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Abstract A new residual-based stabilized finite element method is analyzed for solving the Stokes
equations in terms of velocity and pressure, where the H−1 norm is introduced in the measurement of the
residuals to obtain a symmetric positive definite (SPD) method. The H−1 norm is computable and can be
always easily realized offline by the continuous linear finite element solution or the preconditioner counterpart
of the Poisson Dirichlet problem. Although the H−1 norm is computed in the linear element space, no matter
what the finite element spaces for the velocity and the pressure are, optimal error bounds can be established
when using continuous finite element pairs Rl − Rm for velocity and pressure for any l,m ≥ 1. Numerical
experiments are performed to confirm the theoretical results obtained.
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1 Introduction

Given Ω ⊂ Rd, d = 2, 3, a bounded and connected open domain with a Lipschitz-continuous boundary Γ, we
are interested in the finite element method for the Stokes problem [36, 23]:

−∆u+∇p = f, div u = 0 in Ω, u = 0 on Γ, (1.1)

where u, p, f are the velocity, the pressure and the given source, respectively. Introduce standard Hilbert
spaces [1]: L2(Ω) = {v : ||v||20 :=

∫
Ω
|v|2 < ∞}, H1(Ω) = {v ∈ L2(Ω) : ∇v ∈ (L2(Ω))d}, H1

0 (Ω) = {v ∈
H1(Ω) : v|Γ = 0}, H1(Ω)/R = {v ∈ H1(Ω) :

∫
Ω
v = 0}, where we use the same notation ||v||1 and | · |1 to

respectively denote the norm and the semi-norm for these H1 spaces, with ||v||21 := ||v||20 + ||∇v||20 and with
|v|1 := ||∇v||0. The dual of H1

0 (Ω) is denoted by H−1(Ω), with the duality pairing ⟨·, ·⟩, where the norm for
H−1(Ω) is denoted by || · ||−1 and is defined by [1, 40]

||χ||−1 := sup
0̸=v∈H1

0 (Ω)

⟨χ, v⟩
||v||1

, (1.2)

where if χ ∈ L2(Ω), the duality pairing ⟨χ, v⟩ is the L2 inner product (χ, v) =
∫
Ω
χv. Set

X = (H1
0 (Ω))

d, M = L2(Ω)/R, (1.3)

where X is equipped with the norm ||v||1 and M with the norm ||q||0/R := infc∈R ||q+ c||0 (hereafter, ||q||0/R
is still denoted by ||q||0 for convenience). We define the bounded bilinear forms as follows:

a(u, v) = (∇u,∇v) : X ×X → R, b(v, q) = −(div v, q) : X ×M → R. (1.4)
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Let f ∈ (H−1(Ω))d. The standard Galerkin variational problem for the Stokes problem (1.1) is to find
(u, p) ∈ X ×M such that

B(u, p; v, q) := a(u, v) + b(v, p) + b(u, q) = ⟨f, v⟩ ∀(v, q) ∈ X ×M. (1.5)

Problem (1.5) is well-posed, since it is well known that [12, 23, 36, 27, 8]:

sup
0̸=(v,q)∈X×M

B(u, p; v, q)

||v||1 + ||q||0
≥ C(||u||1 + ||p||0) ∀(u, p) ∈ X ×M. (1.6)

As usual, let h denote the mesh size of the finite element triangulation Th of Ω. Introduce finite element
spaces Xh ⊂ X and Mh ⊂ M ∩ H1(Ω). Unfortunately, the finite element problem of (1.5) over Xh ×Mh

is not always well-posed, since, in general, (1.6) cannot hold over Xh ×Mh uniformly in h. Readers may
refer to [8, 23, 38] for more details. Another difficulty is the need to solve an indefinite saddle-point system
resulting from the finite element problem. There have been much progress in iterative methods for solving
saddle-point systems in the past decade [5, 18]. But, a symmetric positive definite (SPD) system is still the
most desirable in large-scale computations, since there are many readily available preconditioning techniques
and algorithms for iterative solutions of SPD system [29]. The stabilization methods as in [19, 20, 21, 13] are
not SPD. For the purpose of practical applications, on the other hand, there has been increasingly interest in
employing equal-order continuous elements for the velocity and the pressure of the Stokes problem. Least-
squares (LS) methods are thus suitable for these considerations [2]. The idea for the LS method is quite
simple [2]. Measuring the residuals of the underlying partial differential equations in some suitable Hilbert
norms, to find the minimizer which belongs to suitable Hilbert spaces such that the residuals is minimized in
those Hilbert norms. Trivially, the original solution is usually exactly the minimizer of the LS minimization
problem. The obvious advantages of LS method are that the minimization problem is at least semi-positive
definite and symmetric and that the Inf-Sup constraint (1.6) between Xh and Mh is not required and any
conforming finite elements can be employed. The LS method may be divided into two main subclasses. One
subclass is the LS method for the second-order system of partial differential equations like (1.1), see [25]. The
other subclass is the LS for the first-order system of partial differential equations which is usually formulated
by the introduction of additional unknowns other than the velocity and the pressure from a second-order
system [16, 2, 14, 25].

In the context of second-order system like (1.1), the H−1 LS method is a desirable method that allows
the velocity and the pressure to still belong to X ×M and behaves just like the standard finite element
method for elliptic problems in [10], for instance, the condition number is O(h−2). The H−1 LS method
is to use the H−1 norm to measure some of the residuals of the underlying partial differential equations
[25]. For the Stokes problem (1.1), the H−1 LS method is to find the minimizer (u, p) ∈ X ×M such that
J (u, p; f) = min

(v,q)∈X×M
J (v, q; f), where J (v, q; f) = || −∆v +∇q − f ||2−1 + ||div v||20. It is obvious that

if (u, p) solves (1.1), it indeed minimizes J (v, q; f) at the zero minimum, i.e., J (u, p; f) = 0. Also, it can
be shown that the solution of (1.5) is the minimizer and vice versa. The Galerkin problem of the H−1 LS
minimization is coercive over X×M , inheriting from (1.6). From Lax-Milgram lemma, one can infer that the
H−1 LS Galerkin problem admits a unique solution (u, p) ∈ X ×M . It then follows from the standard finite
element theory that the solution (u, p) can be numerically solved in any X ×M conforming finite element
space and the convergence optimal relative to the order of approximation and the required regularity can
be obtained. Now, the only question is how to compute the H−1 norm. As in [25, 24], the H−1 norm is
approximately computed from the finite element solution operator or its preconditioner counterpart of the
Poisson equation of Laplace operator with homogeneous Dirichlet boundary condition. The idea comes from
the Riesz representation theorem [40], since the H−1 norm of any χ ∈ H−1(Ω) is equal to the H1 norm
of the Riesz representation in H1

0 (Ω) of χ, i.e., the solution of the Poisson Dirichlet problem of Laplace
operator with right-hand side χ. In implementation, the H−1 LS finite element method involves three stages
where three symmetric and positive definite algebraic systems are solved. The first stage is to solve the
L2 projections of −∆u + ∇p onto Xh. The second stage is to solve the Poisson Dirichlet problem in Xh

with the finite element solution operator Th : (H−1(Ω))d → Xh or to construct the symmetric positive
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definite preconditioner Bh : Xh → Xh, which satisfies the spectral equivalence to Th. The third stage is to
numerically solve (u, p) from the H−1 LS finite element problem in Xh ×Mh. All these stages are realized
in Xh, the finite element space of the velocity.

In this paper, we shall propose a new H−1 LS finite element method. The key feature is that all the
three stages mentioned as above are implemented only in the continuous linear element space, denoted by
Vh ⊂ X, no matter what the finite element spaces Xh ×Mh for the velocity and the pressure are. In other
words, here the H−1-norm is computed in the linear element space Vh, unlike the method elsewhere where
the H−1-norm is computed in the finite element space Xh of velocity. More importantly, employing this
newly proposed H−1 LS method with finite element spaces Xh ×Mh of velocity and pressure, although the
H−1-norm is only computed in Vh (instead of Xh), we can still obtain optimal error bounds in both order of
approximations of Xh×Mh as well as required regularity of velocity and pressure. Besides, other advantages
of H−1-LS methods are all inherited, for example, the “norm equivalence” property in H1 norm of velocity
and in L2 norm of pressure still holds. In the new H−1 LS method, the L2 projections of −∆u +∇p and
the finite element solution operator of the Poisson equation of Laplace operator with homogeneous Dirichlet
boundary condition are defined only in the linear element space Vh, which are respectively denoted as Ah

and Sh, i.e., Ah : (H−1(Ω))d → Vh and Sh : Vh → Vh, see (2.2) and (2.3) in section 2. Both Ah and
Sh are used for computing the H−1-norm, see (2.9) and (2.11) in section 2. They can be easily obtained
from simple numerical quadrature methods, such as ‘mass-lumping’ method with a diagonal resultant mass
matrix for the former and one point quadrature scheme for the latter, see [10]. The preconditioner of the
finite element solution operator Sh which is defined in the linear element space Vh is denoted as Bh: Vh → Vh,
which is spectrally equivalent to Sh, see (2.13) in section 2. This linear element preconditioner Bh can also
be easily obtained from a one step smoothing in one time V -cycle multigrid algorithm on nested meshes.
Nowadays, the multigrid algorithm for linear element method, which is built-in most existing softwares, is
readily available. Many other algorithms are also available for easily generating the preconditioner Bh in
the linear element space Vh for the finite element solution operator Sh which is defined in the linear element
space Vh, such as domain decomposition method.

The new H−1 LS method is then highly attractive for the case where Xh of the velocity is involved with
higher-order elements, nonnested meshes, nonnested elements, and three-dimensional problems. Among
others, no matter what finite element spaces Xh ×Mh for solving the velocity and pressure are, we always
compute theH−1 norm in the continuous linear element space Vh. As such, whenever the degrees of piecewise
polynomials change globally or locally in Xh ×Mh by adding more nodes in all or part of the elements of
Th, the L2 projections Ah and the finite element solution operator Sh or its preconditioner counterpart Bh

which are all defined in the linear element space Vh always live on only the vertices of the elements of Th.
Therefore, the new H−1 LS method would be potentially very useful in several circumstances, say hp-version
and p-version methods [33, 35], discontinuous Galerkin methods [11], adaptive methods [31, 32], etc. All
these methods may involve locally or globally higher-order approximations in Xh ×Mh so that the velocity
and the pressure can have higher accuracy locally or globally.

Here we should note a fact. The preconditioner Bh we shall define in the linear element space Vh is not
a preconditioning of the one in [25]. In other words, the preconditioner Bh (or the finite element solution
operator Sh) in the linear element space Vh is not involved with the preconditioning of the finite element
space Xh of the velocity. In any case, the linear element preconditioner Bh is only the preconditioner of
the linear element solution operator Sh in the linear element space Vh, no matter what the finite element
space Xh of the velocity is. The only role of the linear element preconditioner Bh (or the linear element
solution operator Sh) which is an approximation of the Riesz representation operator associated with the
Poisson equations of Laplace operator with homogeneous Dirichlet boundary condition is for computing the
H−1-norm.

