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Abstract In this paper, a novel penalty method based on the immersed boundary formulation is proposed
for simulating the transient Stokes flow with an inextensible interface enclosing a suspended solid particle.
The main idea of this approach relies on the penalty techniques by modifying the constitutive equation
of Stokes flow to weaken the incompressibility condition, relating the surface divergence to the elastic
tension σ to relax the interface’s inextensibility, and connecting the particle surface-velocity with the
particle surface force F to regularize the particle’s rigid motion. The advantage of these regularized
governing equations is that when they are discretized by the standard centered difference scheme on a
staggered grid, the resulting linear system can easily be reduced by eliminating the unknowns ph, σh and
F h directly, so that we just need to solve a smaller linear system of the velocity approximation uh. This
advantage is preserved and even enhanced when such approach is applied to the transient Stokes flow
with multiple compound vesicles. Moreover, this smaller linear system is symmetric and negative-definite,
which enables us to use efficient linear solvers. Another important feature of the proposed method is that
the discretization scheme is unconditionally stable in the sense that an appropriately defined energy
functional associated with the discrete system is decreasing and hence bounded in time. We numerically
test the accuracy and stability of the immersed boundary discretization scheme. The tank-treading and
tumbling motions of inextensible interface with a suspended solid particle in the simple shear flow will
be studied extensively. The simulation of the motion of multiple compound vesicles will be performed as
well. Numerical results illustrate the superior performance of the proposed penalty method.
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particle · stability

Po-Wen Hsieh was partially supported by the National Science Council of Taiwan under the grant NSC 102-2115-M-033
-007 -MY2.
Ming-Chih Lai was partially supported by the National Science Council of Taiwan under the grant NSC 101-2115-M-009-
014-MY3.
Suh-Yuh Yang was partially supported by the National Science Council of Taiwan under the grant NSC 101-2115-M-008-
008-MY2.

Po-Wen Hsieh
Department of Applied Mathematics, Chung Yuan Christian University, Jhongli City, Taoyuan County 32023, Taiwan.
E-mail: pwhsieh0209@gmail.com

Ming-Chih Lai
Center of Mathematical Modeling and Scientific Computing & Department of Applied Mathematics, National Chiao Tung
University, Hsinchu 30010, Taiwan.
E-mail: mclai@math.nctu.edu.tw

Suh-Yuh Yang (corresponding author) and Cheng-Shu You
Department of Mathematics, National Central University, Jhongli City, Taoyuan County 32001, Taiwan. Tel.: +886-3-
4227151 extension 65130; Fax: +886-3-4257379
E-mail: syyang@math.ncu.edu.tw; csdyou@gmail.com



2 Po-Wen Hsieh et al.

Mathematics Subject Classification (2000) 65M06 · 65M12 · 76D07 · 76M20

1 Introduction

In recent years, the study of vesicle dynamics has been the focus of intense research. Vesicles provide
the simplest model system for simulating complex behavior of biomembranes suspended in the biological
fluids. For example, vesicle can be considered as a simplified model for red blood cell in blood flow, since
they share many similar characteristic behavior, such as the tank-treading, tumbling and vacillating-
breathing (swinging) motions [17] [19]. Basically, such a system consists of two fluids separated by an
elastic membrane having the inextensible property, which may be deformed due to the interaction with
the biological fluids. Besides, vesicles can also be considered as promising drug carriers for the delivery
at specific locations in the organisms [1]. These explain the increasing interest and importance of under-
standing the vesicle dynamics. In essence, the dynamics of vesicles can be determined by their boundary
rigidity, inextensibility, and the hydrodynamical forces.

On the other hand, the immersed boundary (IB) method was introduced by Peskin in the early
seventies to model blood flow in the heart and through heart valves. Currently, it has evolved into a
simple but powerful method for formulating the coupled equations of motion of a viscous, incompressible
fluid with one or more elastic surfaces immersed in the fluid; see [20] and many references therein.
In the IB method, an Eulerian description is used for the fluid dynamics, while a Lagrangian form is
used for each immersed object. The key idea of the IB method is replacing each suspended object by a
suitable contribution to a force density term in the fluid dynamics equations. This allows a single set of
fluid dynamics equations to hold in the entire spatial domain without any internal boundary conditions.
Moreover, without generating an interface-fitting grid for both exterior and interior regions of each surface
at each time step, instead, the IB discretization schemes can be implemented by employing a uniform
Cartesian grid over the entire domain and the immersed boundaries are discretized by a set of points
that are not constrained to lie on the grid. In the meantime, the Eulerian and Lagrangian variables are
linked by interaction equations that involve a smoothed approximation to the Dirac delta function.

Recently, Lai et al. [12] developed a fractional step IB method for Stokes flow with an inextensible
interface enclosing a suspended solid particle. In addition to solving for the fluid variables, velocity and
pressure, the proposed system in [12] involves finding an extra unknown, elastic tension σ, such that
the surface divergence of the velocity is vanished along the interface, and an extra unknown, particle
surface force F , such that the velocity satisfies the no-slip boundary condition along the particle surface.
The interface moves with local fluid velocity, while the enclosed particle undergoes a rigid body motion.
Finally, the force-free and torque-free conditions along the particle surface are imposed to close the system.
They showed that the nullity of the linear algebraic system arising from the centered discretizations of
the IB equations over a staggered grid is nonzero, and thus the existence of a solution is guaranteed.
They then applied the idea of the fractional step method developed in [23] to solve the resultant linear
system of equations. Although the proposed system in [12] seems not to be a satisfactory model for certain
biological cells such as the human leukocytes, a lipid bilayer membrane enclosing a fluid with a core, it
can be viewed as a heuristic model for developing efficient numerical schemes for analyzing the dynamics
of compound vesicles.

In this paper, still based on the formulation of [12], we will propose a novel penalty IB method for
the transient Stokes flow problem with an inextensible interface enclosing a suspended solid particle.
The main idea of the proposed approach relies on the three penalty techniques. First, we modify the
constitutive equation of Stokes flow (cf. [6]) to weaken the incompressibility condition ∇ · u = 0 by
∇ · u + εp = 0 with a small penalty parameter ε > 0. This technique has been well studied in the
finite element computation for the incompressible viscous flow problems to circumvent the cumbersome
constraint of incompressibility [24]. Second, we assume that the elastic tension σ is given in a specific
form to follow the usual Hooke’s law for an elastic body [9] [10]. This enables us to relate the surface
divergence to the elastic tension such that the interface is relaxed to nearly inextensible. Finally, we
connect the particle surface-velocity with the particle surface force F through the use of a virtual particle
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to regularize the particle’s rigid motion [10]. The advantage of the regularized governing equations is
that when they are further discretized by the standard centered difference scheme on a staggered grid,
the resulting linear system can easily be reduced by eliminating the unknowns ph, σh and F h directly
so that we just need to solve a smaller linear system of the velocity approximation uh. Moreover, the
linear system of uh is symmetric and negative-definite. This enables us to use efficient solvers, such as
the preconditioned conjugate gradient and the algebraic multigrid methods, to find solution of the linear
system. We emphasize that this advantage will be preserved and even enhanced when such penalty IB
approach is applied to the transient Stokes flow with multiple compound vesicles. Indeed, for multiple
vesicle problems, the resulting large linear system of equations is still tractable to block elimination, no
matter how many compound vesicles are involved in the fluid, and we only need to solve a reduced system
of the velocity. Also, the present approach can be easily extended to Navier-Stokes flow by treating the
nonlinear advection terms explicitly in the time integration.

