CR SUB-LAPLACIAN COMPARISON AND LIOUVILLE-TYPE
THEOREM IN A COMPLETE NONCOMPACT SASAKIAN MANIFOLD

*SHU-CHENG CHANG!, *TING-JUNG KUO?, *CHIEN LIN3, AND JINGZHI TIE*

ABSTRACT. In this paper, we first obtain the sub-Laplacian comparison theorem in a com-
plete noncompact pseudohermitian manifold of vanishing torsion (i.e. Sasakian manifold).
Secondly, we derive the sub-gradient estimate for positive pseudoharmonic functions in
a complete noncompact pseudohermitian manifold which satisfies the CR sub-Laplacian
comparison property. It is served as the CR analogue of Yau’s gradient estimate. As a
consequence, we have the natural CR analogue of Liouville-type theorems in a complete

noncompact Sasakian manifold of nonnegative pseudohermitian Ricci curvature tensors.

1. INTRODUCTION

In [Y1] and [CY], S.-Y. Cheng and S.-T. Yau derived a well known gradient estimate for

positive harmonic functions in a complete noncompact Riemannian manifold.

Proposition 1.1. ([Y1], [CY]) Let M be a complete noncompact Riemannian m-manifold
with Ricci curvature bounded from below by —K (K > 0). If w(z) is a positive harmonic

function on M, then there exists a positive constant C' = C(m) such that
1
(1.1) Vi) < CVE +5)

on the ball B (R) with f(z) = Inu(x). As a consequence, the Liouville theorem holds for

complete noncompact Riemannian m-manifolds of nonnegative Ricci curvature.
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In this paper, by modifying the arguments of [Y1], [CY] and [CKL], we derive a sub-
gradient estimate for positive pseudoharmonic functions in a complete noncompact pseudo-
hermitian (2n + 1)-manifold (M, J,0) of vanishing pseudohermitian torsion (i.e. Sasakian
manifold) which is an odd dimensional counterpart of Kidhler geometry. It is served as the
CR version of Yau’s gradient estimate. As a consequence, we prove that the CR analogue
of Liouville-type theorem holds for complete noncompact Sasakian manifolds of nonnegative

pseudohermitian Ricci curvature.

We first define Ric and Tor on Tj by

(1.2) Ric(X,Y) = R,3X°Y?
and
(1.3) Tor(X,Y) =i 3, 5(AspX VP — A5 XOYP).

Here X = X°Z, ,Y = YPZ; for a frame {T,Z,, Zs} of TM ® C =Ty &Ty, with Z, €
T o and Z5 = Z, € To,1- R, ,p is the pseudohermitian curvature tensor, R,z = RﬁaB is the
pseudohermitian Ricci curvature tensor and A, is the torsion tensor. We refer to section
2 for more details about the notions of pseudohermitian geometry.

In Yau’s method for the proof of gradient estimates, one can estimate A(n (z) |V f(x)[?)
for a nonegative cut-off function 7 (z) on B (2R) via Bochner formula and Laplacian com-
parison. At the end, one has gradient estimate (1.1) by applying the maximum principle to
n(x) |V f(@)]*.

However in order to derive the CR subgradient estimate, one of difficulties is to deal with
the following CR Bochner formula (Lemma 2.1) which involving a term (JV,p, Vyp,) that

has no analogue in the Riemannian case.

2
8| Viel® = 2|(V7)* | +2(Tap, Vilsg)
+ (4Ric=2(n =2)Tor) (Vep)o, (Vip)e) +4(IVip, Vi) -
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Here (VH )2, Ay, V, are the subhessian, sub-Laplacian and sub-gradient respectively. We
also denote ¢, = T'p. In order to overcome this difficulty, we introduce a real-valued function
F(z, t, R, b): M x [0, 1] x (0, o0) x (0, c0) — R by adding an extra term tn (x) fg ()
to |Vyf(x)|* as following

F(z, t, R, b) =t (Vs f(2)]" +btn (2) f3 ()

on the Carnot-Carathéodory ball B (2R) with a constant b to be determined. In section 4,
we derive the CR subgradient estimate (1.11) and (1.7) by applying the maximum principle
to n (z) F(xz,t) for each fixed t € (0,1] if the CR sub-Laplacian comparison property ( 1.1)
holds on (M, J,6) which is the case when M is Sasakian (Theorem 1.2).

We recall that a piecewise smooth curve v : [0, 1] — M is said to be horizontal if +'(t) € &

whenever +/(t) exists. The length of ~ is then defined by

Here (, ), is the Levi form as in (2.2). The Carnot-Carathéodory distance between two

points p, ¢ € M is
de(p, @) = inf{l(7) [v € Cpq}

where C),, is the set of all horizontal curves joining p and q. We say M is complete if
it is complete as a metric space. We refer to [S] for some details. By Chow connectivity
theorem [Cho], there always exists a horizontal curve joining p and ¢, so the distance is finite.
Furthermore, there is a minimizing geodesic joining p and ¢ so that its length is equal to the
distance d.(p, q).