In this paper, we shall also prove the optimal L2-norm error bound for the velocity with one order higher
than the H1-norm error bound if the H2 regularity of the solutions of the Stokes problem and the linear
elasticity problem hold (e.g., the H2 regularity holds for convex domain). This type of error estimate has
not appeared elsewhere in the literature for the H−1 LS method of the Stokes problem, to the best of the
authors’ knowledge. We elaborate an ad hoc duality argument to achieve this.
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The rest of this paper is outlined as follows. In section 2, we define the L2 projection and the finite element
solution of the Poisson Dirichlet problem (including the preconditioner) and the discrete H−1 norm in the
linear element space. In section 3, the new H−1 LS finite element method is defined and the consistency
property is shown. In section 4, the coercivity/ellipticity or the norm equivalence is established and the
estimate of the condition number of the resulting algebraic system is given, and the optimal error bounds in
H1 norm for the velocity and in L2 norm for the pressure are obtained. In section 5, the argument for deriving
the optimal error bound in L2 norm for the velocity is developed. In section 6, numerical experiments are
presented to confirm the theoretical results obtained, and a conclusion is given in the last section.

2 L2 projection, finite element solution of Poisson Dirichlet problem, discrete
H−1 norm and preconditioner in linear element space

Let Ω be a simply-connected polygon or polyhedron, with connected polygonal boundary Γ. For any h > 0,
let Th denote a family of shape-regular conforming triangulations of Ω into elements [10, 6], such as triangles
or tetrahedra or quadrilaterals or hexahedra. As usual, h = maxK∈Th

hK , where hK denotes the diameter of
K. Denote by FI

h the set of all interior element boundaries in Th, and we denote by Fh the set of all element
boundaries in Th. The diameter of F ∈ Fh is denoted by hF . For any given interior edge or face F ∈ FI

h which
is the intersection of two elements K1,K2 ∈ Th, of v across F we define the jump [v]|F = (v|K1 − v|K2)|F .
Let Rl(K), l ≥ 1 being an integer, either denote the space of polynomials over K ∈ Th of total degree in all
coordinates variables not greater than l for simplexes, or denote the space of isoparametric functions over K
from the polynomials over the fixed reference element K̂ of the respective degree in each coordinates variable
not greater than l.

We define the linear element space:

Vh = {v ∈ X : v|K ∈ (R1(K))d,∀K ∈ Th}. (2.1)

Associated with Vh, we introduce a discrete L2 inner product, denoted by (·, ·)0,h, which is an approximation
of the L2 inner product (·, ·). We also introduce a discrete H1 inner product ((·, ·))1,h, which is an approxi-
mation of the H1 inner product ((·, ·))1 := (∇·,∇·) + (·, ·) or (∇·,∇·). Firstly, we define a generalized linear
element L2 projection operator Ah : (H−1(Ω))d → Vh: given any χ ∈ (H−1(Ω))d, Ahχ ∈ Vh satisfies

(Ahχ, zh)0,h = ⟨χ, zh⟩ ∀zh ∈ Vh. (2.2)

Note that the above is not a genuine L2 projection. Nevertheless, the left-hand side (·, ·)0,h is the approxima-
tion of the L2 inner product and ⟨χ, z⟩ = (χ, z) for χ, z ∈ (L2(Ω))d, so Ahχ is essentially the L2 projection
of χ when χ ∈ (L2(Ω))d, and we will simply call Ah the L2 projection operator. Next, we define a linear
finite element solution operator Sh : Vh → Vh: given any χh ∈ Vh, Shχh ∈ Vh satisfies

((Shχh, zh))1,h = (χh, zh)0,h ∀zh ∈ Vh. (2.3)

It is obvious that ShAh : (H−1(Ω))d → Vh gives the relation: given any χ ∈ (H−1(Ω))d, ShAhχ ∈ Vh
satisfies

((ShAhχ, zh))1,h = ⟨χ, zh⟩ ∀zh ∈ Vh. (2.4)

In other words, according to which one ((·, ·))1,h is taken as the approximation of either ((·, ·))1 = (∇·,∇·)+
(·, ·) or ((·, ·))1 = (∇·,∇·), ShAh (or Sh) is the linear finite element solution operator, with respect to
((·, ·))1,h, for the Poisson Dirichlet problem as follows:

−∆ω + ω = χ or −∆ω = χ in Ω, ω = 0 on Γ. (2.5)

Below we formulate a better understanding of Ah and Sh for Stokes problem. For any given (u, p) ∈ X×
M , letting χ := −∆u+∇p ∈ (H−1(Ω))d, in terms of a(·, ·) and b(·, ·) in (1.4), since ⟨χ, v⟩ = a(u, v)+ b(v, p),
we have from (2.3) and (2.4)

(Ah(−∆u+∇p), zh)0,h = ((ShAh(−∆u+∇p), zh))1,h = a(u, zh) + b(zh, p) ∀zh ∈ Vh. (2.6)
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Assumption A1) Let ||zh||20,h := (zh, zh)0,h and ||zh||21,h := ((zh, zh))1,h for all zh ∈ Vh. We require

that the discrete L2 inner product (·, ·)0,h and the discrete H1 inner product ((·, ·))1,h respectively satisfies

C1||zh||0 ≤ ||zh||0,h ≤ C2||zh||0 ∀zh ∈ Vh, C3||zh||1 ≤ ||zh||1,h ≤ C4||zh||1 ∀zh ∈ Vh, (2.7)

From the definition of Sh we can easily show the following Proposition 2.1.
Proposition 2.1 Assume that Assumption A1) holds. The finite element solution solver Sh is sym-

metric, positive definite with respect to both (·, ·)0,h and ((·, ·))1,h:

((Shχh, χh))1,h = ||χh||20,h ≥ C||χh||20 > 0 ∀0 ̸= χh ∈ Vh,

(Shχh, χh)0,h = ((Shχh,Shχh))1,h = ||Shχh||21,h > 0 ∀0 ̸= χh ∈ Vh.

We can now define a discrete version of the H−1 norm (1.2), according to the linear element space Vh,
as follows:

||χh||−1,h := sup
0̸=zh∈Vh

(χh, zh)0,h
||zh||1,h

∀χh ∈ Vh. (2.8)

From the definition of Sh in (2.3), we have

||χh||−1,h = ||Shχh||1,h ∀χh ∈ Vh, (2.9)

and we have
||χh||2−1,h = (χh,Shχh)0,h ∀χh ∈ Vh. (2.10)

From the definition of Ah in (2.2) we have, for all χ ∈ (H−1(Ω))d,

||Ahχ||−1,h = sup
0̸=zh∈Vh

⟨χ, zh⟩
||zh||1,h

. (2.11)

Proposition 2.2 Assuming Assumption A1), we have, for all χ ∈ (H−1(Ω))d,

||ShAhχ||1,h = ||Ahχ||−1,h ≤ C||χ||−1. (2.12)

Proof. From (2.3) and (2.10) it follows that

||ShAhχ||21,h = ((ShAhχ,ShAhχ))1,h = ((Ahχ,ShAhχ))0,h = ||Ahχ||2−1,h.

From (2.11), (1.2) and Assumption A1) we have

||Ahχ||−1,h = sup
0̸=zh∈Vh

⟨χ, zh⟩
||zh||1,h

≤ sup
0̸=zh∈Vh

||χ||−1||zh||1
||zh||1,h

≤ 1

C3
||χ||−1 sup

0̸=zh∈Vh

||zh||1,h
||zh||1,h

=
1

C3
||χ||−1.

2

In practice, to compute Sh, we may choose a spectral equivalent preconditioner Bh so that BhS−1
h is

well-conditioned, and so that the computation of Sh can be efficiently implemented by the preconditioned
conjugate gradient algorithm with a convergence rate uniform in the mesh size h. On the other hand, we
may directly replace Sh by its preconditioner Bh in computing the H−1 norm for developing the H−1 LS
finite element method, so we do not need to properly or exactly solve the Poisson Dirichlet problem (2.5).
Namely, it is unnecessary to solve (2.3) to a full extent.

To achieve this, we make an assumption on the preconditioner Bh of S−1
h .

Assumption A2) We require that there exists a preconditioner Bh : Vh → Vh, which is symmetric,
positive definite with respect to (·, ·)0,h, such that the spectral equivalence to Sh holds:

C5(Shzh, zh)0,h ≤ (Bhzh, zh)0,h ≤ C6(Shzh, zh)0,h ∀zh ∈ Vh. (2.13)
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From (2.9) and (2.10) we can see that (2.13) implies the following

C5||Shzh||21,h = C5||zh||2−1,h ≤ (Bhzh, zh)0,h ≤ C6||zh||2−1,h = C6||Shzh||21,h ∀zh ∈ Vh. (2.14)

Lemma 2.1 Let Bh be stated as in Assumption A2). Assuming that Assumption A1) holds, we have

C5||Shzh||1,h ≤ ||Bhzh||1,h ≤ C6||Shzh||1,h ∀zh ∈ Vh. (2.15)

Proof. Firstly, from the definition of the discrete H−1 minus norm || · ||−1,h in (2.8), we find that for
all 0 ̸= zh ∈ Vh and for all χh ∈ Vh,

|(χh, zh)0,h|
||zh||1,h

≤ sup
0̸=wh∈Vh

(χh, wh)0,h
||wh||1,h

= ||χh||−1,h,

that is,
|(χh, zh)0,h| ≤ ||χh||−1,h||zh||1,h.

Clearly, for zh = 0, the above still holds. Hence,

|(χh, zh)0,h| ≤ ||χh||−1,h||zh||1,h ∀zh, χh ∈ Vh. (2.16)

Secondly, from Proposition 2.1 we know that Sh is symmetric, positive definite with respect to the discrete
L2 inner product (·, ·)0,h, and we have the following generalized Cauchy-Schwarz inequality

|(Shχh, zh)0,h| ≤
(
(Shχh, χh)0,h

) 1
2
(
(Shzh, zh)0,h

) 1
2 ∀χh, zh ∈ Vh, (2.17)

and from Assumption A2) we know that the preconditioner Bh, which is symmetric, positive definite with
respect to the discrete L2 inner product (·, ·)0,h, also satisfies the generalized Cauchy-Schwarz inequality

|(Bhχh, zh)0,h| ≤
(
(Bhχh, χh)0,h

) 1
2
(
(Bhzh, zh)0,h

) 1
2 ∀χh, zh ∈ Vh. (2.18)

Thus, from (2.14), (2.16) and (2.9), we have

||Shzh||21,h ≤ 1

C5
(Bhzh, zh)0,h ≤ 1

C5
||Bhzh||1,h||zh||−1,h =

1

C5
||Bhzh||1,h||Shzh||1,h,

and it follows that the left-hand side of (2.15) holds. On the other hand,

||Bhzh||1,h = sup
0 ̸=wh∈Vh

((Bhzh, wh))1,h
||wh||1,h

, (2.19)

where, from Proposition 2.1 we know that S−1
h exists, since the coercivity holds with respect to the discrete

H1 inner product ((·, ·))1,h, and from (2.3), (2.18) and (2.14), we have

((Bhzh, wh))1,h = ((Bhzh,ShS−1
h wh))1,h = (Bhzh,S−1

h wh)0,h

≤
(
(Bhzh, zh)0,h

) 1
2
(
(BhS−1

h wh,S−1
h wh)0,h

) 1
2 ≤ C6||Shzh||1,h||wh||1,h.

