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Abstract

In this paper, we propose a new stabilized linear finite element method for solving reaction-convection-diffusion
equations with arbitrary magnitudes of reaction and diffusion. The key feature of the new method is that the test
function in the stabilization term is taken in the adjoint-operator-like form −ε∆v− (a ·∇v)/γ+σv, where the parameter
γ is appropriately designed to adjust the convection strength to achieve high accuracy and stability. We derive the
stability estimates for the finite element solutions and establish the explicit dependence of L2 and H1 error bounds
on the diffusivity, modulus of the convection field, reaction coefficient and the mesh size. The analysis shows that
the proposed method is suitable for a wide range of mesh Péclet numbers and mesh Damköhler numbers. More
specifically, if the diffusivity ε is sufficiently small with ε < ‖a‖h and the reaction coefficient σ is large enough
such that ‖a‖ < σh, then the method exhibits optimal convergence rates in both L2 and H1 norms. However, for a
small reaction coefficient satisfying ‖a‖ ≥ σh, the method behaves like the well-known streamline upwind/Petrov-
Galerkin formulation of Brooks and Hughes. Several numerical examples exhibiting boundary or interior layers are
given to demonstrate the high performance of the proposed method. Moreover, we apply the developed method to
time-dependent reaction-convection-diffusion problems and simulation results show the efficiency of the approach.
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1. Introduction

In this paper, we are interested in the stabilized linear finite element approximations to the following Dirichlet bound-

ary value problem for the reaction-convection-diffusion equation:{
−ε∆u + a · ∇u + σu = f in Ω,

u = 0 on ∂Ω,
(1)

where Ω ⊂ R2 is an open bounded convex polygonal domain with boundary ∂Ω, u is the physical quantity of inter-

est (e.g., temperature in heat conduction or concentration of some chemical substance), 0 < ε ≤ 1 is the constant

diffusivity, a ∈ (H1(Ω) ∩ L∞(Ω))2 is the given convection (velocity) field satisfying ∇ · a = 0 in Ω, σ ≥ 0 is the

constant reaction coefficient, and f ∈ L2(Ω) is the given source function. It is well known that when the diffusivity

ε is relatively small compared with the modulus of the convection field a or the reaction coefficient σ, the solution u

of problem (1) may exhibit localized phenomena such as boundary and interior layers [1, 2, 3, 4, 5]. Boundary and
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interior layers are some narrow regions in the immediate vicinity of the domain boundary ∂Ω or in the interior of the

domain Ω where the solution has large gradients. It is often difficult to numerically resolve the solution within the

neighborhood of the layer regions, and the conventional numerical methods usually produce low accuracy or suffer

from instability [1, 2, 3, 4, 5]. For instance, the standard Galerkin method using continuous piecewise linear (P1)

or bilinear (Q1) elements performs very poorly since large spurious oscillations exhibit not only in the layer regions

but also in other regions. Therefore, in the past three decades, a large class of the so-called stabilized finite element

methods (FEMs) has been intensively developed to overcome this difficulty, see, e.g., [6, 7, 8, 9, 10, 11, 12, 13]. The

stabilized FEMs are formed by adding to the standard Galerkin method some consistent variational terms, relating to

the residuals of the partial differential equations, which involve some mesh-dependent stabilization parameters. A ro-

bust approach for the derivation of such a stabilized FEM is motivated by the bubble-enriched method [14, 15, 16, 17]

combined with the procedure of static condensation [18]. It is now clear that the stabilization parameters play the key

roles in the stabilization method. To a great degree, they account for why those additional stabilization terms not only

can enhance the numerical stability but also can improve the accuracy in the finite element solutions.

In this paper, we will focus on developing efficient stabilized FEMs for solving the reaction-convection-diffusion

problem (1). First, let us give a brief review of some previous works, which are closely related with the new method

that we will introduce in this paper. In [18], Franca and Farhat proposed a so-called unusual stabilized linear FEM

for problem (1) with vanishing convection field a. They proved that the error estimate is optimal in H1-seminorm

independent of the values of ε and σ. In addition, for ε ≤ σh2
T for all elements, optimal order in L2 norm can also

be obtained without using the duality argument. They also considered the problem (1) including the convection term

a · ∇u and suggested a stabilization parameter to deal with all the three effects from reaction, convection and diffusion

simultaneously, but no analysis is given therein. In [19], Franca and Valentin constructed a new stabilization param-

eter for the presence of the convection term to improve the accuracy. The improvement is also justified therein from

an error analysis. Some further results have also been achieved by Duan [20]. In [21], Hauke, Sangalli and Doweidar

proposed an efficient stabilized FEM for solving the reaction-convection-diffusion problems. Their method combines

two types of stabilization integrals, namely an adjoint stabilization and a gradient adjoint stabilization, and two stabi-

lization parameters are involved therein. These two parameters are chosen based on imposing one-dimensional nodal

exactness. More recently, we devised a new stabilized FEM for problem (1) in [22], with emphasis on the case of small

diffusivity ε and large reaction coefficient σ. As usual, we employed the continuous piecewise P1 (or Q1) elements

and used the residual of the differential equation in problem (1) to define the stabilization term, but in which a novel

stabilization parameter is carefully designed. The main differences from the stabilization methods proposed in [18]

and [19] are that the stabilization parameter is deterministic and explicit, without the comparisons among the three

effect-terms: reaction, convection and diffusion; the stabilization parameter is always the same no matter if the con-

vection a is present or not in problem (1); and the test function involved in the stabilization term is taken in the form

−ε∆v+σv, instead of the adjoint-operator form −ε∆v−a·∇v+σv in [18] and [19]. The stabilized linear FEM proposed

in [22] has been proved to be very effective for problem (1) with a small diffusivity ε and a large reaction coefficient σ.

In this paper, we will propose a new stabilized linear FEM for solving reaction-convection-diffusion equations

with arbitrary magnitudes of reaction and diffusion. The key feature of the new method is that the test function in
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the stabilization term is taken in the adjoint-operator-like form −ε∆v − (a · ∇v)/γ + σv, where the stabilization pa-

rameter γ will be appropriately designed to adjust the convection strength to achieve high accuracy and stability. We

will explicitly establish the dependence of L2 and H1 error bounds on the diffusivity ε, modulus of the convection

field, given as ‖a‖ := ess sup(x,y)∈Ω(a2
1(x, y) + a2

2(x, y))1/2, reaction coefficient σ and the mesh size h. Our analysis

shows that the proposed method is suitable for a wide range of mesh Péclet numbers, defined as Peh := ‖a‖h/(2ε),

and mesh Damköhler numbers, given by Dah := σh/‖a‖. More specifically, if the diffusivity ε is sufficiently small

with ε < ‖a‖h (i.e., Peh > 1/2) and the reaction coefficient σ is large enough such that ‖a‖ < σh (i.e., Dah > 1),

then the proposed method exhibits optimal convergence rates in both L2 and H1 norms, with respect to the mesh

size as well as the regularity of the exact solution; see Remark 3 in Section 3 below. On the other hand, for a small

reaction coefficient satisfying ‖a‖ ≥ σh (i.e., Dah ≤ 1), the proposed method behaves like the well-known streamline

upwind/Petrov-Galerkin (SUPG) formulation of Brooks and Hughes [6]. We will present several numerical examples

involving boundary or interior layers to demonstrate the high performance of the proposed stabilized linear FEM.