Firstly, by applying the Ricatti inequality for sub-Laplacian of Carnot-Caratheodory dis-
tance as in Lemma 3.1 and Theorem 3.2, we have the following Bishop-type sub-Laplacian
comparison property in a complete noncompact pseudohermitian (2n + 1)-manifold of van-

ishing pseudohermitian torsion tensors.
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Theorem 1.2. Let (M, J, 0) be a complete noncompact pseudohermitian (2n+ 1)-manifold

of vanishing pseudohermitian torsion tensors with
Ric(Z, Z) > —k|Z|

forall Z € T\ and k is an nonnegative constant. Then
(i))n=1
1
AbT S - ‘l‘ \/E
r

(ii) n > 2

on
AbT‘ S — 4+ V 2n\/E
T

in the sense of distributions.
In the case of nonvanishing torsion, we make the following assumption:

Definition 1.1. Let (M, J, 0) be a complete noncompact pseudohermitian (2n+1)-manifold
with

(1.4) (2Ric — (n— 2)Tor) (Z, Z) > —2k|Z|°

for all Z € Ty, and k is an nonnegative constant. We say that (M, J, 0) satisfies the CR

sub-Laplacian comparison property if there exists a positive constant Co = Co(k,n) such

that

(1.5) Ayr < Co(% +Vk)

We now state the following general sub-gradient estimate for positive pseudoharmonic

functions wu.

Theorem 1.3. Let (M, J, 0) be a complete noncompact pseudohermitian (2n+ 1)-manifold
with

(2Ric — (n— 2)Tor) (Z, Z) > =2k |Z|’
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for all Z € Ty, and k > 0. Furthermore, we assume that (M, J, 0) satisfies the CR sub-
Laplacian comparison property (1.5). If u(x) is a positive pseudoharmonic function (i.e.

Ayu = 0) with
(1.6) [Ny, T]u =0

on M. Then for each constant b > 0, there exists a positive constant Cy = Cy(k) such that

|Vbu|2+ w2 (n 45+ 2bk)? (k 2 9)

1. — -
(1.7) u? u? (5 + 20k) b R

on the ball B (R) of a large enough radius R which depends only on b, k.

Remark 1.1. [t is shown that (Lemma 2.3)

n

(1.8) [Ay, Tu=4Tm[i Y (Aspup).al.

a,B=1
If (M, J, 0) is a complete noncompact pseudohermitian (2n + 1)-manifold of vanishing tor-

ston. Then

[Ab, T] u = 0.

It follows easily from the Theorem 1.2 and Theorem 1.3 that we have our main results on
the CR Yau’s gradient estimate (1.9) and Liouville-type theorem on a complete noncompact

Sasakian (2n + 1)-manifold in this paper.

Theorem 1.4. Let (M, J, 0) be a complete noncompact pseudohermitian (2n+ 1)-manifold

of vanishing pseudohermitian torsion and
Ric(Z, Z) > —k|Z?

for all Z € T\ o, and k > 0. Let u(z) be a positive pseudoharmonic function. Then for each

constant b > 0, there exists a positive constant Cy = Cy(k) such that

Voul? w2 (n+ 54 2bk)° 2 O
1. (Ul B A =2
(1.9) D R TAN

U b+R

on the ball B (R) of a large enough radius R which depends only on b, k.
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As a consequence, let R — 0o and then b — oo with £ = 0 in (1.9),we have the following

CR Liouville-type theorem.

Corollary 1.5. Let (M, J, 0) be a complete noncompact pseudohermitian (2n+ 1)-manifold
of nonnegative pseudohermitian Ricci curvature tensors and vanishing torsion. Then any

positive pseudoharmonic function is constant.

Corollary 1.6. There does not exist any positive nonconstant pseudoharmonic function in

a standard Heisenberg (2n + 1)-manifold (H", J, 0).

Remark 1.2. Koranyi and Stanton ([KS]) proved the Liouville theorem in (H", J, ) by a
different method.

In general if the positive pseudoharmonic function u does not satisfy the condition [Ay, T u =

0, we have the following weak sub-gradient estimate.

Theorem 1.7. Let (M, J, 0) be a complete noncompact pseudohermitian (2n+ 1)-manifold

with

(2Ric — (n— 2)Tor) (Z, Z) > —2k|Z|°
and
(1.10) max {|Aas|, [Aapal} < ki

forall Z € Ty and k > 0, ky > 0. Furthermore, we assume that (M, J, 0) satisfies the CR
sub-Laplacian comparison property. If u(x) is a positive pseudoharmonic function on M.
Then there exists a small constant by = bo(n, k, k1) > 0 and C5 = Cy(k, ki, ko) such that

for any 0 < b < by,

2 C
(k+n(1+b)k1+—+—3)

|Vbu]2 u?  (n+5)?
plo o\ 9)
+ < ; 7

1.11
( ) u? u2 5

on the ball B (R) of a large enough radius R which depends only on b.
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Remark 1.3. By comparing the Yau’s gradient estimate (1.1), we need an extra assumption
(1.10) to obtain the CR subgradient estimate (1.11) due to the natural of sub-Laplacian in
pseudohermitian geometry. However, we do obtain an extra estimate on the derivative of

pseudoharmonic functions u(x) along the missing direction of characteristic vector field T .

We briefly describe the methods used in our proofs. In section 2, we first introduce some
basic materials in a pseudohermitian (2n + 1)-manifold. Then we are able to get the CR
Bochner-type estimate and derive some key Lemmas. In section 3, we give a proof of sub-
Laplacian comparison theorem in a complete noncompact pseudohermitian (2n+ 1)-manifold
of vanishing pseudohermitian torsion tensors. In section 4, let (M, J, #) be a complete non-
compact pseudohermitian (2n+1)-manifold with the CR sub-Laplacian comparison property,
we obtain subgradient estimates for positive pseudoharmonic functions. As a consequence,
the natural analogue of Liouville-type theorem for the sub-Laplacian holds in a complete non-
compact pseudohermitian (2n + 1)-manifold of nonnegative pseudohermitian Ricci curvature
tensor and vanishing torsion.