It is well known that the discretizations of the IB equations suffer from a severe time step restriction for
maintaining the stability and this time step restriction is typically much more stringent than the one that
would be imposed from using explicit differencing techniques; see [2], [4], [14], [20] and [22]. In recent years,
considerable effort has been devoted to developing implicit and semi-implicit schemes to alleviate this
severe restriction [4] [14] [16] [25]. The instability of these schemes is known not to be a problem related
to the advection terms in the incompressible Navier-Stokes equations. Also, it has been pointed out in
[18] that discretization schemes need not be fully-implicit in order to achieve unconditional stability. One
of important features of the present penalty IB approach is that our semi-implicit discretization scheme
for the penalty IB equations is unconditionally stable in the sense that when an appropriately energy
functional associated with the discrete system is defined, we can prove that the energy is decreasing, and
hence bounded, in time. This result reflects the assertion of [18] in some measure.

Since our penalty IB approach relaxes the interface to be nearly inextensible, it is important to us to
measure how extent the inextensibility is conserved as time step advances. In this paper, we will prove
that the difference of local stretching factors for two successive time steps is still of first order in time step
size ∆t, i.e., O(∆t). This result is similar to that of [12]. In addition, we find that though the difference
of local stretching factors is of first order in time step size, the length of the elastic interface may not
be always increasing as much as expected when time step advances. In other words, we could keep the
inextensibility of the interface very well. This assertion is very different with [12] and the numerical results
reported in Section 5 will support this observation.

We will test the accuracy and stability of the semi-implicit discretization scheme through a number of
numerical experiments. The first one, which is quoted from [12], is a Stokes problem without the effects
of the inextensible interface and the suspended solid particle. The exact solution of this problem is given
and so we can easily compute the errors and estimate the convergence rates. Then we perform a series of
numerical simulations for inextensible interface with a suspended solid particle in the simple shear flow.
In particular, the tank-treading and tumbling motions will be studied extensively. The simulation of the
motion of multiple compound vesicles will be performed as well. Numerical results illustrate the superior
performance of the proposed penalty IB approach.

The remainder of this paper is organized as follows. In Section 2, we regularize the governing equations
by the penalty techniques. In Section 3, we discretize the IB equations using the standard centered
difference scheme on a staggered grid, and the unique solvability of the resulting linear system is also
studied. Some advantageous properties of the penalty IB method, including the unconditional stability
and the first-order error of inextensibility for two successive time steps, will be derived in Section 4.
Numerical results are presented in Section 5. Some concluding remarks are given in Section 6.

2 Regularization of the governing equations of motion

In this paper, we consider a moving immersed inextensible interface Γ enclosing a suspended solid particle
P in a two-dimensional fluid domain Ω; see Figure 2.1. We assume that the fluids inside and outside of the
interface are the same and governed by the unsteady incompressible Stokes equations, and the interface
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Γ

Ω

P

Figure 2.1. A diagram of an inextensible interface Γ enclosing a suspended solid particle P .

is massless and the particle’s gravity is neglected. Let the elastic interface Γ and the particle surface ∂P
be parameterized by X(s, t) = (X1(s, t), X2(s, t)) and Y (α, t) = (Y1(α, t), Y2(α, t)), respectively, where
s ∈ [0, L1] and α ∈ [0, L2] are the corresponding Lagrangian parameters. The governing equations of
motion in dimensionless form can be formulated as follows (cf. [12]): for t > 0,

∂u

∂t
+∇p = µ∆u+

∫
Γ

∂(στ )(s, t)

∂s
δ(x−X(s, t))ds+

∫
∂P

F (α, t)δ(x− Y (α, t))dα in Ω, (1)

∇ · u = 0 in Ω, (2)

∇s ·U =

(
∂U

∂s
· τ
) ∣∣∣∣∂X∂s

∣∣∣∣−1 = 0 on Γ, (3)

∂X

∂t
(s, t) = U(s, t) =

∫
Ω

u(x, t)δ(x−X(s, t))dx on Γ, (4)

∂Y

∂t
(α, t) = V (α, t) =

∫
Ω

u(x, t)δ(x− Y (α, t))dx = V c + ωr on ∂P, (5)∫
∂P

F (α, t)dα = 0, (6)∫
∂P

F (α, t) · r(α, t)dα = 0, (7)

where µ > 0 is the kinematic viscosity, u = (u, v) and p are the velocity field and the pressure, respectively,
σ is the elastic tension and F = (F1, F2) is the particle surface force, V c(t) is the translational velocity of
the center of particle and ω(t) is the angular velocity component of the particle, τ is the unit tangential
vector on Γ , r(α, t) = (−(Y2(α, t) − Y2c(t)), Y1(α, t) − Y1c(t)) is a tangential vector on ∂P , (Y1c, Y2c) is
the center of mass of P , δ(x) := δ(x)δ(y) is a two-dimensional Dirac delta function, and ∇s· denotes the
surface divergence operator.

We note that equations (1) and (2) are the unsteady incompressible Stokes equations with singular
force terms arising from the elastic interface and the particle surface. Equations (3) and (4) represent
that the interface is inextensible and moves along with the local fluid velocity so that the velocity U is
the interpolation of the fluid velocity at the interface. Equation (5) describes the particle surface velocity
which is consisted of the translational velocity V c and the angular velocity ω making the particle moving
like a rigid body. Finally, the system of equations will be closed by coupling (6) and (7), which mean the
force-free and torque-free conditions for the rigid body motion.

We now introduce the penalty techniques [6] [9] [10] [24] to regularize equations (2), (3) and (5). First,
by modifying the constitutive equation of Stokes flow (cf. [6]), we are able to weaken the incompressibility
condition ∇ · u = 0 in Ω by

∇ · u+ εp = 0 in Ω, (8)

where ε > 0 is a small penalty parameter. This penalty technique has been well studied in the finite
element computation for the incompressible Stokes equations. For example, it has been shown that the
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solution (uε, pε) of the penalty approach will converge to the Stokes solution (u, p) in some suitable
norms as ε→ 0+. More precisely, we have

uε → u in the H1(Ω) norm and pε → p in the L2(Ω) norm as ε→ 0+.

For the theoretical analysis, we refer the reader to [24] for more details. In the practical computation, an
appropriate choice of the parameter ε has been suggested by Hughes et al. [6] that ε = 1/(cµ̃), where µ̃
is the dynamic viscosity and the constant c is taken as c = 107 for Stokes flow. They pointed out that
the choice of c seems to be problem independent. This is consistent with our numerical experience.

Second, based on the Hooke’s law, we assume that the elastic tension σ is given in the form

σ(s, t) = σ0

(∣∣∣∣∂X∂s (s, t)

∣∣∣∣− ∣∣∣∣∂X∂s (s, 0)

∣∣∣∣), (9)

with a sufficiently large elastic coefficient σ0. Since σ0 is large, the length of the tangential vector
∂X(s, t)/∂s will be always close to the initial length, i.e.,∣∣∣∣∂X∂s (s, t)

∣∣∣∣ ≈ ∣∣∣∣∂X∂s (s, 0)

∣∣∣∣ for all s ∈ [0, L1] and t > 0.

In other words, the interface is no longer exactly inextensible. Instead, the elastic interface is allowed to
be nearly inextensible. Indeed, from [13], we have

∂

∂t

∣∣∣∣∂X∂s
∣∣∣∣ = (∇s ·U)

∣∣∣∣∂X∂s
∣∣∣∣ . (10)

Combining (9) with (10), the surface divergence free equation (3) should be replaced by(
∂U

∂s
· τ
) ∣∣∣∣∂X∂s

∣∣∣∣−1 = ∇s ·U =
1

σ0

∂σ

∂t

∣∣∣∣∂X∂s
∣∣∣∣−1 on Γ. (11)

In other words, we obtain
∂σ

∂t
= σ0

(
∂U

∂s
· τ
)

on Γ. (12)

To sum up, assumption (9) relates the surface divergence with the elastic tension σ, as that given in (11),
such that the interface is allowed to be nearly inextensible.