The numerical results obtained are also compared with those of our previous stabilized FEM [22]. Strong numerical

evidences indicate that the proposed stabilization method is more stable than that of [22]. Moreover, we will apply

the developed method to the time-dependent reaction-convection-diffusion problems and numerical results will be

reported to illustrate the effectiveness of the proposed approach. Finally, we remark that the present new method can

work well on unstructured adaptive meshes, provided the stabilization parameters are directly redefined element-by-

element (cf. Remark 1 in Section 2). This expectation will be confirmed by numerical experiments.

The remainder of this paper is organized as follows. In Section 2, we introduce the new stabilized linear FEM and

establish the stability estimates for the finite element solutions. In Section 3, error estimates in L2 and H1 norms are

derived, where the dependence of error bounds on the diffusivity, modulus of the convection field, reaction coefficient

and the mesh size are given. In Section 4, several numerical examples are presented to illustrate the effectiveness of

the proposed method. In Section 5, we apply the developed method to time-dependent reaction-convection-diffusion

problems. Finally, a summary and conclusions are drawn in Section 6.

2. The stabilized linear finite element method and its stability estimates

Throughout this paper, we will use the standard notation and definitions for the Sobolev spaces Hm(Ω) for nonnegative

integers m (cf. [1, 23, 24, 25]). The associated inner product and norm are denoted by (·, ·)m and ‖ · ‖m, respectively.

As usual, L2(Ω) = H0(Ω) and

H1
0(Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

Let {Th}0<h≤1 be a family of triangulations of Ω. A triangulation Th of Ω into elements T consisting of triangles or

quadrilaterals is performed in the usual way; the intersection of any two elements is a vertex, or an edge or empty,

and Ω = ∪T∈Th T . For each triangulation the subscript h ∈ (0, 1] refers to the level of refinement of the triangulation.

In particular, the mesh size h is defined as h = max{hT : T ∈ Th}, where hT denotes the diameter of element T . We

always assume that the family {Th}0<h≤1 of triangulations is shape regular [1, 23, 24]. Moreover, let (·, ·)m,T and ‖ · ‖m,T
denote the associated inner product and norm in Hm(T ), respectively, where T is a given element in Th.
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LetV1 ⊆ H1
0(Ω) be the continuous piecewise linear (P1) or bilinear (Q1) finite element space over the triangulation

Th. The standard interpolation theory [23, 24] ensures that if u ∈ H2(Ω) ∩ H1
0(Ω) then there exists an interpolation

Ihu ∈ V1 such that

‖u − Ihu‖0 + h‖u − Ihu‖1 + h2‖u − Ihu‖2 ≤ Ch2‖u‖2, (2)

where C is a positive constant independent of h. In this paper, we use C to denote a generic positive constant, possibly

different at different occurrences, which is always independent of h and other parameters introduced.

We now propose the following new stabilized linear FEM for approximating problem (1):

Find uh ∈ V1 such that B(uh, vh) = L(vh) ∀ vh ∈ V1, (3)

where the bilinear form B(·, ·) and the linear form L(·) are respectively defined as

B(u, v) := ε(∇u,∇v)0 + (a · ∇u, v)0 + σ(u, v)0 −
∑
T∈Th

τ
(
−ε∆u + a · ∇u + σu,−ε∆v −

a · ∇v
γ

+ σv
)

0,T
, (4)

L(v) := ( f , v)0 −
∑
T∈Th

τ
(

f ,−ε∆v −
a · ∇v
γ

+ σv
)

0,T
, (5)

and the stabilization parameters τ and γ are given by

τ =
h2ξ2

σh2ξ1 + 8ε + 2‖a‖h
, (6)

γ =


1 if ‖a‖ ≥ σh,

max
{ h2 + 2‖a‖h/σ

h2(ξ1 − 1) + 8ε/σ
,

h2(ξ1 − 1) + 8ε/σ
h2 + 2‖a‖h/σ

}
if ‖a‖ < σh,

(7)

with ‖a‖ := ess sup(x,y)∈Ω

√
a2

1(x, y) + a2
2(x, y),

ξ1 :=


1 if σ = 0,

max
{
1,

8ε
σh2

}
if σ , 0,

and ξ2 :=

 1 if ‖a‖ ≥ σh,

1 +
2‖a‖
σh

if ‖a‖ < σh.
(8)

Notice that τ, γ > 0 and ξ1, ξ2 ≥ 1. Here, we emphasize that the test function in the stabilization term is taken in the

adjoint-operator-like form “−ε∆v− (a ·∇v)/γ+σv”, which makes us able to adjust the convection strength through the

stabilization parameter γ to achieve high accuracy and stability of the method (3). This feature is the main difference

from the previous stabilization methods studied in [18, 19, 20, 21, 22]. We also remark that in (4) and (5), we have

∆vh|T = 0 for all vh ∈ V1 and T ∈ Th, since each vh is a piecewise linear (bilinear) function. However, we still retain

the terms therein for the clarity of presentation.

We have the following stability estimate of the stabilized linear FEM (3):

Lemma 1. The stability estimate holds: for all vh ∈ V1, we have

B(vh, vh) =


ε‖∇vh‖

2
0 +

σ2h2(ξ1 − 1) + 8σε + 2σ‖a‖h
σh2ξ1 + 8ε + 2‖a‖h

‖vh‖
2
0 +

h2

σh2ξ1 + 8ε + 2‖a‖h
‖a · ∇vh‖

2
0 if ‖a‖ ≥ σh,

ε‖∇vh‖
2
0 +

σ2h2(ξ1 − 1) + 8σε
σh2ξ1 + 8ε + 2‖a‖h

‖vh‖
2
0 +

h2 + 2‖a‖h/σ
(σh2ξ1 + 8ε + 2‖a‖h)γ

‖a · ∇vh‖
2
0 if ‖a‖ < σh.

(9)
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Proof. First, we note that from Green’s formula [25] with the fact that ∇ · a = 0 in Ω, we have (a · ∇vh, vh)0 = 0 for all

vh ∈ V1. If σ = 0, then ξ1 = 1, ξ2 = 1 and γ = 1 and the first part in (9) can be immediately obtained. We consider

the case of σ > 0. From (4) and (6), we have

B(vh, vh) = ε‖∇vh‖
2
0 + (a · ∇vh, vh)0 + σ‖vh‖

2
0 −

∑
T∈Th

τ
(
a · ∇vh + σvh,−

a · ∇vh

γ
+ σvh

)
0,T

= ε‖∇vh‖
2
0 +

σ2h2(ξ1 − ξ2) + 8σε + 2σ‖a‖h
σh2ξ1 + 8ε + 2‖a‖h

∑
T∈Th

‖vh‖
2
0,T +

h2ξ2

(σh2ξ1 + 8ε + 2‖a‖h)γ

∑
T∈Th

‖a · ∇vh‖
2
0,T

−
σh2ξ2

σh2ξ1 + 8ε + 2‖a‖h

∑
T∈Th

(a · ∇vh, vh)0,T +
σh2ξ2

(σh2ξ1 + 8ε + 2‖a‖h)γ

∑
T∈Th

(vh, a · ∇vh)0,T ,

which, combining with ∑
T∈Th

(a · ∇vh, vh)0,T =
∑
T∈Th

(vh, a · ∇vh)0,T = (a · ∇vh, vh)0 = 0

and (7), (8), easily implies (9). This completes the proof. 2

The stability estimate (9) ensures the unique solvability of the stabilized linear FEM (3). We note that the stabi-

lization parameters τ and γ given in (6) and (7) are defined globally, which may be not suitable for unstructured and

adaptive meshes. However, if the stabilization parameters are directly redefined element-by-element, as we will see

in Remark 1 below, the resulting stabilized linear FEM can work very well for adaptive computations; see numerical

results reported in Section 4 and Section 5. This advantage makes the newly proposed method different from that of

our previous method [22]. We also remark that the stabilized linear FEM (3) is a consistent formulation, since the

equation in (3) is satisfied when the finite element solution uh is replaced by the exact solution u of problem (1). As a

result, we have the following orthogonality property:

B(u − uh, vh) = 0 ∀ vh ∈ V1, (10)

which plays an important role in the error estimates of the stabilized linear FEM (3) given in Section 3.