(2.20)

It follows from (2.19) and (2.20) that the right-hand side of (2.15) holds. 2

So far, we have completed the definitions of the linear element L2 projections, the linear finite element
solution, the linear element discrete H−1 norm, and the linear element spectral equivalent preconditioner Bh.
All these will be used to define the linear-element-based H−1 LS finite element method in the next section.

In what follows, we shall give some remarks.
Remark 2.1 Due to the linear element space Vh, for simplex meshes, we may use the ‘mass-lumping’ L2

inner product [37, 6]: (u, v)0,h :=
∑

K∈Th

|K|
d+1

∑d+1
i=1 u(ai)v(ai), where |K| is the area or volume of K ∈ Th,
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and ai, 1 ≤ i ≤ d + 1, are the vertices of K. Note that the resulting matrix is diagonal. For quadrilateral
or hexahedral meshes, we may use the four-node or eight-node quadrature formula. Regarding defining
((·, ·))1,h, since it is the approximation of the H1 inner product ((·, ·))1 in the linear element space Vh, we
may use the same quadrature schemes as defining (·, ·)0,h. With these choices, Assumption A1) can be easily
verified to hold true. We refer to [10] for a complete theory on numerical quadrature schemes. Anyway, both
Ah and Sh can be easily implemented in the linear element space Vh.

Remark 2.2 To generate a preconditioner Bh to satisfy Assumption A2), one may use the multigrid
algorithm one time on the h level [26, 6, 7, 15]. For the linear element Vh on nested meshes, applying a one
time V-cycle multigrid algorithm on the h level with one smoothing, we can obtain a preconditioner Bh which
satisfies the spectral equivalence (2.13) or equivalently the norm equivalence (2.15). See, e.g., Section 7.4 in
[26] for V-cycle multigrid preconditioner and Section 4 in [26] for multilevel additive preconditioner. The
preconditioner Bh satisfying Assumption A2) may be also generated from domain decomposition methods,
see [9, 34, 39]. Indeed, as a preconditioner in the linear element space Vh of the Poisson Dirichlet problem,
many existing algorithms are readily available for generating such a Bh.

Remark 2.3 Since Ah and Sh are not involved with the finite element spaces Xh × Mh, they can
be obtained in advance, preceding the solution of the Stokes problem in Xh ×Mh. Note that the Th, as
mentioned earlier in the Introduction section, is defined by ((Thχ, vh))1 = ⟨χ, vh⟩ for all vh ∈ Xh for given
χ ∈ (H−1(Ω))d. Only when Xh = Vh, may the combination ShAh in (2.4) be viewed as Th. However, more
importantly, here the combination ShAh is defined only onto the linear element space Vh, whatever the finite
element space Xh of velocity is. This is a significant difference from Th which is defined onto and varies with
Xh. When Xh is high-order elements, a ‘high-order’ Th need to solve and must be realized at the realtime
when Xh is specified (i.e., the realization of Th cannot be performed before the specification of Xh).

3 Stabilization, finite element method and consistency

For solving the velocity and the pressure of the Stokes problem, we introduce two finite element spaces as
follows:

Xh = {v ∈ X : v|K ∈ (Rl(K))d, ∀K ∈ Th}, Mh = {q ∈M ∩H1(Ω) : q|K ∈ Rm(K), ∀K ∈ Th}. (3.1)

We first define two types of mesh-dependent residual-based stabilization terms.
For all (u, p), (v, q) ∈

∏
K∈Th

(H2(K))d ×
∏

K∈Th
H1(K), we define the stabilizing bilinear form

Ch(u, p; v, q) :=
∑

K∈Th

h2K(−∆u+∇p,−∆v +∇q)0,K +
∑

F∈FI
h

hF

∫
F

[
∂u

∂n
][
∂v

∂n
], (3.2)

and the corresponding right-hand side linear form for f ∈ (L2(Ω))d

Gh(f ; v, q) :=
∑

K∈Th

h2K(f,−∆v +∇q)0,K . (3.3)

When (u, p) ∈ (H2(Ω))d × H1(Ω)/R is the exact solution solving the Stokes problem (1.1), we have the
consistency for all (v, q) ∈

∏
K∈Th

(H2(K))d ×
∏

K∈Th
H1(K):

Ch(u, p; v, q) = Gh(f ; v, q). (3.4)

We also have the following boundedness:

|Ch(uh, ph; vh, qh)| ≤ C(||uh||1 + ||ph||0)(||vh||1 + ||qh||0) ∀(uh, ph), (vh, qh) ∈ Xh ×Mh, (3.5)

|Gh(f ; vh, qh)| ≤ C||f ||0(||vh||1 + ||qh||0) ∀(vh, qh) ∈ Xh ×Mh. (3.6)

If the exact solution (u, p) of the Stokes problem is not so smooth that they belong to (H2(Ω))d×H1(Ω)/R
and f may be in (H−1(Ω))d, we have to adopt the embedded-bubble technique in [17] to formulate the
stabilizing bilinear form and its right-hand side in the following.
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For each interior edge/face F ∈ FI
h which is shared by two elements K1 and K2, letMF = K1∪K2 denote

the macro-element, and let Mh be the set of all these macro-elements MF when collecting all the interior
edges/faces F ∈ FI

h , i.e., Mh = {MF ,∀F ∈ FI
h}. Let bMF

∈ H1
0 (MF ) denote the macro-element bubble over

MF = K1 ∪K2, whose restriction to F is an edge/face bubble, i.e., bMF |F ∈ H1
0 (F ). It may be generated

by the local basis functions of R1(K1) and R1(K2) associated with the vertices of F ∈ ∂K1 ∩ ∂K2. For
example, in the case of simplexes, letting λKj , 1 ≤ j ≤ d, denote the d local basis of the linear element P1(K)

associated with the d vertices of F , we define bMF |Ki = λKi
1 · · ·λKi

d , i = 1, 2. Clearly, this bMF ∈ H1
0 (MF ) and

bMF
|F ∈ H1

0 (F ). Meanwhile, let bK ∈ H1
0 (K) denote the element bubble, for example, bK = λK1 · · ·λKd λKd+1

for simplexes, where λKd+1 denotes the local basis of P1(K) associated with the vertex opposite F . For each

F ∈ FI
h which corresponds to the macro-element MF ∈ Mh and for each element K ∈ Th, we introduce two

local function spaces

Θ(MF ) = span{θj ∈ (H1(MF ))
d, 1 ≤ j ≤ JF }, W (K) = span{ψj ∈ (H1(K))d, 1 ≤ j ≤ JK}, (3.7)

where those local functions θj , 1 ≤ j ≤ JF , and ψj , 1 ≤ j ≤ JK , with two integers JF and JK , are chosen so
that the following local inclusions hold:

(−∆vh +∇qh)|K ∈W (K), [
∂vh
∂n

]|F ∈ Θ(MF )|F ∀(vh, qh) ∈ Xh ×Mh. (3.8)

These local inclusions can be easily done. In fact, for example, considering the case where Th is composed
of simplexes, we may choose Θ(MF ) and W (K) as the spaces of polynomials as follows:

Θ(MF ) = (Rl−1(MF ))
d, W (K) = (Rmax(l−2,m−1)(K))d.

With this choice we can easily verify the above local inclusions (3.8). Let γ > 0 be a stabilization constant
independent of h. For all (u, p), (v, q) ∈ X ×M , we define the stabilizing bilinear form and linear form:

Ch(u, p; v, q) :=
∑

K∈Th

JK∑
j=1

(
(∇u,∇(ψjbK))0,K − (div (ψjbK), p)0,K

)(
(∇v,∇(ψjbK))0,K − (div (ψjbK), q)0,K

)
JK∑
j=1

||∇(ψjbK)||20,K

+γ
∑

F∈FI
h

JF∑
j=1

(
(∇u,∇(θjbMF ))0,MF − (div (θjbMF ), p)0,MF

)(
(∇v,∇(θjbMF ))0,MF − (div (θjbMF ), q)0,MF

)
JF∑
j=1

||∇(θjbMF )||20,MF

(3.9)

Gh(f ; v, q) :=
∑

K∈Th

JK∑
j=1

(
(f, ψjbK)0,K

)(
(∇v,∇(ψjbK))0,K − (div (ψjbK), q)0,K

)
JK∑
j=1

||∇(ψjbK)||20,K

+γ
∑

F∈FI
h

JF∑
j=1

(
(f, θjbMF

)0,MF

)(
(∇v,∇(θjbMF

))0,MF
− (div (θjbMF

), q)0,MF

)
JF∑
j=1

||∇(θjbMF
)||20,MF

.

(3.10)

Clearly, when (u, p) ∈ X ×M is the solution of the Galerkin problem (1.5), we have the consistency:

Ch(u, p; v, q) = Gh(f ; v, q) ∀(v, q) ∈ X ×M. (3.11)

We also have the boundedness:

|Ch(u, p; v, q)| ≤ C(||u||1 + ||p||0)(||v||1 + ||q||0) ∀(u, p), (v, q) ∈ X ×M, (3.12)
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|Gh(f ; v, q)| ≤ C||f ||−1(||v||1 + ||q||1) ∀(v, q) ∈ X ×M. (3.13)

On the other hand, for all (u, p), (v, q) ∈
∏

K∈Th
(H2(K))d ×

∏
K∈Th

H1(K), we have

Ch(u, p; v, q) :=
∑

K∈Th

JK∑
j=1

(
(−∆u+∇p, ψjbK)0,K

)(
(−∆v +∇q, ψjbK)0,K

)
JK∑
j=1

||∇(ψjbK)||20,K

+γ
∑

F∈FI
h

JF∑
j=1

(
(−∆u+∇p, θjbMF

)0,MF
+
∫
F
θjbMF

[
∂u

∂n
]
)(

(−∆v +∇q, θjbMF
)0,MF

+
∫
F
θjbMF

[
∂v

∂n
]
)

JF∑
j=1

||∇(θjbMF
)||20,MF

.