Acknowledgments. The first author would like to express his thanks to Prof. S.-
T. Yau for the inspiration, Prof. C.-S. Lin, director of Taida Institute for Mathematical
Sciences, NTU, for constant encouragement and supports, and Prof. J.-P. Wang for his
inspiration of sublaplacian comparison geometry. The work would be not possible without
their inspirations and supports. Part of the project was done during J. Tie’s visits to Taida

Institute for Mathematical Sciences.

2. CR BOCHNER-TYPE ESTIMATE

In this section, we derive some key lemmas. In particular, we obtain the CR Bochner-type

estimate as in Lemma 2.2. We first introduce some basic materials in a pseudohermitian

(2n + 1)-manifold (see [L1], [L2] for more details).
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Let (M, &) be a (2n + 1)-dimensional, orientable, contact manifold with contact structure
¢. A CR structure compatible with ¢ is an endomorphism J : £ — £ such that J? = —1. We
also assume that J satisfies the following integrability condition: If X and Y are in &, then
so are [JX, Y]+ [X,JY] and J([JX,Y]|+ [X,JY]) = [JX,JY] - [X,Y].

Let {T, Z., Za} be a frame of TM ® C, where Z, is any local frame of T\ g, Zs = Z4 € Tp1
and T is the characteristic vector field. Then {9,90‘,9@}, which is the coframe dual to

{T, Z., Z5}, satisfies
_ s oo e
(2.1) do = ih, 0% N6

for some positive definite hermitian matrix of functions (h,3). Actually we can always choose
Zq such that h,z = d,4; hence, throughout this note, we assume h,5 = dap-

The Levi form ( , ), is the Hermitian form on 7 defined by
(2.2) (Z,W),, =—i(d0,Z W),

We can extend ( , ), to Tp; by defining (Z, W>L9 = WLH for all Z,W € T} . The Levi
form induces naturally a Hermitian form on the dual bundle of 7} o, denoted by ( , ) Ly and
hence on all the induced tensor bundles. Integrating the Hermitian form (when acting on
sections) over M with respect to the volume form du = 6 A (df)", we get an inner product
on the space of sections of each tensor bundle. We denote the inner product by the notation

(, ). For example

(u,v) :/ uv dp,
M

for functions v and v.
The pseudohermitian connection of (., #) is the connection V on 7'M @ C (and extended

to tensors) given in terms of a local frame Z, € 11 by

VZa=0."®Zs, VZi=0,"®27; VT =0,

where 6,° are the 1-forms uniquely determined by the following equations:
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d9” =0 N0+ 0T,
(2.3) 0=r74 A0,
0=10."+ 956‘,

We can write (by Cartan lemma) 7, = A,,6" with A,, = A,,. The curvature of Tanaka-

Webster connection, expressed in terms of the coframe {§ = 6°,6%, 6%}, is
Hﬁa = HBa = dwg"‘ — wﬁ N wvo‘,
M = 11,° = Iy = 113° = 1,° = 0.
Webster showed that 113 can be written
(2.4) % = Rp® 50" NO7 + W5 ,0° NO — W5,0° NO +i05 AT — it A O°
where the coefficients satisfy
RB&p& = RaBaﬁ = R&,B&p = Rp&ﬁ?fa W,@&'y = W'y&,é’-

We will denote components of covariant derivatives with indices preceded by a comma;
thus write A,s,. The indices {0, o, @} indicate derivatives with respect to {7, Z,, Z5}. For
derivatives of a scalar function, we will often omit the comma, for instance, u, = Zyu, u,5 =
ZpZou — wo"(Z3) Zyu.

For a real function u, the subgradient V is defined by Vyu € € and (Z, Vyu) ;= du(Z)
for all vector fields Z tangent to contact plane. Locally Vyu = > usZa + uaZa. We can

use the connection to define the subhessian as the complex linear map
(VIY2u: Ty ® Tor — Tio @ Tox

by
(VI2u(Z) = V V.

In particular,
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Voul? = 2uqug, |Viul> = 2(Uapligs + Uyzlap)-
Also
Apu=Tr (V7)) =3, (Uaa + Uaa)-

Next we recall the following commutation relations ([L1]). Let ¢ be a scalar function and

0 =0,0% be a (1,0) form, then we have

Pas = PBas
Pap — Pha = Thas¥o,
(2.5) Poa = Pa0 = AapPp;
0a,08 — 0aB0 = OasAys— 04485,
0008 — OaBo = OanAsp+ 04455,
and
Tapy — Oanp = 1Aayop —iAns0o,,
(2.6) Tapy = Oamp = apdAyp0, —ihayAgs0p,
0o~ Oagp = thpy0a,0+ Rapsi0,.

Now we recall a lemma from A. Greenleaf (|Gr]) and also ([CC2]).