Remark 1. For applying the stabilized linear FEM (3) to the computations on unstructured and adaptive meshes, we

therefore define the following elementwise stabilization parameters:

τT =
h2

T ξ2T

σh2
T ξ1T + 8ε + 2‖a‖T hT

, ∀ T ∈ Th, (11)

γT =


1 if ‖a‖T ≥ σhT ,

max
{ h2

T + 2‖a‖T hT /σ

h2
T (ξ1T − 1) + 8ε/σ

,
h2

T (ξ1T − 1) + 8ε/σ

h2
T + 2‖a‖T hT /σ

}
if ‖a‖T < σhT ,

∀ T ∈ Th, (12)

where ‖a‖T := ess sup(x,y)∈T

√
a2

1(x, y) + a2
2(x, y),

ξ1T :=


1 if σ = 0,

max
{
1,

8ε
σh2

T

}
if σ , 0, and ξ2T :=


1 if ‖a‖T ≥ σhT ,

1 +
2‖a‖T
σhT

if ‖a‖T < σhT ,
∀ T ∈ Th.

Now, if the global parameters τ and γ in (4) and (5) are replaced by the elementwise defined stabilization parameters

τT and γT for all T ∈ Th, then we can prove the following stability estimate: Assume that σ = 0 or the diffusivity ε is
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sufficiently small such that ε < |a‖T hT and the reaction coefficient σ is large enough with ‖a‖T < σhT for all T ∈ Th.

Then we have

B(vh, vh) ≥ ε‖∇vh‖
2
0 ∀ vh ∈ V1. (13)

The stability estimate (13) is somewhat weaker than that in Lemma 1. Its proof is based on Hölder’s inequality and

Young’s inequality with direct computations. We omit the details here.

Remark 2 (Duan-Hsieh-Tan-Yang stabilized linear FEM). In our previous work [22], we have proposed the following

stabilization method using continuous piecewise P1 (or Q1) elements:

Find uh ∈ V1 such that BDHTY (uh, vh) = LDHTY (vh) ∀ vh ∈ V1, (14)

where the bilinear form BDHTY (·, ·) and the linear form LDHTY (·) are, respectively, defined as follows:

BDHTY (u, v) := ε(∇u,∇v)0 + (a · ∇u, v)0 + σ(u, v)0 −
∑
T∈Th

τ
(
−ε∆u + a · ∇u + σu,−ε∆v + σv

)
0,T
,

LDHTY (v) := ( f , v)0 −
∑
T∈Th

τ
(

f ,−ε∆v + σv
)

0,T
,

and the single stabilization parameter τ is globally defined by

τ =
h2

σh2 + 6ε
.

The most important feature of the method is that the test function in the stabilization term is taken in the form

−ε∆v + σv, instead of the adjoint-operator form −ε∆v − a · ∇v + σv in [18] and [19]. This stabilized linear FEM has

been shown to be very effective for problems with a small diffusivity ε and a large reaction coefficient σ. In adaptive

computations, the stabilization parameter τ in the method (14) should be directly replaced by its elementwise version,

τT =
h2

T

σh2
T + 6ε

∀ T ∈ Th. (15)

However, with this elementwise defined stabilization parameter (15), it seems not easy to derive a stability estimate

similar to (13). Notice that when the diffusivity ε → 0+ and the reaction coefficient σ → ∞, we have γT → ∞ for

all T ∈ Th and then methods (3) and (14) have the almost identical test functions in the stabilization terms, since

−ε∆v− (a · ∇v)/γT +σv ≈ −ε∆v +σv for all v ∈ V1. This gives us a clue why γT plays an important role in the newly

proposed stabilized linear FEM for obtaining stability estimate (13) in adaptive computations.

3. Error estimates of the stabilized linear FEM

We now proceed to estimate the errors of the finite element solution uh of the newly proposed stabilized linear FEM

(3). We will explicitly establish the dependence of L2 and H1 error bounds on the diffusivity ε, modulus of the con-

vection field ‖a‖, reaction coefficient σ and the mesh size h. The main results can be stated as follows:
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Theorem 2. Let u ∈ H1
0(Ω)∩H2(Ω) be the solution of problem (1) and uh ∈ V1 ⊆ H1

0(Ω) be the stabilized linear finite

element solution defined by (3). Then there exists a constant C > 0 independent of ε, a, σ and h such that

‖∇u − ∇uh‖0 ≤


C

h + h3/2

√
‖a‖
ε

 ‖u‖2 if ‖a‖ ≥ σh,

Ch ‖u‖2 if ‖a‖ < σh,

(16)

‖u − uh‖0 ≤ C
(
h2 + h

√
ε

σ

)
‖u‖2 if ‖a‖ < σh. (17)

Proof. Let η = u − Ihu and eh = uh − Ihu ∈ V1, where Ihu is the interpolant of u in V1 with the approximation

property (2). Firstly, we consider the case of ‖a‖ ≥ σh. By virtue of the coercivity estimate (9) and the orthogonality

property (10), we have

ε‖∇eh‖
2
0 +

σ2h2(ξ1 − 1) + 8σε + 2σ‖a‖h
σh2ξ1 + 8ε + 2‖a‖h

‖eh‖
2
0 +

h2

σh2ξ1 + 8ε + 2‖a‖h
‖a · ∇eh‖

2
0

= B(eh, eh) = B(uh − Ihu, eh) = B(u − Ihu + uh − u, eh)

= B(η, eh)

= ε(∇η,∇eh)0 + (a · ∇η, eh)0 + σ(η, eh)0 −
∑
T∈Th

h2

σh2ξ1 + 8ε + 2‖a‖h

(
−ε∆u + a · ∇η + ση,−

a · ∇eh

γ
+ σeh

)
0,T

= ε(∇η,∇eh)0 +
σh2(ξ1 − 1) + 8ε + 2‖a‖h
σh2ξ1 + 8ε + 2‖a‖h

(a · ∇η, eh)0 +
σ2h2(ξ1 − 1) + 8σε + 2σ‖a‖h

σh2ξ1 + 8ε + 2‖a‖h
(η, eh)0

+
h2εσ

σh2ξ1 + 8ε + 2‖a‖h
(∆u, eh)0 +

h2

σh2ξ1 + 8ε + 2‖a‖h

(
−ε∆u + a · ∇η + ση,

a · ∇eh

γ

)
0

:= I1 + I2 + I3 + I4 + I5,

where note that γ = 1 from (7). We now estimate each term Ii as follows. Assume that σ > 0. Let α be a positive

number that will be determined later. Then from Hölder’s inequality and Young’s inequality with Green’s formula,

