with

(2Ric� (n� 2)Tor) (Z; Z) � �2k jZj2

for all Z 2 T1;0, where k is an nonnegative constant. Suppose that (M; J; �) satis�es the

CR sub-Laplacian comparison property. Then for all a 6= 0

(4.8)

t��b (�F ) � 1
na2
(�F )2 � C

R
(�F ) + 2t� hrb�; rbF i � 2t�2 hrbf; rbF i

+4t2�2

 
nP

�;�=1

jfa�j2 +
nP

�;�=1;� 6=�

��fa����2
!

+
�
n� bC

R
�
�
2b
na2
+ bC

R

�
(�F )

�
t2�2f 20

+
h
�2(1+a)

na2
(�F )� 2k � 4

b

i
t� jrbf j2 + 4bt3�3f0V (f) :

Proof. By using Proposition 4.1, we �rst compute

�b (�F ) = (�b�)F + 2 hrb�; rbF i+ ��bF

� �C
R
F + 2 hrb�; rbF i � 2� hrbf; rF i

+t�

"
4

 
nP

�;�=1

jfa�j2 +
nP

�;�=1;� 6=�

��fa����2
!
+ 1

n
(�bf)

2 +
�
n� bCt

R

�
f 20

�2
�
k + 2

bt�

�
jrbf j2 � Cbt

R
�f 20 jrbf j2 + 4bt�f0V (f)

i
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and for each a 6= 0

(�bf)
2 =

�
� jrbf j2

�2
=

�
1
at
F � 1

a
jrbf j2 � 1

a
bt�f 20 � jrbf j2

�2
=

�
1
at
F � a+1

a
jrbf j2 � 1

a
bt�f 20

�2
= 1

a2t2
F 2 +

�
a+1
a

�2 jrbf j4 + 1
a2
b2t2�2f 40

�2(a+1)
a2t

F jrbf j2 � 2b
a2
�Ff 20 +

2(a+1)bt
a2

� jrbf j2 f 20
� 1

a2t2
F 2 � 2(a+1)

a2t
F jrbf j2 � 2b

a2
�Ff 20 :

Then

�b (�F ) � 1
na2t

�F 2 � C
R
F + 2 hrb�; rbF i � 2� hrbf; rF i

+4t�

 
nP

�;�=1

jfa�j2 +
nP

�;�=1;� 6=�

��fa����2
!

+
�
n� bCt

R
� 2b

na2
�F
�
t�f20 +

�
�2(1+a)

na2
�F � 2kt� � 4

b

�
jrbf j2

�Cb
R

�
t� jrbf j2

�
(t�f20 ) + 4bt

2�2f0V (f) :

Hence

(4.9)

�b (�F ) � 1
na2t

�F 2 � C
R
F + 2 hrb�; rbF i � 2� hrbf; rF i

+4t�

 
nP

�;�=1

jfa�j2 +
nP

�;�=1;� 6=�

��fa����2
!

+
�
n� bCt

R
�
�
2b
na2
+ bC

R

�
�F
�
t�f20

+
�
�2(1+a)

na2
�F � 2kt� � 4

b

�
jrbf j2 + 4bt2�2f0V (f) :

Finally, multiply t� on the both sides of (4.9) and note that t � 1; � � 1

t��b (�F ) � 1
na2
(�F )2 � C

R
�F + 2t� hrb�; rbF i � 2t�2 hrbf; rbF i

+4t2�2

 
nP

�;�=1

jfa�j2 +
nP

�;�=1;� 6=�

��fa����2
!

+
�
n� bC

R
�
�
2b
na2
+ bC

R

�
(�F )

�
t2�2f 20

+
h
�2(1+a)

na2
(�F )� 2k � 4

b

i
t� jrbf j2 + 4bt3�3f0V (f) :

�
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Proposition 4.3. Let (M; J; �) be a complete noncompact pseudohermitian (2n+ 1)-manifold

with

(2Ric� (n� 2)Tor) (Z; Z) � �2k jZj2

for all Z 2 T1;0, where k is an nonnegative constant. Suppose that (M; J; �) satis�es the

CR sub-Laplacian comparison property. Let b, R be �xed, and p (t) 2 B (2R) be the maximal

point of �F for each t 2 (0; 1]. Then at ( p (t) ; t) we have

(4.10)

0 �
�
1
na2
� C

R

�
(�F )2 � 3C

R
(�F ) + 4t2�2

 
nP

�;�=1

jfa�j2 +
nP

�;�=1;� 6=�

��fa����2
!