Lemma 2.1. For a real function o,

2
A IVapl = 2|(V) g +2(Vag, Vil)
+ (Ric—2(n—2)Tor) (Vip)es (Vog)e) +4 (Vg Vigy)

(2.7)

where (V@) = @5Zq is the corresponding complex (1, 0)-vector of V.
Lemma 2.2. For a smooth real-valued function ¢ and any v > 0, we have

Ay [V > 4 ( %? | s+ 52 ., !%g|2> + 1 (App)” + ngd + 2 (Vip, Vilup)
a,f=1 a,f=1,a

+ (4Rz’c —2(n—2)Tor — 4) (Vo)es (Vo)) —2v |Vb<p0|2.

v
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Proof. Since
(V)22 = 230 5 1 (PapPas T LapPas)
= 230 51 ([@apl® + loazsl?)

= 202 g =1 [Pasl” + ZZ@? |apl® + 2ozt [Paal®)

and from the commutation relation (2.5)

>act |Pasl” = 130z ([9am + ¢aal” + £5)
1 2ot |Paz + aal’ + 505
It follows that
(VP = 2Xasm [pasl + Easot 0aal?) + 3 Ziea [Pam + 2l + 548
< 20300 st [Pasl® + Zg&ffﬁl 0.51%) + o (App)” + 202,
On the other hand, for all v > 0

4(IVyp, Vipe) > —4|Vio| Vgl
> —2|V,p0|* — 20 |Vip|*.

Then the result follows easily from Lemma 2.1. O

Definition 2.1. ([GL]) Let (M, J,0) be a pseudohermitian (2n + 1)-manifold. We define

the purely holomorphic second-order operator @) by

Qp = 2i Z Ags#p) e

a,B=1

By apply the commutation relations (2.5), one obtains
Lemma 2.3. ([GL], [CKL]) Let ¢ (z) be a smooth function defined on M. Then

Appy = (App)y +2 Z aﬂé% (AaBS%)J :

a,f=1

That s
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Proof. By direct computation and the commutation relation (2.5), we have

Aoy = Poam T Poaa
= (a0 + Aappz)_. + conjugate
= ¢aoa + (Aappg)__ + conjugate
Gt T Paon + 2 | (Aas08) 5 + (Ass).]
— (Do) +2 [ (Aasin); + (Aaps),]

This completes the proof.

Let u be a positive pseudoharmonic function and f () = Inwu (z). Then

Abf - ‘be|2-

We first define

n

V(e)= Y [(Aasps), + (Aaps), + Aappsea + AapPsba) -
a,B=1

Lemma 2.4. Let u be a positive pseudoharmonic function with f =Inwu. Then
Apfo==2(Vyf, Vifo) +2V (f).

Proof. From Lemma 2.3

Apfo = (Auf)y+2 Z [(Aapep), + (Aaps) ] -
a,B=1

Since
Apf =~ |Vof]?,

it follows from the commutation relation (2.5) that

Apfo = (Apf)y+2 i [(Aasf3); + (Aapfs),]

O‘vﬁzl

= (%) +2 32 [(Ausds) + (Asali),]

= —2(Vifo. Viof) +2 2 [(Aupf3), + (Aapfs), + Aasfafs + Aapfafs] -

a,B=1
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Lemma 2.5. Let (M, J,0) be a pseudohermitian (2n + 1)-manifold and u be a positive func-

tion with f = Inu. Suppose that
2Im Qu = [Ay, TJu=0.
Then

(2.8) V(f) =0.

Proof. We compute

14 (f) - ;1 [(AaﬁfB)@ + (AanB)a + Aa,ﬁf@f[ﬂ + A&Bfafﬁ]

= %;1 [Aapfaa + Aapals + Aspfoa + Aspafs + Aapfafs + Aasfals]
S [ A (M sy o4 (Ye _ YU

(29) a%il { B ( U u? ) 8 ( u u2 )

HAapay T Aasary T Aas it + Aas
= 2 [(Aess), + (Aagus), )
= % [Ab, T] u
This completes the proof. 0

3. CR SUB-LAPLACIAN COMPARISON THEOREM

In this section, we give the proof of sub-Laplacian comparison theorems in a complete
noncompact pseudohermitian (2n+1)-manifold of vanishing pseudohermitian torsion tensors.
In order to prove Theorem 1.2, we first derive the Ricatti inequality for sub-Laplacian of

Carnot-Carathéodory distance. We refer to [CHL, Corollary 3.1.] for some of computations.

Lemma 3.1. Let (M, J,0) be a complete noncompact pseudohermitian (2n + 1)-manifold of

vanishing pseudohermitian torsion with
RaB 2 thaB

for some constant ky. Then, for any x € M where r(x) is smooth, we have
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(i) Forn =1,
&(Abr) + (AbT)Z + kg S 0.
(i) Forn > 2,

GT(Abr) + 2in(AbT)2 + k'g S 0.

Proof. We choose {ej,e;,T}

to be an orthonormal frame at ¢ where e; = Je; and
J€ln

e; = V,r. Since the pseudohermitian torsion is vanishing, by a result in [DZ, Corollary 2.3],

we could parallel transport such frame at ¢ to obtain the orthonormal frame along the radial

V-geodesic vy from p to g. Then there is an orthonormal frame {Z;, Z7, T}j cr, along v with

1 .
Z] = E <€j —Z€3> .
By the fact that v is the V-geodesic, one can compute the following in Z;-direction as

rin = —y (ieser + egeq)  — (Vg Zo) 7

N—= N

(ieaer + esea) 1+ 5 [V (v, Vor + J (Vw,n Vir)]
and

1

(iegeq + exea) T — (VZ,Zl) r
3 (Vv Vir + 7 (Ve Ver) |-

N= N

(iegeq + egen) r —

Therefore along ~
(31) r1 = —"r1-

Moreover, by computing

N

r = 1r

(Vyr —iJVyr)r
(IVor|® =i (Vyr, JV,r))