we have

I1 ≤ ε

(
α‖∇eh‖

2
0 +

1
α
‖∇η‖20

)
,

I2 = −
σh2(ξ1 − 1) + 8ε + 2‖a‖h
σh2ξ1 + 8ε + 2‖a‖h

(η, a · ∇eh)0

≤
h2

σh2ξ1 + 8ε + 2‖a‖h
α‖a · ∇eh‖

2
0 +

(σh2(ξ1 − 1) + 8ε + 2‖a‖h)2

(σh2ξ1 + 8ε + 2‖a‖h)h2

1
α
‖η‖20,

I3 ≤
σ2h2(ξ1 − 1) + 8σε + 2σ‖a‖h

σh2ξ1 + 8ε + 2‖a‖h

(
α‖eh‖

2
0 +

1
α
‖η‖20

)
,

I4 ≤
σ2h2(ξ1 − 1) + 8σε + 2σ‖a‖h

σh2ξ1 + 8ε + 2‖a‖h
α‖eh‖

2
0 +

h4ε2σ2

(σh2ξ1 + 8ε + 2‖a‖h)(σ2h2(ξ1 − 1) + 8σε + 2σ‖a‖h)
1
α
‖∆u‖20,

I5 ≤
h2

σh2ξ1 + 8ε + 2‖a‖h

(
3α‖a · ∇eh‖

2
0 +

1
α

(
ε2‖∆u‖20 + ‖a · ∇η‖20 + σ2‖η‖20

))
.
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Taking α = 1/5 with the approximation property (2), we obtain

ε‖∇eh‖
2
0 +

σ2h2(ξ1 − 1) + 8σε + 2σ‖a‖h
σh2ξ1 + 8ε + 2‖a‖h

‖eh‖
2
0 +

h2

σh2ξ1 + 8ε + 2‖a‖h
‖a · ∇eh‖

2
0

≤ C
{
ε‖∇η‖20 +

(
σh2(ξ1 − 1) + 8ε + 2‖a‖h

)2(
σh2ξ1 + 8ε + 2‖a‖h

)
h2
‖η‖20 +

σ2h2(ξ1 − 1) + 8σε + 2σ‖a‖h
σh2ξ1 + 8ε + 2‖a‖h

‖η‖20

+
h4ε2σ2(

σh2ξ1 + 8ε + 2‖a‖h
)(
σ2h2(ξ1 − 1) + 8σε + 2σ‖a‖h

) ‖∆u‖20

+
h2

σh2ξ1 + 8ε + 2‖a‖h

(
ε2‖∆u‖20 + ‖a · ∇η‖20 + σ2‖η‖20

)}

≤ C
{
εh2 +

(
σh2(ξ1 − 1) + 8ε + 2‖a‖h

)2(
σh2ξ1 + 8ε + 2‖a‖h

)
h2

h4 +
σ2h2(ξ1 − 1) + 8σε + 2σ‖a‖h

σh2ξ1 + 8ε + 2‖a‖h
h4

+
h4ε2σ2(

σh2ξ1 + 8ε + 2‖a‖h
)(
σ2h2(ξ1 − 1) + 8σε + 2σ‖a‖h

)
+

h2

σh2ξ1 + 8ε + 2‖a‖h

(
ε2 + ‖a‖2h2 + σ2h4

)}
‖u‖22, (18)

which implies

‖∇eh‖
2
0 ≤ C

(
h2 +

‖a‖
ε

h3 +
σ

ε
h4

)
‖u‖22 ≤ C

(
h2 +

‖a‖
ε

h3
)
‖u‖22 if ‖a‖ ≥ σh > 0. (19)

Now, combining the triangle inequality

‖∇u − ∇uh‖0 ≤ ‖∇u − ∇(Ihu)‖0 + ‖∇eh‖0

with (19) and the interpolation property (2), we complete the proof of the first part of (16) for ‖a‖ ≥ σh > 0. We

remark that for the case of σ = 0, one can check that the first part of (16) still holds since I4 = 0 and then the proof

can be further simplified.

Secondly, we consider the other case, ‖a‖ < σh. Again, utilizing the coercivity estimate (9) and the orthogonality

property (10), we have

ε‖∇eh‖
2
0 +

σ2h2(ξ1 − 1) + 8σε
σh2ξ1 + 8ε + 2‖a‖h

‖eh‖
2
0 +

h2 + 2‖a‖h/σ
(σh2ξ1 + 8ε + 2‖a‖h)γ

‖a · ∇eh‖
2
0

= B(eh, eh) = B(uh − Ihu, eh) = B(u − Ihu + uh − u, eh)

= B(η, eh)

= ε(∇η,∇eh)0 + (a · ∇η, eh)0 + σ(η, eh)0

−
∑
T∈Th

h2 + 2‖a‖h/σ
σh2ξ1 + 8ε + 2‖a‖h

(
−ε∆u + a · ∇η + ση,−

a · ∇eh

γ
+ σeh

)
0,T

= ε(∇η,∇eh)0 +
σh2(ξ1 − 1) + 8ε
σh2ξ1 + 8ε + 2‖a‖h

(a · ∇η, eh)0 +
σ2h2(ξ1 − 1) + 8σε
σh2ξ1 + 8ε + 2‖a‖h

(η, eh)0

+
h2 + 2‖a‖h/σ

σh2ξ1 + 8ε + 2‖a‖h
εσ(∆u, eh)0 +

h2 + 2‖a‖h/σ
(σh2ξ1 + 8ε + 2‖a‖h)γ

(−ε∆u + a · ∇η + ση, a · ∇eh)0

:= J1 + J2 + J3 + J4 + J5.
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Similar to the treatment of above case, we estimate each term Ji as follows. Let β be a positive number that will be

determined later. By virtue of Hölder’s inequality and Young’s inequality with the definition (7) of the parameter γ,

we have the following estimates:

J1 ≤ ε

(
β‖∇eh‖

2
0 +

1
β
‖∇η‖20

)
,

J2 ≤
σh2(ξ1 − 1) + 8ε
σh2ξ1 + 8ε + 2‖a‖h

(
βσ‖eh‖

2
0 +

1
βσ
‖a · ∇η‖20

)
,

J3 ≤
σ2h2(ξ1 − 1) + 8σε
σh2ξ1 + 8ε + 2‖a‖h

(
β‖eh‖

2
0 +

1
β
‖η‖20

)
,

J4 ≤
σ2h2(ξ1 − 1) + 8σε
σh2ξ1 + 8ε + 2‖a‖h

β‖eh‖
2
0 +

(
h2 + 2‖a‖h/σ

)(
h2 + 2‖a‖h/σ

)
ε2σ2(

σh2ξ1 + 8ε + 2‖a‖h
)(
σ2h2(ξ1 − 1) + 8σε

) 1
β
‖∆u‖20,

J5 ≤
h2 + 2‖a‖h/σ

(σh2ξ1 + 8ε + 2‖a‖h)γ

(
3β‖a · ∇eh‖

2
0 +

1
β

(
ε2‖∆u‖20 + ‖a · ∇η‖20 + σ2‖η‖20

))

≤
h2 + 2‖a‖h/σ

(σh2ξ1 + 8ε + 2‖a‖h)γ
3β‖a · ∇eh‖

2
0 +

(
h2 + 2‖a‖h/σ

)(
h2 + 2‖a‖2h/σ

)
ε2σ2(

σh2ξ1 + 8ε + 2‖a‖h
)(
σ2h2(ξ1 − 1) + 8σε

) (1
β

)
‖∆u‖20

+
h2(ξ1 − 1) + 8ε/σ
σh2ξ1 + 8ε + 2‖a‖h

(1
β

)
‖a · ∇η‖20 +

σ2h2(ξ1 − 1) + 8σε
σh2ξ1 + 8ε + 2‖a‖h

(1
β

)
‖η‖20.