+
�
n� bC

R
�
�
2b
na2
+ bC

R

�
(�F )

�
t2�2f 20

+
h
�2(1+a)

na2
(�F )� 2k � 4

b
� C

R

i
t� jrbf j2 + 4bt3�3f0V (f) :

Proof. Since (�F ) (p (t) ; t; R; b) = max
x2B(2R)

(�F ) (x; t; R; b), at a critical point (p (t) ; t)

of (�F ) (x; t; R; b), we have

rb (�F ) (p (t) ; t; R; b) = 0:

This implies that

(4.11) Frb� + �rbF = 0

at (p (t) ; t) : On the other hand,

(4.12) �b (�F ) (p (t) ; t; R; b) � 0

at (p (t) ; t) :

Now we apply (4.11) to 2t� hrb�; rbF i and �2t�2 hrbf; rbF i in (4.8), we can derive the

following estimates.

(4.13)

2t� hrb�; rbF i = �2tF jrb�j2

� �2tC
R2
�F

� �2C
R
�F
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and

(4.14)

�2t�2 hrbf; rbF i = 2t�F hrbf; rb�i

� �2t (�F ) jrbf j j rb�j

� �2tC
R
(�F ) �

1
2 jrbf j

� �Ct
R
(�F )2 � C

R
t� jrbf j2 :

Here we have applied the Young�s inequality for (4.14).

Finally, substituting (4.12), (4.13) and (4.14) into (4.8) in Proposition 4.2, and noting that

t � 1,

0 �
�
1
na2
� C

R

�
(�F )2 � 3C

R
(�F ) + 4t2�2

 
nP

�;�=1

jfa�j2 +
nP

�;�=1;� 6=�

��fa����2
!

+
�
n� bC

R
�
�
2b
na2
+ bC

R

�
(�F )

�
t2�2f 20

+
h
�2(1+a)

na2
(�F )� 2k � 4

b
� C

R

i
t� jrbf j2 + 4bt3�3f0V (f) :

This completes the proof. �

Now, we are ready to prove our main theorems.

Proof of Theorem 1.3 :

Proof. We observe that

(4.15) V (f) = 0

by assumption (1.6) and Lemma 2.5.

We begin by substituting (4.15) into (4.10) in Proposition 4.3 at the maximum point

(p(t); t). Hence

(4.16)

0 �
�
1
na2
� C

R

�
[(�F )]2 � 3C

R
[(�F )]

+
�
n� bC

R
�
�
2b
na2
+ bC

R

�
(�F )

�
t2�2f 20

+
h
�2(1+a)

na2
(�F )� 2k � 4

b
� C

R

i
t� jrbf j2

+4t20�
2

 
nP

�;�=1

jfa�j2 +
nP

�;�=1;� 6=�

��fa����2
!
:
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We claim at t = 1

(4.17) (�F ) (p (1) ; 1; R; b) <
na2

�2 (1 + a)

�
2k +

4

b
+
C

R

�
for a large enough R which to be determined later. Here (1 + a) < 0 for some a to be chosen

later (say 1 + a = �5+2bk
n
).