IS e e
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and
T = 4141T — I‘%lrl
= ZyZir — g9 (|27, Z4], Z1)
ZyZyr — 590 (21, 2], Z4)

we derive that r;7 is real by the commutation formula. Therefore, we have

along the V-geodesic 7.
Now at the point ¢, by the facts that r; = \% and 77 is real, the equalities (3.1), (3.2)

and the commutation formulas (2.5), (2.6), we have the following computation as well.
_ 1 2
0 = 3(IVorl) g
= 2 (Irarl* + Iratl® + rastra + raiira)

> Jruf? + |rigf” + rarrr + oo

= 27‘%T + (7”111 +ir1o + R111 ) r+ (ri1 —iro)r 1

27"% + <VbT'11, VbT> Lo + §Rﬁﬁ

v

2ri; + (Vor) ryg + 5 Ry

27"2* +(Vr)rg + lRﬁﬁ
2r2 + 2

o+ 3R
(i) For n = 1 : Since
Apr =17+ 1 = 2147,
it follows from (3.3) that
O (A1) + (M) + R <0
and then

6’T(Abr) —+ (AbT)2 + ]{?2 S 0

as well.
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(ii) For n > 2: The similar computation as before, for any j # 1,

0 = % (|Vb7“|2)ﬁ
= 2 (‘Taj’2+ ‘Tocﬂ2+raﬂra+raw )
> Jrigl” + raggrn+ g
(3.4) = r2.< + (lej +irpp + Riﬁrl) T+ 171
Vbr>L9 -+ %R

> r —|—<Vb7"”,

1157

_ 9 1p_
= 7” +aﬂ“m+ Rlljj-

It follows from the inequalities (3.3) and (3.4) that

0o > (27" + 67"“ + 1le) > ( + 2rs+ 1R1m>
J#1

(3.5) n n
> 2 (Z%) DD R

j=1 j=1
Hence

(9T(Abr) + 27n<AbT’)2 + le S O
and then

&(Abr) + 2in<Ab7’)2 + /{72 S 0
as well. O

Now Theorem 3.2 will follows from the Lemma 3.1 easily ([Li], [W]).

Theorem 3.2. Let (M, J,0) be a complete pseudohermitian (2n + 1)-manifold of vanishing

pseudohermitian torsion with

R.p > kah,p

for some constant ky. Then, for any x € M where r(x) is smooth, we have
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(i)n=1

Vko cot(vVkar), ko > 0,
(3.6) Apr < %, ke =0,

\/ |k52| COth(\/ |k/'2|7”), k?g < 0.

(i) n > 2:

V2" ko COt(\/ 2*”k2), ko > O,
(3.7) Apyr <4 = ko =0,

Y

/2" |ka| coth(y/277|ka|r), ko < 0.

Moreover, it holds on the whole manifold in the sense of distribution.

4. CR ANALOGUE OF YAU’S GRADIENT ESTIMATE

In this section, we will prove main Theorem 1.7 and Theorem 1.3. We first recall a

real-valued function

F(x, t, R, b): M x [0, 1] x (0, c0) x (0, o0) — R
defined by
(4.1) F(z, t, R, b) =t (IVof[ (x) + bty (z) 3 (),
where 7 (z) : M — [0, 1] is a smooth cut-off function defined by

1, v€ B(R)
0, =€ M\B(2R)

such that
C 1 /
4.2 ——nz<pn <0
(4.2) RS0 <
and
1" O
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where we denote 27 by 1’ and r(z) is the Carnot-Carathéodory distance to a fixed point .
or

In the following calculation, the universal constant C' might be changed from lines to lines.

Proposition 4.1. Let (M, J, 0) be a complete noncompact pseudohermitian (2n + 1)-manifold
with

(4.4) (2Ric — (n—2)Tor) (Z, Z) > =2k |Z|?

for all Z € Ty, where k is an nonnegative constant. Suppose that (M, J, 0) satisfies the

CR sub-Laplacian comparison property. Then

AF > =2(Vyf, Vo F) +1 42 | fasl® + 42 ‘faﬁ‘ +1 (Ayf)?

a,f=1 a,B=1,a#

=10 £ = (24 ) VAP - (N}

Proof. By CR sub-Laplacian comparison property,

Ayn = 77”+77’Ab7“
> —§-5(3+0)
> -G

First we compute

Ay (btnff?)

bt (f§ 2 + o fg +2(Vin, Vifg))

bt (=S f2 + 2nfolofo + 20|V fol* + 410 (Van, Vifo))

bt (= G132 + 2nfolofo + 20 Vo fol* = 4| fol [Vonl Vs fol)
bE—S f2 + 20 folfo+ (20— 2+ 1) (Voo — 2+ 207 |Vun] f2]
bt(—S £3 + 2nfolufo + (20— 2 30) [Vafol),