Taking β = 1/4 with the interpolation property (2), we obtain

ε‖∇eh‖
2
0 +

σ2h2(ξ1 − 1) + 8σε
σh2ξ1 + 8ε + 2‖a‖h

‖eh‖
2
0 +

h2 + 2‖a‖h/σ
(σh2

T ξ1 + 8ε + 2‖a‖h)γ
‖a · ∇eh‖

2
0

≤ C
{
ε‖∇η‖20 +

h2(ξ1 − 1) + 8ε/σ
σh2ξ1 + 8ε + 2‖a‖h

‖a‖2‖∇η‖20 +
σ2h2(ξ1 − 1) + 8σε
σh2ξ1 + 8ε + 2‖a‖h

‖η‖20

+

(
h2 + 2‖a‖h/σ

)(
h2 + 2‖a‖h/σ

)
ε2σ2(

σh2ξ1 + 8ε + 2‖a‖h
)(
σ2h2(ξ1 − 1) + 8σε

)‖∆u‖20

}

≤ C
{
εh2 +

h2(ξ1 − 1) + 8ε/σ
σh2ξ1 + 8ε + 2‖a‖h

‖a‖2h2 +
σ2h2(ξ1 − 1) + 8σε
σh2ξ1 + 8ε + 2‖a‖h

h4

+

(
h2 + 2‖a‖h/σ

)(
h2 + 2‖a‖h/σ

)
ε2σ2(

σh2ξ1 + 8ε + 2‖a‖h
)(
σ2h2(ξ1 − 1) + 8σε

)}‖u‖22,
which implies

‖∇eh‖
2
0 ≤ C

(
h2 +

‖a‖
σ

h
)
‖u‖22 ≤ Ch2‖u‖22 if ‖a‖ < σh, (20)

‖eh‖
2
0 ≤ C

(
h4 +

‖a‖
σ

h3 +
‖a‖2

σ2 h2 +
ε

σ
h2

)
‖u‖22 ≤ C

(
h4 +

ε

σ
h2

)
‖u‖22 if ‖a‖ < σh. (21)

Finally, combining the triangle inequality with (20), (21) and the interpolation property (2) yields the conclusion. This

completes the proof. 2

Remark 3. We define the mesh Péclet number as Peh := ‖a‖h/(2ε) and the mesh Damköhler number as Dah :=

σh/‖a‖. Theorem 2 shows that if Peh > 1/2 and Dah > 1, then the second part of (16) and (17) can be respectively
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rewritten as

‖∇u − ∇uh‖0 ≤ Ch‖u‖2 if Dah > 1, (22)

‖u − uh‖0 ≤ Ch2‖u‖2 if Dah > 1 and 2Peh > 1, (23)

which indicates that the proposed stabilized linear FEM (3) achieves optimal convergence rates in H1 norm and also

in L2 norm without using the duality argument, with respect to the mesh size h as well as the regularity of the exact

solution u ∈ H2(Ω). On the other hand, for a small mesh Damköhler number Dah ≤ 1, the errors of the stabilized finite

element solutions generated by the proposed method behave like the well-known streamline upwind/Petrov-Galerkin

formulation of Brooks and Hughes [6]. More precisely, from the first part of (16) we have

‖∇u − ∇uh‖0 ≤ C

h + h3/2

√
‖a‖
ε

 ‖u‖2 if Dah ≤ 1. (24)

Remark 4. With a close inspection of (18) in the proof of Theorem 2, we can also prove that

‖eh‖
2
0 ≤ C

(
h4 +

ε

σ
h2 +

‖a‖
σ

h3 +
σ

‖a‖
h5

)
‖u‖22 ≤ C

(
h4 +

ε

σ
h2 +

‖a‖
σ

h3
)
‖u‖22 if ‖a‖ ≥ σh > 0.

Using the triangle inequality,

‖u − uh‖0 ≤ ‖u − Ihu‖0 + ‖eh‖0,

and the interpolation property (2), we obtain

‖u − uh‖0 ≤ C

h2 + h

√
ε + ‖a‖h

σ

 ‖u‖2 if ‖a‖ ≥ σh > 0. (25)

Now, using the Poincaré-Friedrichs inequality and putting (24) and (25) together leads to

‖u − uh‖0 ≤ C min

h + h3/2

√
‖a‖
ε
, h2 + h

√
ε + ‖a‖h

σ

 ‖u‖2 if ‖a‖ ≥ σh > 0. (26)

This indicates that when 0 < σh ≤ ‖a‖, the behavior of the L2 errors is determined by the comparisons among the

diffusivity ε, the reaction coefficient σ, and the modulus of the convection field ‖a‖.

4. Numerical experiments

In this section, we will perform numerical experiments to illustrate the obtained theoretical results. We will consider

three test problems that are frequently used in the literature. The performance of the newly proposed stabilized linear

FEM (3) will be evaluated against the results from the previous Duan-Hsieh-Tan-Yang method (14), which is briefly

described in Remark 2 in Section 2. By comparison, we can find that the accuracy of both methods is comparable,

while the newly proposed method (3) seems a little more stable than the previous method (14).

Example 1. This example is taken from [22]. We will study the convergence behavior of the proposed stabilized

linear FEM (3) by a problem with an exact solution. Let Ω = (0, 1) × (0, 1) and the convection field a = (a1, a2)> =

(1/2,
√

3/2)>. We assume that the exact solution u of problem (1) is given by

u(x, y) =

 x2

2a1
+
εx
a2

1

+
( 1
2a1

+
ε

a2
1

)e
−a1
ε − e

−a1
ε (1−x)

1 − e
−a1
ε

  y2

2a2
+
εy
a2

2

+
( 1
2a2

+
ε

a2
2

)e
−a2
ε − e

−a2
ε (1−y)

1 − e
−a2
ε

 .
10



Substituting the solution u into problem (1) with various ε and σ, we can obtain the source function f . Notice that the

solution is dependent on the diffusivity ε while it is independent of the reaction coefficient σ, and when the diffusivity

ε is getting small, a strong boundary layer appears near the right up corner; see Figure 1.
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Figure 1. Elevation and contours of the exact solution u of Example 1 with ε = 10−4.

We consider the stabilized linear finite element approximations to the problem on uniform square meshes and

uniform triangular meshes. A uniform triangular mesh is formed by dividing each square, with side-length h∗ in a

uniform square mesh, into two triangles by drawing a diagonal line from the left-down corner to the right-up corner.

In the computations, we use the continuous piecewise P1 elements for uniform triangular meshes while the contin-

uous piecewise Q1 elements for uniform square meshes. We consider the values of ε = 1, 0.1, 0.01, σ = 10` for

` = −2,−1, · · · , 4 and compare the error behavior of the solutions generated by the new stabilized FEM (3) and the

Duan-Hsieh-Tan-Yang method (14). It is worth to point out that, under the presence of convection, a . 0, a better

choice of the element parameter h to yield better numerical results is defined as the largest diameter of element in the

direction of a; see [19]. Thus, in this example, we take the mesh parameter as h =
√

4/3h∗, since a = (1/2,
√

3/2)>.

The numerical raw data for P1 elements are reported in Table 1 and Table 2, from which we may observe that the

asymptotic convergence orders of both stabilized linear FEMs (3) and (14) are optimal in H1 norm and L2 norm.