Finally, following the Hooke’s law again, we assume that

F = k0(Y − Ỹ ), (13)

with a sufficiently large stiffness constant k0, where Ỹ is the parametrization of the virtual solid particle
P̃ and Ỹ is assumed to have the same parametric variable α with Y in the same interval [0, L2]. The
significance of this assumption can be interpreted as follows. When the flow hits the solid particle, we
image that the particle surface may be deformed a little bit to Ỹ but at the same moment, the reacting
force F pulls it back to Y , a real position of the particle surface; see Figure 2.2. Since k0 is large,
Y (α, t) ≈ Ỹ (α, t) for all α ∈ [0, L2] and t > 0. Under assumption (13) with the equation of rigid motion

of Ỹ ,

∂Ỹ

∂t
= Ṽ = V c + ωr̃, (14)

we have, combining with (5),

∂F

∂t
= k0

(
∂Y

∂t
− ∂Ỹ

∂t

)
= k0(V − Ṽ ) = k0(V c + ωr − Ṽ ) on ∂P̃ . (15)

Consequently, we connect the particle surface-velocity V with the particle surface force F by (15). This
enables us to regularize the particle’s rigid motion, see (19) and (23) below.
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spring with a large 

stiffness 

g

Figure 2.2. The reacting force F pulls Ỹ back to target position Y .

In summary, we obtain the following system of equations, which models the dynamics of a nearly
inextensible vesicle enclosing a suspended solid particle in Stokes flow: for t > 0,

∂u

∂t
+∇p = µ∆u+

∫
Γ

∂(στ )(s, t)

∂s
δ(x−X(s, t))ds+

∫
∂P

F (α, t)δ(x− Y (α, t))dα in Ω, (16)

∇ · u+ εp = 0 in Ω, (17)

∂σ

∂t
= σ0

(
∂U

∂s
· τ
)

on Γ, (18)

∂F

∂t
= k0(V c + ωr − Ṽ ) on ∂P̃ , (19)∫

∂P

F (α, t)dα = 0, (20)∫
∂P

F (α, t) · r(α, t)dα = 0, (21)

∂X

∂t
(s, t) = U(s, t) =

∫
Ω

u(x, t)δ(x−X(s, t))dx on Γ, (22)

Ṽ (α, t) =

∫
Ω

u(x, t)δ(x− (Y (α, t)− 1

k0
F (α, t)))dx on ∂P̃ , (23)

where ε is small but σ0 and k0 are large enough, and ∂P̃ denotes the surface of the virtual solid particle
P̃ , which is parameterized by Ỹ (α, t) = (Ỹ1(α, t), Ỹ2(α, t)) = Y (α, t)− (1/k0)F (α, t) for α ∈ [0, L2].

3 Discretizations of the immersed boundary equations

In this section, we are going to apply the second-order centered difference scheme to discretize the
immersed boundary equations (16)-(23) to reach a linear algebraic system. For simplicity, we assume
that the computational domain is a rectangular region Ω = [a, b]× [c, d] and that the fluid variables are
defined on the staggered marker-and-cell (MAC) grids [5]. As shown in Figure 3.1, we define the pressure
on the grid points (xi, yj) = (a + (i − 1/2)∆x, c + (j − 1/2)∆y) for 1 ≤ i ≤ mx and 1 ≤ j ≤ my,
while the velocity components u and v are defined at (xi−1/2, yj) = (a+ (i− 1)∆x, c+ (j − 1/2)∆y) for
1 ≤ i ≤ mx + 1 and 1 ≤ j ≤ my and (xi, yj−1/2) = (a+ (i− 1/2)∆x, c+ (j − 1)∆y) for 1 ≤ i ≤ mx and
1 ≤ j ≤ my + 1, respectively. Here, we use a uniform mesh with mesh size h = ∆x = ∆y.

For the immersed nearly inextensible elastic interface X at a given time, we use the Lagrangian
markers Xk = X(sk), where sk = k∆s for k = 0, 1, · · · ,Me, and ∆s is roughly chosen as a half of fluid
mesh size h. Since the elastic interface is closed, we have X0 = XMe . We remark that these points will
be used in the computation of the values of the discrete delta functions. The elastic tension is defined on
the “half-integer” points given by sk−1/2 = (k− 1/2)∆s, so we denote it by σk−1/2. Similarly, we use the
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Figure 3.1. A schematic diagram of the computational domain Ω with staggered grid, where the unknowns u, v
and p are approximated at the grid points marked by ×, ◦ and •, respectively.

Lagrangian markers Y k = Y (αk) on particle surface with αk = k∆α, k = 0, 1, · · · ,Mp, and ∆α is also
roughly chosen as a half of fluid mesh size h.

In what follows, the discrete spatial operators ∇h, ∆h, and ∇sh· denote the standard second-order
centered difference approximations to the gradient, Laplacian and surface divergence operators, respec-
tively. For any function ψ(s) defined on the interface Γ , we approximate the partial derivative ∂ψ/∂s by
the centered difference scheme as

Dsψ(s) =
ψ(s+∆s/2)− ψ(s−∆s/2)

∆s
.

Thus, the interface stretching factor |∂X/∂s| and the unit tangent τ can be approximated by |DsX| and
DsX/|DsX|, which are defined at the half-integer points. We denote them by |DsX|k−1/2 and τ k−1/2,
respectively.

Let ∆t be the time step size, and the superscript of the variables denote the time step index. At
the beginning of each time step n, the elastic tension σnk−1/2, the particle surface force F nk , the interface

configuration Xn
k , the particle surface Y n

k = (Y n1k, Y
n
2k), and its center Y n

c = (Y n1c, Y
n
2c) are all given.

Despite the face that the problem is non-linear, here we propose a linearly semi-implicit difference scheme
for the system of equations (16)-(23). The time step can be advanced as follows:

−u
n+1 − un

∆t
+ µ∆hu

n+1 −∇hpn+1 +

Me∑
k=1

Ds(σ
n+1τn)kδh(x−Xn

k )∆s

+

Mp∑
k=1

F n+1
k δh(x− Y n

k )∆α = 0, (24)

∇h · un+1 + εpn+1 = 0, (25)

σn+1
k−1/2 − σ

n
k−1/2

∆t
− σ0

Un+1
k −Un+1

k−1
∆s

· τnk−1/2 = 0, (26)

F n+1
k − F nk
∆t

− k0
(
V n+1
c + ωn+1

[
−(Y n2k − Y n2c)
Y n1k − Y n1c

]
− Ṽ

n+1

k

)
= 0, (27)

Mp∑
k=1

F n+1
k ∆α = 0, (28)

Mp∑
k=1

(
Fn+1
1k (Y n2k − Y n2c)− Fn+1

2k (Y n1k − Y l1c)
)
∆α = 0, (29)
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Xn+1
k −Xn

k

∆t
= Un+1

k =
∑
x
un+1(x)δh(x−Xn

k )h2, (30)

Ṽ
n+1

k =
∑
x
un+1(x)δh(x− Y n

k +
1

k0
F nk )h2. (31)

We remark that since the stiffness constant k0 is large, in practical computation, we may use δh(x−Y n
k )

to replace the term δh(x−Y n
k + 1

k0
F nk ) in (31). For the computation of the discrete delta function δh(x),

we adopt the following smoother version developed in [28],

δh(x, y) =
1

h2
φ
(x
h

)
φ
(y
h

)
, (32)

φ(ξ) =



3
8 + π

32 −
ξ2

4 , |ξ| < 0.5,
1
4 + 1−|ξ|

8

√
−2 + 8|ξ| − 4ξ2 − 1

8 sin−1(
√

2(|ξ| − 1)), 0.5 ≤ |ξ| ≤ 1.5,
17
16 −

π
64 −

3|ξ|
4 + ξ2

8 + |ξ|−2
16

√
−14 + 16|ξ| − 4ξ2

+ 1
16 sin−1(

√
2(|ξ| − 2)), 1.5 ≤ |ξ| ≤ 2.5,

0, 2.5 ≤ |ξ|.