=
N
VAR,

v

1
2
1
2

v

where we use the Young’s inequality and the inequality (4.2) which implies that

— 2
n Tt Vn)® < T



CR SUB-LAPLACIAN COMPARISON AND LIOUVILLE-TYPE THEOREM

Second, it follows from assumption (4.4), Lemma 2.2 and (4.5) that

AF = t (A |Vof)? + Ay (binf3))

v

I sl + 4 \fa5\2+%(Abf>2+nf3+2<vbf, Vol f)

a,B=1 a,B=1,a#

v

a,B=1 a,f=1,a#

=2 (k+;) [Vof* +2 (%n =) Vool + 20tnfolo o] -

Then taking v = th",

AP > t[42 | fasl? + 42 ‘fa,@‘ +3 (Apf)® + (n— ¥ty f2

a,B=1 a,B=1,a#

(4.6)
=2 (k+ 2 ) [Vof? +2(Vof, Volof) + 20tnfolfo)

Finally, by Lemma 2.4

2(Vif, Vilpf) + 2btnfols fo
= 2(Vuf, V(- IV f[?)) + 2btnfo [-2 (Vo f, Vifo) +2V (f)]
= =2(Vuf, Vi (£ —btnf2)) — 4btnfo (Vo f, Vifo) + 4btnfoV (f)

= —7 Vb y VbF +2bt Vb 5 Vb nJo —4bt77 0 Vb s Vb 0 +4bt77 OV
2(Vyf ) (Vof, Vo (nf2)) fo (Vof, Vi fo) f
2

= —2(V,f, VoF) +2btf2 (Vo f, Vo) + 4btnfoV (f)

Now by Young’s inequality, we have

2(Vuf, Vi Ay f) + 2btnfoly fo

= —%(be, VoF) + 20t f2 (N f, Vum) + 4btn foV (f)
(4.7) > —2(Vof, VF) = 20tf3 Vi f| [Von| + 4btnfoV (f)

> —2(V,f, VF) = 2 2|V, fn2 + btnfoV (f)

> —2(Vuf, VF) = Q3 = Lnfg Vo f[* + 4btnfoV (f).

—2(k+1) |V, f” - 2v |beo|2 — YO g2 1 obtnfolsfo + 2 B0 |Vifol?)

E A3 [ fusl? + 42 Al E P+ (=) 42498, Vo)

(f)

19
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Substituting (4.7) into (4.6),

A 1 fasl’+ A [ fas| 2 (A
a,B=1 a,8=1,a#8

(n =) 2 =2 (b ) IV P = Snfd IV P+ 4btnfoV ()]

A > —2(Vuf, VF)+t

Proposition 4.2. Let (M, J, ) be a complete noncompact pseudohermitian (2n + 1)-

manifold with
(2Ric — (n—2)Tor) (Z, Z) > —2k|Z|?

for all Z € Ty, where k is an nonnegative constant. Suppose that (M, J, 0) satisfies the

CR sub-Laplacian comparison property. Then for all a # 0

tnAy (nF) > #(UFV — S (nF) +2tn (Vyn, VoF) = 2tp* (V,f, V,F)
+4t? 2( S | fasl? + Z |fa5}2)
a,B=1 a,f=1,a#
e - () 0P P

|25 (nF) — 2k — &] [V S+ 468 oV ().

na?

(4.8)

Proof. By using Proposition 4.1, we first compute

Ay (nF) = (An) F +2(Vin, VoF) +nApF

> —SF+2(Vyn, VuF) —2n(V,f, VF)
+t1) (Z_llfaﬁl + B_i }faﬁ}) w(Qof) 4 (n = 25) f5

=2 (k+ 2 ) IV " = LafIVofP + 4btnfoV (£)]
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and for each a # 0

(Abf)2 =

(—\be‘ )
= (aF
2

2
— L1V f P = LotnfE — Vo fI?)
— e [T, 12— Lbinf2)’
= L P24 (SO f] o+ L6 S

~HN |9, fP — BpFfp 4 2 15, £ 2
12 2<a+1 F|V,f|* — ZnF 2.

a?t?

1p
at
1p
at

v

Then

Ay (nF) = omnF? = GF +2(Vyn, VoF) =29 (V,f, VF)

na?t

+4tn<2nf P+ 2 {fwf)
a,B=1 a,f=1,a#8

— Bt — 20 F) tnfg + (—2‘,1;“)775’ — 2ktn — %) Vi fI?

na?

(n
—CL (tn |Vof?) (tnf3) + 46202 foV (f) -

Hence

LnF? — SF +2(Vyy, VyF) — 20 (V,f, VF)

na?t

—1—42577( Z |fa,8| + Z |faﬁ|2>

+[n— et (f—jﬁ%)nﬂ tnfg
+ (“2E20F — 2kty — &) [V f + b7 oV ().

n

Finally, multiply ¢ on the both sides of (4.9) and note that t <1, n <1
Ay (nF) > i (0F)" = GnF +2tn (Vo VoF) = 2t0° (Vo f, Vo F)

+4¢12 2(2 | fasl” + > |faB|2>

a,B=1 a,B=1,a#

0= — (24 16) ) a7
+ [ 2 (gF) — 2k — 4] VL + 40P SV ().

“na?
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Proposition 4.3. Let (M, J, 0) be a complete noncompact pseudohermitian (2n + 1)-manifold
with

(2Ric — (n—2)Tor) (Z, Z) > —2k|Z|?

for all Z € Ty, where k is an nonnegative constant. Suppose that (M, J, 0) satisfies the
CR sub-Laplacian comparison property. Let b, R be fized, and p (t) € B (2R) be the mazximal
point of nF for each t € (0,1]. Then at ( p(t),t) we have
n n 2
0 > (5= — %) (F)" =3 (nF) + 4% ( %3 | fasl® + BZ » | fos] )
a,f=1 a,f=1,x

(4.10) +[n =t (1) F)] 2

+ |22 (gF) = 26— £ = G| tn VoS + oV ().

na?