(3.14)
Under the local inclusions in (3.8), following the argument in [17], for a suitable γ > 0, we can show the
following equivalence:

C7||(vh, qh)||2h ≤ Ch(vh, qh; vh, qh) ≤ C8||(vh, qh)||2h ∀(vh, qh) ∈ Xh ×Mh, (3.15)

where

||(vh, qh)||2h :=

 ∑
K∈Th

h2K || −∆vh +∇qh||20,K +
∑

F∈FI
h

hF

∫
F

|[∂vh
∂n

]|2
 . (3.16)

Remark 3.1 The stabilization terms in (3.9)-(3.10) are advantageous over the ones (3.2)-(3.3), since
they are meaningful for the weak solution only in X ×M of the Galerkin Stokes problem (1.5). With this
choice, we can establish the following quasi-optimal error estimates between the exact solution (u, p) ∈ X×M
and the finite element solution (uh, ph) ∈ Xh ×Mh: ||u− uh||1 + ||p− ph||0 ≤ C inf

(vh,qh)∈Xh×Mh

(||u− vh||1 +

||p− qh||0). If (3.2) and (3.3) are instead used, a weaker result holds. See Theorem 4.3 in the next section.
We are now in a position to state the finite element problem for solving the Stokes problem (1.1): Find

(uh, ph) ∈ Xh ×Mh such that for all (vh, qh) ∈ Xh ×Mh,

Bh(uh, ph; vh, qh) := (Ah(−∆uh +∇ph),ShAh(−∆vh +∇qh))0,h + Ch(uh, ph; vh, qh) + (div uh, div vh)
= Rh(f ; vh, qh) := ⟨f,ShAh(−∆vh +∇qh)⟩+ Gh(f ; vh, qh).

(3.17)
With the preconditioner Bh replacing Sh in the above, the alternative finite element problem for solving

the Stokes problem (1.1) reads: Find (uh, ph) ∈ Xh ×Mh such that for all (vh, qh) ∈ Xh ×Mh,

B̃h(uh, ph; vh, qh) := (Ah(−∆uh +∇ph),BhAh(−∆vh +∇qh))0,h + Ch(uh, ph; vh, qh) + (div uh, div vh)

= R̃h(f ; vh, qh) := ⟨f,BhAh(−∆vh +∇qh)⟩+ Gh(f ; vh, qh).
(3.18)

In both (3.17) and (3.18), if (u, p) ∈ (H2(Ω))d×H1(Ω)/R solve the Stokes problem (1.1) and f ∈ (L2(Ω))d,
we employ the stabilizations (3.2) and (3.3). If (u, p) ∈ X × M solve the Galerkin problem (1.5) and
f ∈ (H−1(Ω))d, then the stabilizations (3.9) and (3.10) are chosen.

Remark 3.2 Both (3.17) and (3.18) are least-squares methods based on discrete H−1-norm. Note that,
from (2.9) and (2.10), we have (Ah(−∆vh + ∇qh),ShAh(−∆vh + ∇qh))0,h = ||Ah(−∆vh + ∇qh)||2−1,h =

||ShAh(−∆vh + ∇qh)||21,h for all (vh, qh) ∈ Xh ×Mh. From (2.14), ||ShAh(−∆vh + ∇qh)||21,h is equivalent

to (Ah(−∆vh + ∇qh),BhAh(−∆vh + ∇qh))0,h. Note that ||Ah(−∆vh + ∇qh)||2−1,h + ||div vh||20 is not yet

equivalent to ||vh||21 + ||qh||20, although || − ∆vh + ∇qh||2−1 + ||div vh||20 is. To obtain this equivalence for
||Ah(−∆vh +∇qh)||2−1,h + ||div vh||20, the stabilization Ch(uh, ph; vh, qh) must be introduced (see Lemma 4.1
in the next section), while the right-hand side Gh(f ; vh, qh) is only for consistency.
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We next show how to use the bilinear forms a(·, ·) and b(·, ·) in (1.4) to express the above finite element
problems so that we can easily see that the finite element problems satisfy the consistency property. For any
given (vh, qh) ∈ Xh ×Mh, we can associate with a ṽ ∈ Vh ⊂ X as follows:

ṽ = ShAh(−∆vh +∇qh) or ṽ = BhAh(−∆vh +∇qh), (3.19)

and from (2.6) we have
(Ah(−∆uh +∇ph), ṽ)0,h = a(uh, ṽ) + b(ṽ, ph). (3.20)

From (3.19), (3.20), (3.4) or (3.11) and (1.5) we can show the consistency property of the finite element
methods (3.17) and (3.18).

Theorem 3.1 Let (u, p) ∈ (H2(Ω))d×H1(Ω)/R solve the Stokes problem (1.1) or (u, p) ∈ X×M solve
the Galerkin problem (1.5), where the stabilizations Ch(·, ·; ·, ·) and Gh(f ; ·, ·) are correspondingly chosen as
(3.2)-(3.3) or (3.9)-(3.10). Let (uh, ph) solve the finite element problem (3.17) or (3.18). Then, we have the
following consistency property:

B̃h(u− uh, p− ph; vh, qh) = Bh(u− uh, p− ph; vh, qh) = 0 ∀(vh, qh) ∈ Xh ×Mh. (3.21)

2

4 Coercivity, condition number and error bound

In this section we shall establish the coercivity/ellipticity over Xh ×Mh and the quasi-optimal error bound.
Lemma 4.1 Assume that Assumption A1) holds. We have

C(||u||21 + ||p||20) ≤ (Ah(−∆u+∇p),ShAh(−∆u+∇p))0,h + ||(u, p)||2h + ||div u||20, (4.1)

for all (u, p) ∈ X ×M ∩ (
∏

K∈Th
(H2(K))d ×

∏
K∈Th

H1(K)), where ||(u, p)||h is defined by (3.16).

Proof. For any given (u, p) ∈ X ×M ∩ (
∏

K∈Th
(H2(K))d ×

∏
K∈Th

H1(K)), from (1.6) we have

||u||1 + ||p||0 ≤ C sup
0 ̸=(v,q)∈X×M

B(u, p; v, q)

||v||1 + ||q||0
. (4.2)

Letting Πh : X → Vh denote the linear finite element interpolator [10, 6], we have( ∑
K∈Th

h−2
K ||v −Πhv||20,K +

∑
F∈Fh

h−1
F ||v −Πhv||20,F

) 1
2

+ ||Πhv||1 ≤ C||v||1.

From (1.5) we have

B(u, p; v, q) = a(u, v −Πhv) + b(v −Πhv, p) + b(u, q) + a(u,Πhv) + b(Πhv, p), (4.3)

where

a(u, v −Πhv) + b(v −Πhv, p) =
∑

K∈Th

(−∆u+∇p, v −Πhv)0,K +
∑

F∈FI
h

∫
F
[
∂u

∂n
](v −Πhv)

≤ C||(u, p)||h

( ∑
K∈Th

h−2
K ||v −Πhv||20,K +

∑
F∈Fh

h−1
F ||v −Πhv||20,F

) 1
2

≤ C||(u, p)||h||v||1,
(4.4)

b(u, q) ≤ ||div u||0||q||0. (4.5)

Thus, we have

sup
0̸=(v,q)∈X×M

B(u, p; v, q)

||v||1 + ||q||0
≤ C(||(u, p)||h + ||div u||0) + sup

0̸=(v,q)∈X×M

a(u,Πhv) + b(Πhv, p)

||v||1 + ||q||0
, (4.6)

10



where

sup
0̸=(v,q)∈X×M

a(u,Πhv) + b(Πhv, p)

||v||1 + ||q||0
≤ sup

0̸=v∈X

a(u,Πhv) + b(Πhv, p)

||v||1
,

≤ C sup
0̸=v∈X

a(u,Πhv) + b(Πhv, p)

||Πhv||1
≤ C sup

0̸=v∈X
sup

0̸=zh∈Vh

a(u, zh) + b(zh, p)

||zh||1
= C sup

0̸=zh∈Vh

a(u, zh) + b(zh, p)

||zh||1
= C sup

0̸=zh∈Vh

(Ah(−∆u+∇p), zh)0,h
||zh||1

≤ C sup
0̸=zh∈Vh

(Ah(−∆u+∇p), zh)0,h
||zh||1,h

= C||Ah(−∆u+∇p)||−1,h

= C
(
(Ah(−∆u+∇p),ShAh(−∆u+∇p))0,h

) 1
2

.

(4.7)

Therefore, summarizing (4.2)-(4.7), we have

C(||u||1 + ||p||0) ≤
(
(Ah(−∆u+∇p),ShAh(−∆u+∇p))0,h

) 1
2

+ ||(u, p)||h + ||div u||0,

which completes the proof. 2

Theorem 4.1 Assume that Assumptions A1) and A2) hold. We have the following coercvity/ellipticity:

B̃h(u, p;u, p), Bh(u, p;u, p) ≥ C(||u||21 + ||p||20) ∀(u, p) ∈ Xh ×Mh. (4.8)

Proof. From Lemma 4.1 and Assumption A2) it follows that (4.8) holds. 2

Lemma 4.2 Assume that Assumptions A1) and A2) hold. We have

|B̃h(u, p; v, q)|, |Bh(u, p; v, q)| ≤ C(||u||1 + ||p||0)(||v||1 + ||q||0). (4.9)

|R̃h(f ; v, q)|, |Rh(f ; v, q)| ≤ C||f ||∗(||v||1 + ||q||0) (4.10)

for all (u, p), (v, q) ∈ Xh×Mh if the stabilizations are (3.2)-(3.3) and ||f ||∗ = ||f ||0, or for all (u, p), (v, q) ∈
X ×M if the stabilizations are (3.9)-(3.10) and ||f ||∗ = ||f ||−1.

Proof. Below we only show (4.9), while (4.10) can be similarly shown. From (2.16) and (2.9) we have

|(Ah(−∆u+∇p),ShAh(−∆v +∇q))0,h| ≤ ||Ah(−∆u+∇p)||−1,h||ShAh(−∆v +∇q)||1,h
= ||Ah(−∆u+∇p)||−1,h||Ah(−∆v +∇q)||−1,h,

but, for all (u, p) ∈ X ×M , we have from (2.11), (2.6) and Assumption A1)

||Ah(−∆u+∇p)||−1,h = sup
0̸=zh∈Vh

(Ah(−∆u+∇p), zh)0,h
||zh||1,h

= sup
0̸=zh∈Vh

a(u, zh) + b(zh, p)

||zh||1,h
≤ C sup

0 ̸=zh∈Vh

a(u, zh) + b(zh, p)

||zh||1
≤ C(||u||1 + ||p||0),

(4.11)

and we have for all (u, p) ∈ X ×M and for all (v, q) ∈ X ×M ,

|(Ah(−∆u+∇p),ShAh(−∆v +∇q))0,h| ≤ C(||u||1 + ||p||0)(||v||1 + ||q||0). (4.12)

Thanks to (2.16), Lemma 2.1, Proposition 2.2 and (4.11), for Bh, we also have

|(Ah(−∆u+∇p),BhAh(−∆v +∇q))0,h| ≤ ||Ah(−∆u+∇p)||−1,h||BhAh(−∆v +∇q)||1,h
≤ C(||u||1 + ||p||0)||ShAh(−∆v +∇q)||1,h
= C(||u||1 + ||p||0)||Ah(−∆v +∇q)||−1,h

≤ C(||u||1 + ||p||0)(||v||1 + ||q||0).