Moreover, the accuracy of the numerical results of both methods is comparable, while the present stabilized linear

FEM (3) seems more suitable for problems with a larger mesh Péclet number and a larger mesh Damköhler number.

This observation is consistent with the error estimates (22) and (23).

Next, we consider the smaller diffusivity ε = 10−4. In this case, a strong boundary layer appears near the upper

right corner. Numerical results using Q1 elements with σ = 102, 103, 104, h∗ = 1/64 and h =
√

4/3h∗ are displayed

in Figure 2. From the numerical results, we may observe that when σ is not too large, say σ = 102, a little bit of

oscillation still occurs near the boundary layer region in approximate solution produced by the Duan-Hsieh-Tan-Yang

stabilized FEM and this spurious oscillation can not be eliminated even if we use a finer mesh such as h = 1/128.

When σ is rather large, say σ = 104, the present stabilized FEM (3) gives stable results and it is able to capture the

boundary layer behavior very well.

We now compare the performance of these two stabilization methods (3) and (14) for the computations on a given

unstructured and adaptive mesh drawn in Figure 3. We use the stabilization parameters that are defined in Remark

11



1 for the method (3) while for method (14), we use the elementwise stabilization parameter given in (15) in Remark

2. The numerical results are depicted in Figure 4, from which we can find that the newly proposed stabilized linear

FEM (3) can work very well, while the Duan-Hsieh-Tan-Yang stabilized FEM (14) seems a little unstable for such an

adaptive mesh because the approximate solution oscillates slightly around the boundary layer region.

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

x

Present stabilized FEM: σ = 100

y 0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

x

Duan−Hsieh−Tan−Yang stabilized FEM: σ = 100

y

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

x

Present stabilized FEM: σ = 1000

y 0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

x

Duan−Hsieh−Tan−Yang stabilized FEM: σ = 1000

y

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

x

Present stabilized FEM: σ = 10000

y 0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

x

Duan−Hsieh−Tan−Yang stabilized FEM: σ = 10000

y

Figure 2. Elevation plots of the stabilized finite element solutions of Example 1 with ε = 10−4 and

σ = 102, 103, 104, using Q1 elements, h∗ = 1/64 and h =
√

4/3h∗.
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Table 1. L2 relative errors of uh using P1 elements for Example 1 with various ε and σ.

L2-error ε σ h∗ = 1/32 h∗ = 1/64 h∗ = 1/128 h∗ = 1/256 order ≈
10−2 3.0923E-03 7.7405E-04 1.9358E-04 4.8399E-05 2.00
10−1 3.0900E-03 7.7347E-04 1.9343E-04 4.8363E-05 2.00

Present 100 3.0674E-03 7.6782E-04 1.9202E-04 4.8010E-05 2.00
method 1 101 2.9068E-03 7.2749E-04 1.8194E-04 4.5491E-05 2.00

102 3.2508E-03 9.9898E-04 1.5849E-04 3.9624E-05 2.00
103 2.6011E-03 6.4309E-04 1.7080E-04 4.8646E-05 1.81
104 4.1933E-03 6.9976E-04 1.5272E-04 3.7625E-05 2.02
10−2 7.0191E-03 1.7729E-03 4.4510E-04 1.1149E-04 2.00
10−1 7.0225E-03 1.7737E-03 4.4531E-04 1.1154E-04 2.00

Present 100 7.0432E-03 1.7787E-03 4.4658E-04 1.1186E-04 2.00
method 0.1 101 6.9569E-03 1.7545E-03 4.4049E-04 1.1036E-04 2.00

102 9.0559E-03 2.7270E-03 4.1913E-04 1.0489E-04 2.00
103 1.1634E-02 2.1061E-03 4.9517E-04 1.3732E-04 1.85
104 1.1277E-02 2.9403E-03 7.5546E-04 1.1813E-04 2.68
10−2 9.0582E-02 2.8545E-02 7.8174E-03 2.0241E-03 1.95
10−1 9.0608E-02 2.8548E-02 7.8179E-03 2.0242E-03 1.95

Present 100 9.0863E-02 2.8583E-02 7.8223E-03 2.0248E-03 1.95
method 0.01 101 9.2990E-02 2.8839E-02 7.8490E-03 2.0278E-03 1.95

102 1.4326E-01 4.4905E-02 7.9414E-03 2.0263E-03 1.97
103 1.1782E-01 4.2598E-02 1.3993E-02 2.7109E-03 2.37
104 1.1594E-01 4.0718E-02 1.2416E-02 3.4998E-03 1.83
10−2 2.9762E-03 7.4488E-04 1.8627E-04 4.6571E-05 2.00
10−1 2.9838E-03 7.4679E-04 1.8675E-04 4.6691E-05 2.00

Duan-Hsieh- 100 3.0576E-03 7.6525E-04 1.9137E-04 4.7845E-05 2.00
Tan-Yang 1 101 3.5937E-03 8.9951E-04 2.2494E-04 5.6240E-05 2.00
method 102 4.7609E-03 1.1926E-03 2.9830E-04 7.4584E-05 2.00

103 5.3168E-03 1.3349E-03 3.3408E-04 8.3544E-05 2.00
104 5.4468E-03 1.3728E-03 3.4409E-04 8.6085E-05 2.00
10−2 5.7654E-03 1.4456E-03 3.6167E-04 9.0432E-05 2.00
10−1 5.7820E-03 1.4499E-03 3.6273E-04 9.0699E-05 2.00

Duan-Hsieh- 100 6.0577E-03 1.5195E-03 3.8017E-04 9.5062E-05 2.00
Tan-Yang 0.1 101 8.8649E-03 2.2283E-03 5.5783E-04 1.3950E-04 2.00
method 102 1.2720E-02 3.2364E-03 8.1285E-04 2.0345E-04 2.00

103 1.4118E-02 3.6739E-03 9.3110E-04 2.3367E-04 1.99
104 1.4349E-02 3.7761E-03 9.6679E-04 2.4397E-04 1.99
10−2 8.4636E-02 2.4046E-02 6.2483E-03 1.5779E-03 1.99
10−1 8.4517E-02 2.4036E-02 6.2472E-03 1.5777E-03 1.99

Duan-Hsieh- 100 8.3535E-02 2.3971E-02 6.2440E-03 1.5778E-03 1.98
Tan-Yang 0.01 101 8.4915E-02 2.5222E-02 6.6365E-03 1.6813E-03 1.98
method 102 1.1518E-01 3.7618E-02 1.0364E-02 2.6640E-03 1.96

103 1.2741E-01 4.6096E-02 1.4102E-02 3.8459E-03 1.87
104 1.2890E-01 4.7429E-02 1.4983E-02 4.2608E-03 1.81
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Table 2. H1 relative errors of uh using P1 elements for Example 1 with various ε and σ.