Proof. Since (nF) (p(t), t, R, b) = r%e(g(R) (nF) (z, t, R, b), at a critical point (p(t), t)
Te
of (nF)(x, t, R, b), we have

Vi (nF) (p (1), ¢, R, b) = 0.
This implies that
(4.11) FVyn+nVF =0
at (p(t), t). On the other hand,
(4.12) Ay(nF) (p(t), t, R, b) <0

at (p(t), t).
Now we apply (4.11) to 2tn (Vyn, Vo F) and —2tn? (V,f, V,F) in (4.8), we can derive the

following estimates.

2t (Von, VuF) = —2tF|Vyn|”
(4.13) > 2R
> —XgnF
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and
—2t? (Vof, Vo F) = 2tnF (V,f, Vyn)
(4.14) > =2t (nF) [V f]] Ven|
> —22(nF)n2 |V, f]
> —GF) = S |Vofl*.

Here we have applied the Young’s inequality for (4.14).
Finally, substituting (4.12), (4.13) and (4.14) into (4.8) in Proposition 4.2, and noting that

t <1,
0 > (50— %) F)" =32 (nF) + 4% ( > sl + 2 |fa6|2)
o,B=1 a,f=1a#p
[0 — (2 1+ 50) (nF)] 2P
[~ F) — 2k — § = G) VLS + P LV (£)
This completes the proof. =

Now, we are ready to prove our main theorems.

Proof of Theorem 1.3 :

Proof. We observe that
(4.15) V(f)=0

by assumption (1.6) and Lemma 2.5.
We begin by substituting (4.15) into (4.10) in Proposition 4.3 at the maximum point
(p(t),t). Hence

]
(4.16) + [_M(UF)_Qk_é_%

na?

+4tgn’ ( i | fasl® + i | fa5 2) :

a,f=1 a,f=1,a#3
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We claimatt =1

(4.17) (nF)(p(1), 1, R, b) < % (2k+%+%)

for a large enough R which to be determined later. Here (1 + a) < 0 for some a to be chosen

later (say 1+ a = —3t20k),

We prove it by contradiction. Suppose not, that is

P W, 1R Dz (e D).

Since (nF) (p(t), t, R, b) is continuous in the variable ¢t and (nF') (p(0), 0, R, b) =0, by

Intermediate-value theorem there exists a to € (0, 1] such that

(4.18) (nF) (p(to), to, R, b) = % (Qk: + % + %) .

Now we apply (4.16) at the point (p (to) , %), denoted by (po, tp). We have by using (4.18)

(n_

) (po, to)]* = 3 [(nF) (po, to)]
(4.19) ” n2£2 + bc) (nf) (poﬂfo)} e f3

&) [
e
R
+4tgn (Z_ FalP+ 2 |fa@|2>-

a—Oé

Moreover, we compute

[z = %) 0F) (po. to) — %
@) = Ge - §) () @h+ 9 - %]
~{aig O+ ) - % | Ch+ 3+ ) + g +3] )
and
[n =5 — (2 + %) 1F) (po, to)]
o) =n - — ) (o) (20 + b+ )
=0 =ttty O+ 6) + 7 (i) 2R+ 9)
— (B + G R 2k 4+ 9)]
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Now we choose a such that

4 + 2bk
(14+a) <— i
n
and then
4 2bk
n—+ + > 0.
14a 1+4a
In particular, we let
5+ 2bk
(4.22) 1 fa= 212
n

Then for R = R(b, k) large enough, one obtains

(- %) 0P ) - 22

na? R R >0

and

[n _ % _ <n2—;2 + %) (nF) <p0,t0>} -0,

This leads to a contradiction with (4.19). Hence from (4.17) and (4.22)

(nF) (1, p(1), R, b) <

(n+5 + 2bk)? 4 C
b R)’

2% 4 =
2(5 1 2bk) T

This implies

5 ) (n+ 5+ 2bk)? 4 C
b M-t
e (Vuf [+ bao) () < 5o TR

When we fix on the set = € B (R), we obtain

s .o (n+542bk) 4 C
Vo> +0f2 < 705 1 200 2k+ 7+ 5

on B (R).

This completes the proof.

Next we prove Theorem 1.7. The proof is similar to Theorem 1.3.

Proof of Theorem 1.7 :
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Proof. Firstly, we recall (Proposition 4.2) that

tnAy (nF)
L (nF)* — & (nF) + 2ty (Vyn, VoF) —2tn* (Vs f, V,F)

(4.23) +4t*n® ( > lfasl?+ 2 \fa5\2>
a,f=1 a,B=L a8
N

. [_2(1+a) (nF) — 2k — ﬂ tn |V f)? + 46302 foV (f) .

na?

v

Now we need to deal with the term 4bt33 foV (f) in (4.23).
(4.24)
403 n? foV (f)
— WS, 52_ [(Aasf3) 4 + (Aapfs)o + Aasfala + Aapfals]

e 1

=4t fo Y > > [(Aagfaa + Aspfaa) + (Aapals + Aspafs) + (Aasfafz + Aapfals)]