(33)

Now, using the staggered grid for the fluid variables, the matrix obtained by the discrete divergence
of the fluid velocity can be written as the transpose of the discrete gradient of the pressure. The matrix
produced by the discrete surface divergence of the velocity can be written as the transpose of the matrix
obtained by the discrete spreading operator of the tension with some suitable rescaling. Similarly, the
matrix obtained by the discrete spreading operator of the force arising from the suspended solid particle
boundary can be written as the transpose of the matrix obtained by the discrete interpolating operator
of velocity with some suitable rescaling; see [12] and also the discrete skew-adjoint and adjoint properties
given in Section 4 below. Thus, the resulting linear system assembled from (24)-(31) is symmetric and
can be written as 

A B S E 0
B> εI 0 0 0
S> 0 ε1I 0 0
E> 0 0 ε2I R
0 0 0 R> 0



un+1
h

pn+1
h

σn+1
h

F n+1
h

Θn+1
h

 =


c1
c2
mσ

mF
0

 , (34)

where ε1 = ∆s/(σ0h
2∆t), ε2 = ∆α/(k0h

2∆t), ψn+1
h denotes the unknown vector value of ψ at the

corresponding grid points, and Θ := (V1c, V2c, ω). The submatrices A, B, S, E, and R respectively
represent the discrete Laplacian-like operator, µ∆h − (1/∆t)I, the discrete gradient operator, −∇h,
the discrete spreading operator on tension, the discrete spreading operator on the surface force, and the
discrete rigid body motion equation. In the right-hand side of (34), c1 comes from the boundary condition
and unh, c2 consists only of the velocity boundary conditions since the pressure is evaluated at each cell
center, mσ and mF are depending on σnh and F nh, respectively.

In general, (34) is a large linear system and it is cost-ineffective to solve it directly even if it is a sparse
one. We propose an alternative way to efficiently solve the system as follows. From (34), we obviously
have pn+1

h = (1/ε)(c2 − B>un+1
h ) and σn+1

h = (1/ε1)(mσ − S>un+1
h ). In addition, R>F n+1

h = 0 and
E>un+1

h + ε2F
n+1
h +RΘn+1

h = mF easily imply

R>E>un+1
h +R>RΘn+1

h = R>mF . (35)

We will show the invertibility of the 3× 3 matrix R>R later and after that we obtain

Θn+1
h = (R>R)−1R>(mF − E

>un+1
h ), (36)

and then

F n+1
h =

1

ε2

(
(I −R(R>R)−1R>)mF − (I −R(R>R)−1R>)E>un+1

h

)
. (37)



An unconditionally energy stable penalty immersed boundary method 9

Therefore, the linear system (34) can be reduced into a smaller one:

Ãun+1
h = b, (38)

where the matrix Ã and the right-hand side vector b are defined as

Ã := A− 1

ε
BB> − 1

ε1
SS> − 1

ε2
E(I −R(R>R)−1R>)E>, (39)

b := c1 −
1

ε
Bc2 −

1

ε1
Smσ −

1

ε2
E(I −R(R>R)−1R>)mF . (40)

We now show the invertibility of the 3× 3 matrix R>R. First, the matrix R assembled from (27) can be
written as

R = −∆α
h2



1 0 −(Y n21 − Y n2c)
...

...
...

1 0 −(Y n2Mp
− Y n2c)

0 1 (Y n11 − Y n1c)
...

...
...

0 1 (Y n1Mp
− Y n1c)


.

To simplify the notation, we define ak = Y n1k − Y n1c and bk = Y n2k − Y n2c. Then we have

(
h4

∆α2

)3

det(R>R) = det


Mp 0 −

Mp∑
k=1

bk

0 Mp

Mp∑
k=1

ak

−
Mp∑
k=1

bk
Mp∑
k=1

ak
Mp∑
k=1

a2k +
Mp∑
k=1

b2k


= Mp

Mp

Mp∑
k=1

a2k +Mp

Mp∑
k=1

b2k −

Mp∑
k=1

ak

2

−

Mp∑
k=1

bk

2


(by Cauchy-Schwarz inequality)

≥Mp

Mp

Mp∑
k=1

a2k +Mp

Mp∑
k=1

b2k −

Mp∑
k=1

a2k

Mp∑
k=1

12

−
Mp∑
k=1

b2k

Mp∑
k=1

12


= Mp

Mp

Mp∑
k=1

a2k +Mp

Mp∑
k=1

b2k −Mp

Mp∑
k=1

a2k −Mp

Mp∑
k=1

b2k

 = 0,

where the equality holds in Cauchy-Schwarz inequality if and only if ak = C1 and bk = C2 for all
k = 1, 2, · · · ,Mp and for some constants C1 and C2, both independent of k. However, it it will never
occur in our case. This leads to det(R>R) > 0, and thus R>R is invertible. Note that we can efficiently
compute the inverse of R>R because it is only a 3 × 3 matrix. Furthermore, we can show the following
result:

Theorem 3.1. The matrix Ã is symmetric and negative-definite.
Proof. It is obvious that matrix Ã is symmetric. Using the facts that A is negative-definite and both
BB> and SS> are positive semi-definite, we only need to show that I − R(R>R)−1R> is a positive
semi-definite matrix. A direct computation,

(I −R(R>R)−1R>)(I −R(R>R)−1R>) = I −R(R>R)−1R>, (41)
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shows that I−R(R>R)−1R> is a projection matrix, and then its eigenvalues should be 0 or 1. This leads
to the assertion and thus completes the proof. 2

Thanks to this property of matrix Ã, we can solve (38) by using some efficient linear solvers, such as
the preconditioned conjugate gradient and the algebraic multigrid methods.

Once we obtain the new velocity field un+1 on the fluid grid, we can interpolate the new velocity to
the marker points by (30) and move the Lagrangian markers to new positions by

Xn+1
k = Xn

k +∆tUn+1
k . (42)

For the solid particle motion, the particle center velocity V c and the angular velocity component ω will
be obtained by (36). Instead of first using the interpolation formula to find the new velocity and then
updating the particle surface points, we simply adopt the idea of rigid body motion to determine the
particle surface position (cf. [12]). Indeed, we compute the new particle center and the rotational angle
by

Y n+1
c = Y n

c +∆tV n+1
c , θn+1 = θn +∆tωn+1 (43)

and use them to determine the new particle surface position as

Y n+1
k = Y n+1

c +

[
cos θn+1 − sin θn+1

sin θn+1 cos θn+1

]
Y 0
k. (44)

Finally, we remark that the proposed penalty IB approach can be applied to the transient Stokes flow
with multiple compound vesicles as well. Similar to the above procedure, the resulting large linear system
of equations is still tractable to block elimination, no matter how many compound vesicles are involved
in the fluid, so that we only need to solve a reduced system with the velocity being the single unknown.
Consequently, for multiple vesicle problems, the computational cost of the proposed penalty method is
mainly devoted to solving a reduced linear system of the velocity approximation at each time step. This
is one of the advantageous features of the proposed method.

4 Properties of the penalty immersed boundary method

In this section, we will discuss some properties of the penalty IB method.

4.1. Skew-adjointness and adjointness in the continuous case

Let us first define the following spreading operators S1(σ) and S2(F ) and the inner products of functions
on Ω, Γ and ∂P :

S1(σ) =

∫
Γ

∂

∂s
(στ )δ(x−X(s, t))ds, S2(F ) =

∫
∂P

F δ(x− Y (α, t))dα,

T1(u) =
∂U

∂s
· τ , T2(u) =

∫
Ω

u(x)δ(x− Y (α, t))dx,

〈u,v〉Ω =

∫
Ω

u · vdx, 〈f, g〉Γ =

∫
Γ

f(s)g(s)ds, 〈φ, ϕ〉∂P =

∫
∂P

φ(α)ϕ(α)dα.