(4.13)
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for all (u, p) ∈ X×M and for all (v, q) ∈ X×M . Finally, from (3.5)-(3.6) if the stabilizations are (3.2)-(3.3),
or from (3.12)-(3.13) if the stabilizations are (3.9)-(3.10), from (4.12) and (3.17) or from (4.13) and (3.18)
we obtain (4.9). 2

Theorem 4.2 Assume that Assumptions A1) and A2) hold. We have the following norm-equivalence
over Xh ×Mh:

C9(||u||21 + ||p||20) ≤ B̃h(u, p;u, p), Bh(u, p;u, p) ≤ C10(||u||21 + ||p||20) ∀(u, p) ∈ Xh ×Mh. (4.14)

Proof. Consequently, Lemma 4.2 and Theorem 4.1 lead to this result. 2

Corollary 4.1 Assuming the same assumptions as in Theorem 4.2, the finite element problem (3.17)
or (3.18) admits a unique solution (uh, ph) ∈ Xh ×Mh, satisfying

||uh||1 + ||ph||0 ≤ C||f ||0 or C||f ||−1. (4.15)

Proof. From Theorem 4.1 and Lax-Milgram lemma, we have the existence and uniqueness of the
solution of the finite element problems over Xh ×Mh. Following the same argument as proving Lemma
4.2, from (3.5)-(3.6) or (3.12)-(3.13), Theorem 4.2, (3.17) (or (3.18)) and (4.10), we can have the continuous
dependence on f or the stability of the finite element solution (uh, ph) ∈ Xh ×Mh. In other words, (4.15)
holds. 2

Meanwhile, from Theorem 4.2, a standard argument (see page 261-265 in [6]) and the inverse estimate in
Theorem 17.2, page 135 in [10], we can have the estimation of the condition number for the resulting system
of the finite element problem.

Corollary 4.2 Assuming the same assumptions as in Theorem 4.2, and additionally assuming quasi-
uniform meshes, we have the condition number O(h−2) of the resulting algebraic system from the finite
element problem (3.17) or (3.18). 2

We shall next analyze the error bounds.
Theorem 4.3 Assume that Assumptions A1) and A2) hold. Let (u, p) ∈ (H2(Ω))d × H1(Ω)/R solve

the Stokes problem (1.1) or let (u, p) ∈ X ×M solve the Galerkin Stokes problem (1.5). Let (uh, ph) denote
the finite element solution of problem (3.17) or (3.18). If the stabilizations are chosen as (3.9)-(3.10), then
for (u, p) ∈ X ×M

||u− uh||1 + ||p− ph||0 ≤ C inf
(vh,qh)∈Xh×Mh

(||u− vh||1 + ||p− qh||0). (4.16)

If the stabilization terms are chosen as (3.2)-(3.3), then for (u, p) ∈ (H2(Ω))d ×H1(Ω)/R,

||u− uh||1 + ||p− ph||0 ≤ C inf
(vh,qh)∈Xh×Mh

(||u− vh||1 + ||p− qh||0)

+C inf
(vh,qh)∈Xh×Mh

( ∑
K∈Th

h2K(||u− vh||22,K + ||p− qh||21,K)

) 1
2

.
(4.17)

Proof. Take any (vh, qh) ∈ Xh ×Mh and put

ṽ := uh − vh, q̃ := ph − qh, eu = u− vh, ep := p− qh.

From Theorem 4.1 and Theorem 3.1, we have

||ṽ||21 + ||q̃||20 ≤ CBh(ṽ, q̃; ṽ, q̃), CB̃h(ṽ, q̃; ṽ, q̃)

= CBh(eu, ep; ṽ, q̃), CB̃h(eu, ep; ṽ, q̃),

where

Bh(eu, ep; ṽ, q̃) = (Ah(−∆eu +∇ep),ShAh(−∆ṽ +∇q̃))0,h + Ch(eu, ep; ṽ, q̃) + (div eu, div ṽ),

B̃h(eu, ep; ṽ, q̃) = (Ah(−∆eu +∇ep),BhAh(−∆ṽ +∇q̃))0,h + Ch(eu, ep; ṽ, q̃) + (div eu,div ṽ).
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Similar to (4.12) and (4.13), we can have

|(Ah(−∆eu +∇ep),ShAh(−∆ṽ +∇q̃))0,h|, |(Ah(−∆eu +∇ep),BhAh(−∆ṽ +∇q̃))0,h|
≤ C(||eu||1 + ||ep||0)(||ṽ||1 + ||q̃||0).

If the stabilizations are chosen as (3.9)-(3.10), then for (u, p) ∈ X ×M

|Ch(eu, ep; ṽ, q̃)| ≤ C(||eu||1 + ||ep||0)(||ṽ||1 + ||q̃||0).

If the stabilizations are chosen as (3.2)-(3.3), then for (u, p) ∈ (H2(Ω))d ×H1(Ω)/R

Ch(eu, ep; ṽ, q̃) =
∑

K∈Th

h2K(−∆eu +∇ep,−∆ṽ +∇q̃)0,K +
∑

F∈FI
h

hF
∫
F
[
∂eu
∂n

][
∂ṽ

∂n
]

≤ C(||ṽ||1 + ||q̃||0)

||eu||1 +

( ∑
K∈Th

h2K(||eu||22,K + ||ep||21,K)

) 1
2

 .

(div eu, div ṽ) ≤ C||eu||1||ṽ||1.
The proof is finished by putting the above together and by applying the triangle-inequality. 2

Corollary 4.3 Under the same assumptions as in Theorem 4.3, the estimation (4.16) implies the
convergence if the exact solution is only in X ×M . Namely,

lim
h→0

(||u− uh||1 + ||p− ph||0) = 0.

Proof. The argument for proving the above convergence from (4.16) is quite standard, see page 139 in
[10]. 2

Corollary 4.4 Under the same assumptions as in Theorem 4.3, for (u, p) ∈ (H l+1(Ω))d ×Hm(Ω) for
l,m ≥ 1, then for Xh and Mh, which are defined as in (3.1),

||u− uh||1 + ||p− ph||0 ≤ Chmin(l,m)(||u||l+1 + ||p||m). (4.18)

Proof. Let (πhu, ρhp) ∈ Xh ×Mh denote the finite element interpolations of (u, p) ∈ X ×M , where
πh and ρh represent the finite element interpolators. From the classical finite element interpolation theory
[10, 6], e.g., see Theorem 16.2 on page 128 in [10], we have for (u, p) ∈ (H l+1(Ω))d ×Hm(Ω) for l,m ≥ 1,

||u− πhu||1 + ||p− ρhp||0 +

( ∑
K∈Th

h2K(||u− πhu||22,K + ||p− ρhp||21,K)

) 1
2

≤ Chmin(l,m)(||u||l+1 + ||p||m).

(4.19)
It then follows from Theorem 4.3 and (4.19) that (4.18) holds. 2

5 L2 error bounds

In this section, we shall establish the L2 error bound for the velocity. This error bound says that the error
between the exact solution and the finite element solution in L2 norm would have one order higher than that
in H1 norm. We shall elaborate an ad hoc duality argument to achieve this.

For that goal, we shall make a series of assumptions of the H2 regularity of the solutions of the Stokes
problem and the elasticity problem in the following.

Assumption A3) We require that for any given f ∈ (L2(Ω))d, the solution (u, p) of the Stokes problem
(1.1) satisfies

||u||2 + ||p||1 ≤ C||f ||0.
Assumption A4) We require that for any given f ∈ (L2(Ω))d and for all λ ≥ 0, the following elasticity

problem
−∆u− λ∇div u = f in Ω, u = 0 on Γ,
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has a solution u ∈ (H2(Ω))d, satisfying

||u||2 + λ||div u||1 ≤ C||f ||0,

where C is independent of λ.
Assumption A5) We require that for any given f ∈ (L2(Ω))d and for any given v ∈ (H2(Ω)∩H1

0 (Ω))
d

the following generalized Stokes problem

−∆u+∇p = f, div u = div v in Ω, u = 0 on Γ,

has a solution pair (u, p) ∈ (H2(Ω))d ×H1(Ω), satisfying

||u||2 + ||p||1 ≤ C(||f ||0 + ||div v||1).

Remark 5.1 On convex polygon or on smooth domains the above H2 regularity assumptions A3)-
A4) hold [3, 6, 23]. Concerning assumption A5), it essentially results from A3). For example, let us
consider a convex polygon. From (11.4.21), (11.4.22), page 326 in [6] (or, Lemma 2.1, page 323 in [30]),
for the given v ∈ (H2(Ω) ∩ H1

0 (Ω))
2, there exists a v∗ ∈ (H2(Ω) ∩ H1

0 (Ω))
2 such that div v∗ = div v,

satisfying ||v∗||2 ≤ C||div v||1. Thus, with the right-hand side f +∆v∗ in assumption A3), we find (w, π) ∈
(H2(Ω) ∩H1

0 (Ω))
2 ×H1(Ω)/R, which solves −∆w +∇π = f +∆v∗ in Ω, divw = 0 in Ω and w = 0 on ∂Ω

and satisfies ||w||2 + ||π||1 ≤ C||f +∆v∗||0 ≤ C(||f ||0 + ||v∗||2) ≤ C(||f ||0 + ||div v||1). Put u := v∗ +w and
p := π. Such (u, p) is the desired in assumption A5) with the given f and v.

Assumption A6) We require that the numerical quadrature ((·, ·))1,h is chosen so that

|((wh, zh))1,h − ((wh, zh))1| ≤ Ch||wh||1||zh||1 ∀wh, zh ∈ Vh,

where ((·, ·))1 = (∇·,∇·) + (·, ·) or (∇·,∇·).
Remark 5.2 See for a complete theory in [10] from which the above holds, e.g., see Theorem 28.2,

page 199 in [10].
Lemma 5.1 Assume that ((·, ·))1,h is the approximation of ((·, ·))1 = (∇·,∇·). For any given wh ∈ Vh,

letting w̃ := ShAh(−∆wh) ∈ Vh denote the linear finite element solution to the Poisson Dirichlet problem
for the right-hand side −∆wh ∈ (H−1(Ω))d: z ∈ H1

0 (Ω) solves

−∆z = −∆wh in Ω, z = 0 on Γ. (5.1)

Assuming Assumption A6) and Assumption A1), we have

||wh − w̃||1, ||wh − w̃||1,h ≤ Ch||wh||1. (5.2)

Proof. From (2.4), we have

((w̃, zh))1,h = ((ShAh(−∆wh), zh))1,h = ⟨−∆wh, zh⟩ = (∇wh,∇zh) = ((wh, zh))1 ∀zh ∈ Vh.