We prove it by contradiction. Suppose not, that is

(�F ) (p (1) ; 1; R; b) � na2

�2 (1 + a)

�
2k +

4

b
+
C

R

�
:

Since (�F ) (p (t) ; t; R; b) is continuous in the variable t and (�F ) (p (0) ; 0; R; b) = 0, by

Intermediate-value theorem there exists a t0 2 (0; 1] such that

(4.18) (�F ) (p (t0) ; t0; R; b) =
na2

�2 (1 + a)

�
2k +

4

b
+
C

R

�
:

Now we apply (4.16) at the point (p (t0) ; t0), denoted by (p0; t0). We have by using (4.18)

(4.19)

0 �
�
1
na2
� C

R

�
[(�F ) (p0; t0)]

2 � 3C
R
[(�F ) (p0; t0)]

+
�
n� bC

R
�
�
2b
na2
+ bC

R

�
(�F ) (p0; t0)

�
t2�2f 20

+4t20�
2

 
nP

�;�=1

jfa�j2 +
nP

�;�=1;� 6=�

��fa����2
!
:

Moreover, we compute

(4.20)

��
1
na2
� C

R

�
(�F ) (p0; t0)� 3C

R

�
=
h�

1
na2
� C

R

� �
na2

�2(1+a)

� �
2k + 4

b
+ C

R

�
� 3C

R

i
=
n

�1
2(1+a)

�
2k + 4

b

�
� C

R

h
na2

�2(1+a)
�
2k + 4

b
+ C

R

�
+ 1

2(1+a)
+ 3
io

and

(4.21)

�
n� bC

R
�
�
2b
na2
+ bC

R

�
(�F ) (p0; t0)

�
= n� bC

R
�
�
2b
na2
+ bC

R

� �
na2

�2(1+a)

� �
2k + 4

b
+ C

R

�
= n� bC

R
+ b

(1+a)

�
2k + 4

b
+ C

R

�
+ bC

R

�
na2

2(1+a)

� �
2k + 4

b
+ C

R

�
=
�
n+ 4

1+a
+ 2bk

1+a

�
+ C

R

h
� ab
1+a

+ na2b
2(1+a)

�
2k + 4

b
+ C

R

�i
:
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Now we choose a such that

(1 + a) < �4 + 2bk
n

and then �
n+

4

1 + a
+
2bk

1 + a

�
> 0:

In particular, we let

(4.22) 1 + a = �5 + 2bk
n

:

Then for R = R(b; k) large enough, one obtains��
1

na2
� C
R

�
(�F ) (p0; t0)�

3C

R

�
> 0

and �
n� bC

R
�
�
2b

na2
+
bC

R

�
(�F ) (p0; t0)

�
> 0:

This leads to a contradiction with (4.19). Hence from (4.17) and (4.22)

(�F ) (1; p (1) ; R; b) <
(n+ 5 + 2bk)2

2 (5 + 2bk)

�
2k +

4

b
+
C

R

�
:

This implies

max
x2B(2R)

�
jrbf j2 + b�f 20

�
(x) <

(n+ 5 + 2bk)2

2 (5 + 2bk)

�
2k +

4

b
+
C

R

�
:

When we �x on the set x 2 B (R), we obtain

jrbf j2 + bf 20 <
(n+ 5 + 2bk)2

2 (5 + 2bk)

�
2k +

4

b
+
C

R

�
on B (R).

This completes the proof.

Next we prove Theorem 1.7. The proof is similar to Theorem 1.3.

Proof of Theorem 1.7 :



26 �SHU-CHENG CHANG1, �TING-JUNG KUO2, �CHIEN LIN3, AND JINGZHI TIE4

Proof. Firstly, we recall (Proposition 4.2) that

(4.23)

t��b (�F )

� 1
na2
(�F )2 � C

R
(�F ) + 2t� hrb�; rbF i � 2t�2 hrbf; rbF i

+4t2�2

 
nP

�;�=1

jfa�j2 +
nP

�;�=1;� 6=�

��fa����2
!

+
�
n� bC

R
�
�
2b
na2
+ bC

R

�
(�F )

�
t2�2f 20

+
h
�2(1+a)

na2
(�F )� 2k � 4

b

i
t� jrbf j2 + 4bt3�3f0V (f) :

Now we need to deal with the term 4bt3�3f0V (f) in (4.23).