Then we have

〈S1(σ),u〉Ω =

∫
Ω

(∫
Γ

∂

∂s
(στ )δ(x−X(s, t))ds

)
· u(x)dx

=

∫
Γ

∂

∂s
(στ ) ·

(∫
Ω

u(x)δ(x−X(s, t))dx

)
ds

= −
∫
Γ

σ

(
τ · ∂U

∂s

)
ds = 〈σ,−T1(u)〉Γ , (45)
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which means that S1 and T1 are skew-adjoint. We also have

〈S2(F ),u〉Ω =

∫
Ω

(∫
∂P

F δ(x− Y (α, t))dα

)
· u(x)dx

=

∫
∂P

F ·
(∫

Ω

u(x)δ(x− Y (α, t))dx

)
dα

= 〈F ,V 〉∂P = 〈F , T2(u)〉∂P , (46)

that is, S2 and T2 are adjoint. Moreover, since we assume the elastic tension and the particle surface force
in the form

σ(s, t) = σ0

(∣∣∣∣∂X∂s (s, t)

∣∣∣∣− ∣∣∣∣∂X∂s (s, 0)

∣∣∣∣),
F = k0(Y − Ỹ ),

the associated potential energies are given by

Eσ(t) =

∫
Γ

σ0
2

(∣∣∣∣∂X∂s (s, t)

∣∣∣∣− ∣∣∣∣∂X∂s (s, 0)

∣∣∣∣)2ds, (47)

EF (t) =

∫
∂P

k0
2
|Y (α, t)− Ỹ (α, t)|2dα. (48)

Therefore, combining (47) with (45) and (18), and (46) with (20) and (21), we have

dEσ
dt

=

∫
Γ

1

2σ0

∂σ2

∂t
ds =

∫
Γ

σ
( 1

σ0

∂σ

∂t

)
ds

=

∫
Γ

σ
(
τ · ∂U

∂s

)
ds = −〈S1(σ),u〉Ω (49)

and
〈S2(F ),u〉Ω = 〈F ,V 〉∂P = 〈F ,V c + ωr〉∂P = V c · 〈F ,1〉∂P + ω〈F , r〉∂P = 0. (50)

From (50) and (19), we obtain

〈F , Ṽ +
1

k0

∂F

∂t
〉∂P = 0,

which leads to
dEF
dt

= 〈F , 1

k0

∂F

∂t
〉∂P = −〈F , Ṽ 〉∂P . (51)

According to (49) and (51), we can conclude that the negative rate of change of potential energy of the
elastic interface is equal to the work done by the interface on the fluid, while the work done by surface
force F pulling the virtual solid particle, characterized by Ỹ , back to the true particle position Y equals
the negative rate of change of potential energy of the particle.

4.2. Skew-adjointness and adjointness in the discrete case

We first define the following discrete operators S1h, S2h, T1h, T2h, and discrete inner products:

S1h(σn+1) =
∑
k

Ds(σ
n+1τn)kδh(x−Xn

k )∆s, S2h(F n+1) =
∑
k

F n+1
k δh(x− Y n

k )∆α,

T1h(un+1
k−1/2) =

Un+1
k −Un+1

k−1
∆s

· τnk−1/2, T2h(un+1
k ) =

∑
x
un+1(x)δh(x− Y n

k )h2,

〈w,v〉Ωh
=
∑
x
w(x) · v(x)h2, 〈f, g〉Γh

=
∑
k

fk−1/2gk−1/2∆s, 〈φ, ϕ〉∂Ph
=
∑
k

φk−1/2ϕk−1/2∆α.
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Then we can verify that S1h and T1h are skew-adjoint, while S2h and T2h are adjoint as follows:

〈S1h(σn+1),un+1〉Ωh
=
∑
x

(∑
k

Ds(σ
n+1τn)kδh(x−Xn

k )∆s
)
· un+1(x)h2

=
∑
k

Ds(σ
n+1τn)k ·

(∑
x
un+1(x)δh(x−Xn

k )h2
)
∆s

=
∑
k

Ds(σ
n+1τn)k ·Un+1

k ∆s

=
∑
k

σn+1
k+1/2τ

n
k+1/2 − σ

n+1
k−1/2τ

n
k−1/2

∆s
·Un+1

k ∆s

= −
∑
k

σn+1
k−1/2

Un+1
k −Un+1

k−1
∆s

· τnk−1/2∆s

= 〈σn+1,−T1h(un+1)〉Γh
(52)

and

〈S2h(F n+1),un+1〉Ωh
=
∑
x

(∑
k

F n+1
k δh(x− Y n

k )∆α
)
· un+1(x)h2

=
∑
k

F n+1
k ·

(∑
x
un+1(x)δh(x− Y n

k )h2
)
∆α

= 〈F n+1, T2h(un+1)〉∂Ph
. (53)

Indeed, based on these two properties (52) and (53), we are able to rescale the discretizations (24)-(31)
to be a symmetric system of linear equations.

4.3. The difference of local stretching factors of two successive time steps is of O(∆t)

From the moving equation of the elastic interface (42), we have

Xn+1
k −Xn+1

k−1
∆s

=
Xn
k −X

n
k−1

∆s
+∆t

Un+1
k −Un+1

k−1
∆s

(54)

and then
DsX

n+1
k−1/2 = DsX

n
k−1/2 +∆tDsU

n+1
k−1/2. (55)

By the triangle inequality, we obtain∣∣∣|DsX
n+1
k−1/2| − |DsX

n
k−1/2|

∣∣∣ ≤ |DsX
n+1
k−1/2 −DsX

n
k−1/2| ≤ ∆t|DsU

n+1
k−1/2|, (56)

which shows the difference of local stretching factors of two successive time steps is of O(∆t) in the
discrete case. Now letting ∆s→ 0, we obtain from (55) that

∂

∂s
Xn+1
k−1/2 =

∂

∂s
Xn
k−1/2 +∆t

∂

∂s
Un+1
k−1/2, (57)

and this leads to∣∣∣∣ ∂∂sXn+1
k−1/2

∣∣∣∣2 =

∣∣∣∣ ∂∂sXn
k−1/2

∣∣∣∣2 + 2∆t
∂

∂s
Xn
k−1/2 ·

∂

∂s
Un+1
k−1/2 + (∆t)2

∣∣∣∣ ∂∂sUn+1
k−1/2

∣∣∣∣2 . (58)

On the other hand, by virtue of (26), we have

DsU
n+1
k−1/2 ·DsX

n
k−1/2 =

1

σ0∆t

(
σn+1
k−1/2 − σ

n
k−1/2

)
|DsX

n
k−1/2|

=
1

∆t

( ∣∣∣∣ ∂∂sXn+1
k−1/2

∣∣∣∣− ∣∣∣∣ ∂∂sXn
k−1/2

∣∣∣∣ )|DsX
n
k−1/2|, (59)
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which implies

∆t
∂

∂s
Xn
k−1/2 ·

∂

∂s
Un+1
k−1/2 =

( ∣∣∣∣ ∂∂sXn+1
k−1/2

∣∣∣∣− ∣∣∣∣ ∂∂sXn
k−1/2

∣∣∣∣ ) ∣∣∣∣ ∂∂sXn
k−1/2

∣∣∣∣ . (60)

Finally, combining (58) with (60), we have( ∣∣∣∣ ∂∂sXn+1
k−1/2

∣∣∣∣− ∣∣∣∣ ∂∂sXn
k−1/2

∣∣∣∣ )2 = (∆t)2
∣∣∣∣ ∂∂sUn+1

k−1/2

∣∣∣∣2 . (61)

That is, for the spatial continuous case, the difference of local stretching factors is of O(∆t), too.
To conclude this subsection, we summarize that though our formulation (11) allows the interface to

be nearly inextensible, from (56), the difference of local stretching factors for two successive time steps
is still keeping in O(∆t) and the factor |Dn

sXk−1/2| may not be always increasing as much as expected
when time step n advances. The spatial continuous case has the similar behavior, see (61). Numerical
results reported in Table 5.2 and Figure 5.1 in Section 5 will support this observation. We remark that
this result is very different from that of [12].