Choosing
zh := w̃ − wh ∈ Vh,

from Assumption A6) and Assumption A1), we have

||zh||21,h = ((zh, zh))1,h = ((w̃ − wh, zh))1,h = ((w̃, zh))1,h − ((wh, zh))1,h = ((wh, zh))1 − ((wh, zh))1,h
≤ Ch||wh||1||zh||1 ≤ Ch||wh||1||zh||1,h,

and we obtain
||w̃ − wh||1,h = ||zh||1,h ≤ Ch||wh||1.

From Assumption A1), we further have ||w̃ − wh||1 ≤ Ch||wh||1. 2
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For the choice of ((·, ·))1,h being the approximation of ((·, ·))1 = (∇·,∇·) + (·, ·), we can similarly prove
the following lemma.

Lemma 5.2 Assume that ((·, ·))1,h is the approximation of ((·, ·))1 = (∇·,∇·) + (·, ·). For any given
wh ∈ Vh, letting w̃ := ShAh(−∆wh + wh) ∈ Vh denote the linear finite element solution to the Poisson
Dirichlet problem for the right-hand side −∆wh + wh ∈ (H−1(Ω))d: z ∈ H1

0 (Ω) solves

−∆z + z = −∆wh + wh in Ω, z = 0 on Γ. (5.3)

Assuming Assumption A6) and Assumption A1), we have

||wh − w̃||1, ||wh − w̃||1,h ≤ Ch||wh||1. (5.4)

2

Remark 5.3 Note that wh ∈ Vh is in fact the linear finite element solution to the Poisson Dirichlet
problem which is solved using the bilinear form ((·, ·))1, while w̃ = ShAh(−∆wh) or w̃ = ShAh(−∆wh+wh)
is also the linear finite element solution to the same problem but it is solved using the numerical quadrature
((·, ·))1,h. Also, note that if we choose ((·, ·))1,h := ((·, ·))1, i.e., if no numerical quadrature is used for defining
Sh, then w̃ = wh. In that case, Assumption A6) is unnecessary.

We shall now prove the L2 error bound of the velocity variable for the case where Sh is employed in the
finite element problem (3.17).

Theorem 5.1 Assume that Assumptions A1)-A6) hold. Let (u, p) ∈ (H2(Ω))d ×H1(Ω)/R denote the
solution pair of the Stokes problem (1.1) and let (uh, ph) denote the finite element solution of (3.17). Then

||u− uh||0 ≤ Ch

||u− uh||1 + ||p− ph||0 +

( ∑
K∈Th

h2K(||u− uh||22,K + ||p− ph||21,K)

) 1
2

 . (5.5)

Proof. From Assumption A3) we first know that the solution pair (u, p) of Stokes problem (1.1) belongs
to H2(Ω)×H1(Ω). Putting

Eu := u− uh ∈ X, Ep = p− ph ∈M ∩H1(Ω), λ :=
1

h
,

from Assumption A4) we have a solution w ∈ (H1
0 (Ω) ∩H2(Ω))d which solves

−∆w − λ∇divw = Eu in Ω, w = 0 on Γ,

and which satisfies
||w||2 + λ ||divw||1 ≤ C||Eu||0. (5.6)

Put
θ := λdivw, where ||θ||1 ≤ C||Eu||0,

and take w̄ ∈ Vh such that
||w − w̄||1 ≤ Ch||w||2. (5.7)

In terms of the bilinear forms a(·, ·) and b(·, ·) in (1.4), we have

||Eu||20 = (−∆w −∇θ, Eu) = a(Eu, w)− b(Eu, θ)
= a(Eu, w − w̄) + b(w − w̄, Ep)− b(w,Ep)− b(Eu, θ) + a(Eu, w̄) + b(w̄, Ep),

(5.8)

where

a(Eu, w − w̄) + b(w − w̄, Ep) ≤ C(||Eu||1 + ||Ep||0)||w − w̄||1 ≤ Ch(||Eu||1 + ||Ep||0)||w||2
≤ Ch(||Eu||1 + ||Ep||0)||Eu||0,

(5.9)

−b(w,Ep) ≤ ||divw||0||Ep||0 = λ−1||θ||0||Ep||0 = h||θ||0||Ep||0 ≤ h||θ||1||Ep||0 ≤ Ch||Ep||0||Eu||0, (5.10)
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and if ((·, ·))1,h is chosen as the approximation of ((·, ·))1 = (∇·,∇·), then from (2.6)

a(Eu, w̄) + b(w̄, Ep) = (Ah(−∆Eu +∇Ep), w̄)0,h = (Ah(−∆Eu +∇Ep), w̄ − ShAh(−∆w̄))0,h
+(Ah(−∆Eu +∇Ep),ShAh(−∆(w̄ − w)))0,h
+(Ah(−∆Eu +∇Ep),ShAh(−∆w))0,h,

(5.11)

alternatively, if ((·, ·))1,h is chosen as the approximation of ((·, ·))1 = (∇·,∇·) + (·, ·), then

a(Eu, w̄) + b(w̄, Ep) = (Ah(−∆Eu +∇Ep), w̄)0,h
= (Ah(−∆Eu +∇Ep), w̄ − ShAh(−∆w̄ + w̄))0,h
+(Ah(−∆Eu +∇Ep),ShAh(−∆(w̄ − w) + w̄ − w))0,h
+(Ah(−∆Eu +∇Ep),ShAh(−∆w + w))0,h.

(5.12)

Below we only consider (5.11), while (5.12) can be similarly dealt with. From (2.6), Lemma 5.1, (5.7), (5.6),
(2.12) and the fact that from (1.2) we have

|| −∆(w̄ − w)||−1 = sup
0̸=v∈X

⟨−∆(w̄ − w), v⟩
||v||1

= sup
0̸=v∈X

a(w̄ − w, v)

||v||1
≤ C||w̄ − w||1,

it follows that

(Ah(−∆Eu +∇Ep), w̄ − ShAh(−∆w̄))0,h = a(Eu, w̄ − ShAh(−∆w̄)) + b(w̄ − ShAh(−∆w̄), Ep)
≤ C(||Eu||1 + ||Ep||0)||w̄ − ShAh(−∆w̄)||1 ≤ Ch(||Eu||1 + ||Ep||0)||w̄||1
≤ Ch(||Eu||1 + ||Ep||0)||w||2 ≤ Ch(||Eu||1 + ||Ep||0)||Eu||0,

(5.13)
(Ah(−∆Eu +∇Ep),ShAh(−∆(w̄ − w)))0,h = a(Eu,ShAh(−∆(w̄ − w))) + b(ShAh(−∆(w̄ − w)), Ep)
≤ C(||Eu||1 + ||Ep||0)||ShAh(−∆(w̄ − w))||1 ≤ C(||Eu||1 + ||Ep||0)||ShAh(−∆(w̄ − w))||1,h
≤ C(||Eu||1 + ||Ep||0)|| −∆(w̄ − w)||−1 ≤ C(||Eu||1 + ||Ep||0)||w̄ − w||1
≤ Ch(||Eu||1 + ||Ep||0)||w||2 ≤ Ch(||Eu||1 + ||Ep||0)||Eu||0.

(5.14)
Thus, from (5.8)-(5.11) and (5.13)-(5.14), we find that

||Eu||20 ≤ Ch(||Eu||1 + ||Ep||0)||Eu||0 + |E|, (5.15)

where
E := −b(Eu, θ) + (Ah(−∆Eu +∇Ep),ShAh(−∆w))0,h.

In what follows, we estimate E . For that goal, we let (u∗, p∗) ∈ (H1
0 (Ω)∩H2(Ω))d×H1(Ω)/R, and solve the

following generalized Stokes problem

−∆u∗ +∇p∗ = −∆w, div u∗ = θ in Ω, u∗ = 0 on Γ,

where −∆w ∈ (L2(Ω))d and θ = λ divw with w ∈ (H1
0 (Ω) ∩H2(Ω))d, and from Assumption A5), we have

||u∗||2 + ||p∗||1 ≤ C(|| −∆w||0 + ||θ||1) ≤ C||Eu||0.

Take (ū∗, p̄∗) ∈ Vh × Qh ⊂ Xh ×Mh, where Qh = {q ∈ H1(Ω)/R : q|K ∈ R1(K), ∀K ∈ Th} is the linear
element subspace of Mh, such that, e.g., see Theorem 16.2 on page 128 in [10],

||u∗ − ū∗||1 + ||p∗ − p̄∗||0 +

( ∑
K∈Th

h2K(||u∗ − ū∗||22,K + ||p∗ − p̄∗||21,K)

) 1
2

≤ Ch(||u∗||2 + ||p∗||1). (5.16)

We then have

E = (Ah(−∆Eu +∇Ep),ShAh(−∆w))0,h + (divEu, θ)
= (Ah(−∆Eu +∇Ep),ShAh(−∆u∗ +∇p∗))0,h + (divEu, div u

∗)
= (Ah(−∆Eu +∇Ep),ShAh(−∆(u∗ − ū∗) +∇(p∗ − p̄∗)))0,h + (divEu, div (u

∗ − ū∗))
+(Ah(−∆Eu +∇Ep),ShAh(−∆ū∗ +∇p̄∗))0,h + (divEu, div ū

∗)
:= I1 + I2,

(5.17)
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where

I1 := (Ah(−∆Eu +∇Ep),ShAh(−∆(u∗ − ū∗) +∇(p∗ − p̄∗)))0,h + (divEu, div (u
∗ − ū∗)),

I2 := (Ah(−∆Eu +∇Ep),ShAh(−∆ū∗ +∇p̄∗))0,h + (divEu, div ū
∗).

Noting that
(divEu, div (u

∗ − ū∗)) ≤ C||Eu||1||u∗ − ū∗||1,
from (4.12), we have

I1 = (Ah(−∆Eu +∇Ep),ShAh(−∆(u∗ − ū∗) +∇(p∗ − p̄∗)))0,h + (divEu, div (u
∗ − ū∗))

≤ C(||Eu||1 + ||Ep||0)(||u∗ − ū∗||1 + ||p∗ − p̄∗||0)
≤ Ch(||Eu||1 + ||Ep||0)(||u∗||2 + ||p∗||1) ≤ Ch(||Eu||1 + ||Ep||0)||Eu||0.