(4.24)

4bt3�3f0V (f)

= 4bt3�3f0
nP

�;�=1

��
A��f��

�
��
+
�
A����f�

�
�
+ A��f��f�� + A����f�f�

�
= 4bt3�3f0

nP
�;�=1

��
A��f���� + A����f��

�
+
�
A��;��f�� + A����;�f�

�
+
�
A��f��f�� + A����f�f�

��
� �8bt3�3 jf0j

nP
�;�=1

���A������ jf��j+ jA��;��j ��f����+ ��A������ jf�j jf�j�
In (4.24), by Young�s inequality and noting that t � 1, � � 1, we have following estimates:

(4.25)

�8bt3�3 jf0j
nP

�;�=1

��A������ jf��j � nP
�;�=1

� 8k1bt3�3 jf0j jf��j

�
nP

�;�=1

�
�4k1bt3�3 jf��j2 � 4k1bt3�3f 20

�
� �4k1bn2 (t2�2f 20 )� 4k1bt2�2

nP
�;�=1

jf��j2

and

(4.26)

�8bt3�3 jf0j
nP

�;�=1

jA��;��j
��f���� � �8k1bt3�3

nP
�;�=1

jf0j
��f����

� �8k1bt3�3
nP

�;�=1

�
1
2
f 20 +

1
2

��f����2�
� �4k1bn2t3�3f 20 � 4k1bnt3�3

nP
�=1

��f����2
� �4k1bn2 (t2�2f 20 )� 2k1bn

�
t� jrbf j2

�
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and

(4.27)

�8bt3�3 jf0j
nP

�;�=1

��A������ jf�j jf�j � �8k1bt3�3 jf0j
nP

�;�=1

�
1
2
jf�j2 + 1

2
jf�j2

�
� �4k1bt3�3 jf0j

 
n

nP
�=1

jf�j2 + n
nP
�=1

jf�j2
!

� �4k1bnt3�3 jf0j jrbf j2

� �2k1b2nt3�3f 20 jrbf j2 � 2k1nt3�3 jrbf j2

= �2k1b2n
�
t� jrbf j2

�
(t2�2f 20 )� 2k1nt3�3 jrbf j2 :

Substitute estimates (4.25), (4.26), and (4.27) into (4.23), one obtains

t��b (�F ) � 1
na2
(�F )2 � C

R
(�F ) + 2t� hrb�; rbF i � 2t�2 hrbf; rbF i

+4t2�2

"
(1� bk1n)

nP
�;�=1

jfa�j2 +
nP

�;�=1;� 6=�

��fa����2
#

+
�
n� 8bk1n2 � bC

R
�
�
2b
na2
+ 2b2k1n+

bC
R

�
(�F )

�
t2�2f 20

+
h
�2(1+a)

na2
(�F )� 2k � 2n (1 + b) k1 � 4

b

i
t� jrbf j2 :

Next as shown in the same computation as in Proposition 4.3, at the maximal point

(p(t); t)

(4.28)

0 �
�
1
na2
� C

R

�
(�F )2 � 3C

R
(�F )

+4t2�2

"
(1� bk1n)

nP
�;�=1

jfa�j2 +
nP

�;�=1;� 6=�

��fa����2
#

+
�
n� 8bk1n2 � bC

R
�
�
2b
na2
+ 2b2k1n+

bC
R

�
(�F )

�
t2�2f 20

+
h
�2(1+a)

na2
(�F )� 2k � 2n (1 + b) k1 � 4

b
� C

R

i
t� jrbf j2 :

We claim at t = 1; there exists a small constant b0 = b0(n; k; k1) > 0 such that for any

0 < b � b0

(�F ) (p (1) ; 1; R; b) <
na2

�2 (1 + a)

�
2k + 2n (1 + b) k1 +

4

b
+
C

R

�
if R is large enough which to be determined later. Here (1 + a) < 0 for some a to be chosen

later (say 1 + a = � 5
n
):
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We prove it by contradiction. Suppose not, that is

(�F ) (p (1) ; 1; R; b) � na2

�2 (1 + a)

�
2k + 2n (1 + b) k1 +

4

b
+
C

R

�
:

Since (�F ) (p (t) ; t; R; b) is continuous in the variable t and (�F ) (p (0) ; 0; R; b) = 0, by

Intermediate-value theorem there exists a t0 2 (0; 1] such that

(�F ) (p (t0) ; t0; R; b) =
na2

�2 (1 + a)

�
2k + 2n (1 + b) k1 +

4

b
+
C

R

�
:

Now we apply (4.28) at the point (p (t0) ; t0), denoted by (p0; t0). We have

(4.29)��
1
na2
� C

R

�
(�F ) (p0; t0)� 3C

R

�
=
h�

1
na2
� C

R

� �
na2

�2(1+a)

� �
2k + 2n (1 + b) k1 +

4
b
+ C

R

�
� 3C

R

i
=
n

�1
2(1+a)

�
2k + 2n (1 + b) k1 +

4
b

�
� C

R

h
na2

�2(1+a)
�
2k + 2n (1 + b) k1 +

4
b
+ C

R

�
+ 1

2(1+a)
+ 3
io

and

(4.30)

�
n� 8bk1n2 � bC

R
�
�
2b
na2
+ 2b2k1n+

bC
R

�
(�F ) (p0; t0)

�
= n� 8bk1n2 � bC

R
�
�
2b
na2
+ 2b2k1n+

bC
R

� �
na2

�2(1+a)

� �
2k + 2n (1 + b) k1 +

4
b
+ C

R

�
= n� 8bk1n2 � bC

R
+ ( na2

2(1+a)
)( 2b
na2
+ 2b2k1n)

�
2k + 2n (1 + b) k1 +

4
b
+ C

R

�
+ bC

R

�
na2

2(1+a)

� �
2k + 2n (1 + b) k1 +

4
b
+ C

R

�
= fn� 8bk1n2 + ( b+a

2b2n2k1
(1+a)

)[2k + 2n (1 + b) k1 +
4
b
]g

+C
R
f�b+ ( b+a2b2n2k1

(1+a)
) + na2b

2(1+a)
[2k + 2n (1 + b) k1 +

4
b
+ C

R
]g:

Now we choose a and b such that

(4.31)

n� 8bk1n2 + ( b+a
2b2n2k1
(1+a)

)[2k + 2n (1 + b) k1 +
4
b
]

= n� bf8k1n2 � (1+a
2bn2k1
(1+a)

)[2k + 2n (1 + b) k1]� (4a
2n2k1
1+a

)g+ 4
1+a

> 0:

This can be done by choosing

(1 + a) < � 4
n
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and then choose a small b0 = b0(n; k; k1) > 0 such that for any b � b0

n� bf8k1n2 � (
1 + a2bn2k1
(1 + a)

)[2k + 2n (1 + b) k1]� (
4a2n2k1
1 + a

)g+ 4

1 + a
> 0

and

(1� bk1n) > 0:

In particular, we let

1 + a = � 5
n
:

Then for any 0 < b � b0, one obtains��
1

na2
� C
R

�
(�F ) (p0; t0)�

3C

R

�
> 0

and �
n� 8bk1n2 �

bC

R
�
�
2b

na2
+ 2b2k1n+

bC

R

�
(�F ) (p0; t0)

�
> 0

for R = R(b; k; k1) large enough. This leads to a contradiction with (4.28). Hence

(�F ) (1; p (1) ; R; b) <
na2

� (1 + a)

�
k + n (1 + b) k1 +

2

b
+
C

R

�
:

This implies for 1 + a = � 5
n

max
x2B(2R)

�
jrbf j2 + b�f 20

�
(x) <

(n+ 5)2

5

�
k + n (1 + b) k1 +

2

b
+
C

R

�
:

When we �x on the set x 2 B (R), we obtain

jrbf j2 + bf 20 <
(n+ 5)2

5

�
k + n (1 + b) k1 +

2

b
+
C

R

�
on B (R). Note that the preceding computation is not valid if �F is not smooth at x0. In

this case, we may use a trick due to E. Calabi ( see [W] for details).

This completes the proof of Theorem 1.7.
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