> —8btd? | fl ﬁz (| Aas| 150l + |Aagal | £3] + |Aas| 1£al 1£5])

a 1

In (4.24), by Young’s inequality and noting that t < 1, n < 1, we have following estimates:

a,f=1 a,B=1

—8bt*n* | fo| %; |Aag| | f5a] = ; — 81030 | fol | f5al

(4.25) > > (—4kabt®n® | faal” — 4kabtn* £2)
a,f=1
> —dkibn? (B2 f3) — Akabt®n? S | faal
a,f=1
and
—8bt3n? | fo ;1|Aa6,a|}f3| > —8kbt3n? ;1|f0|‘f5‘
> —8kbt3n? Z ( 2|f6|)
(4.26)

> —4k1bn2t3773 £2 — dlbnth S |f3|°
B=1

> —dkibn® (2202 f2) — 2kibn (tn |V, f]?)
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and
(4.27)
—80t3n? | fo %;1|Aag\!fa\\fﬁl > =8kt n? [ fol S (B 1fal® + 21517

a,B=1

=1

> — 4k b3 | fo (nZ |ful® + nﬂg |fﬁ|2)

> —dkibnt*n? | fo| Vo fI
> 2k L*ntPnP f2 Vo f|? — 2kint®n? |V f|?
= —2kbn (tn |be|2) (202 f2) — 2knt®n® |V, f .

Substitute estimates (4.25), (4.26), and (4.27) into (4.23), one obtains
tnAy (nF) > -5 (nF)* — E (nF) + 2ty (Vyn, VoF) —2tn*(Vyf, V,F)

n n 2
+4t*n? [(1—579171) S ot + 2 B|fa[_3|

CX,B:I O(,le,OL?é
+[n = 80kin® = %5 — (5 + 20k + 55) (nF)] 0* f3
+ {——251;“) (F) = 2k — 20 (1 4 b) k1 — g} iV, f|.

Next as shown in the same computation as in Proposition 4.3, at the maximal point
(p(t), 1)

0 > (5 —%)(F)* - (F)

n n 2
+4t%n? [(1 —bkin) X |fuslP+ X |fas] ]
a,Bf=1 a,f=1,0#0
+ [n — 8bkin? — Y& — (2 + 20%kyn + ) (nF)] t*n* 3
[ (F) = 2k =20 (1 ) ke — § = G| |V

na?

(4.28)

We claim at t = 1, there exists a small constant by = by(n, k, k1) > 0 such that for any

0<b<b

() (p(1), 1, R, b) < 20 +a)

4 C
2k +2n (1 -+ =
(k+ n( +b)k1+b+R)

if R is large enough which to be determined later. Here (1 + a) < 0 for some a to be chosen

later (say 1 +a = —2).
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We prove it by contradiction. Suppose not, that is
2

nF)(p(1), 1, R, b)z%<2k+2n(l+b)kl+%+%>.

Since (nF) (p(t), t, R, b) is continuous in the variable ¢ and (nF') (p(0), 0, R, b) =0, by

Intermediate-value theorem there exists a ¢y € (0, 1] such that

na?

(nF) (p (t0) , to, R, b>=m(%+zn(1+b)kl+§+%).

Now we apply (4.28) at the point (p (to) , %), denoted by (po,ty). We have

(4.29)
[z — %) F) (pos to) — %]
[ =) (i) (s 24 ) -

na? R

_|_
{3k @k + 2L+ 0k +3) = G [0 (k20 (L4 D)y + 4+ G) + by + 3] }

and

[n — 8bkyn? — % — (2% 4 20%kin + %5) (nF) (po, to)]

=n — 8bkyn? — % — (2 + 20%kin + &) (%) 2k+2n(1+b)ki+3+%)
s0) "7 8bkin? — 5 + (585 ) (Zx + 20%kan) (2k + 20 (1+ D)k + § + §)

2(1+a)

= {n = 8bkyn? + (HEEEEN 2k 4+ 20 (14 0) by + 3]}

a2 2n2 na
+ {0+ () + Q(Hﬁ;) 2k +2n (L +b) ks + 2 + €]}

+*’C("“ )(2k+2n(1+b)k1+ +£)

Now we choose a and b such that

n — 8bkin? + (HEEIE [k 4 20 (14 b) by + 4]

i+
(4.31) = 1 — b{8kn? — (L) o) 19 (14 b) k] — (Aenh)} 4 4

> 0.

This can be done by choosing
4
1 < ——
(1+a)<—
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and then choose a small by = by(n, k, k1) > 0 such that for any b < by

1+ a?bn’k, 4a’n’k, 4

n — b{8kn* — ( 11a) V2K +2n (1 +b) k] — ( T )}+1+a >0
and
(1 —bkin) > 0.
In particular, we let
l4+a= —%

Then for any 0 < b < by, one obtains

(- 5) orrman -] o

na? R
and

bC 2b bC
{n — 8bkyn® — i (W + 20 k1n + f) (nF) (pg,t()):| >0

for R = R(b, k, k1) large enough. This leads to a contradiction with (4.28). Hence

2 2 C

F) @, p (1), By b) < =7 b R

This implies for 1 + a = _%

2 (n +5)?
 max (IVof* +bnfg) () < =—

2 C
(k+n(1+b)k1+g+ﬁ>.

When we fix on the set = € B (R), we obtain

n+5)2
|vbfr2+bf3<( )

2 C
<k+n(1+b)k1+g+ﬁ)

on B (R). Note that the preceding computation is not valid if nF' is not smooth at xy. In
this case, we may use a trick due to E. Calabi ( see [W] for details).

This completes the proof of Theorem 1.7.
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