(5.18)

I2 = (Ah(−∆Eu +∇Ep),ShAh(−∆ū∗ +∇p̄∗))0,h + (divEu, div ū
∗)

= (Ah(−∆Eu +∇Ep),ShAh(−∆ū∗ +∇p̄∗))0,h + (divEu, div ū
∗) + Ch(Eu, Ep; ū

∗, p̄∗)
−Ch(Eu, Ep; ū

∗, p̄∗),
(5.19)

where from Theorem 3.1, we have

(Ah(−∆Eu +∇Ep),ShAh(−∆ū∗ +∇p̄∗))0,h + (divEu, div ū
∗) + Ch(Eu, Ep; ū

∗, p̄∗)
= Bh(Eu, Ep; ū

∗, p̄∗) = 0,

and
−Ch(Eu, Ep; ū

∗, p̄∗) = Ch(Eu, Ep;u
∗ − ū∗, p∗ − p̄∗)− Ch(Eu, Ep;u

∗, p∗),

where if choosing the stabilizations (3.9)-(3.10) then

Ch(Eu, Ep;u
∗ − ū∗, p∗ − p̄∗) ≤ C(||Eu||1 + ||Ep||0)(||u∗ − ū∗||1 + ||p∗ − p̄∗||0)

≤ Ch(||Eu||1 + ||Ep||0)(||u∗||2 + ||p∗||1)
≤ Ch(||Eu||1 + ||Ep||0)||Eu||0,

or if choosing (3.2)-(3.3) then

Ch(Eu, Ep;u
∗ − ū∗, p∗ − p̄∗) =

∑
K∈Th

h2K(−∆Eu +∇Ep,−∆(u∗ − ū∗) +∇(p∗ − p̄∗))0,K

+
∑

F∈FI
h

hF
∫
F
[
∂Eu

∂n
][
∂(u∗ − ū∗)

∂n
]

≤ C

( ∑
K∈Th

h2K(||Eu||22,K + ||Ep||21,K)

) 1
2
( ∑

K∈Th

h2K(||u∗ − ū∗||22,K + ||p∗ − p̄∗||21,K)

) 1
2

+

( ∑
K∈Th

||Eu||21,K + h2K ||Eu||22,K

) 1
2
( ∑

K∈Th

||u∗ − ū∗||21,K + h2K ||u∗ − ū∗||22,K

) 1
2

≤ Ch

||Eu||1 +

( ∑
K∈Th

h2K(||Eu||22,K + ||Ep||21,K)

) 1
2

 (||u∗||2 + ||p∗||1)

≤ Ch

||Eu||1 +

( ∑
K∈Th

h2K(||Eu||22,K + ||Ep||21,K)

) 1
2

 ||Eu||0.

(5.20)

Since u∗ ∈ (H2(Ω))d, we have [
∂u∗

∂n
] = 0 across each F ∈ FI

h , and from either (3.2) or (3.14), we can follow

the routine in proving (5.20) to obtain

−Ch(Eu, Ep;u
∗, p∗) ≤ Ch

||Eu||1 +

( ∑
K∈Th

h2K(||Eu||22,K + ||Ep||21,K)

) 1
2

 ||Eu||0.
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Hence, we obtain

I2 ≤ Ch

||Eu||1 + ||Ep||0 +

( ∑
K∈Th

h2K(||Eu||22,K + ||Ep||21,K)

) 1
2

 ||Eu||0. (5.21)

From (5.18) and (5.21) we have

|E| ≤ Ch

||Eu||1 + ||Ep||0 +

( ∑
K∈Th

h2K(||Eu||22,K + ||Ep||21,K)

) 1
2

 ||Eu||0. (5.22)

Therefore, (5.5) follows from (5.15) and (5.22). 2

In what follows, we shall prove (5.5) for the finite element problem (3.18), where the preconditioner Bh

is employed. For that goal, we shall make an additional assumption on the preconditioner Bh as well as the
spectral equivalence in Assumption A2).

Assumption A7) In addition to the spectral equivalence (2.13), we require that the preconditioner
Bh satisfies

||Shzh||0,h ≤ C||Bhzh||0,h.
Remark 5.4 If Bh is obtained from the multigrid algorithm on the h level, then we can show that Bh

satisfies Assumption A7) from the L2 norm convergence in [4].
Lemma 5.3 Assumption A7) implies

||B−1
h Shzh||0,h ≤ C||zh||0,h ∀zh ∈ Vh.

Proof. In fact,

||B−1
h Shzh||0,h = sup

0̸=wh∈Vh

(B−1
h Shzh, wh)0,h
||wh||0,h

= sup
0̸=wh∈Vh

(Shzh,B−1
h wh)0,h

||wh||0,h
,

where, putting χh := B−1
h wh, we have from Assumption A7)

(Shzh,B−1
h wh)0,h

||wh||0,h
=

(Shzh, χh)0,h
||Bhχh||0,h

=
(zh,Shχh)0,h
||Bhχh||0,h

≤ ||zh||0,h||Shχh||0,h
||Bhχh||0,h

≤ C||zh||0,h.

The proof is then finished. 2

Assumption A8) We require that the discrete L2 inner product (·, ·)0,h satisfies the following property

|(wh, zh)0,h − (wh, zh)| ≤ Ch||w||1||zh||0 ∀wh, zh ∈ Vh.

Remark 5.5 Assumption A8) is true for the numerical quadrature for the L2 inner product, see [10] for
more details. For example, if we choose the mass-lumping L2 inner product in Remark 2.1, then Assumption
A8) holds as well [37].

Under Assumptions A1)-A8), we prove the L2 error bound for the finite element problem (3.18).
Theorem 5.2 Let Assumptions A1)-A8) hold. Let (u, p) ∈ (H2(Ω))d ×H1(Ω)/R denote the solution

pair of the Stokes problem (1.1) and let (uh, ph) denote the finite element solution of (3.18) Then

||u− uh||0 ≤ Ch

||u− uh||1 + ||p− ph||0 +

( ∑
K∈Th

h2K(||u− uh||22,K + ||p− ph||21,K)

) 1
2

 . (5.23)

Proof. The argument is quite similar to the one for proving Theorem 5.1 for problem (3.17). Following
the same argument until (5.11) or (5.12), we shall only deal with (Ah(−∆Eu + ∇Ep),ShAh(−∆w))0,h in
(5.11) in a different way as follows:

(Ah(−∆Eu +∇Ep),ShAh(−∆w))0,h = (BhAh(−∆Eu +∇Ep),B−1
h ShAh(−∆w))0,h,

18



where

(BhAh(−∆Eu +∇Ep),B−1
h ShAh(−∆w))0,h = (BhAh(−∆Eu +∇Ep),B−1

h ShAh(−∆w))0,h
−(BhAh(−∆Eu +∇Ep),B−1

h ShAh(−∆w))
+(BhAh(−∆Eu +∇Ep),B−1

h ShAh(−∆w)),

and from Assumption A8) and Assumption A1), we have

(BhAh(−∆Eu +∇Ep),B−1
h ShAh(−∆w))0,h − (BhAh(−∆Eu +∇Ep),B−1

h ShAh(−∆w))
≤ Ch||BhAh(−∆Eu +∇Ep)||1||B−1

h ShAh(−∆w)||0
≤ Ch||BhAh(−∆Eu +∇Ep)||1,h||B−1

h ShAh(−∆w)||0,h,

where from Lemma 2.1, (2.12) and (4.11), we have

||BhAh(−∆Eu+∇Ep)||1,h ≤ C||ShAh(−∆Eu+∇Ep)||1,h ≤ C||Ah(−∆Eu+∇Ep)||−1,h ≤ C(||Eu||1+||Ep||0),

and from Lemma 5.3 and the definition ofAh in (2.2), where from Assumption A1), we know that ||Ahχ||0,h ≤
C||χ||0 for any given χ ∈ (L2(Ω))d, we have

||B−1
h ShAh(−∆w)||0,h ≤ C||Ah(−∆w)||0,h ≤ C||∆w||0 ≤ C||w||2 ≤ C||Eu||0, (5.24)

and from the definition of Ah in (2.2), we have

(BhAh(−∆Eu +∇Ep),B−1
h ShAh(−∆w)) = (BhAh(−∆Eu +∇Ep),AhB−1

h ShAh(−∆w))0,h
= (Ah(−∆Eu +∇Ep),BhAhB−1

h ShAh(−∆w))0,h.

Now, we can obtain (5.15), and we need only to estimate

E := −b(Eu, θ) + (Ah(−∆Eu +∇Ep),BhAhB−1
h ShAh(−∆w))0,h.

For that goal, we let (u∗, p∗) ∈ (H1
0 (Ω)∩H2(Ω))d×H1(Ω)/R solve the following generalized Stokes problem:

−∆u∗ +∇p∗ = B−1
h ShAh(−∆w), div u∗ = θ in Ω, u∗ = 0 on Γ,

where θ = λdivw satisfies ||θ||1 ≤ C||Eu||0 (see (5.6)), and we have from Assumption A5), Assumption A1)
and (5.24)

||u∗||2 + ||p∗||1 ≤ C(||B−1
h ShAh(−∆w)||0 + ||θ||1) ≤ C(||B−1

h ShAh(−∆w)||0,h + ||θ||1) ≤ C||Eu||0.

Hereafter, just following the same argument from (5.16) to (5.22), with Bh replacing Sh and with B̃h replacing
Bh, we can obtain (5.23). 2

Corollary 5.1 Under the same assumptions as in Theorem 5.1 or in Theorem 5.2, for (u, p) ∈
(H l+1(Ω))d ×Hm(Ω) for l,m ≥ 1, then

||u− uh||0 ≤ Chmin(l,m)+1(||u||l+1 + ||p||m). (5.25)

Proof. Let (πhu, ρhp) ∈ Xh ×Mh be the finite element interpolant to (u, p) as in (4.19). Observe that
from the local inverse estimates [23, 10, 6], we have

hK ||πhu− uh||2,K ≤ C||πhu− uh||1,K ≤ C(||πhu− u||1,K + ||u− uh||1,K),

hK ||ρhp− ph||1,K ≤ C||ρhp− ph||0,K ≤ C(||ρhp− p||0,K + ||p− ph||0,K).

Hence, using the triangle inequality, from (4.18) and (4.19), we have

C

( ∑
K∈Th

h2K(||u− uh||22,K + ||p− ph||21,K)

) 1
2

≤ ||u− uh||1 + ||p− ph||0 + ||u− πhu||1 + ||p− ρhp||0

+

( ∑
K∈Th

h2K(||u− πhu||22,K + ||p− ρhp||21,K)

) 1
2

≤ Chmin(l,m)(||u||l+1 + ||p||m).

In conclusion, combining Theorem 5.1 or Theorem 5.2 and Corollary 4.4, we obtain the desired (5.25). 2
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6 Numerical experiments

In this section we report some numerical results to support the proposed method and the theory developed
in the earlier sections. Given Ω = (0, 1)2 ⊂ R2, and f ∈ (L2(Ω))2 and g ∈ L2(Ω), with

∫
Ω
g = 0. Consider

the following Stokes problem:

−∆u+∇p = f, div u = g in Ω, u = 0 on Γ.

We choose f and g so that the exact solution (u, p) = (u1, u2, p) is

u1(x, y) = sin(πx) sin(πy), u2(x, y) = sin(πx) sin(πy), p(x, y) = cos(πx) exp(πy).