H1-error ε σ h∗ = 1/32 h∗ = 1/64 h∗ = 1/128 h∗ = 1/256 order ≈
10−2 5.5816E-02 2.7927E-02 1.3966E-02 6.9832E-03 1.00
10−1 5.5816E-02 2.7927E-02 1.3966E-02 6.9832E-03 1.00

Present 100 5.5816E-02 2.7927E-02 1.3966E-02 6.9832E-03 1.00
method 1 101 5.5816E-02 2.7927E-02 1.3966E-02 6.9832E-03 1.00

102 5.5823E-02 2.7930E-02 1.3966E-02 6.9832E-03 1.00
103 5.5853E-02 2.7932E-02 1.3966E-02 6.9833E-03 1.00
104 5.6001E-02 2.7946E-02 1.3968E-02 6.9835E-03 1.00
10−2 1.0641E-01 5.3402E-02 2.6726E-02 1.3366E-02 1.00
10−1 1.0641E-01 5.3402E-02 2.6726E-02 1.3366E-02 1.00

Present 100 1.0641E-01 5.3402E-02 2.6726E-02 1.3366E-02 1.00
method 0.1 101 1.0641E-01 5.3402E-02 2.6726E-02 1.3366E-02 1.00

102 1.0656E-01 5.3468E-02 2.6727E-02 1.3366E-02 1.00
103 1.0752E-01 5.3452E-02 2.6732E-02 1.3368E-02 1.00
104 1.0758E-01 5.3758E-02 2.6812E-02 1.3369E-02 1.00
10−2 5.6192E-01 3.3331E-01 1.7622E-01 8.9463E-02 0.98
10−1 5.6190E-01 3.3331E-01 1.7622E-01 8.9463E-02 0.98

Present 100 5.6177E-01 3.3330E-01 1.7622E-01 8.9463E-02 0.98
method 0.01 101 5.6083E-01 3.3323E-01 1.7622E-01 8.9462E-02 0.98

102 5.7874E-01 3.4071E-01 1.7621E-01 8.9463E-02 0.98
103 5.6478E-01 3.3985E-01 1.8109E-01 8.9674E-02 1.01
104 5.6400E-01 3.3845E-01 1.7966E-01 9.0832E-02 0.98
10−2 5.5816E-02 2.7927E-02 1.3966E-02 6.9832E-03 1.00
10−1 5.5816E-02 2.7927E-02 1.3966E-02 6.9832E-03 1.00

Duan-Hsieh- 100 5.5816E-02 2.7927E-02 1.3966E-02 6.9832E-03 1.00
Tan-Yang 1 101 5.5821E-02 2.7928E-02 1.3966E-02 6.9832E-03 1.00
method 102 5.5871E-02 2.7934E-02 1.3967E-02 6.9833E-03 1.00

103 5.6010E-02 2.7954E-02 1.3969E-02 6.9836E-03 1.00
104 5.6181E-02 2.7997E-02 1.3977E-02 6.9846E-03 1.00
10−2 1.0656E-01 5.3421E-02 2.6728E-02 1.3367E-02 1.00
10−1 1.0655E-01 5.3420E-02 2.6728E-02 1.3367E-02 1.00

Duan-Hsieh- 100 1.0648E-01 5.3412E-02 2.6727E-02 1.3366E-02 1.00
Tan-Yang 0.1 101 1.0647E-01 5.3410E-02 2.6727E-02 1.3366E-02 1.00
method 102 1.0737E-01 5.3546E-02 2.6745E-02 1.3369E-02 1.00

103 1.0875E-01 5.3928E-02 2.6811E-02 1.3378E-02 1.00
104 1.0917E-01 5.4213E-02 2.6919E-02 1.3401E-02 1.01
10−2 6.0995E-01 3.4298E-01 1.7764E-01 8.9649E-02 0.99
10−1 6.0931E-01 3.4289E-01 1.7763E-01 8.9647E-02 0.99

Duan-Hsieh- 100 6.0343E-01 3.4203E-01 1.7752E-01 8.9633E-02 0.99
Tan-Yang 0.01 101 5.7319E-01 3.3679E-01 1.7680E-01 8.9542E-02 0.98
method 102 5.6373E-01 3.3533E-01 1.7677E-01 8.9550E-02 0.98

103 5.7004E-01 3.4370E-01 1.8150E-01 9.0813E-02 1.00
104 5.7098E-01 3.4561E-01 1.8382E-01 9.2342E-02 0.99
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Figure 3. Elevation of the exact solution u of Example 1 with ε = 10−4 on a given unstructured adaptive

mesh containing 1509 triangles and 901 nodes.
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Figure 4. Elevation plots of the stabilized finite element solutions of Example 1 with ε = 10−4 and

σ = 103, using P1 elements on the unstructured adaptive mesh given in Figure 3.

Example 2. This example is quoted from [19]. We will consider the reaction-convection-diffusion equation with ε =

10−6, variable convection field a(x, y) = (2y, 0)>, σ = 104 and f = 0 on the rectangular domain Ω = (0, 1) × (0, 1/2)

subject to the boundary conditions described in Figure 5. We wish to test the performance of the stabilized linear

FEM (3) using P1 elements on an unstructured mesh that is depicted in Figure 6. This mesh is constructed by dividing

each side of the rectangle Ω into equal segments with length h∗ = 1/32 and then using the FreeFem++ (see [26]) to

generate an unstructured quasi-uniform mesh. The elevation and contour plots for the approximate solutions uh of

the the present stabilized linear FEM (3) and the Duan-Hsieh-Tan-Yang stabilized linear FEM (14) are displayed in

Figure 7, where we use the elementwise defined stabilization parameters as that described in Remark 1 and Remark

2 in Section 2. Although the exact solution of this problem is not available here, from the results reported in the

literature [19], it is supposed that the solution shape should look like the shape of the approximate solution generated

by the present stabilized FEM. One can also find from Figure 7 that the result of the present method (3) is comparable

to that of the Duan-Hsieh-Tan-Yang method (14).
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Figure 5. Boundary conditions and convection field of Example 2.
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Figure 7. Elevation and contours of the stabilized finite element solutions of Example 2 with ε = 10−6,

σ = 104 and a = (2y, 0)>, using P1 elements on an unstructured mesh given in Figure 6 and h∗ = 1/32.

Example 3. (cf. [19]) We now give an example to demonstrate that the proposed stabilized linear FEM (3) is suitable

for all sizes of σ even if the diffusivity ε is small enough. We consider a problem with f = 0, ε = 10−6, and impose
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the boundary conditions described in Figure 8. The prescribed constant convection field is given by a = (0.15, 0.1)>.

We use Q1 elements on uniform square meshes. The side-length of each square in a uniform square mesh is denoted

by h∗ and the mesh parameter is taken as h =
√

13/9h∗ which is the largest diameter of element in the direction of a.

u=1

u=1 u=0

u=0

x

y

1

1

Figure 8. Boundary conditions of Example 3.

The elevation and contours of the approximate solutions for h∗ = 1/32 and different values of reaction coefficient

are displayed in Figure 9. Again, the exact solutions are not available here for various σ. However, from the results

reported in the literature (cf. [19]), we believe that their shapes should look like the shapes of numerical solutions

generated by the present stabilized FEM. From the numerical results, we can observe that for a problem with a given

small diffusivity ε = 10−6, the proposed stabilized linear FEM (3) always gives stable and accurate results and it is

able to capture the behavior of boundary and interior layers, even we use a relatively coarse mesh with h∗ = 1/32.
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Figure 9. Elevation plots of the stabilized finite element solutions of Example 3 with ε = 10−6, σ =

10−2, 1, 102, 104 and a = (0.15, 0.1)>, using Q1 elements, h∗ = 1/32 and h =
√

13/9h∗.
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5. Application of the stabilization method to time-dependent reaction-convection-diffusion problems

In this section, with the help of the the stabilized linear FEM (3), we are going to propose a stabilization scheme for

solving time-dependent reaction-convection-diffusion problems. Let [0,T ] be the time interval under consideration

and Ω the given spatial domain. Consider the following initial-boundary value problem:
∂u
∂t
− ε∆u + a · ∇u + σu = f in (0,T ] ×Ω,

u(0, x, y) = u0(x, y) for (x, y) ∈ Ω,
u(t, x, y) = 0 for (x, y) ∈ ∂Ω, 0 < t ≤ T.