4.4. The IB discretization scheme (24)-(31) is unconditionally energy stable

In this subsection, we will prove that the IB discretization scheme (24)-(31) is unconditionally stable in the
sense that an appropriately defined energy functional associated with the discrete system is decreasing and
hence bounded in time [18]. To this goal, we define the spatial-discretized total energy E(t) = KE(t)+PE(t)
of the physical system at time t, where the kinetic energy KE and the potential energy PE are respectively
defined as follows:

KE(t) =
ρ

2
〈u,u〉Ωh

, (62)

PE(t) =
σ0
2
〈
∣∣∣∣ ∂∂sX(s, t)

∣∣∣∣− ∣∣∣∣ ∂∂sX(s, 0)

∣∣∣∣ , ∣∣∣∣ ∂∂sX(s, t)

∣∣∣∣− ∣∣∣∣ ∂∂sX(s, 0)

∣∣∣∣〉Γh

+
k0
2
〈Y (α, t)− Ỹ (α, t),Y (α, t)− Ỹ (α, t)〉∂Ph

, (63)

where ρ is the fluid density and we have already set, for simplicity, ρ = 1 in the governing equation (1).
We also assume for simplicity that u = 0 on ∂Ω for all t ≥ 0. Now we consider the following kinetic
energy estimation:

Kn+1
E −Kn

E =
1

2
〈un+1,un+1〉Ωh

− 1

2
〈un,un〉Ωh

=
1

2
〈un+1 + un,un+1 − un〉Ωh

=
1

2

(
−〈un+1 − un,un+1 − un〉Ωh

+ 2〈un+1,un+1 − un〉Ωh

)
≤ 〈un+1,un+1 − un〉Ωh

(by (24)) = ∆t〈un+1, µ∆hu
n+1 −∇hpn+1 + S1h(σn+1) + S2h(F n+1)〉Ωh

(by (25)) = ∆t(un+1
h )>(A− 1

ε
BB>)un+1

h +∆t〈un+1, S1h(σn+1) + S2h(F n+1)〉Ωh
. (64)

The potential energy estimation is given by

Pn+1
E − PnE =

1

2σ0
〈σn+1, σn+1〉Γh

− 1

2σ0
〈σn, σn〉Γh

+
1

2k0
〈F n+1,F n+1〉∂Ph

− 1

2k0
〈F n,F n〉∂Ph

=
1

2σ0
〈σn+1 + σn, σn+1 − σn〉Γh

+
1

2k0
〈F n+1 + F n,F n+1 − F n〉∂Ph

=
1

2σ0

(
−〈σn+1 − σn, σn+1 − σn〉Γh

+ 2〈σn+1, σn+1 − σn〉Γh

)
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+
1

2k0

(
−〈F n+1 − F n,F n+1 − F n〉∂Ph

+ 2〈F n+1,F n+1 − F n〉∂Ph

)
≤ 〈σn+1,

1

σ0
(σn+1 − σn)〉Γh

+ 〈F n+1,
1

k0
(F n+1 − F n)〉∂Ph

.

According to (26)-(29), we obtain

Pn+1
E − PnE ≤ 〈σn+1,

1

σ0
(σn+1 − σn)〉Γh

+ 〈F n+1,
1

k0
(F n+1 − F n)〉∂Ph

= ∆t〈σn+1, T1h(un+1)〉Γh
−∆t〈F n+1, T2h(un+1)〉∂Ph

= −∆t〈S1h(σn+1),un+1〉Ωh
−∆t〈S2h(F n+1),un+1〉Ωh

. (65)

Now, combining (64) and (65) with the facts that A is negative-definite and BB> is positive semi-definite,
we have

En+1 − En = (Kn+1
E −Kn

E ) + (Pn+1
E − PnE ) = ∆t(un+1

h )>(A− 1

ε
BB>)un+1

h < 0. (66)

In other words, the IB discretization scheme (24)-(31) is unconditionally energy stable.

5 Numerical experiments

In this section, we will perform a series of numerical tests to illustrate the superior performance of the
proposed penalty IB method. Throughout this section, except in Example 5, the computational domain
is chosen as Ω := [−1, 1]× [−1, 1].

Example 1. (Convergence test for the Stokes solver) We first study the convergence behavior of the
proposed penalty IB discretization scheme for the steady Stokes problem with µ = 1. The numerical
scheme for solving this problem is exactly same as that described in Section 3, except it is steady state
and without the elastic interface enclosing a suspended solid particle. We assume that the exact solution
(u, p) of the steady Stokes problem is given by (cf. [12])

u(x, y) = sinx cos y, v(x, y) = − cosx sin y, p(x, y) = ex sin y.

Numerical results for different grid resolutions are reported in Table 5.1. The choice of the penalty pa-
rameter ε = 10−7 follows the suggestion given in [6]. From the numerical results, we may observe that
the orders of convergence of velocity field is clearly of second-order accuracy, while the pressure is of first-
order accuracy. The cause of the first-order convergence of pressure is probably due to that for retaining
the symmetry of the resulting linear system (34), we use a first-order extrapolation in the computation
of the discrete gradient of pressure ∇hpn+1 in (24) at the boundary grid points. These results are almost
identical with those obtained by the fractional step IB method in [12]. From this observation, we believe
that weakening the incompressibility condition from (2) to (17) with a small penalty parameter ε would
not be the main source of numerical errors in the immersed boundary approach to fluid-structure inter-
action problems.

Example 2. (Convergence test for the Stokes flow with an inextensible interface enclosing a suspended
solid particle) We study the convergence behavior of the Stokes flow with an inextensible interface en-
closing a suspended solid particle. For the sake of comparison, we take the kinematic viscosity µ = 1
and in this example, we drop the term ∂u/∂t from (16) as that of [12]. We put the inextensible inter-
face Γ and the boundary of particle P with initial configurations X(s, 0) = (0.25 cos(s), 0.5 sin(s)) and
Y (α, 0) = (0.1 cos(α), 0.1 sin(α)) for 0 ≤ s, α ≤ 2π under a shear flow (u, v) = (γy, 0) in the fluid domain
Ω, where γ is the shear rate. In this example, we take γ = 1.

Consider the penalty parameters ε = 10−7 and σ0 = k0 = 107. We remark that based on our numerical
experience, the choices of the penalty parameters are not dependent on the mesh size h and time step ∆t.
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Table 5.1. Maximum errors of the numerical solution (uh, vh, ph) of Example 1

1/h ‖u− uh‖∞ rate ‖v − vh‖∞ rate ‖p− ph‖∞ rate

16 1.5782E-04 − 1.5786E-04 − 9.6060E-04 −
Penalty 32 4.4804E-05 1.82 4.4815E-05 1.82 4.2835E-04 1.17
IB method 64 1.2061E-05 1.89 1.2064E-05 1.89 2.0500E-04 1.06

128 3.1541E-06 1.94 3.1546E-06 1.89 1.0044E-04 1.03
256 8.1303E-07 1.94 8.1272E-07 1.96 5.1026E-05 0.98

16 1.5780E-04 − 1.5780E-04 − 9.6150E-04 −
Fractional step 32 4.4810E-05 1.82 4.4810E-05 1.82 4.2860E-04 1.17
IB method [12] 64 1.2060E-05 1.89 1.2060E-05 1.89 2.0520E-04 1.06

128 3.1530E-06 1.94 3.1530E-06 1.94 1.0050E-04 1.03
256 8.1200E-07 1.96 8.1200E-07 1.96 4.9700E-05 1.02

Table 5.2. Relative errors of the interface perimeter Lh, maximum errors of the interface configuration Xh, and
maximum errors of the numerical velocity (uh, vh) of Example 2 at time T