We partition Ω into uniform square elements, and we perform the finite element method stated in (3.17),
with an additional term (g, div vh) in the right-hand side (3.17) to account for the consistency in the above
model with non-zero divergence. For the finite element spaces Xh ⊂ (H1

0 (Ω))
2 and Mh ⊂ H1(Ω)/R of

velocity and pressure, we consider three cases:
Case 1. Equal-order bilinear elements (denoted by Q1 elements)
Case 2. Equal-order biquadratic elements (denoted by Q2 elements)
Case 3. Unequal-order biquadratic-bilinear elements (denoted by Q2 −Q1 elements)
In three cases, we employ the bilinear element for Vh ⊂ (H1

0 (Ω))
2 to define the involved bilinear finite

element solution solver ShAh from (2.6), and we use (3.20) to compute the first term of (3.17). The mesh-
dependent bilinear and linear forms Ch and Gh are chosen as (3.2) and (3.3). The theoretical results of the
error bounds are as follows:

||u− uh||1 + ||p− ph||0 ≤ Chl(||u||l+1 + ||p||l), ||u− uh||0 ≤ Chl+1(||u||l+1 + ||p||l),

where l = 1 and l = 2 are theoretical convergence order, respectively corresponding to equal-order Q1

elements and equal-order Q2 elements or unequal-order Q2 − Q1 elements of velocity and pressure. Due
to the limitations of our Laptop computer’s power, we provide numerical results on a sequence of coarser
meshes. The computed results in L2 norm and H1 norm are listed in Tables 1-6. We find that the computed
and the predicted are consistent. Equal-order and unequal-order elements work for velocity and pressure,
and, in particular, even if the H−1 norm is computed only in the linear element space Vh, when using
higher-order elements Q2 for velocity and pressure, we obtain the predicted convergence.

Table 1: Equal-order Q1 elements
Errors and convergence order in L2 norms for velocity and pressure

1/h ∥u1 − u1h∥0 order ∥u2 − u2h∥0 order ∥p− ph∥0 order
4 3.477980E-01 3.325297E-01 3.799489E+00
8 2.423516E-01 0.52 2.385534E-01 0.48 2.995609E+00 0.34
12 1.719798E-01 0.85 1.706970E-01 0.83 2.208155E+00 0.75
16 1.241632E-01 1.13 1.236360E-01 1.12 1.626164E+00 1.06
20 9.212606E-02 1.34 9.187738E-02 1.33 1.223679E+00 1.27
24 7.035846E-02 1.48 7.022841E-02 1.47 9.452716E-01 1.42
28 5.517351E-02 1.58 5.509985E-02 1.57 7.485025E-01 1.51
32 4.427169E-02 1.65 4.422725E-02 1.65 6.056930E-01 1.59
36 3.622929E-02 1.70 3.620107E-02 1.70 4.993316E-01 1.64
40 3.014983E-02 1.74 3.013114E-02 1.74 4.182407E-01 1.68
44 2.545444E-02 1.78 2.544162E-02 1.78 3.551265E-01 1.72
48 2.175914E-02 1.80 2.175007E-02 1.80 3.051079E-01 1.75
52 1.880254E-02 1.83 1.879596E-02 1.82 2.648349E-01 1.77
56 1.640237E-02 1.84 1.639750E-02 1.84 2.319540E-01 1.79
60 1.442874E-02 1.86 1.442506E-02 1.86 2.047758E-01 1.81
64 1.278720E-02 1.87 1.278437E-02 1.87 1.820639E-01 1.82
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Table 2: Equal-order Q1 elements
Errors and convergence order in H1 norms for velocity and pressure

1/h ∥u1 − u1h∥1 order ∥u2 − u2h∥1 order ∥p− ph∥1 order
4 1.591977E+00 1.524381E+00 1.403737E+01
8 1.113779E+00 0.52 1.096775E+00 0.48 1.042898E+01 0.43
12 7.950230E-01 0.83 7.892634E-01 0.81 7.602035E+00 0.78
16 5.782950E-01 1.11 5.759270E-01 1.10 5.594013E+00 1.07
20 4.328143E-01 1.30 4.316983E-01 1.29 4.230709E+00 1.25
24 3.337075E-01 1.43 3.331248E-01 1.42 3.298303E+00 1.37
28 2.643488E-01 1.51 2.640195E-01 1.51 2.643626E+00 1.44
32 2.143727E-01 1.57 2.141746E-01 1.57 2.169811E+00 1.48
36 1.773616E-01 1.61 1.772361E-01 1.61 1.816890E+00 1.51
40 1.492722E-01 1.64 1.491894E-01 1.64 1.547216E+00 1.53
44 1.274908E-01 1.66 1.274342E-01 1.65 1.336536E+00 1.54
48 1.102809E-01 1.67 1.102410E-01 1.67 1.168765E+00 1.54
52 9.645765E-02 1.67 9.642885E-02 1.67 1.032933E+00 1.54
56 8.519314E-02 1.68 8.517189E-02 1.68 9.213590E-01 1.54
60 7.589567E-02 1.68 7.587969E-02 1.67 8.285424E-01 1.54
64 6.813399E-02 1.67 6.812178E-02 1.67 7.504583E-01 1.53

Table 3: Equal-order Q2 elements
Errors and convergence order in L2 norms for velocity and pressure

1/h ∥u1 − u1h∥0 order ∥u2 − u2h∥0 order ∥p− ph∥0 order
4 1.816323E-02 − 1.615629E-02 − 2.298031E-01 −
8 1.559541E-03 3.54 1.536019E-03 3.39 4.340678E-02 2.40
12 4.050852E-04 3.32 4.055466E-04 3.28 1.511455E-02 2.60
16 1.501849E-04 3.45 1.508731E-04 3.44 7.028019E-03 2.66
20 6.863550E-05 3.51 6.900508E-05 3.51 3.935371E-03 2.60
24 3.603071E-05 3.53 3.622434E-05 3.53 2.484405E-03 2.52
28 2.086180E-05 3.54 2.096791E-05 3.55 1.701130E-03 2.46
32 1.299041E-05 3.55 1.305165E-05 3.55 1.234097E-03 2.40

Table 4: Equal-order Q2 elements
Errors and convergence order in H1 norms for velocity and pressure

1/h ∥u1 − u1h∥1 order ∥u2 − u2h∥1 order ∥p− ph∥1 order
4 1.557982E-01 − 1.523290E-01 − 2.798491E+00 −
8 2.865841E-02 2.44 2.862063E-02 2.41 1.109327E+00 1.33
12 1.059827E-02 2.45 1.060124E-02 2.45 6.606824E-01 1.28
16 5.287807E-03 2.42 5.290716E-03 2.42 4.676084E-01 1.20
20 3.123207E-03 2.36 3.124905E-03 2.36 3.615504E-01 1.15
24 2.048378E-03 2.31 2.049358E-03 2.31 2.946316E-01 1.12
28 1.441736E-03 2.28 1.442326E-03 2.28 2.485808E-01 1.10
32 1.067474E-03 2.25 1.067845E-03 2.25 2.149591E-01 1.09
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Table 5: Unequal-order Q2 −Q1 elements
Errors and convergence order in L2 norms for velocity and pressure

1/h ∥u1 − u1h∥0 order ∥u2 − u2h∥0 order ∥p− ph∥0 order
4 8.080257E-02 − 1.381396E-02 − 7.752562E-01 −
8 7.244889E-03 3.48 1.780281E-03 2.96 9.695358E-02 3.00
12 1.476571E-03 3.92 5.229798E-04 3.02 3.146412E-02 2.78
16 4.630260E-04 4.03 2.156166E-04 3.08 1.582979E-02 2.39
20 1.868489E-04 4.07 1.057930E-04 3.19 9.630225E-03 2.23
24 8.897097E-05 4.07 5.810773E-05 3.29 6.494196E-03 2.16
28 4.760877E-05 4.06 3.461162E-05 3.36 4.679310E-03 2.13
32 2.777557E-05 4.04 2.192604E-05 3.42 3.533364E-03 2.10

Table 6: Unequal-order Q2 −Q1 elements
Errors and convergence order in H1 norms for velocity and pressure

1/h ∥u1 − u1h∥1 order ∥u2 − u2h∥1 order ∥p− ph∥1 order
4 4.227891E-01 − 1.584266E-01 − 7.060317E+00 −
8 4.883858E-02 3.11 3.030656E-02 2.39 3.365978E+00 1.07
12 1.389177E-02 3.10 1.158630E-02 2.37 2.224405E+00 1.02
16 6.182536E-03 2.81 5.808297E-03 2.40 1.661126E+00 1.01
20 3.461147E-03 2.60 3.399543E-03 2.40 1.325575E+00 1.01
24 2.206119E-03 2.47 2.202112E-03 2.38 1.102865E+00 1.01
28 1.526170E-03 2.39 1.531721E-03 2.36 9.442559E-01 1.01
32 1.117043E-03 2.34 1.122661E-03 2.33 8.255476E-01 1.01

7 Conclusion

In this paper we have proposed a new least-squares finite element method for Stokes equations, where the
discrete H−1-norm is used for measuring the residuals from the momentum equation of Stokes equations.
The main novelty and advantage is the computation of the H−1 norm is always only in the linear element
space, whatever the finite element spaces of velocity and pressure are. Since the discrete H−1-norm involves
only the linear element solution of Poisson Dirichlet problem, it can be realized cheaply and ‘offline’ or in
advance, before the solution procedure of Stokes equations. We have presented a theoretical analysis to give
a rigorous justification for this novelty and advantage, and optimal error bounds are shown to hold true,
even if the discrete H−1-norm always lives in the linear element space. In addition, an ad hoc argument
is developed for the derivation of the optimal L2-norm error bounds for velocity. We have performed some
numerical experiments to illustrate the performance of the proposed method and to confirm the theoretical
results obtained.

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions which have helped
to improve the overall presentation of the paper.

22



References

[1] R. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[2] B. N. Jiang, The Least-Squares Finite Element Method, Theory and Applications in Computational
Dynamics and Electromagnetics, Springer-Verlag, Heidelberg, 1998.

[3] C. Bacuta and J. H. Bramble, Regularity estimates for solutions of the equations of linear elasticity in
convex plane polygonal domains, Z. Angew. Math. Phys., 54 (2003), pp. 874-878.

[4] R. E. Bank and T. Dupont, An optimal order process for solving finite element equations, Math. Comput.
36 (1981), pp. 35-51.

[5] M. Benzi, H. Golub, and J. Liesen, Numerical Solution of Saddle Point Problem, Acta Numerica, 14
(2005), pp. 1-137.

[6] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition,
Springer-Verlag, Berlin, 2008.

[7] S. C. Brenner, Convergence of the multigrid V-cycle algorithm for second order boundary value problems
without full elliptic regularity, Math. Comput. 71 (2002), pp. 507-525.

[8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.

[9] T. F. Chan and T. P. Mathew, Domain decomposition algorithms, Acta Numerica (1994), pp. 61-143.

[10] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in: Handbook of Numerical Analysis, Vol. II,
Finite Element Methods (part 1), P. G. Ciarlet and J.-L. Lions eds, North-Holland, Amsterdam, 1991.
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