(27)

Based on the stabilized linear FEM (3) for the steady-state problem (1), we first state the semi-discrete formulation of

problem (27) as follows: Find uh(t, x, y) ∈ V1 for t ∈ (0,T ] with uh(0, x, y) = u0(x, y) such that(∂uh

∂t
, vh

)
0

+ ε(∇uh,∇vh)0 + (a · ∇uh, vh)0 + σ(uh, vh)0

−
∑
T∈Th

τ
(∂uh

∂t
− ε∆uh + a · ∇uh + σuh,−ε∆vh −

a · ∇vh

γ
+ σvh

)
0,T

= ( f , vh)0 −
∑
T∈Th

τ
(

f ,−ε∆vh −
a · ∇vh

γ
+ σvh

)
0,T

∀ vh ∈ V1, (28)

where the stabilization parameters τ and γ are given in (6) and (7) in Section 2. After that, we use the time-

discretization scheme such as the classical backward Euler method or the Crank-Nicolson method to discrete the

time variable of the semi-discrete formulation (28). Here, we remark again that in adaptive computations, we may

replace the stabilization parameters τ and γ by the elementwise stabilization parameters τT and γT that are defined in

(11) and (12) in Remark 1 in Section 2.

In the literature, various stabilized FEMs have been proposed and analyzed for solving the time-dependent reaction-

convection-diffusion problem (27). We refer the reader to the recent works [27, 28] and many references cited therein.

However, it has been observed in, e.g., [29, 30, 31, 32], that the small time step may cause the instability when

conventional stabilized finite element formulations are applied to solve time-dependent reaction-convection-diffusion

problems. In what follows, we will consider two examples to illustrate that the newly proposed stabilization method

is really stable and accurate, even if the diffusivity ε is very small and the reaction coefficient σ is large enough.

Example 4. In this example, we investigate the L-shaped front problem which is quoted from [31]. Let Ω =

(0, 1) × (0, 1) be the spatial domain. We consider the initial-boundary value problem (27) with the zero source

term f = 0, the small diffusivity ε = 10−6, the zero reaction coefficient σ = 0, and the constant convection field

a = (
√

2
2 ,

√
2

2 )>. The initial and boundary conditions are described in Figure 10. We use the P1 elements on a uniform

triangular mesh as that described in Example 1 and h∗ = 1/40, h =
√

2h∗, various time steps ∆t = h∗, h∗/4, h∗/8,

to produce the stabilized finite element approximations, where the simple backward Euler method is applied to the

time-discretization for the semi-discrete formulation (28). The numerical results at t = 0.25 and t = 1.5 are respec-

tively depicted in Figure 11, from which we can observe that our approach can produce reasonable results with a high

stability for CFL numbers of 1, 0.25, and 0.125.
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Figure 10. Initial and boundary conditions of Example 4 .
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Figure 11. Elevation plots of the stabilized finite element solutions of Example 4 with ε = 10−6 and

σ = 0 at t = 0.25 and t = 1.5, using P1 elements, h∗ = 1/40, h =
√

2h∗ and time step ∆t = h∗ (top row),

∆t = h∗/4 (middle row) and ∆t = h∗/8 (bottom row).
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Example 5. This is a hump problem taken from [33]. Consider the time-dependent convection-diffusion-reaction

problem (27) with the small diffusivity ε = 10−6, the convection field a = (2, 3)> and the initial function u0 ≡ 0 in the

spatial domain Ω := (0, 1) × (0, 1). We assume that the problem has an exact solution in the form

u(t, x, y) = 16 sin(πt)x(1 − x)y(1 − y)
(

1
2

+
arctan[2ε−1/2(0.252 − (x − 0.5)2 − (y − 0.5)2)]

π

)
.

This is a hump changing its height periodically in time and a strong interior layer may appear (cf. Figure 12 and

Figure 14). Note that the exact solution u is independent of the reaction coefficient σ.

In the numerical simulations, we first use the uniform triangular mesh with h∗ = 1/128 and take the mesh param-

eter h =
√

13/9h∗, which is the largest diameter of element T in the direction of a = (2, 3)>. We take a small time

step length ∆t = 10−3 and consider the cases of σ = 1000 and σ = 1. The numerical results at t = 0.5 are depicted in

Figure 12. From the numerical results in Figure 12, we find that our approach can achieve a good approximation with

a high stability for σ = 1000. However, only a reasonable result can be obtained for the small reaction coefficient

σ = 1, since there is still a little oscillation near the interior layer region and this behavior is similar to the most typical

methods studied in [33]. In order to test the performance of our approach in adaptive computations, we next consider

the scheme on a given unstructured adaptive mesh which is depicted in Figure 13. The numerical results are shown

in Figure 14. We find that for both σ = 1000 and σ = 1, our approach can achieve a rather good accuracy and the

stability has been greatly improved for the case of small reaction coefficient σ = 1.
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Figure 12. Elevation and contour plots of the exact and the stabilized finite element solutions of Example

5 with ε = 10−6, σ = 1000 (middle row) and σ = 1 (bottom row) at t = 0.5, using P1 elements,

h∗ = 1/128, h =
√

13/9h∗ and time step ∆t = 10−3.
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Figure 13. An unstructured adaptive mesh containing 4566 triangles and 2300 nodes for Example 5.
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Figure 14. Elevation and contour plots of the exact and stabilized finite element solution of Example 5

with ε = 10−6, σ = 1000 (middle row) and σ = 1 (bottom row) at t = 0.5, using P1 elements on the

unstructured adaptive mesh given in Figure 13 and time step ∆t = 10−3.
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6. Summary and conclusions

In this paper, we have proposed and analyzed a new stabilized FEM using continuous piecewise P1 (or Q1) elements to

approximate solution of reaction-convection-diffusion equations with arbitrary magnitudes of reaction and diffusion.

The most important feature of the proposed method is that the test function in the stabilization term is taken in the

adjoint-operator-like form −ε∆v − (a · ∇v)/γ + σv, where the stabilization parameter γ is appropriately designed to

adjust the convection strength to achieve high accuracy and stability. We have derived the stability estimates for the

finite element solutions and then established the explicit dependence of L2 and H1 error bounds on ε, ‖a‖, σ and h,

from which we have found that the proposed method is suitable for a wide range of mesh Péclet (Peh) numbers and

mesh Damköhler (Dah) numbers. Indeed, if the diffusivity ε is sufficiently small with ε < ‖a‖h (i.e., Peh > 1/2)

and the reaction coefficient σ is large enough such that ‖a‖ < σh (i.e., Dah > 1), then the method exhibits optimal

convergence rates in both L2 and H1 norms. On the other hand, for a small reaction coefficient satisfying ‖a‖ ≥ σh

(i.e., Dah ≤ 1), the method behaves like the well-known SUPG method. We have performed several numerical tests

of layer problems, and numerical results confirm the error estimates of the proposed method. We have also found

that the proposed method can work very well for the computations on unstructured and adaptive meshes, provided

the stabilization parameters are directly redefined element-by-element. Finally, we have applied the method to two

typical problems of time-dependent reaction-convection-diffusion equations and the simulation results have shown

the efficiency of the proposed approach. The analysis of this issue will be subject for future work.
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