1/h |L0 − Lh|/L0 rate ‖Xref −Xh‖∞ rate ‖uref − uh‖∞ rate ‖vref − vh‖∞ rate

16 4.7544e-04 − 4.4082e-03 − 6.6113e-02 − 1.3871e-01 −
Penalty 32 2.1585e-04 1.14 1.1455e-03 1.94 2.6011e-02 1.35 4.0193e-02 1.79
IB method 64 1.0411e-04 1.05 4.1673e-04 1.46 1.0095e-02 1.37 1.5367e-02 1.39
(T = 0.0625) 128 5.1292e-05 1.02 1.2945e-04 1.69 3.1458e-03 1.68 4.9530e-03 1.63

16 3.5110E-02 − 3.4130E-03 − 6.5520E-02 − 1.1330E-01 −
Fractional step 32 2.0890E-02 0.75 1.0790E-03 1.66 2.5920E-02 1.34 3.6600E-02 1.63
IB method [12] 64 1.2200E-02 0.78 4.4380E-04 1.28 1.0530E-02 1.30 1.5540E-02 1.24
(T = 0.0625) 128 6.7490E-03 0.85 1.6220E-04 1.45 4.0470E-03 1.38 4.9680E-03 1.64

16 4.4363e-03 − 4.2099e-02 − 1.3619e-01 − 1.3717e-01 −
Penalty 32 1.8934e-03 1.23 1.1020e-02 1.93 4.2443e-02 1.68 4.7357e-02 1.53
IB method 64 9.1114e-04 1.06 3.1892e-03 1.79 1.7763e-02 1.26 1.9007e-02 1.32
(T = 1) 128 4.5011e-04 1.02 8.7944e-04 1.86 7.9879e-03 1.15 6.1128e-03 1.64

To examine the convergence rates, we let the mesh size h decrease by half, i.e., h = 1/16, 1/32, 1/64, 1/128.
We also set the Lagrangian mesh widths to be ∆s = ∆α ≈ h/2 and the time step size ∆t = h/4. Due
to the exact solution is not available in this example, we take the result obtained from the finest mesh
h = 1/256 as our reference solution and compute the errors between the reference and the numerical
solutions, although the resulting rate of convergence may tend to be overestimated than the real one.
Moreover, since the numerical solutions are not coincide with the same grid locations of the reference
solution, we use a linear interpolation to compute the numerical solutions at the desired locations. Let
L0 and A0 be the perimeter of the interface and the enclosed area at the initial time, while at time t they
are denoted by Lh and Ah, respectively.

First, we compute the numerical solutions up to time T = 0.0625. At the time, the numerical results
produced by the fractional step IB method are available in [12]. The results of both methods are reported
in Table 5.2, from which we find that the relative errors of the interface perimeter by the penalty IB
method are much smaller than those obtained by the fractional step IB method in [12], and the maxi-
mum errors of the interface configuration and the fluid velocity field are comparable with that in [12].
The penalty IB method still can retain reasonable accuracy for a longer time; see the results of time
T = 1 in Table 5.2. Moreover, from Figure 5.1 for h = 1/64 and T = 20, we notice that the relative errors
of the interface perimeter and enclosed area by the proposed penalty IB method take a rather long time
increasing to 10−2. This supports the theoretical finding (56).

Example 3. (Tank-treading to tumbling motion of a compound interface under shear flow) In this ex-
ample, we study the transient deformation from tank-treading to tumbling of an inextensible interface
enclosing a suspended solid particle in the simple shear flow with shear rate γ = 1 and µ = 1. The initial
configuration of the interface is given by X(s, 0) = (0.25 cos(s), 0.5 sin(s)) for 0 ≤ s ≤ 2π. The penalty
parameters in the penalty IB method are taken as ε = 10−7 and σ0 = k0 = 107. The mesh sizes are
chosen as h = 1/64, ∆s = ∆α ≈ h/2 and the time step ∆t = h/4.
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Figure 5.1. Relative errors of the interface perimeter Lh and enclosed area Ah by the penalty IB method with
h = 1/64 of Example 2 for 0 ≤ t ≤ 20.

We first recall the filling fraction of the solid particle, which is given by φ := Ap/A0, where Ap and
A0 are respectively the area of solid particle and the enclosed area of interface at the initial time. One
of the interesting motions of a compound interface under shear flow is the so-called tank-treading; see
Figure 5.2. The tank-treading motion of interface can be characterized by both the inclination angle θ and
the tank-treading frequency f of revolution. The former is the angle between the long axis of interface
and the flow direction as that shown in Figure 5.2 and the latter is defined as f = 2π/

∫
Γ

(u · τ )−1d`.
As it has been pointed out in previous literature [7] [9] [11] [12] [26] [29] that the inclination angle has
strongly dependent on the reduced area RA, which is defined as RA = 4πA0/L

2
0, but independent on the

dimensionless shear rate γ.

We now examine the elastic interface enclosing different solid particles. At first, we consider the
case of circular solid particle centered at the origin. Figure 5.3 and Figure 5.5 show the time evolution
of the motion for 0 ≤ t ≤ 20 with filling fractions φ = 0.08 and φ = 0.42, respectively. Clearly, the
former shows the tank-treading motion, while the latter displays the tumbling. This is consistent with
the observation in [27] that the compound interfacial dynamics will have the transition from tank-treading
to tumbling if the inclusion effect is strong enough. In other words, if the filling fraction φ of the circular
solid particle is above some critical threshold, then the interface will start to tumble rather than being
stationary. In [12], Lai et al. give a possible explanation for this point. By including a solid particle,
the energy dissipation enhances, so the compound interface behaves like an inclusion-free interface that
encapsulates a more viscous fluid. In some measure, the larger the inclusion is, the higher the viscosity
inside the interface will be. The large difference of viscosities of the fluids inside and outside of the
interface could eventually cause the transition of motion. Furthermore, we find that a different shape
of the enclosed solid particle, even with the same filling fraction, may also result in a different viscosity
inside the interface. For example, in Figure 5.6, we consider the interface enclosing a peanut-like solid
particle Y (α, 0) = (0.232 sin(α), 0.38 cos(α)(0.0414+0.4004 sin2(α)−0.2246 sin4(α))) for 0 ≤ α ≤ 2π with
the same filling fraction φ = 0.08 as that investigated in Figure 5.3. However, in this case, the tumbling
motion occurs. It is also interesting to point out that although we may observe the tank-treading motion
in Figure 5.3, with a close inspection, we find that the inclination angle θ of the compound interface shows
a tiny trembling as that depicted in Figure 5.4. This phenomenon can be observed in the inclusion-free
case as well.

In this example, we also find that in the tank-treading regime, as the filling fraction increases, both
the inclination angle and the tank-treading frequency will decrease. Moreover, the compound interface
with larger reduced area has larger inclination angle and tank-treading frequency when the filling frac-
tion is small. These observations are depicted in Figure 5.7. Finally, we investigate the critical value of
filling fraction versus the reduced area for the tank-treading to tumbling transition. In Figure 5.8, above
the critical value, the interface motion will transit from tank-treading to tumbling. One can easily see
that as the reduced area increases, the critical filling fraction increases too. These results are consistent
qualitatively with those reported in [12] and [27].
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Figure 5.2. (Example 3) Tank-treading motion and inclination angle θ.
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Figure 5.3. (Example 3) The motion of a compound interface in a shear flow with initial configurations X(s, 0) =
(0.25 cos(s), 0.5 sin(s)), 0 ≤ s ≤ 2π, and Y (α, 0) = (0.1 cos(α), 0.1 sin(α)), 0 ≤ α ≤ 2π, and filling fraction φ = 0.08.
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Figure 5.4. (Example 3) The inclination angle θ of a compound interface in a shear flow with initial configurations
X(s, 0) = (0.25 cos(s), 0.5 sin(s)), 0 ≤ s ≤ 2π, and Y (α, 0) = (0.1 cos(α), 0.1 sin(α)), 0 ≤ α ≤ 2π, and filling fraction
φ = 0.08 for 0 ≤ t ≤ 20 (left) and 13 ≤ t ≤ 15 (right).
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Figure 5.5. (Example 3) The motion of a compound interface in a shear flow with initial configurations X(s, 0) =
(0.25 cos(s), 0.5 sin(s)), 0 ≤ s ≤ 2π, and Y (α, 0) = (0.23 cos(α), 0.23 sin(α)), 0 ≤ α ≤ 2π, and filling fraction
φ = 0.42.
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Figure 5.6. (Example 3) The motion of an interface enclosing a peanut-like solid particle in a shear flow with initial
configurations X(s, 0) = (0.25 cos(s), 0.5 sin(s)), 0 ≤ s ≤ 2π, and Y (α, 0) = (0.232 sin(α), 0.38 cos(α)(0.0414 +
0.4004 sin2(α)− 0.2246 sin4(α))), 0 ≤ α ≤ 2π, and filling fraction φ = 0.08.
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Figure 5.7. (Example 3) The inclination angle θ (left) and tank-treading frequency f (right) versus filling fraction
φ in the tank-treading regime for two different reduced areas RA = 0.84 and RA = 0.95.
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Figure 5.8. (Example 3) The critical filling fraction φ for tank-treading to tumbling transition versus reduced area
RA.

Example 4. (Tank-treading to tumbling motion of a compound interface under shear flow by varying
the kinematic viscosity µ) In this example, we investigate the dynamical transition from tank-treading
to tumbling of an inextensible interface enclosing a suspended solid particle in the simple shear flow
with shear rate γ = 1 by varying the kinematic viscosity µ. The initial configuration of the interface
is given by X(s, 0) = (0.25 cos(s), 0.5 sin(s)) for 0 ≤ s ≤ 2π enclosing a solid particle whose boundary
is parameterized by Y (α, 0) = (0.1 cos(α), 0.1 sin(α)) for 0 ≤ α ≤ 2π. The filling fraction is φ = 0.08.
Again, we take the penalty parameters in the penalty IB method as ε = 10−7 and σ0 = k0 = 107, and
the mesh sizes are chosen as h = 1/64, ∆s = ∆α ≈ h/2 and the time step ∆t = h/4.

For the kinematic viscosity µ = 1, the tank-treading motion of the compound interface has been
clearly observed in Figure 5.3. The dynamical behavior of µ = 0.1 is very similar to the case of µ = 1.
If we decrease µ from 0.01 to 0.001, however, we can find that the transition from tank-treading to
tumbling motion occurs; see Figure 5.9 and Figure 5.10. Obviously, the compound interface is easier to
tumble when the kinematic viscosity µ is getting smaller.

Example 5. (Motion of multiple compound vesicles in a shear flow) In this example, we demonstrate
that the proposed penalty IB method can be applied to the problems of multiple vesicles as well. We
explore the motion of a group of three identical compound vesicles aligned initially on the x-axis (cf.
Figure 5.11) under a shear flow, in which each vesicle is composed of an inextensible interface enclosing
a solid particle. The initial configurations of the inextensible interfaces and boundaries of particles are
given by

X1(s, 0) = (0.2 cos(s)− 0.45, 0.4 sin(s)) and Y 1(α, 0) = (0.08 cos(α)− 0.45, 0.08 sin(α)),
X2(s, 0) = (0.2 cos(s), 0.4 sin(s)) and Y 2(α, 0) = (0.08 cos(α), 0.08 sin(α)),

X3(s, 0) = (0.2 cos(s) + 0.45, 0.4 sin(s)) and Y 3(α, 0) = (0.08 cos(α) + 0.45, 0.08 sin(α))
(67)

for 0 ≤ s, α ≤ 2π. Thus, at initial time, one can calculate that the spacing between each pair of interfaces
is 1/20 and and the filling fraction φ = 0.08. We examine the motion of these three compound vesicles
under the shear flow (u, v) = γ((1/π) sinπy, 0) in the fluid domain [−2, 2]× [−1, 1], where γ is the shear
rate. In the simulation, we take γ = 6.25, the kinematic viscosity µ = 1, the penalty parameters ε = 10−7

and σ0 = k0 = 107, and the mesh sizes are chosen as h = 1/64, ∆s = ∆α ≈ h/2 and the time step
∆t = h/4. The numerical results are depicted in Figure 5.11, from which we can observe that the group
of compound vesicles turns to slant-aligned about time t = 2.5 due to the shear flow and then they start
to separate. Once they separate, the shear flow will drive the left vesicle toward the lower left corner and
the right vesicle to the upper right corner, and the middle one still stands at the origin and displays a
tank-treading motion.

We remark that in this example, the computational cost of the proposed penalty method is mainly
devoted to solving the the linear system of the velocity approximation at each time step, since the
approximations of all other variables can be directly obtained in terms of the approximation of velocity,
as that described in Section 3.
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Figure 5.9. (Example 4, µ = 0.01) The motion of a compound interface in a shear flow with initial configurations
X(s, 0) = (0.25 cos(s), 0.5 sin(s)), 0 ≤ s ≤ 2π, and Y (α, 0) = (0.1 cos(α), 0.1 sin(α)), 0 ≤ α ≤ 2π, and filling fraction
φ = 0.08.

6 Concluding remarks

In this paper, we have proposed a novel penalty IB formulation for simulating the transient Stokes
flow with an inextensible interface enclosing a suspended solid particle. The main idea of the proposed
approach was based on the penalty techniques by modifying the constitutive equation of Stokes flow to
weaken the incompressibility condition, relating the surface divergence to the elastic tension σ to make the
interface nearly inextensible, and connecting the particle surface-velocity with the particle surface force
F to regularize the particle’s rigid motion. The advantage of these regularized governing equations is that
when they are discretized by the standard centered difference scheme on a staggered grid, the resulting
linear system can easily be reduced by eliminating the unknowns ph, σh and F h directly. Thus, we just
need to solve a smaller linear system of the velocity approximation uh. This advantage can be preserved
and even enhanced when such approach is applied to the transient Stokes flow with multiple compound
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Figure 5.10. (Example 4, µ = 0.001) The motion of a compound interface in a shear flow with initial configurations
X(s, 0) = (0.25 cos(s), 0.5 sin(s)), 0 ≤ s ≤ 2π, and Y (α, 0) = (0.1 cos(α), 0.1 sin(α)), 0 ≤ α ≤ 2π, and filling fraction
φ = 0.08.

vesicles. Moreover, we have proved that this smaller linear system is symmetric and negative-definite,
which enables us to use efficient linear solvers.

One of the advantageous features of the proposed penalty IB method is that the discretization scheme
is unconditionally stable in the sense that an appropriately defined energy functional associated with the
discrete system is decreasing and hence bounded in time. Another important feature of the approach is
that the difference of local stretching factors for two successive time steps is of first order in time step
∆t, and the length of the elastic interface may not be always increasing as much as expected when time
step advances. We have performed a number of numerical examples to test the accuracy and stability
of the IB discretization scheme. The tank-treading and tumbling motions for inextensible interface with
a suspended solid particle for different shapes and filling fractions in the simple shear flow have been
extensively studied. The simulation of the motion of multiple compound vesicles has been performed as
well. Numerical results illustrate the superior performance of the proposed penalty IB method.
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Figure 5.11. (Example 5) The motion of three compound vesicles in a shear flow (u, v) = 6.25((1/π) sinπy, 0)
with the initial configurations given in (67).
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Finally, we remark that the present penalty IB approach can be easily extended to Navier-Stokes flow
by treating the nonlinear advection terms explicitly in the time integration.
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